Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

svbrmm (3p)

Name

svbrmm - matrix multiply

Synopsis

SUBROUTINE SVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
*           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
*           B, LDB, BETA, C, LDC, WORK, LWORK )
INTEGER    TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
INTEGER    INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
*           BPNTRB(MB), BPNTRE(MB)
REAL       ALPHA, BETA
REAL       VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

SUBROUTINE SVBRMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA,
*           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
*           B, LDB, BETA, C, LDC, WORK, LWORK )
INTEGER*8  TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
INTEGER*8  INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
*           BPNTRB(MB), BPNTRE(MB)
REAL       ALPHA, BETA
REAL       VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)


F95 INTERFACE
SUBROUTINE VBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
*           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
*           B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER    TRANSA, MB, KB
INTEGER, DIMENSION(:) ::  DESCRA, INDX, BINDX
INTEGER, DIMENSION(:) ::  RPNTR, CPNTR, BPNTRB, BPNTRE
REAL    ALPHA, BETA
REAL, DIMENSION(:) :: VAL
REAL, DIMENSION(:, :) ::  B, C

SUBROUTINE VBRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
*           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
*           B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER*8    TRANSA, MB, KB
INTEGER*8, DIMENSION(:) ::  DESCRA, INDX, BINDX
INTEGER*8, DIMENSION(:) ::  RPNTR, CPNTR, BPNTRB, BPNTRE
REAL    ALPHA, BETA
REAL, DIMENSION(:) :: VAL
REAL, DIMENSION(:, :) ::  B, C





C INTERFACE
#include <sunperf.h>

void svbrmm (const int transa, const int mb, const int n, const int kb,
const float alpha, const int* descra, const float* val, const
int* indx, const int* bindx, const int* rpntr, const int*
cpntr, const int* bpntrb, const int* bpntre, const float* b,
const int ldb, const float beta, float* c, const int ldc);

void svbrmm_64 (const long transa, const long mb, const long n, const
long kb, const float alpha, const long* descra, const float*
val, const long* indx, const long* bindx, const long* rpntr,
const long* cpntr, const long* bpntrb, const long* bpntre,
const float* b, const long ldb, const float beta, float* c,
const long ldc);

Description

Oracle Solaris Studio Performance Library                           svbrmm(3P)



NAME
       svbrmm - variable block sparse row format matrix-matrix multiply

SYNOPSIS
        SUBROUTINE SVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
       *           B, LDB, BETA, C, LDC, WORK, LWORK )
        INTEGER    TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
        INTEGER    INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
       *           BPNTRB(MB), BPNTRE(MB)
        REAL       ALPHA, BETA
        REAL       VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

        SUBROUTINE SVBRMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
       *           B, LDB, BETA, C, LDC, WORK, LWORK )
        INTEGER*8  TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
        INTEGER*8  INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
       *           BPNTRB(MB), BPNTRE(MB)
        REAL       ALPHA, BETA
        REAL       VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)


   F95 INTERFACE
        SUBROUTINE VBRMM(TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
       *           B, LDB, BETA, C, LDC, WORK, LWORK)
        INTEGER    TRANSA, MB, KB
        INTEGER, DIMENSION(:) ::  DESCRA, INDX, BINDX
        INTEGER, DIMENSION(:) ::  RPNTR, CPNTR, BPNTRB, BPNTRE
        REAL    ALPHA, BETA
        REAL, DIMENSION(:) :: VAL
        REAL, DIMENSION(:, :) ::  B, C

        SUBROUTINE VBRMM_64(TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
       *           B, LDB, BETA, C, LDC, WORK, LWORK)
        INTEGER*8    TRANSA, MB, KB
        INTEGER*8, DIMENSION(:) ::  DESCRA, INDX, BINDX
        INTEGER*8, DIMENSION(:) ::  RPNTR, CPNTR, BPNTRB, BPNTRE
        REAL    ALPHA, BETA
        REAL, DIMENSION(:) :: VAL
        REAL, DIMENSION(:, :) ::  B, C





