

[1] Oracle® Communications
ASAP
Server Configuration Guide

Release 7.3

E61078-01

July 2015

Oracle Communications ASAP Server Configuration Guide, Release 7.3

E61078-01

Copyright © 2012, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

1 ASAP Server Configuration Overview

Overview of ASAP Server Configuration Tasks.. 1-1

2 Configuring ASAP Servers

About the Service Activation Configuration Tool... 2-1
About Service Activation Configuration Tool Resource Definitions.. 2-2

About Using the Service Activation Schema to Write an XML File ... 2-2
About Configuring an XML Configuration File to Prompt for Values...................................... 2-6
About Configuring an XML File to Replace Values with Environment Variables 2-7

About the Service Activation Configuration Tool... 2-7
Configuring the SACT Scripts and UNIX Environment Variables... 2-8
Running the SACT Scripts .. 2-9

Transforming ASAP Database Configurations or Service Models into XML 2-10

3 About the Control and Daemon Servers

About Control Servers and Fork Agents.. 3-1
About the ASAP Daemon Server .. 3-3

4 Configuring Service Request Processors

About Service Request Processor Servers ... 4-1
SRP Translation of Native SRP Work Orders to ASAP Work Orders.. 4-2

Configuring a C SRP Emulator.. 4-3
Adding a C SRP Emulator .. 4-4
Deleting a C SRP Emulator ... 4-5
Adding Configuration Parameters to a C SRP Emulator... 4-6

Configuring the C++ Csol SRP Emulator .. 4-8
Starting the C++ Csol SRP Emulator... 4-8

Using the C++ SRP API... 4-8

5 Configuring Java Service Request Processors and Web Services

About Java Service Request Processor Servers .. 5-1
About JSRP, Web Service, and OCA SRP Components ... 5-2

About the JSRP Server and Web Service Interfaces .. 5-3
About Connecting JSRP JMS and Web Service Interfaces to a Remote Application 5-4

iv

Modifying JSRP Parameters (Deployment Descriptors) in WebLogic....................................... 5-5
Configuring Validation of Received Data ... 5-7

Setting Log Levels .. 5-8
Uninstalling the Java SRP ... 5-8

Configuring a Custom Java SRP client .. 5-8
Sample Code for a Custom JSRP Client .. 5-9
Sample Script to Run the Custom JSRP Client.. 5-10

Configuring a OCA SRP .. 5-10
 Setting OCA SRP Configuration Parameters ... 5-10

6 Managing the Service Activation Request Manager

About Managing Service Activation Request Manager Servers... 6-1
SARM to SRP Event Notification ... 6-1

SRP Work Order Event Management ... 6-2
NEP to SARM Event Notifications ... 6-3

Returned Parameter Types and Formats.. 6-4

7 Configuring Network Element Processors, Resource Pools, and Devices

About Configuring Network Element Processors ... 7-1
NEP Components ... 7-2

Session Manager... 7-2
Command Processor.. 7-4

Interpreters .. 7-4
Interpreter Cache Flush... 7-6
JInterpreter .. 7-6

Customizing the JInterpreter... 7-6
Managing Provisioning Classes.. 7-7
Dynamic Reloading of Provisioning Classes ... 7-8
Using the JInterpreter Utility Script ... 7-8

State Table Interpreter ... 7-8
Customizing Interpreter State Table Actions.. 7-9

Connection Management... 7-10
Connection Requests .. 7-11

Primary Connection... 7-11
Auxiliary Connections... 7-11
Dial-up Connections.. 7-11

Disconnection Requests.. 7-11
Drop Timeout Parameter .. 7-12
Idle ASDL Generation ... 7-12
Automatic Maintenance Mode... 7-13

Connection Thresholds... 7-13
Spawn Threshold ... 7-13
Kill Threshold ... 7-13
Maximum Available Connections ... 7-14

Device Throughput ... 7-14
Device Enabling/Disabling ... 7-15

Automatic Device Re-enabling .. 7-15

v

Device Screen and Line Diagnostics... 7-15
Connection-related ASDLs .. 7-16
Resending Completed ASDLs... 7-16

Configuring NEPs ... 7-18
Adding an NEP ... 7-18
Deleting an NEP .. 7-19
Adding Configuration Parameters to an NEP.. 7-20
JNEP Logging .. 7-21

Configuring Resource Pools and Resource Pool Devices ... 7-22
Adding a Resource Pool and Device .. 7-22
Deleting a Resource Pool and Device... 7-23

Configuring NE Blackout Periods ... 7-23
Checking NE Blackout Periods ... 7-25
Configuration Parameters for NE Blackout .. 7-25

8 Managing the Admin Server

About Managing Admin Servers .. 8-1

9 Configuration Parameters

About ASAP Configuration Parameters .. 9-1
Determining Configuration Parameters .. 9-2
Configuration Parameter Scope... 9-2
Environment Variable Support ... 9-3

UNIX Environment Variables .. 9-3
Common API Configuration Parameters... 9-3

Logical-to-Network Application Name Mapping... 9-3
ASAP Monitoring Parameters.. 9-4
Connection Pool Manager and Debugging Tools ... 9-5
Application Logical to Network Application Name Mapping ... 9-5
SQL Server Security-Related Parameters ... 9-6
RPC-Related Parameters ... 9-6
Network Connection-Related Parameters.. 9-7
Application Diagnostics-Related Parameters .. 9-8
Self-Balancing Binary Tree-Related Parameters .. 9-9

Server API Configuration Parameters.. 9-9
Sybase Open Server Parameters .. 9-9
Sybase Open Server Debugging Trace Flag Parameters ... 9-13

Application Server Memory Management Parameters.. 9-14
Client Library Parameters.. 9-15
DB Library Parameters ... 9-17
Poll Management Parameters ... 9-17
Database Administration Parameters .. 9-17
IPC Diagnostic Parameters .. 9-18
Security-Related Parameters.. 9-18
High-Availability Parameters ... 9-19
Application Server Performance Parameters.. 9-19

vi

Client API Configuration Parameters ... 9-19
Client Application Signal Handling ... 9-19

SRP API Parameters.. 9-20
SARM Connectivity Parameters ... 9-20
Loopback Testing Parameters ... 9-20
Interpreter Operation ... 9-21
SQL Server Connectivity.. 9-21
State Table Debugger Support .. 9-23
Loopback Support... 9-23

NEP API Parameters ... 9-24
ASDL Processing Parameters .. 9-24
Connectivity Parameters .. 9-24
Switch Direct Parameters... 9-25

NE Communication API Parameters ... 9-25
Device Driver Support.. 9-25
Terminal Communication Support .. 9-26
Serial Device Driver Support... 9-26
Generic EDD API Parameters ... 9-27
CSOL API Parameters .. 9-27
Auditing Level Parameter.. 9-28
WebLogic Server Parameters .. 9-28

Control Server Configuration Parameters .. 9-29
Control Server Alarm Generation... 9-29
Control Server Database and File System Monitoring .. 9-29
Fork Agent Process Generation Configuration... 9-30
Control Server Database Administration Parameters ... 9-30
SRP Emulator Server Configuration Parameters.. 9-31

SARM Server Configuration Parameters ... 9-32
Mask for WO ID Generation.. 9-32
Configuration for VNO External Validation... 9-33
SARM Work Order Processing ... 9-34
SARM Thread Configuration Management.. 9-38
SARM Message Pool Size... 9-38
SARM Batch Error Thresholds .. 9-39
SARM International Messages .. 9-39
OCA Work Order Entry ... 9-40
UNID Manager .. 9-40
SARM Switch Direct ... 9-41
Admin Server Parameters.. 9-41
Persistent ADM Data in SARM... 9-41
Socket Connections ... 9-42
Database Administration Parameters for the SARM DB .. 9-43

NEP Server Configuration Parameters.. 9-43
ADM Server Configuration Parameters ... 9-44

Database Administration Parameters for the ADMIN Database... 9-45
Generic EDD API Parameters ... 9-46
BX25_EDD Configuration Parameters .. 9-46

vii

PADEDD Configuration Parameters... 9-46
UTILITY Configuration Parameters .. 9-47

Login Information for the SARM Database... 9-47
Login Information for ADM Database... 9-47

A asap_utils

asap_utils Functions ... A-1
SARM Utilities ... A-1
Admin Server Utilities.. A-3
NEP Utilities .. A-3
Technical Utilities.. A-7

B Stored Procedures (Deprecated)

Configuring an SRP Using Stored Procedures .. B-1
 Adding the SRP to the ASAP Start-up Procedures ... B-1
 Defining the SRP as an ASAP Component... B-2
 Adding the SRP to the SARM Database ... B-2
 Registering the SRP.. B-2

Configuring NEPs Using Stored Procedures ... B-3
 Adding the NEP to ASAP Start-up Procedures... B-3
 Adding the NEP as an ASAP Component ... B-3
 Adding the NEP to the SARM Database .. B-4
 Adding the NEP to the Sybase Interfaces File ... B-4
 Configuring Ports for the JInterpreter... B-4

Configuring Multiple JInterpreters ... B-5
Sample Scripts.. B-5

Configuring Resource Pools Using Stored Procedures ... B-5

viii

ix

Preface

This guide explains how to configure Oracle Communications ASAP using Service
Activation Configuration Tool (SACT), ASAP services using XML, ASAP security, and
dynamic network element (NE) routing. It also describes how to use stored procedures
for configuring ASAP services, system events and alarms, service request processors
(SRPs), network elements, and network element processors (NEPs).

Audience
This document is intended for system administrators, system integrators, and other
individuals who need to maintain and work with ASAP.

Downloading Oracle Communications Documentation
Oracle Communications ASAP documentation, is available from Oracle Help Center:

http://docs.oracle.com

Related Documents
For more information, see the following documents in the ASAP Release
documentation set:

■ Oracle Communications ASAP Release Notes

■ Oracle Communications ASAP Concepts

■ Oracle Communications ASAP Installation Guide

■ Oracle Communications ASAP Service Request Translator User's Guide

■ Oracle Communications ASAP Order Control Application User's Guide

■ Oracle Communications ASAP Cartridge Development Guide

■ Oracle Communications ASAP Security Guide

■ Oracle Communications ASAP System Administrator’s Guide

■ Oracle Communications ASAP Developer’s Guide

x

Note: To download the ASAP Developer’s Guide from the Oracle
software delivery Web site, you must select Oracle Communications
Service Activation Developer Documentation Pack. You can visit the
Oracle software delivery Web site at:

http://edelivery.oracle.com

1

ASAP Server Configuration Overview 1-1

1ASAP Server Configuration Overview

This chapter provides an overview of Oracle Communications ASAP server
configuration tasks.

Overview of ASAP Server Configuration Tasks
After you have installed ASAP and defined the initial user security, perform the
following procedures to configure ASAP.

■ Set up ASAP security. For more information, see ASAP Security Guide.

■ Build custom service request processor (SRP) interfaces or use the Java SRP or C
SRP emulator that ASAP provides. ASAP provides two mechanisms to configure
SRP interfaces: the Service Activation Configuration Tool (SACT) and stored
procedures. See "Configuring ASAP Servers" for more information.

■ Configure network element processors (NEPs) and network elements (NEs). To
configure NEPs, use the SACT. See "Configuring Network Element Processors,
Resource Pools, and Devices" for more information. To configure NEs, see Oracle
Communications Design Studio for Activation and ASAP Cartridge Development
Guide.

■ Deploy services. ASAP provides two mechanisms to configure ASAP services: the
installCartridge script and Design Studio for Activation. For more information, see
"Configuring ASAP Servers" and see ASAP Installation Guide.

■ Configure Atomic Service Description Layer (ASDL) command routing options
(see ASAP Cartridge Development Guide).

■ Configure system events and alarms. For more information, see ASAP System
Administrator’s Guide.

■ Tune ASAP by modifying configuration parameters. For more information, see
ASAP System Administrator’s Guide.

■ Optionally configure remote servers. It may be necessary to configure ASAP to
execute one or more of its processes on a separate, or remote, server. This can be
done to improve performance (for example, to distribute processing loads) or
because certain downstream interfaces or networks are not accessible from the
machine where ASAP is running. For more information, see ASAP Installation
Guide.

■ Monitor ASAP using the asap_utils utility. For more information, see ASAP System
Administrator’s Guide.

Overview of ASAP Server Configuration Tasks

1-2 ASAP Server Configuration Guide

2

Configuring ASAP Servers 2-1

2Configuring ASAP Servers

This chapter provides information about configuring Oracle Communications ASAP
servers using the Service Activation Configuration Tool (SACT).

About the Service Activation Configuration Tool
The SACT provides a way of adding, deleting, and modifying ASAP servers and
ASAP server parameters, including:

■ ASAP servers such as:

– Network element processors (NEPs) and Java NEPs (JNEPs)

– Service request processors (SRPs)

– Slave control servers

■ Global configuration parameters

■ Server specific configuration parameters

■ NEP resource pools (connectionPools)

The SACT uses XML server configuration files to configure ASAP, and has several
advantages over the use of stored procedures or scripts. By using the SACT to load
XML server configuration files, you are insulated from the internal structure of ASAP,
including database languages, such as Oracle syntax. Moreover, you can reuse an XML
configuration file for similar configurations and use version control for the file.

The SACT supports server side configuration activities, and the Service Activation
Deployment Tool (SADT) supports ASAP cartridge or individual XML service
configuration file deployment. For more information about SADT, see ASAP Cartridge
Development Guide.

To work with the SACT, Oracle recommends that you have experience with:

■ XML

■ XML schemas

Note: The SACT does not configure system events and alarms. For
information on configuring system events and alarms, see ASAP
System Administrator’s Guide.

Reference information about the Java NEP (JNEP), the Java SRP
(JSRP), and Java Management Extensions (JMX) can be found in ASAP
Online Reference.

About Service Activation Configuration Tool Resource Definitions

2-2 ASAP Server Configuration Guide

■ ASAP system configuration principles

■ ASAP service modeling principles

About Service Activation Configuration Tool Resource Definitions
Figure 2–1 shows how the SACT and the SADT deploy an XML file or service
activation model archive (SAR) file through a JMX management interface located in
the ASAP WebLogic server instance when you first install ASAP. You can use the
SADT or Oracle Communications Design Studio to deploy a cartridge into ASAP.

Figure 2–1 XML Deployment

Before the SACT can process an XML file and configure ASAP server resources
through the JMX interface, the XML file must conform to the resource definitions
defined in the ASAP_Home/xml/xsd/ActivationConfig.xsd schema file. You can view a
sample XML configuration file that conforms to this schema in the ASAP_
Home/sample/sadt/SampleCommonConfig.xml file.

You can use the SACT to:

■ Add new resources such as ASAP servers, connection pools and their devices, and
communication parameters

■ Delete existing resources such as ASAP servers, connection pools and their
devices, and communication parameters

■ Modify existing resources such as ASAP servers, connection pools and their
devices, and communication parameters

About Using the Service Activation Schema to Write an XML File
Figure 2–2 shows the ActivationConfig.xsd schema elements. Each element
corresponds to configurable ASAP server or server parameter schema definitions
which your XML server configuration file must conform to.

Note: Schema validation for XML data processed by the SACT and
the SADT is turned off by default.

About Service Activation Configuration Tool Resource Definitions

Configuring ASAP Servers 2-3

Figure 2–2 ActivationConfig.xsd Schema Elements

The ASAP installer creates some of the elements listed in Figure 2–2 during the
installation process. For example, ASAP supports one Service Activation Request
Manager (SARM), Admin, JSRP, and Order Control Application (OCA) server. You do
not need to add or delete these resources using SACT.

You can use the SACT to add configuration parameters to the servers that the ASAP
installer creates. Some elements you may need to add include:

■ NEP and JNEPs (see "Configuring NEPs")

About Service Activation Configuration Tool Resource Definitions

2-4 ASAP Server Configuration Guide

■ SRPs (see "Configuring a C SRP Emulator")

■ Slave control servers (see "About the Control and Daemon Servers")

■ Resource pools (connectionPools) and devices (see "Configuring Resource Pools
and Resource Pool Devices")

■ ASAP.cfg configuration parameters (see "Configuration Parameters")

When authoring an XML configuration file consisting of several elements, observe the
order in which elements are listed in the schema. For example, if defining an NEP
server and a resource pool (connectionPool) in an XML configuration file, ensure that
the NEP server definition is located before the resource pool definition since the
ActivationConfig.xsd schema requires this order.

Oracle recommends that you use an XML editor to create an XML document, as XML
editing tools usually have validators that ensure that the XML document is valid.

The schema contains base types and extensions for a given entity. For an NEP, for
example, the XML schema identifies:

■ The base type and serverType, which contains the most common entries:
description, system, territory, diagnosticFilename, diagnosticLevel.

■ ControlManagedServerType, an extension of the base serverType, which adds the
autoStart flag, control server name, and interface information on top of the
serverType.

■ NEPServerType, an extension of ControlManagedServerType, which contains the
elements secondaryPool and jinterpreterPort.

Figure 2–3 shows the structure that has to be observed when authoring an NEP
configuration file. The XML configuration file must observe the order in which the
elements appear in the schema.

About Service Activation Configuration Tool Resource Definitions

Configuring ASAP Servers 2-5

Figure 2–3 NEPServerType Schema

The following is an excerpt from the ControlManagedServerType in the schema.

<xs:complexType name="ControlManagedServerType">
 <xs:complexContent>
 <xs:extension base="mslv-ac:ServerType">
 <xs:sequence>
 <xs:element name="autoStart" type="xs:boolean"
default="true" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Flag for
indicating if the Control server should auto start this server.</xs:documentation>

About Service Activation Configuration Tool Resource Definitions

2-6 ASAP Server Configuration Guide

 </xs:annotation>
 </xs:element>
 <xs:element name="controlServer"
type="mslv-ac:ServerNameType">
 <xs:annotation>
<xs:documentation>The name of the logical ASAP application Control server which
spawns the application and monitors its behavior, for example, CONTROL. In a
distributed ASAP configuration, there must be a Control server defined on each
machine in the distributed environment. In each ASAP configuration there is only
one master Control server.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="interfaceHostname"
type="mslv-ac:HostType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The interface
hostname for this server. Can be in the form of a string hostname or IP
address.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="interfacePort"
type="mslv-ac:PortNumberType">
 <xs:annotation>
 <xs:documentation>The interface
port for this server.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="defaultControlServer"
type="mslv-ac:ServerNameType"/>
 <xs:attribute name="defaultInterfacePort"
type="mslv-ac:PortNumberType"/>
 <xs:attribute name="defaultInterfaceHostname"
type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

About Configuring an XML Configuration File to Prompt for Values
You can write the XML configuration file in such a way that it prompts the user for
values.

This feature is useful if you are a cartridge developer who creates productized
cartridges for deployment in customer sites. ASAP cartridges can contain XML server
configuraiton files that require ASAP server specific information. Using the prompting
feature, you can write an installation program that enables the customer to populate
ASAP server related values (for example, ASAP server IP addresses and resource
pools). For more information about adding XML server configuration files to an ASAP
cartridge, see ASAP Cartridge Development Guide.

Prompts are delimited in the XML file with the character %. For example:

<communicationParameter>
 <label>IP_ADDRESS</label>
 <value defaultValue="localhost">
 <value>%NAME</value>
 </value>
 <description>String</description>

About the Service Activation Configuration Tool

Configuring ASAP Servers 2-7

 <deviceName>DEV_1</deviceName>
</communicationParameter>

For every parameter delimited with % (NAME in the above example) the
command-line client displays a prompt to request a value from the user. This prompt
displays the default value <value defaultValue="localhost"> and a description of the
parameter in <description> element. The value the user enters at the prompt is used in
the configuration file.

About Configuring an XML File to Replace Values with Environment Variables
You can author the XML file so that, on deployment, all values that are delimited with
the character “$” are replaced with the environment variable of the same name. If the
environment variable is not defined, the default value is used. This feature can save
time when the ASAP server environment variables have already been defined in the
ASAP_Home/Environment_Profile.

<communicationParameter>
 <label>NMTOKEN</label>
 <value defaultValue="SARM Name">
 <value>$SARM</value>
 </value>
 <description>String</description>
 <deviceName>NMTOKEN</deviceName>
</communicationParameter>
<communicationParameter>
 <label>NMTOKEN</label>
 <value>
 <value>$SYSTEM</value>
 </value>
 <description>String</description>
 <deviceName>NMTOKEN</deviceName>
</communicationParameter>

In the previous example, if the $SARM and $SYSTEM environment variables are not
defined, the default Value in the XML server configuration file is used.

About the Service Activation Configuration Tool
There are three SACT scripts, and they perform the following functions:

■ sactConfig is a configuration script with a replace option. You can use this script
to add or replace elements.

■ sactConfigNR is a configuration script without a replace option. You can use this
script to add elements, but you cannot use it to replace existing elements.

■ sactUnconfig is a script to unconfigure elements. You can use this script to delete
existing elements.

These scripts use the ASAP_Home/scripts/asapConfig command to perform their
functions. This command deploys one or more XML files. The XML files can be
individual, or they can be bundled in a SAR file. asapConfig searches the SAR file for
an XML deployment descriptor that describes how each XML component needs to be
deployed, and for any SarPatch_configure and SarPatch_unconfigure files.

About the Service Activation Configuration Tool

2-8 ASAP Server Configuration Guide

The asapConfig command uses the following syntax.

asapConfig -Dwlurl=WL_URL -Dwlusr=WL_user_name -Dwlpwd=WL_user_passwd [-DENV_
ID=ENV_ID] [replace][silent] command cfg_file

Where:

■ WL_user_name: Set this value to the ASAP WebLogic server instance user name.

■ WL_user_passwd: Set this value to the ASAP WebLogic server password.

■ env_ID: This value must be set to environment ID for the ASAP server.

■ silent: This option enables silent mode. The configuration utility will use the
defaults for all the prompting parameters or the options file instead of prompting
the user for a value.

■ replace: This option enables overwrite mode. This means that all resources
specified in the file that conflict with existing resources will overwrite existing
resources. If this option is not specified the default value for overwrite is false.

■ command: This value can be either configure or unconfigure. This command string
sets the utility in configure or unconfigure mode. The asapConfig command
generates a response file if the command is configure. The file name has the same
extension as the input file. For example, if the input file is JustSample.sar, the
output response file may appear as JustSample.20030423.160253.sar. The output
file is placed in the same directory where the cfg_file is located. It is recommended
to keep the response file and use it for the unconfigure operation in future.

■ cfg_file: This value can be either an XML configuration file or the name of the SAR
that includes XML configuration files.

■ (optional) help: This option displays a help screen.

The SACT scripts simplify the use of the asapConfig command.

Configuring the SACT Scripts and UNIX Environment Variables
Before you can use the SACT scripts for the first time, you must configure the
$CLASSPATH and $PATH UNIX environment variables and edit the SACT scripts so
that they include the ASAP WebLogic server host name and port number.

To configure the SACT scripts:

1. Log on to a UNIX terminal.

2. Verify that the following JAR files are located in the $CLASSPATH of your UNIX
environment:

■ xmlparserv2.jar

Note: SarPatch_configure and SarPatch_unconfigure are used by
the SACT and contain ASAP server configuration information. These
files should be distinguished from SarPatch and SarPatch_
undeployed, used by SADT. For more information about SarPatch
and SarPatch_undeploy, see ASAP Cartridge Development Guide.

Note: Oraclerecommends that you restart ASAP after adding or
changing configuration information with the SACT.

About the Service Activation Configuration Tool

Configuring ASAP Servers 2-9

■ ant.jar

■ weblogic.jar

■ asaplibcommon.jar

For example, use the echo command to verify that the JAR files are contains in the
$CLASSPATH.

echo $CLASSPATH

3. Verify that the ASAP_Home/scripts/asapConfig script and ant are in the $PATH of
you UNIX environment:

echo $PATH

4. Edit the SACT script you want to use and replace the variables indicated within
the text of the script (Dwlurl requires the WebLogic host name and port number).

For example:

errorStrLen=30
wluser=system
wlpass="`$ASAP_BASE/scripts/GetCSFPassword $wluser`"

if [["$wlpass" = *notFound*]] && [${#wlpass} -gt $errorStrLen]; then
 echo "Invalid username!"
else
 asapConfig -Dwlurl=myhost:3456 -Dwlusr=$wluser -Dwlpwd=$wlpass -DENV_ID=$ENV_
ID replace configure $1
fi

5. Remove the comments and save the script.

6. Repeat this procedure for the other SACT scripts.

Running the SACT Scripts
Use the following procedure to run sactConfig, sactUnconfig, and sactConfigNR.

1. Ensure that your ASAP WebLogic server instance is running.

2. Source the ASAP_home/Environment_Profile:

. ./Environment_Profile

3. Start ASAP if it is not already running.

start_asap_sys

4. Go to the location of the XML file you created that conforms to the
ActivationConfig.xsd schema (see "About Using the Service Activation Schema to
Write an XML File").

5. Run one of the SACT scripts (sactConfig, sactUnconfig, or sactConfigNR).

For example:

sactConfig adding_one_nep.xml

6. Stop and restart ASAP.

For example:

stop_asap_sys
start_asap_sys

Transforming ASAP Database Configurations or Service Models into XML

2-10 ASAP Server Configuration Guide

7. Verify that the changes you made took effect.

For example:

■ If you added or deleted a server, use the status command to verify that the
server was added or deleted.

■ If you added a configuration parameter, check the ASAP.cfg file to make sure
it was added.

Transforming ASAP Database Configurations or Service Models into XML
The DB to SACT XML Transformation Tool enables you to convert database entries to
an XML file that complies to the ASAP ActivationConfig schema. This tool has been
designed for ASAP users who created their server configuration using stored
procedures and want to start using XML configuration files for this purpose.

The transformation tool translates data from the following tables in the CONTROL
and SARM databases:

■ CONTROL

– tbl_appl_proc

– tbl_component

– tbl_listeners

■ SARM

– tbl_nep

– tbl_resource_pool

– tbl_host_clli

– tbl_ne_config

– tbl_clli_route

– tbl_comm_param

– tbl_asap_srp

To start the transformation tool, enterthe following command:

export_tool.sh [-m [-p ctrl_pswd]] -t config [out_xml_1 [out_xml_2]] [-h]

where:

■ -m: Modifies ASAP_Home/xml/xslt/dbinfo_*.xsl to replace connection strings
with appropriate values. If you do not specify -m, -p ctrl_pswd has no effect. You
only have to use -m the first time you use the export_tool.sh script. This
automatically updates the dbinfo_sarm.xsl and dbinfo_ctrl.xsl in the ASAP_
home/xml/xslt directory

■ -p: The control password. It obtains ASAP security information for the -m
modification.

■ ctrl_pswd: The control sever password.

Note: The DB to SACT XML Transformation Tool does not display
ASAP.cfg attributes.

Transforming ASAP Database Configurations or Service Models into XML

Configuring ASAP Servers 2-11

■ -t service or config: Identifies whether to transform service (service model) data or
ASAP configuration data (activation configuration). Service is default type

■ out_xml_1: The default is transOut1_config.xml in the current directory.

■ out_xml_2: The default is transOut2_config.xml in the current directory.

■ -h: Shows help information and then terminates.

The database information should be specified in two style sheet files, dbinfo_ctrl.xsl
and dbinfo_sarm.xsl, which are imported by the DumpDB_config.xsl style sheet.
These style sheet files are in the ASAP_home/xml/xslt directory. These two style sheets
represent the two databases: CONTROL (which contains server data) and SARM
(which contains network data).

DumpDB_config.xsl selects all entries in the listed tables and generates an internally
formatted XML document. Then, the tool applies the style sheet Formalize_config.xsl
to the raw XML file so that it conforms to the resource configuration schema.

Transforming ASAP Database Configurations or Service Models into XML

2-12 ASAP Server Configuration Guide

3

About the Control and Daemon Servers 3-1

3About the Control and Daemon Servers

This chapter provides information about the Control and Daemon servers and
configuration parameters associated with these servers.

About Control Servers and Fork Agents
The Control server is an application server that controls all other Oracle
Communications ASAP applications and manages system startup and shutdown. For
more information about starting up ASAP, see ASAP System Administrator’s Guide. In a
distributed environment, a Control server is required on every ASAP machine to start
and shut down ASAP processes. One of the Control servers must be configured as the
master.

Figure 3–1 illustrates the control and master server configuration in a distributed
ASAP environment.

