
Oracle® Communications
User Data Repository
Import/Export File Interface Reference

Release 10.0

E56966 Revision 01

November 2014

Oracle® Communications Import/Export File Interface Reference, Release 10.0
Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications
that may create a risk of personal injury. If you use this software or hardware in dangerous applications,
then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to
ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Table of Contents

Chapter 1: Introduction...9
Overview...10
Scope and Audience..10
Manual Organization...10
Documentation Admonishments...10
Related Publications..11
Locate Product Documentation on the Oracle Technology Network Site...................................11
Customer Training...12
My Oracle Support (MOS)..12
Emergency Response...12

Chapter 2: System Architecture...14
System Architecture Overview..15
Database Transactions...17

Block Transaction Mode..17
ACID-Compliance..20

Behavior During Low Free System Memory...21

Chapter 3: Bulk Operations...22
Message Conventions..23
Import..24

Configuring Import Options..25
Import Files...25
Import File Format...25
Import File Comments...29
Import Log Files...30
Import Status...32

Export...33
XMLExport..34
Export File and Format..35
Export Conversion Tool (xmlconverter)...39
Configuring Export Options...40
Scheduling Exports..40

iiiE56966 Revision 01, November 2014

Export Status...42

Chapter 4: UDR Data Model..43
Data Model Overview...44
Subscriber Data...46

Subscriber Profile...46
Quota..48
State..51
Dynamic Quota...51

Pool Data...54
Pool Profile..54
Pool Quota...55
Pool State...57
Pool Dynamic Quota..58

Chapter 5: Subscriber Provisioning...61
Subscriber Profile Commands..62

Create Subscriber..62
Update Subscriber..66
Delete Subscriber..70

Chapter 6: Pool Provisioning...73
Pool Profile Commands..74

Create Pool..74
Delete Pool..76

Additional Pool Commands...78
Add Member to Pool...78
Remove Member from Pool..82

Chapter 7: General Provisioning...85
General Editing Commands...86

Create Data..86
Update Field..91
Update FieldSet..97
Delete Field...105
Delete FieldSet..110

ivE56966 Revision 01, November 2014

Chapter 8: Special Operations...114
Special Operation Commands..115
Reset...115

Appendix A: Error Codes...119
Error Codes...120

Appendix B: Bulk Import/Export Variables...124
Bulk Import/Export Variables...125

Glossary...126

vE56966 Revision 01, November 2014

List of Figures

Figure 1: UDR High Level Architecture...16

Figure 2: UDR Import Capability..24

Figure 3: Import Log File Format...30

Figure 4: Import Log File — Import Successfully Completed Example..31

Figure 5: Import Log File — Import Interrupted Example..32

Figure 6: Import Status..32

Figure 7: UDR Export Capability...34

Figure 8: Generating Output File...35

Figure 9: Export Schedule (Display)..40

Figure 10: Export Schedule (Insert)...41

Figure 11: Export Schedule (Edit)..41

Figure 12: Export Schedule (Delete)..42

Figure 13: Export Status..42

Figure 14: Data Model...46

viE56966 Revision 01, November 2014

List of Tables

Table 1: Admonishments..11

Table 2: Request Variable Definitions...18

Table 3: Message Conventions...23

Table 4: Import Log File Parameters...30

Table 5: Import Status Table...32

Table 6: Subscriber Profile Fields...47

Table 7: Quota Instance Default Values..49

Table 8: Supported Attribute Sequences...51

Table 9: Dynamic Quota Sequence of Attributes...51

Table 10: Pool Profile Fields..54

Table 11: Pool Quota Fields..56

Table 12: Supported Pool State Attribute Sequences..58

Table 13: Pool Dynamic Quota Sequence of Attributes..58

Table 14: Summary of Subscriber Profile Commands..62

Table 15: Request Variable Definitions: Create Subscriber..63

Table 16: Error Codes: Create Subscriber...64

Table 17: Request Definitions: Update Subscriber..67

Table 18: Error Codes: Update Subscriber..68

Table 19: Request Variable Definitions: Delete Subscriber..71

Table 20: Response Variable Definitions: Delete Subscriber..71

Table 21: Summary of Pool Profile Commands...74

Table 22: Request Variable Definitions: Create Pool...75

viiE56966 Revision 01, November 2014

Table 23: Error Codes0...75

Table 24: Request Variable Definitions: Delete Pool...77

Table 25: Error Codes: Delete Pool..77

Table 26: Summary of Additional Pool Commands...78

Table 27: Request Variable Definitions: Add Member to Pool..79

Table 28: Error Codes: Add Member to Pool...79

Table 29: Request Variable Definitions...83

Table 30: Error Codes: Add Member to Pool...83

Table 31: Summary of General Editing Commands...86

Table 32: Request Variable Definitions: Create Data..87

Table 33: Error Codes: Create Data..88

Table 34: Request Variable Definitions:..93

Table 35: Error Codes...94

Table 36: Request Variable Definitions: Update Field (Pool)..98

Table 37: Error Codes...99

Table 38: Request Variable Definitions...106

Table 39: Error Codes...107

Table 40: Request Variable Definitions...110

Table 41: Error Codes...111

Table 42: Summary of Special Operation Commands..115

Table 43: Request Variable Definitions: Get poolId..115

Table 44: Error Codes: Get poolId..116

Table 45: UDR Error Codes...120

Table 46: Bulk Import/Export Variables..125

viiiE56966 Revision 01, November 2014

Chapter

1
Introduction

The Introduction chapter explains the purpose and
organization of the documentation, defines the

Topics:

• Overview.....10 document's audience and admonishments, lists
• Scope and Audience.....10 related publications and how to location them, and

provides information about technical support and
training.

• Manual Organization.....10
• Documentation Admonishments.....10
• Related Publications.....11
• Locate Product Documentation on the Oracle

Technology Network Site.....11
• Customer Training.....12
• My Oracle Support (MOS).....12
• Emergency Response.....12

9E56966 Revision 01, November 2014

Overview

This document presents the bulk import/export file interface to be used by local and remote
provisioning client applications to administer the provisioning database of the Oracle Communications
User Data Repository (UDR) system. Through bulk import/export files, an external provisioning
system supplied and maintained by the network operator, you may add, change, or delete
subscriber/pool information in the UDR database.

Scope and Audience

This documentation is intended for trained and qualified system operators and administrators who
are responsible for managing the Enhanced Subscriber Profile Repository (ESPR) application on the
User Data Repository (UDR) platform.

Manual Organization

This document is organized into the following chapters:

1. Introduction explains the purpose and organization of this documentation, defines its audience and
admonishments, lists related publications and where to find them, and provides information about
technical support and training.

2. System Architecture describes the UDR system architecture.
3. Bulk Operations describes bulk import and export operations.
4. UDR Data Model describes the subscriber data and their defined entities and attributes.
5. Subscriber Provisioning describes the subscriber provisioning commands and their parameters.
6. Pool Provisioning describes the pool provisioning commands and their parameters.
7. General Provisioning describes the general editing commands.
8. Special Operations describes the Reset command.
9. Error Codes describes the error codes that can appear when a request fails.
10. Bulk Import/Export Variables lists and describes the bulk import and export variables.

Documentation Admonishments

Admonishments are icons and text throughout this manual that alert the reader to assure personal
safety, to minimize possible service interruptions, and to warn of the potential for equipment damage.

10E56966 Revision 01, November 2014

IntroductionImport/Export File

Table 1: Admonishments

DescriptionIcon

Danger:

(This icon and text indicate the possibility of
personal injury.)

Warning:

(This icon and text indicate the possibility of
equipment damage.)

Caution:

(This icon and text indicate the possibility of
service interruption.)

Topple:

(This icon and text indicate the possibility of
personal injury and equipment damage.)

Related Publications

For information about additional publications that are related to this document, refer to the Related
Publications Reference document, which is published as a separate document on the Oracle Technology
Network (OTN) site. See Locate Product Documentation on the Oracle Technology Network Site for more
information.

Locate Product Documentation on the Oracle Technology Network Site

Oracle customer documentation is available on the web at the Oracle Technology Network (OTN)
site, http://docs.oracle.com. You do not have to register to access these documents. Viewing these files
requires Adobe Acrobat Reader, which can be downloaded at www.adobe.com.

1. Log into the Oracle Technology Network site at http://docs.oracle.com.
2. Under Applications, click the link for Communications.

The Oracle Communications Documentation window opens with Tekelec shown near the top.
3. Click Oracle Communications Documentation for Tekelec Products.
4. Navigate to your Product and then the Release Number, and click the View link (the Download

link will retrieve the entire documentation set).
5. To download a file to your location, right-click the PDF link and select Save Target As.

11E56966 Revision 01, November 2014

IntroductionImport/Export File

http://docs.oracle.com
http://www.adobe.com
http://docs.oracle.com

Customer Training

Oracle University offers training for service providers and enterprises. Visit our web site to view, and
register for, Oracle Communications training:

http://education.oracle.com/communication

To obtain contact phone numbers for countries or regions, visit the Oracle University Education web
site:

www.oracle.com/education/contacts

My Oracle Support (MOS)

MOS (https://support.oracle.com) is your initial point of contact for all product support and training
needs. A representative at Customer Access Support (CAS) can assist you with MOS registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support hotline
for your local country from the list at http://www.oracle.com/us/support/contact/index.html. When calling,
make the selections in the sequence shown below on the Support telephone menu:

1. Select 2 for New Service Request
2. Select 3 for Hardware, Networking and Solaris Operating System Support
3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), Select 1
• For Non-technical issues such as registration or assistance with MOS, Select 2

You will be connected to a live agent who can assist you with MOS registration and opening a support
ticket.

MOS is available 24 hours a day, 7 days a week, 365 days a year.

Emergency Response

In the event of a critical service situation, emergency response is offered by the Customer Access
Support (CAS) main number at 1-800-223-1711 (toll-free in the US), or by calling the Oracle Support
hotline for your local country from the list at http://www.oracle.com/us/support/contact/index.html. The
emergency response provides immediate coverage, automatic escalation, and other features to ensure
that the critical situation is resolved as rapidly as possible.

A critical situation is defined as a problem with the installed equipment that severely affects service,
traffic, or maintenance capabilities, and requires immediate corrective action. Critical situations affect
service and/or system operation resulting in one or several of these situations:

• A total system failure that results in loss of all transaction processing capability
• Significant reduction in system capacity or traffic handling capability

12E56966 Revision 01, November 2014

IntroductionImport/Export File

http://education.oracle.com/pls/web_prod-plq-dad/ou_product_category.getFamilyPage?p_family_id=41&p_mode=Training&sc=WWOU14047594MPP002C005
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=225
https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

• Loss of the system’s ability to perform automatic system reconfiguration
• Inability to restart a processor or the system
• Corruption of system databases that requires service affecting corrective actions
• Loss of access for maintenance or recovery operations
• Loss of the system ability to provide any required critical or major trouble notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance capabilities
may be defined as critical by prior discussion and agreement with Oracle.

13E56966 Revision 01, November 2014

IntroductionImport/Export File

Chapter

2
System Architecture

This chapter provides an overview of Import/Export
File Interface system architecture.

Topics:

• System Architecture Overview.....15
• Database Transactions.....17
• Behavior During Low Free System Memory.....21

14E56966 Revision 01, November 2014

System Architecture Overview

Oracle Communications Subscriber Profile Repository (UDR) performs the function of a subscriber
profile repository (SPR), which is a database system that acts as a single logical repository that stores
subscriber data. The subscriber data that traditionally has been stored in the HSS /HLR/AuC,
Application Servers, etc., is now stored in UDR as specified in 3GPP information model. UDR facilitates
the share and the provisioning of user related data throughout services of 3GPP system. Several
Applications Front Ends, such as: one or more PCRF/HSS/HLR/AuCFEs, can be served by UDR.

The data stored in the UDR can be permanent and temporary data. Permanent data is subscription
data and relates to the required information the system needs to know to perform the service. User
identities (e.g. MSISDN, IMSI, NAI and AccountId), service data (e.g. service profile) and authentication
data are examples of the subscription data. This kind of user data has a lifetime as long as the user is
permitted to use the service and may be modified by administration means. Temporary subscriber
data is dynamic data which may be changed as a result of normal operation of the system or traffic
conditions (e.g. transparent data stored by Application Servers for service execution, user status, usage,
etc.).

UDR is a database system providing the storage and management of subscriber policy control data
for PCRF nodes with future upgradability to support additional types of nodes. Subscriber/Pool data
is created/retrieved/modified or deleted through the provisioning or by the Sh interface peers (PCRF).
The following subscriber/pool data is stored in UDR:

• Subscriber

• Profile
• Quota
• State
• Dynamic Quota

• Pool

• Pool Profile
• Pool Quota
• Pool State
• Pool Dynamic Quota

Figure 1: UDR High Level Architecture illustrates a high level UDR Architecture.

15E56966 Revision 01, November 2014

System ArchitectureImport/Export File

Figure 1: UDR High Level Architecture

As shown in the figure, the UDR consists of several functional blocks. The Message Processors (MP)
provide support for a variety of protocols that entail the front end signaling to peer network nodes.
The back end User Data Repository (UDR) database will reside on the N-OAMP servers. The initial
release will focus on the development of the Sh messaging interface for use with the UDR application.

As the product evolves forward, the subscriber profiles in the UDR can be expanded to support data
associated with additional applications. Along with that, the MPs can be expanded to support additional
Diameter interfaces associated with these applications. The IPFE can be integrated with the product
to facilitate signaling distribution across multiple MP nodes.

The Network level OAMP server (NOAM&P) shown in the architecture provides the provisioning,
configuration and maintenance functions for all the network elements under it.

System level OAM server (SOAM) is a required functional block for each network element which gets
data replicated from NOAM&P and in turn replicates the data to the message processors.

MP functions as the client-side of the network application, provide the network connectivity and hosts
network stack such as Diameter, SOAP, LDAP, SIP, and SS7.

The bulk import provisioning interface provides following data manipulation commands:

• Subscriber:

• Subscriber Profile create/delete
• Subscriber Profile field create/modify/delete
• Subscriber opaque data create/modify/delete

• Quota, State and Dynamic Quota

• Reset of Subscriber Quota opaque data

• Pool:

16E56966 Revision 01, November 2014

System ArchitectureImport/Export File

Pool Profile create/delete•
• Pool Profile field create/modify/delete
• Pool opaque data create/modify/delete

• Pool Quota, Pool State and Pool Dynamic Quota

• Pool subscriber membership operations

• Add/remove from pool

The bulk export interface exports the following information:

• Subscriber

• Subscriber Profile
• Subscriber opaque data (if present)

• Quota, State and Dynamic Quota

• If a subscriber is a member of a pool:

• Subscriber pool membership (i.e. PoolID)

• Pool

• Pool Profile
• Pool opaque data (if present)

• Pool Quota, Pool State and Pool Dynamic Quota

Database Transactions

Each create/update/delete request coming from the bulk import interface triggers a unique database
transaction, i.e. a database transaction started by a request is committed before sending a response.

Block Transaction Mode

The block database transaction mode requires explicit <transaction> XML tags around all of the
requests within a transaction.

The block transaction is sent as one XML request, and all requests contained within the block are
executed in the sequence supplied within a database transaction. If any request fails the entire
transaction is automatically rolled back. If all requests are successful then the transaction is automatically
committed.

If a block transaction fails, the error code for the request within the block that encountered an error
will be returned.

All block transactions must also satisfy limits indicated by the Maximum Provisioning Backend Response
Timeout and Transaction Durability Timeout system variables, which are defined in Bulk Import/Export
Variables. If any of those limits are exceeded, the transaction will be aborted and automatically rolled
back.

17E56966 Revision 01, November 2014

System ArchitectureImport/Export File

Note: The relevant transaction related measurement(s) will be incremented once per <transaction>
request (i.e. by +1), i.e. ProvTxnCommitted, TxProvTxnFailed or TxProvTxnAborted.

Request Format

<transaction>
 <txRequest id="id1">
 request1
 </txRequest>
[
 <txRequest id="id2">
 request2
 </txRequest>
 :
 <txRequest id="id3">
 requestN
 </txRequest>
]
</tx>

Table 2: Request Variable Definitions

ValueDefinitionVariable

1-4294967295(Optional) Transaction id value
provided in request, and will be
passed back in the response

id

Note: The maximum number of
requests that can be included in

Bulk import request contained
in the transaction

requestX

a <transaction> transaction
is 50.

Examples
This request creates two subscribers, and updates another subscriber.