   C INTERFACE
       #include <sunperf.h>

       void svbrmm (const int transa, const int mb, const int n, const int kb,
                 const float alpha, const int* descra, const float* val, const
                 int* indx, const int* bindx, const int* rpntr, const int*
                 cpntr, const int* bpntrb, const int* bpntre, const float* b,
                 const int ldb, const float beta, float* c, const int ldc);

       void svbrmm_64 (const long transa, const long mb, const long n, const
                 long kb, const float alpha, const long* descra, const float*
                 val, const long* indx, const long* bindx, const long* rpntr,
                 const long* cpntr, const long* bpntrb, const long* bpntre,
                 const float* b, const long ldb, const float beta, float* c,
                 const long ldc);




DESCRIPTION
       svbrmm performs one of the matrix-matrix operations

                C <- alpha op(A) B + beta C

       where alpha and beta are scalars, C and B are  dense matrices,
       A is a sparse M by K matrix represented in the variable block
       sparse row format and op( A )  is one  of

       op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
                                          ( ' indicates matrix transpose)
       The number of rows in A and  the number of columns in A are determined
       as follows

              M=RPNTR(MB+1)-RPNTR(1),  K=CPNTR(KB+1)-CPNTR(1).


ARGUMENTS
       TRANSA(input)   TRANSA specifies the form of op( A ) to be used in
                       the matrix multiplication as follows:
                         0 : operate with matrix
                         1 : operate with transpose matrix
                         2 : operate with the conjugate transpose of matrix.
                           2 is equivalent to 1 if matrix is real.
                       Unchanged on exit.

       MB(input)       On entry, integer MB  specifies the number of block rows
                       in the matrix A. Unchanged on exit.

       N(input)        On entry, integer N specifies the number of columns
                       in the matrix C. Unchanged on exit.

       KB(input)       On entry, integer KB specifies the number of block columns in
                       the matrix A. Unchanged on exit.

       ALPHA(input)    On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

       DESCRA (input)  Descriptor argument.  Five element integer array:
                       DESCRA(1) matrix structure
                         0 : general
                         1 : symmetric (A=A')
                         2 : Hermitian (A= CONJG(A'))
                         3 : Triangular
                         4 : Skew(Anti)-Symmetric (A=-A')
                         5 : Diagonal
                         6 : Skew-Hermitian (A= -CONJG(A'))
                       DESCRA(2) upper/lower triangular indicator
                         1 : lower
                         2 : upper
                       DESCRA(3) main block diagonal type
                         0 : non-unit
                         1 : unit
                       DESCRA(4) Array base (NOT IMPLEMENTED)
                         0 : C/C++ compatible
                         1 : Fortran compatible
                       DESCRA(5) repeated indices? (NOT IMPLEMENTED)
                         0 : unknown
                         1 : no repeated indices

       VAL(input)      On entry,  scalar array VAL of length NNZ consists of the
                       block entries of A where each block entry is a dense
                       rectangular matrix stored column by column where NNZ
                       denotes the total number of point entries in all nonzero
                       block  entries of a matrix A. Unchanged on exit.

       INDX(input)     On entry, INDX is an integer array of length BNNZ+1 where BNNZ is
                       the number of block entries of the matrix A such that the
                       I-th element of INDX[] points to the location in VAL of
                       the (1,1) element of the I-th block entry. Unchanged on exit.

       BINDX(input)    On entry, BINDX is an  integer array of length BNNZ consisting
                       of the block column indices of the block entries of A where
                       BNNZ is the number block entries of the matrix A. Unchanged on
                       exit.

       RPNTR(input)    On entry, RPNTR is an integer array of length MB+1 such that
                       RPNTR(I)-RPNTR(1)+1 is the row index of the first point
                       row in the I-th block row. RPNTR(MB+1) is set to M+RPNTR(1)
                       where M is the number of rows in the matrix A.
                       Thus, the number of point rows in the I-th block row is
                       RPNTR(I+1)-RPNTR(I). Unchanged on exit.