Figure 3–1 Control and Master Server Configuration

About Control Servers and Fork Agents

3-2 ASAP Server Configuration Guide

ASAP consists of application processes running in the background as servers and
clients. Application processes can be configured using the Service Activation
Configuration Tool (SACT) (see "Configuring ASAP Servers"). ASAP uses each service
request processor (SRP), service activation request manager (SARM), network element
processors (NEPs), and Admin processes as an application server, and they are
configured to run as part of the system.

The Control server starts these applications by first verifying that the UNIX program
executable file for the application server is located in the ASAP_home/programs
directory and is executable. If it is executable, the Control server then instructs the fork
agent process to spawn a child process, which in turn overlays itself with the
application executable. At this point, the application process starts and the fork agent
returns details of the application back to the Control server. For more information
about configuring the fork agent, see "Fork Agent Process Generation Configuration".

In addition to providing details about the application back to the Control server, the
fork agent also helps the Control server manage alarms generated by the individual
server processes. For more information see "Control Server Alarm Generation".

The Control server monitors every client and server application in the ASAP system. If
an application terminates unexpectedly, the Control server generates the alarm for the
relevant operational community and can also attempt to restart a terminated process.
For information about alarm configurations, see the chapter about monitoring and
managing ASAP in ASAP System Administrator’s Guide. For more information about
configuring Control server monitoring and setting process restart attempts, see
"Control Server Database and File System Monitoring".

After the application processes have been identified based on your service
requirements, determine the Host machine for each process. You can use a single
machine or multiple machine configuration to run the ASAP system. Each host
machine is then assigned a Control server to control and monitor the ASAP processes
for the machine. For more information about installing ASAP on multiple machines,
see ASAP Installation Guide.

Next, assign the application processes (servers and clients) to a particular machine, a
Control server.

Table 3–1, shows an example of an ASAP system:

You may want to configure ASAP to execute one or more of its processes on a separate
or remote server. This can be done to improve performance (for example, to distribute
processing loads), or because certain downstream interfaces or networks are not
accessible from the machine where ASAP is running.

Table 3–1 Sample ASAP Configuration

ASAP Process Host Description

SARM HOST1 SARM server for the system

NEPDMS, NEPAXE,
NEP5ESS

HOST2 NEPs for the system on HOST2 where the ports
and communications devices are installed

SRPTCPIP HOST1 SRP Server that manages the TCP/IP interface
with a host system

SRPLU62 HOST1 SRP Server that manages the LU62 interface with a
host system

LU62SEND & LU62RECV HOST1 LU62 communication clients that pass data
between the Host system and SRP2. These LU62
clients must be started before SRP2 is started.

About the ASAP Daemon Server

About the Control and Daemon Servers 3-3

The server that runs the master control server is called the local machine, host or
server. The server where the remote server is running is called the remote machine,
host or server.

About the ASAP Daemon Server
The ASAP daemon makes it possible for the WebLogic server to reside on a different
machine than the one on which an ASAP instance resides. Consequently, the ASAP
daemon manages I/O operations required by Oracle WebLogic Server against a
remote ASAP instance.

The ASAP daemon handles the file I/O operation requests issued from another UNIX
user group or another machine. The ASAP daemon accommodates I/O operations
between ASAP applications that use a WebLogic server, such as the SACT, Service
Activation Deployment Tool (SADT), and Java SRP.

Specifically, the ASAP daemon supports WebLogic applications to do the following:

■ File operations against an ASAP instance, as an alternative to Java’s File class:

■ ASAP file read or write

■ ASAP file/directory state checking, such as isFile, canRead, canWrite, exists,
length, or lastModified time

■ Other ASAP file manipulations, such as delete, renameTo

■ Special commands performed on the ASAP side:

■ File copy from source to target

■ File move from source to target

■ File extract from a jar to a certain file

■ Execute a script

■ Other special commands

Figure 3–2 displays I/O operations for an ASAP instance on a UNIX file system, such
as reading and writing a file, or executing a UNIX command or ASAP script. Some
methods of accessing ASAP or the UNIX file system, such as RPCs and JDBCs, are
independent of the daemon.

Figure 3–2 ASAP Daemon Configuration

About the ASAP Daemon Server

3-4 ASAP Server Configuration Guide

4

Configuring Service Request Processors 4-1

4Configuring Service Request Processors

This chapter provides information about the C and C++ service request processors
(SRPs).

About Service Request Processor Servers
An SRP is an Oracle Communications ASAP server that controls service request
reception and translation from an upstream system and service activation notifications
from ASAP back to the upstream system.

With an SRP, you can:

■ Generate and submit work orders

■ Subscribe and manage work order events

■ Query work order information

The SRP accepts and translates native service requests (work orders) into Common
Service Description Layer (CSDL) commands. Using information from the work order,
the SRP determines the parameters that are associated with the CSDL command and
sends them to the Service Activation Request Manager (SARM) for provisioning.

About Service Request Processor Servers

4-2 ASAP Server Configuration Guide

Figure 4–1 SRP Processing Sequence

ASAP provides the following SRPs:

■ C SRP Emulator: A generic C based SRP server/client located in the ASAP_
Home/programs/srp_emul file that can submit work orders to and receive orders
from the SARM. It is used for performance benchmarking, system testing, and the
prototyping of new SRPs. See "Configuring a C SRP Emulator" for more
information.

■ C ++ Csol SRP Emulator: A sample C++ based SRP client located in the ASAP_
Home/programs/csolsrp_emul file that can submit work orders to the SARM. Used
to support C and C++ object-oriented technologies. See "Configuring the C++ Csol
SRP Emulator" for more information.

ASAP provides the following two SRP APIs:

■ C SRP API: Used to support C-based SRPs.

■ C++ SRP API: Used to create C++ object-oriented-based SRPs. For more
information about the C++ API, see "Using the C++ SRP API".

SRP Translation of Native SRP Work Orders to ASAP Work Orders
Generally, a work order or service request in its native format has one or more service
elements. Each element identifies a service to be provisioned and an associated action
such as add, remove, change, query, and so on.

Configuring a C SRP Emulator

Configuring Service Request Processors 4-3

Possible service elements include the following:

■ Universal Service Order Code (USOC), which is used by many telephone
companies.

■ Service Offering (SOFF)

The SRP receives a work order or service request (SRP work order) from the
originating system in its native format. It locates the service identifiers and associated
data actions specified in the order, and then constructs the following SRP work order
components:

■ Native SRP work order header information, which can include details particular to
the originating system that may or may not be required in the provisioning
process.

■ SRP work order parameters that are global to all services on the work order. For
example, the main directory number (DN) or line equipment number (EN/LEN)
may be specified here.

■ One or more SRP work order service elements and associated parameters. Such
service element specific parameters may override the Global SRP work order
parameters on that particular service element.

The SRP determines these service elements and parameters in an SRP-specific manner
that is highly coupled to the order originating system.

This SRP work order format may not model the service request format of particular
customers. For example, some service requests model the services under the
individual line, which adds an additional level to this SRP work order.

ASAP can contain several SRPs that are receiving work orders and service requests in
different native formats. Each SRP performs custom translations for each work order
or service request source to produce the same sets of CSDL commands and parameters
representing the provisioning activity to be performed.

Each SRP must translate the same provisioning request received from different
sources, such as work orders or service requests, into the same set of CSDL commands
and parameters. This allows the SRP to insulate the rest of ASAP from the details of
external systems.

Configuring a C SRP Emulator
You can configure C-based SRP emulator using the Service Activation Configuration
Tool (SACT) or using stored procedures (see "Stored Procedures (Deprecated)"). This
section describes the SRP configuration steps using the SACT.

The C SRP emulator makes use of the SRP, Interpreter, Server Application, and
Common API libraries. SRP configuration information is located in static tables in the
ASAP Control server database and the SARM database.

You can start the C SRP emulator using the start_asap_sys command. For more
information see ASAP System Administrator’s Guide.

Note: This section refers to an SRP that translates work orders into
formats that the SRP can process using custom C or C++ scripts. The
ASAP Service Request Translator (SRT) provides this functionality for
XML messages and passes the information to the JSRP. For more
information about SRT, see ASAP Service Request Translator User's
Guide. SRT cannot be used with a C SRP or a C++ SRP.

Configuring a C SRP Emulator

4-4 ASAP Server Configuration Guide

Adding a C SRP Emulator
To add an C SRP emulator to the system:

1. Export the current database using export_tool.sh (see "Transforming ASAP
Database Configurations or Service Models into XML").

For example:

export_tool.sh -m -p abc -t config

2. Open the transOut2_config.xml file using a text editor.

For example:

gedit transOut2_config.xml

3. Remove all elements except for the existing SRP.

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<genericServer name="SRP_envid" xsi:type="SRPServerType">
 <description>SRP Emulator Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>SRP_envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.system.com</hostname>
 </interfaceHostname>
 <interfacePort>40012</interfacePort>
 <protocol>OPEN_SERVER</protocol>
 <program>srp_emul</program>
 <serverType>SRP</serverType>
 <SRPListenPort>40012</SRPListenPort>
</genericServer>

</activationConfig>

where envid is the environment ID for your ASAP instance.

4. Modify the SRP element with new values where required.

For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<genericServer name="SRP_2envid" xsi:type="SRPServerType">
 <description>SRP Emulator Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>SRP_2envid.diag</diagnosticFilename>

Configuring a C SRP Emulator

Configuring Service Request Processors 4-5

 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.system.com</hostname>
 </interfaceHostname>
 <interfacePort>40052</interfacePort>
 <protocol>OPEN_SERVER</protocol>
 <program>srp_emul</program>
 <serverType>SRP</serverType>
 <SRPListenPort>40052</SRPListenPort>
</genericServer>

</activationConfig>

5. Add configuration parameters for the SRP element where required (see "SRP API
Parameters"). For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<genericServer name="SRP_2envid" xsi:type="SRPServerType">
 <description>SRP Emulator Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>SRP_2envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.system.com</hostname>
 </interfaceHostname>
 <interfacePort>40052</interfacePort>
 <protocol>OPEN_SERVER</protocol>
 <program>srp_emul</program>
 <serverType>SRP</serverType>
 <SRPListenPort>40052</SRPListenPort>
</genericServer>

</activationConfig>

6. Save the file.

7. Update the file using sactConfig as described in "Running the SACT Scripts".

Deleting a C SRP Emulator
To delete a C SRP emulator:

1. Export the current database using export_tool.sh (see "Transforming ASAP
Database Configurations or Service Models into XML").

For example:

export_tool.sh -m -p abc -t config

2. Open the transOut2_config.xml file using a text editor.

Configuring a C SRP Emulator

4-6 ASAP Server Configuration Guide

For example:

gedit transOut2_config.xml

3. Remove all elements except for the SRP you want to delete.

For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<genericServer name="SRP_envid" xsi:type="SRPServerType">
 <description>SRP Emulator Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>SRP_envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.system.com</hostname>
 </interfaceHostname>
 <interfacePort>40012</interfacePort>
 <protocol>OPEN_SERVER</protocol>
 <program>srp_emul</program>
 <serverType>SRP</serverType>
 <SRPListenPort>40012</SRPListenPort>
</genericServer>

</activationConfig>

where envid is the environment ID for your ASAP instance.

4. Save the file.

5. Update the file using sactUnconfig as described in "Running the SACT Scripts".

Adding Configuration Parameters to a C SRP Emulator
To add configuration parameters to a C SRP emulator:

1. Export the current database using the export_tool.sh (see "Transforming ASAP
Database Configurations or Service Models into XML").

For example:

export_tool.sh -m -p abc -t config

2. Open the transOut2_config.xml file using a text editor.

For example:

gedit transOut2_config.xml

3. Remove all elements except for the SRP you want to add configuration parameters
to. For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Configuring a C SRP Emulator

Configuring Service Request Processors 4-7

xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<genericServer name="SRP_envid" xsi:type="SRPServerType">
 <description>SRP Emulator Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>SRP_envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.system.com</hostname>
 </interfaceHostname>
 <interfacePort>40012</interfacePort>
 <protocol>OPEN_SERVER</protocol>
 <program>srp_emul</program>
 <serverType>SRP</serverType>
 <SRPListenPort>40012</SRPListenPort>
</genericServer>

</activationConfig>

where envid is the environment ID for your ASAP instance.

4. Add the configuration parameters. For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<genericServer name="SRP_envid" xsi:type="SRPServerType">
 <description>SRP Emulator Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>SRP_envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <configurationParameters>
 <configurationParameter xsi:type="WO_MGR_DELAY">
 <value>5</value>
 </configurationParameter>
 </configurationParameters>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.system.com</hostname>
 </interfaceHostname>
 <interfacePort>40012</interfacePort>
 <protocol>OPEN_SERVER</protocol>
 <program>srp_emul</program>
 <serverType>SRP</serverType>
 <SRPListenPort>40012</SRPListenPort>
</genericServer>

</activationConfig>

5. Save the file.

Configuring the C++ Csol SRP Emulator

4-8 ASAP Server Configuration Guide

6. Update the file using sactConfigNR as described in "Running the SACT Scripts".

Configuring the C++ Csol SRP Emulator
The C++ Csol SRP emulator is a standalone program designed to use the C++ SRP
libraries to create and submit work orders to the SARM. The emulators retrieve work
order information and receive events from the SARM. The events are collected from
the SARM and are logged to the SRP database and the diagnostic file.

The C++ SRP emulators use the C++ SRP libraries.

For the SARM to communicate with the C++ SRP emulator, you must configure the
emulator in tbl_asap_srp in the SARM database. Enter the following information:

■ Set the srp_conn_type field to O so that the SARM can make Open Client
connections to the emulator.

■ Set the srp_host_name field to the name of the UNIX host that the emulator is
running on.

■ Set the srp_host_port field to the socket port number that the emulator and SARM
can communicate with.

For more information, see "tbl_asap_srp" in ASAP Developer’s Guide.

Starting the C++ Csol SRP Emulator
To start the C++ Csol SRP emulator:

1. Source the ASAP_home/Environment_Profile:

. ./Environment_Profile

2. Start ASAP if it is not already running.

start_asap_sys

3. Enter the following command:

csolsrp_emul svr_name ctrl_password -c ctrl_svr_name -l diag_level [-f diag_file]

where:

■ svr_name: The name of the SRP server.

■ ctrl_password: The control server password.

■ ctrl_svr_name: The name of the control server.

■ diag_level: The diagnostics level. For more information on diagnostic levels, see
ASAP System Administrator’s Guide.

■ diag_file: The name of the diagnostics file.

For example:

csolsrp_emul $SRP abc -c $CTRL -l KERN -f CSOL

Using the C++ SRP API
The C++ SRP API provides you with an interface with the SARM. It allows C++ SRPs
to generate, manipulate, and submit ASAP work orders, handle events, and access
SARM databases in a multi threaded environment.

Using the C++ SRP API

Configuring Service Request Processors 4-9

The C++ SRP receives requests from external systems and translates them into ASAP
work orders using the C++ SRP API. The C++ SRP submits the work orders to the
SARM. The SARM sends a confirmation to the C++ SRP for each work order it receives
and then generates events and forwards them to the C++ SRP to identify the progress
of the work order.

The C++ SRP uses native threads to support symmetric multiprocessing and to
provide maximum scalability of ASAP across multiple CPUs.

■ ASAP libraries:

■ Common Object-Oriented Library (liboo_asc) – Provides common utilities and
database access

■ Thread Framework Library (libthreadfw) – Provides the underlying thread
framework

■ Third party libraries:

■ Open Client (Sybase)

For information on ASAP libraries, see the ASAP Developer’s Guide.

After the work order is created, you can submit it to ASAP through the C++ SRP. The
C++ SRP provides interfaces for you to process events and access ASAP orders. It also
insulates the user from most exceptional condition handling.

Using the C++ SRP API

4-10 ASAP Server Configuration Guide

5

Configuring Java Service Request Processors and Web Services 5-1

5Configuring Java Service Request Processors
and Web Services

This chapter describes the Java service request processor (JSRP) and a Web Service
interface to the JSRP.

About Java Service Request Processor Servers
A JSRP is an Oracle Communications ASAP server that controls service request
reception and translation from an upstream system and service activation notifications
from ASAP back to the upstream system.

With an JSRP you can:

■ Generate and submit work orders

■ Subscribe and manage work order events

■ Query work order information

The JSRP accepts and translates native service requests (work orders) into Common
Service Description Layer (CSDL) commands. Using information from the work order,
the SRP determines the parameters that are associated with the CSDL command and
sends them to the Service Activation Request Manager (SARM) for provisioning.

You can implement the following types of JSRPs, depending on the upstream
technology being employed.

■ JSRP and Web Service: Provides a standardized OSS through Java interface and
Web Service interface into ASAP’s provisioning functionality within a WebLogic
server instance.

For more information about the JSRP and Web Service, see "About JSRP, Web
Service, and OCA SRP Components".

■ Custom Java SRP: You can create a custom JSRP not based on a WebLogic server
instance using the information provided in ASAP Java Online Reference. For more
information about configuring a custom JSRP, see "Configuring a Custom Java SRP
client".

■ OCA SRP: Used internally by the ASAP Order Control Application (OCA) client.
OCA SRP co-exists with Java SRP in WebLogic and shares some of the Java-based
APIs used in JSRP.

For more information on the OCA SRP, see "Configuring a OCA SRP".

About JSRP, Web Service, and OCA SRP Components

5-2 ASAP Server Configuration Guide

About JSRP, Web Service, and OCA SRP Components
The JSRP is an upstream component into ASAP that provides a standardized OSS
through Java (OSSJ) interface into the ASAP provisioning functionality and also a Web
Services API implementation.

Figure 5–1 displays a system-level view of the JSRP. The JSRP receives requests from
an upstream system, potentially an order manager: for example, Oracle
Communications Order and Service Management (OSM) or a customer care system.
Requests are translated into ASAP commands, which are then submitted to the SARM
for processing.

Figure 5–1 JSRP, System Level View

The JSRP provides two types of interfaces: XML over JMS and Java value types (JVT)
over RMI/IIOP. The JSRP is fully compliant with the OSSJ Service Activation API
version 1.0.

In addition to the JSRP, Web Service provides an interface for SOAP/JMS messages.
The Web Service implementation translates these SOAP/JMS messages into JVT work
orders and sends them to the JSRP’s JVT interface.

For more information about these interfaces, see "About the JSRP Server and Web
Service Interfaces".

About JSRP, Web Service, and OCA SRP Components

Configuring Java Service Request Processors and Web Services 5-3

The JSRP and Web Service implementation are situated between the SARM and clients
designed to send messages to either Web Service, JVT, or JMS interfaces. These clients
are located on a remote application, such as OSM.

Oracle recommends that you create a Store and Forward (SAF) agent for requests and
responses to and from the JMS or Web Service interfaces and the JMS or Web Service
clients and a JMS bridge for work order state changes from ASAP to the JMS or Web
Service clients. For more information about SAF and the JMS bridge, see "About
Connecting JSRP JMS and Web Service Interfaces to a Remote Application".

The JVT interface does not require SAF or the JMS bridge.

The following list summarizes the components required for the two JSRP interfaces
and the Web Service interface to a remote application (for example, OSM):

■ JSRP JMS Interface to and from SAF and JMS Bridge to and from JSRP JMS Client
(OSM)

■ ASAP Web Service interface to and from SAF and JMS Bridge to and from JSRP
Web Service Client (OSM)

■ JSRP JVT Interface (RMI) to and from JSRP JVT Client (OSM)

For more information about creating a JVT or JMS Client, see the discussion about
developing Java SRP client applications in ASAP Java Online Reference available from
the Oracle software delivery Web site along with the ASAP installation files. ASAP Java
Online Reference also provides a Java library for the JVT interface and lists the XML
schemas used for constructing XML-based work order messages.

For more information about the Web Service API and the Web Services Description
Language (WSDL) file, see ASAP Developer’s Guide.

For information about sample JVT and JMS clients and source files that you can use to
test the Java SRP, go to ASAP_Home/samples/jsrp/README.txt.

The JMS, JVT, and Web Services JMS modules, connection pools, and JDBC stores are
automatically configured when you install ASAP. For information about these
components, see "About the JSRP Server and Web Service Interfaces".

The configuration of the Java SRP deployment descriptors are automatically
completed when you install ASAP. If you must fine-tune the deployment descriptor
attributes of the Java SRP, see "Modifying JSRP Parameters (Deployment Descriptors)
in WebLogic".

The implementation of the Java SRP and Web Services API does not affect any
provisioning logic in the existing ASAP product. Support for OSSJ and Web Services is
implemented as translations to and from existing types and structures in ASAP, to
OSSJ and Web Services conferment types and structures.

As with the other types of SRPs, the Java SRP and Web Services API allows the client
to generate and submit work orders, manage work order events, and retrieve work
order information.

About the JSRP Server and Web Service Interfaces
The configuration of the WebLogic Server involves defining server resources such as
connection pools, JDBC stores, and JMS modules such as connection factories, queues,

Note: The implementation of the Java SRP and Web Services API
does not affect any provisioning logic in the existing product and is
consistent with other upstream interfaces (C++ SRP, OCA SRP).

About JSRP, Web Service, and OCA SRP Components

5-4 ASAP Server Configuration Guide

and topics that are required for the Java SRP and the Web Services implementation.
When you install ASAP, the Java SRP and Web Service configuration are automatically
created. You can verify the Java SRP and Web Service configuration using the
WebLogic management console.

Table 5–1 lists and describes the JMS modules used by the JSRP interfaces and Web
Service.

About Connecting JSRP JMS and Web Service Interfaces to a Remote Application
Oracle recommends that you create a SAF agent and JMS bridge between the ASAP
WebLogic server and the remote application WebLogic server. Oracle recommends this
SAF agent and JMS bridge for the JMS or Web Service interfaces to ensure reliable
communication.

Table 5–1 Java SRP, OCA SRP, and Web Services JMS Modules

JMS Module Name Description

CMWSAdapterQueue The publisher to the CMSW queue is Design Studio. It publishes
ASAP Cartridges. The subscriber to this queue is the CMSW
Adapter located in WebLogic.

ErrorQueue The publisher for the ErrorQueue is WebLogic. If any error
happens within any WebLogic queue, this message is published
to the ErrorQueue. This is an internal WebLogic queue and does
not effect ASAP components. For more information about this
queue, see the WebLogic Server documentation.

JVTEventTopic The publisher for the JVTEventTopic is the JSRP. Work order
events get published to this topic. Subscribers are JSRP and Web
Service clients that wish to receive notification of JSPR Events
published to the JVTEventTopic in the form of Java object
responses.

MessageQueue The JSRP client (for example OSM) publishes JMS requests to
this queue in the form or JSRP work orders. The subscriber to
this queue is the JSRP server.

OCAEventTopic The publisher for the OCAEventTopic is the OCA SRP. Work
order events get published to this topic. Subscribers are OCA
clients that wish to receive notification of OCA events published
to the OCAEventTopic in the form of Java object responses.

OCAMessageQueue The OCA client publishes JMS requests to this queue in the form
or OCA work orders. The subscriber to this queue is the OCAJ
server.

TopicConnectionFactory The JSRP server, and OCA server uses this
TopicConnectionFactory to create a topic publisher that sends
ASAP events to XVTEventTopic, JVTEventTopic, and
OCAEventTopic.

WebServiceQueue The Web Services client (for example OSM) publishes SOAP
requests to this queue in the form or Web Service work orders.
The subscriber to this queue is the Web Services server. It
decomposes the SOAP Work order, creates a JVT work order,
and submits the work order via the JSRP RMI interface. This
interface is shared with JVT.

XVTEventTopic The publisher for the XVTEventTopic is the JSRP. Work order
events get published to this topic. Subscribers are JSRP clients
that wish to receive notification of JSPR Events published to the
XVTEventTopic in the form of xml responses.

About JSRP, Web Service, and OCA SRP Components

Configuring Java Service Request Processors and Web Services 5-5

Figure 5–2 illustrates an example SAF and JMS bridge configuration between the Web
Service interface on ASAP and a Web Service client on a remote application, in this
case, OSM.

Figure 5–2 SAF and JMS Bridge Between OSM and ASAP

In this example, an OSM SAF agent sends requests to the ASAP request queue, and
ASAP returns responses through the ASAP SAF agent to the OSM reply-to queue. In
addition, ASAP sends work order state changes from the JSRP XVTEventTopic
through a JMS bridge with a SAF agent to the OSM event queue.

For detailed instructions for creating SAF and JMS bridges between ASAP and OSM,
see Configuring WebLogic Resources for OSM Integration With ASAP And UIM On
Different Domains (Doc ID 1431235.1) knowledge article in Oracle Support,
https://support.oracle.com. This article is applicable to any remote application that
uses a WebLogic JMS server to send and receive Web Service or JMS messages.

Modifying JSRP Parameters (Deployment Descriptors) in WebLogic
This section provides information about how to modify JSRP parameters or
deployment descriptors in WebLogic Server. You can update the JSRP parameters
described in Table 5–2 by using WebLogic Workshop (Eclipse component) or by
editing the ejb-jar.xml file manually.

About JSRP, Web Service, and OCA SRP Components

5-6 ASAP Server Configuration Guide

To edit the JSRP parameter file manually:

1. Go to WebLogic_domain/servers/WebLogic_server/upload/asapENV_ID/app (where
the WebLogic_domain is the installation directory for your WebLogic Server
domain, WebLogic_server is the name of your WebLogic Server domain, and ENV_
ID is the ASAP environment ID.

2. Do the following:

jar xvf asapENV_ID.ear srp.jar
jar xvf srp.jar META-INF/ejb-jar.xml

3. Edit ejb-jar.xml to modify JSRP parameters. For example:

 <env-entry>
 <env-entry-name>APPLICATION_DN</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

Table 5–2 JSRP Configuration Parameters (Deployment Descriptors)

Parameter Name Type Description

SERVICE_TYPE java.lang.
String

Do not change this parameter.

This parameter differentiates between JSRP and OCA instances,
and can be either JSRP or OCA.

UnidFormat java.lang.
String

This parameter defines the work order (WO) format template. If
the JSRP does not provide the WO_ID, the WO_ID is generated
based on the format template.

APPLICATION_DN java.lang.
String

Do not change this parameter.

OCA_ATTEMPTS java.lang.
Integer

This parameter configures the number of times that the OCA
Server tries to submit a WO to SARM.

VALIDATION_ENABLED java.lang.
Boolean

This parameter, when enabled, validates the JSRP WO requests
against the XML Schema. Enabling this attribute can provide
additional security. For more information, see "Configuring
Validation of Received Data".

BACKWARD_COMPATIBLE_
SCHEMA

java.lang.
Boolean

This flag indicates whether the schema is backward compatible
with the previous format.

INCLUDE_SERVICE_ACTION_
DETAIL

java.lang.
Boolean

Includes service action details in events.

USE_ORIGINAL_INSTANCE_
NUMBER

java.lang.
Boolean

This indicate in even if set to true, then the JSRP uses the original
instance number from the primaryKey and type contained in a
message received from the Service Request Translator (SRT).

if (useOriginalServiceInstanceNumbers()) {
 typeElement.appendChild(pKeyText);
 idElement.appendChild(typeText);
} else {
 typeElement.appendChild(typeText);
 idElement.appendChild(pKeyText);
}

NO_LISTENING_THREAD java.lang.
Boolean

Disables the SARM listening port for the JSRP. Set this parameter
to false.

NO_WAIT_START_ORDER java.lang.
Boolean

Disables the JSRP functionality that waits for a start order
messages from the SARM. Set this parameter to false.

ASCII_VALIDATION_
ENABLED

java.lang.
Boolean

This parameter, when enabled, validates that the work order ID
(primary key) in JSRP WO creation requests contain printable
ASCII characters (0x20 - 0x7E). The default value is 'false'.

About JSRP, Web Service, and OCA SRP Components

Configuring Java Service Request Processors and Web Services 5-7

<env-entry-value>System/dc2/ApplicationType/ServiceActivation/Application/1-0;7
-2;ASAP/Comp/</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SRP</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>JSRPdc2</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SRP_BACKWARD_COMPATIBLE</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>true</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>DEFAULT_JMS_REPLY_TO</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>System/dc2/ApplicationType/ServiceActivation/Application/1-0;7
-2;ASAP/Comp/XVTEventTopic</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>VALIDATION_ENABLED</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>false</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>BACKWARD_COMPATIBLE_SCHEMA</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>false</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>INCLUDE_SERVICE_ACTION_DETAIL</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>false</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>USE_ORIGINAL_INSTANCE_NUMBER</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>false</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>NO_LISTENING_THREAD</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <!-- changed to false to activate ASAP behavour -->
 <env-entry-value>false</env-entry-value>
 </env-entry>
 ...