<transaction>
 <txRequest id="1">
 <createSubscriber>
 <key>
 <MSISDN>15141234567</MSISDN>
 <IMSI>302370123456789</IMSI>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<subscriber>
 <field name="MSISDN">15141234567</field>
 <field name="IMSI">302370123456789</field>
 <field name="BillingDay">5</field>
 <field name="Tier">Gold</field>
 <field name="Entitlement">DayPass</field>

18E56966 Revision 01, November 2014

System ArchitectureImport/Export File

</subscriber>
]]>
 </content>
 </entity>
 </createSubscriber>
 </txRequest>
 <txRequest id="2">
 <createSubscriber>
 <key>
 <MSISDN>14505551234</MSISDN>
 <IMSI>302370999999999</IMSI>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<subscriber>
 <field name="MSISDN">14505551234</field>
 <field name="IMSI">302370999999999</field>
 <field name="BillingDay">1</field>
 <field name="Tier">Silver</field>
 <field name="Entitlement">DayPass</field>
</subscriber>
]]>
 </content>
 </entity>
 </createSubscriber>
 </txRequest>
 <txRequest id="3">
 <updateField clearAll="true">
 <key>
 <MSISDN>14165555555</MSISDN>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 <xpath>/subscriber</xpath>
 </data>
 <fields>
 <field name="BillingDay">23</field>
 <field name="Tier">Gold</field>
 </fields>
 </entity>
 </updateField>
 </txRequest>
</transaction>

Import File Processing Sequencing
In order to improve the performance of bulk import operations, requests read from an import file are
not guaranteed to be processed in the order in which they are specified in the import file. If multiple
requests for a subscriber must be performed in order, it is necessary to use a block transaction (see
section Block Transaction Mode), and sequence the requests within the transaction in the order in which
they must be performed. Within a transaction, the request processing is guaranteed to be the order in
which the requests are specified.

For example, if the import file contained requests to do the following:

19E56966 Revision 01, November 2014

System ArchitectureImport/Export File

1. Create subscriber #1
2. Update subscriber #1
3. Update subscriber #1

Then it could happen that the first command executed was (3) to update the subscriber, which would
fail because the subscriber did not exist. Then (2) could occur next, and the update would fail because
the subscriber still did not exist, and then finally (1) would create the subscriber, but at the end of the
import operation the subscriber data would NOT contain the updates made in (2) and (3).

By creating a transaction such as:

<transaction>
 Create Subscriber
 Update Subscriber
 Update Subscriber
</transaction>

The request would then work as expected.

ACID-Compliance

The bulk import interface supports Atomicity, Consistency, Isolation and Durability (ACID)-compliant
database transactions which guarantee transactions are processed reliably.

Atomicity
Database manipulation requests are atomic. If one database manipulation request in a transaction
fails, all of the pending changes can be rolled back by the client, leaving the database as it was before
the transaction was initiated. However, the client also has the option to close the transaction, committing
only the changes within that transaction which were executed successfully. If any database errors are
encountered while committing the transaction, all updates are rolled back and the database is restored
to its previous state.

Consistency
Data across all requests performed inside a transaction is consistent.

Isolation
All database changes made within a transaction by one client are not viewable by any other clients
until the changes are committed by closing the transaction. In other words, all database changes made
within a transaction cannot be seen by operations outside of the transaction.

Durability
Once a transaction has been committed and becomes durable, it will persist and not be undone.
Durability is achieved by completing the transaction with the persistent database system before
acknowledging commitment. SOAP and REST Provisioning clients only receive SUCCESS responses
for transactions that have been successfully committed and have become durable.

20E56966 Revision 01, November 2014

System ArchitectureImport/Export File

Note: For bulk import, requests are considered if the database transaction is committed successfully.
The bulk import tool does NOT wait until the transaction has become durable before moving onto the
next request, but requests should eventually become durable a short time after.

The system will recover committed transaction updates in spite of system software or hardware
failures. If a failure (i.e., loss of power) occurs in the middle of a transaction, the database will return
to a consistent state when it is restarted.

Data durability signifies the replication of the provisioned data to different parts of the system before
a response is provided for a provisioning transaction. The following additive configurable levels of
durability are supported:

• Durability to the disk on the active provisioning server (i.e., just 1)
• Durability to the local standby server memory (i.e., 1 + 2)
• Durability to the active server memory at the Disaster Recovery site (i.e., 1 + 2 + 3)

Behavior During Low Free System Memory

If the amount of free system memory available to the database falls below a critical limit, then requests
that create or update data may fail with the error MemThresholdReached. Before this happens, memory
threshold alarms will be raised indicating the impending behavior if the critical level is reached.

The error returned by the bulk import interface when the critical level has been reached is:

[error 61 errorText : line lineNumber]

21E56966 Revision 01, November 2014

System ArchitectureImport/Export File

Chapter

3
Bulk Operations

This chapter explains import and export bulk
operations.

Topics:

• Message Conventions.....23
• Import.....24
• Export.....33

22E56966 Revision 01, November 2014

Message Conventions

XML message specification syntax follows several conventions to convey what parameters are required
or optional and how they and their values must be specified.

Table 3: Message Conventions

DescriptionSymbol

Text that appears literally in the message (e.g.
keywords, commas, parentheses, and error text
are bold)

Bold

Variable names when provided outside of a code
example or value list.

italics

Spaces (ie, zero or more space characters, " ") may
be inserted anywhere except within a single name

spaces

or number. At least one space is required to
separate adjacent names or numbers.

Ellipses represent a variable number of repeated
entries. For example:

dn DN1 , dn DN2, …, dn DN7, dn
DN8

…

Angle brackets are used to enclose parameter
values that are choices or names.

In the following example, the numbers represent
specific value choices.

parameter1 <1|2|3>

< >

In the following example, ServerName represents
the actual value.

parameter2 <ServerName>

In the following example, the numbers represent
a choice in the range from 0 to 3600.

parameter3 <0..3600>

Square brackets are used to enclose an optional
parameter and its value.

[, parameter1 < 1|2|3 >]

[]

A parameter and its value that are not enclosed
in square brackets are mandatory.

23E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

DescriptionSymbol

The pipe symbol is used in a parameter value list
to indicate a choice between available values.

Parameter1 <1|2|3>

|

A literal comma is used in the message to separate
each parameter that is specified.

,

Import

UDR supports mechanisms to support file-based bulk loading of Subscriber data. Subscriber data
records can be entered by reading files which contain the set of transactions to be processed. The
import process is non-blocking, it runs together with Provisioning updates as well as network (Sh)
updates.

The following figure illustrates the capabilities of the UDR import.

Figure 2: UDR Import Capability

24E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

Configuring Import Options

The user can configure Import options by using the UDR's Main Menu:UDR > Configuration >
Provisioning Options screen. Refer to Bulk Import/Export Variables for Provisioning Options.

Import Files

Files from a remote directory can be imported and the values within the files are used to populate the
database. The import file is an ASCII text file that contains a series of database manipulation requests.
Each request must be formatted on a single line. Import files are placed in the Remote Import Directory
on the remote server specified in the Remote Host IP Address field on the Provisioning Options (see
Bulk Import/Export Variables). They are detected within five minutes and automatically resynched over
SSH File Transfer Protocol (SFTP) to the file management storage area on the active server. This local
directory is always /var/TKLC/db/filemgmt/provimport and is displayed in Provisioning
Options (see Bulk Import/Export Variables). For a file to be imported it must:

• be properly named

• XML import files must have *.ixml file extensions

• have been placed in the remote directory after the time when the import last ran
• must not have been previously imported

• A file that has already been imported into the local directory is not imported again, even if its
status is failed.

• To import a previously failed file, correct the file as necessary, rename the file, and then place
the renamed file in the remote directory.

Once fully downloaded, each file is automatically imported into the Provisioning Database sequentially
in the order in which their download completed. The order of imported files is also indicated on the
UDR GUI's Main Menu: UDR > Maintenance > Import Status screen. The import file is validated
one command at a time and the import will continue if a command fails. Failed commands will appear
in the import log file (see section Import Log Files).

An Import file may contain as many requests as the storage media used to hold the import file allows.

Import File Format

Import files contain data in XML format. An XML import file is an ASCII text file that contains a series
of database manipulation requests in native XML format as specified in section Subscriber Provisioning.
The data used in the imports is defined in section Data Model Overview.

The following database manipulation requests are supported in an XML import file:

SectionDescriptionOperation

Create SubscriberCreate a subscriber<createSubscriber>

Update SubscriberUpdate a subscriber<updateSubscriber>

Delete SubscriberDelete a subscriber<deleteSubscriber

Create DataCreate a FieldSet<create>

25E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

SectionDescriptionOperation

Update FieldUpdate a Field<updateField>

Update FieldSetUpdate a FieldSet<updateFieldSet>

Delete FieldDelete a Field<deleteField>

Delete FieldSetDelete a FieldSet<deleteFieldSet>

Create PoolCreate a Pool<createPool>

Delete PoolDelete a Pool<deletePool>

Add Member to PoolAdd a pool member<addPoolMember>

Remove Member from PoolDelete a pool member<deletePoolMember>

ResetReset an Element<reset>

Block Transaction ModeTransaction container<transaction>

Basic Import File Request Format
The following describes the basic layout of an import file request, with all different options and
parameters included. UDR requests are made up of different combinations of the parameters. All are
shown below for illustrative purposes. Proper examples of which parameters are relevant for each
request are described in the section that follows.

<requestName [create="create"]
 [createEntityIfNotExist="createEntityIfNotExist"]
 [clearAll="clearAll"]
 [inTx="inTx"]>

 <key>
<keyName>keyValue</keyName>

 </key>

 <entity>

 <data>

 <name>dataName</name>
 <interface>dataInterface</interface>
 <xpath>dataXpath</xpath>

 <version>
 <name>versionName</name>
 <value>versionValue</value>
 </version>

 </data>

 <fields>
 <field name="fieldName">fieldValue</field>
 </fields>

 <content>
entityContent

 </content>

26E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

 </entity>

 <members>
 <member>

 <keyName>keyValue</keyName>
 </member>
 </members>

</requestName>

Note: Each request is formatted on a single line only. It is shown above expanded for readability.

The requestName attribute indicates the request type, such as <createSubscriber>, <updateField>,
etc.

The create attribute is used to indicate whether the row within an entity should be created if it does
not already exist. Possible values of create are "true" or "false". Note: This attribute is only applicable
to the <updateFieldSet> request.

The createEntityIfNotExist attribute is used to indicate that the entire entity being updated should be
created if it does not already exist before applying the update to create the entity/row. Possible values
of createEntityIfNotExist are "true" or "false". Note: This attribute is only applicable to the <create>
and <updateFieldSet> requests.

The clearAll attribute is used to indicate that when a field is being updated, if all existing values within
the field should first be cleared before applying the update. Possible values of clearAll are "true" or
"false". Note: This attribute is only applicable to the <updateField> request. Note: For fields that
are not multi-value (i.e. single value), the value of clearAll must be set to "true" else the request
will attempt to add a second instance of the field, and the request will fail.

The inTx attribute is used to indicate that the request is in a transaction. Possible values of inTx are
"true" or "false".

Note: This optional attribute is present on every operation, but currently has no use for requests in
import files, and this attribute should always be omitted.

Note: Since this attribute has no effect in any requests, it is not listed in the subsequent sections
describing each request.

Most commands identify the subscriber for which the provisioning request is being made by specifying
the subscriber address in the <key> element. When present, a key type/value must be provided.
Depending on the command, keyType can be IMSI, MSISDN, NAI, AccountId, or PoolID. The value of
the key (of the indicated key type) is set in keyValue.

Depending on the keyType, the keyValue is validated as below:

keyValue ValidationkeyType

10-15 numeric digitsIMSI

8-15 numeric digits.

Note: A preceding '+' symbol is NOT supported, and will be rejected.

MSISDN

String in "user@domain" formatNAI

1-255 charactersAccountId

1-22 numeric digits, minimum value 1PoolID

27E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

The dataName element identifies the provisioning entity type on which the request is being performed
on. Values are either Subscriber, Quota, State, DynamicQuota, Pool, PoolQuota, PoolState, or
PoolDynamicQuota depending on the request, which should match the configured Entity values in the
SEC for the XML import interface.

The dataInterface element must be set to XMLIMPORT for bulk import requests.

When a request is performing an action on a specific field or row in an entity (such as updating a field
value in a specific quota row), the XML XPath expression which references the row to be
created/updated must be specified in dataXpath. The dataXpath value can indicate the base element,
or row name optionally including a particular instance (i.e. the <cid> field in a Quota row) when the
row name is the same etc.

The <version> element is only used when creating a new entity when creating a new row instance
(using the <updateFieldSet> request). The <name> and <version> elements within are used to
indicate (if required) which version of the transparent entity (if more than one are defined) to create
the entity with by default. The versionName and versionValue values indicate entry defined in the SEC
to use.

When a field value is included to be set (for example in an insert/update request), a <fields> element
is present. Within this, zero, one, or many <field name="fieldName">fieldValue</field> element(s)
are present. The fieldName indicates the name of the field being set, and the fieldValue is the value to
set it to.

Note: When specifying fields in a <fields> element, field order is not important. The fields defined
for an entity do not have to be specified in the order they are defined in the SEC.

When a field is a list type (such as Entitlement in Profile), multiple instances of the field element should
be specified.

When entityContent is to be set as an XML data "blob", the blob data should be included within the
constructs of an XML CDATA section. The CDATA section starts with "<![CDATA[", then the
entityContent containing the XML data "blob", and the CDATA section ends with "]]>".

Case Sensitivity
The constructs that bulk import requests are made up of (such as <updateField>, <key>, <entity>,
<xpath>, etc.) are case-sensitive. Exact case must be followed for all the commands described in this
document, or the request will fail.

For example, the following is valid:

<addPoolMember>
 <key>
 <PoolID>100000</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>15141234567</MSISDN>
 </member>
 </members>
</addPoolMember>

But the following is NOT:

<addPoolMember>
 <KEY>

28E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

 <PoolID>100000</PoolID>
 </KEY>
 <members>
 <member>
 <MSISDN>15141234567</MSISDN>
 </member>
 </members>
</addPoolMember>

Request names defined in requestName are case-sensitive, for example createSubscriber, updateField, and
addPoolMember.

Entity names defined in dataName are case-sensitive, for example "Subscriber", "Quota", and "Pool".

Entity field or key names/attributes in fieldName, keyName or versionName are not case-sensitive.

Entity field/key values are case-sensitive, for example fieldValue, keyValue, and versionValue.

Examples:

• When accessing a fieldName defined as "inputVolume" in the SEC, then "inputvolume",
"INPUTVOLUME" or "inputVolume" are valid field names. Field names do not have to be specified
in a request as they are defined in the SEC.

• When a fieldValue is used to find a field (such as when using the <deleteField> command), the
field value is case-sensitive. If a multi-value field contained the values "DayPass, Weekend, Evening"
and the <deleteField> command was used to delete the value "WEEKEND", then this would
fail.

• When an XPath value is specified in dataXpath, such as when accessing a row in an entity (for
example in Quota), then everything contained in the dataXpath is case-sensitive, and must be
specified as defined

• For example, for Quota the following is valid:

• /usage/quota[@name='Q1']

• But the following is NOT valid:

• /usage/quota[@NAME='Q1']

• When a keyName is specified in a <key> element (such as "MSISDN"), the name is not case-sensitive.
• When a keyValue is specified in the <key> element (such as for an NAI), the value is case-sensitive.

For example, for a subscriber with an NAI of "mum@foo.com", then "Mum@foo.com" or
"MUM@FOO.COM" will not find the subscriber.

• When a versionName is specified in a <version> element (such as "version"), the name is not
case-sensitive.

• When a versionValue is specified in the <version> element (such as “v1”), the value is case-sensitive.
For example, for a transparent entity with a single version defined of “v1”, then “V1” will not
match the version defined.

Import File Comments

Import files in XML format can contain blank lines and comment lines. UDR ignores these particular
lines. Comment lines in XML files have the following format:

<!--comment-->

29E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

Import Log Files

An import log file is created for each file that is imported and a copy is automatically uploaded to the
same location in the import file was downloaded from on the remote server. The log file has the same
name as its corresponding import file with ".log" appended. Import log files on the local system are
viewable for up to 7 days or until manually removed via the UDR GUI's Main Menu: Status &
Manage > Files screen.

The import log file contains:

• Date and time the import operation started and completed including percentage of the import file
(lines) complete.

• All requests that resulted in failure along with associated error code (value and string representation),
and line of the import file containing the failure.

• Total number of requests successfully committed and failed.

mm/dd/yy hh:mm:ss Started (0 of linesToImport) 0% complete

reqMsg
[error errorValue errorString : line lineOfFailure] [description]

...

reqMsg
[error errorValue errorString : line lineOfFailure] [description]

mm/dd/yy hh:mm:ss <Completed|Interrupted> (linesImported of linesToImport)
percentCplt% complete

Successful: successfulCmds Failures: failedCmds Total: totalCmds

Figure 3: Import Log File Format

Table 4: Import Log File Parameters

DescriptionParameter

Date the entry was logged.

Values:

mm/dd/yy

• mm = 01-12 (month)
• dd = 01-31 (day of month)
• yy = 00-99 (last two digits of the year)

Time the entry was logged.

Values:

hh:mm:ss

• hh = 00-23 (hours)
• mm = 00-59 (minutes)
• ss = 00-59 (seconds)

Number of lines of the import file that has been
processed

linesImported

30E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

DescriptionParameter

Total number of lines of the import file to be
processed

linesToImport

Percentage of import file (lines) processedpercentCplt

Request Message that resulted in errorreqMsg

Message Response Error ValueerrorValue

Message Response Error StringerrorString

Line number of the failed Request MessagelineOfFailure

Description (if any) of Request Message failuredescription

Total number of Request Messages successfully
committed

successfulCmds

Total number of Request Messages that resulted
in failure

failedCmds

Total number of Request Messages that were
processed

totalCmds

Note: Comment lines are included in the counts for percentCplt, i.e. if an import file contains one
request and one comment, the status may say 1 of 2 completed (i.e., 50% complete) after processing a
comment line.