       CPNTR(input)    On entry, CPNTR is an integer array of length KB+1 such that
                       CPNTR(J)-CPNTR(1)+1 is the column index of the first point
                       column in the J-th block column. CPNTR(KB+1) is set to
                       K+CPNTR(1) where K is the number of columns in the matrix A.
                       Thus, the number of point columns in the J-th block column
                       is CPNTR(J+1)-CPNTR(J). Unchanged on exit.

       BPNTRB(input)   On entry, BPNTRB is an integer array of length MB such that
                       BPNTRB(I)-BPNTRB(1)+1 points to location in BINDX of the
                       first block entry of the I-th block row of A.
                       Unchanged on exit.

       BPNTRE(input)   On entry, BPNTRE is an integer array of length MB such that
                       BPNTRE(I)-BPNTRB(1)points to location in BINDX of the
                       last block entry of the I-th block row of A.
                       Unchanged on exit.

       B (input)       Array of DIMENSION ( LDB, N ).
                       Before entry with  TRANSA = 0,  the leading  k by n
                       part of the array  B  must contain the matrix  B,  otherwise
                       the leading  m by n  part of the array  B  must contain  the
                       matrix B. Unchanged on exit.

       LDB (input)     On entry, LDB specifies the first dimension of B as declared
                       in the calling (sub) program. Unchanged on exit.

       BETA (input)    On entry, BETA specifies the scalar beta. Unchanged on exit.

       C(input/output) Array of DIMENSION ( LDC, N ).
                       Before entry with  TRANSA = 0,  the leading  m by n
                       part of the array  C  must contain the matrix C,  otherwise
                       the leading  k by n  part of the array  C must contain  the
                       matrix C. On exit, the array  C  is overwritten by the  matrix
                       ( alpha*op( A )* B  + beta*C ).

       LDC (input)     On entry, LDC specifies the first dimension of C as declared
                       in the calling (sub) program. Unchanged on exit.

       WORK (is not referenced in the current version)

       LWORK (is not referenced in the current version)


SEE ALSO
       Libsunperf  SPARSE BLAS is fully parallel and compatible with NIST FOR-
       TRAN Sparse Blas but the sources are different.  Libsunperf SPARSE BLAS
       is free of bugs found in NIST FORTRAN Sparse Blas.  Besides several new
       features and routines are implemented.

       NIST FORTRAN Sparse Blas User's Guide available at:

       http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

       Based on the standard proposed in

       "Document for the Basic Linear Algebra Subprograms (BLAS) Standard",
       University of Tennessee, Knoxville, Tennessee, 1996:

       http://www.netlib.org/utk/papers/sparse.ps

       The routine is designed so that it provides a possibility to use just
       one sparse matrix representation of a general matrix A for computing
       matrix-matrix multiply for another sparse matrix composed  by block
       triangles and/or the main block diagonal of A. The full description of
       the feature for block entry formats is given in section NOTES/BUGS for
       the sbcomm manpage.


NOTES/BUGS
       1. For a general matrix (DESCRA(1)=0), array CPNTR can be different
       from RPNTR.  For all other matrix types,  RPNTR must equal CPNTR and a
       single array can be passed for both arguments.

       2. It is known that there exists another representation of the variable
       block sparse row format (see for example Y.Saad, "Iterative Methods for
       Sparse Linear Systems", WPS, 1996). Its data structure consists of six
       array instead of the seven used in the current implementation.  The
       main difference is that only one array, IA, containing the pointers to
       the beginning of each block row in the array BINDX is used instead of
       two arrays BPNTRB and BPNTRE. To use the routine with this kind of
       variable block sparse row format the following calling sequence should
       be used

        SUBROUTINE SVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
       *           B, LDB, BETA, C, LDC, WORK, LWORK )




3rd Berkeley Distribution         7 Nov 2015                        svbrmm(3P)