Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zlals0 (3p)

Name

zlals0 - apply back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd

Synopsis

SUBROUTINE ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,  PERM,
GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, POLES, DIFL, DIFR, Z,
K, C, S, RWORK, INFO )


INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX,  LDGCOL,  LDGNUM,  NL,  NR,
NRHS, SQRE

DOUBLE PRECISION C, S

INTEGER GIVCOL(LDGCOL,*), PERM(*)

DOUBLE    PRECISION    DIFL(*),    DIFR(LDGNUM,*),    GIVNUM(LDGNUM,*),
POLES(LDGNUM,*), RWORK(*), Z(*)

DOUBLE COMPLEX B(LDB,*), BX(LDBX,*)


SUBROUTINE ZLALS0_64( ICOMPQ, NL, NR, SQRE, NRHS,  B,  LDB,  BX,  LDBX,
PERM,  GIVPTR,  GIVCOL,  LDGCOL, GIVNUM, LDGNUM, POLES, DIFL,
DIFR, Z, K, C, S, RWORK, INFO )


INTEGER*8 GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, LDGNUM,  NL,  NR,
NRHS, SQRE

DOUBLE PRECISION C, S

INTEGER*8 GIVCOL(LDGCOL,*), PERM(*)

DOUBLE    PRECISION    DIFL(*),    DIFR(LDGNUM,*),    GIVNUM(LDGNUM,*),
POLES(LDGNUM,*), RWORK(*), Z(*)

DOUBLE COMPLEX B(LDB,*), BX(LDBX,*)


F95 INTERFACE
SUBROUTINE LALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX,  LDBX,  PERM,
GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, POLES, DIFL, DIFR, Z,
K, C, S, RWORK, INFO )


INTEGER :: ICOMPQ, NL, NR,  SQRE,  NRHS,  LDB,  LDBX,  GIVPTR,  LDGCOL,
LDGNUM, K, INFO

INTEGER, DIMENSION(:) :: PERM

COMPLEX(8), DIMENSION(:,:) :: B, BX

INTEGER, DIMENSION(:,:) :: GIVCOL


SUBROUTINE  LALS0_64(  ICOMPQ,  NL,  NR,  SQRE, NRHS, B, LDB, BX, LDBX,
PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,  LDGNUM,  POLES,  DIFL,
DIFR, Z, K, C, S, RWORK, INFO )


INTEGER(8)  ::  ICOMPQ,  NL, NR, SQRE, NRHS, LDB, LDBX, GIVPTR, LDGCOL,
LDGNUM, K, INFO

INTEGER(8), DIMENSION(:) :: PERM

COMPLEX(8), DIMENSION(:,:) :: B, BX

INTEGER(8), DIMENSION(:,:) :: GIVCOL


C INTERFACE
#include <sunperf.h>

void zlals0 (int icompq, int nl, int nr, int sqre, int nrhs, doublecom-
plex *b, int ldb, doublecomplex *bx, int ldbx, int *perm, int
givptr, int *givcol, int ldgcol, double *givnum, int  ldgnum,
double  *poles, double *difl, double *difr, double *z, int k,
double c, double s, int *info);


void zlals0_64 (long icompq, long nl, long nr, long  sqre,  long  nrhs,
doublecomplex  *b,  long  ldb,  doublecomplex *bx, long ldbx,
long *perm, long givptr, long *givcol,  long  ldgcol,  double
*givnum,  long  ldgnum,  double  *poles, double *difl, double
*difr, double *z, long k, double c, double s, long *info);

Description

Oracle Solaris Studio Performance Library                           zlals0(3P)



NAME
       zlals0  -  apply  back multiplying factors in solving the least squares
       problem using divide and conquer SVD approach. Used by sgelsd


SYNOPSIS
       SUBROUTINE ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,  PERM,
                 GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, POLES, DIFL, DIFR, Z,
                 K, C, S, RWORK, INFO )


       INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX,  LDGCOL,  LDGNUM,  NL,  NR,
                 NRHS, SQRE

       DOUBLE PRECISION C, S

       INTEGER GIVCOL(LDGCOL,*), PERM(*)

