Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zbelmm (3p)

Name

zbelmm - matrix multiply

Synopsis

SUBROUTINE ZBELMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
*           VAL, BINDX, BLDA, MAXBNZ, LB,
*           B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER    TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
*           LDB, LDC, LWORK
INTEGER    BINDX(BLDA,MAXBNZ)
DOUBLE COMPLEX ALPHA, BETA
DOUBLE COMPLEX VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

SUBROUTINE ZBELMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA,
*           VAL, BINDX, BLDA, MAXBNZ, LB,
*           B, LDB, BETA, C, LDC, WORK, LWORK)
INTEGER*8  TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
*           LDB, LDC, LWORK
INTEGER*8  BINDX(BLDA,MAXBNZ)
DOUBLE COMPLEX ALPHA, BETA
DOUBLE COMPLEX VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)


F95 INTERFACE
SUBROUTINE BELMM( TRANSA, MB, N, KB, ALPHA, DESCRA, VAL, BINDX,
*           BLDA, MAXBNZ, LB, B, LDB, BETA, C,LDC, WORK, LWORK)
INTEGER    TRANSA, MB, KB, BLDA, MAXBNZ, LB
INTEGER, DIMENSION(:) ::    DESCRA, BINDX
DOUBLE COMPLEX    ALPHA, BETA
DOUBLE COMPLEX, DIMENSION(:) :: VAL
DOUBLE COMPLEX, DIMENSION(:, :) ::  B, C

SUBROUTINE BELMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA, VAL, BINDX,
*           BLDA, MAXBNZ, LB, B, LDB, BETA, C,LDC, WORK, LWORK)
INTEGER*8    TRANSA, MB, KB, BLDA, MAXBNZ, LB
INTEGER*8, DIMENSION(:) ::    DESCRA, BINDX
DOUBLE COMPLEX    ALPHA, BETA
DOUBLE COMPLEX, DIMENSION(:) :: VAL
DOUBLE COMPLEX, DIMENSION(:, :) ::  B, C





C INTERFACE
#include <sunperf.h>

void zbelmm (const int transa, const int mb, const int n, const int kb,
const doublecomplex* alpha, const int* descra, const double-
complex* val, const int* bindx, const int blda, const int
maxbnz, const int lb, const doublecomplex* b, const int ldb,
const doublecomplex* beta, doublecomplex* c, const int ldc);

void zbelmm_64 (const long transa, const long mb, const long n, const
long kb, const doublecomplex* alpha, const long* descra,
const doublecomplex* val, const long* bindx, const long blda,
const long maxbnz, const long lb, const doublecomplex* b,
const long ldb, const doublecomplex* beta, doublecomplex* c,
const long ldc);

Description

Oracle Solaris Studio Performance Library                           zbelmm(3P)



NAME
       zbelmm - block Ellpack format matrix-matrix multiply

SYNOPSIS
        SUBROUTINE ZBELMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, BINDX, BLDA, MAXBNZ, LB,
       *           B, LDB, BETA, C, LDC, WORK, LWORK)
        INTEGER    TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
       *           LDB, LDC, LWORK
        INTEGER    BINDX(BLDA,MAXBNZ)
        DOUBLE COMPLEX ALPHA, BETA
        DOUBLE COMPLEX VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)

        SUBROUTINE ZBELMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA,
       *           VAL, BINDX, BLDA, MAXBNZ, LB,
       *           B, LDB, BETA, C, LDC, WORK, LWORK)
        INTEGER*8  TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB,
       *           LDB, LDC, LWORK
        INTEGER*8  BINDX(BLDA,MAXBNZ)
        DOUBLE COMPLEX ALPHA, BETA
        DOUBLE COMPLEX VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)


   F95 INTERFACE
        SUBROUTINE BELMM( TRANSA, MB, N, KB, ALPHA, DESCRA, VAL, BINDX,
       *           BLDA, MAXBNZ, LB, B, LDB, BETA, C,LDC, WORK, LWORK)
        INTEGER    TRANSA, MB, KB, BLDA, MAXBNZ, LB
        INTEGER, DIMENSION(:) ::    DESCRA, BINDX
        DOUBLE COMPLEX    ALPHA, BETA
        DOUBLE COMPLEX, DIMENSION(:) :: VAL
        DOUBLE COMPLEX, DIMENSION(:, :) ::  B, C

        SUBROUTINE BELMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA, VAL, BINDX,
       *           BLDA, MAXBNZ, LB, B, LDB, BETA, C,LDC, WORK, LWORK)
        INTEGER*8    TRANSA, MB, KB, BLDA, MAXBNZ, LB
        INTEGER*8, DIMENSION(:) ::    DESCRA, BINDX
        DOUBLE COMPLEX    ALPHA, BETA
        DOUBLE COMPLEX, DIMENSION(:) :: VAL
        DOUBLE COMPLEX, DIMENSION(:, :) ::  B, C





   C INTERFACE
       #include <sunperf.h>

       void zbelmm (const int transa, const int mb, const int n, const int kb,
                 const doublecomplex* alpha, const int* descra, const double-
                 complex* val, const int* bindx, const int blda, const int
                 maxbnz, const int lb, const doublecomplex* b, const int ldb,
                 const doublecomplex* beta, doublecomplex* c, const int ldc);

       void zbelmm_64 (const long transa, const long mb, const long n, const
                 long kb, const doublecomplex* alpha, const long* descra,
                 const doublecomplex* val, const long* bindx, const long blda,
                 const long maxbnz, const long lb, const doublecomplex* b,
                 const long ldb, const doublecomplex* beta, doublecomplex* c,
                 const long ldc);