4. Do the following:

jar uvf srp.jar META-INF/ejb-jar.xml
jar uvf asapENV_ID.ear srp.jar

5. Redeploy the asapENV_ID.ear file.

Configuring Validation of Received Data
You can configure the JSRP to validate any ASAP RPC parameters of "char" type if
VALIDATION_ENABLED in the JSRP deployment descriptor is set to "true". If the

Configuring a Custom Java SRP client

5-8 ASAP Server Configuration Guide

maximum lengths are exceeded, the JSRP throws an exception. For example, in the
XML/JMS interface, if specifying
<mslv-sa:organizationUnit>POTS12345678</mslv-sa:organizationUnit> in
createOrderByValueRequest (which exceeds the maximum length), the following
exception is thrown:

<sa:createOrderByValueException
xmlns:co="http://java.sun.com/products/oss/xml/Common"
xmlns:mslv-sa="http://www.metasolv.com/oss/ServiceActivation/2003"
xmlns:sa="http://java.sun.com/products/oss/xml/ServiceActivation"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<sa:illegalAttributeValueException>
<co:message>String attribute value[POTS12345678] exceeding its maximum
length[8]</co:message>
</sa:illegalAttributeValueException>
</sa:createOrderByValueException>

Exceptions also will be thrown in the JVT interface.

Setting Log Levels
You can configure the Java SRP to filter log messages that are being written into the
WebLogic log file by changing the level of message severity.

There are three levels of severity for the Java SRP:

■ info

■ warning

■ error

By default, the asapSeverityLevel is error.

See ASAP System Administrator’s Guide for details on configuring the logging levels.

Uninstalling the Java SRP
For more information on uninstalling the Java SRP, see the procedure for uninstalling
WebLogic in ASAP Installation Guide.

Configuring a Custom Java SRP client
You can use the Control server to manage (start, stop, auto-restart) a custom JSRP
client that is not based in a WebLogic server like any other ASAP component. Perform
the following steps to configure a Java SRP Client.

1. Write a custom Java SRP client by extending the ASCAppl class (see the sample
code below).

2. Implement applMain() method, which is the main function of the Java SRP client
(see "Sample Code for a Custom JSRP Client").

3. Implement the initialize() method instead of providing a specialized constructor,
if necessary (see "Sample Code for a Custom JSRP Client").

4. Using SACT, populate the Control database and ASAP Environment (tbl_appl_
proc and tbl_component) for the new Java SRP client.

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Configuring a Custom Java SRP client

Configuring Java Service Request Processors and Web Services 5-9

xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<nonControlManagedServer name="JSRPenvid" xsi:type="JSRPServerType">
 <description>Java SRP</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>JSRPenvid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <SARMListenPort>40070</SARMListenPort>
 <SRPListenHostname>
 <IPaddress>10.156.53.74</IPaddress>
 </SRPListenHostname>
 <SRPListenPort>40077</SRPListenPort>
</nonControlManagedServer>

</activationConfig>

5. Write the script to run the Java SRP client (see "Sample Script to Run the Custom
JSRP Client").

Sample Code for a Custom JSRP Client
package com.metasolv.activation;

import java.util.*;
import java.io.*;
import java.sql.SQLException;
import java.text.*;
import com.mslv.activation.server.*;

public class SampleJSrpClient extends ASCAppl
{
 public void initialize()
 {
 super.initialize();
 // Do additional initialization
……..
 }

..

.

 public void applMain()
 {
 for(;;) {
 try {
 // Do actual process for JSRP client
………………
 } catch(Exception ex) {
 }
 }
 }

}

Configuring a OCA SRP

5-10 ASAP Server Configuration Guide

Sample Script to Run the Custom JSRP Client
#!/bin/ksh

#
=-
#
(c) 2008 Oracle.
The CLASSPATH variable is used by the primordial class loader in the java
virtual

Configuring a OCA SRP
The OCA SRP is similar to Java SRP and resides in WebLogic. The OCA SRP shares
some of the Java-based APIs used in JSRP. The OCA system includes a GUI based
client for configuring the OCA SRP and integrates the work order related main
functionality in this single program.

 Setting OCA SRP Configuration Parameters
In addition to the parameters contained in the previous table, the following
parameters in ASAP_Home/config/OCA.cfg were used by the deprecated CORBA SRP
emulator. Now, they are required by the new OCA SRP.

Table 5–3 describes the configuration parameters that must be set in the ASAP_
Home/config/OCA.cfg configuration file. For more information about configuring the
OCA client, see ASAP Order Control Application User's Guide.

Table 5–3 Session Configuration Parameters

Configuration
Variable Required Default Value Description

HOST Yes localhost Name of host machine where WebLogic is
installed. The session associated OCA SRP
server is running as an application of this
WebLogic.

PORT No 2345 Port number on which WebLogic is listening.
The session associated OCA SRP server is
running as an application of this WebLogic.

SSL_PORT Yes 7002 SSL Port number on which WebLogic is
listening. The session associated OCA SRP
server is running as an application of this
WebLogic.

Note: Only one of SSL_PORT or PORT is
required in the OCA.cfg. Oracle recommends
using SSL_PORT so that communication
between OCA and the server is encrypted.
When both SSL_PORT and PORT are
specified, the OCA Thick Client connects to
WebLogic using the specified SSL port and
ignores the non-SSL port. For special cases
(e.g. in test environment) where you might
want to use the non-SSL port, you can remove
the SSL_PORT setting.

ENV_ID Yes S123 Environment ID of ASAP instance. The session
associated OCA SRP server is a component of
this ASAP system.

Configuring a OCA SRP

Configuring Java Service Request Processors and Web Services 5-11

SYSTEM_
NAME

Yes OCA_S123 Name of the OCA Server to which the OCA
client connects. Used to support multiple
ASAP systems from a single client.

Table 5–4 Global Configuration Parameters

Configuration
Variable Required

Default
Value Description

SYSTEM_
NAME

Yes OCA_S255 Name of the ASAP system to which the OCA
client connects. Used to support multiple
ASAP systems from a single client.

LANGCODE No USA Language code for the language in which
translatable information is returned to and
displayed by the client. If applied, all
translatable fields are shown in the OCA client
native language, as specified by the
LANGUAGE variable. A language other than
the default language (USA) must be configured
in ASAP.

IDLETIMEOUT No 0 Maximum idle time, in minutes, after which
the OCA SRP server terminates the OCA client
connection. Set to zero (0) to disable this
feature.

DATE_
FORMAT

- - dd/MM/yyyy or MM/dd/yyyy

TIME_
FORMAT

- - AM_PM (12-hour clock with an AM or PM
designation) or NON_AM_PM (a 24-hour
clock).

OCA_EVENTS_
SUPPORTED

Yes True The flag should be false when connecting to
servers on the HP10.20 platform. Events are not
supported for this platform.

MAXW_OPEN_
DETAILS

No 3 The number of detail windows a user can have
open at one time.

Table 5–3 (Cont.) Session Configuration Parameters

Configuration
Variable Required Default Value Description

Configuring a OCA SRP

5-12 ASAP Server Configuration Guide

6

Managing the Service Activation Request Manager 6-1

6Managing the Service Activation Request
Manager

This chapter describes the Service Request Activation Manager (SARM).

About Managing Service Activation Request Manager Servers
The SARM performs the following tasks:

■ Determines and coordinates requests between the various Service Request
Processor (SRPs) and Network Element Processors (NEPs) in the ASAP system.
(SRP)

■ Manages connections to network elements (NEs)

■ Manages work order priority and load balancing to NEs

■ Translates Common Service Description Layer (CSDLs) received from the SRP, into
Atomic Service Description Layer (ASDL) commands that it sends to the NEP

■ Determines routing for each ASDL and transmits it to the correct NEP

■ Determines any ASDL spawning or conditional logic

■ Publishes work order events back to the originating SRPs

■ Stores ASDL to Action processor to Java or State Table command implementation
configuration

■ Initiates work order rollback

■ Processes work order data in the order in which they are defined in the service
definition (cartridge)

■ CSDL Level within a word order, used to rearrange the order in which CSDLs are
processed

The SARM manages all of these tasks based on the configuration data contained in an
ASAP cartridge. These cartridges define required work order parameters, that the SRP
turns into a CSDL command and sends to the SARM. The SARM processes the CSDL
based on the information contained in the cartridge.

SARM to SRP Event Notification
The SARM to SRP functional interface consists of work order event notifications
transmitted by the SARM to the SRP as the work order is being provisioned. When it
receives these notification events, the SRP processes each event in the manner

SARM to SRP Event Notification

6-2 ASAP Server Configuration Guide

appropriate to the SRP for that particular event. The SRP can choose to ignore some of
these event notifications.

SRP Work Order Event Management
As the SRP transmits the ASAP work order to the SARM for provisioning, the SARM
returns several notification events to the SRP related to the provisioning activity. The
SRP passes these events to the originating system in the native format of that system.
This provides the originating system with extensive feedback about the order
provisioning progress.

In addition to the notification events that the SRP passes back to the originating
system, the SRP also transmits the following SRP originated events:

■ SRP WO Acknowledgement Event – Acknowledges the successful receipt of the
work order.

■ SRP WO Translation Error Event – Signifies that the SRP was unable to translate
the SRP work order successfully. In most cases, the work order is transmitted to
the SARM with a Translation Error status, and then the SARM holds it and waits
for manual intervention.

■ SRP WO Rejection Event – Notifies the originating system that either the SRP or
the SARM rejected this copy of the work order. The causes of this event vary from
customer to customer, but it generally results from an attempt to update an
existing order in ASAP when it is either In-Progress or Completed.

The SRP, which is generally under your control, can define additional events back to
the originating system. However, you can set up the system to exclude certain
SARM-originated events from being transmitted back to the originating system.

Using this data structure, the SRP performs a translation from the native SRP work
order format to the ASAP work order format. Figure 6–1 describes this translation.

Figure 6–1 SRP Work Order Translation

NEP to SARM Event Notifications

Managing the Service Activation Request Manager 6-3

The various ASAP work order components created by this process are outlined in the
following section.

NEP to SARM Event Notifications
The SARM’s main function regarding NE queue management is the maintenance of
NE status information. The SARM maintains status information for each NE in ASAP.
This information includes:

■ The technology and software load.

■ The current NE State (Down, Connecting, Available, Maintenance, Port Failure).

■ The average processing time for an ASDL to an NE.

■ The number of connections available to an NE.

■ The number of pending ASDL requests to an NE (in the Pending queue).

■ The number of ASDL requests currently in progress (in the In Progress queue).

■ The number of ASDL requests waiting to be retried to an NE (in the Retry queue).

This information is available in real-time from the SARM and SARM database through
an internal NE monitor table that reflects the present state of all NEs in the system.

For information on viewing the monitor table, see Appendix A, "asap_utils.".

Table 6–1 shows the notifications that the NEP sends to the SARM.

Table 6–1 NE Notifications

Notification Description

NE Available The NEP transmits this notification to inform the SARM that a
particular NE is available. This prompts the SARM to begin
transmitting ASDLs to the NEP.

Auxiliary Connection
Failure

The NEP notifies the SARM that the auxiliary connection request
could not be completed.

NE Port Failure The NEP transmits this notification to the SARM to inform it that the
connections to a particular NE are down. This can happen at any
point during the provisioning process. The SARM marks its internal
NE status as Port Failure, and then moves the ASDL commands from
the In Progress queue to the Pending queue. The NEP periodically
attempts to re-establish the primary connection to the NE.

Device Error The NEP sends this notification to the SARM when a particular
connection to the NE is down.

The SARM moves the ASDL command that was being provisioned
on that port from the In Progress queue to the Pending queue. If no
other connection is available to the NE, the SARM marks its internal
NE status as ‘NE Unavailable Due to Port Failure’, and then moves
the ASDL commands from the In Progress queue to the Pending
queue. The NEP periodically tries to reestablish the primary
connection to the NE.

NEP to SARM Event Notifications

6-4 ASAP Server Configuration Guide

When the SARM receives one of the above notifications from the NEP, it sets the NE
status before moving all ASDLs from the In Progress queue to the Pending queue for
that NE.

Returned Parameter Types and Formats
The NEP generates various parameters in conjunction with the State Table Interpreter
or the JInterpreter, and transmits them back to the SARM.

The SARM can receive the following types of parameters from an NEP:

■ Information Parameters – Generated by the NEP State Tables or the Java methods
and returned to the SARM when the ASDLs or the methods complete. These are
the only parameters that the SRP can retrieve from the SARM. Information
parameters usually contain data requested by the originating system.

■ Global Parameters – Generated by the NEP State Tables or the Java methods and
returned to the SARM when the ASDLs or the methods complete. These
parameters are used to maintain context between different Common Service
Description Layer (CSDL) commands on the same work order.

■ CSDL (Local) Parameters – Created by the NEP State Tables or the JInterpreter
provisioning methods while processing ASDLs and returned to the SARM upon
ASDL or method completion. CSDL parameters maintain context between
different ASDLs on the same CSDL.

■ ASDL Rollback Parameters – Generated by the NEP State Tables or the
JInterpreter as the ASDL command is processed. These parameters maintain any
information required in the rollback operation of a particular ASDL.

When the ASDL completes, the SARM automatically adds all ASDL parameters
from the forward provisioning leg to the list of Rollback parameters. If rollback is
required on this ASDL, the SARM transmits the rollback ASDL command to the
NEP with these rollback parameters.

For more information about these parameters, see the ASAP Cartridge Development
Guide.

NE Maintenance
Mode

Upon receipt of this notification, the SARM sets its internal NE status
to Maintenance and queues all ASDL requests to the NE in the
Pending queue. The NEP periodically tries to establish a connection
to the NE. Once the NEP reestablishes this connection, it transmits an
NE Available notification to the SARM which triggers the SARM to
resume provisioning ASDLs to the NE.

If no other connection is available to the NE when the SARM
receives Maintenance Mode notification, it sets the internal status of
the NE to Maintenance and queues all ASDL requests to that NE in
the Pending queue. Once the NEP re-establishes the connection to
the NE, it transmits an NE Available notification to the SARM, which
prompts the SARM to resume provisioning ASDLs to that NE.

Table 6–1 (Cont.) NE Notifications

Notification Description

7

Configuring Network Element Processors, Resource Pools, and Devices 7-1

7Configuring Network Element Processors,
Resource Pools, and Devices

This chapter provides information about configuring network element processors
(NEPs), resource pools, and devices.

About Configuring Network Element Processors
The NEP is the ASAP component that manages all interaction with network elements
(NEs) and Element Management Systems (EMSs). The NEP receives Atomic Service
Description Layer (ASDL) requests from the Service Activation Request Manager
(SARM) and determines the State Table scripts or Java scripts that are required to
execute a dialog with the NE. It returns responses and the provisioning status from the
NE to the SARM.

To manage a large number of NEs, multiple NEPs can be deployed.

A single NEP communicates with NEs through two types of interpreters: C-based and
Java-based. C-based interpreter uses a set of State Tables that act as an interface
between specific NEs and ASDL command execution. The Java interpreter executes
Java provisioning classes. These Java provisioning classes support next-generation
protocols such as CORBA, HTTP, and XML.

Figure 7–1 NEP Components

NEP Components

7-2 ASAP Server Configuration Guide

When you start ASAP or the NEP, both NEP interpreters are created (the Java
Interpreter must be configured to start). The status command shows two processes for
an NEP: a C process and a Java process. The name of the Java process appears as
J$NEP ($NEP refers to the UNIX environment variable representing the NEP server
name). The J prefix indicates a Java process.

Host and Remote NEs

A host NE is a network element that has an interface through which remote NEs can
be provisioned. Several remote NEs covering a given area can be associated with a
host NE, which increases the effective coverage of the NE group. Host NEs are not
required to have remote NEs assigned to them. An EMS can be considered a host NE if
it is configured to manage multiple physical NEs.

Figure 7–2 shows service requests in the form of ASDL commands that are routed
through the host NE to the appropriate remote NE.

Figure 7–2 ASAP to NE Routing

Every ASDL references a target NE and a software load and version. This information
can be configure statically in ASAP or can be provided dynamically as parameters on a
work order. The software load and version is used by ASAP to identify a specific
interpreter type (C or Java) and program (State Table or Java class.method) to execute.

NEP Components
This section describes the session manager, command processor, State Table
Interpreter, and JInterpreter in more detail.

Session Manager
A session manager is a thread that manages all high-level interaction with an NE
regardless of how many connections are established to that NE. There is a one-to-one

NEP Components

Configuring Network Element Processors, Resource Pools, and Devices 7-3

relationship between NEs and session managers within the NEP. Each NE has one
session manager that manages at least one resource pool.

A resource pool is a set of dedicated or shared communication devices that use specific
communication protocols and parameters. For example, if NEs are serial asynchronous
lines, these devices correspond to physical serial ports.

There are different types of resource pools in the NEP:

■ Primary Pool – A pool dedicated to a particular NE. It is only used to
communicate with that NE. It is not necessary that all devices in the primary pool
are used.

■ Auxiliary Pool – A pool used to connect to any of the NEs that the NEP manages.
A session manager can acquire these devices to communicate with its NE. When
the session manager no longer requires the devices, it returns them to the auxiliary
pool for other session managers to use. For example, a serial modem device could
be part of an auxiliary pool.

For example, consider an NEP that is managing two NEs. The first NE has a primary
pool of two devices, the second has a primary pool of one device, and the NEP has an
auxiliary pool. Figure 7–3 represents the NEP configuration.

Figure 7–3 NEP Device Pools

Interpreters

7-4 ASAP Server Configuration Guide

Command Processor
A command processor is a thread that is spawned for each device, in either the
primary or auxiliary pool, that manages all interaction with the NEs on a particular
connection by using State Table programs or Java methods.

When a session manager receives the first connect request from the SARM, the session
manager binds to a command processor in its primary pool. It requests the command
processor to connect to and log in to the NE. This connection is termed the primary
connection. There is only one designated primary connection to each NE. All other
connections to this NE are auxiliary connections, even if they use devices from the
primary pool.

The SARM uses a configurable threshold to determine when auxiliary connections to a
particular NE are created and destroyed. If auxiliary connections are required, the
SARM sends an NE Connect request to the session manager. The session manager then
uses an available command processor in its primary pool to open another connection
to the NE. If there are no other available devices in the primary pool, the session
manager attempts to bind to a command processor from the secondary pool. By doing
this, the session manager can manage many concurrent connections to a given NE. For
instance, an NEP with five concurrent connections to an NE maintains one session
manager and five command processors to manage that NE.

Each command processor can invoke either a State Table Interpreter or JInterpreter.
There are still two physical processes within the NEP: a C/C++ process and Java
process. The C/C++ process houses the core NEP functionality including the State
Table Interpreter. The Java process hosts the JInterpreter.

The layers of functionality of the command processor are:

■ Application Layer – Handles the communication to the session manager and uses
the Interpreter functionality to provision ASDLs through either State Table or Java
execution.

■ Communication Layer – Employs the Multiple Protocol Manager (MPM)
functionality to connect to host NEs through various communication protocol
drivers. The MPM connects devices to host NEs with various communication
protocols. MPM functionality provides a transparent interface between the
user-created scripts and the protocol-specific communication details.
Protocol-specific communication parameters such as asynchronous serial (wired or
dialup), TCP/IP (Telnet, FTP, socket), LDAP, and SNMP interfaces are maintained
in the SARM database. The NEP loads these parameters from the SARM after
determining the communication protocol to use and prior to connecting to the NE.
Every device interface driver provides the functionality to connect to the NE,
disconnect from the NE, and transfer data using the specified protocol.

The communication layer functionality is transparent to ASAP users. Once a
connection is established to the NE, the application layer handles the execution of the
ASDL. The communication layer takes over when problems occur with the connection
to the NE. If an ASDL was being executed when the problem occurred, the SARM is
notified.

Interpreters
ASAP’s interpreters execute custom code (State Table or Java) to handle device-specific
communication with NEs. The custom code is designed to allow for easy, flexible and
modular changes to the communication interfaces between ASAP and network
elements. State Tables or Java provisioning classes are developed and maintained by a

Interpreters

Configuring Network Element Processors, Resource Pools, and Devices 7-5

solutions developer (systems integrator, cartridge developer or professional service)
independent of the core ASAP product.

Figure 7–4 shows the logical NEP command processor structure.

Figure 7–4 Logical NEP Command Processor Structure

Interpreter code is commonly used for:

■ NE Integration – The interpreters provide the basic facilities to communicate to,
integrate with, and provision an NE. Different versions of State Tables or Java
provisioning classes can be applied to the same NE technology but use a different
software load. ASDL commands are mapped to the appropriate program using the
technology and software version of the NE.

■ Virtual Screen Emulation – Interpreters provide the ability to communicate with
an NE using VT100 terminal emulation.

■ NE Response Parsing – The interpreter framework provides the ability to parse
NE responses. For example, NE reports can be analyzed to determine the status of
the provisioning request.

Once ASAP is in production, modifications to interpreter programs are normally
required only when new services are added.

Interpreters

7-6 ASAP Server Configuration Guide

Interpreter Cache Flush
NEP interpreters can load provisioning programs from either the database or the
CLASSPATH. Once loaded, they are maintained in a cache for faster access. This cache
can be flushed during runtime so that the NEP can dynamically reload State Tables for
execution. This allows developers to dynamically load and execute new or modified
provisioning programs without having to restart the server.

Cache flushing is accessed via asap_utils options "103. Flush State Table Cache".

JInterpreter
With the JInterpreter, you can use Java to provision NEs. The JInterpreter is a Java
server process that receives requests from the NEP and executes particular methods in
Java classes. Downstream protocol support is provided by the core product (telnet) or
by third-party libraries (CORBA, LDAP, and socket).

A Java process is paired with each C/C++ NEP process. Each Java process maintains
the set of JInterpreters that execute Java provisioning classes assigned to that NEP.
When the NEP starts, both State Table and JInterpreter processes are created.

Programming with the JInterpreter requires custom connect methods to handle the
logic of both connecting and logging in to the target element. This is the equivalent to
LOGIN State Tables. Protocol libraries can be supplied either by third-party vendors
(e.g. HTTP, JMS, LDAP, CORBA, SOAP, SFTP) or Oracle Communications (for
example, telnet). The device type flag in JInterpreter only associates communication
parameters with a specific protocol type (configured in tbl_comm_param). This means
that communication parameters are made available to devices based on their
association to the same device type. For information the internal mapping and
management of protocols, see ASAP Cartridge Development Guide.

As with State Tables, new device types can be defined by modifying the constraints on
tbl_comm_param and tbl_resource_pool to permit new device type definitions.

Customizing the JInterpreter
To provide application-specific functionality for the NE connection/disconnection,
and provisioning, you must extend the following base classes:

■ com.mslv.activation.jinterpreter. NEConnection – A Java class that manages the
connection and disconnection procedures to and from NEs. Developers need to
implement the methods NEConnection.connect() and NEConnection.disconnect
to perform the connection and disconnection from the NE. Oracle
Communications provides default connection class implementations for telnet,
socket, and LDAP. The socket and LDAP classes are wrappers around third-party
libraries. Implementations for other protocols can be developed by a customer or
integrator.

Note: Only State tables can be flushed.

Note: You can optionally disable the Java-based component of the
NEP. See "Device Enabling/Disabling" for more information.

Note: Do not assign device types that are already used by the NEP.

Interpreters

Configuring Network Element Processors, Resource Pools, and Devices 7-7

■ com.mslv.activation.jinterpreter.JProcessor – A Java class that contains one or
more provisioning methods. The provisioning methods are the JInterpreter
equivalent of State Tables. Provisioning classes must derive from the
com.mslv.activation.jinterpreter.JProcessor Java class.

For information on JInterpreter Java classes, refer to the ASAP Java Online Reference.

Managing Provisioning Classes
Provisioning classes contain one or more provisioning methods. Provisioning methods
are the JInterpreter equivalent of traditional State Tables. Provisioning classes must
derive from the abstract class, mslv.activation.jinterpreter.JProcessor. Provisioning
methods must be public methods of the provisioning class with the following
signature:

 public void aProvisioningMethod()

The mslv.activation.jinterpreter.JProcessor class provides details on obtaining ASDL
parameter values, setting the ASDL exit type, and returning parameters to SARM. For
example, the SocketProcessor custom class implements a method to access to socket
for messages, and set ASDL exit state to SUCCESS.

A sample demonstration class showing the implementation of a JProcessor using a
connection to a socket is located in

ASAP_Home/samples/JeNEP/jenep_demo/Socket/SocketProcessor.java

You can organize the methods into classes as required. The Java-enabled NEP, which
maps ASDLs to provisioning methods, assumes a class name of technology_software
load when no class is specified in the mapping; that is, when no dot ('.') is found in the
program column of table tbl_nep_asdl_prog for the requested ASDL.

JInterpreter provisioning classes differ from State Table action functions. With State
Tables, the logic used for State Table action functions is procedural while the
JInterpreter is object oriented.

Each JProcessor instance (whether it is a manifestation of the JProcessor class or a
subclass) is a separate object with its own attributes. If there are two JProcessor
instances, each time a method such as returnInfoParm is called from an instance, the
parameters are stored in an internal structure of each instance. If this method is
invoked from two different class instances that implement the same parent class, the
behavior of the two methods may not be the same.

If you call returnXXXParam in instance 1, the parameters are stored in instance 1’s
attributes. Calling returnXXXParam in instance 2 stores the parameters in instance 2’s
attributes. The attributes are not shared across instances. With the JInterpreter, the
JProcessor instance that is mapped to the ASDL and loaded and executed by the
JInterpreter is the instance whose parameters are retrieved and returned to SARM.
Each JProcessor instance operates and maintains its own state. The advantage is that
the JInterpreter allows concurrent ASDLs to be processed without affecting the specific
parameters of each ASDL.

Oracle recommends that you separate the protocol logic (that is, the connection logic)
from the provisioning logic. This facilitates the relationship between the
communication protocols and provisioning logic resulting in easier maintenance.

For more information on the tbl_nep_asdl_prog table, refer to the ASAP Developer’s
Guide.

Interpreters

7-8 ASAP Server Configuration Guide

Dynamic Reloading of Provisioning Classes
You can only reload provisioning classes that inherit from
mslv.activation.jinterpreter.JProcessor. The lookup of classes is based on a delegation
model. The following conditions apply when dynamically reloading provisioning
classes:

■ If the class exists in the CLASSPATH, it is loaded by the primordial class loader.
These classes cannot be unloaded.

■ If the configuration variable LOAD_JCLASS_FROM_DB in ASAP.cfg is set to 1,
the class loader tries to find the class in the database. If it is not found in the
database, then lookup proceeds to step 3.

■ If the class exists in the JINTERP_CLASSPATH environment variable, it is loaded
by a URL class loader.

Using the JInterpreter Utility Script
Use the JInterpreter utility script, jedd_utils to load the provisioning class to the
database and to unload the provisioning class from the database. The jedd_utils
options are:

[1] Add provisioning class
[2] Delete provisioning class
[3] List provisioning classes
[Q] Quit

To add a provisioning class:

1. In the command line, type jedd_utils -c Control Server Name (the name you
designated). The jedd_utils menu appears.

2. In the Enter an option field, type 1.

3. In the Program name field, type the name of the JInterpreter program using
Package.class name format.

4. In the Class file name field, type the JInterpreter class path.

To delete a provisioning class:

1. In the command line, type jedd_utils -c $CONTROL (the name you designated).
The jedd_utils menu appears.

2. In the Enter an option field, type 2.

3. In the Program name field, type the name of the JInterpreter program that you
want to delete. The provisioning class is deleted using the Package.class name
format.

To list provisioning classes:

1. In the command line, type jedd_utils -c <$CONTROL> (the name you
designated). The jedd_utils menu appears.

2. In the Enter an option field, type 3. A list of the JInterpreter provisioning classes
appears.

State Table Interpreter
State Tables are interpreted database table-resident programs invoked by the State
Table Interpreter.

Interpreters

Configuring Network Element Processors, Resource Pools, and Devices 7-9

State Tables are used primarily in ASAP NEPs but can also be invoked in other areas
within ASAP. For instance, State Tables provide a mechanism for changing the base
translation of a Service Request Processor (SRP). This can be useful as the needs of
your company change and you require more sophisticated translation.

Programming State Tables is similar to writing macros. Oracle recommends that those
who implement State Tables have some programming skills. In addition, they should
thoroughly understand the entire provisioning process. Writers of State Table action
functions should be skilled UNIX (or Linux) and C programmers.

