Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

cbsrmm (3p)

Name

cbsrmm - matrix multiply

Synopsis

SUBROUTINE CBSRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
*           VAL, BINDX, BPNTRB, BPNTRE, LB,
*           B, LDB, BETA, C, LDC, WORK, LWORK )
INTEGER    TRANSA, MB, N, KB, DESCRA(5), LB,
*           LDB, LDC, LWORK
INTEGER    BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
COMPLEX    ALPHA, BETA
COMPLEX    VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

SUBROUTINE CBSRMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA,
*           VAL, BINDX, BPNTRB, BPNTRE, LB,
*           B, LDB, BETA, C, LDC, WORK, LWORK )
INTEGER*8  TRANSA, MB, N, KB, DESCRA(5), LB,
*           LDB, LDC, LWORK
INTEGER*8  BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
COMPLEX    ALPHA, BETA
COMPLEX    VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

where: BNNZ = BPNTRE(MB)-BPNTRB(1)


F95 INTERFACE
SUBROUTINE BSRMM( TRANSA, MB, N, KB, ALPHA, DESCRA, VAL, BINDX,
*     BPNTRB, BPNTRE, LB, B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER    TRANSA, MB,  KB, LB
INTEGER, DIMENSION(:) ::    DESCRA, BINDX, BPNTRB, BPNTRE
COMPLEX    ALPHA, BETA
COMPLEX, DIMENSION(:) :: VAL
COMPLEX, DIMENSION(:, :) ::  B, C

SUBROUTINE BSRMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA, VAL, BINDX,
*     BPNTRB, BPNTRE, LB, B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER*8    TRANSA, MB, KB, LB
INTEGER*8, DIMENSION(:) ::    DESCRA, BINDX, BPNTRB, BPNTRE
COMPLEX    ALPHA, BETA
COMPLEX, DIMENSION(:) :: VAL
COMPLEX, DIMENSION(:, :) ::  B, C





C INTERFACE
#include <sunperf.h>

void cbsrmm (const int transa, const int mb, const int n, const int kb,
const floatcomplex* alpha, const int* descra, const floatcom-
plex* val, const int* bindx, const int* bpntrb, const int*
bpntre, const int lb, const floatcomplex* b, const int ldb,
const floatcomplex* beta, floatcomplex* c, const int ldc);

void cbsrmm_64 (const long transa, const long mb, const long n, const
long kb, const floatcomplex* alpha, const long* descra, const
floatcomplex* val, const long* bindx, const long* bpntrb,
const long* bpntre, const long lb, const floatcomplex* b,
const long ldb, const floatcomplex* beta, floatcomplex* c,
const long ldc);

Description

Oracle Solaris Studio Performance Library                           cbsrmm(3P)



NAME
       cbsrmm - block sparse row format matrix-matrix multiply

SYNOPSIS
        SUBROUTINE CBSRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, BINDX, BPNTRB, BPNTRE, LB,
       *           B, LDB, BETA, C, LDC, WORK, LWORK )
        INTEGER    TRANSA, MB, N, KB, DESCRA(5), LB,
       *           LDB, LDC, LWORK
        INTEGER    BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
        COMPLEX    ALPHA, BETA
        COMPLEX    VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

        SUBROUTINE CBSRMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, BINDX, BPNTRB, BPNTRE, LB,
       *           B, LDB, BETA, C, LDC, WORK, LWORK )
        INTEGER*8  TRANSA, MB, N, KB, DESCRA(5), LB,
       *           LDB, LDC, LWORK
        INTEGER*8  BINDX(BNNZ), BPNTRB(MB), BPNTRE(MB)
        COMPLEX    ALPHA, BETA
        COMPLEX    VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

        where: BNNZ = BPNTRE(MB)-BPNTRB(1)


   F95 INTERFACE
        SUBROUTINE BSRMM( TRANSA, MB, N, KB, ALPHA, DESCRA, VAL, BINDX,
       *     BPNTRB, BPNTRE, LB, B, LDB, BETA, C, LDC, WORK, LWORK)
        INTEGER    TRANSA, MB,  KB, LB
        INTEGER, DIMENSION(:) ::    DESCRA, BINDX, BPNTRB, BPNTRE
        COMPLEX    ALPHA, BETA
        COMPLEX, DIMENSION(:) :: VAL
        COMPLEX, DIMENSION(:, :) ::  B, C

        SUBROUTINE BSRMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA, VAL, BINDX,
       *     BPNTRB, BPNTRE, LB, B, LDB, BETA, C, LDC, WORK, LWORK)
        INTEGER*8    TRANSA, MB, KB, LB
        INTEGER*8, DIMENSION(:) ::    DESCRA, BINDX, BPNTRB, BPNTRE
        COMPLEX    ALPHA, BETA
        COMPLEX, DIMENSION(:) :: VAL
        COMPLEX, DIMENSION(:, :) ::  B, C





   C INTERFACE
       #include <sunperf.h>

       void cbsrmm (const int transa, const int mb, const int n, const int kb,
                 const floatcomplex* alpha, const int* descra, const floatcom-
                 plex* val, const int* bindx, const int* bpntrb, const int*
                 bpntre, const int lb, const floatcomplex* b, const int ldb,
                 const floatcomplex* beta, floatcomplex* c, const int ldc);

       void cbsrmm_64 (const long transa, const long mb, const long n, const
                 long kb, const floatcomplex* alpha, const long* descra, const
                 floatcomplex* val, const long* bindx, const long* bpntrb,
                 const long* bpntre, const long lb, const floatcomplex* b,
                 const long ldb, const floatcomplex* beta, floatcomplex* c,
                 const long ldc);




DESCRIPTION
       cbsrmm performs one of the matrix-matrix operations

                C <- alpha op(A) B + beta C

       where alpha and beta are scalars, C and B are dense matrices,
       A is an (mb*lb) by (kb*lb) sparse matrix represented in the
       block sparse row format and op( A )  is one  of

       op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
                                          ( ' indicates matrix transpose)


ARGUMENTS
       TRANSA(input)   TRANSA specifies the form of op( A ) to be used in
                       the matrix multiplication as follows:
                         0 : operate with matrix
                         1 : operate with transpose matrix
                         2 : operate with the conjugate transpose of matrix.
                           2 is equivalent to 1 if matrix is real.
                       Unchanged on exit.