Below are examples of import log files for successfully completed and interrupted import files:

02/06/13 13:28:01 Started (0 of 200) 0% complete

<removeSubscriber><imsi>310910421000102</imsi></removeSubscriber>
[error 6 Invalid XML: 100 Line:1, Column:19 error: no declaration found for el
ement 'removeSubscriber' : line 1]

<updateSubscriber><key><MSISDN>33123654862</MSISDN></key><subscriber><AccountId>
10404723525</AccountId><MSISDN>33123654862</MSISDN><IMSI>184569547984229</IMSI><
/subscriber><entity><data><name>Subscriber</name><interface>XMLIMPORT</interface
></data><content><![CDATA[<subscriber><field name="AccountId">10404723525</field
><field name="MSISDN">33123654862</field><field name="IMSI">184569547984229</fie
ld><field name="BillingDay">1</field><field name="Tier"></field><field name="Ent
itlement">DayPass</field></subscriber>]]></content></entity></updateSubscriber>
[error 39 Key not found: [MSISDN:33123654862] : line 1]

<deleteSubscriber><key><MSISDN>33123654862</MSISDN></key></deleteSubscriber>
[error 39 Key not found: [MSISDN:33123654862] : line 1]

02/06/13 13:28:03 Completed (200 of 200) 100% complete

Successful: successfulCmds Failures: failedCmds Total: totalCmds

Figure 4: Import Log File — Import Successfully Completed Example

31E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

In the event the import operation is interrupted/terminated (i.e., abnormally terminated), the number
and percentage of requests attempted is reported.

02/06/13 13:28:01 Started (0 of 200) 0% complete

02/06/13 13:28:03 Connection terminated

02/06/13 13:28:03 Interrupted (100 of 200) 50% complete

Successful: 100 Failures: 0 Total: 100

Figure 5: Import Log File — Import Interrupted Example

Import Status

The Import Status GUI is used to view and monitor the status of import operations. The user can view
the status of all imported files by using the UDR GUI's Main Menu: UDR > Maintenace > Import
Status screen. This screen displays the import file and result file names, the current progress
(percentage) and status of the import, number of import commands that succeeded and failed, and
time stamps for when the import was queued, started and completed. The Import Status screen also
provides hyperlinks so that the user can view the import and result files as text or save them locally.

Imports are not scheduled through the GUI. They are initiated by the presence of a file placed in the
Remote Import Directory.

Figure 6: Import Status

Import Status Table
Import Status table will contain an entry for each XML file imported from Remote Server. The Status
will be changed on the basis of events occurred.

Table 5: Import Status Table

Next StateActionEventCurrent State

TransferringStart downloading the
XML file

XML file (*.ixml) found
on Remote server

-

32E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

Next StateActionEventCurrent State

Add an entry to
ProvImports table for
that XML file

Transfer CompletedImport the file into the
Provisioning Database

File successfully
downloaded to
NOAMP server

Transferring

Transfer Failed-File downloading failed
in between (any reason)

In ProgressParse the XMl file-Transfer Completed

Send the Internal XML
Commands to UDRBE

CompletedUpdate the Failed
responses to a log file
<XML file>.log

Responses received
from UDRBE

In Progress

Update the ProvImports
Table with the execution
status

Send the Result log file
back to the remote
server at the same
location

Export

UDR export will generate XML output to align with the output produced by Oracle Communications
Subscriber Data Management v9.3. The export feature allows a text export of the database based on
a range (Ii.e., MSISDN/IMSI range). UDR operators can schedule repeat exports. Exported data may
also be offloaded to a remote server. The exported text file is also available to be downloaded from
the 'file transfer area'. Customers may use exported records to do data manipulation of subscriber
data or as an import file. The export process is non-blocking; it runs together with Provisioning updates
as well as network (Sh) updates.

33E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

Figure 7: UDR Export Capability

XMLExport

To have started the process, the user will have selected a range of MSISDN or IMSI and scheduled an
export via the GUI.

The XMLExport process performs the following:

• Export process creates an output file
• Export process will look up subscribers sequentially, including Auto-Enrolled subscribers, and

output lines as follows:

• Produce <subscriberRecord> line with all subscriber SDO entries
• If a subscriber is part of a pool, <subscriberRecord> line will include <poolID> tag
• If a subscriber is part of pool, <poolRecord> line is produced with all pool SDO entries
• Auto-Enrolled subscribers are exported with the autoEnrolled="true" attribute

• XML Declaration <?xml version="1.0" encoding="UTF-8"?> is stripped out of the retrieved
data for each register.

• Entity/Service Indication name, Sequence Number and Last Update Time are not exported for
each entity per subscriber.

34E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

A maximum of one million subscribers can be exported from the range specified. The following picture
displays export in more detail:

Figure 8: Generating Output File

Export File and Format

Export files are created in a local directory and are transferred to a remote export host if one is
configured. The local directory is always /var/TKLC/db/filemgmt/provexport and the remote
export directory can be configured in the Provisioning Options (see Bulk Import/Export Variables). The
export file format contains the following information:

1. The exported file contains one line per subscriber with each XML entity appended to the same line
(carriage returns are removed from entity value).

2. <subscriberRecord> and <poolRecord> will each take a single line.

Basic Export File Format
The following describes the basic layout of a bulk export file, with all different options and parameters
included.

<subscriberRecord [autoEnrolled="autoEnrolled"]>

 <poolId>poolId</poolId>

 <subscriber>
 <field name="profileFieldName1">profileFieldValue1</field>
 :
 <field name="profileFieldNameN">profileFieldValueN</field>
 </subscriber>

<entityName>
entityData

</entityName>

35E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

</subscriberRecord>

<poolRecord>

 <pool>
 <field name="poolProfileFieldName1">poolProfileFieldValue1</field>
 :
 <field name="poolProfileFieldNameN">poolProfileFieldValueN</field>
 </pool>

<poolEntityName>
poolEntityData

</poolEntityName>

</poolRecord>

Note: Each <subscriberRecord> or <poolRecord> is formatted on a single line only. It is shown
above expanded for readability.

Subscriber Record
One <subscriberRecord> is present for every subscriber that is exported, and all data for that
subscriber is contained within it.

If the subscriber was auto enrolled, then the autoEnrolled attribute will be set "true." If the subscriber
was NOT auto enrolled, then the autoEnrolled attribute is omitted.

If the subscriber is a member of a pool, then a <poolId> element will be present, and the PoolID of
the pool to which the subscriber is a member will be set in poolId. If the subscriber is a member of a
pool, then the corresponding <poolRecord> for the pool for which the subscriber is a member will
also be contained. in the export file.

A subscriber's Profile is stored in the <subscriber> element. This contains all <field> elements
defined within the subscriber's Profile XML blob. Each defined Profile field is set in
profileFieldNameX/profileFieldValueX.

An element exists for each entity defined for the subscriber, such as Quota, State, or DynamicQuota.
All XML blob data for that entity is contained within it. For example, the element <usage> will be
present for the Quota entity, the element <state> for the State entity, and <definition> for the
DynamicQuota entity. The XML blob contents within the root element are in entityData.

Pool Record
One <poolRecord> is present for every pool that is exported, and all data for that pool is contained
within it.

A pool's Profile is stored in the <pool> element. This contains all <field> elements defined within
the pool's PoolProfile XML blob. Each defined PoolProfile field is set in poolProfileFieldNameX /
poolProfileFieldValueX .

An element exists for each entity defined for the pool, such as PoolQuota, PoolState, or
PoolDynamicQuota. For each entity, the entityName contains the root element name of the XML blob.
All XML blob data for that entity is contained within it. For example, the element <usage> will be
present for the PoolQuota entity, the element <state> for the PoolState entity, and <definition>
for the PoolDynamicQuota entity. The XML blob contents within the root element are in poolEntityData.

36E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

Examples

Sample File Formats (lines are expanded to improve readability):

Provisioned Subscriber Record

<subscriberRecord>
 <poolId>1000</poolId>
 <subscriber>
 :
 </subscriber>
 <usage>
 :
 </usage>
</subscriberRecord>

Note: <poolId> tag is only present if the subscriber is a pool member.

Auto-Enrolled Subscriber Record

<subscriberRecord autoEnrolled="true">
 <poolId>1000</poolId>
 <subscriber>
 :
 </subscriber>
 <usage>
 :
 </usage>
</subscriberRecord>

Pool Record

<poolRecord>
 <pool>
 :
 </pool>
 <usage>
 :
 </usage>
</poolRecord>

Example Export Outputs (lines are expanded to improve readability):

Subscriber with only Profile Entity

<subscriberRecord>
 <subscriber>
 <field name="MSISDN">6542896514</field>
 <field name="BillingDay">1</field>
 <field name="Tier" />
 <field name="Entitlement">DayPass</field>
 </subscriber>
</subscriberRecord>

37E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

Subscriber with State and Profile Entities

<subscriberRecord>
 <subscriber>
 <field name="MSISDN">6542896515</field>
 <field name="BillingDay">1</field>
 <field name="Tier"/>
 <field name="Entitlement">DayPass</field>
 </subscriber>
 <state>
 <version>3</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2014-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
 </state>
</subscriberRecord>

Subscriber which is a member of a Pool

<subscriberRecord>
 <poolId>1234</poolId>
 <subscriber>
 <field name="MSISDN">6542896515</field>
 <field name="BillingDay">1</field>
 <field name="Tier"/>
 <field name="Entitlement">DayPass</field>
 </subscriber>
 <state>
 <version>3</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
 </state>
</subscriberRecord>

Auto-Enrolled Subscriber

<subscriberRecord autoEnrolled="true">
 <subscriber>
 <field name="MSISDN">6542896515</field>
 <field name="BillingDay">1</field>
 <field name="Tier"/>
 <field name="Entitlement">DayPass</field>
 </subscriber>

38E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

 <state>
 <version>3</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
 </state>
</subscriberRecord>

PoolRecord with only Pool Profile

<poolRecord>
 <pool>
 <field name="PoolID">206534</field>
 <field name="BillingDay">5</field>
 <field name="Tier">12</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allo</field>
 </pool>
</poolRecord>

PoolRecord with Pool Profile and Pool Quota

<poolRecord>
 <pool>
 <field name="PoolID">206534</field>
 <field name="BillingDay">5</field>
 <field name="Tier">12</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allo</field>
 </pool>
 <usage>
 <version>3</version>
 <quota name="DP_QUOTA_PAYG.500MB">
 <cid>5764888998014956049</cid>
 <nextResetTime>2013-04-02T00:00:00+05:00</nextResetTime>
 <totalVolume>19948458</totalVolume>
 </quota>
 </usage>
</poolRecord>

Export Conversion Tool (xmlconverter)

Xmlconverter is responsible for converting the exported .exml files to XML Import .ixml input files.
This tool is invoked by the user if they have a need to import the exported data and works as follows:

• xmlconverter will read export file one line at a time and create import file to recreate all subscribers
and pool relationships.

• xmlconverter will provide a 'create' or 'update' option

39E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

The following is the usage for this tool:

Tool Usage:

xmlconverter <exportFileName> <importFileName> <create|update>

• create => The generated import file is expected to be used on an UDR system which does not
contain the exported subscribers as it generates create commands.

• update => The generated import file is expected to be used on an UDR system which contains
the exported subscribers as it generates update commands.

• exportFileName => The file name with the absolute path which would be used as input
• importFileName => The file name with the absolute path which would get created as output.

Example:

./usr/TKLC/udr/bin/xmlconverter /var/tmp/ExportFile.exml /var/tmp/ImportFile.ixml
 create

Note: For Auto-Enrolled Subscribers, internal XML commands would not be generated for the profile
entity. In this case, the updated internal XML commands would be generated for non-profile entities
only.

Configuring Export Options

The user can configure Export options by using the UDR GUI's Main Menu:UDR > Configuration >
Provisioning Optionsscreen. Refer to Bulk Import/Export Variables for Provisioning Options.

Scheduling Exports

The user can view the export schedule by using the UDR GUI's Main Menu: UDR > Maintenance >
Export Schedule screen.

Display

Figure 9: Export Schedule (Display)

Insert
Operators schedule exports using the Main Menu: UDR > Maintenance > Export > Schedule ->
[insert] GUI screen. On this screen, users can add a scheduled export. The user can schedule an export
from GUI by specifying a range of MSISDNs or IMSIs as shown below. A maximum number of one

40E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

million subscribers would be exported from the range specified. If a range larger than one million
subscribers is specified, the export will stop once it reaches one million subscribers. Exporting pools
by specifying a range of PoolIDs is not supported.

Figure 10: Export Schedule (Insert)

Edit
The user can modify a scheduled export from GUI by specifying range of MSISDNs or IMSIs as shown
below. A maximum of one million subscribers would be exported from the range specified. Exporting
pools by specifying a range of PoolIDs is not supported.

Figure 11: Export Schedule (Edit)

41E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

Delete

Figure 12: Export Schedule (Delete)

Export Status

The user can view the status of all in progress and completed requested exports by using the UDR
GUI's Main Menu: UDR > Maintenance > Export Status screen. This screen displays the export file
name, status of the export, number of export commands that succeeded and failed, comment and time
stamps for when the export was queued, started and completed. The Export Status screen also provides
hyperlinks so that the user can view the exported file as text or save the file locally.

Figure 13: Export Status

42E56966 Revision 01, November 2014

Bulk OperationsImport/Export File

Chapter

4
UDR Data Model

This chapter describes the UDR data model.Topics:

• Data Model Overview.....44
• Subscriber Data.....46
• Pool Data.....54

43E56966 Revision 01, November 2014

Data Model Overview

The UDR is a system used for the storage and management of subscriber policy control data. The UDR
functions as a centralized repository of subscriber data for the PCRF.

The subscriber-related data includes:

• Profile/Subscriber Data: prev-provisioned information that describes the capabilities of each
subscriber. This data is typically written by the customer's OSS system (via a provisioning interface)
and referenced by the PCRF (via the Sh interface).

• Quota: information that represents the subscriber's use of managed resources (quota, pass, top-up,
roll-over). Although the UDR provisioning interfaces allow quota data to be manipulated, this data
is typically written by the PCRF and only referenced using the provisioning interfaces.

• State: subscriber-specific properties. Like quota, this data is typically written by the PCRF, and
referenced using the provisioning interfaces.

• Dynamic Quota: dynamically configured information related to managed resources (pass, top-up,
roll-over). This data may be created or updated by either the provisioning interface or the Sh
interface.

• Pool Membership: The pool to which the subscriber is associated. The current implementation
allows a subscriber to be associated with a single pool, although the intention is to extend this to
multiple pools in the future.

The UDR can also be used to group subscribers using Pools. This feature allows wireless carriers to
offer pooled or family plans that allow multiple subscriber devices with different subscriber account
IDs, such as MSISDN, IMSI, or NAI to share one quota.

The pool-related data includes:

• Pool Profile: pre-provisioned information that describes a pool
• Pool Quota: information that represents the pool's use of managed resources (quota, pass, top-up,

roll-over)
• Pool State: pool-specific properties
• Pool Dynamic Quota: dynamically configured information related to managed resources (pass,

top-up, roll-over)
• Pool Membership: list of subscribers that are associated with a pool

The data architecture supports multiple Network Applications. This flexibility is achieved through
implementation of a number of registers in a Subscriber Data Object (SDO) and storing the content as
Binary Large Objects (BLOB). An SDO exists for each individual subscriber, and an SDO exists for
each pool.

The Index contains information on the following:

• Subscription

• A subscription exists for every individual subscriber, and for every pool
• Maps a subscription to the user identities through which it can be accessed
• Maps an individual subscription to the pool of which they are a member

• User Identities

• Use to map a specific user identity to a subscription

• IMSI, MSISDN, NAI and AccountId map to an individual subscription

44E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

• PoolID maps to a pool subscription

• Pool Membership

• Maps a pool to the list of the individual subscriber members

The Subscription Data Object (SDO):

• An SDO record contains a list of registers, holding a different type of entity data in each register
• An SDO record exists for:

• Each individual subscriber

• Defined entities stored in the registers are:

• Profile
• Quota
• State
• Dynamic Quota

• Each pool

• Defined entities stored in the registers are:

• Pool Profile
• Pool Quota
• Pool State
• Pool Dynamic Quota

Provisioning applications can create, retrieve, modify, and delete subscriber/pool data. The indexing
system allows to access Subscriber SDO via IMSI, MSISDN, NAI or AccountId. The pool SDO can be
accessed via PoolID.

A field within an entity can be defined as mandatory, or optional. A mandatory field must exist, and
cannot be deleted.

A field within an entity can have a default value. If an entity is created, and the field is not specified,
it will be created with the default value.

A field within an entity can be defined so that once created, it cannot be modified. Any attempt to
update the field once create will fail.

A field within an entity can have a reset value. If a reset command is used on the entity, those fields
with a defined reset value will be set to the defined value. This is currently only applicable to field
values within a row for the Quota entity.

45E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

Figure 14: Data Model

Subscriber Data

Subscriber Profile

The Subscriber profile represents the identifying attributes associated with the user. In addition to the
base fields indicated their level of service, it also includes a set of custom fields that the customer's
provisioning system can use to store information associated with the subscriber. The values in custom
fields are generally set by the customer's OSS and are read by the PCRF for use in policies.

The Subscriber profile shall support the following sequence of attributes. Each record must have at
least one of the following key values: MSISDN, IMSI, NAI, AccountId.