A State Table can be created and maintained in a flat ASCII file. This allows effective
source control and release procedures to be exercised in the development and release
of State Tables. State Tables are compiled into SQL insert scripts to be loaded into the
SARM database. To translate State Tables to SQL format use the oracomp_npg script.

When using oracomp_npg, keep in mind that the script inserts set_escape_on feature;
as a result, backslashes that appear in the State Table are removed when the file is read
into the database. Consequently, if you want to maintain control characters in the
converted file, you must insert a backslash "\" before control characters.

For example, if the State Table contains the following line…

BCONCAT '%VAR_BIN_MML=%VAR_MML:\n'

…and you want to maintain "\n" as a control character, ensure that this line in the
State Table reads as follows:

BCONCAT '%VAR_BIN_MML=%VAR_MML:\\n'

Table 7–1 shows the fields used in A line of State Table code.

Customizing Interpreter State Table Actions
ASAP provides a set of State Table actions action functions used to write State Table
programs. These actions suffice for most processing required to interact with an NE.
However, you can provide additional logic in the State Tables.

Note: It is not necessary to add a backslash to the control character
"&".

Table 7–1 State Table Line Contents

Field Name Description

Line number The four-digit line number for the programming statement.

The starting line number must be greater than 0000. Oracle
recommends that these line numbers be incremented in units of 10.
This makes it easier to add lines later on.

Action The name for the action code.

This is the action to be performed. The associated action function is
invoked.

Action string A specific character string that is provided as an input parameter to
the action function.

Action integer A number that is provided as input to the action function that
modifies its behavior.

Connection Management

7-10 ASAP Server Configuration Guide

To provide additional logic in the State Tables, you can choose one of the following
options:

■ Creating libraries of State Table functions that provide particular functionality
using the existing State Table action functions. You can define libraries of State
Table functions that are called from other State Table programs. This lets you
create and group together State Table routines that perform related functions.

■ Writing new State Table actions that can be called from within the State Tables.
Newly-created actions generally perform processing actions that either cannot be
performed with existing state table actions, or would be too inefficient if
implemented using state table logic alone.

■ Overwriting existing core State Table actions provided as part of the core product.

When the Interpreter executes a State Table, the Interpreter reads the State Table from
the database. Subsequent calls for the State Table are returned from this cache.

The Interpreter provides a configuration variable, SWITCH_OPTIMIZATION, that
causes the Interpreter to optimize State Tables as it loads them into memory. When
executed, these State Tables may appear slightly different because the Interpreter
executes the instructions in a different order.

For more information on customizing Interpreter State Table actions, refer to the ASAP
Developer’s Guide.

It is possible for one State Table to execute another before returning control to the
initial State Table. This provides flexibility and modularity in State Table
implementation.

Connection Management
The SARM is responsible for tracking the status (up/down) of NEs as well as the
number of open and available connections to each NE. If an ASDL request needs to be
routed to an NE with no available connections, the SARM coordinates with the NEP to
create and initialize a connection. Once the connection is available, the SARM sends
the ASDL to the NEP for interpreter execution.

Before ASDLs can be provisioned, ASAP must establish a connection to the NE. If this
connection cannot be established, the device associated with the connection is
automatically temporarily disabled.

You can use the Automatic Re-enable feature to re-enable the device after a
configurable time interval. If the failed connection is the primary connection, the NEP
retries connecting to the NE after a defined interval. If the failed connection is an
auxiliary connection, the SARM is notified of the auxiliary connection failure.

Many NEs require a session to login before proceeding with provisioning. This logic is
implemented in LOGIN state tables or NEConnection.connect() Java methods. A
LOGIN/connect implementation can be provided for every software load and version
combination. ASAP handles the execution of the login procedure before provisioning
an ASDL. If the login fails, ASAP handles the event as a connection failure. Upon login

Note: Writing State Table action functions or modifying existing ones
requires a skilled UNIX (or Linux) and C programmer. These
customized action functions reside in code that is controlled and
maintained by the systems personnel.

Connection Management

Configuring Network Element Processors, Resource Pools, and Devices 7-11

failure, the connection is not disabled, instead, the command processor “sleeps” for a
configurable interval and then retries the connection rather than disabling the device.

Similarly, when a particular NE requires logging off, ASAP handles this as part of the
disconnection procedure. A LOGOFF State Table or NEConnection.disconnect()
method can be defined for an NE to be invoked before disconnection from the NE
occurs.

Connection Requests
This section describes the connection requests in ASAP.

Primary Connection
The first connection that is established successfully to an NE is designated as the
primary connection. All subsequent connections are termed auxiliary connections. An
end-user does not need to care or know whether their State Table or Java program has
been assigned a primary or auxiliary connection.

A primary connection is treated internally by SARM. A primary connection is always
the first connection to be established and the last connection to be dropped. Auxiliary
connections on the other hand are spawned and killed according to thresholds for
efficient connection management to an NE.

In dynamic routing, once the primary connection is dropped, the session manager for
that NE is removed from memory.

For more information on dynamic routing, see page 196.

Auxiliary Connections
If more than one connection is required to an NE, auxiliary connections are opened.
The SARM sends a connect request to the session manager which uses the next
available command processor in its primary pool to open an auxiliary connection to
the NE.

If there are no available entries in the primary pool, the session manager attempts to
bind to a command processor from the secondary pool.

Dynamic routing never uses connections from the auxiliary pool, only from the
dynamically-generated primary pool.

If the initial connection attempt fails or the port is configured to be disabled upon
login failure and the login attempt fails, an auxiliary failure message is sent to SARM
instead of retrying the connection.

Dial-up Connections
ASAP supports dial-up connections to an NE via State Tables. A dialup connection is
designated by specifying a serial port dialup device type. The NEP automatically
performs login, logoff and retries as necessary to manage the dialup connection.

For more information, refer to ASAP Cartridge Development Guide.

Disconnection Requests
The SARM controls connection disconnects by requesting that a session manager
disconnect a device from an NE. The SARM issues disconnect requests based on kill
thresholds or drop timer triggers.

The disconnect request types are:

Connection Management

7-12 ASAP Server Configuration Guide

■ Primary Disconnect – A primary connection is disconnected when there is only a
primary connection to the NE and the drop timer has expired.

■ Auxiliary Disconnect – The SARM requests that one of the auxiliary connections
be terminated. The session manager finds the appropriate command processor and
requests it to disconnect from the NE. If the command processor is from the
auxiliary pool, it returns to the auxiliary pool for all session managers within the
NEP to use.

Drop Timeout Parameter
The SARM sends a request to the NEP to disconnect the primary connection to a
particular NE after a period of provisioning inactivity, called Drop Timeout. If you set
the drop timeout for a busy NE to a high value, such as 24 hours, the connection
should never time out and is considered a dedicated connection. If you set the drop
timeout to a lower value for an NE that is not very busy, the connection may time out
depending on the load to the NE. In general, you should configure NEs that are busy
to not time out, and NEs that are not busy to time out.

The DROP_TIMEOUT parameter is configured in tbl_ne_config in ASAP Developer’s
Guide.

Idle ASDL Generation
Idle ASDL generation is mainly used as a keep-alive mechanism, similar to a ping. For
example, if an NE was configured to close a connection after 5 minutes of inactivity,
you could configure the idle ASDL to run every 2 minutes with a dummy command in
order to make sure that the connection is not dropped. If the requirement from the NE
side is that ASAP must continue to send packets (for example, a dummy command to
the NE as part of an idle ASDL mapped program), the drop timeout value should be
set very high (such as 24 hours) so that idle ASDL continues to send commands and
the connection is not terminated. In this case, the connection is considered a dedicated
connection.

Primary connections are disconnected based on the drop timeout interval, while
auxiliary connections are disconnected as the number of pending ASDLs drops below
the kill threshold.

You can configure the NEP, using communication parameters in tbl_comm_param, to
check the integrity of an idle connection by generating an idle ASDL after a period of
inactivity on the connection. The period of inactivity is defined in the parameter IDLE_
TIMER_INT in seconds. The idle ASDL is defined in the parameter IDLE_TIMER_
ASDL. IDLE_TIMER_ASDL is mapped to a State Table which can then perform any
user-defined functions.

You can configure any device that connects to an NE to trigger IDLE_TIMER_ASDL
when the connection has been idle for a specified period of time. The NEP does not
send a message to the SARM that is related to processing this special ASDL since the
activity is entirely within the communication layer. You can associate any State Table
program or Java method with this idle ASDL, and any return status generated by the
program has no effect on previous or future ASDLs from the SARM.

The execution of the IDLE_TIMER_ASDL State Table or Java program generates a
message indicating that an idle connection is still alive.

The communication parameter IDLE_TIMER_INT defines the idle timer. If this
parameter is not defined or is set to zero, the IDLE_TIMER_ASDL is not triggered
regardless of how long a connection remains idle.

The idle ASDL Interval is set as follows:

Connection Management

Configuring Network Element Processors, Resource Pools, and Devices 7-13

IDLE_TIMER_ASDL = <ASDL NAME>
IDLE_TIMER_INT = 60

Automatic Maintenance Mode
When an NE becomes unavailable because of a Maintenance Mode condition returned
from a State Table, the session manager notifies the SARM about the status of the NE
and automatically performs periodic retries to re-establish the NE connection. The
session manager also issues a MAINTNCE system event that can be used to notify
ASAP users that the NE is in Maintenance Mode.

Connection Thresholds
This section describes the connection thresholds in ASAP.

Spawn Threshold
The SARM triggers the creation and login of new NE connections when the number of
ASDLs in the pending queue exceeds the spawn threshold. Connections created in this
manner are always auxiliary connections. Once an auxiliary connection has been
established, it is used concurrently with other connections to provision ASDLs to a
target NE.

By default, the NEP only opens a primary connection to an NE. However, auxiliary
connections can be configured to act like dedicated connections by setting a very low
spawn threshold.

If the spawn threshold is exceeded by more than one ASDL request, the SARM
requests that the NEP establish another auxiliary connection. This process continues as
long as:

■ The number of ASDL requests exceeds the spawn threshold.

■ Connections to the NE are available.

■ The maximum number of connections configured by the user is not exceeded.

Kill Threshold
SARM triggers the logoff and destruction of NE connections when the number of
ASDLs in the pending queue drops below the kill threshold. Connections dropped in
this manner are always auxiliary connections.

When the kill threshold is exceeded, the SARM requests that one of the auxiliary
connections be terminated. The session manager determines the appropriate command
processor and requests that it disconnect from the NE. If the command processor was
assigned from the auxiliary pool, it is returned to the auxiliary pool and is made
available for all session managers within the NEP to use.

After each ASDL completion, the SARM determines if the current number of ASDLs in
the Pending queue is less than the kill threshold. If it is and the ASDL was completed
by an Auxiliary NE connection, the SARM sends an NE Disconnect request to the NEP.
The NEP disconnects the appropriate Auxiliary port and the SARM decrements its
count of available connections to that NE. This process continues as long as the ASDL
Pending queue contains fewer ASDL requests than specified by the kill threshold, or
until all Auxiliary connections are disconnected.

Note: The spawn threshold must always be greater than the kill
threshold if multiple connections are required to a particular NE.

Connection Management

7-14 ASAP Server Configuration Guide

If the ASDL was completed on the Primary connection, the SARM does not send a
disconnect request for the primary connection. Primary connections are dropped
according to the drop timeout interval.

Maximum Available Connections
You must configure the maximum number of connections (MAX_CONNECTIONS)
that can be established to each NE. The spawn threshold allows additional connections
to be opened as required until the number of connections to the NE equals the
maximum number of connections.

If the NE is configured within ASAP to allow more connections than is actually
available in the primary and auxiliary resource pools, and the SARM sends a request
to open the unavailable connection, the NEP sends an Auxiliary connection Failure
Notification. When configuring the NE, you must ensure that the maximum number of
allowed connections configured is not greater than the total number of connections
available.

Figure 7–5 ASAP Thresholds

Device Throughput
Using the NE instance throughput control you can manage the number of
ASDLs/transactions sent to the network element over time by specifying the
minimum number of milliseconds each transaction should take. (A value of 0 disables
NE instance throughput control.) Setting an appropriate value for throughput allows
you to maximize the number of transactions processed while avoiding performance
degradation due to flooding the NE with more requests than it can handle.

Note: All stored procedures that are accessed through ASAP APIs
must return 0 to indicate if there is an open database cursor inside the
stored procedure that needs to be closed by the ASAP C code later. If a
stored procedure opens a database cursor and sends it back to the
ASAP API, then the ASAP API needs to handle the closing of the
connection, otherwise the connection stays open indefinitely. This may
cause the ASAP system to crash when the maximum available
connections are exceeded.

Connection Management

Configuring Network Element Processors, Resource Pools, and Devices 7-15

The throughput value is stored in tbl_ne_config in the column throughput. For more
details, refer to ASAP Developer’s Guide.

The NE throughput value can be configured when the NE is designed. In addition, the
throughput value can be added to existing NEs or modified on existing NEs using
asap_utils.

You can query the NE to confirm the throughput value and whether throughput on
the NE is throttled by this value through asap_utils. See "7. ASDL/NE Queue
Summary".

Device Enabling/Disabling
The System Administrator may want to deactivate an NE if, for example, the NE is
down for maintenance or is in the process of upgrading. In this case, the System
Administrator would:

■ Deactivate and subsequently reactivate the NE through an Administrative RPC
Interface, available through asap_utils. When the NE is disabled, any ASDLs
currently being provisioning are allowed to finish. All other ASDLs for that NE are
sent to the Pending queue until the NE is reactivated.

For more information on asap_utils, see Appendix A, "asap_utils."

■ Set up error thresholds for the NE to deactivate itself whenever it receives too
many hard failures on commands. The Enhanced Error Management functionality
provides a detailed tracking scheme for hard failures related to provisioning by an
NEP.

Error thresholds control the release of specific ASDL commands to an NE to
prevent an excessive number of errors from occurring. The SARM disables the NE
if the actual number of consecutive errors exceeds the configured threshold in the
specified time period. ASDLs for the NE are sent to the Pending queue until the
NE is reactivated.

Automatic Device Re-enabling
A device can be disabled as the result of a connection failure. If this device is the only
connection to the NE, all provisioning to the NE stops until the device is re-enabled. A
device can be re-enabled either manually or automatically. A device can be re-enabled
manually by using the asap_utils utility. Or the device will be automatically
re-enabled by the command processor after a period of time has elapsed.

Device Screen and Line Diagnostics
An audit trail of all raw data transmitted to and from an NE can be used for diagnostic
purposes. The ASAP System Administrator can enable or disable the dumping of such
data to a file by choosing the Enable or Disable Line Diagnostics entry through asap_
utils.

Communication to an NE through the device interface can be
terminal-emulation-based or message-based. For terminal-based communication, the
System Administrator can dump the contents of the virtual screen into a file by
choosing the Enable or Disable Screen Diagnostics menu through asap_utils.

Note: The dynamic activation or deactivation of an entire NE is not
persistent across SARM restarts. To permanently activate or deactivate
an NE, you must update the NE definitions in the database.

Connection Management

7-16 ASAP Server Configuration Guide

For more information on asap_utils, see Appendix A, "asap_utils."

Connection-related ASDLs
Typically, the purpose of an ASDL command is to provision NEs. The State Table or
Java class.method associated with an ASDL sends provisioning commands and
processes NE responses. Most NEs require login procedures to control access to the
NE. ASAP has a set of ASDLs related to NE connection management procedures
including login, logoff, dialup, and hang-up (in the case of modem connections), and
connection integrity checking. These ASDLs are not sent from an upstream system or
the SARM, but rather are executed by the NEP as part of connection management.

Since the connection management procedure is NE-specific, each connection
management ASDL may require the execution of different State Tables or Java
programs for different NE hosts.

The following connection management ASDLs are reserved as keywords to be used by
ASAP. You must not use them as ASDL command labels. The reserved class.methods
in brackets apply to Java programs

■ LOGIN (NEConnection.connect)

■ DIALUP

■ HANGUP

■ LOGOFF (NEConnection.disconnect)

Resending Completed ASDLs
The Resend Completed ASDLs function (also known as the Recent Change
Retransmission (RCR) function enables you to resend successfully completed ASDL
commands in their original provisioning sequence to an NE. This feature is intended
for use in situations in which a NE has been recovered to a known state and ASAP is
requested to re-activate all successful commands to the NE from that known state
onwards.

This mechanism assumes that ASAP is the sole system provisioning such NEs. If not,
there is no guarantee that the provisioning commands are entered to the NE in the
same provisioning sequence because the multiple systems may not be synchronized in
their updates.

SARM provides this functionality in the following ways:

■ SARM maintains a log of all successfully completed ASDL commands to each NE.

■ Upon your request, the SARM reloads all completed ASDL commands that are
successfully completed on the NE within the specified time period.

■ The SARM then re-provisions these ASDL commands serially, in their original
provisioning sequence.

■ Errors arising from this process are logged for you to view.

To resend completed ASDLs, use option 11. Resend Completed ASDLs of asap_utils.
You can invoke asap_utils by typing the following at the $ASAP_base prompt:

asap_utils [-P ctrl_password] [option]

where:

■ [-P ctrl_password] is the password for the control database

Connection Management

Configuring Network Element Processors, Resource Pools, and Devices 7-17

■ [option] is the asap_utils option you want to invoke. For the Resend Completed
ASDLs option, type 11.

The arguments for this option include the target NE, the start and end dates/times (in
'Mmm dd yyyy hh:mm[AM/PM]' format, for example 'Dec 31 2004 11:59PM').

When the you invoke the Resend Completed ASDLs command from asap_utils, ASAP
determines all of the ASDL commands that have successfully completed on the
network element and the sequence in which they were originally executed.

Specifically, if rollback is not being used, then RCR functionality retrieves all ASDLs
with a state of ASDL_NEP_COMPLETE. These are ASDLs that have successfully
executed on the network element, as shown in the following example.

If rollback is configured, then the RCR functionality retrieves all ASDLs with a state of
ASDL_NEP_COMPLETE or ASDL_NEP_RBACK_FAIL. ASDLs with a state of ASDL_
NEP_RBACK_FAIL are those ASDLs that successfully executed on the switch but
whose rollback ASDL has failed (rollback was triggered due to a subsequent ASDL
failure on the order). The following example shows which ASDLs falling within the
specified time period that would be included in an RCR order:

The final ASDL state is not the state of the rollback ASDL itself, but the final state of
the "forward" ASDL that is being rolled back.

Note: You can only use asap_utils to resend completed ASDLs; you
cannot send RCR requests using the Order Control Application (OCA)
client.

Table 7–2 Inclusion of ASDLs (Rollback not in use) in RCR Order

CSDL ASDL Description Final ASDL State
Include in
RCR Order?

CSDL1 ASDL1 ASDL completes ASDL_NEP_COMPLETE Yes

CSDL1 ASDL2 ASDL completes ASDL_NEP_COMPLETE Yes

CSDL1 ASDL3 ASDL completes ASDL_NEP_COMPLETE Yes

CSDL2 ASDL4 ASDL completes ASDL_NEP_COMPLETE Yes

CSDL2 ASDL5 ASDL completes ASDL_NEP_COMPLETE Yes

CSDL2 ASDL6 ASDL fails ASDL_NEP_FAIL No

Table 7–3 Inclusion of ASDLs (Rollback in use) in RCR order

CSDL ASDL Description Final ASDL State
Include in
RCR Order?

CSDL1 ASDL1 Rollback of ASDL
completes

ASDL_NEP_RBACK_COMP No

CSDL1 ASDL2 Rollback of ASDL
fails

ASDL_NEP_RBACK_FAIL Yes

CSDL1 ASDL3 Rollback of ASDL
completes

ASDL_NEP_RBACK_COMP No

CSDL1 ASDL4 Failure of ASDL
triggers rollback

ASDL_NEP_FAIL No

Configuring NEPs

7-18 ASAP Server Configuration Guide

ASAP then automatically generates a new RCR work order ID that contains a single
CSDL that maps to all of the ASDLs that were successfully executed against the NE.

ASAP automatically submits and performs the RCR work order.

All ASDL commands are executed in the sequence in which they were originally
executed until the work order is complete.

If during the execution of the RCR work order an ASDL exits with a hard failure,
ASAP will interpret this as a delayed failure, allowing the entire RCR work order to
finish executing before generating a work order failure event.

RCR work orders start with an RCR prefix (for example, RCR-031125184951). When
executing this option, ASAP displays the new work order name before returning to the
UNIX prompt.

Configuring NEPs
NEP configuration information is held in static tables in the ASAP Control server
database and the SARM database. To change configuration information, use the
Service Activation Configuration Tool, or SQLplus sessions to invoke stored
procedures.

This section outlines the procedures for configuring an NEP using stored procedures.

For instructions on using the Service Activation Configuration Tool, see Chapter 2,
"Configuring ASAP Servers."

Adding an NEP
To add an NEP to the system, perform the following steps:

1. Export the current database using the export_tool.sh (see "Transforming ASAP
Database Configurations or Service Models into XML"). For example:

export_tool.sh -m -p abc -t config

2. Open the transOut2_config.xml file using a text editor.

gedit transOut2_config.xml

3. Remove all elements except for the existing NEP

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<nepServer name="NEP_envid" xsi:type="NEPServerType">
 <description>NEP Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>NEP_envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.can.com</hostname>
 </interfaceHostname>
 <interfacePort>40013</interfacePort>

Configuring NEPs

Configuring Network Element Processors, Resource Pools, and Devices 7-19

 <secondaryPool/>
 <jinterpreterPort>40014</jinterpreterPort>
 <program>asc_nep</program>
 <enableJInterpreter>true</enableJInterpreter>
</nepServer>

</activationConfig>

Where envid is the environment ID for your ASAP instance.

4. Modify the NEP element with new values where required. For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<nepServer name="NEP_2envid" xsi:type="NEPServerType">
 <description>NEP Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>NEP_2envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.can.com</hostname>
 </interfaceHostname>
 <interfacePort>40023</interfacePort>
 <secondaryPool/>
 <jinterpreterPort>40024</jinterpreterPort>
 <program>asc_nep</program>
 <enableJInterpreter>true</enableJInterpreter>
</nepServer>

</activationConfig>

5. Save the file.

6. Update the file using sactConfig as described in "Running the SACT Scripts".

Deleting an NEP
To delete an NEP, perform the following steps:

1. Export the current database using the export_tool.sh (see "Transforming ASAP
Database Configurations or Service Models into XML"). For example:

export_tool.sh -m -p abc -t config

2. Open the transOut2_config.xml file using a text editor.

gedit transOut2_config.xml

3. Remove all elements except for the NEP you want to delete.

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo

Configuring NEPs

7-20 ASAP Server Configuration Guide

nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<nepServer name="NEP_2envid" xsi:type="NEPServerType">
 <description>NEP Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>NEP_2envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.can.com</hostname>
 </interfaceHostname>
 <interfacePort>40023</interfacePort>
 <secondaryPool/>
 <jinterpreterPort>40024</jinterpreterPort>
 <program>asc_nep</program>
 <enableJInterpreter>true</enableJInterpreter>
</nepServer>

</activationConfig>

Where envid is the environment ID for your ASAP instance.

4. Save the file.

5. Update the file using sactUnconfig as described in "Running the SACT Scripts".

Adding Configuration Parameters to an NEP
To add configuration parameters to an NEP, perform the following steps:

1. Export the current database using the export_tool.sh (see "Transforming ASAP
Database Configurations or Service Models into XML"). For example:

export_tool.sh -m -p abc -t config

2. Open the transOut2_config.xml file using a text editor.

gedit transOut2_config.xml

3. Remove all elements except for the NEP you want to add configuration
parameters to. For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<nepServer name="NEP_envid" xsi:type="NEPServerType">
 <description>NEP Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>NEP_envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.can.com</hostname>

Configuring NEPs

Configuring Network Element Processors, Resource Pools, and Devices 7-21

 </interfaceHostname>
 <interfacePort>40013</interfacePort>
 <secondaryPool/>
 <jinterpreterPort>40014</jinterpreterPort>
 <program>asc_nep</program>
 <enableJInterpreter>true</enableJInterpreter>
</nepServer>

</activationConfig>

Where envid is the environment ID for your ASAP instance.

4. Add the configuration parameters. For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">

<nepServer name="NEP_envid" xsi:type="NEPServerType">
 <description>NEP Server</description>
 <system>envid</system>
 <territory>envid</territory>
 <diagnosticFilename>NEP_envid.diag</diagnosticFilename>
 <diagnosticLevel>LOW_LEVEL</diagnosticLevel>
 <configurationParameters>
 <configurationParameter xsi:type="AUTOMATIC_BLACKOUT_CHECK">
 <value>1</value>
 </configurationParameter>
 <configurationParameter xsi:type="CACHE_BLACKOUT_TABLE">
 <value>1</value>
 </configurationParameter>
 <configurationParameter xsi:type="LOAD_JCLASS_FROM_DB">
 <value>0</value>
 </configurationParameter>
 </configurationParameters>
 <autoStart>true</autoStart>
 <controlServer>CTRLenvid</controlServer>
 <interfaceHostname>
 <hostname>test.can.com</hostname>
 </interfaceHostname>
 <interfacePort>40013</interfacePort>
 <secondaryPool/>
 <jinterpreterPort>40014</jinterpreterPort>
 <program>asc_nep</program>
 <enableJInterpreter>true</enableJInterpreter>
</nepServer>

</activationConfig>

5. Save the file.

6. Update the file using sactConfigNR as described in "Running the SACT Scripts".

JNEP Logging
JNEP uses Log4j to manage system log messages. For details on Log4j, see ASAP
System Administrator’s Guide.

Configuring Resource Pools and Resource Pool Devices

7-22 ASAP Server Configuration Guide

Configuring Resource Pools and Resource Pool Devices
tbl_resource_pool is a static table that defines the collection of command processors
(devices) that the NEP uses to establish connections to NEs. Groups of command
processors can be contained in a resource pool. Each NE configuration determines a
primary resource pool that contains one or more devices the NEP uses to connect to
that NE. These devices are not used to connect to other NEs. Each NEP has an
auxiliary resource pool that contains devices used by the NEP to establish connections
to any NE managed by the NEP. These primary and auxiliary resource pools are
defined in this table.

You must create resource pools and add resource pool devices by populating the tbl_
rerouce_pool table before you can add command processors to it. You can create Java
processors using Design Studio when you create Java cartridges.

This section outlines the procedures for creating, deleting, or editing resource pools
and devices using the SACT. For instructions about using the Service Activation
Configuration Tool, see Chapter 2, "Configuring ASAP Servers."

To define, delete, and list resource pools and devices using stored procedures, see
Appendix , "Configuring Resource Pools Using Stored Procedures".

Adding a Resource Pool and Device
To add a resource pool and device to the system, perform the following steps:

1. Export the current database using the export_tool.sh (see "Transforming ASAP
Database Configurations or Service Models into XML"). For example:

export_tool.sh -m -p abc -t config

2. Open the transOut2_config.xml file using a text editor.

gedit transOut2_config.xml

3. Remove all elements except for one of the default connection pools.

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">
<connectionPool name="POOL">
 <device name="dev1">
 <environment>DEVELOPMENT</environment>
 <lineType>TELNET_CONNECTION</lineType>
 </device>
</connectionPool>

</activationConfig>

Where envid is the environment ID for your ASAP instance.

4. Modify the NEP element with new values where required. You can also create
additional devices by adding device name elements. For example:

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig

Configuring NE Blackout Periods

Configuring Network Element Processors, Resource Pools, and Devices 7-23

M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">
 <connectionPool name="POOL2">
 <device name="dev2">
 <environment>DEVELOPMENT</environment>
 <lineType>SOCKET_CONNECTION</lineType>
 </device>
 <device name="dev3">
 <environment>DEVELOPMENT</environment>
 <lineType>SOCKET_CONNECTION</lineType>
 </device>
</connectionPool>

</activationConfig>

5. Save the file.

6. Update the file using sactConfig as described in "Running the SACT Scripts".

Deleting a Resource Pool and Device
To delete an resource pool, perform the following steps:

1. Export the current database using the export_tool.sh (see "Transforming ASAP
Database Configurations or Service Models into XML"). For example:

export_tool.sh -m -p abc -t config

2. Open the transOut2_config.xml file using a text editor.

gedit transOut2_config.xml

3. Remove all elements except for the NEP you want to delete.

<activationConfig
xmlns="http://www.metasolv.com/ServiceActivation/2003/ActivationConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/ActivationCo
nfig
M:\hlam_view\ASAP_base\ASAP\jmx\xsd\ActivationConfig.xsd">
 <connectionPool name="POOL2">
 <device name="dev2">
 <environment>DEVELOPMENT</environment>
 <lineType>SOCKET_CONNECTION</lineType>
 </device>
</connectionPool>

</activationConfig>

4. Save the file.

5. Update the file using sactUnconfig as described in "Running the SACT Scripts".

Configuring NE Blackout Periods
If ASAP must share a port to an NE with another system (as illustrated in the figure
below) or if regular NE maintenance must be performed, you can define the NE
blackout period during which time the NEP will not connect to that NE.