       MB(input)       On entry,  MB  specifies the number of block rows
                       in the matrix A. Unchanged on exit.

       N(input)        On entry,  N specifies the number of columns in the matrix C.
                       Unchanged on exit.

       KB(input)       On entry,  KB specifies the number of block columns in
                       the matrix A. Unchanged on exit.

       ALPHA(input)    On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

       DESCRA (input)  Descriptor argument.  Five element integer array:
                       DESCRA(1) matrix structure
                         0 : general
                         1 : symmetric (A=A')
                         2 : Hermitian (A= CONJG(A'))
                         3 : Triangular
                         4 : Skew(Anti)-Symmetric (A=-A')
                         5 : Diagonal
                         6 : Skew-Hermitian (A= -CONJG(A'))
                       DESCRA(2) upper/lower triangular indicator
                         1 : lower
                         2 : upper
                       DESCRA(3) main block diagonal type
                         0 : non-unit
                         1 : unit
                       DESCRA(4) Array base (NOT IMPLEMENTED)
                         0 : C/C++ compatible
                         1 : Fortran compatible
                       DESCRA(5) repeated indices? (NOT IMPLEMENTED)
                         0 : unknown
                         1 : no repeated indices

       VAL(input)      On entry, VAL is a scalar array of length LB*LB*BNNZ
                       consisting of the non-zero block entries stored
                       column-major within each dense block where
                       BNNZ = BPNTRE(MB)-BPNTRB(1). Unchanged on exit.

       BINDX(input)    On entry, BINDX is an integer array of length BNNZ consisting
                       of the block column indices of the block entries of A where
                       BNNZ = BPNTRE(MB)-BPNTRB(1). Unchanged on exit.

       BPNTRB(input)   On entry, BPNTRB is an integer array of length MB such
                       that BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
                       of the first block entry of the J-th block row
                       of A. Unchanged on exit.

       BPNTRE(input)   On entry, BPNTRE is an integer array of length MB such
                       that BPNTRE(J)-BPNTRB(1) points to location in BINDX
                       of the last block entry of the J-th block row
                       of A. Unchanged on exit.

       LB (input)      On entry, LB specifies the dimension of dense blocks
                       composing A.  Unchanged on exit.

       B (input)       Array of DIMENSION ( LDB, N ).
                       Before entry with  TRANSA = 0,  the leading  kb*lb by n
                       part of the array  B  must contain the matrix  B,  otherwise
                       the leading  mb*lb by n part of the array B must contain the
                       matrix B. Unchanged on exit.

        LDB (input)     On entry, LDB specifies the first dimension of B as declared
                       in the calling (sub) program. Unchanged on exit.

       BETA (input)    On entry, BETA specifies the scalar beta. Unchanged on exit.

       C(input/output) Array of DIMENSION ( LDC, N ).
                       Before entry with  TRANSA = 0,  the leading  mb*lb by n
                       part of the array  C  must contain the matrix C,  otherwise
                       the leading  kb*lb by n  part of the array C must contain the
                       matrix C. On exit, the array C is overwritten by the matrix
                       ( alpha*op( A )* B  + beta*C ).

       LDC (input)     On entry, LDC specifies the first dimension of C as declared
                       in the calling (sub) program. Unchanged on exit.

       WORK (is not referenced in the current version)

       LWORK (is not referenced in the current version)


SEE ALSO
       Libsunperf  SPARSE BLAS is fully parallel and compatible with NIST FOR-
       TRAN Sparse Blas but the sources are different.  Libsunperf SPARSE BLAS
       is free of bugs found in NIST FORTRAN Sparse Blas.  Besides several new
       features and routines are implemented.

       NIST FORTRAN Sparse Blas User's Guide available at:

       http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

       Based on the standard proposed in

       "Document for the Basic Linear Algebra Subprograms (BLAS) Standard",
       University of Tennessee, Knoxville, Tennessee, 1996:

       http://www.netlib.org/utk/papers/sparse.ps

       The routine is designed so that it provides a possibility to use just
       one sparse matrix representation of a general complex matrix A for com-
       puting matrix-matrix multiply for another sparse matrix composed by
       block triangles and/or the main block diagonal of A. The full descrip-
       tion of the feature for block entry formats is given in section
       NOTES/BUGS for the cbcomm manpage.


NOTES/BUGS
       It is known that there exists another representation of the block
       sparse row format (see for example Y.Saad, "Iterative Methods for
       Sparse Linear Systems", WPS, 1996). Its data structure consists of
       three array instead of the four used in the current implementation.
       The main difference is that only one array, IA, containing the pointers
       to the beginning of each block row in the arrays VAL and BINDX is used
       instead of two arrays BPNTRB and BPNTRE. To use the routine with this
       kind of block sparse row format the following calling sequence should
       be used

        CALL SBSRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, BINDX, IA, IA(2), LB,
       *           B, LDB, BETA, C, LDC, WORK, LWORK )




3rd Berkeley Distribution         7 Nov 2015                        cbsrmm(3P)