46E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

BillingDay must be defined with a default value if another value is not specified. The remaining fields
are optional, based on the description provided for each.

Note: UDR only supports an MSISDN with 8-15 numeric digits. A preceeding '+' symbol is NOT
supported, and will be rejected.

Table 6: Subscriber Profile Fields

DescriptionTypeName (xml tag)

Sequence (multiplicty=1)---subscriber

Subscriber's MSISDN (8-15
numeric digits)

StringMSISDN

Subscriber's IMSI (10-15 numeric
digits)

StringIMSI

Subscriber's NAI (in format
"user@domain"

StringNAI

Any string that can be used to
identify the account for the
subscriber.

StringAccountId

Allowed values are [0-31].

The day of the month [1-31] on
which the subscriber’s associated
quota should be reset.

StringBillingDay

[0] indicates that the default
value configured at the PCRF
level should be used. This is
automatically set in any record
where BillingDay is not
specified.

List of entitlements. A separate
entry is included for each

StringEntitlement

entitlement associated with the
subscriber’s profile.

Subscriber’s tier.StringTier

Fields used to store
customer-specific data.

StringCustom1

Fields used to store
customer-specific data.

StringCustom2

Fields used to store
customer-specific data.

StringCustom3

Fields used to store
customer-specific data.

StringCustom4

47E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

DescriptionTypeName (xml tag)

Fields used to store
customer-specific data.

StringCustom5

Fields used to store
customer-specific data.

StringCustom6

Fields used to store
customer-specific data.

StringCustom7

Fields used to store
customer-specific data.

StringCustom8

Fields used to store
customer-specific data.

StringCustom9

Fields used to store
customer-specific data.

StringCustom10

Fields used to store
customer-specific data.

StringCustom11

Fields used to store
customer-specific data.

StringCustom12

Fields used to store
customer-specific data.

StringCustom13

Fields used to store
customer-specific data.

StringCustom14

Fields used to store
customer-specific data.

StringCustom15

Fields used to store
customer-specific data.

StringCustom16

Fields used to store
customer-specific data.

StringCustom17

Fields used to store
customer-specific data.

StringCustom18

Fields used to store
customer-specific data.

StringCustom19

Fields used to store
customer-specific data.

StringCustom20

Quota

The Quota entity is used by the PCRF to record the current resource usage associated with a subscriber.
A quota entity may contain multiple quota elements, each one tracking a different resource.

The Quota entity shall be associated with a subscriber record and supports the following sequence of
attributes:

48E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

Note: The Quota entity contains a version number. Different attributes maybe be present based on
the version number value of the entity being accessed. In this product, only v3 of Quota is supported.

Note: The default value given in the table is used either:

• When a Quota instance is created, and no value is supplied for the field. In this case, the field is
created with the value indicated.

• When a Quota instance is reset using the "Reset" command. Each field listed below is set to the
value indicated. If the field does not currently exist in the Quota, it is created.

Table 7: Quota Instance Default Values

Quota VersionsDescriptionDefault ValueTypeName (xml tag)

Sequence (multiplicity
= 1)

------usage

Version of the schema---Stringversion

Sequence (multiplicity
= N)

------quota

1/2/3Quota name
(identifier)

---Stringname

1/2/3Internal identifier
used to identity a

---Stringcid

quota within a
subscriber profile.

1/2/3Tracks the time-based
resource consumption
for a Quota.

Empty string “”Stringtime

1/2/3Tracks the bandwidth
volume-based

“0”StringtotalVolume

resource consumption
for a Quota.

1/2/3Tracks the upstream
bandwidth

“0”StringinputVolume

volume-based
resource consumption
for a Quota.

1/2/3Tracks the
downstream

“0”StringoutputVolume

bandwidth
volume-based
resource consumption
for a Quota.

1/2/3Tracks service-specific
resource consumption
for a Quota.

Empty string “”StringserviceSpecific

49E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

Quota VersionsDescriptionDefault ValueTypeName (xml tag)

1/2/3Indicates the time
after which the usage

Empty string “”StringnextResetTime

counters need to be
reset. See below for
date/time format

2/3Type of the resource
in use.

Empty string “”StringType

2/3Represents the
granted total volume

“0”StringgrantedTotalVolume

of all the subscribers
in the pool, in case of
pool quota. In case of
individual quota, it
will represent the
granted volume to all
the PDN connections
for that subscriber

2/3Granted Input
Volume

“0”StringgrantedInputVolume

2/3Granted Output
Volume

“0”StringgrantedOutputVolume

2/3Granted Total TimeEmpty string “”StringgrantedTime

2/3Granted Service
Specific Units

Empty string “”StringgrantedServiceSpecific

3State of the resource
in use.

Empty string “”StringQuotaState

3Instance-id of the
associated

Empty string “”StringRefInstanceId

provisioned pass,
top-up or roll-over.

Note: Date/Timestamp format is:

CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]

where:

• - = years before 0001
• CC = century
• YY = year
• MM = month
• DD = day
• T = Date/Time separator
• hh = hour
• mm = minutes

50E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

• ss = seconds
• Z = UTC (Coordinated Universal Time)
• +|- = time offset from UTC

The format has a regular expression along the lines of (excluding time zone part):

[0-9][0-9][0-9][0-9]\-[0-9][0-9]\-[0-9][0-9]T[0-9][0-9]:[0-9][0-9]:[0-9][0-9]

State

The State entity is written by the PCRF to store the state of various properties managed as a part of
the subscriber's policy. Each subscriber may have a state entity. Each state entity may contain multiple
properties.

The State entity contains a version number. Different attributes maybe be present based on the version
number value of the entity being accessed. In UDR, there is only one version number of 1.

The State entity shall support the following sequence of attributes:

Table 8: Supported Attribute Sequences

DescriptionTypeName (xml tag)

Sequence (multiplicity=1)---state

Version of the schemaStringversion

Sequence (multiplicity = N)---property

The property name.Stringname

Value associated with the given
property.

Stringvalue

Dynamic Quota

The DynamicQuota entity records usage associated with passes, top-ups, and roll-overs. The
DynamicQuota entity is associated with the Subscriber profile and may be created or updated by
either the PCRF or the customer's OSS system.

The DynamicQuota entity contains a version number. Different attributes maybe be present based on
the version number value of the entity being accessed. In UDR, there is only one version number of
1.

The DynamicQuota entity shall support the following sequence of attributes:

Table 9: Dynamic Quota Sequence of Attributes

DescriptionTypeName (xml tag)

Sequence (multiplicity = 1)---definition

Version of the schemaStringversion

Sequence (multiplicity = N)---DynamicQuota

51E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

DescriptionTypeName (xml tag)

Identifies the dynamic quota
type.

StringType

The class identifier for a pass or
top-up. This name will be used

Stringname

to match top-ups to quota
definitions on the PCRF. This
name will be used in policy
conditions and actions on the
PCRF.

A unique identifier to identify
this instance of a dynamic quota
object.

StringInstanceId

An integer represented as a
string. This number allows

StringPriority

service providers to specify
when one pass or top-up should
be used before another pass or
top-up.

An integer represented as a
string. The number of seconds

StringInitialTime

initially granted for the
pass/top-up.

An integer represented as a
string. The number of bytes of

StringInitialTotalVolume

total volume initially granted for
the pass/top-up.

An integer represented as a
string. The number of bytes of

StringInitialInputVolume

input volume initially granted
for the pass/top-up.

An integer represented as a
string. The number of bytes of

StringInitialOutputVolume

output volume initially granted
for the pass/top-up.

An integer represented as a
string. The number of service

StringInitialServiceSpecific

specific units initially granted for
the pass/top-up.

The date/time after which the
pass or top-up may be active.

See below for date/time format

Stringactivationdatetime

52E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

DescriptionTypeName (xml tag)

The date/time after which the
pass or top-up is considered to
be exhausted

See below for date/time format

Stringexpirationdatetime

The date/time when a pass was
purchased

See below for date/time format

Stringpurchasedatetime

The number of seconds after first
use in which the pass must be

StringDuration

used or expired. If both Duration
and expirationdatetime are
present, the closest expiration
time is used

The number of seconds after
which the GGSN/DPI/Gateway

StringInterimReportingInterval

should revalidate quota grants
with the PCRF

Note: Date/Timestamp format is:

CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]

where:

• - = years before 0001
• CC = century
• YY = year
• MM = month
• DD = day
• T = Date/Time separator
• hh = hour
• mm = minutes
• ss = seconds
• Z = UTC (Coordinated Universal Time)
• +|- = time offset from UTC

The format has a regular expression along the lines of (excluding time zone part):

[0-9][0-9][0-9][0-9]\-[0-9][0-9]\-[0-9][0-9]T[0-9][0-9]:[0-9][0-9]:[0-9][0-9]

53E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

Pool Data

Pool Profile

The Pool profile includes a set of custom fields that the customer's provisioning system can use to
store information associated with the pool. The values in custom fields are generally set by the
customer's OSS and are read by the PCRF for use in policies.

Each pool profile must have a unique key value called PoolID.

BillingDay must be defined with a default value if another value is not specified. The remaining fields
are optional, based on the description provided for each.

The Pool profile record consists of the following sequence of attributes.

Table 10: Pool Profile Fields

DescriptionTypeName (xml tag)

Sequence (multiplicty=1)---pool

Pool identifier (1-22 numeric
digits, minimum value 1)

StringPoolID

The day of the month [1-31] on
which the pool’s associated
quota should be reset.

[0] indicates that the default
value configured at the PCRF
level should be used.

Uint8BillingDay

The billing frequency, monthly,
weekly, daily

StringBillingType

List of entitlements. A separate
entry is included for each

StringEntitlement

entitlement associated with the
pool's profile.

Subscriber’s tier.StringTier

Fields used to store
customer-specific data.

StringCustom1

Fields used to store
customer-specific data.

StringCustom2

Fields used to store
customer-specific data.

StringCustom3

Fields used to store
customer-specific data.

StringCustom4

54E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

DescriptionTypeName (xml tag)

Fields used to store
customer-specific data.

StringCustom5

Fields used to store
customer-specific data.

StringCustom6

Fields used to store
customer-specific data.

StringCustom7

Fields used to store
customer-specific data.

StringCustom8

Fields used to store
customer-specific data.

StringCustom9

Fields used to store
customer-specific data.

StringCustom10

Fields used to store
customer-specific data.

StringCustom11

Fields used to store
customer-specific data.

StringCustom12

Fields used to store
customer-specific data.

StringCustom13

Fields used to store
customer-specific data.

StringCustom14

Fields used to store
customer-specific data.

StringCustom15

Fields used to store
customer-specific data.

StringCustom16

Fields used to store
customer-specific data.

StringCustom17

Fields used to store
customer-specific data.

StringCustom18

Fields used to store
customer-specific data.

StringCustom19

Fields used to store
customer-specific data.

StringCustom20

Pool Quota

The PoolQuota entity records usage associated with quotas, passes, top-ups, and roll-overs associated
with the pool. The PoolQuota entity is associated with the Pool Profile and may be created or updated
by either the PCRF or the customer's OSS system.

55E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

The PoolQuota entity contains a version number. Different attributes maybe be present based on the
version number value of the entity being accessed. In UDR, there is only one version number of 3.

The PoolQuota entity consists of the following sequence of attributes:

Note: The default value given in the table is used when a PoolQuota instance is created, and no value
is supplied for the field. In this case, the field is created with the value indicated.

Table 11: Pool Quota Fields

DescriptionDefault ValueSizeTypeName (xml tag)

Sequence (multiplicity = 1)---------usage

Version of the schema---8Stringversion

Sequence (multiplicity = N)---------quota

Quota name (identifier)255Stringname

Internal identifier used to
identity a quota within a
subscriber profile.

255Stringcid

Tracks the time-based
resource consumption for a
Quota.

Empty string “”255Stringtime

Tracks the bandwidth
volume-based resource
consumption for a Quota.

“0”255StringtotalVolume

Tracks the upstream
bandwidth volume-based

“0”255StringinputVolume

resource consumption for a
Quota.

Tracks the downstream
bandwidth volume-based

“0”255StringoutputVolume

resource consumption for a
Quota.

Tracks service-specific
resource consumption for a
Quota.

Empty string “”255StringserviceSpecific

When set, it indicates the
time after which the usage
counters need to be reset.

See below for date/time
format

Empty string “”255StringnextResetTime

Type of the resource in use.Empty string “”255StringType

Represents the granted total
volume of all the subscribers

“0”255StringgrantedTotalVolume

in the pool, in case of pool

56E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

DescriptionDefault ValueSizeTypeName (xml tag)
quota. In case of individual
quota, it will represent the
granted volume to all the
PDN connections for that
subscriber.

Granted Input Volume“0”255StringgrantedInputVolume

Granted Output Volume“0”255StringgrantedOutputVolume

Granted Total TimeEmpty string “”255StringgrantedTime

Granted Service Specific
Units

Empty string “”255StringgrantedServiceSpecific

State of the resource in use.Empty string “”255StringQuotaState

Instance-id of the associated
provisioned pass, top-up or
roll-over.

Empty string “”255StringRefInstanceId

Note: Date/Timestamp format is:

CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]

where:

• - = years before 0001
• CC = century
• YY = year
• MM = month
• DD = day
• T = Date/Time separator
• hh = hour
• mm = minutes
• ss = seconds
• Z = UTC (Coordinated Universal Time)
• +|- = time offset from UTC

The format has a regular expression along the lines of (excluding time zone part):

[0-9][0-9][0-9][0-9]\-[0-9][0-9]\-[0-9][0-9]T[0-9][0-9]:[0-9][0-9]:[0-9][0-9]

Pool State

The PoolState entity is written by the PCRF to store the state of various properties managed as a part
of the pool's policy. Each pool profile may have a PoolState entity. Each PoolState entity may contain
multiple properties.

The PoolState entity contains a version number. Different attributes maybe be present based on the
version number value of the entity being accessed. In UDR, there is only one version number of 1.

The PoolState entity consists of the following sequence of attributes:

57E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

Table 12: Supported Pool State Attribute Sequences

DescriptionTypeName (xml tag)

Sequence (multiplicity=1)---state

Version of the schemaStringversion

Sequence (multiplicity = N)---property

The property name.Stringname

Value associated with the given
property.

Stringvalue

Pool Dynamic Quota

The PoolDynamicQuota entity records usage associated with passes, top-ups, and roll-overs associated
with the pool. The PoolDynamicQuota entity is associated with the Pool Profile and may be created
or updated by either the PCRF or the customer's OSS system.

The PoolDynamicQuota entity contains a version number. Different attributes maybe be present based
on the version number value of the entity being accessed. In UDR, there is only one version number
of 1.

The PoolDynamicQuota entity shall support the following sequence of attributes:

Table 13: Pool Dynamic Quota Sequence of Attributes

DescriptionTypeName (xml tag)

Sequence (multiplicity = 1)---definition

Version of the schemaStringversion

Sequence (multiplicity = N)---DynamicQuota

Identifies the dynamic quota type.StringType

The class identifier for a pass or top-up. This
name will be used to match top-ups to quota

Stringname

definitions on the PCRF. This name will be used
in policy conditions and actions on the PCRF.

A unique identifier to identify this instance of a
dynamic quota object.

StringInstanceId

An integer represented as a string. This number
allows service providers to specify when one

StringPriority

pass or top-up should be used before another
pass or top-up.

An integer represented as a string. The number
of seconds initially granted for the pass/top-up.

StringInitialTime

58E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

DescriptionTypeName (xml tag)

An integer represented as a string. The number
of bytes of total volume initially granted for the
pass/top-up.

StringInitialTotalVolume

An integer represented as a string. The number
of bytes of input volume initially granted for the
pass/top-up.

StringInitialInputVolume

An integer represented as a string. The number
of bytes of output volume initially granted for
the pass/top-up.

StringInitialOutputVolume

An integer represented as a string. The number
of service specific units initially granted for the
pass/top-up.

StringInitialServiceSpecific

The date/time after which the pass or top-up
may be active.

See below for date/time format

Stringactivationdatetime

The date/time after which the pass or top-up is
considered to be exhausted

See below for date/time format

Stringexpirationdatetime

The date/time when a pass was purchased

See below for date/time format

Stringpurchasedatetime

The number of seconds after first use in which
the pass must be used or expired. If both

StringDuration

Duration and expirationdatetime are present,
the closest expiration time is used

The number of seconds after which the
GGSN/DPI/Gateway should revalidate quota
grants with the PCRF.

StringInterimReportingInterval

Note: Date/Timestamp format is:

CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]

where:

• - = years before 0001
• CC = century
• YY = year
• MM = month
• DD = day
• T = Date/Time separator
• hh = hour
• mm = minutes
• ss = seconds

59E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

• Z = UTC (Coordinated Universal Time)
• +|- = time offset from UTC

The format has a regular expression along the lines of (excluding time zone part):

[0-9][0-9][0-9][0-9]\-[0-9][0-9]\-[0-9][0-9]T[0-9][0-9]:[0-9][0-9]:[0-9][0-9]

60E56966 Revision 01, November 2014

UDR Data ModelImport/Export File

Chapter

5
Subscriber Provisioning

This chapter describes subscriber provisioning
commands.