Figure 7–6 shows an NE blackout profile.

Configuring NE Blackout Periods

7-24 ASAP Server Configuration Guide

Figure 7–6 NE Blackout Periods

The NE Blackout feature automates ASAP NE Access blackout at scheduled times so
that the ASAP System Administrator does not have to disable and enable the NE
manually before and after the blackout period. When the NEP detects a blackout
period during a check of a database table while executing the BLACKOUT State Table
action, the NE is put into Maintenance Mode automatically.

You can configure the blackout period in two ways:

■ Weekly Periodic (Static) – A day of the week, start time, and end time are
specified. For example, you can set regular maintenance on the NE to be
performed every Sunday between 2:00 a.m. and 4:00 a.m.

■ Absolute Date and Time (Dynamic) – An absolute date and time for both the start
and end periods are specified rather than a day of the week. For example, April 21,
2003 23:59 and April 22, 2003 1:59.

Table 7–4 displays the blackout information you can configure.

Note that if the dayname entry is present, then the configuration is considered to be
Static. The implementation will check for the start time and end time alone, and
assume that both fall on the same day. When configuring a blackout period that spans
from one day to the next (for example from 22:00 until 01:00 the next day) you must
configure two separate lines in tbl_blackout: one for 22:00:00 till 23:59:59 and another
from 00:00:00 till 01:00:00.

Use the following stored procedures to define, list, and delete blackout definitions.

■ SSP_add_blackout – This procedure configures the static and dynamic blackout
periods for a specific network element host.

Table 7–4 Blackout Configuration

Field Explanation

Host NE The identifier of the host NE.

Day of Week The day of the week the blackout period starts and ends. If NULL, the
blackout period is an Absolute Date and Time.

Start Time The start of the blackout period.

End Time The end of the blackout period.

Description An explanation or reason for the blackout period.

Configuring NE Blackout Periods

Configuring Network Element Processors, Resource Pools, and Devices 7-25

■ SSP_list_blackout – This procedure lists blackout periods for a specific network
element host.

■ SSP_del_blackout – This procedure removes blackout periods for a specific
network element host.

For more information on these stored procedures, refer to ASAP Developer’s Guide.

Blackout information is maintained in tbl_blackout. For more information on tbl_
blackout, refer to ASAP Developer’s Guide.

Checking NE Blackout Periods
In previous versions of ASAP, executing the BLACKOUT action function is the only
way to determine the NE blackout period. The BLACKOUT action function cannot be
executed within certain predefined state table programs such as LOGIN, LOGOUT,
DIALUP, and HANGUP. Consequently, the physical connection between ASAP and
the NE is required to check NE blackout period.

You can now check the NE blackout period without having a physical connection with
the NE.

If the AUTOMATIC_BLACKOUT_CHECK variable in the ASAP.cfg is enabled, the
NEP checks the NE blackout period in two places without having a physical
connection with NE:

■ Before connecting with the NE

■ Before processing an ASDL request

When the NEP detects the NE blackout period, the NEP disconnects every existing
connection with the NE and notifies the SARM that the NE is in maintenance mode.
Then the NEP checks the NE blackout period at the interval, in seconds, as configured
in the ASAP.cfg file.

The BLACKOUT action function can be used to check the NE blackout period when
AUTOMATIC_BLACKOUT_CHECK is set to 0. If AUTOMATIC_BLACKOUT_
CHECK is set to 1, then the BLACKOUT state table action function will not do any
processing. It will always return successfully and continue processing the remainder of
the state table.

The stored procedure SSP_check_blackout enables you to check whether or not the
specified network element is currently blacked out.

For more information on this stored procedures, refer to ASAP Developer’s Guide.

Configuration Parameters for NE Blackout
Table 7–5 describes the ASAP configuration parameters that control automatic NE
blackout checking functionality.

Note: NE blackout periods can be configured with XML using the
SACT or the asapConfig utility.

Configuring NE Blackout Periods

7-26 ASAP Server Configuration Guide

Table 7–5 NE Blackout Configuration Parameters

Variable Default Description

AUTOMATIC_BLACKOUT_
CHECK

0 The boolean type variable controlling
automatic NE blackout checking.

■ 0 - disable

■ 1 - enable

CACHE_BLACKOUT_TABLE 1 This variable controls whether the NEP
caches the NE blackout table information in
the memory or not. This variable works
only when the AUTOMATIC_BLACKOUT_
CHECK configuration variable is set to 1.

■ 1 - enable caching

■ 0 - disable caching

CACHE_BLACKOUT_TABLE =1 should
not be used if you want to change blackout
configuration on a regular basis.

8

Managing the Admin Server 8-1

8Managing the Admin Server

This chapter provides information about managing the Admin server.

About Managing Admin Servers
The Admin server offers some system monitoring capabilities using administrative
remote procedure calls (RPCs) to retrieve information from each server in the system.
The Admin server acts as the collection focal point for all of this information, which
can be obtained using the ASAP utility script, asap_utils. See Appendix A, "asap_utils"
for more information.

About Managing Admin Servers

8-2 ASAP Server Configuration Guide

9

Configuration Parameters 9-1

9Configuration Parameters

This chapter provides information about ASAP configuration parameters.

About ASAP Configuration Parameters
Every Oracle Communications ASAP application, whether client or server, references
configuration files to determine configuration information. ASAP has a global file,
ASAP.cfg, that maintains global configuration information, as well as
component-specific information that may overwrite the globally-defined data. If a
configuration parameter has not been defined in this configuration file, the application
provides a suitable default value.

The ASAP.cfg file is located in the ASAP_home/config directory (where ASAP_home is
the location of your ASAP server installation directory).

Every ASAP application client and server uses an ASAP API. The API provides
considerable functionality to the application process, including configuration
parameter management, system event generation, performance and process
parameters, diagnostics, and database administrative functions.

Each parameter grouping provides a definition of the default character string value
and a brief description of the configuration parameter settings.

Global parameters can usually be specified once in the global configuration section
(beginning with the comment #### Common API Configuration Parameters).

Local parameters should be specified in the local configuration section (beginning
with the first application server listed in square brackets [] followed by a comment, for
example, [CTRL] #### Control Server Configuration Parameters).

Configuration parameters are grouped as follows:

Note: To start ASAP, you must define the server application name
within the brackets [] in the header for each Server Configuration
Parameters section in the ASAP.cfg file. You must define the server
application name for each section, for example, the CTRL, OCA, SRP,
SARM, NEP, and ADM. Ensure there are no empty brackets [] in any
of the sections in the Server Configuration Parameters; otherwise,
system errors occur.

Note: The maximum length for a configuration parameter value is
128 characters.

Determining Configuration Parameters

9-2 ASAP Server Configuration Guide

■ Global Configuration Parameters – Parameters appearing at the beginning of the
ASAP.cfg file before the application-specific sections and providing ASAP-wide
parameter values.

■ Application-specific Configuration Parameters – Parameters residing within the
ASAP.cfg file in sections delimited by [ApplName], where ApplName represents the
application name.

Determining Configuration Parameters
To determine the configuration parameter values, use the ASC_get_config_param()
API call or in the case of object oriented libraries the Config::get_config_param() API
call. You can specify the parameter values in the application-specific section or the
global section of the ASAP.cfg file. If they are not specified, the default value is used.

Configuration parameters are read from the configuration file upon application
startup and are referenced from a cache within the application's memory from that
point onwards. Therefore, the application only has to reference the configuration
parameter by means of this API call once.

■ Application-specific section of ASAP.cfg – If the parameter value is specified in
this section, its value overrides the parameter values specified in the global
section. The application-specific section is determined to be the first section in the
file which matches a substring of the application name. For example, an [SRP]
section would match SRP_TST1, SRP_TST2 and SRP_PRD1 whereas an [SRP_P]
section would only match SRP_PRD1. This is used to specify separate production
configurations to those in test environments. In addition, if the SRP_PRD1
application is determining a configuration parameter in a configuration file in
which there are both [SRP] and [SRP_P] sections, then the first of these two
sections in the file is assumed to be the application-specific section. For this reason,
you must specify the application-specific sections before the general ones. For
example, you would place the [SRP_P] section prior to the [SRP] section.

■ Global section of ASAP.cfg – If the parameter value is specified in this section but
not in the application-specific section, the value of the global parameter is
assumed.

■ If a parameter is not specified in either the application-specific or global sections,
the default value passed to the API call is assumed.

Configuration Parameter Scope
The configuration parameters are grouped in sections that correspond to their scope
within the system. For each parameter, the default character string value is detailed
together with a brief description of the configuration parameter settings. In addition,
the configuration section in which this parameter is usually placed is identified.
However, you can choose to place the configuration parameters in different sections.

■ Local – The parameter should be specified in the local configuration section (for
example, APPL_USERID has to be explicitly set for each application process).

■ Global – The parameter can usually be specified once in the global configuration
section (for example, APPL_SQL_SERVER) because these settings may be system
wide.

Common API Configuration Parameters

Configuration Parameters 9-3

Environment Variable Support
To support the insertion of environment variables within the configuration files,
special processing is performed whenever the configuration parameter begins with the
"$" character. An example appears below:

APPL_USERID = $USERID

The logic is as follows:

■ If the configuration parameter value you specify begins with "$", the API
determines whether the UNIX environment variable USERID is defined in the
environment. If it is defined, the value of this environment variable is used for the
configuration parameter, APPL_USERID.

■ If the environment is not defined, the configuration parameter USERID is set as
usual in the application; that is, to $USERID.

This facility allows the inclusion of environment variables within the configuration
files. This eases the configuration effort required to maintain a number of ASAP
environments especially during testing phases.

UNIX Environment Variables
The configuration parameter design allows for multiple environment variables in the
right side of the equation. The following examples show this configuration parameter
design:

PASS_FILE = $LOGDIR/pass_file.tmp
SRP_WO_FILE = $LOGDIR/work_orders/$SRP_NAME.$WO_EXT

Common API Configuration Parameters
The API common to both application servers and clients is represented by the
Common API library (libasc), as well as configuration parameters common to both the
Client (libclient) and Server (libcontrol) APIs. The configuration parameters in the
following sections are used by the common components of servers and clients.

Logical-to-Network Application Name Mapping
You can specify the configuration parameters to allow an application process (client or
server) to determine a network application name from the application's logical name,
which usually resides within the database. The network application name is used to
define the application to the network. This capability is only used when the logical
application name is different from the network name.

You can globally define these configuration parameters for the system. The definition
of these configuration parameters are required as an application process reading a
logical name from the database references them to determine the network application
name. If this is not specified, the network application name will default to the logical
application name.

For example, the Service Activation Request Manager (SARM) application server
accesses the configuration file to determine the network server names of all Service
Request Processors (SRPs) and Network Element Processors (NEPs) to which it may
establish network connections. Another example is the Control server, which requires
the network name of each application server that it establishes network connections to.

To perform logical to network application name mapping, see Table 9–1.

Common API Configuration Parameters

9-4 ASAP Server Configuration Guide

Table 9–2 lists and describes the logical-to-network application name mapping
parameters and values.

ASAP Monitoring Parameters
Every Host machine in ASAP is assigned a Control server to monitor and control the
ASAP process for that machine. The Admin server also provides some system
monitoring capabilities using administrative Remote Procedure Calls (RPCs).

Table 9–3 lists and describes the ASAP monitoring parameters and values used to
monitor the server performance.

Table 9–1 Logical to Network Application Name Mapping

Default Value
Config
Section Description

Generic Process
Name

Global The GENERIC configuration parameter represents the logical
name of an ASAP application process. It is set equal to the
network process name in this environment. For example, in
the production environment, the configuration file may
include entries as follows:

■ SARM=SARM_P

■ NEP01=NEP01_P

■ NEP02=NEP02_P

Each application process that is to be spawned by the Control
server must be defined as above if network names different
from logical names are employed, because the Control server
reads the logical names from the database and then uses
these configuration file settings to determine the network
names.

Table 9–2 Logical-to-Network Application Name Mapping Parameters, and Values

Parameter Description Value

MASTER_CONTROL Determines which Control server is the
master Control server in the ASAP system.

Default = $MASTER_CONTROL

Table 9–3 ASAP Monitoring Parameters, and Values

Parameter Description Value

SYSMON_ALWAYS_ON Boolean flag. If set to 1, activates system
monitoring upon startup. Default = 0.

Default = $MASTER_CONTROL

SYSMON_LOG_ENABLED Records work order logging information.
This feature significantly increases the
memory and CPU overhead.

Default = 0

SYSMON_DUMP_
TRANSACTIONS

Dumps transaction details to a file. This
feature significantly increases the memory
and CPU overhead.

Default = 0

SYSMON_SHOW_
DESCRIPTIONS

Shows descriptions of various sections of
the generated report.

Default = 0

SYSMON_DELIMITED_
OUTPUT

Generates ASCII formatted file (0) or
comma-delimited spreadsheet file (1).

Default = 0

Common API Configuration Parameters

Configuration Parameters 9-5

Connection Pool Manager and Debugging Tools
Use the parameters in this section to set up the Connection Pool Manager (CPM) to
automatically tune connection pools and log internal application server pools
statistics.

Table 9–4 lists and describes the CPM and debugging tools parameters and values.

Application Logical to Network Application Name Mapping
This section describes application logical to network application name mapping.

Table 9–4 Connection Pool Manager and Debugging Tools Parameters, and Values

Parameter Description Value

ASAP_DEVELOPMENT_
MODE

Boolean flag. If set to 1, it is used during
the development process to aid in
debugging and tuning the system. It
should be set to 0 in production
environments.

Default = 0

CONNECT_TO_CTRL Boolean flag. If set to 1, it instructs the
client application to open a connection to
the Control server to log system events.

Default = 1

CPM_OPTIMIZE_POOLS Boolean flag. If set to 1, it enables
auto-tuning of connection pools by the
CPM. The algorithm that CPM_
OPTIMIZE_POOLS uses does not
guarantee that the oldest unused
connection in the pool is closed first. This
flag must not be used in a large scale
production environment.

Default = 0

DEBUGGER_ON Enables the Interpreter State Table
debugger. If set, it initializes the Interpreter
debugging facilities.

Default = 1

DIAG_LINE_FLUSH Boolean flag. If set to 1, it determines
whether the diagnostic file output is
flushed to disk at the end of each
diagnostic line. If set to 0, the diagnostics
are only flushed to the diagnostic file if a
PROGRAM or SANITY level diagnostic
message is written, or if the I/O buffer is
flushed by the operating system. You can
change this diagnostic parameter by
adjusting this configuration parameter or
changing the diagnostic line flush flag of
the application server by using the diag_
line_flush() API RPC/Registered
Procedure to the particular server.

Default = 1

This option should be set to 0 in a
production environment because
it causes considerable
performance overhead in disk
activity.

LANGUAGE_DUMP_ON Boolean flag. If set to 1, it determines
whether the language buffer being
transmitted or received should be logged
as a low-level diagnostic in the server's
diagnostic log file. The primary use is for
debugging such language buffers and is,
therefore, generally used in
non-production environments.

Default = 1

RPC_SHOW_OUTGOING_
PARAMS

N/A Default = 1

SYSMON_ALWAYS_ON Activates system monitoring upon startup. Default = 1

Common API Configuration Parameters

9-6 ASAP Server Configuration Guide

Table 9–5 lists and describes application logical to network application name mapping
of parameters and values.

SQL Server Security-Related Parameters
The following parameters are associated with establishing connections to a SQL Server
using various user ID/password combinations to determine the default database
within the SQL Server. The SQL Server names rarely need to be specified, but the user
ID and password combination are likely be explicitly set in either the local or global
configuration file.

Table 9–6 lists and describes the SQL Server security-related parameters and values.

RPC-Related Parameters
The following parameters configure the number of retries and the time interval
between each RPC retry. The default parameter values are usually sufficient.

Table 9–7 lists and describes the RPC-related parameters and values.

Table 9–5 Application Logical to Network Application Name Mapping of Parameters, and Values

Parameter Description Value

SARM The logical name of the SARM server. Default = $SARM

SRP_EMUL The logical name of the SRP Emulator. Default = $SRP_EMUL

Table 9–6 SQL Server Security-Related Parameters, and Values

Parameter Description Value

APPL_USERID The primary SQL Server user ID the
application process uses to connect to the
APPL_SQL_SERVER SQL Server. The user
ID defaults to the primary application
database, and therefore, the application
does not need database names because the
definition of the user in the SQL Server
specifies that user's default database.
Maximum length is 20 alphanumeric
characters.

Default = $APPL_USER

APPL_SQL_SERVER The SQL Server in which the primary
application database resides. If you specify
this, the database can reside on a separate
SQL Server from other ASAP databases if
required. Maximum length eight
alphanumeric characters.

Default = $DSQUERY

CONTROL_USERID The SQL Server user ID the application
process uses to connect to the Control
database in the CONTROL_SQL_SERVER
SQL Server. Maximum length is 20
alphanumeric characters.

Default = $CTRL_USER

CONTROL_SQL_SERVER The SQL Server where the Control
database resides. If specified, the Control
database can reside on a separate SQL
Server from the application databases, if
required. Maximum length is eight
alphanumeric characters.

Default = $DSQUERY

Common API Configuration Parameters

Configuration Parameters 9-7

Network Connection-Related Parameters
The following parameters are referenced whenever an application process opens a
network connection to either an application server or SQL Server. The default settings
are usually sufficient and rarely require modifications.

Table 9–8 lists and describes the network connection-related parameters and values.

Table 9–7 RPC-related Parameters, and Values

Parameter Description Value

RPC_ERROR_SLEEP The time interval, in seconds, of the RPC
retries when an error condition other than
database deadlock is encountered (for
example, transaction logs full). This time
interval should be large enough to allow
the system administrator time to determine
the problem and resolve the problem
between retries.

Default = 300

RPC_RETRY_COUNT The number of times the RPC is retried by
the RPC API functions. If after the number
of retries the RPC is still unsuccessful, the
calling function returns a failure condition,
and the API issues a system event.

Default = 5

RPC_RETRY_SLEEP The sleep interval, in seconds, for the RPC
retries for the database deadlock condition.

Default = 1

RPC_SHOW_OUTGOING_
PARAMS

N/A Default = 1

Table 9–8 Network Connection-Related Parameters, and Values

Parameter Description Value

MAX_CONN_PER_CONTEXT The number of Client and Server (CS)
library connections that may be opened per
context. It may be specified if using a
global context; that is, USE_GLOBAL_
CONTEXT = 1.

Default = 25

MAX_CONNECT_RETRY The maximum number of retry attempts an
application will perform when attempting
to asynchronously connect to a TCP/IP
server using the UNIX connect() API call.
These retries may be necessary as the
application can be interrupted during the
connection attempt. This parameter is
generally not set to a value other than its
default.

Default = 10

SOCK_REUSEADDR Boolean flag. If set to 1, will set the re-use
address TCP/IP option on a socket when
acting as a TCP/IP socket listener.

Default = 1

USE_GLOBAL_CONTEXT This specifies whether each Client
(CT)-Library connection should use the
global context or allocate a context for each
connection. See also MAX_CONN_PER_
CONTEXT.

Default = 0

Common API Configuration Parameters

9-8 ASAP Server Configuration Guide

Application Diagnostics-Related Parameters
There are two sets of files maintained by ASAP applications for monitoring and
troubleshooting purposes: log files and diagnostic files. These files are created by
ASAP daily or whenever an application starts up.

Table 9–9 lists and describes the application diagnostics-related parameters and
values.

Table 9–9 Application Diagnostics-Related Parameters, and Values

Parameter Description Value

CONNECT_ERROR_
LOGGING

Boolean flag. If set to 1, causes applications to
log messages to their diagnostic files upon
unsuccessful connection attempts to servers.

Default = 0

DIAG_FILE_COUNT When the current diagnostic file associated with
an ASAP server reaches its maximum size (see
MAX_DIAG_FILE), it creates a new current
diagnostic file, and rolls over the old diagnostic
file with a time stamped files. The DIAG_FILE_
COUNT parameter specifies the number of time
stamped diagnostic files to maintain in addition
to the current file.

In addition, if the ASAP server or process
associated with the diagnostic files stops and
restarts, ASAP creates new time stamped files,
keeping the old time stamped files without
updating them.

Default = 1

DIAG_LINE_FLUSH Boolean flag. Determines whether the
diagnostic file output is flushed to disk at the
end of each diagnostic line. If set to 0, the
diagnostics are only flushed to the diagnostic
file if a PROGRAM or SANITY level diagnostic
message is written, or if the I/O buffer is
flushed by the operating system. You can
change this diagnostic parameter by either
adjusting this configuration parameter or
changing the diagnostic line flush flag of the
application server by using the diag_line_
flush() API RPC/Registered Procedure to the
particular server.

Default = 0

This option should be set to 0 in a
production environment because
the option causes considerable
performance overhead in disk
activity.

MAX_DIAG_FILE Application process diagnostic file size in
megabytes. It is located in the
$LOGDIR/yymmdd directory, where $LOGDIR is
$ASAP_BASE/DATA/logs. After this file size is
reached, this file can be copied to a time
stamped file and a new diagnostic file opened.
You can modify the diagnostic file growth by
either adjusting this configuration parameter or
modifying the diagnostic level of the
application server (statically in the Control
database or, if a server process, dynamically by
means of the diag_level() API RPC/Registered
Procedure). For more information on diagnostic
levels, see ASAP System Administrator's Guide.

Default = 3

OS_ERROR_LOGGING Boolean flag. If set to 1, logs operating system
client messages to the diagnostic file. This
should be set to 0 in most implementations.

Default = 0

Server API Configuration Parameters

Configuration Parameters 9-9

Self-Balancing Binary Tree-Related Parameters
The following parameter is referenced whenever an application process initializes.

Table 9–10 lists and describes self-balancing binary tree-related parameters and values.

Server API Configuration Parameters
This section describes the server API configuration parameters.

Sybase Open Server Parameters
The Sybase Open server configuration parameters can be configured by the server API
as the Open server application is starting. The default settings are sufficient for most
requirements. However, some specialized application servers may require the tuning
of specific parameters.

Table 9–11 lists and describes Sybase open server parameters and values.

Table 9–10 Self-Balancing Binary Tree-Related Parameters, and Values

Parameter Description Value

SBT_ELEMENTS_PER_NODE The number of self-balancing elements per
node within the ASAP self-balancing
binary trees. This should generally not be
set to a value other than the default. This
parameter is referenced whenever an
application process initializes.

Default = 3

Table 9–11 Sybase Open Server Parameters, and Values

Parameter Description Value

API_CHECK Boolean flag. If set to 1, it performs validation of Open server
library arguments and state checking.

Default = 0

ATTN_ON_
DISCONNECT

Boolean flag. If set to 1, it calls the Open server's SRV_
ATTENTION handler when a client disconnects.

Default = 0

DEFERRED_
QUEUE_SIZE

Open server deferred event queue size. Default = 1024

LOG_SIZE The maximum size, in bytes, of the Open server log file. Open
server moves the current contents of the log file to
currentfilename_old and truncates the current log to 0 bytes.

Default = 4194304

The numbers and sizes
of the ASAP diagnostic
files are controlled by
the MAX_DIAG_FILE
and DIAG_FILE_SIZE
configuration
parameters respectively.

Server API Configuration Parameters

9-10 ASAP Server Configuration Guide

MAX_
CONNECTIONS

This parameter is used for tuning. The maximum number of
physical network client connections the Open server accepts. It
should be set high enough to accommodate all connections from
other ASAP servers in addition to ad hoc connections from client
programs such as sqlplus. The actual number of connections
possible depends on the platform dependencies and resources.

This parameter sets the maximum number of client connections
that are accepted by a component server. The actual number is
based on platform dependencies and resources. The configured
value of MAX_CONNECTIONS must be high enough to
accommodate all connections from other ASAP servers, as well
as spontaneous connections from client-built programs, such as
sqlplus.

If the configured number of connections is exceeded, the Open
server returns error message 16133.

 > > 173815059:1:PROG:Server Info:1039:
main.cSERVER: Information: Error 16133 Severity 10 State
'Configuration of 10 connections has been exceeded,
connection rejected'

You can run the following sample code from the diagnostic
directory to locate error messages in the log file:

export TARGET= "Error 16133"
echo "searching for $TARGET (MAX_CONNECTIONS)"
grep "$TARGET" *.diag*

Changes in the value of MAX_CONNECTIONS affect the MAX_
MSGQUEUES and the MAX_SERVER_PROCS parameters.

Default = 30

Recommended initial
values are based on
system size:

■ Small : 30

■ Medium : 50

■ Large : 80

MAX_
MSGQUEUES

The number of thread message queues available to allocate when
the Open server starts up. This number does not include message
queues created for internal use by the Open server run-time
system. Message queues are created for each thread spawned by
a component and for each client connection. The configured
value of MAX_MSGQUEUES must be greater than or equal to
the sum of the values of MAX_THREADS and MAX_
CONNECTIONS.

Changes in the value of this parameter affect the MAX_
MSGPOOL parameter.

Larger values are required only for the SARM section of the
configuration file. The small value can be used for all other
ASAP servers regardless of the size of the ASAP system.

Default = 278

Recommended initial
values are based on
system size:

■ Small : 278

■ Medium : 428

■ Large : 628

MAX_MSGPOOL This parameter is used for tuning. The number of message
structures available to the Open server. This parameter sets the
number of message structures to be allocated at the time of start
up. This number must always be greater than or equal to the sum
of MAX_MSGQUEUES times 256.

Default = 71168.

Recommended initial
values are based on
system size:

■ Small : 71168

■ Medium : 109568

■ Large : 160768

Table 9–11 (Cont.) Sybase Open Server Parameters, and Values

Parameter Description Value

Server API Configuration Parameters

Configuration Parameters 9-11

MAX_MUTEXES The number of mutually exclusive semaphores available to the
application.

Determine this number as follows:

110 + the number of NEPs + the number of SRPs + MAX_WO_
MGRS (refer to ASAP.cfg).

At a minimum, the number of mutexes would be 117 (110 + 1
NEP + 1 SRP + 5 work order managers). In this case, Oracle
recommends that you accept the default. If you are operating
multiple NEPs, SRPs, and work order managers, you may want
to increase the default value.

See ASAP Developer's Guide for information on mutexes.

Default = 128

MAX_REMBUF The window size used in server-to-server communications and
indicates the maximum number of packets that can be
outstanding on a logical subchannel before an acknowledgment
is required.

Default = 15

MAX_SERVER_
PROCS

This parameter is used for tuning. This parameter sets the
maximum number of thread IDs for the application server. The
server API maintains an array of administrative thread
information for each element, which is indexed using thread IDs.
If the thread IDs in the server exceed the value of MAX_
SERVER_PROCS, the server terminates. Set MAX_SERVER_
PROCS equal to MAX_THREADS plus MAX_CONNECTIONS
plus MAX_REMSITES plus 68 (the number of reserved Sybase
internal threads).

Larger values are required only for the SARM section of the
configuration file. The smaller value can usually be used for all
other ASAP servers regardless of the size of the ASAP system.

In addition, you can set the Shrink Frequency value to non-zero
(to allow shrinking) for the RPCConnectionPool in WebLogic
Server. See "Socket Connections" to see how to access the
Configuration tab. The Shrink Frequency parameter can be
found on the Connection Pool sub-tab, under Advanced.

In the WebLogic Server configuration, set RPC connection to
SARM from dynamic control to static connection to disable
shrinking.

Default = 512

Table 9–11 (Cont.) Sybase Open Server Parameters, and Values

Parameter Description Value

Server API Configuration Parameters

9-12 ASAP Server Configuration Guide

MAX_THREADS This parameter is used for tuning. The maximum number of
threads that may be spawned in the application (including the
server API). It does not include threads spawned internally
within the Sybase Open server library.

The value of MAX_THREADS should be less than or equal to the
value of MAX_SERVER_PROCS.

