Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

dstegr (3p)

Name

dstegr - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is a relatively robust representation

Synopsis

SUBROUTINE DSTEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER*1 JOBZ, RANGE
INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER ISUPPZ(*), IWORK(*)
DOUBLE PRECISION VL, VU, ABSTOL
DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

SUBROUTINE DSTEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER*1 JOBZ, RANGE
INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER*8 ISUPPZ(*), IWORK(*)
DOUBLE PRECISION VL, VU, ABSTOL
DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)




F95 INTERFACE
SUBROUTINE STEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER(LEN=1) :: JOBZ, RANGE
INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
REAL(8) :: VL, VU, ABSTOL
REAL(8), DIMENSION(:) :: D, E, W, WORK
REAL(8), DIMENSION(:,:) :: Z

SUBROUTINE STEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER(LEN=1) :: JOBZ, RANGE
INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
REAL(8) :: VL, VU, ABSTOL
REAL(8), DIMENSION(:) :: D, E, W, WORK
REAL(8), DIMENSION(:,:) :: Z




C INTERFACE
#include <sunperf.h>

void dstegr(char jobz, char range, int n, double *d, double *e,  double
vl,  double vu, int il, int iu, double abstol, int *m, double
*w, double *z, int ldz, int *isuppz, int *info);

void dstegr_64(char jobz, char range, long n,  double  *d,  double  *e,
double  vl,  double vu, long il, long iu, double abstol, long
*m, double *w,  double  *z,  long  ldz,  long  *isuppz,  long
*info);

Description

Oracle Solaris Studio Performance Library                           dstegr(3P)



NAME
       dstegr - (a) Compute T-sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
       is a relatively robust representation


SYNOPSIS
       SUBROUTINE DSTEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
             Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER*1 JOBZ, RANGE
       INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER ISUPPZ(*), IWORK(*)
       DOUBLE PRECISION VL, VU, ABSTOL
       DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

       SUBROUTINE DSTEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
             W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER*1 JOBZ, RANGE
       INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER*8 ISUPPZ(*), IWORK(*)
       DOUBLE PRECISION VL, VU, ABSTOL
       DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)




   F95 INTERFACE
       SUBROUTINE STEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
              W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER(LEN=1) :: JOBZ, RANGE
       INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
       REAL(8) :: VL, VU, ABSTOL
       REAL(8), DIMENSION(:) :: D, E, W, WORK
       REAL(8), DIMENSION(:,:) :: Z

       SUBROUTINE STEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
              M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER(LEN=1) :: JOBZ, RANGE
       INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
       REAL(8) :: VL, VU, ABSTOL
       REAL(8), DIMENSION(:) :: D, E, W, WORK
       REAL(8), DIMENSION(:,:) :: Z




   C INTERFACE
       #include <sunperf.h>

       void dstegr(char jobz, char range, int n, double *d, double *e,  double
                 vl,  double vu, int il, int iu, double abstol, int *m, double
                 *w, double *z, int ldz, int *isuppz, int *info);

       void dstegr_64(char jobz, char range, long n,  double  *d,  double  *e,
                 double  vl,  double vu, long il, long iu, double abstol, long
                 *m, double *w,  double  *z,  long  ldz,  long  *isuppz,  long
                 *info);



PURPOSE
       DSTEGR computes selected eigenvalues and, optionally, eigenvectors of a
       real symmetric tridiagonal matrix T.  Eigenvalues and eigenvectors  can
       be  selected  by  specifying  either  a  range  of values or a range of
       indices for the desired eigenvalues. The eigenvalues  are  computed  by
       the  dqds  algorithm,  while  orthogonal eigenvectors are computed from
       various ``good'' L D L^T  representations  (also  known  as  Relatively
       Robust  Representations).  Gram-Schmidt orthogonalization is avoided as
       far as possible. More specifically, the various steps of the  algorithm
       are as follows. For the i-th unreduced block of T,
          (a)  Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is
       a relatively robust representation,
          (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high rel-
       ative accuracy by the dqds algorithm,
          (c)  If  there  is  a cluster of close eigenvalues, "choose" sigma_i
       close to the cluster, and go to step (a),
          (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, com-
       pute  the corresponding eigenvector by forming a rank-revealing twisted
       factorization.
       The desired accuracy of the output can be specified by the input param-
       eter ABSTOL.

       For  more details, see "A new O(n^2) algorithm for the symmetric tridi-
       agonal eigenvalue/eigenvector problem", by Inderjit  Dhillon,  Computer
       Science  Division Technical Report No. UCB/CSD-97-971, UC Berkeley, May
       1997.