DESCRIPTION
       sbelmm performs one of the matrix-matrix operations

                C <- alpha op(A) B + beta C

       where alpha and beta are scalars, C and B are dense matrices,
       A is an (mb*lb) by (kb*lb) sparse matrix represented in block
       Ellpack format and op( A )  is one  of

       op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
                                          ( ' indicates matrix transpose)


ARGUMENTS
       TRANSA(input)   TRANSA specifies the form of op( A ) to be used in
                       the matrix multiplication as follows:
                         0 : operate with matrix
                         1 : operate with transpose matrix
                         2 : operate with the conjugate transpose of matrix.
                           2 is equivalent to 1 if matrix is real.
                       Unchanged on exit.

       MB(input)       On entry,  MB  specifies the number of block rows
                       in the matrix A. Unchanged on exit.

       N(input)        On entry,  N specifies the number of columns
                       in the matrix C. Unchanged on exit.

       KB(input)       On entry,  KB specifies the number of block columns in
                       the matrix A. Unchanged on exit.

       ALPHA(input)    On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

       DESCRA (input)  Descriptor argument.  Five element integer array:
                       DESCRA(1) matrix structure
                         0 : general
                         1 : symmetric (A=A')
                         2 : Hermitian (A= CONJG(A'))
                         3 : Triangular
                         4 : Skew(Anti)-Symmetric (A=-A')
                         5 : Diagonal
                         6 : Skew-Hermitian (A= -CONJG(A'))
                       DESCRA(2) upper/lower triangular indicator
                         1 : lower
                         2 : upper
                       DESCRA(3) main block diagonal type
                         0 : non-unit
                         1 : unit
                       DESCRA(4) Array base (NOT IMPLEMENTED)
                         0 : C/C++ compatible
                         1 : Fortran compatible
                       DESCRA(5) repeated indices? (NOT IMPLEMENTED)
                         0 : unknown
                         1 : no repeated indices

       VAL(input)      On entry, VAL is a two-dimensional LB*LB*BLDA-by-MAXBNZ
                       array consisting of the non-zero blocks, stored
                       column-major within each dense block. Unchanged on exit.

       BINDX(input)    On entry, BINDX is an integer two-dimensional BLDA-MAXBNZ
                       array such BINDX(i,:) consists of the block column indices
                       of the nonzero blocks in block row i, padded by the integer
                       value i if the number of nonzero blocks is less than
                       MAXBNZ. Unchanged on exit.

       BLDA(input)     On entry, BLDA specifies the leading dimension of BINDX(:,:).
                       Unchanged on exit.

       MAXBNZ (input)  On entry, MAXBNZ specifies the max number of nonzeros
                       blocks per row. Unchanged on exit.

       LB (input)      On entry, LB specifies the dimension of dense blocks
                       composing A.  Unchanged on exit.

       B (input)       Array of DIMENSION ( LDB, N ).
                       Before entry with  TRANSA = 0,  the leading  kb*lb by n
                       part of the array  B  must contain the matrix  B,  otherwise
                       the leading  mb*lb by n part of the array B must contain the
                       matrix B. Unchanged on exit.

        LDB (input)     On entry, LDB specifies the first dimension of B as declared
                       in the calling (sub) program. Unchanged on exit.

       BETA (input)    On entry, BETA specifies the scalar beta. Unchanged on exit.

       C(input/output) Array of DIMENSION ( LDC, N ).
                       Before entry with  TRANSA = 0,  the leading  mb*lb by n
                       part of the array  C  must contain the matrix C,  otherwise
                       the leading  kb*lb by n  part of the array C must contain the
                       matrix C. On exit, the array C is overwritten by the matrix
                       ( alpha*op( A )* B  + beta*C ).

       LDC (input)     On entry, LDC specifies the first dimension of C as declared
                       in the calling (sub) program. Unchanged on exit.

       WORK (is not referenced in the current version)

       LWORK (is not referenced in the current version)


SEE ALSO
       Libsunperf  SPARSE BLAS is fully parallel and compatible with NIST FOR-
       TRAN Sparse Blas but the sources are different.  Libsunperf SPARSE BLAS
       is free of bugs found in NIST FORTRAN Sparse Blas.  Besides several new
       features and routines are implemented.

       NIST FORTRAN Sparse Blas User's Guide available at:

       http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

       Based on the standard proposed in

       "Document for the Basic Linear Algebra Subprograms (BLAS) Standard",
       University of Tennessee, Knoxville, Tennessee, 1996:

       http://www.netlib.org/utk/papers/sparse.ps

       The routine is designed so that it provides a possibility to use just
       one sparse matrix representation of a general complex matrix A for com-
       puting matrix-matrix multiply for another sparse matrix composed by
       block triangles and/or the main block diagonal of A. The full descrip-
       tion of the feature for block entry formats is given in section
       NOTES/BUGS for the cbcomm manpage.




3rd Berkeley Distribution         7 Nov 2015                        zbelmm(3P)