This parameter sets the maximum number of threads in the
ASAP component.

Larger values are only required for the SARM section of the
configuration file. Small values can usually be used for all other
ASAP component servers regardless of the size of the ASAP
system.

The value of MAX_THREADS must be greater than MAX_
CONNECTIONS because each incoming client connection will
spawn a thread.

If the number of threads that the ASAP server attempts to spawn
exceeds the configured value of this parameter, then the Open
server returns the following error message 16115:

>> 173532841:7:PROG:Server Info :1039:
main.c
SERVER: Information: Error 16115 Severity 10 State 0
'Could not start thread'
>> 173532843:7:SHUT:System Event :158: asc_
spawn.c
ASAP System Event: SYS_TERM
Error: Unable to Spawn Service Thread WO Prov 1 -
Insufficient Resources

You can run the following sample code from the diagnostic
directory to locate error messages in the log file:

export TARGET= "Error 16115"
echo "searching for $TARGET (MAX_THREADS)"
Grep "$TARGET" *.diag*

Changes in the value of MAX_THREADS affect the MAX_
MSGQUEUES and the MAX_SERVER_PROCS parameters.

Default = 150

Recommended initial
values are based on
system size:

■ Small : 150

■ Medium : 300

■ Large : 500

MAX_
USEREVENTS

The maximum number of user events that an Open server may
define. These are not generally used in ASAP applications.

 Default = 0

MAX_REMSITES The maximum number of Open server site handlers that can run
at a time. Each site handler can support multiple connections to a
single remote SQL Server. When a remote server attempts to log
into the Open server and there are no available site handlers, the
connection request fails.

Default = 10

NET_BUF_SIZE The maximum size of the network I/O buffer to be used by client
applications. The actual size of the network buffer used is
determined at login time. If a smaller size is requested, Open
server will not resize the memory buffer.

Default = 2048

NET_TRACE_FILE File to which Sybase Net library will write trace information if so
configured.

Default = NULL

PRE_EMPTIVE Boolean flag. If set to 1, it causes Open server to use pre-emptive
thread scheduling. Support for pre-emptive scheduling is
platform-specific.

Default = 0

SRV_ATTENTION N/A Default = 0

Table 9–11 (Cont.) Sybase Open Server Parameters, and Values

Parameter Description Value

Server API Configuration Parameters

Configuration Parameters 9-13

Sybase Open Server Debugging Trace Flag Parameters
The following configuration parameters are included to facilitate dynamic enabling of
the Open server diagnostics within the Open server library. They are referenced only
when you require detailed debugging output. Therefore, the default values for these
flags are sufficient in most environments.

Table 9–12 lists and describes the Sybase Open Server debugging trace flag parameters
and values.

STACK_SIZE The size (in MB) of the stack allocated for each thread. This size
can be increased should a thread in an Open server run out of
stack space. Increasing the thread stack size will impact the
amount of memory required by the server.

Default = 256000

TIME_SLICE The number of clock ticks an active thread consumes before the
time slice callback routine is called. The callback routine for this
state transition is called when a thread has run for a time slice
determined by the TIME_SLICE, VIRTUAL_CLK_RATE, and
VIRTUAL_TIMER Open server properties.

Default = 10

TRUNCATE_LOG Boolean flag. If set to 1, it causes the Open server to truncate its
server log file upon start up.

Note: It does not affect the ASAP diagnostic file.

Default = 0

USE_SRV_LANG Boolean flag. If set to 1, it causes the Open server's national
language to be used for Open server error messages. If set to 0,
the client's national language is used for error messages.

Default = 0

VIRTUAL_CLK_
RATE

The Open server virtual clock rate, in microseconds per tick. Default = 1000000

VIRTUAL_TIMER Boolean flag. If set to 1, it enables the Open server virtual timer. Default = 0

Table 9–12 Sybase Open Server Debugging Trace Flag Parameters, and Values

Parameter Description Value

SRV_TR_ATTN Boolean Trace flag. If set to 1, the Open
server writes information about attention
signals from the client to standard error
and to the server logfile.

Default = 0

SRV_TR_DEFQUEUE Boolean Trace flag. If set to 1, the Open
server writes information about deferred
queues to standard error and the server log
file.

Default = 0

SRV_TR_EVENT Boolean Trace flag. If set to 1, the Open
server writes information about event
information to standard error and the
server log file.

Default = 0

SRV_TR_MSGQ Boolean Trace flag. If set to 1, the Open
server writes information about message
queues to standard error and the server
logfile.

Default = 0

SRV_TR_NETDRIVER Boolean Trace flag. If set to 1, the Open
server writes information about network
drivers to standard error and the server log
file.

Default = 0

Table 9–11 (Cont.) Sybase Open Server Parameters, and Values

Parameter Description Value

Application Server Memory Management Parameters

9-14 ASAP Server Configuration Guide

Application Server Memory Management Parameters
The following parameters facilitate the configuration of the application server memory
management. To use this memory management capability, you must use the memory
management API routines (in particular, the creation and use of memory pools)
provided as part of the server API.

Table 9–13 lists and describes the application server memory management parameters
and values.

SRV_TR_NETREQ Boolean Trace flag. If set to 1, the Open
server writes information about network
requirements to standard error and the
server log file.

Default = 0

SRV_TR_NETWAKE Boolean Trace flag. If set to 1, the Open
server writes information about network
wake-ups to standard error and the server
log file.

Default = 0

SRV_TR_TDSDATA Boolean Trace flag. If set to 1, the Open
server writes Tabular Data Stream (TDS)
packet contents in hexadecimal (HEX) and
ASCII to standard error and the server
logfile. This displays the actual data
between the client and the server.

Default = 0

SRV_TR_TDSHDR Boolean Trace flag. If set to 1, the Open
server writes protocol packet header
information (such as packet type and
length) to standard error and the server
logfile.

Default = 0

Table 9–12 (Cont.) Sybase Open Server Debugging Trace Flag Parameters, and Values

Parameter Description Value

Application Server Memory Management Parameters

Configuration Parameters 9-15

Client Library Parameters
The APPL_POOL_SIZE and CONTROL_POOL_SIZE parameters relate to various
Client library attributes that can be specified within the application server.

Table 9–13 Application Server Memory Management Parameters, and Values

Parameter Description Value

MEMORY_LOGGING Status flag. Determines whether to create
diagnostic memory management RPCs
(mem_usage() and mem_stats()) in the
server as well as the degree of memory
management diagnostic logging to be
performed while the server is running.

Default = 0

The values are:

■ 0 – No logging and no RPCs

■ 1 – Install RPCs but no logging

■ 2 – Install RPCs and provide
logging of all memory
management outside the server
initialization (that is, in steady
state)

■ 3 – Install RPCs and provide
logging of all memory
management activity for the
duration of the server

ASC_BLOCK##_POOL Number of byte memory blocks to allocate
within the memory pool for use by the
application server.

is a variable that represents: 16, 32, 64,
and so forth, up to 1048576.

The ASAP.cfg file defines the following
default values:

■ ASC_BLOCK16_POOL= 1024
Num of 16 byte memory blocks
in mem pool

■ ASC_BLOCK32_POOL= 1024
Num of 32 byte memory blocks
in mem pool

■ ASC_BLOCK64_POOL= 1024
Num of 64 byte memory blocks
in mem pool

■ ASC_BLOCK96_POOL= 1024
Num of 96 byte memory blocks
in mem pool

■ ASC_BLOCK128_POOL= 512
Num of 128 byte memory blocks
in mem pool

■ ASC_BLOCK256_POOL= 256
Num of 256 byte memory blocks
in mem pool

■ ASC_BLOCK512_POOL= 128
Num of 512 byte memory blocks
in mem pool

■ ASC_BLOCK1024_POOL= 64
Num of 1024 byte memory
blocks in mem pool

■ ASC_BLOCK2048_POOL= 32
Num of 2048 byte memory
blocks in mem pool

■ ASC_BLOCK4096_POOL= 16
Num of 4096 byte memory
blocks in mem pool

■ ASC_BLOCK8192_POOL= 8
Num of 8192 byte memory
blocks in mem pool

Application Server Memory Management Parameters

9-16 ASAP Server Configuration Guide

The number of client library connections that the application server opens to its
primary application database in the APPL_SQL_SERVER SQL Server with user APPL_
USERID is calculated based on the number of threads running in the application.

Table 9–14 lists and describes the client library parameters and values.

Note: ASAP no longer supports DB library as a client API.

Table 9–14 Client Library Parameters, and Values

Parameter Description Value

CONTROL_
POOL_SIZE

This parameter is used for tuning. This parameter sets the number of
CT-Library connections to the Control database.

If the configured number is not sufficient, the following error
message is logged:

>> 181540.988:41:PROG:ASC cppalloc :153: ctlib.c
Waiting for Connection from 'Control Pool', (2 In Use).
Auto-tuning will increase connection pool if problems
persist.

You can run the following sample code from the diagnostic directory
to locate error messages in the log file:

export TARGET= "Waiting for connection from 'Control Pool'"
echo "searching for $TARGET (APPL_POOL_SIZE)"
grep "$TARGET" *.diag*

Default = 2

Recommended initial
values are based on
system size:

■ Small : 5

■ Medium : 7

■ Large : 10

APPL_POOL_
SIZE

This parameter is used for tuning. This parameter sets the number of
CT-Library connections to the component database that you are
tuning.

Larger system sizes are required only for the SARM section of the
configuration file. The smaller value can usually be used for all other
ASAP servers regardless of the size of the ASAP system.

If the configured number is not sufficient, the following error
message is logged:

>> 181540.988:41:PROG:ASC cppalloc :153: ctlib.c
Waiting for Connection from 'Application Pool', (2 In Use).
Auto-tuning will increase connection pool if problems
persist.

You can run the following sample code from the diagnostic directory
to locate error messages in the log file:

export TARGET= "Waiting for connection from 'Application
Pool'"
echo "searching for $TARGET (APPL_POOL_SIZE)"
grep "$TARGET" *.diag*

Default = 2

Recommended initial
values are based on
system size:

■ Small : 5

■ Medium : 25

■ Large : 100

ASAP_IS_
ALIVE_
INTERVAL

The Control server can also be configured to issue "Keep Alive"
notifications to an external operations center signifying that ASAP is
functioning correctly. The absence of this periodic notification may
indicate an ASAP outage.

ASAP_IS_ALIVE_INTERVAL is the check-time interval, in seconds,
during which application servers validate existing connections to the
SQL Server. This parameter also determines the time period between
connection retries between application servers in the event a server is
unavailable for some reason.

Default = 60

Application Server Memory Management Parameters

Configuration Parameters 9-17

DB Library Parameters
This section describes the DB library parameters.

Table 9–15 lists and describes the DB library parameters and values.

Poll Management Parameters
The following parameters are used by the poll manager thread in the server API,
which provides thread-safe polling functionality. The poll manager thread monitors
the network connections on behalf of all the threads in the ASAP application server.
The server API call, ASC_poll(), sends poll requests to the poll manager and returns
the same return values as the native, srv_poll() Sybase call.

Table 9–16 lists and describes the poll management parameters and values.

Database Administration Parameters
You can use the following parameters to configure various aspects of the database
administration thread in each application server. This calls a stored procedure in the
database and passes it a configurable parameter before recompiling all the stored
procedures in that application server's default database (the database defaulted to
using the APPL_SQL_SERVER and APPL_USERID login information). It also updates
the SQL Server statistics for all indexes on user-defined tables in the database.

Table 9–17 lists and describes the DB_ADMIN_ON parameter and values.

Table 9–15 DB Library Parameters, and Values

Parameter Description Value

DBERROR_TIME_
INTERVAL

Threshold time frame. See also NUM_DBERROR_ALLOWED. Default = 60

MAX_DBPROCS The maximum number of database processes per application. Default = 25

NUM_DBERROR_
ALLOWED

DB library error threshold. If more than this number of DB library
errors occur in a specified time interval, the application server will stop.
This is to avoid recursive error situations. See also DBERROR_TIME_
INTERVAL.

Default = 40

Table 9–16 Poll Management Parameters, and Values

Parameter Description Value

MAX_CONNECTIONS_TO_POLL The initial number of network connections for which
the poll manager polls. This configuration parameter is
used to determine the initial poll list size. This list is
automatically resized as additional connections are
added to the poll list.

Default = 1

MAX_POLL_REQUESTS This specifies the maximum initial number of poll
requests to the server API poll manager thread at one
time. If more than this number of requests are received,
the poll manager automatically resizes the poll request
list.

Default = 1

MAX_POLL_RETRY This is the number of retries that the server API poll
manager will attempt should the Sybase srv_poll() call
be interrupted in the ASC_poll() server API call.

Default = 10

Application Server Memory Management Parameters

9-18 ASAP Server Configuration Guide

IPC Diagnostic Parameters
This section describes the IPC diagnostic parameters.

Table 9–18 lists and describes the IPC Diagnostic parameters and values.

Security-Related Parameters
The following parameters describe security-related parameters.

Table 9–19 lists and describes the Security-Related parameters and values.

Table 9–17 DB_ADMIN_ON Parameter and Values

Parameter Description Value

DB_ADMIN_ON Boolean flag. If set to 1, it enables the database administration thread
operation in the application server. This can be disabled in particular
servers in situations where multiple servers share the same application
database (for example, multiple NEPs) and then only one server is
required to perform this database administration.

Default = 0

Table 9–18 IPC Diagnostic Parameters and Values

Parameter Description Value

LANGUAGE_
DUMP_ON

Boolean flag. If set to 1, it determines whether the language buffer being
transmitted or received should be logged as a low-level diagnostic in the
server's diagnostic log file. The primary use is for debugging such
language buffers, and is therefore, generally used in non-production
environments.

Enables the logging of diagnostic details of language requests being
transmitted to and from application servers.

Default = 1

REGISTERED_
PROCS

Defines the behavior of a particular API call to create a registered/remote
procedure call in an application server. The parameters enable diagnostic
output of the RPCs and language requests being transmitted to and from
application servers.

Boolean flag. If set to 1, it determines whether procedures added with the
add_appl_rpc() API call are to be added as Sybase registered procedures
or as Sybase remote procedures. The advantage to adding them as
registered procedures is that there is less overhead in determining the
procedure handler because the Sybase Open server library searches the
registered procedure handlers before the remote procedure handlers. The
disadvantage of using registered procedures is that they do not allow
optional parameters. Therefore, any such procedures should be added
using the API function, add_rpc(), which adds them as remote
procedures regardless of this configuration setting. In general, to register
a procedure with fixed number of parameters as a registered procedure,
call ASC_define_rpc(). To register a procedure with variable number of
parameters as an RPC, call add_rpc().

Default = 0

Client API Configuration Parameters

Configuration Parameters 9-19

High-Availability Parameters
The following parameters identify the system and territory used in ASAP.

Table 9–20 lists and describes the high-availability parameters and values.

Application Server Performance Parameters
Every application server logs process performance parameters which are maintained
in memory within the application. The parameters are also written to the database at
an interval configured using the PERF_POLL_PERIOD parameter.

Table 9–21 lists and describes the application server performance parameter and value.

Client API Configuration Parameters
This section describes client API configuration parameters.

Client Application Signal Handling
This section describes client application signal handling.

Table 9–22 lists and describes the client application signal handling parameter and
value.

Table 9–19 Security-Related Parameters and Values

Parameter Description Value

CLIENT_SECURITY_ON Determines whether client processes
connecting to server processes have their
user IDs and passwords verified against
the SQL Server (APPL_SQL_SERVER SQL).
If this connection fails, the client is denied
access to the server.

Default = 0

NE_DIALOG_OFF Controls the NE dialog message in the
diagnostic file.

Default = 0

Possible values are:

■ 0 – NE dialog messages appear in
the diagnostic file.

■ 1 – Secures the NE dialog. No NE
dialog messages appear in the
diagnostic file.

Table 9–20 High-Availability Parameters and Values

Parameter Description Value

SYSTEM_NAME Name of the current system. Default = $ASAP_SYSTEM

TERRITORY_NAME Name of the current territory. Default = $ASAP_TERRITORY

Table 9–21 Application Server Performance Parameter and Value

Parameter Description Value

PERF_POLL_PERIOD Time period, in seconds, that the application
servers wait to update the Control database
with periodic performance information
related to the operation of the application
server.

Default = 600

SRP API Parameters

9-20 ASAP Server Configuration Guide

SRP API Parameters
This section describes SRP API parameters.

SARM Connectivity Parameters
This section describes SARM connectivity parameters.

Table 9–23 lists and describes the SARM connectivity parameters and values.

Loopback Testing Parameters
The following parameter provides loopback delay functionality in the SRP upon
reception of work order event notifications.

Table 9–24 lists and describes the loopback testing parameter and value.

Table 9–22 Client Application Signal Handling Parameter and Value

Parameter Description Value

SIG_IGNORED Boolean flag. If set to 1, it instructs the client
application to ignore any received signals that are
not explicitly handled by the application. If set to 0,
reception of such a signal results in the termination
of the client application.

Default = 1

Table 9–23 SARM Connectivity Parameters and Values

Parameter Description Value

DUMP_WO_PATH The location of the dump file for work orders
processed by the SRP Emulator. This parameter
works in conjunction with DUMP_WO_FLAG,
which specifies whether the work orders processed
by the SRP Emulator should be dumped to a dump
file.

 Default = /tmp

MAX_SARM_DRIVER The number of SARM driver threads to spawn
within the SRP library. These threads send orders to
the SARM.

Default = 5

MAX_WO_MGRS The number of work order manager threads to be
started by the SARM.

Default = 5

SARM The logical name of the SARM server to which the
SRP will establish network connections.

Default = $SARM

SRP_SEND_GPARMS Boolean flag. If set to 1, it transmits global
parameters on the order to the SARM as global
parameters. This parameter is provided for
backward compatibility with some existing SRPs.

Default = 1

Table 9–24 Loopback Testing Parameter and Value

Parameter Description Value

WO_MGR_DELAY Artificial loopback time delay which, if not zero, results in a pause for the
configured number of seconds after SRP processes a work order event
notification from the SARM. This is used primarily in testing and should
not be configured in a non-test environment.

Default = 0

SRP API Parameters

Configuration Parameters 9-21

Interpreter Operation
The following parameters relate directly to the operation of the Interpreter State
Tables.

Table 9–25 lists and describes the interpreter operation parameters and values.

SQL Server Connectivity
Use the following parameters to configure the Interpreter's access to the core ASAP
database, which contains the State Tables, the Interpreter's local database (for example,
the NEP database if the Interpreter is running in the NEP), and the number of network
connections to open to each database.

Table 9–26 lists and describes the SQL Server connectivity parameters and values.

Table 9–25 Interpreter Operation Parameters and Values

Parameter Description Value

INSTRUCTIONS_
PER_SLICE

The number of State Table instructions that are consecutively run by the
Interpreter before the Interpreter explicitly suspends the thread to let other
threads run in a non pre-emptive environment. This is generally only a
concern when the Interpreter is running in loopback mode because there is
no I/O that would otherwise suspend the thread.

Default = 10

MAX_STACK_
DEPTH

The maximum depth of the stack in the Interpreter State Tables. For
complicated or recursive state tables, this stack depth size may need to be
increased to accommodate the largest anticipated stack size. Each
Interpreter instance in an application server has its own State Table stack,
and therefore, the memory requirements for each Interpreter is multiplied
by the number of configured Interpreters within the application server to
determine process memory requirements. Each unit increase in the stack
depth parameter results in roughly eight extra bytes per Interpreter. If an
NEP has 10 Interpreters or command processors and defines its stack
depth at 100, the memory requirements would be 8 KB (10 x 100 x 8).

Default = 20

STRING_
LENGTH_CHECK

Boolean flag. If set to 1, it performs extensive checking of the length of
State Table variables. This is useful in situations in which long variables are
being extensively manipulated in State Tables and allows the library to
perform the validation rather than the State Tables themselves.

Default = 0

SWITCH_
OPTIMIZATION

Boolean flag. If set to 1, it enables State Table optimizations to be made to
the State Tables to improve performance. Switch/case/default statements
are load-time compiled into a map that is used when the SWITCH action is
called. In this mode of operation, the CASE values are treated as static
strings and the CASE, DEFAULT, and ENDSWITCH actions are never
called because the SWITCH statements provide all the functionality with
the map. Optimization can be enabled in two ways:

■ Global configuration parameter SWITCH_OPTIMIZATION can be set
to 1.

■ SWITCH_OPT action can be inserted into the State Table as the first
action to provide selective optimization by State Table.

Note: User-defined actions that use the SWITCH_VALUE do not work
when optimization is enabled and will cause compilation errors.

Default = 0

SRP API Parameters

9-22 ASAP Server Configuration Guide

Table 9–26 SQL Server Connectivity Parameters and Values

Parameter Description Value

CORE_SQL_
SERVER

The SQL Server where the core ASAP database resides. This
allows distribution of the core ASAP database to a separate SQL
Server, if required. Maximum length is eight alphanumeric
characters.

Default = $DSQUERY

CORE_USERID The user ID for CORE_SQL_SERVER. Default = $SARM_USER

MAX_CMD_
DBPROCS

This parameter sets the number of connections to the Interpreter
database, where the State Tables use additional tables and stored
procedures.

If the configured number is not sufficient, the following error
message is logged:

181540.988:71:PROG:Alloc DBPROC:888: cmd_utils.c
Waiting for Command DBPROCESS to become Available

You can run the following sample code from the diagnostic
directory to locate error messages in the log file:

export TARGET= "Waiting for Command DBPROCESS"
echo "searching for $TARGET (MAX_CMD_DBPROCS)"
grep "$TARGET" *.diag*

Default = 1

Recommended initial
values are based on
system size:

■ Small : 1

■ Medium :3

■ Large : 5

MAX_CORE_
CPPROCS

The number of Client library network connections the Interpreter
establishes to the SARM database. These connections can then be
accessed by action functions within the Interpreter in order to
interact with the SARM database. The NEP library uses these
connections to write information directly to the SARM database.
The SRP library uses these connections to access data directly in
the SARM database.

Default = 2

MAX_CORE_
DBPROCS

This parameter sets the number of connections to the SARM
database.

If the configured number is not sufficient, the following error
message is logged:

111921.013:42:PROG:Alloc DBPROC :904: cmd_utils.c
Waiting for Core DBPROCESS to become Available

You can run the following sample code from the diagnostic
directory to locate error messages in the log file:

export TARGET= "Waiting for Core DBPROCESS"
echo "searching for $TARGET (MAX_CORE_DBPROCS)"
grep "$TARGET" *.diag*

Default = 2

Recommended initial
values are based on
system size:

■ Small : 2

■ Medium :3

■ Large : 5

NEP_SQL_
SERVER

The SQL Server to which the Interpreter provides database
access. For an interpreter in an NEP, this is the SQL Server where
the NEP database resides. For an interpreter within an SRP, this
is the SQL Server where the SRP database resides. Maximum
length is eight alphanumeric characters.

Default = $DSQUERY

NEP_USERID The user ID the Interpreter uses to open network connections to
the SQL Server in order to access the Interpreter database. For an
interpreter in an NEP, this is the NEP user ID. For an interpreter
in an SRP, this is the SRP user ID. The default database for this
user is the location of any tables, stored procedures, etc., required
by the Interpreter in its processing. Maximum length is 20
alphanumeric characters.

Default = $NEP_USER

SRP API Parameters

Configuration Parameters 9-23

State Table Debugger Support
This section describes the State Table debugger support.

Table 9–27 lists and describes the State Table Debugger support parameter and values.

Loopback Support
The following parameters describe how you can configure the Interpreter to run in
loopback mode. They are used primarily in system testing.

Table 9–28 lists and describes the loopback support parameters and values.

Table 9–29 lists all possible NE loopback values according to the values in ASAP.cfg
and tbl_ne_config.

Table 9–27 State Table Debugger Support Parameter and Value

Parameter Description Value

DEBUGGER_ON Boolean flag. You can use the DEBUGGER_ON parameter to enable
the Interpreter State Table debugger. If set to 1, it initializes the
Interpreter debugging facilities. Refer to the relevant ASAP
specification for details about the Interpreter debugger.

Default = 0

Table 9–28 Loopback Support Parameters and Values

Parameter Description Value

LOOPBACK_
DELAY

If the Interpreter is running in loopback mode, this value represents the
number of seconds the interpreter waits before returning a successful Atomic
Service Description Layer (ASDL) status to mimic real run-time conditions.

Note: This is a global parameter over all ASDLs. Specific ASDL settings may be
configured through the ASDL response table in the core database.

Default = 5

LOOPBACK_ON Boolean flag. If set to 1, it denotes the Interpreter loopback operational status.
In addition, the library accesses the ASDL response table in the core database to
determine the post-processing emulation action to take.

If this parameter appears in the global section of the ASAP.cfg file, it sets the
global loopback status. Alternatively, it can be put within NEP server sections
to manage loopback settings for each NEP server independently.

If there is no LOOPBACK_ON parameter configured in ASAP.cfg, each NEP
server assumes that LOOPBACK_ON is not set (that is, LOOPBACK_ON=0)
unless it is specified to be on for that NEP server.

Using asap_utils option 37, you can dynamically set the value of LOOPBACK_
ON for individual NEs. Changes made using asap_utils take effect without the
need to restart the ASAP server. You can also query the current settings of
LOOPBACK_ON.

See options 36 and 37 in "NEP Utilities".

A LOOPBACK_ON field is located in the SARM database table tbl_ne_config to
control the LOOPBACK mode for each NE individually; There are three
possible values for the field:

■ Y – NE is set to LOOPBACK ON

■ N – NE is set to LOOPBACK OFF

■ G – NE's loopback mode depends on the LOOPBACK_ON parameter in
ASAP.cfg

Default = 1

NEP API Parameters

9-24 ASAP Server Configuration Guide

NEP API Parameters
This section describes the NEP API parameters.

ASDL Processing Parameters
The following parameters are used to configure specific aspects of the NEP ASDL
processing.

Table 9–30 lists and describes the ASDL processing parameter and values.

Connectivity Parameters
The following parameters relate directly to the NEP connectivity logic.

Table 9–31 lists and describes the ASDL processing parameter and values.

Table 9–29 NE Loopback Values

ASAP.cfg
(LOOPBACK_ON)

tbl_ne_config
(loopback_on)

NE LOOPBACK_ON
ON/OFF

0 or Not defined G OFF

1 G ON

0 or Not defined Y ON

1 Y ON

0 or Not defined N OFF

1 N OFF

Table 9–30 ASDL Processing Parameters and Values

Parameter Description Value

ASAP_STATS_
ON

Boolean flag. If set to 1, the NEP saves ASAP statistics logged by the State
Tables in the core database statistics table.

Default = 0

DEFAULT_
ASDL_ESTIM

The default estimate (in seconds) for an ASDL to be processed. This value
is used by the NEP to initially estimate the processing times of ASDLs in
the NEP.

Default = 10

NE_CMD_LOG_
ON

Boolean flag. If set to 1, it indicates whether the NEP should save each
Man-Machine Language (MML) command issued by the SEND State Table
action in the core database for user viewing.

Default = 1

Table 9–31 ASDL Processing Parameters and Values

Parameter Description Value

CONNECT_
FAIL_DELAY

Time interval, in seconds, the NEP waits between login retries after
establishing a successful connection to an external system.

Default = 120

NEP_
MAINTENANCE
_INTERVAL

Time interval, in seconds, before the NEP retries the NE connection after
the NEP or State Tables have determined that the NE is in maintenance
mode.

Default = 600

NEP_PORT_
BIND_
INTERVAL

Time interval, in seconds, the NEP waits between attempts to bind to an
NEP port in order to establish a connection to an external system. This
generally occurs when there are fewer ports available than connection
requests and the bind attempt fails. In such circumstances, the binding
operation is retried on the assumption that a port will become available.

Default = 60

NE Communication API Parameters

Configuration Parameters 9-25

Switch Direct Parameters
The following parameters relate directly to the NEP support for Switch Direct
processing.

Table 9–32 lists and describes the switch direct parameters and values.

NE Communication API Parameters
This section describes the NE communication API parameters.

Device Driver Support
The following parameters are used to specify the various device drivers that are
licensed to the client.

Table 9–33 lists and describes the device driver support parameters and values.

NEP_PORT_
CONNECT_
INTERVAL

Time interval, in seconds, between primary connection attempts to an
external system. If the NEP is requested to establish a primary connection
and that connect attempt fails, this is the time interval the NEP will wait
between attempts to establish the primary connection.