       DOUBLE    PRECISION    DIFL(*),    DIFR(LDGNUM,*),    GIVNUM(LDGNUM,*),
                 POLES(LDGNUM,*), RWORK(*), Z(*)

       DOUBLE COMPLEX B(LDB,*), BX(LDBX,*)


       SUBROUTINE ZLALS0_64( ICOMPQ, NL, NR, SQRE, NRHS,  B,  LDB,  BX,  LDBX,
                 PERM,  GIVPTR,  GIVCOL,  LDGCOL, GIVNUM, LDGNUM, POLES, DIFL,
                 DIFR, Z, K, C, S, RWORK, INFO )


       INTEGER*8 GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, LDGNUM,  NL,  NR,
                 NRHS, SQRE

       DOUBLE PRECISION C, S

       INTEGER*8 GIVCOL(LDGCOL,*), PERM(*)

       DOUBLE    PRECISION    DIFL(*),    DIFR(LDGNUM,*),    GIVNUM(LDGNUM,*),
                 POLES(LDGNUM,*), RWORK(*), Z(*)

       DOUBLE COMPLEX B(LDB,*), BX(LDBX,*)


   F95 INTERFACE
       SUBROUTINE LALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX,  LDBX,  PERM,
                 GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, POLES, DIFL, DIFR, Z,
                 K, C, S, RWORK, INFO )


       INTEGER :: ICOMPQ, NL, NR,  SQRE,  NRHS,  LDB,  LDBX,  GIVPTR,  LDGCOL,
                 LDGNUM, K, INFO

       INTEGER, DIMENSION(:) :: PERM

       COMPLEX(8), DIMENSION(:,:) :: B, BX

       INTEGER, DIMENSION(:,:) :: GIVCOL


       SUBROUTINE  LALS0_64(  ICOMPQ,  NL,  NR,  SQRE, NRHS, B, LDB, BX, LDBX,
                 PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,  LDGNUM,  POLES,  DIFL,
                 DIFR, Z, K, C, S, RWORK, INFO )


       INTEGER(8)  ::  ICOMPQ,  NL, NR, SQRE, NRHS, LDB, LDBX, GIVPTR, LDGCOL,
                 LDGNUM, K, INFO

       INTEGER(8), DIMENSION(:) :: PERM

       COMPLEX(8), DIMENSION(:,:) :: B, BX

       INTEGER(8), DIMENSION(:,:) :: GIVCOL


   C INTERFACE
       #include <sunperf.h>

       void zlals0 (int icompq, int nl, int nr, int sqre, int nrhs, doublecom-
                 plex *b, int ldb, doublecomplex *bx, int ldbx, int *perm, int
                 givptr, int *givcol, int ldgcol, double *givnum, int  ldgnum,
                 double  *poles, double *difl, double *difr, double *z, int k,
                 double c, double s, int *info);


       void zlals0_64 (long icompq, long nl, long nr, long  sqre,  long  nrhs,
                 doublecomplex  *b,  long  ldb,  doublecomplex *bx, long ldbx,
                 long *perm, long givptr, long *givcol,  long  ldgcol,  double
                 *givnum,  long  ldgnum,  double  *poles, double *difl, double
                 *difr, double *z, long k, double c, double s, long *info);


PURPOSE
       zlals0 applies back the multiplying factors of either the left  or  the
       right  singular vector matrix of a diagonal matrix appended by a row to
       the right hand side matrix B in solving the least squares problem using
       the divide-and-conquer SVD approach.

       For the left singular vector matrix, three types of orthogonal matrices
       are involved:

       (1L) Givens rotations: the number of  such  rotations  is  GIVPTR;  the
       pairs  of  columns/rows  they were applied to are stored in GIVCOL; and
       the C- and S-values of these rotations are stored in GIVNUM.

       (2L) Permutation. The (NL+1)-st row of B is to be moved  to  the  first
       row, and for J=2:N, PERM(J)-th row of B is to be moved to the J-th row.

       (3L) The left singular vector matrix of the remaining matrix.

       For the right singular vector matrix, four types of orthogonal matrices
       are involved:

       (1R) The right singular vector matrix of the remaining matrix.