       Note 1 : Currently DSTEGR is only set up to find ALL the n  eigenvalues
       and eigenvectors of T in O(n^2) time
       Note  2  :  Currently  the routine DSTEIN is called when an appropriate
       sigma_i cannot be chosen in step (c)  above.  DSTEIN  invokes  modified
       Gram-Schmidt when eigenvalues are close.
       Note  3 : DSTEGR works only on machines which follow ieee-754 floating-
       point standard in their handling of infinities and NaNs.  Normal execu-
       tion  of  DSTEGR may create NaNs and infinities and hence may abort due
       to a floating point exception in environments which do not  conform  to
       the ieee standard.


ARGUMENTS
       JOBZ (input)
                 = 'N':  Compute eigenvalues only;
                 = 'V':  Compute eigenvalues and eigenvectors.


       RANGE (input)
                 = 'A': all eigenvalues will be found.
                 = 'V': all eigenvalues in the half-open interval (VL,VU] will
                 be found.  = 'I': the IL-th through IU-th eigenvalues will be
                 found.


       N (input) The order of the matrix.  N >= 0.


       D (input/output)
                 On  entry,  the n diagonal elements of the tridiagonal matrix
                 T. On exit, D is overwritten.


       E (input/output)
                 On entry, the (n-1) subdiagonal elements of  the  tridiagonal
                 matrix T in elements 1 to N-1 of E; E(N) need not be set.  On
                 exit, E is overwritten.


       VL (input)
                 If RANGE='V', the lower and upper bounds of the  interval  to
                 be  searched  for  eigenvalues.  VL  < VU.  Not referenced if
                 RANGE = 'A' or 'I'.


       VU (input)
                 See the description of VL.


       IL (input)
                 If RANGE='I', the indices (in ascending order) of the  small-
                 est and largest eigenvalues to be returned.  1 <= IL <= IU <=
                 N, if N > 0; IL = 1 and IU = 0 if N = 0.  Not  referenced  if
                 RANGE = 'A' or 'V'.


       IU (input)
                 See the description of IL.


       ABSTOL (input)
                 The  absolute  error  tolerance for the eigenvalues/eigenvec-
                 tors. IF JOBZ = 'V', the eigenvalues and eigenvectors  output
                 have  residual  norms bounded by ABSTOL, and the dot products
                 between different eigenvectors  are  bounded  by  ABSTOL.  If
                 ABSTOL is less than N*EPS*|T|, then N*EPS*|T| will be used in
                 its place, where EPS is the machine precision and |T| is  the
                 1-norm  of  the  tridiagonal matrix. The eigenvalues are com-
                 puted to an accuracy of EPS*|T| irrespective  of  ABSTOL.  If
                 high  relative  accuracy  is important, set ABSTOL to DLAMCH(
                 'Safe minimum' ).  See Barlow and Demmel "Computing  Accurate
                 Eigensystems  of Scaled Diagonally Dominant Matrices", LAPACK
                 Working Note #7 for a discussion  of  which  matrices  define
                 their eigenvalues to high relative accuracy.


       M (output)
                 The  total  number  of  eigenvalues  found.  0 <= M <= N.  If
                 RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.


       W (output)
                 The first M elements  contain  the  selected  eigenvalues  in
                 ascending order.


       Z (output)
                 If  JOBZ  =  'V',  then if INFO = 0, the first M columns of Z
                 contain the orthonormal eigenvectors of the matrix  T  corre-
                 sponding to the selected eigenvalues, with the i-th column of
                 Z holding the eigenvector associated with W(i).   If  JOBZ  =
                 'N',  then  Z  is not referenced.  Note: the user must ensure
                 that at least max(1,M) columns are supplied in the  array  Z;
                 if  RANGE = 'V', the exact value of M is not known in advance
                 and an upper bound must be used.


       LDZ (input)
                 The leading dimension of the array Z.  LDZ >= 1, and if  JOBZ
                 = 'V', LDZ >= max(1,N).


       ISUPPZ (output)
                 The support of the eigenvectors in Z, i.e., the indices indi-
                 cating the nonzero elements in Z.  The  i-th  eigenvector  is
                 nonzero  only in elements ISUPPZ( 2*i-1 ) through ISUPPZ( 2*i
                 ).


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal (and  mini-
                 mal) LWORK.


       LWORK (input)
                 The dimension of the array WORK.  LWORK >= max(1,18*N)

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only calculates the optimal size of the WORK  array,  returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       IWORK (workspace/output)
                 On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.


       LIWORK (input)
                 The dimension of the array IWORK.  LIWORK >= max(1,10*N)

                 If LIWORK = -1, then a workspace query is assumed;  the  rou-
                 tine  only  calculates  the  optimal size of the IWORK array,
                 returns this value as the first entry of the IWORK array, and
                 no error message related to LIWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value
                 >  0:   if  INFO  = 1, internal error in DLARRE, if INFO = 2,
                 internal error in DLARRV.

FURTHER DETAILS
       Based on contributions by
          Inderjit Dhillon, IBM Almaden, USA
          Osni Marques, LBNL/NERSC, USA




                                  7 Nov 2015                        dstegr(3P)