Default = 60

PORT_ENABLE_
TIMER

The time interval, in seconds, after the disabling of an NEP port that the
NEP will automatically re-enable the port. A port can be disabled by the
NEP if the connect attempt to the external system fails. This avoids manual
intervention to re-enable the port in such circumstances.

Default = 600

SARM The logical name of the SARM server to which the NEP opens network
connections.

Default = $SAR
M

Table 9–32 Switch Direct Parameters and Values

Parameter Description Value

NEP_HOST_
IPADDR

This is the NEP IP address upon which the NEP is running. It must be set
to support Switch Direct functionality. See also SWD_SESSIONS_
SUPPORTED.

Default =
$NEP_HOST_
IPADDR

NEP_HOST_
NAME

Host name of the machine on which the NEP is running. See also SWD_
SESSIONS_SUPPORTED.

Default = $NEP
_HOST_NAME

SWD_
SESSIONS_
SUPPORTED

Boolean flag. If set to 1, it enables switch direct functionality in the NEP. Default = 0

Table 9–33 Switch Direct Parameters and Values

Parameter Description Value

DCE_IF_
SUPPORTED

Boolean flag. If set to 1, it enables the DCE option. Default = 1

FTP_IF_
SUPPORTED

Boolean flag. If set to 1, it enables the FTP device driver in the
communications interface.

Default = 1

LDAP_IF_
SUPPORTED

Indicates whether LDAP is supported or not. Default = 1

SERIAL_IF_
SUPPORTED

Boolean flag. If set to 1, it enables the serial device driver in the
communications interface.

Default = 1

Table 9–31 (Cont.) ASDL Processing Parameters and Values

Parameter Description Value

NE Communication API Parameters

9-26 ASAP Server Configuration Guide

Terminal Communication Support
The MAX_GR_CONNECTIONS and MPM_READ_BUF_SIZE parameters are required
if the communication to the NE is terminal-based.

Table 9–34 lists and describes the terminal communication support parameters and
values.

Serial Device Driver Support
This section describes the serial device driver support.

Table 9–35 lists and describes the serial device driver support parameters and values.

SNMP_IF_
SUPPORTED

Boolean flag. Specifies whether the NEP SNMP Option should
be enabled. If set to 1, it enables the NEP SNMP option.

Default = 0

SOCKET_IF_
SUPPORTED

Boolean flag. If set to 1, it enables the TCP/IP socket device
driver in the communications interface.

Default = 1

TELNET_IF_
SUPPORTED

Boolean flag. If set to 1, it enables the TCP/IP telnet device
driver in the communications interface.

If telnet is supported, the ALLOW_TELNET_EXTENDED_
CHAR_SET Boolean flag specifies whether to print extended
ASCII characters.

Default = 1

Possible values are:

■ 1 – All characters
(1-255) will print
except the NULL
character.

■ 0 – Only standard
ASCII characters
(32-127) are printable.

X25_IF_
SUPPORTED

Boolean flag. If set to 1, it enables the generic device driver in
the communications interface.

Default = 1

Table 9–34 Terminal Communication Support Parameters and Values

Parameter Description Value

MAX_GR_
CONNECTIONS

Identifies the maximum number of connections that the
Generic Router (GR) thread will be polling (including the
connection used by the command processors to communicate
with the GR). This parameter is used by the GR to set up the
initial data structures for polling. If more command processor
connection requests are received, the queue is automatically
resized.

Default = 20

MPM_READ_
BUF_SIZE

Specifies the size of the buffer, in bytes, used by the GR thread
to read data from terminal based ports. This value can be tuned
depending upon the length of the communication.

Default = 512

Table 9–35 Serial Device Driver Support Parameters and Values

Parameter Description Value

IGNORE_
MODEM_ST

Boolean flag. If set to 1, it instructs the serial device driver to
treat the serial connection as a local direct connection with no
modem control. If set to 0, modem control (dial-up) is
assumed.

Default = 0

Table 9–33 (Cont.) Switch Direct Parameters and Values

Parameter Description Value

NE Communication API Parameters

Configuration Parameters 9-27

Generic EDD API Parameters
An external device driver (EDD) is a client application that resides outside the NEP
and provides the communication mechanism with external systems. An EDD links in
the generic EDD API, libgedd, as well as the client API, libclient, and the common API,
libasc.

Table 9–36 lists and describes the generic EDD API parameters and values.

CSOL API Parameters
The following parameters are used by the CSOL library Work Order Query
component:

Table 9–37 lists and describes the CSOL API parameters and values.

Note: These parameters are only available to Solaris based ASAP
installations when you install the optional SNMP component. For
more information about installing this component, see the ASAP
Installation Guide.

Table 9–36 Serial Device Driver Support Parameters and Values

Parameter Description Value

HOST_NAME The host name of the machine that the NEP (that the EDD is
communicating with) is on.

Default = $HOST_NAME

IO_TIMEOUT The I/O timeout, in seconds, the EDD waits before timing out
from an I/O write operation to the NEP.

Default = 180

SERVER_
IPADDR

The IP address of the host machine upon which the EDD is
listening for incoming connections.

Default = $SERVER_
IPADDR

SERVER_PORT The IP port number upon which the EDD is listening for
incoming connections from the NEP.

Default = $SERVER_PORT

SNMP_VERSION Specifies the SNMP version, which will be used for the current
EDD. Available versions are V1, V2C, V3.

Default = V1

Table 9–37 CSOL API Parameters and Values

Parameter Description Value

MAX_QUERY_
RESULTS

A limiting parameter on query result sets. Query results for
work orders, CSDL history responses, ASDL history responses
and such are limited to this configurable maximum so as not to
overload the caller with a potentially large result set. Large
result sets can require a lot of memory and CPU resources to
maintain and manage.

 Default = 250

The default value of 250 is
also the maximum value.

QUERY_POOL_
SIZE

Number of database connections to the query database to
maintain in the connection pool. The number of simultaneous
work order queries supported by the database. The queries
exceeding the number will wait until a database connection is
available.

Default = 7

QUERY_SQL_
SERVER

Name of the database server, either Sybase SQL Server or an
Oracle database instance, where the QUERY_USERID is
located.

Default = $DSQUERY

QUERY_USERID Database user ID for the C++ library Work Order query
component. Normally this is the login name for the SARM
database.

Default = $SARM_USER

NE Communication API Parameters

9-28 ASAP Server Configuration Guide

Auditing Level Parameter
This section describes the auditing level parameter.

Table 9–38 lists and describes the auditing level parameter and values.

WebLogic Server Parameters
This section describes the WebLogic server parameters.

Table 9–39 lists and describes the WebLogic server parameters and values.

Table 9–38 Auditing Level Parameter and Value

Parameter Description Value

WO_AUDIT_
LEVEL

ASAP provides the ability to audit all
transactions involved in provisioning a
work order. All work order auditing
messages are stored in an audit table in the
SARM database (tbl_wo_audit). The user
can query work order audit trail records
through Order Control Application (OCA).

Set the audit level for transactions
performed by the work order.

See ASAP Developer's Guide for more
information on ASAP auditing features.

If you want to log error messages (SRQ_
ERROR_EVENTS) for service requests
events (srq_evt) in tbl_srq_log, you must set
WO_AUDIT_LEVEL to 2.

Default = 1

Possible values are:

■ 0 – No auditing occurs. No information is
placed in the tbl_wo_audit table.

■ 1 – There is one audit entry per work order as
it is traced through the system.

■ 2 – Provides all functions of level 1 plus the
audit level entries for all error states.

■ 3 – Provides all functions of level 2 plus it
tracks the provisioning of a work order
through the entire provisioning process. For
example, when the ASDL was started, when it
was placed in the pending queue, where in
the pending queue it is, when it was sent to
the NEP, etc.

■ 4 – All events are inserted into the tbl_wo_
audit table. This level is intended to debug the
work order auditing process.

Audit level 4 should not be used in
production environments because this level of
auditing may result in degraded performance.

Table 9–39 WebLogic Server Parameters and Values

Parameter Description Value

BEA_CONN_
TYPE

Sets the type of connection that the
WebLogic server is expecting (mandatory).

Default = http

 Possible values are:

■ http

■ https

BEA_WLS_
HOST

Sets the host name or IP address of the
system that the WebLogic server is running
on. (mandatory).

Default = localhost

BEA_WLS_
PORT

Sets the port number for the WebLogic
server. (mandatory).

Default = 7001

BEA_WLS_
USER

Sets the name of the WebLogic admin user
login. (mandatory).

Default = system

SECURITY_
SERVICE

Sets the name of the Security Web service
deployed in the WebLogic server.
(mandatory).

Default = security

Control Server Configuration Parameters

Configuration Parameters 9-29

Control Server Configuration Parameters
This section describes the Control server configuration parameters.

Table 9–40 lists and describes the Control server parameter and values.

Control Server Alarm Generation
The Control server controls the generation of system alarms by means of the closely
coupled fork agent client process. The ALARM_RETRIES and ALARM_TIME_
INTERVAL configuration parameters control specific aspects of the alarm program
generation.

Table 9–41 lists and describes the Control server alarm parameters and values.

Control Server Database and File System Monitoring
Table 9–42 lists and describes the Control server database and file system monitoring
parameters and values.

Table 9–40 Control Server Parameter and Value

Parameter Description Value

APPL_
USERID

The primary SQL Server user ID the
application process uses to connect to the
APPL_SQL_SERVER SQL Server. The user
ID defaults to the primary application
database, and therefore, the application
does not need database names because the
definition of the user in the SQL Server
specifies that user's default database.
Maximum length is 20 alphanumeric
characters.

Default = $CTRL_USER

Table 9–41 Control Server Alarm Parameters and Values

Parameter Description Value

ALARM_
RETRIES

The number of times the Control server will
attempt to generate an alarm program.

 Default = 3

ALARM_
TIME_
INTERVAL

The time interval, in seconds, between
unsuccessful alarm program generations.

Default = 10

Table 9–42 Control Server Database and File System Monitoring Parameters and Values

Parameter Description Value

DB_MONITOR_
TIME

The time interval, in minutes, when the Control server monitors the
database and logs segment sizes and then issues a system event if
they exceed a predetermined threshold value. This functionality can
be enabled within the Control server by populating the database
threshold monitoring table in the Control database.

Default = 10

FS_MONITOR_TIME The time interval, in minutes, when the Control server monitors the
UNIX file system sizes and issues a system event if they exceed a
predetermined threshold value. This functionality can be enabled
within the Control server by populating the file system threshold
monitoring table in the Control database.

Default = 5

Control Server Configuration Parameters

9-30 ASAP Server Configuration Guide

Fork Agent Process Generation Configuration
You can configure the fork agent to retry process generation a number of times before
returning a failure. The frequency and number of such attempts is determined by the
FORK_ATTEMPTS_INTERVAL and FORK_ATTEMPTS_MAX parameters.

Table 9–43 lists and describes the fork agent process generation configuration
parameters and values.

Control Server Database Administration Parameters
You can use these parameters to configure various aspects of the database
administration thread in each application server. This calls a stored procedure in the
database and passes it a configurable parameter before recompiling all the stored
procedures in that application server's default database (the database defaulted to
using the APPL_SQL_SERVER, and APPL_USERID login information). It also
updates the SQL Server statistics for all indexes on user-defined tables in the database.

Table 9–44 lists and describes the Control Server database administration parameters
and values.

RESTART_
ATTEMPTS

The number of times the Control server attempts to restart an ASAP
application.

Default = 5

RESTART_DELAY The time delay, in seconds, that the Control server waits between
attempts to restart an ASAP application.

Default = 60

RESTART_RESET_
DELAY

The time delay, in seconds, the Control server waits to reset its
counters after the last attempt to restart an ASAP application.

Default = 600

Table 9–43 Fork Agent Process Generation Configuration Parameters and Values

Parameter Description Value

FORK_ATTEMPTS_
INTERVAL

The time interval, in seconds, between process generation attempts. Default = 0

FORK_ATTEMPTS_
MAX

The maximum number of times the fork agent attempts to generate a
new application, either an ASAP application or an alarm program.

Default = 1

MSGSND_RETRIES Controls the number of retries if the submission fails. The Control
server passes messages to the fork agent using message queues. If
the system temporarily cannot submit messages to the queue, the
Control server can be configured to retry the submission.

Changing the MSGSND_RETRIES and MSGSND_RETRY_DELAY
parameters should be done only after diagnostics show that the
Control server stops.

Default = 0

MSGSND_RETRY_
DELAY

Specifies, in milliseconds, the delay between two retries. Default = 5

Table 9–42 (Cont.) Control Server Database and File System Monitoring Parameters and Values

Parameter Description Value

Control Server Configuration Parameters

Configuration Parameters 9-31

SRP Emulator Server Configuration Parameters
The SRP Emulator is a generic SRP used for performance bench marking, system
testing, and the prototyping of new SRPs.

This application server links in libsrp, libinterpret, libcontrol, and libasc. Therefore, it
requires the libsrp, libinterpret, libcontrol, and libasc configuration parameter
definitions in addition to the ones outlined below.

The SRP Emulator Server can have multiple instances of the following:

■ SARM Driver Threads – Configurable with the MAX_SARM_DRIVER
parameter

■ WO Manager Threads – Configurable with the MAX_WO_MGRS parameter

■ SARM RPC Handler Threads – The connections threads spawned when the
SARM open connections to the SRP

■ WO Translation Threads – Increasing the number of WO translation threads leads
to a faster load of work orders in the SRP. To increase the number of WO
translation threads you must connect more clients to the SRP because the
event-driven threads dedicated to these clients are the WO translation threads
themselves.

Table 9–44 Control Server Database Administration Parameters and Values

Parameter Description Value

DB_ADMIN_ON Boolean flag. If set to 1, it enables the database administration thread
operation in the application server. This can be disabled in particular
servers in situations where multiple servers share the same
application database and then only one server is required to perform
this database administration.

Default = 0

DB_ADMIN_PROC_
PARAM

The integer parameter passed to the database administration
procedure. For example, this can specify a purge interval for a
particular database.

Default = 100

DB_ADMIN_PROC The procedure the database administration thread calls at a specified
time in the day. This procedure could perform many tasks, including
archiving and purging of dynamic data.

All stored procedures in the database are recompiled and the
statistics updated after this administration procedure has been
called.

Default = CSP_
db_admin

DB_ADMIN_TIME The number of minutes after midnight when the database
administration tasks are to be performed. This is usually performed
at a time of low system activity.

Default = 300

DB_PCT_ANALYZE This parameter applies to Oracle Database only. It is used to update
statistics on all user-defined tables. The updates are done when the
database administrations tasks are performed. (See also DB_
ADMIN_TIME.) This parameter is used to optimize the database
query performance.

The Oracle SQL statement is "analyze table table_name estimate
statistics sample DB_PCT_ANALYZE percent". See the discussion on
the Analyze command in Oracle SQL Reference Manual.

Default = 20

Note: DUMP_WO_FLAG is specific to the SRP Emulator server and
not the SRP.

SARM Server Configuration Parameters

9-32 ASAP Server Configuration Guide

Table 9–45 lists and describes the SRP Emulator server configuration parameters and
values.

SARM Server Configuration Parameters
This section describes SARM server configuration parameter.

Table 9–46 lists and describes the SARM server configuration parameter and values.

Mask for WO ID Generation
This section describes mask for WO ID generation.

Table 9–47 lists and describes the mask for WO ID parameter and values.

Table 9–45 SRP Emulator Server Configuration Parameters and Values

Parameter Description Value

APPL_USERID The primary SQL Server user ID the application process uses to
connect to the APPL_SQL_SERVER SQL Server. The user ID defaults
to the primary application database, and therefore, the application
does not need database names because the definition of the user in
the SQL Server specifies that user's default database. Maximum
length is 20 alphanumeric characters.

Default = $SRP_
USER

DUMP_WO_FLAG Boolean flag that specifies whether the work orders processed by the
SRP Emulator should be dumped to a dump file located in the /tmp
directory.

Default = 0

NEP_USERID The user ID the Interpreter uses to open network connections to the
SQL Server in order to access the Interpreter database. For an
interpreter in an NEP, this is the NEP user ID. For an interpreter in
an SRP, this is the SRP user ID. The default database for this user is
the location of any tables, stored procedures, etc., required by the
Interpreter in its processing. Maximum length is 20 alphanumeric
characters.

Default = $SRP_
USER

SAVE_SARM_DATA Boolean flag that controls the saving of order information by the SRP
Emulator when a work order completion or failure is received by the
emulator. If set to 1, the emulator will query the SARM for all
information about the completed or failed order.

Default = 0

SRP_EMUL_ORDER_
ID

The single character prefix for all work orders created by the SRP
Emulator.

Default = A

USE_RAW_WO_IDS Boolean flag. If set to 1, dictates that the SRP Emulator use the work
order IDs present in the database. If set to 0, the SRP will generate a
numerical prefix to the order number and transmit this derived
order number to the SARM. This allows the same order definition to
be transmitted many times to the SARM by the emulator.

Default = 0

ZERO_PAD_WO_IDS Boolean flag. If set to 1, pads the generated work order IDs with
zeros.

Default = 0

Table 9–46 SARM Server Configuration Parameter and Value

Parameter Description Value

APPL_USERID The primary SQL Server user ID the application process uses to
connect to the APPL_SQL_SERVER SQL Server. The user ID defaults
to the primary application database, and therefore, the application
does not need database names because the definition of the user in
the SQL Server specifies that user's default database. Maximum
length is 20 alphanumeric characters.

Default = $SARM
_USER

SARM Server Configuration Parameters

Configuration Parameters 9-33

Configuration for VNO External Validation
The following parameters are used to configure Virtual Network Operator (VNO)
status.

Table 9–48 lists and describes the configuration for VNO external validation
parameters and values.

Table 9–47 Mask for WO ID Parameter and Value

Parameter Description Value

OCA_WOID_MASK Format string that uses a single integer
placeholder (%d) to set a mask for
generation of work order IDs. The integer
field is populated by a unique integer from
the SARM.

 The default value results in work order
IDs beginning with
OCA-00000001.Default=OCA-{0,number,*
*******}.

Table 9–48 Configuration for VNO External Validation Parameters and Values

Parameter Description Value

VNO_ENABLED This VNO configuration parameter is designed to activate the
OCA client to perform VNO security checking on OCA users and
to un-authorize users who are not members of any VNO group in
WebLogic Server security.

The value of this configuration parameter is obtained by the OCA
SRP server and is provided to the OCA client.

Default = 0

VNO_ID_DEFAULT This parameter controls the specification of a default VNO ID at
the OCA SRP.

If VNO_ID_DEFAULT is not set, no default VNO ID will be
added to work orders, even if they do not include a VNO ID.

If VNO_ID_DEFAULT is set to the VNO ID, the VNO ID specified
will be added to work orders that do not already have a VNO ID
specified.

When a default VNO ID is added to an order and the order is
submitted successfully, a record is inserted to tbl_usr_wo_prop in
the SARM database for that order, with VNO ID in the name field
and the default value in the value field.

Default = no value

VNO_ID_STRIP This parameter controls whether the VNO ID is stripped.

If VNO_ID_STRIP is set to 0, the VNO ID will not be stripped
before returning the information upstream.

If VNO_ID_STRIP is set to 1, the information being returned
upstream is filtered by removing the VNO ID. The OCA SRP
maintains the VNO ID in its memory and databases for this order.
For example, tbl_usr_wo_prop still contains the VNO ID for the
order.

Default = 0

EXTERNAL_
VALIDATION_JNDI

This parameter configures the WO extended validation server. It
works only when VNO_ENABLED is set to 1.

To enable WO extended validation, set the full JNDI path of
external Validation EJB.

To disable WO extended validation with VNO filter enabled, do
not define this parameter.

An external validation sample can be found in $ASAP_BASE/oca_
sys_if/sample/validationServer/.

With the sample validation logic, if a work order contains the
CSDL C-ADD_POTS_LINE and its parameter DN is not equal to
6742727, the InvalidOrderException message is thrown.

Default =
abc/Comp/Sample
ExternalOrderValida
tion

SARM Server Configuration Parameters

9-34 ASAP Server Configuration Guide

SARM Work Order Processing
These following parameters are relevant to the processing of work orders within the
SARM.

Table 9–49 lists and describes the SARM work order processing parameters and
values.

SARM Server Configuration Parameters

Configuration Parameters 9-35

Table 9–49 SARM Work Order Processing Parameters and Values

Parameter Description Value

ASDL_TIMEOUTS Each ASDL has a timeout value that governs how long it
can remain in the pending queue without being successfully
provisioned. All ASDLs within the same work order must
have the same timeout value. When the work order has
timed out and failed, the final status is WO_TIME_OUT.

Boolean flag. For SARM to support ASDL timeout, set the
following:

■ ASDL_TIMEOUTS to 1 in ASAP.cfg (Default = 0)

■ asdl_timeout to desired value on the work order

Each ASDL can time out based on the configuration
parameters. The timer must be set for each ASDL, and it
starts once the ASDL is in pending queue.

If the value of the ASDL_TIMEOUTS is 0 (zero), the ASDL
timeout feature is not used, regardless of the asdl_timeout
value.

Timeout and retry attributes are configurable at the ASDL
level, at the NE level, at the work-order level, and at the
system level. If no ASDL timeout parameters are defined,
other settings may apply. See ASAP Cartridge Development
Guide.

The way the ASDL timeout is applied to the first ASDL
differs from the way it applies to all subsequent ASDLs. If
an ASDL timeout occurs during the provisioning of the first
ASDL, a grace period is given. For the second, and
subsequent ASDLs, no grace period is given. The value of
the grace period is the same as the asdl_timeout value.

When the first ASDL times out during provisioning, the
ASDL does not fail and the work order remains in an In
Progress status. The SARM sends an event notification to
the SRP, gives the timed out ASDL a grace period, and
continues provisioning. If the same ASDL times out again,
the SARM fails the ASDL. Then the work order fails.

When both the work order and the ASDL timeouts are set
for a particular work order, only the first occurrence of
timeout is processed and the other is ignored.

The following notification events are triggered to inform the
SRP of the state of the work order for both the work order
and ASDL timeouts:

■ Executing : Informs the SRP of first ASDL timeout that
occurred during provisioning.

■ Failed : Informs the SRP of the work order failure.

Default = 0

BATCH_SLEEP_
INTERVAL

The time period, in seconds, between SARM database
queries for future dated orders that:

■ Are ready to be provisioned

■ Have had a state change (for example, from HELD to
INITIAL)

■ Can now be provisioned due to the completion of a
PARENT order.

Default = 20

CORE_SQL_SERVER The SQL Server in which the SARM database resides. This is
the same as APPL_SQL_SERVER for the SARM. Maximum
length is eight alphanumeric characters.

Default = $DSQUERY

SARM Server Configuration Parameters

9-36 ASAP Server Configuration Guide

EXP_ONLY_COMP_
DEFINED_PARM

This parameter controls the evaluation logic of ASDL
spawning expressions within the SARM. If set to 1, the
(sub)expression returns false if a label is not provided,
except for DEF/NOTDEF cases.

If set to 0, the legacy logic is used. When a label is not
provided, the label name is used as the value of the label in
the expression.

Default=0

FAIL_WO_ON_
EMPTY_CSDL

Boolean flag. If set to 1, the CSDL triggers a work order
failure if it fails to spawn any ASDLs.

Default=0

INPROC_CHK_INT The time interval, in seconds, the SARM waits between
checks of the internal queues to determine whether there are
any orders in progress beyond the specified in progress
threshold. See also MAX_IN_QUEUE_TM.

Default = 900

MAX_IN_QUEUE_
TM

This is the time interval, in seconds, for which the SARM
allows a work order to be in progress before calling the
WOINPROC system event, which notifies the user that at
least one work order is still in progress beyond the defined
threshold.

The order is not automatically failed by this mechanism. For
example, a work order that requires provisioning at two
different NEs, one of which is presently unavailable, could
result in the SARM issuing a system event. See also
INPROC_CHK_INT.

Default = 3600

MAX_ORDERS_IN_
GM_Q

Limits the number of work orders the SARM keeps in
memory. During each BATCH_SLEEP_INTERVAL, the
Batch Handler attempts to load work orders from the SARM
database that are due for provisioning. The Batch Handler
does not fetch work orders from the SARM database when
the number of new or reloaded messages in the Group
Manager common queue exceeds MAX_ORDER_IN_GM_Q.
You must correlate MAX_ORDER_IN_GM_Q with BATCH_
SLEEP_INTERVAL. To do this, use the following formula:

BATCH_SLEEP_INTERVAL (in seconds) x <max.# of WO
per sec.>= MAX_ORDER_IN_GM_Q

where: <max.# of WO per sec.> is the maximum number of
work orders that the ASAP instance can provision.

Examples of typical values:

■ BATCH_SLEEP_INTERVAL: 200 (seconds)

■ <max.# of WO per sec.>: 3.5 WO/s

■ MAX_ORDER_IN_GM_Q: 800 (>200 x 3.5)

Each time you add 100 to any of the above values, MAX_
ORDER_IN_GM_Q can increase the amount of memory the
SARM uses by up to 1 MB. A smaller value can affect
performance during peak hours. If you set a smaller value,
the SARM and NEPs request fewer work orders from the
SARM database.

Default = 500

Table 9–49 (Cont.) SARM Work Order Processing Parameters and Values

Parameter Description Value

SARM Server Configuration Parameters

Configuration Parameters 9-37

MAX_ORDERS_IN_
PROGRESS

The maximum number of orders that the SARM allows to be
in progress at any given time. This is to limit the memory
requirements of the SARM should there be large numbers of
orders in progress for long periods of time. If zero, this
check is disabled.

In production environments, ensure that the MAX_
ORDERS_IN_PROGRESS parameter is not set to 0. A setting
of 0 specifies no upper limit on memory consumption and
can have a significant impact on performance.

Default = 10000

NUM_TIMES_RETRY The number of times the SARM sends an ASDL to the NEP
to be processed after the NEP returned it with a Fail but
Retry status. A work order is failed when the number of
retries equals the value specified for NUM_TIMES_RETRY.

Default = 5

ORDER_TIMEOUT The number of seconds a particular work order can remain
in progress before the SARM fails the order. The work order
timer starts after the work order has been submitted and
started. This threshold can be exceeded if, for example, the
connection to an NE is interrupted after the connection has
been established.

You can set the system-wide parameter ORDER_TIMEOUT
in the ASAP.cfg file. If you are using the SRP Emulator, you
can also set the wo_timeout value in the tbl_wo_def table in
the SRP database.

The order timeout behavior is governed by two parameters:
the wo_timeout parameter on the work order and the
ORDER_TIMEOUT configuration parameter in ASAP.cfg.

Default = 0

Possible values are:

■ If wo_timeout has a
value greater than 1,
it is used.

■ If wo_timeout has a
value of 0, work
orders do not time
out.

■ If wo_timeout has a
value less than 0,
ORDER_TIMEOUT
is used.

■ If wo_timeout has a
value less than 0 and
ORDER TIMEOUT
has a value of 0 or
less, work orders do
not time out.

RETRY_TIME_
INTERVAL

Time, in seconds, the SARM waits between retries of an
ASDL command returned to the SARM with 'Fail but Retry'
status.

 Default = 120

SECURITY_CHECK Boolean flag. Indicates whether security checking is enabled
in the SARM. If set to 1, whenever the SARM receives the
WO from the SRP, it checks to see if the user ID and
password passed on the work order are present in the
SARM database user/password table. If so, the work order
is accepted, otherwise it is rejected. If security checking is 0,
the work order is accepted by default.

 Default = 0

Table 9–49 (Cont.) SARM Work Order Processing Parameters and Values

Parameter Description Value

SARM Server Configuration Parameters

9-38 ASAP Server Configuration Guide

SARM Thread Configuration Management
The following parameters are relevant to the configuration and number of threads
within the SARM.

Table 9–50 lists and describes the thread configuration management parameters and
values.

SARM Message Pool Size
This section describes the parameter used for SARM message pool size.

Table 9–51 lists and describes the SARM message pool size parameters and values.

WO_HANDLER_
TIMEOUT

The time interval, in seconds, the SARM waits for the
transmission of a work order from the SRP to the SARM
before aborting the transaction. If the SRP were to terminate
when it is transmitting work orders to the SARM, this
condition might occur.

Default = 60

WO_TIME_
ESTIMATE_ON

Boolean flag. If set to 1, it instructs the SARM to calculate
the rough time estimate for completing the work order. If
WO estimate notifications back to the SRP are enabled, this
parameter should be set. If no WO estimate notifications are
required, this parameter should not be set.