Topics:

• Subscriber Profile Commands.....62

61E56966 Revision 01, November 2014

Subscriber Profile Commands

Table 14: Summary of Subscriber Profile Commands

Command SyntaxKey(s)DescriptionCommand

<createSubscriber>MSISDN, IMSI, NAI
and/or AccountId

Create a new subscriber/
subscriber Profile

Create Subscriber

<updateSubscriber>Update subscriber Profile
data

Update
Subscriber

<deleteSubscriber>MSISDN, IMSI, NAI
or AccountId

Delete all subscriber Profile
data and all opaque data
associated with the
subscriber

Delete Subscriber

Create Subscriber

This operation creates a new subscriber profile using the field-value pairs that are specified in the
request content.

Note: All key values (IMSI/MSISDN/NAI/AccountId) should be specified identically in both the
<key> section and in the Profile XML blob. The values specified in the <key> section are used to create
the subscriber and define what values are used in the <key> section for subsequent requests. The
values in the Profile XML blob are simply stored and returned if requested.

Note: The subscriber profile data provided is fully validated against the definition in the SEC. If the
validation check fails, then the request is rejected.

Prerequisites

A subscriber with any of the keys supplied in the <key> section must not exist.

Request

<createSubscriber>

<key>

[
 <IMSI>IMSI1</IMSI>
[<IMSI>IMSI2</IMSI>]
[<IMSI>IMSI3</IMSI>]
]

[
 <MSISDN>MSISDN1</MSISDN>
[<MSISDN>MSISDN2</MSISDN>]
[<MSISDN>MSISDN3</MSISDN>]
]

62E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

[
 <NAI>NAI1</NAI>
[<NAI>NAI2</NAI>]
[<NAI>NAI3</NAI>]
]

[<AccountId>accountId</AccountId>]

</key>

 <entity>

 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 </data>
 <content>
 <![CDATA[cdataProfile]]>
 </content>

 </entity>

</createSubscriber>

Table 15: Request Variable Definitions: Create Subscriber

ValueDefinitionVariable

A string with 10 to 15 digits (if
value is set)

IMSI value(s) corresponding to
the subscriber. No values will be
present if an IMSI is not
provisioned for the subscriber

IMSIX

A string with 8 to 15 digits (if
value is set)

MSISDN value(s) corresponding
to the subscriber. No values will
be present if an MSISDN is not
provisioned for the subscriber

MSISDNX

A string with 1 to 255 characters
(if value is set)

Note: NAI is in format
"user@domain"

NAI value(s) corresponding to
the subscriber. No values will be
present if an NAI is not
provisioned for the subscriber

NAIX

A string with 1 to 255 characters
(if value is set)

AccountId corresponding to the
subscriber. This value will not be
present if an AccountId is not
provisioned for the subscriber

accountId

SubscriberA user defined entity type/name
for the subscriber Profile

dataName

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

63E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

ValueDefinitionVariable

Contents of the XML data "blob"
for the subscriber Profile

Note: Within <key> at least one
key type is mandatory. Any

cdataProfile

combination of key types are
allowed. Up to three occurrences
of each repeatable key type (i.e.
IMSI/MSISDN/NAI) are
supported.

Note: Key order in the request is
not important.

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the following Error Codes section.

Error Codes

Table 16: Error Codes: Create Subscriber

DescriptionError Code

An XML Element is not definedElementNotDefined

Field Value Not Valid. The value for a given field
is not valid based on the definition in the SEC.

FieldValueNotValid

XML input is invalid.InvalidInputXml

Occurrence Constraint Violation. There are too
many instances of a given field. Likely more than
one instance of a non-repeatable field.

OccurrenceConstraintViolation

Field Not Defined. The given field is not a valid
field within the entity as defined in the SEC.

FieldDefinitionNotFound

Key Already Exists. A subscriber already exists
with the given key.

KeyAlreadyExists

Examples

Request #1

A subscriber is created, with an AccountId, MSISDN and IMSI keys. The BillingDay and Entitlement
fields are set.

<createSubscriber>
 <key>
 <AccountId>10404723525</AccountId>
 <MSISDN>33123654862</MSISDN>
 <IMSI>184569547984229</IMSI>

64E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">DayPassPlus</field>
</subscriber>
]]>
 </content>
 </entity>
</createSubscriber>

Response #1

The request is successful, and the subscriber was created.

Request #2

A subscriber is created, with an AccountId, MSISDN and IMSI keys. Another subscriber already exists
with the given IMSI.

<createSubscriber>
 <key>
 <AccountId>10404723525</AccountId>
 <MSISDN>33123654862</MSISDN>
 <IMSI>184569547984229</IMSI>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">DayPassPlus</field>
</subscriber>
]]>
 </content>
 </entity>
</createSubscriber>

Response #2

65E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

The request fails. The errorValue indicates a subscriber already exists with the given IMSI.

[error 40 errorText : line lineNumber]

Request #3

A subscriber is created, with an AccountId, MSISDN and IMSI keys. The BillingDay and Entitlement
fields are set. Provisioning has been disabled.

<createSubscriber>
 <key>
 <MSISDN>33123654862</MSISDN>
 <IMSI>184569547984229</IMSI>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<subscriber>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass</field>
</subscriber>
]]>
 </content>
 </entity>
</createSubscriber>

Response #3

The request fails. The errorValue indicates that provisioning has been disabled.

[error 5 errorText : line lineNumber]

Update Subscriber

This operation replaces an existing subscriber profile, for the subscriber identified by keyName and
keyValue.

All existing data for the subscriber is completely removed and replaced by the request content.

All other subscriber keys that exist for the subscriber, apart from the one specified in <key>, will be
replaced by those specified in <subscriber>.

Note: All key values (IMSI/MSISDN/NAI/AccountId) should be specified identically in both the
<key> section and in the Profile XML blob. The values specified in the <key> section are used to update
the subscriber and define what values are used in the <key> section for subsequent requests. The
values in the Profile XML blob are simply stored and returned if requested.

Prerequisites

A subscriber with a key of the keyName/keyValue supplied must exist.

66E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

Request

<updateSubscriber>
 <key>

<keyName>keyValue</keyName>
 </key>
 <subscriber>
[
 <IMSI>IMSI1</IMSI>
[<IMSI>IMSI2</IMSI>]
[<IMSI>IMSI3</IMSI>]
]

[
 <MSISDN>MSISDN1</MSISDN>
[<MSISDN>MSISDN2</MSISDN>]
[<MSISDN>MSISDN3</MSISDN>]
]

[
 <NAI>NAI1</NAI>
[<NAI>NAI2</NAI>]
[<NAI>NAI3</NAI>]
]

[<AccountId>accountId</AccountId>]

 </subscriber>
 <entity>
 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 </data>
 <content>
 <![CDATA[cdataProfile]]>
 </content>
 </entity>
</updateSubscriber>

Table 17: Request Definitions: Update Subscriber

ValueDefinitionVariable

A key field within the subscriber
Profile

keyName • IMSI
• MSISDN
• NAI
• AccountId

Corresponding key field value
assigned to keyName

keyValue

A string with 10 to 15 digits (if
value is set)

IMSI value(s) corresponding to
the subscriber. No values will be
present if an IMSI is not
provisioned for the subscriber

IMSIX

67E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

ValueDefinitionVariable

A string with 8 to 15 digits (if
value is set)

MSISDN value(s) corresponding
to the subscriber. No values will
be present if an MSISDN is not
provisioned for the subscriber

MSISDNX

A string with 1 to 255 characters
(if value is set)

Note: NAI is in format
"user@domain"

NAI value(s) corresponding to
the subscriber. No values will be
present if an NAI is not
provisioned for the subscriber

NAIX

A string with 1 to 255 characters
(if value is set)

AccountId corresponding to the
subscriber. This value will not
be present if an AccountId is not
provisioned for the subscriber

accountId

SubscriberA user defined entity type/name
for the subscriber Profile

dataName

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

Contents of the XML data "blob"
for the subscriber Profile

cdataProfile

Note: In <key>, one single key value is mandatory.

Note: In <subscriber>, any combination of key types are allowed. Up to three occurrences of each
repeatable key type (i.e., IMSI/MSISDN/NAI) is supported. Key values are checked to match those
from the Profile XML blob supplied.

Note: Key order in the request is not important.

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 18: Error Codes: Update Subscriber

DescriptionError Code

An XML Element is not defined.ElementNotDefined

Field Value Not Valid. The value for a given field
is not valid based on the definition in the SEC.

FieldValueNotValid

Occurrence Constraint Violation. There are too
many instances of a given field. Likely more than
one instance of a non-repeatable field.

OccurrenceConstraintViolation

68E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

DescriptionError Code

XML input is invalid.InvalidInputXml

Field Not Defined. The given field is not a valid
field within the entity as defined in the SEC.

FieldDefinitionNotFound

Key Not Found. A subscriber with the given key
cannot be found.

KeyNotFound

Key Already Exists. A subscriber already exists
with the given key.

KeyAlreadyExists

Examples

Request #1

A subscriber is updated using MSISDN. The AccountId, IMSI, BillingDay, Tier, and Entitlement fields
are set. The subscriber exists.

<updateSubscriber>
 <key>
 <MSISDN>33123654862</MSISDN>
 </key>
 <subscriber>
 <AccountId>10404723525</AccountId>
 <MSISDN>33123654862</MSISDN>
 <IMSI>184569547984229</IMSI>
 </subscriber>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">6</field>
 <field name="Tier">Silver</field>
 <field name="Entitlement">DayPass</field>
</subscriber>
]]>
 </content>
 </entity>
</updateSubscriber>

Response #1

The request is successful, and the subscriber was updated.

Examples

Request #2

69E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

A subscriber is updated using IMSI. The AccountId, IMSI, BillingDay, Tier, and Entitlement fields are
set. The subscriber does NOT exist.

<updateSubscriber>
 <key>
 <IMSI>302370123456789</IMSI>
 </key>
 <subscriber>
 <IMSI>302370123456789</IMSI>
 </subscriber>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<subscriber>
 <field name="IMSI">302370123456789</field>
 <field name="BillingDay">4</field>
 <field name="Tier">Gold</field>
 <field name="Entitlement">DayPass</field>
</subscriber>
]]>
 </content>
 </entity>
</updateSubscriber>

Response #2

The request fails. The errorValue indicates a subscriber with the given IMSI does not exist.

[error 39 errorText : line lineNumber]

Delete Subscriber

This operation deletes all profile data (field-value pairs) and opaque data for the subscriber that is
identified by the keyName and keyValue.

Prerequisites

A subscriber with a key of the keyName/keyValue supplied must exist.

The subscriber must not be a member of a pool, or the request will fail.

Request

<deleteSubscriber>

 <key>

 <keyName>keyValue</keyName>

 </key>

</deleteSubscriber>

70E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

Table 19: Request Variable Definitions: Delete Subscriber

ValuesDefinitionVariable Name

A key field within the subscriber
Profile

keyName • IMSI
• MSISDN
• NAI
• AccountId

Corresponding key field value
assigned to keyName

keyValue

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the following Error Codes section.

Error Codes

Table 20: Response Variable Definitions: Delete Subscriber

DefinitionVariable

Key Not Found. A subscriber with the given key
cannot be found.

KeyNotFound

Subscriber is Pool Member. The subscriber is a
member of a pool. A subscriber cannot be deleted
if they are a pool member

SubscriberIsPoolMember

Examples

Request #1

The subscriber with the given MSISDN is deleted. The subscriber exists.

<deleteSubscriber>
 <key>
 <MSISDN>33123654862</MSISDN>
 </key>
</deleteSubscriber>

Response #1

The request is successful, and the subscriber is deleted.

Request #2

The subscriber with the given MSISDN is deleted. The subscriber does NOT exist.

<deleteSubscriber>
 <key>
 <MSISDN>33123655555</MSISDN>
 </key>
</deleteSubscriber>

71E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

Response #2

The request fails. The errorValue value indicates a subscriber with the given MSISDN does not exist.

[error 39 errorText : line lineNumber]

72E56966 Revision 01, November 2014

Subscriber ProvisioningImport/Export File

Chapter

6
Pool Provisioning

This chapter describes pool provisioning commands.Topics:

Pools are used to group subscribers that share
common data. Subscribers in a pool share all the
entities of that pool.

• Pool Profile Commands.....74
• Additional Pool Commands.....78

Using bulk import, provisioning clients can create,
retrieve, modify, and delete pool data. Pool data is
accessed via the PoolID value associated with the
pool.

Note: Modifying a pool is done by using the
<updateFieldSet> command as described in
section Update FieldSet.

Note: For command responses, the error code
values described are listed in Error Codes.

73E56966 Revision 01, November 2014

Pool Profile Commands

Table 21: Summary of Pool Profile Commands

Command SyntaxKey(s)DescriptionCommand

<createPool>PoolIDCreates a new pool profile
using the field-value pairs

Create Pool

that are specified in the
request content.

<deletePool>Delete pool profile data and
all opaque data associated
with the pool

Delete Pool

Create Pool

This operation creates a new pool profile using the field-value pairs that are specified in the request
content.

Note: The PoolID key value should be specified identically in BOTH the <key> section AND in the
PoolProfile XML blob. The value specified in the <key> section is used to create the pool and define
what value is used in the <key> section for subsequent requests. The value in the PoolProfile XML
blob is simply stored and returned if requested.

Note: The pool profile data provided is fully validated against the definition in the SEC. If the validation
check fails, then the request is rejected.

Prerequisites

A pool with a key of poolId in the <key> section must not exist.

Request

<createPool>
 <key>
 <PoolID>poolId</PoolID>
 </key>
 <entity>
 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 </data>
 <content>
 <![CDATA[cdataPoolProfile]]>
 </content>
 </entity>
</createPool>

74E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

Table 22: Request Variable Definitions: Create Pool

ValueDefinitionVariable

1-9999999999999999999999PoolID value of the pool being
created Numeric value, 1-22
digits in length

poolId

PoolA user defined entity type/name
for the pool Profile

dataName

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

Contents of the XML data "blob"
for the pool Profile

cdataPoolProfile

Response
If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the following Error Codes section.

Error Codes

Table 23: Error Codes0

DescriptionError Code

An XML Element is not defined.ElementNotDefined

Field Value Not Valid. The value for a given field
is not valid based on the definition in the SEC.

FieldValueNotValid

XML input is invalid.InvalidInputXml

Occurrence Constraint Violation. There are too
many instances of a given field. Likely more than
one instance of a non-repeatable field.

OccurrenceConstraintViolation

Field Not Defined. The given field is not a valid
field within the entity as defined in the SEC.

FieldDefinitionNotFound

Key Already Exists. A subscriber already exists
with the given key.

KeyAlreadyExists

Examples

Request #1

A pool is created, with PoolID. The BillingDay and Entitlement fields are set.

<createPool>
 <key>
 <PoolID>100000</PoolID>
 </key>
 <entity>

75E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

 <data>
 <name>Pool</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<pool>
 <field name="PoolID">100000</field>
 <field name="BillingDay">1</field>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">DayPassPlus</field>
</pool>
]]>
 </content>
 </entity>
</createPool>

Response #1

The request is successful, and the subscriber was created.

Request #2

A pool is created. Another pool already exists with the given PoolID.

<createPool>
 <key>
 <PoolID>200000</PoolID>
 </key>
 <entity>
 <data>
 <name>Pool</name>
 <interface>XMLIMPORT</interface>
 </data>
 <content>
<![CDATA[
<pool>
 <field name="PoolID">200000</field>
 <field name="BillingDay">7</field>
 <field name="Entitlement">DayPass</field>
</pool>
]]>
 </content>
 </entity>
</createPool>

Response #2

The request fails. The errorValue indicates a pool already exists with the given PoolID.

[error 40 errorText : line lineNumber]

Delete Pool

This operation deletes all profile data (field-value pairs) and opaque data for the pool that is identified
by the poolId.

Prerequisites

A pool with a key of the poolId supplied must exist.

76E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

The pool must have no subscriber members, or the request will fail.

Request

<deletePool>
 <key>
 <PoolID>poolId</PoolID>
 </key>
</deletePool>

Table 24: Request Variable Definitions: Delete Pool

ValueDefinitionVariable

1-9999999999999999999999PoolID value of the pool being
created. Numeric value, 1-22
digits in length

poolId

Response
If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 25: Error Codes: Delete Pool

DescriptionError Code

Key Not Found. A subscriber with the given key
cannot be found.

KeyNotFound

Has Pool Members. A pool cannot be deleted
when it has member subscribers.

PoolNotEmpty

Examples

Request #1

The pool with the given PoolID is deleted. The pool exists.

<deletePool>
 <key>
 <PoolID>100000</PoolID>
 </key>
</deletePool>

Response #1

The request is successful, and the pool was deleted.

Request #2

77E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

The pool with the given PoolID is deleted. The pool does NOT exist.

<deletePool>
 <key>
 <PoolID>200000</PoolID>
 </key>
</deletePool>

Response #2

The request fails. The errorValue indicates a pool with the given PoolID does not exist, and the
affected rows are 0. The original request is not included.

[error 39 errorText : line lineNumber]

Additional Pool Commands

Table 26: Summary of Additional Pool Commands

Command SyntaxKey(s)DescriptionCommand

<addPoolMember>PoolID
and

Add subscriber to a PoolAdd Member to
Pool

(MSISDN,
<deletePoolMember>Remove subscriber from a

Pool
Remove Member
from Pool

IMSI, NAI
or
AccountId)

Add Member to Pool

This operation adds one or more subscribers to a pool.

Prerequisites

A pool with the key of the poolId supplied must exist.