       (2R)  If SQRE = 1, one extra Givens rotation to generate the right null
       space.

       (3R) The inverse transformation of (2L).

       (4R) The inverse transformation of (1L).


ARGUMENTS
       ICOMPQ (input)
                 ICOMPQ is INTEGER
                 Specifies whether singular vectors are to be computed in
                 factored form:
                 = 0: Left singular vector matrix.
                 = 1: Right singular vector matrix.


       NL (input)
                 NL is INTEGER
                 The row dimension of the upper block. NL >= 1.


       NR (input)
                 NR is INTEGER
                 The row dimension of the lower block. NR >= 1.


       SQRE (input)
                 SQRE is INTEGER
                 = 0: the lower block is an NR-by-NR square matrix.
                 = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
                 The bidiagonal matrix has row dimension N = NL + NR + 1,
                 and column dimension M = N + SQRE.


       NRHS (input)
                 NRHS is INTEGER
                 The number of columns of B and BX. NRHS must be at least 1.


       B (input/output)
                 B is COMPLEX*16 array, dimension ( LDB, NRHS )
                 On input, B contains the right hand sides of the least
                 squares problem in rows 1 through M. On output, B contains
                 the solution X in rows 1 through N.


       LDB (input)
                 LDB is INTEGER
                 The leading dimension of B. LDB must be at least
                 max(1,MAX( M, N ) ).


       BX (output)
                 BX is COMPLEX*16 array, dimension ( LDBX, NRHS )


       LDBX (input)
                 LDBX is INTEGER
                 The leading dimension of BX.


       PERM (input)
                 PERM is INTEGER array, dimension ( N )
                 The permutations (from deflation and sorting) applied
                 to the two blocks.


       GIVPTR (input)
                 GIVPTR is INTEGER
                 The number of Givens rotations which took place in this
                 subproblem.


       GIVCOL (input)
                 GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
                 Each pair of numbers indicates a pair of rows/columns
                 involved in a Givens rotation.


       LDGCOL (input)
                 LDGCOL is INTEGER
                 The leading dimension of GIVCOL, must be at least N.


       GIVNUM (input)
                 GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
                 Each number indicates the C or S value used in the
                 corresponding Givens rotation.


       LDGNUM (input)
                 LDGNUM is INTEGER
                 The leading dimension of arrays DIFR, POLES and
                 GIVNUM, must be at least K.


       POLES (input)
                 POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
                 On entry, POLES(1:K, 1) contains the new singular
                 values obtained from solving the secular equation, and
                 POLES(1:K, 2) is an array containing the poles in the secular
                 equation.


       DIFL (input)
                 DIFL is DOUBLE PRECISION array, dimension ( K ).
                 On entry, DIFL(I) is the distance between I-th updated
                 (undeflated) singular value and the I-th (undeflated) old
                 singular value.


       DIFR (input)
                 DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
                 On entry, DIFR(I, 1) contains the distances between I-th
                 updated (undeflated) singular value and the I+1-th
                 (undeflated) old singular value. And DIFR(I, 2) is the
                 normalizing factor for the I-th right singular vector.


       Z (input)
                 Z is DOUBLE PRECISION array, dimension ( K )
                 Contain the components of the deflation-adjusted updating row
                 vector.


       K (input)
                 K is INTEGER
                 Contains the dimension of the non-deflated matrix,
                 This is the order of the related secular  equation.  1  <=  K
                 <=N.


       C (input)
                 C is DOUBLE PRECISION
                 C contains garbage if SQRE =0 and the C-value of a Givens
                 rotation related to the right null space if SQRE = 1.


       S (input)
                 S is DOUBLE PRECISION
                 S contains garbage if SQRE =0 and the S-value of a Givens
                 rotation related to the right null space if SQRE = 1.


       RWORK (output)
                 RWORK is DOUBLE PRECISION array, dimension
                 ( K*(1+NRHS) + 2*NRHS )


       INFO (output)
                 INFO is INTEGER
                 = 0:  successful exit.
                 < 0:  if INFO = -i, the i-th argument had an illegal value.




                                  7 Nov 2015                        zlals0(3P)