Separate subscribers with the keys of the keyNameX/keyValueX supplied must exist.

Each subscriber must not already be a member of a pool.

The pool must have less than the maximum number of member subscribers allowed.

Request

<addPoolMember>
 <key>
 <PoolID>poolId</PoolID>
 </key>
 <members>
 <member>

<subKeyName1>subKeyValue1</subKeyName1>
 </member>

78E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

[
 <member>

<subKeyName2>subKeyValue2</subKeyName2>
 </member>
 :
 <member>

 <subKeyName10>subKeyValue10</subKeyName10>
 </member>
]
 </members>
</addPoolMember>

Table 27: Request Variable Definitions: Add Member to Pool

ValueDefinitionVariable

1-9999999999999999999999PoolID value of the pool.
Numeric value, 1-22 digits in
length

poolId

A key field within the subscriber
Profile

subKeyNameX • IMSI
• MSISDN
• NAI
• AccountId

Corresponding field value
assigned to subKeyNameX

subKeyValueX

Note: Up to 10 subscribers can be added in one request.

Note: The number of subscribers being added must not cause the number of members in the pool to
exceed the maximum allowed value, else the request will fail.

Note: If any subscriber specified is currently a member of a pool, the request will fail.

Response
If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 28: Error Codes: Add Member to Pool

DescriptionError Code

Key Not Found. A subscriber with the given key
cannot be found

KeyNotFound

Already a Pool Member. The subscriber is already
a member of a pool

MemberAlreadyExists

Pool Member List Max Limit ReachedPoolLimit

79E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

DescriptionError Code

Pool does not exist. A subscriber cannot be added,
retrieved or removed from a pool that does not
exist

PoolNotFound

Examples

Request #1

A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber
is not already a member of a pool.

<addPoolMember>
 <key>
 <PoolID>100000</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>33123654862</MSISDN>
 </member>
 </members>
</addPoolMember>

Response #1

The request is successful, and the subscriber is added to the pool.

Request #2

A request is made to add a subscriber to a pool. The pool exists, but the subscriber does not.

<addPoolMember>
 <key>
 <PoolID>200002</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>15141234567</MSISDN>
 </member>
 </members>
</addPoolMember>

Response #2

The request fails. The errorValue indicates the that subscriber does not exist.

[error 39 errorText : line lineNumber]

Request #3

A request is made to add a subscriber to a pool. The subscriber exists, but the pool does not.

<addPoolMember>
 <key>
 <PoolID>300003</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>33123654862</MSISDN>

80E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

 </member>
 </members>
</addPoolMember>

Response #3

The request fails. The errorValue indicates the that pool does not exist.

[error 53 errorText : line lineNumber]

Request #4

A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber
is already a member of a pool.

<addPoolMember>
 <key>
 <PoolID>200000</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>33123654862</MSISDN>
 </member>
 </members>
</addPoolMember>

Response #4

The request fails. The errorValue indicates the subscriber is already a member of a pool.

[error 43 errorText : line lineNumber]

Request #5

A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber
is not a member of a pool. The pool has the maximum number of members allowed.

<addPoolMember>
 <key>
 <PoolID>400000</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>33123654862</MSISDN>
 </member>
 </members>
</addPoolMember>

Response #5

The request fails. The errorValue indicates the pool has the maximum number of members allowed.

[error 44 errorText : line lineNumber]

Request #6

81E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

A request is made to add three subscribers to a pool. The pool and all subscribers exist. No subscribers
are already a member of a pool.

<addPoolMember>
 <key>
 <PoolID>800000</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>15145551234</MSISDN>
 </member>
 <member>
 <IMSI>302370123456789</IMSI>
 </member>
 <member>
 <MSISDN>14162221234</MSISDN>
 </member>
 </members>
</addPoolMember>

Response #6

The request is successful, and the three subscribers are added to the pool.

Remove Member from Pool

This operation removes one or more Subscribers from a Pool.

Prerequisites

A pool with the key of the poolId supplied must exist.

Separate subscriber(s) with the key(s) of the keyNameX/keyValueX supplied must exist.

Each subscriber must be a member of the specified pool.

Request

<deletePoolMember>
 <key>
 <PoolID>poolId</PoolID>
 </key>
 <members>
 <member>

 <subKeyName1>subKeyValue1</subKeyName1>
 </member>
[
 <member>

<subKeyName2>subKeyValue2</subKeyName2>
 </member>
 :
 <member>

 <subKeyName10>subKeyValue10</subKeyName10>
 </member>
]
 </members>
</deletePoolMember>

82E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

Table 29: Request Variable Definitions

ValueDefinitionVariable

1-9999999999999999999999PoolID value of the pool.
Numeric value, 1-22 digits in
length

poolId

A key field within the subscriber
profile

subKeyNameX • IMSI
• MSISDN
• NAI
• AccountId

Corresponding key field value
assigned to subkeyName

subKeyValueX

Note: Up to 10 subscribers can be removed in one request.

Note: If any subscriber specified is not a member of the pool, the request will fail.

Response
If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 30: Error Codes: Add Member to Pool

DescriptionError Code

Key Not Found. A subscriber with the given key
cannot be found.

KeyNotFound

Not A Pool MemberNotAPoolMember

Pool does not exist. A subscriber cannot be added,
retrieved or removed from a pool that does not
exist.

PoolNotFound

Examples

Request #1

A request is made to remove a subscriber from a pool. Both the pool and the subscriber exist. The
subscriber is a member of the pool. The request is not required in the response.

<deletePoolMember>
 <key>
 <PoolID>100000</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>33123654862</MSISDN>
 </member>

83E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

 </members>
</deletePoolMember>

Response #1

The request is successful, and the subscriber is removed from the pool.

Request #2

A request is made to remove a subscriber from a pool. Both the pool and the subscriber exist. The
subscriber is NOT a member of the pool.

<deletePoolMember>
 <key>
 <PoolID>200000</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>33123654862</MSISDN>
 </member>
 </members>
</deletePoolMember>

Response #2

The request fails. The errorValue indicates the subscriber is not a member of the pool.

[error 45 errorText : line lineNumber]

Request #3

A request is made to remove three subscribers from a pool. The pool and all subscribers exist. All
subscribers are a member of the pool.

<deletePoolMember>
 <key>
 <PoolID>800000</PoolID>
 </key>
 <members>
 <member>
 <MSISDN>15145551234</MSISDN>
 </member>
 <member>
 <IMSI>302370123456789</IMSI>
 </member>
 <member>
 <MSISDN>14162221234</MSISDN>
 </member>
 </members>
</deletePoolMember>

Response #3

The request is successful, and the three subscribers are removed from the pool.

84E56966 Revision 01, November 2014

Pool ProvisioningImport/Export File

Chapter

7
General Provisioning

This chapter describes the general editing
commands.

Topics:

• General Editing Commands.....86
Note: For command responses, the error code
values described are listed in Error Codes.

85E56966 Revision 01, November 2014

General Editing Commands

Table 31: Summary of General Editing Commands

Command SyntaxKey(s)DescriptionCommand

<create>MSISDN, IMSI, NAI,
AccountId, or PoolID

Create data of the
specified type

Create Data

<updateField>Update field(s) to the
specified value(s)

Update Field

<updateFieldSet>Update row or entire
entity

Update FieldSet

<deleteField>Delete instance(s) of the
specified field(s)

Delete Field

<deleteFieldSet>Delete row or entire
entity

Delete FieldSet

Create Data

This operation creates an entity or row for the subscriber/pool identified by the keyName and keyValue
in the request.

Note: The opaque data for creating an entity/row is provided in the request within a CDATA construct.

Note: The opaque data provided is always checked to be valid XML. If the entity is defined as
transparent in the SEC, then the XML blob is fully validated against the definition in the SEC. If either
validation check fails, then the request is rejected.

Prerequisites

A subscriber/pool with the key of the keyName/keyValue supplied must exist.

The supplied dataName must be a valid interface entity name for a subscriber/pool.

When creating an entity, no entity of the dataName must already exist for the subscriber.

Any supplied dataXpath must reference a valid field set within the entity/row for the subscriber/pool.

Request

<create createEntityIfNotExist="createEntityIfNotExist">
 <key>
 <keyName>keyValue</keyName>
 </key>
 <entity>
 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 <xpath>dataXpath</xpath>
 </data>

86E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 <content> <![CDATA[
 entityContent
]]></content>
 </entity>
</create>

Table 32: Request Variable Definitions: Create Data

ValueDefinitionVariable

Value is either true or false.Indicates whether the entity
should be created if it does not

createEntityIfNotExist

already exist before creating the
entity/row (for example if a
Quota row is being created, and
the Quota entity does not
currently exist for the subscriber)

A key field within the subscriber
Profile or pool Profile

keyName • IMSI
• MSISDN
• NAI
• AccountId
• PoolID

Corresponding key field value
assigned to keyName

keyValue

A user defined entity type/name
for the transparent entity being
updated

dataName • Subscriber
• Quota
• State
• DynamicQuota
• Pool
• PoolQuota
• PoolState
• PoolDynamicQuota

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

"/usage/quota[@name='quotaName']"
for a Quota row

XML XPath value which
corresponds to the root element
within the entity for which the

dataXpath

row element will be created, or
empty when creating an entire
entity

(See dataXpath) The name that
identifies the required quota row
within the Quota entity

quotaName

Content of entity/row being
created

entityContent

87E56966 Revision 01, November 2014

General ProvisioningImport/Export File

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 33: Error Codes: Create Data

DescriptionError Code

Interface Entity Not FoundInterfaceEntityNameNotFound

An XML Element is not definedElementNotDefined

Field Value Not Valid. The value for a given field
is not valid based on the definition in the SEC

FieldValueNotValid

Occurrence Constraint Violation. There are too
many instances of a given field. Likely more than
one instance of a non-repeatable field

OccurrenceConstraintViolation

Invalid Input XMLInvalidInputXml

Field Not Defined. The given field is not a valid
field within the entity as defined in the SEC

FieldDefinitionNotFound

Key Not Found. A subscriber/pool with the given
key cannot be found

KeyNotFound

XPath cannot be non-empty for an Opaque-data
operation

NonEmptyXPathForOpaqueData

Register Data Not FoundRegisterDataNotFound

Operation Not AllowedOperationNotAllowed

Examples

Request #1

A request is made to create the Quota opaque data. The Quota XML blob is supplied whole.

<create createEntityIfNotExist="true">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath/>
 </data>
 <content>
<![CDATA[
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>

88E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 <Type>pass</Type>
 <RefInstanceId>184569547984765</RefInstanceId>
 </quota>
 </usage>
]]>
 </content>
 </entity>
</create>

Response #1

The request is successful, and the Quota opaque data was created.

Request #2

A request is made to create the State opaque data. The State XML blob is supplied whole.

<create createEntityIfNotExist="true">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>State</name>
 <interface>XMLIMPORT</interface>
 <xpath/>
 </data>
 <content>
<![CDATA[
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </content>
 </entity>
</create>

Response #2

The request is successful, and the State opaque data was created.

<req name="insert" resonly="y">
 <res error="0" affected="1"/>
</req>

89E56966 Revision 01, November 2014

General ProvisioningImport/Export File

Request #3

A request is made to create a row in the Quota opaque data. The Quota opaque data exists for the
subscriber.

<create createEntityIfNotExist="false">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage</xpath>
 </data>
 <content>
<![CDATA[
<quota name="NewQuota">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 <Type>pass</Type>
 <RefInstanceId>184569547984765</RefInstanceId>
</quota>
]]>
 </content>
 </entity>
</create>

Response #3

The request is successful, and the Quota row data was created.

Request #4

A request is made to create a row in the Quota opaque data. The Quota opaque data does NOT exist
for the subscriber. The request indicates that the Quota entity should not be created if it does not exist.

<create createEntityIfNotExist="false">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage</xpath>
 </data>
 <content>
<![CDATA[
<quota name="NewQuota">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 <Type>pass</Type>

90E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 <RefInstanceId>184569547984765</RefInstanceId>
</quota>
]]>
 </content>
 </entity>
</create>

Response #4

The request fails. The errorValue indicates the opaque data type does not exist.

[error 47 errorText : line lineNumber]

Request #5

A request is made to create the Location opaque data. The Location XML blob is supplied whole.
Location is not a valid opaque data type.

<create createEntityIfNotExist="true">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Location</name>
 <interface>XMLIMPORT</interface>
 <xpath/>
 </data>
 <content>
<![CDATA[
<location>
 <town>Montreal</town>
 <province>Quebec</province>
 <country>Canada</country>
</location>
]]>
 </content>
 </entity>
</create>

Response #5

The request fails. The errorValue indicates the opaque data type is invalid.

[error 11 errorText : line lineNumber]

Update Field

This operation updates a field(s) to the specified values within an entity, or row within an entity, for
the subscriber or pool identified by the specified key name and key value, in the specified transparent
entity.

For multiple value fields :

• Multiple values are specified by repeating the appropriate element, one instance per value.
• If the clearAll attribute is set to true, then all existing values are removed, and only the new

values(s) specified are inserted. For example, if the current value of a field was “a,b,c”, and this

91E56966 Revision 01, November 2014

General ProvisioningImport/Export File

command was used with value “d”, after the update the field would have the value “d” (it would
NOT be “a,b,c,d”)

• If the clearAll attribute is set to false, then all existing values are retained, and the new values(s)
specified are inserted. For example, if the current value of a field was “a,b,c”, and this command
was used with value “d”, after the update the field would have the value “a,b,c,d”)

All fields are updated at once in the DB. All fields and all values must be valid for the update to be
successful. I.e., as soon as one error is detected during processing, the request is abandoned (and an
error returned). For example, if the third specified field fails validation, then none of the fields are
updated.

Note: If the requested field(s) are valid, but not currently present, they will be created.

Prerequisites

A subscriber/pool with the key of the keyName/keyValue supplied must exist.

Each requested field fieldName must be a valid field in the transparent entity being updated.

The supplied dataName must be a valid interface entity name for a subscriber/pool.

The supplied dataXpath must reference a valid XML XPath where the specified fields in <fields>
exist within the transparent entity for the subscriber/pool.

Request

<updateField clearAll="clearAll">
 <key>

<keyName>keyValue</keyName>
 </key>
 <entity>
 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 <xpath>dataXpath</xpath>
 </data>
 <fields>

 <field name="fieldName1">fieldValue1</field>
[
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldName250">fieldValue250</field>
]
 </fields>
 </entity>
</updateField>

Note: A maximum of 250 fields can be updated in a single <updateField> request.

92E56966 Revision 01, November 2014

General ProvisioningImport/Export File

Table 34: Request Variable Definitions:

ValueDefinitionVariable

Value is either true or false.

Note: For fields that are not
multi-value (i.e. single value),

Indicates whether all existing
value(s) in field(s) being updated
should first be removed before
adding the newly specified field
value(s).

clearAll

the value of clearAll must be set
to true else the request will
attempt to add a second instance
of the field, and the request will
fail.

A key field within the subscriber
Profile

keyName • IMSI
• MSISDN
• NAI
• AccountId
• PoolID

Corresponding key field value
assigned to keyName

keyValue

A user defined entity type/name
for the transparent entity being
updated

dataName • Subscriber
• Quota
• Pool
• PoolQuota

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

XML XPath value which
corresponds to the row element

dataXpath

for which the reset operation
needs to performed

A user defined field within the
transparent entity being updated

fieldNameX

Corresponding field value
assigned to fieldNameX

fieldValueX

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

93E56966 Revision 01, November 2014

General ProvisioningImport/Export File

Error Codes

Table 35: Error Codes

DescriptionError Code

Interface Entity Not FoundInterfaceEntityNameNotFound

An XML Element is not definedElementNotDefined

Field Value Not Valid. The value for a given field
is not valid based on the definition in the SEC

FieldValueNotValid

Field Set Not FoundFieldSetNotFound

Field Already ExistsFieldAlreadyExists

Field is not a multi-value field. Add and remove
from list operations can only be performed on a

FieldNotMultiValued

multi-value field, and the field supplied is not
multi-value

Field Set Not DefinedFieldSetDefinitionNotFound

Field Not Defined. The given field is not a valid
field within the entity as defined in the SEC

FieldDefinitionNotFound

Field Cannot be Updated. The field is defined in
the SEC as not be updatable

FieldNotUpdatable

Multiple rows match the given criteria. When
updating a row, only one row can exist that match
the given row criteria

MultipleRowsFound

Key Not Found. A subscriber/pool with the given
key cannot be found

KeyNotFound

Key Already Exists. A subscriber/pool already
exists with the given key

KeyAlreadyExists

Register Data Not FoundRegisterDataNotFound

Operation Not AllowedOperationNotAllowed

Examples

Request #1

A request is made to update the value of the BillingDay field to 23, and the Tier field to Gold.

<updateField clearAll="true">
 <key>
 <keyName>15141234567</keyName>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 <xpath>/subscriber</xpath>

94E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 </data>
 <fields>
 <field name="BillingDay">23</field>
 <field name="Tier">Gold</field>
 </fields>
 </entity>
</updateField>

Response #1

The request is successful, and the BillingDay and Tier values are updated.

<req name="update" resonly="y">
 <res error="0" affected="1"/>
</req>

Request #2

A request is made to update a subscriber Profile, and set the value of the BillingDay field to 55.

<updateField clearAll="true">
 <key>
 <keyName>15141234567</keyName>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 <xpath>/subscriber</xpath>
 </data>
 <fields>
 <field name="BillingDay">55</field>
 </fields>
 </entity>
</updateField>

Response #2

The request fails. The errorValue indicates the value of BillingDay was invalid.

[error 18 errorText : line lineNumber]

Request #3

A request is made to update the inputVolume and the outputVolume fields within the Q1 Quota row
within the Quota entity .

<updateField clearAll="true">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name='Q1']</xpath>
 </data>
 <fields>
 <field name="inputVolume">3000</field>

95E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 <field name="outputVolume">2500</field>
 </fields>
 </entity>
</updateField>

Response #3

The request is successful, and the inputVolume and outputVolume values were updated.

Request #4

A request is made to update the inputVolume and the outputVolume fields within the Q1 Quota row
within the Quota entity. Two rows called Q1 exist, one with a cid of 111 and another with a cid of 222.
The request is to update the instance with the cid of 111.

<updateField clearAll="true">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name='Q1' and cid='111']</xpath>
 </data>
 <fields>
 <field name="inputVolume">3000</field>
 <field name="outputVolume">2500</field>
 </fields>
 </entity>
</updateField>

Response #4

The request is successful, and the inputVolume and outputVolume values were updated in the Q1 row
containing a cid of 111.

Request #5

A request is made to update a subscriber Profile, and add the value EveningPass to the multi-value
field Entitlement retaining all existing values. The current value of the field is "DayPass,Weekend".

<updateField clearAll="false">
 <key>
 <keyName>15141234567</keyName>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 <xpath>/subscriber</xpath>
 </data>
 <fields>
 <field name="Entitlement">EveningPass</field>
 </fields>
 </entity>
</updateField>

Response #5

96E56966 Revision 01, November 2014

General ProvisioningImport/Export File

The request is successful, and the Entitlement field was updated. The value of the field is now
"DayPass,Weekend,EveningPass".

Request #6

A request is made to update a subscriber Profile, and set the multi-value field Entitlement to be only
Weekend, removing all other existing values. The current value of the field is
"DayPass,Weekend,EveningPass".

<updateField clearAll="true">
 <key>
 <keyName>15141234567</keyName>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 <xpath>/subscriber</xpath>
 </data>
 <fields>
 <field name="Entitlement">Weekend</field>
 </fields>
 </entity>
</updateField>

Response #6

The request is successful, and the Entitlement field was updated. The value of the field is now "Weekend".

Update FieldSet

This operation updates or creates an entity or row within an entity for the subscriber or pool identified
by the specified key name and key value, for the specified transparent entity. This operation replaces
("sets") the entire content of the entity/row, which means that any existing values are deleted first.

All specified fields are updated at once in the DB. All fields and all values must be valid for the update
to be successful. I.e., as soon as one error is detected during processing, the request is abandoned (and
an error returned). For example, if the third specified field fails validation, then none of the fields are
updated.

Note: When an entire entity is created during a request to update a row, if the transparent entity is
versioned, then it is necessary for UDR to know which version of the transparent entity should be
created.

• If no <version> element is supplied in the request, then:

• If an entity is not versioned, then the non versioned definition will be used
• If only one version definition exists in the SEC, then that version will be used
• If multiple version definitions exists in the SEC, then the version with the alphabetically greater

value will be used (i.e. “v3” is greater than “v2”, “3” is greater than “2” etc.)

• If a <version> element is supplied in the request, then the specified version <name> and <value>
are searched for. If the version is found in the SEC, then it is used. If the version is not found, then
the request will fail

97E56966 Revision 01, November 2014

General ProvisioningImport/Export File

Prerequisites

A subscriber/pool with the key of the keyName/keyValue supplied must exist.

The supplied dataName must be a valid interface entity name for a subscriber/pool.

Any supplied dataXpath must reference a valid field set within the entity/row for the subscriber/pool.

Any supplied <version>versionName/versionValue must be a valid transparent entity version defined
in the SEC for the specified entity.

Request

<updateFieldSet [create="create"]
 [createEntityIfNotExist="createEntityIfNotExist">
 <key>
 <keyName>keyValue</keyName>
 </key>
 <entity>
 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 <xpath>dataXpath</xpath>
 [
 <version>
 <name>versionName</name>
 <value>versionValue</value>
 </version>
]
 </data>
 <content>
 entityContent
 </content>
 </entity>
</updateFieldSet>

Table 36: Request Variable Definitions: Update Field (Pool)

ValueDefinitionVariable

Value is either true or false.

Note: If the entity does not exist,
and the value of

Indicates whether the row
should be created if it does not
already exists

create

createEntityIfNotExist is set to
true, the value of create is
ignored and the row will be
created in the new entity

Value is either true or false.Indicates whether the entity
should be created if it does not

createEntityIfNotExist

already exist before creating the
entity/row (for example if a
Quota row is being created, and
the Quota entity does not
currently exist for the subscriber)

A key field within the subscriber
Profile

keyName • IMSI
• MSISDN

98E56966 Revision 01, November 2014

General ProvisioningImport/Export File

ValueDefinitionVariable
• NAI
• AccountId
• PoolID

Corresponding key field value
assigned to keyName

keyValue

A user defined entity type/name
for the transparent entity being
updated

dataName • Subscriber
• Quota
• State
• DynamicQuota
• Pool
• PoolQuota
• PoolState
• PoolDynamicQuota

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

Note: To update the entire entity
(i.e. a complete opaque data

XML XPath value which
corresponds to the row element
for which the reset operation
needs to performed

dataXpath

replacement) the dataXpath value
should be empty

(Optional) The name of the
versioning element for the entity,

versionName

used to specify the default
version number when creating
an entity

(Optional) The version value for
the entity, used to specify the

versionValue

default version number when
creating an entity

Content of entity/row being
updated

entityContent

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 37: Error Codes

DescriptionError Code

Interface Entity Not FoundInterfaceEntityNameNotFound

99E56966 Revision 01, November 2014

General ProvisioningImport/Export File

DescriptionError Code

An XML Element is not definedElementNotDefined

Field Value Not Valid. The value for a given field
is not valid based on the definition in the SEC

FieldValueNotValid

Occurrence Constraint Violation. There are too
many instances of a given field. Likely more than
one instance of a non-repeatable field

OccurenceConstraintViolation

Invalid Input XMLInvalidInputXml

Field Not Defined. The given field is not a valid
field within the entity as defined in the SEC

FieldDefinitionNotFound

Multiple rows match the given criteria. When
updating a row, only one row can exist that match
the given row criteria

MultipleRowsFound

Key Not Found. A subscriber/pool with the given
key cannot be found

KeyNotFound

XPath cannot be non-empty for an Opaque-data
operation

NonEmptyXPathForOpaqueData

Register Data Not FoundRegisterDataNotFound

Operation Not AllowedOperationNotAllowed

Examples

Request #1

A request is made to update the entire Quota entity. The subscriber currently has a Quota entity.

<updateFieldSet createEntityIfNotExist="false" create="false">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath/>
 </data>
 <content>
<![CDATA[
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>

100E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 </content>
 </entity>
</updateFieldSet>

Response #1

The request is successful, and the Quota entity was updated.

Request #2

A request is made to update the entire State entity. The subscriber currently does NOT have a State
entity. The request indicates that the entity should NOT be created if it does not exist.

<updateFieldSet createEntityIfNotExist="false" create="false">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>State</name>
 <interface>XMLIMPORT</interface>
 <xpath/>
 </data>
 <content>
<![CDATA[
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2014-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>no</value>
 </property>
</state>
]]>
 </content>
 </entity>
</updateFieldSet>

Response #2

The request fails. The errorValue indicates the opaque State entity does not exist.

[error 47 errorText : line lineNumber]

Request #3

A request is made to update the Q1 row in the Quota entity. The subscriber currently has a Quota
entity, but the Q1 row does not exist. The request indicates that the row should NOT be created if it
does not exist.

<updateFieldSet createEntityIfNotExist="false" create="false">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>

101E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage</xpath>
 </data>
 <content>
<![CDATA[
<usage>
 <quota name="Q1">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </content>
 </entity>
</updateFieldSet>

Response #3

The request fails. The errorValue indicates the row does not exist.

[error 47 errorText : line lineNumber]

Request #4

A request is made to update the Q1 row in the Quota entity. The subscriber currently has a Quota
entity, but the Q1 row does not exist. The request indicates that the row should be created if it does
not exist.

<updateFieldSet createEntityIfNotExist="false" create="true">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage</xpath>
 </data>
 <content>
<![CDATA[
<usage>
 <quota name="Q1">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </content>

102E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 </entity>
</updateFieldSet>

Response #4

The request is successful, and the Quota row was created.

Request #5

A request is made to update the Q1 row in the Quota entity. The subscriber currently does NOT have
a Quota entity. The request indicates that the entity should be created if it does not exist. No version
number is specified, so the latest version of the Quota entity is used to create Quota.

<updateFieldSet createEntityIfNotExist="true" create="false">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage</xpath>
 </data>
 <content>
<![CDATA[
<usage>
 <quota name="Q1">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </content>
 </entity>
</updateFieldSet>

Response #5

The request is successful, and the Quota row was created.

Request #6

A request is made to update the Q5 row in the Quota entity. The subscriber currently does NOT have
a Quota entity. The request indicates that the entity should be created if it does not exist. The request
specifies that the version 3 of the Quota entity is used to create Quota.

<updateFieldSet createEntityIfNotExist="true" create="false">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage</xpath>
 <version>
 <name>version</name>

103E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 <value>3</value>
 </version>
 </data>
 <content>
<![CDATA[
<usage>
 <quota name="Q5">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </content>
 </entity>
</updateFieldSet>

Response #6

The request is successful, and the Quota row was created.

Request #7

A request is made to update the Q7 row in the Quota entity. The subscriber currently does NOT have
a Quota entity. The request indicates that the entity should be created if it does not exist. The request
specifies that the "version 4" of the Quota entity is used to create Quota. The "version 4" of Quota does
NOT exist.

<updateFieldSet createEntityIfNotExist="true" create="false">
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage</xpath>
 <version>
 <name>version</name>
 <value>4</value>
 </version>
 </data>
 <content>
<![CDATA[
<usage>
 <quota name="Q7">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </content>

104E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 </entity>
</updateFieldSet>

Response #7

The request fails. The errorValue indicates that the "version 4" does not exist.

[error 22 errorText : line lineNumber]

Delete Field

This operation deletes the specified field(s) for the subscriber/pool identified by keyName and keyValue
in the request, in the specified transparent entity.

A field with a specific value can be deleted the value matches what is supplied in fieldValueX .

If the field is multi-value field then all values are deleted, unless specific values are supplied in
fieldValueX , when only the matching field values are deleted.

Deletion of a complete field results removal of the entire field from the entity. I.e. the field is not
present, not just the value is empty.

Note: The field being deleted does NOT need to have a current value. It can be empty (i.e. deleted)
already, and the request will succeed.

Note: If a field value is supplied for a field, and the supplied value does not match the existing value,
the request will still succeed.

Note: If a field is deleted that has a default value defined in the SEC, then the field will be set to the
default instead of being deleted.

Prerequisites

A subscriber/pool with the key of the keyName/keyValue supplied must exist.

The supplied dataName must be a valid interface entity name for a subscriber/pool.

The supplied dataXpath must reference a valid XML XPath where the specified fields in <fields>
exist within the transparent entity for the subscriber/pool.

Each requested field fieldNameX must be a valid field in the specified transparent entity.

Request

<deleteField>
 <key>

<keyName>keyValue</keyName>
 </key>
 <entity>
 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 <xpath>dataXpath</xpath>
 </data>
 <fields>
 <field name="fieldName1">[fieldValue1]</field>
[
 <field name="fieldName2">[fieldValue2]</field>

105E56966 Revision 01, November 2014

General ProvisioningImport/Export File

:
 <field name="fieldName250">[fieldValue250]</field>
]
 </fields>
 </entity>
</deleteField>

Note: A maximum of 250 fields can be updated in a single <deleteField> request.

Table 38: Request Variable Definitions

ValueDefinitionVariable

A key field within the subscriber
Profile

keyName • IMSI
• MSISDN
• NAI
• AccountId
• PoolID

Corresponding key field value
assigned to keyName

keyValue

A user defined entity type/name
for the transparent entity being
updated

dataName • Subscriber
• Quota
• State
• DynamicQuota
• Pool
• PoolQuota
• PoolState
• PoolDynamicQuota

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

XML XPath value which
corresponds to the row element

dataXpath

for which the reset operation
needs to performed

A user defined field within the
transparent entity being updated

fieldNameX

Note: for multi-value fields,
individual fieldNameX elements

(Optional) Corresponding field
value assigned to fieldNameX.
Used when deleting a field only

fieldValueX

must be specified for each
instance/value being deletedif set to the supplied field value.

If no field value is supplied, the
supplied field is deleted
regardless of current value

106E56966 Revision 01, November 2014

General ProvisioningImport/Export File

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 39: Error Codes

DescriptionError Code

Interface Entity Not FoundInterfaceEntityNameNotFound

An XML Element is not definedElementNotDefined

Field is not a multi-value field. Add and remove
from list operations can only be performed on a

FieldNotMultiValued

multi-value field, and the field supplied is not
multi-value

Field Not Defined. The given field is not a valid
field within the entity as defined in the SEC

FieldDefinitionNotFound

Multiple rows match the given criteria. When
updating a row, only one row can exist that match
the given row criteria

MultipleRowsFound

Key Not Found. A subscriber/pool with the given
key cannot be found

KeyNotFound

Register Data Not FoundRegisterDataNotFound

Operation Not AllowedOperationNotAllowed

The key value supplied is invalid, due to invalid
characters/format etc.

KeyValueInvalid

Examples

Request #1

A request is made to delete the Tier and Custom1 fields. Both fields are valid subscriber Profile fields.

<deleteField>
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 <xpath>/subscriber</xpath>
 </data>
 <fields>
 <field name="Tier"/>
 <field name="Custom1"/>
 </fields>
 </entity>
</deleteField>

107E56966 Revision 01, November 2014

General ProvisioningImport/Export File

Response #1

The request is successful, and the two fields were deleted.

Request #2

A request is made to delete the message field. The field message is not a valid subscriber Profile field.

<deleteField>
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 <xpath>/subscriber</xpath>
 </data>
 <fields>
 <field name="message"/>
 </fields>
 </entity>
</deleteField>

Response #2

The request fails. The errorValue indicates the message field was invalid.

[error 30 errorText : line lineNumber]

Request #3

A request is made to delete the EveningPass value from the multi-value field Entitlement retaining all
other values. The current value of the field is "DayPass,Weekend,EveningPass".

<deleteField>
 <key>
 <keyName>15141234567</keyName>
 </key>
 <entity>
 <data>
 <name>Subscriber</name>
 <interface>XMLIMPORT</interface>
 <xpath>/subscriber</xpath>
 </data>
 <fields>
 <field name="Entitlement">EveningPass</field>
 </fields>
 </entity>
</deleteField>

Response #3

The request is successful, and the Entitlement field was updated. The value of the field is now
"DayPass,Weekend".

Request #4

A request is made to delete the inputVolume and outputVolume fields from the Q1 Quota row.

<deleteField>
 <key>

108E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name='Q1']</xpath>
 </data>
 <fields>
 <field name="inputVolume"/>
 <field name="outputVolume"/>
 </fields>
 </entity>
</deleteField>

Response #4

The request is successful, and the two fields were deleted.

Request #5

A request is made to delete the totalVolume field with a value of 500 from the Q1 Quota row. The value
of outputVolume is currently 500.

<deleteField>
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name='Q1']</xpath>
 </data>
 <fields>
 <field name="totalVolume">500</field>
 </fields>
 </entity>
</deleteField>

Response #5

The request is successful, and the field is deleted.

Request #6

A request is made to delete the totalVolume field with a value of 500 from the Q1 Quota row. The value
of outputVolume is currently 600 (i.e. it does not match the request).

<deleteField>
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name='Q1']</xpath>
 </data>
 <fields>
 <field name="totalVolume">500</field>
 </fields>

109E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 </entity>
</deleteField>

Response #6

The request is successful, but the field is NOT deleted and still contains the value 600.

Delete FieldSet

This operation deletes an entity, or row within an entity for the subscriber/pool identified by the
keyName and keyValue in the request.

Prerequisites

A subscriber/pool with the key of the keyName/keyValue supplied must exist.

The supplied dataName must be a valid interface entity name for a subscriber/pool.

The supplied dataXpath must reference a valid field entity/row for the subscriber/pool.

Request

<deleteFieldSet>
 <key>
 <keyName>keyValue</keyName>
 </key>
 <entity>
 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 <xpath>dataXpath</xpath>
 </data>
 </entity>
</deleteFieldSet>

Table 40: Request Variable Definitions

ValueDefinitionVariable

A key field within the subscriber
Profile

keyName • IMSI
• MSISDN
• NAI
• AccountId
• PoolID

Corresponding key field value
assigned to keyName

keyValue

A user defined entity type/name
for the transparent entity being
updated

dataName • Subscriber
• Quota
• State
• DynamicQuota
• Pool
• PoolQuota

110E56966 Revision 01, November 2014

General ProvisioningImport/Export File

ValueDefinitionVariable
• PoolState
• PoolDynamicQuota

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

XML XPath value which
corresponds to the row element

dataXpath

for which the reset operation
needs to performed

Request Variable Definitions

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 41: Error Codes

DescriptionError Code

Interface Entity Not FoundInterfaceEntityNameNotFound

Occurrence Constraint Violation. There are too
many instances of a given field. Likely more than
one instance of a non-repeatable field

OccurenceConstraintViolation

Key Not Found. A subscriber/pool with the given
key cannot be found

KeyNotFound

XPath cannot be non-empty for an Opaque-data
operation

NonEmptyXPathForOpaqueData

Register Data Not FoundRegisterDataNotFound

Operation Not AllowedOperationNotAllowed

The key value supplied is invalid, due to invalid
characters/format etc.

KeyValueInvalid

Examples

Request #1

A request is made to delete the Quota entity for a subscriber. The subscriber currently has a Quota
entity.

<deleteFieldSet>
 <key>

111E56966 Revision 01, November 2014

General ProvisioningImport/Export File

 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath/>
 </data>
 </entity>
</deleteFieldSet>

Response #1

The request is successful, and the Quota entity was deleted for the subscriber.

Request #2

A request is made to delete the State entity for a subscriber. The subscriber currently does NOT have
a State entity.

<deleteFieldSet>
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>State</name>
 <interface>XMLIMPORT</interface>
 <xpath/>
 </data>
 </entity>
</deleteFieldSet>

Response #2

The request fails. The errorValue indicates the State entity does not exist.

[error 47 errorText : line lineNumber]

Request #3

A request is made to delete the Q1 row within the Quota entity for a subscriber. The subscriber currently
has a Quota entity with a row called Q1.

<deleteFieldSet>
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name='Q1']</xpath>
 </data>
 </entity>
</deleteFieldSet>

Response #3

The request is successful, and the Q1 row within the Quota entity was deleted for the subscriber.

Request #4

112E56966 Revision 01, November 2014

General ProvisioningImport/Export File

A request is made to delete the Q2 row within the Quota entity for a subscriber. The subscriber currently
has a Quota entity, but it does not contain a row called Q2.

<deleteFieldSet>
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name='Q1']</xpath>
 </data>
 </entity>
</deleteFieldSet>

Response #4

The request fails. The errorValue indicates the Quota entity does not contain a row called Q2.

[error 23 errorText : line lineNumber]

113E56966 Revision 01, November 2014

General ProvisioningImport/Export File

Chapter

8
Special Operations

This chapter describes the Reset command.Topics:

• Special Operation Commands.....115
• Reset.....115

114E56966 Revision 01, November 2014

Special Operation Commands

Table 42: Summary of Special Operation Commands

Command SyntaxKey(s)DescriptionCommand

<reset>(MSISDN, IMSI,
NAI, AccountId or
PoolID)

Reset fields within an
Entity/Row

Reset

Reset

This operation resets the field values in an entity (or specified row within an entity) for a subscriber.
The values are reset to the values defined in the SEC.

Note: Currently, only the Quota entity has values that can be reset, but other entities can be reset if
defined as such in the SEC.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The supplied dataName must be a valid interface entity name for a subscriber/pool.

The supplied dataXpath must reference a valid field entity/row for the subscriber/pool.

Request

<reset>
 <key>
 <keyName>keyValue</keyName>
 </key>
 <entity>
 <data>
 <name>dataName</name>
 <interface>dataInterface</interface>
 <xpath>dataXpath</xpath>
 </data>
 </entity>
</reset>

Table 43: Request Variable Definitions: Get poolId

ValueDefinitionVariable

A key field within the subscriber
Profile

keyName • IMSI
• MSISDN
• NAI
• AccountId

115E56966 Revision 01, November 2014

Special OperationsImport/Export File

ValueDefinitionVariable
• PoolID

Corresponding key field value
assigned to keyName

keyValue

QuotaA user defined entity type/name
for the transparent entity being
updated

dataName

XMLIMPORTThe interface type used to
identify the bulk import/export
interface

dataInterface

Value is
"/usage/quota[@name='
quotaName']" for a Quota row

XML XPath value which
corresponds to the row element
for which the reset operation
needs to performed

dataXpath

(See dataXpath) The name that
identifies the required quota row
within the Quota entity

quotaName

Response

If the request fails, a failure response will be indicated as described in section Import Log Files. The
different values of errorValue in the failure response are indicated in the Error Codes section below.

Error Codes

Table 44: Error Codes: Get poolId

DescriptionError Code

Interface Entity Not FoundInterfaceEntityNameNotFound

Field Set Not FoundFieldSetNotFound

Field Set Not DefinedFieldSetDefintionNotFound

Entity Cannot be Reset. The reset command
cannot be used on the requested entity

EntityDefintionNoReset

Multiple rows match the given criteria. When
updating a row, only one row can exist that match
the given row criteria

MultipleRowsFound

Key Not Found. A subscriber/pool with the given
key cannot be found

KeyNotFound

Register Data Not FoundRegisterDataNotFound

Operation Not AllowedOperationNotAllowed

116E56966 Revision 01, November 2014

Special OperationsImport/Export File

Examples

Request #1

A request is made to reset the Q1 Quota row for a subscriber. The subscriber has Quota data, and the
Quota data contains a Quota row called Q1.

<reset>
 <key>
 <MSISDN>33123654862</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name=’Q1’]</xpath>
 </data>
 </entity>
</reset>

Response #1

The request is successful, and the specified Quota row was reset.

Request #2

A request is made to reset the Q1 Quota row. The subscriber does not have Quota data.

<reset>
 <key>
 <MSISDN>15141234567</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name=’Q1’]</xpath>
 </data>
 </entity>
</reset>

Response #2

The request fails. The errorValue indicates the subscriber does not have Quota data.

[error 47 errorText : line lineNumber]

Request #3

A request is made to reset the Q6 Quota row. The subscriber has Quota data, but the Quota data does
NOT contain a Quota row called Q6.

<reset>
 <key>
 <MSISDN>33123654862</MSISDN>
 </key>
 <entity>
 <data>
 <name>Quota</name>
 <interface>XMLIMPORT</interface>
 <xpath>/usage/quota[@name=’Q6’]</xpath>
 </data>

117E56966 Revision 01, November 2014

Special OperationsImport/Export File

 </entity>
</reset>

Response #3

The request fails. The errorValue indicates the Q6 data row was not present.

[error 29 errorText : line lineNumber]

118E56966 Revision 01, November 2014

Special OperationsImport/Export File

Appendix

A
Error Codes

This appendix lists and describes error codes that
can appear when a request fails.

Topics:

• Error Codes.....120

119E56966 Revision 01, November 2014

Error Codes

Error codes are returned in the errorValue code of the import logfile response when a request fails
(see section Import Log Files). The complete set of error codes and their associated values are defined
in the following table.

The "Type" column indicates if an error is permanent ("P") or temporary ("T"), or indicates success
("S"). A request that results in a permanent error should be discarded and not sent again. A request
that results in a temporary can be sent again at a different time, and may be successful.

Error codes that are marked with a "*" are permanent errors that can be fixed by means of configuration,
such as configuring the entities/fields in the SEC etc.

Table 45: UDR Error Codes

DescriptionTypeValueError Code

SuccessS0Success

An internal error has occurredP1MissingArgument

An internal error has occurredT2ImportFileError

An internal error has occurredT3LogFileError

An internal error has occurredT4InitError

Service is unavailable. Provisioning has been disabledT5ProvProhibited

Invalid XMLP6InvalidXml

No response received from UDRBE for a provisioning
request

T7SessionTimeOut

The provisioning request size exceeded the maximum
allowed size

P*8TooBigMessage

An internal error has occurredT9CallbackNotRegistered

An internal error has occurredT10InternalError

Interface Entity Not FoundP*11InterfaceEntityNameNotFound

Entity Not FoundP*12EntityNotFound

Entity Definition Not FoundP*13EntityDefinitionNotFound

Versioned Base Field Set for the Transparent Entity
Not Found

P14VersionBaseFieldSetNotFound

Non Versioned Base Field Set for the Transparent
Entity Not Found

P15NonVersionedBaseFieldSetNotFound

Multiple Version Tags FoundP16MultipleVersionTagsFound

An XML Element is not definedP*17ElementNotDefined

120E56966 Revision 01, November 2014

Error CodesImport/Export File

DescriptionTypeValueError Code

Field Value Not Valid. The value for a given field is
not valid based on the definition in the SEC

P*18FieldValueNotValid

Occurrence Constraint Violation. There are too many
instances of a given field. Likely more than one
instance of a non-repeatable field

P*19OccurenceConstraintViolation

Invalid Repeatable ElementP20RepeatableFieldSetElementInvalid

Invalid Input XMLP21InvalidInputXml

Base Field Set for Transparent Entity Not FoundP*22BaseFieldSetNotFound

Field Set Not FoundP23FieldSetNotFound

Field Set Already ExistsP24FieldSetAlreadyExists

Field Not FoundP25FieldNotFound

Field Already ExistsP27FieldAlreadyExists

Field is not a multi-value field. Add and remove from
list operations can only be performed on a multi-value
field, and the field supplied is not multi-value

P28FieldNotMultiValued

Specified XPath Not Found in XMLP*29PathNotFound

Field Set Not DefinedP30FieldSetDefinitionNotFound

Field Not Defined. The given field is not a valid field
within the entity as defined in the SEC

P*31FieldDefinitionNotFound

Field Cannot be Updated. The field is defined in the
SEC as not be updatable

P*32FieldNotUpdatable

Entity Cannot be Reset. The reset command cannot be
used on the requested entity

P*33EntityDefinitionNoReset

Multiple rows match the given criteria. When updating
a row, only one row can exist that match the given
row criteria

P34MultipleRowsFound

An internal error has occurredP35InvalidOperationType

An internal error has occurredP36InvalidResponseType

An internal error has occurredP37XmlBuildError

An internal error has occurredP38XmlParseError

Database Operation FailedP39DbError

Key Not Found. A subscriber/pool with the given key
cannot be found

P40KeyNotFound

Key Already Exists. A subscriber/pool already exists
with the given key

P41KeyAlreadyExists

121E56966 Revision 01, November 2014

Error CodesImport/Export File

DescriptionTypeValueError Code

Subscriber is Pool Member. The subscriber is a member
of a pool. A subscriber cannot be deleted if they are a
pool member

P42SubscriberIsPoolMember

Has Pool Members. A pool cannot be deleted when it
has member subscribers

P43PoolNotEmpty

Already a Pool Member. The subscriber is already a
member of a pool

P44MemberAlreadyExists

Pool Member List Max Limit ReachedP45PoolLimit

Not A Pool MemberP46NotAPoolMember

XPath cannot be non-empty for an Opaque-data
operation

P47NonEmptyXPathForOpaqueData

Register Data Not FoundP48RegisterDataNotFound

Register Already ExistsP49RegisterAlreadyExists

An internal error has occurredP50NoResultFound

Operation Not AllowedP51OperationNotAllowed

The key value supplied is invalid, due to invalid
characters/format etc.

P52KeyValueInvalid

Requested Provisioning Interface Is Not SupportedP*53InterfaceNotSupported

Pool does not exist. A subscriber cannot be added or
removed from a pool that does not exist

P54PoolNotFound

An internal error has occurredT55OutstandingCookieIdLimitReached

An internal error has occurredT56MessageQueueFull

Data row specified is not foundP56RowNotFound

Data could not be committed to database as the total
number of retries to commit database transactions
exhausted.

Note: The client shall retry the command again

T57DbRetryExhausted

Data could not be committed as Durability is
degraded.

Note: The client shall retry the command again

T58DurabilityDegraded

Data could not be made durable within the configured
Durability Timeout.

Note: The client shall retry the command again to get
the data sent in the failed request to verify that it was
stored by last request

T59DurabilityTimeout

122E56966 Revision 01, November 2014

Error CodesImport/Export File

DescriptionTypeValueError Code

Request in transaction could not be attempted because
a prior request failed

T60UnattemptedRequest

Free system memory is low. Request cannot be
performed

P61MemThresholdReached

123E56966 Revision 01, November 2014

Error CodesImport/Export File

Appendix

B
Bulk Import/Export Variables

This Appendix lists and describes the bulk import
and export variables.

Topics:

• Bulk Import/Export Variables.....125

124E56966 Revision 01, November 2014

Bulk Import/Export Variables

The bulk import/export has a set of system variables that affect its operation as it runs. Bulk
import/export variables (see Bulk Import/Export Variables) can be set via the Oracle Communications
User Data Repository GUI and can be changed at runtime to effect dynamic server reconfiguration.

Table 46: Bulk Import/Export Variables

DescriptionParameter

The IP address and username of Remote Import/Export
Host.

Remote Host IP Address

Whether or not to allow export files to be copied to the
Remote Export Host.

Remote Export Transfers Enabled

DEFAULT = UNCHECKED

The local directory where export files are created.Local Export Directory

DEFAULT = /var/TKLC/db/filemgmt/provexport;
RANGE = 0-255 characters

The directory in the Remote Export Host to which export
files are transferred if configured.

Remote Export Directory

DEFAULT = ; RANGE = 0-255 characters

Whether or not import files are imported from a Remote
Host.

Remote Import Enabled

DEFAULT = UNCHECKED

The directory in which import files exist on the Remote
Host.

Remote Import Directory

DEFAULT = ; RANGE = 0-255 characters

125E56966 Revision 01, November 2014

Bulk Import/Export VariablesImport/Export File

Glossary

E

Enhanced Subscriber Profile
Repository - Oracle

ESPR

Communications’ database system
that provides the storage and
management of subscriber policy
control data for PCRF nodes.

I

International Mobile Subscriber
Identity

IMSI

A unique internal network ID
identifying a mobile subscriber.

L

Lightweight Directory Access
Protocol

LDAP

A protocol for providing and
receiving directory information in
a TCP/IP network.

M

Message Processor - The role of the
Message Processor is to provide the

MP

application messaging protocol
interfaces and processing.
However, these servers also have
OAM&P components. All Message
Processors replicate from their
Signaling OAM's database and
generate faults to a Fault
Management System.

Mobile Station International
Subscriber Directory Number. The

MSISDN

unique, network-specific subscriber
number of a mobile
communications subscriber.

126E56966 Revision 01, November 2014

M

MSISDN follows the E.164
numbering plan; that is, normally
the MSISDN is the phone number
that is used to reach the subscriber.

N

Network Access IdentifierNAI

The user identity submitted by the
client during network
authentication.

Network Operations,
Administration, and Maintenance

NOAM

O

Operations, Administration,
Maintenance and Provisioning

OAMP

P

Policy and Charging Rules
Function. The ability to

PCRF

dynamically control access,
services, network capacity, and
charges in a network.
Maintains rules regarding a
subscriber’s use of network
resources. Responds to CCR and
AAR messages. Periodically sends
RAR messages. All policy sessions
for a given subscriber, originating
anywhere in the network, must be
processed by the same PCRF.

S

Session Initiation ProtocolSIP

A peer-to-peer protocol used for
voice and video communications.

Simple Object Access ProtocolSOAP

127E56966 Revision 01, November 2014

GlossaryImport/Export File

S

Signaling System #7SS7

A communications protocol that
allows signaling points in a
network to send messages to each
other so that voice and data
connections can be set up between
these signaling points. These
messages are sent over its own
network and not over the revenue
producing voice and data paths.
The EAGLE is an STP, which is a
device that routes these messages
through the network.

U

User Data Repository - A logical
entity containing user data

UDR

128E56966 Revision 01, November 2014

GlossaryImport/Export File

	Import/Export File Interface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Scope and Audience
	Manual Organization
	Documentation Admonishments
	Related Publications
	Locate Product Documentation on the Oracle Technology Network Site
	Customer Training
	My Oracle Support (MOS)
	Emergency Response

	System Architecture
	System Architecture Overview
	Database Transactions
	Block Transaction Mode
	Request Format
	Examples
	Import File Processing Sequencing

	ACID-Compliance
	Atomicity
	Consistency
	Isolation
	Durability

	Behavior During Low Free System Memory

	Bulk Operations
	Message Conventions
	Import
	Configuring Import Options
	Import Files
	Import File Format
	Basic Import File Request Format
	Case Sensitivity

	Import File Comments
	Import Log Files
	Import Status
	Import Status Table

	Export
	XMLExport
	Export File and Format
	Basic Export File Format
	Subscriber Record
	Pool Record
	Examples

	Export Conversion Tool (xmlconverter)
	Configuring Export Options
	Scheduling Exports
	Display
	Insert
	Edit
	Delete

	Export Status

	UDR Data Model
	Data Model Overview
	Subscriber Data
	Subscriber Profile
	Quota
	State
	Dynamic Quota

	Pool Data
	Pool Profile
	Pool Quota
	Pool State
	Pool Dynamic Quota

	Subscriber Provisioning
	Subscriber Profile Commands
	Create Subscriber
	Update Subscriber
	Delete Subscriber

	Pool Provisioning
	Pool Profile Commands
	Create Pool
	Delete Pool

	Additional Pool Commands
	Add Member to Pool
	Remove Member from Pool

	General Provisioning
	General Editing Commands
	Create Data
	Update Field
	Update FieldSet
	Delete Field
	Delete FieldSet

	Special Operations
	Special Operation Commands
	Reset

	Error Codes
	Error Codes

	Bulk Import/Export Variables
	Bulk Import/Export Variables

	Glossary