Default = 0

WO_TIMEOUT_
EVENT_TWICE

Boolean flag. If set to 1, then two timeout events are
generated, whenever a work order gets times out. If set to 0,
then only one timeout event is raised, whenever a work
order gets times out.

This parameter must be added manually to set it to 0.
Otherwise ASAP uses the default setting of 1.

Default = 1

Table 9–50 Thread Configuration Management Parameters and Values

Parameter Description Value

MAX_GROUP_
MGRS

The number of group manager threads to be started by the
SARM upon startup.

 Default = 5

MAX_PROVISION_
HANDLERS

The number of provisioning handler threads to be started by
the SARM.

 Default = 5

SRP_READY_WAIT_
TIME

This is the time required by the SRP drivers to complete
initializing before SARM starts processing work orders. If
this parameter is not present, SARM may not wait for the
SRP drivers to complete initializing and may begin
processing work orders earlier.

Default = 0

MAX_SRP_DRIVERS The number of SRP driver threads to be started by the
SARM to communicate with each SRP server.

Default = 2

MAX_WO_
HANDLERS

The number of work order handler threads to be started by
the SARM.

 Default = 5

MAX_WO_MGRS The number of work order manager threads to be started by
the SARM.

 Default = 5

Table 9–49 (Cont.) SARM Work Order Processing Parameters and Values

Parameter Description Value

SARM Server Configuration Parameters

Configuration Parameters 9-39

SARM Batch Error Thresholds
SARM batch error thresholds are configured using the BATCH_DELETE_DELAY and
BATCH_THRESHOLD SARM parameters.

Table 9–52 lists and describes the SARM batch error thresholds parameters and values.

SARM International Messages
The LANGUAGE_OF_MSG and MESSAGE_NUMBERS parameters provide support
for SARM internationalized messages.

Table 9–53 lists and describes the SARM international messages parameters and
values.

Table 9–51 SARM Message Pool Size Parameters and Values

Parameter Description Value

MAX_MSGPOOL This parameter is used for tuning. The number of message
structures available to the Open server. This parameter sets
the number of message structures to be allocated at the time
of start up. This number must always be greater than or
equal to the value of MAX_MSGQUEUES times 256.

The SARM requires a larger message pool size
approximately 50% larger than the message pool size
configured for Sybase Open servers, see "SARM Message
Pool Size".

Default = 106752

Recommended initial
values are based on
system size:

■ Small : 106752

■ Medium :164352

■ Large : 241152

Table 9–52 SARM Batch Error Thresholds Parameters and Values

Parameter Description Value

BATCH_DELETE_
DELAY

After all the orders in the batch group are processed, the
SARM does not delete the batch group until the time
interval that is specified by the configuration parameter
expires.

Orders are released from the batch group upon completion
or batch failure. Any order in the same batch group that is
sent after the time interval expires is not treated as part of
the batch.

You can specify an error threshold for the number of failures
that can occur in the batch before the SARM stops activation
of that batch. The batch failure threshold value is based on
the SARM configuration parameter and is not configurable
by the SRP using the Batch Order Delay fail threshold.

The time interval, in seconds, after the processing of the last
order in the batch, that the SARM waits to remove the batch
details from memory.

Default = 60

BATCH_
THRESHOLD

Defines the maximum number of errors that can occur
within a batch of loosely coupled requests. Batch orders are
defined by means of the SRP batch order property that
identified the batch to which the order belongs. Should the
batch error threshold be exceeded for a particular batch, the
batch as a whole will be suspended.

This parameter is set for all batch work orders. You cannot
set this parameter on a per work order basis.

Default = 0

SARM Server Configuration Parameters

9-40 ASAP Server Configuration Guide

OCA Work Order Entry
This section describes the OCA work order entry.

Table 9–54 lists and describes the OCA work order entry parameters and values.

UNID Manager
This section describes the UNID manager.

Table 9–55 lists and describes the UNID manager parameters and values.

Table 9–53 SARM International Messages Parameters and Values

Parameter Description Value

DB_MONITOR_
TIME

After all the orders in the batch group are processed, the
SARM does not delete the batch group until the time
interval that is specified by the configuration parameter
expires.

The time interval, in minutes, when the Control server
monitors the database and logs segment sizes and then
issues a system event if they exceed a predetermined
threshold value. This functionality can be enabled within
the Control server by populating the database threshold
monitoring table in the Control database. Default = 20.

Default = 60

LANGUAGE_OF_
MSG

The language code to determine the language in which the
Service Request (SRQ) Log messages are written to the
database. These messages are detailed in message
conversion tables in the SARM database and allow
substitution of data fields in their expansion. To use a
language other than the default, insert all the relevant
messages into this table with the new language code, while
ensuring the same placeholder positions within the data
string. Any new messages added to the SARM are added
under the default language.

Default = USA

MAX_MAINT_
INTERVAL

Default = 0

MESSAGE_
NUMBERS

Boolean flag. If set to 1, it causes the SARM to write only the
message IDs from the message conversion table to the
SARM database. This is used primarily in system testing
and should be set to 0 in all other environments.

Default = 0

SOURCE_ROUTING Default = 1

Table 9–54 OCA Work Order Entry Parameters and Values

Parameter Description Value

USER_UNID_1 Must be set to OCA to enable the OCA_WOID_MASK
parameter.

Default = OCA

SARM Server Configuration Parameters

Configuration Parameters 9-41

SARM Switch Direct
These parameters provides direct switch access capability, which must be configured
in both the SARM and the NEP.

Table 9–56 lists and describes the SARM switch direct parameters and values.

Admin Server Parameters
This section describes the admin server parameters.

Table 9–57 lists and describes the Admin server parameters and values.

Persistent ADM Data in SARM
This section describes persistent ADM data in SARM.

Table 9–55 UNID Manager Parameters and Values

Parameter Description Value

ASDL_LOG_UNID_
JUMP_INTERVAL

Number of ASDL LOG UNIDs to cache per work order.
Reduces number of SLAVE to MASTER UNID fetch RPCs
called.

Default = 5

UNID_JUMP_
INTERVAL

Number of unique integers to cache in the master SARM.
The larger the value, the fewer stored procedures are called
to the SARM databases. This can cause UNIDs to be unused
in the event that the SARM is shut down.

 Default = 1000

Table 9–56 SARM Switch Direct Parameters and Values

Parameter Description Value

SWD_HOST_
IPADDR

Used for Switch Direct support. This is the Host IP Address
for the machine where the SARM is running.

Default = $SWD_HOST_
IPADDR

SWD_HOST_NAME Used for Switch Direct support. This is the Host Name for
the machine where SARM is running.

Default = $SWD_HOST_
NAME

SWD_IDLE_
TIMEOUT

Used for Switch Direct support. This is the idle timeout
period, in seconds, for automatically disconnecting the
Switch Direct Interface (SWD) session if no activity is
detected.

Default = 120

SWD_LISTEN_PORT Used for Switch Direct support. The TCP/IP port number
for the SARM server for Switch Direct support. The SWD
client connects to this port.

Default = $SWD_
LISTEN_PORT

SWD_SESSIONS_
SUPPORTED

Boolean flag. If set to 1, it determines whether Switch Direct
sessions are supported by the SARM. This parameter is also
used by NEP applications.

Default = 0

Table 9–57 Admin Server Parameters and Values

Parameter Description Value

CORE_SQL_SERVER The SQL Server in which the SARM database resides. This is
the same as APPL_SQL_SERVER for the SARM. Maximum
length is eight alphanumeric characters.

Default = $DSQUERY

CORE_USERID The user ID for the CORE_SQL_SERVER. Default = $SARM_USER

SARM The logical name of the SARM server to which the SRP will
establish network connections.

Default = $SARM

SARM Server Configuration Parameters

9-42 ASAP Server Configuration Guide

Table 9–58 lists and describes the Persistent ADM data in SARM parameters and
values.

Socket Connections
This section describes the socket connections.

Table 9–59 lists and describes the socket connections parameters and values.

Table 9–58 Persistent ADM Data in SARM Parameters and Values

Parameter Description Value

ADM_SQL_SVR The database where ADM tables reside. Default = $DSQUERY

ADM_USER The database user ID for ADM_SQL_SVR. Default = $ADM_USER

LOAD_
PERSISTENT_DATA

Boolean flag. If set to 1, it loads the last known data from the
ADMIN database into the SARM's memory. This prevents
jumps or gaps in the statistical data.

Default = 1

Table 9–59 Socket Connections Parameters and Values

Parameter Description Value

MAX_CLIENT_CONN This parameter defines the maximum number of socket
connections that the SARM can create to receive RPC
requests from the SRP. This value can be tuned to meet the
actual need of the connections.

One connection corresponds to one thread in SARM, so this
value should be less than MAX_SERVER_PROCS
(default = 512)

Also, the maximum capacity of the connection pool is
defined in the jconnector in the JSRP and should not exceed
the value of MAX_CLIENT_CONN.

To configure the Maximum Capacity parameter through the
WebLogic Server Administration Console:

1. In the Oracle WebLogic Server 12c Administration
Console, click Lock & Edit if not already clicked. See
the Administration Console Online Help for more
information.

2. In the Domain Structure panel of the Change Center in
the Oracle WebLogic Server 12c Administration
Console, expand Services.

3. In the Domain Structure panel expand JDBC and then
select Data Sources.

The Summary of JDBC Data Sources screen appears.

4. Click the name of the data source to be configured.

5. Select the Configuration tab, and the Connection Pool
sub-tab.

6. Set Maximum Capacity to 50.

7. Click Save.

8. Click Release Configuration.

You can determine whether the maximum connections
threshold is reached through the SARM diagnostic file.

Default = 100

NEP Server Configuration Parameters

Configuration Parameters 9-43

Database Administration Parameters for the SARM DB
Use the following parameters to configure various aspects of the database
administration thread in each application server. This calls a stored procedure in the
database and passes it a configurable parameter before recompiling all the stored
procedures in that application server's default database (the database defaulted to
using the APPL_SQL_SERVER, and APPL_USERID login information). It also
updates the SQL Server statistics for all indexes on user-defined tables in the database.

Table 9–60 lists and describes the SARM database administration parameters and
values.

NEP Server Configuration Parameters
This section describes NEP server configuration parameters.

Table 9–61 lists and describes the NEP server configuration parameters and values.

Table 9–60 SARM Database Administration Parameters and Values

Parameter Description Value

DB_ADMIN_ON Boolean flag. If set to 1, it enables the database
administration thread operation in the application server.
This can be disabled in particular servers in situations where
multiple servers share the same application database and
then only one server is required to perform this database
administration.

Default = 0

DB_ADMIN_PROC_
PARAM

The integer parameter passed to the database
administration procedure. For example, this can specify a
purge interval for a particular database.

Default = 100

DB_ADMIN_PROC The procedure the database administration thread calls at a
specified time in the day. This procedure could perform
many tasks, including archiving and purging of dynamic
data.

All stored procedures in the database are recompiled and
the statistics updated after this administration procedure
has been called.

Default = SSP_db_admin

DB_ADMIN_TIME The number of minutes after midnight when the database
administration tasks are to be performed. This is usually
performed at a time of low system activity.

Default = 300

DB_PCT_ANALYZE This parameter applies to Oracle Database only. It is used to
update statistics on all user-defined tables. The updates are
done when the database administrations tasks are
performed. (See also DB_ADMIN_TIME.) This parameter is
used to optimize the database query performance.

The Oracle SQL statement is "analyze table table_name
estimate statistics sample DB_PCT_ANALYZE percent". See
the discussion on the Analyze command in Oracle SQL
Reference Manual.

Default = 20

ADM Server Configuration Parameters

9-44 ASAP Server Configuration Guide

ADM Server Configuration Parameters
This section describes the ADM server configuration parameters.

Table 9–62 lists and describes the ADM server configuration parameters and values.

Table 9–61 NEP Server Configuration Parameters and Values

Parameter Description Value

APPL_USERID The primary SQL Server user ID the application process
uses to connect to the APPL_SQL_SERVER SQL Server. The
user ID defaults to the primary application database, and
therefore, the application does not need database names
because the definition of the user in the SQL Server specifies
that user's default database. Maximum length is 20
alphanumeric characters.

Default = $NEP_USER

AUTOMATIC_
BLACKOUT_CHECK

If set to greater than 0, the NEP will check for NE blackout
prior to connection and State Table execution.

Default = 0

CACHE_
BLACKOUT_TABLE

If set to greater than 0, the NEP will cache the blackout table
and check blackouts using this cached table. If set to 0, the
table will not be cached and the database will be queried
when blackout is checked. This parameter influences only
automatic blackout checking.

Default = 1

LOAD_JCLASS_
FROM_DB

Indicates that the provisioning and connection classes
should be loaded from:

■ Database (1)

■ Local file system (0)

Default = 0

NEP_USERID The user ID the Interpreter uses to open network
connections to the SQL Server to access the Interpreter
database. For an interpreter in an NEP, this is the NEP user
ID. For an interpreter in an SRP, this is the SRP user ID. The
default database for this user is the location of any tables,
stored procedures, etc., required by the Interpreter in its
processing. Maximum length is 20 alphanumeric characters.

Default = $NEP_USER

RESPONSE_LOG_
FILE_APPEND

If set to 0, the Java-enabled NEP (JNEP) does not append a
new response log to the existing log file with the same name
when the startResponseLog() method is called. This
parameter is used in only JNEP and does not take affect the
response log in the State Table.

Default = 1, could be
absent in the ASAP.cfg
file.

PRE_EMPTIVE Boolean flag. If set to 1, you can enable this flag in the NEP
to allow the NEP to use pre-emptive threading, which
improves NEP efficiency. Note that pre-emptive threading is
CPU-intensive.

Default = 0

ADM Server Configuration Parameters

Configuration Parameters 9-45

Database Administration Parameters for the ADMIN Database
Use the following parameters to configure various aspects of the database
administration thread in each application server. This calls a stored procedure in the
database and passes it a configurable parameter before recompiling all the stored
procedures in that application server's default database (the database defaulted to
using APPL_SQL_SERVER, and APPL_USERID login information). It also updates
the SQL Server statistics for all indexes on user-defined tables in the database.

Table 9–63 lists and describes the Admin database administration parameters and
values.

Table 9–62 ADM Server Configuration Parameters and Values

Parameter Description Value

APPL_USERID The primary SQL Server user ID the application process
uses to connect to the APPL_SQL_SERVER SQL Server. The
user ID defaults to the primary application database, and
therefore, the application does not need database names
because the definition of the user in the SQL Server specifies
that user's default database. Maximum length is 20
alphanumeric characters.

Default = $ADM_USER

COPY_DOWN_DATA Boolean flag. If set to 1, writes information to the
performance-related tables with the value of D in the Record
Type field.

Default = 0

POLL_TIMER_ASDL Polling time, in minutes, for querying ASDL-related
statistics from the SARM.

Default = 30

POLL_TIMER_CSDL Polling time, in minutes, for querying CSDL-related
statistics from the SARM.

Default = 30

POLL_TIMER_NE Polling time, in minutes, for querying
network-element-related statistics from the SARM.

Default = 30

POLL_TIMER_NE_
ASDL

Polling time, in minutes, for querying
network-element/ASDL-related statistics from the SARM.

Default = 30

POLL_TIMER_
ORDER

Polling time, in minutes, for querying order-related statistics
from the SARM.

Default = 30

Table 9–63 Admin Database Administration Parameters and Values

Parameter Description Value

DB_ADMIN_ON Boolean flag. If set to 1, it enables the database
administration thread operation in the application server.
This can be disabled in particular servers in situations where
multiple servers share the same application database and
then only one server is required to perform this database
administration.

Default = 0

DB_ADMIN_PROC_
PARAM

The integer parameter passed to the database
administration procedure. For example, this can specify a
purge interval for a particular database.

Default = 100

Generic EDD API Parameters

9-46 ASAP Server Configuration Guide

Generic EDD API Parameters
This section describes generic EDD API parameters.

Table 9–64 lists and describes the generic EDD API parameters and values.

BX25_EDD Configuration Parameters
External device driver applications link in libgedd, libclient, and libasc. Therefore, they
require the libgedd, libclient, and libasc configuration parameter definitions in
addition to the ones outlined below.

Table 9–65 lists and describes the BX25_EDD configuration parameter and values.

PADEDD Configuration Parameters
This section describes the PADEDD configuration parameters.

DB_ADMIN_PROC The procedure the database administration thread calls at a
specified time in the day. This procedure could perform
many tasks, including archiving and purging of dynamic
data.

All stored procedures in the database are recompiled and
the statistics updated after this administration procedure
has been called.

Default = PSP_db_admin

DB_ADMIN_TIME The number of minutes after midnight when the database
administration tasks are to be performed. This is usually
performed at a time of low system activity.

Default = 300

DB_PCT_ANALYZE This parameter applies to Oracle only. It is used to update
statistics on all user-defined tables. The updates are done
when the database administrations tasks are performed.
(See also DB_ADMIN_TIME.) This parameter is used to
optimize the database query performance.

The Oracle SQL statement is "analyze table table_name
estimate statistics sample DB_PCT_ANALYZE percent". See
the discussion on the Analyze command in Oracle SQL
Reference Manual.

Default = 20

Table 9–64 Generic EDD API Parameters and Values

Parameter Description Value

APPL_USERID The primary SQL Server user ID the application process
uses to connect to the APPL_SQL_SERVER SQL Server. The
user ID defaults to the primary application database, and
therefore, the application does not need database names
because the definition of the user in the SQL Server specifies
that user's default database. Maximum length 20
alphanumeric characters.

Default = $CTRL_USER

Table 9–65 BX25_EDD Configuration Parameter and Value

Parameter Description Value

MAX_WAIT_BLOCK_
TIME

Number of seconds the X25 port monitor waits for data
before it times out from this condition. In production, this
value should be set for only a few seconds.

Default = 1

Table 9–63 (Cont.) Admin Database Administration Parameters and Values

Parameter Description Value

UTILITY Configuration Parameters

Configuration Parameters 9-47

Table 9–66 lists and describes the PADEDD configuration parameter and values.

UTILITY Configuration Parameters
This section describes the UTILITY configuration parameters.

Table 9–67 lists and describes the UTILITY configuration parameters and values.

Login Information for the SARM Database
This section describes the login information for SARM database.

Table 9–68 lists and describes the login information for the SARM database parameters
and values.

Login Information for ADM Database
This section describes login information for ADM DB.

Table 9–69 lists and describes the login information for ADM database parameters and
values.

Table 9–66 PADEDD Configuration Parameter and Value

Parameter Description Value

MAX_WAIT_BLOCK_
TIME

The blocking time of the X.2X EDD to receive data from
outside of X.2X EDD.

Default = 1

Table 9–67 UTILITY Configuration Parameters and Values

Parameter Description Value

CONTROL_SQL_
SERVER

The SQL Server where the Control database resides. If
specified, the Control database can reside on a separate SQL
Server from the application databases, if required.
Maximum length is eight alphanumeric characters.

Default = $DSQUERY

CONTROL_USERID The SQL Server user ID the application process uses to
connect to the Control database in the CONTROL_SQL_
SERVER SQL Server. Maximum length is 20 alphanumeric
characters.

Default = $CTRL_USER

Table 9–68 Login Information for the SARM Database Parameters and Values

Parameter Description Value

SARM_USER SARM user ID. Default = $SARM_USER

SARM_SQL_SVR SARM server where the database resides. Default = $DSQUERY

SARM_POOL_SIZE Number of database connections to the SARM database to
maintain in the connection pool.

Default = 7

Table 9–69 Login Information for the SARM Database Parameters and Values

Parameter Description Value

ADM_USER ADM user ID. Default = $ADM_USER

ADM_SQL_SVR N/A Default = $DSQUERY

ADM_POOL_SIZE Number of database connections to the ADMIN database to
maintain in the connection pool.

Default = 7

UTILITY Configuration Parameters

9-48 ASAP Server Configuration Guide

A

asap_utils A-1

Aasap_utils

This section explains the asap_utils functions. Because this is a UNIX and Linux
program you can add or remove functions.

To invoke asap_utils:

1. Type the following at the $ASAP_base prompt:

asap_utils [-P ctrl_password] [option]

where:

■ [-P ctrl_password] is the password for the control database.

■ [option] is the asap_utils option you want to invoke. For example, for the
Resend Completed ASDLs option, you would type 11.

asap_utils Functions
This section describes each of the asap_utils functions.

SARM Utilities
1. Service Requests in DB

This lists the SRQs currently resident in the ASAP database. It details the order ID,
status, priority, due date, parent order, batch group, etc.

2. In Proc Requests Summary

This lists the number of requests currently in progress in the ASAP database (this is
determined to be orders in a Loading or In Progress state).

3. In Proc Requests Details

This lists details of any work orders currently in progress within the SARM.

4. Work Order Queue Summary

This details the number of orders in each of the SARM order queues and includes:

■ Ready Queue – Orders currently in progress.

Note: If any asap_utils command fails, diagnostic information can
be found in the ASAP_home/DATA/logs/yyyymmdd/UTILITY.diag
(where yyymmmdd is the year, month, and date of the logs) for the
current date when the command was executed. For more information
about diagnostic files, see ASAP System Administrator’s Guide.

asap_utils Functions

A-2 ASAP Server Configuration Guide

■ Rollback Queue – Orders currently being rolled back.

■ Auto Held Queue – Orders that are being held by the SARM and not released for
some reason.

5. Work Order Queue Details

This provides the order details of each order in the SARM work order queues. Such
queues are global to the SARM.

6. Work Order Lock States

This lists the orders in progress and their respective lock states. Generally, an in
progress order will have a local lock. Only in the high availability configuration will
orders be remotely locked.

7. ASDL/NE Queue Summary

This is one of the most commonly used utilities. It provides summary details about
each NE in the system including:

■ NE, technology and software load

■ NEP managing the NE

■ Current state of the NE Down, Connecting, Available, Maintenance, Disabled

■ Whether the thoughput of the NE is throttled to the configured throughput value

■ The configured throughput value

■ Time estimate (sec.) for ASDL processing to that NE

■ Number of ASDLs pending to that NE (in a prioritized queue)

■ Number of ASDLs currently in progress, the number of connections open to that
NE

■ The number of ASDLs waiting to be retried to that NE.

8. ASDL/NE Queue Details

This provides details about each ASDL in the Pending, In Progress and Retry ASDL
queues for each NE in the system.

9. HA Summary/Details

This option provides both a detailed and summary view of the ASAP high availability
operation.

The ASAP configuration parameter, ASAP_HIGH_AVAIL, must be set for these RPCs
to be installed; that is, the ASAP territory must be in HA mode.

10. Enable/Disable Entire NE

This utility facilitates the enabling/disabling of an entire NE from the SARM
perspective. If a NE is disabled, then the SARM will hold all ASDLs queued to that NE
in the ASDL pending queue for that NE.

In general, a NE is disabled for administrative purposes. It must be manually enabled
for ASDLs to be transmitted to the NEP managing the NE. The current status of a NE
may be viewed using the 30. List Device States option.

11. Resend Completed ASDLs

This option allows you to resend recent changes/completed ASDL commands, to an
NE. This allows ASAP to provide some basic retransmission logic to re-provision
completed ASDLs to a particular NE. It is intended for use in situations in which a NE

asap_utils Functions

asap_utils A-3

has been recovered to a known state and ASAP is requested to re-input all successful
commands to the NE from that known state onwards.

The arguments for this option include the target NE, the start and end dates/times.
This option returns the number of the work order created within SARM, and resends
all ASDLs in their original provisioning sequence.

12. List NEs over Err Thresh

This option allows you to view any NE/ASDL combinations that have been
automatically disabled after the consecutive error threshold for that NE/ASDL was
exceeded. The error threshold for a NE and ASDL combination may be specified in the
ASAP error threshold database table.

The state of a NE as displayed by the 30. List Device States option may be available
even though there may be several ASDLs that have been logically disabled to that NE
by means of this facility.

13. Enable NE/ASDL over Thresh

This option allows you to logically enable NE/ASDL combinations that were logically
disabled by the error threshold mechanism.

18. Set NE instance throughput

This option allows you to set the NE instance throughput value, which controls the
minimum time in milliseconds an ASDL/transaction takes on an NE. A value of 0
disables NE instance throughput.

Admin Server Utilities
20. WO Stats

This option presents pseudo real time statistical information relating to SARM work
order processing.

21. CSDL Stats

This option presents pseudo real time statistical information relating to SARM CSDL
processing.

22. ASDL Stats

This option presents pseudo real time statistical information relating to SARM ASDL
processing.

23. NE Stats

This option presents pseudo real time statistical information relating to SARM NE
processing.

24. NE/ASDL Stats

This option presents pseudo real time statistical information relating to SARM
NE/ASDL processing.

In particular, this provides information about the ASDL user exit codes from the NEP
state tables and facilitates statistical collection of types of soft errors, hard errors, etc.

NEP Utilities
30. List Device States

This option details the state of each communication device in the selected NEP.

asap_utils Functions

A-4 ASAP Server Configuration Guide

It includes the following:

■ resource pool to which the device belongs

■ device type (for example, T – Telnet device)

■ device status (Enabled/Disabled)

■ bind status of the device (Free/Bound to a NE)

■ host NE to which the device last communicated

31. Enable/Disable NE Devices

This option allows you to enable/disable specific communication devices in the NEP
used to communicate with external NEs.

There is also an ASAP automatic device re-enabling facility that automatically
re-enables a disabled device after a specific period of time.

32. Enable/Disable Screen Diags

This option allows you to capture the return data stream from a terminal emulation
session such as a Telnet session and append the output to a UNIX file.

You may then “tail -f” the file to see the ASAP interaction with the terminal session in
real time.

This may only be used in terminal emulation sessions, not message based sessions.

If you provide only a file name for the log file, the log file will be stored in the default
directory for line/screen diagnostics – $LOGDIR/ne_logs. If you provide a full path
with file name, the log file will be stored at the location you specified.

$LOGDIR/ne_logs is the default directory for line/screen diagnostic files. However, if
you specify a file path, such as './dms_log' or '../dms_log1', the dms_log will be
created under $LOGDIR/ne_logs, and dms_log1 will be created in the $LOGDIR.

33. Enable/Disable NE Line Diags

This option allows you to capture all data passing on the communication “line”
between the NEP and the NE while provisioning the NE. It is sometimes useful for
diagnosing specific character sequences.

If you provide only a file name for the log file, the log file will be stored in the default
directory for line/screen diagnostics – $LOGDIR/ne_logs. If you provide a full path
with file name, the log file will be stored in the location you specified.

$LOGDIR/ne_logs is the default directory for line/screen diagnostic files. However, if
you specify a file path, such as './dms_log' or '../dms_log1', the dms_log will be
created under $LOGDIR/ne_logs, and dms_log1 will be created in the $LOGDIR.

34. Capture NE VS Screen to File

This option allows you to capture a snapshot of a terminal session screen to a file for
review. This option is only available for state table based cartridges.

35. Enable/Disable EDD Diags

This option controls a series of external device driver diagnostic capabilities including
the following:

■ start_dump – Starts logging of all communication for this generic device

■ stop_dump – Stops logging of all communication for this generic device

■ dump_info – Prints information about the EDD devices to the specified file

asap_utils Functions

asap_utils A-5

■ start_dump_all – Starts communication logging for all generic devices

■ stop_dump_all – Stop communication logging for all generic devices

36. List NE Loopback Information

Using this option, all the network elements configured within an NEP server can be
listed:

Specify NEP: [NEP_HT9]
Host NE NE loop back
--
ROME OFF [from NE config]
BEIJING ON [Global]
TORONTO OFF [from NE config]
DYN_DALLAS OFF [from NE config] [Dynamic Template]
As shown above, for dynamic NE configurations, only the dynamic template is listed.
(When changing the loopback state for dynamic NE configurations, only the template
is modified as the template represents a group of dynamic network elements.)

In the list above:

■ OFF – Network element loopback is set to OFF

■ ON – Network element loopback is set to ON

■ Global – The Network element loopback setting is taken from the global loopback
parameter (i.e. LOOPBACK_ON parameter in the ASAP.cfg file). The value OFF is
used if the global loopback parameter LOOPBACK_ON is not specified in the
ASAP.cfg file.

■ [from NE config] – The network element loopback state is configured to be either
ON or OFF independently of the value of the global loopback parameter
LOOPBACK_ON.

■ [Dynamic Template] – The network element is a template for dynamic network
elements.

37. Set NE Loopback

Use this option to set the loopback state of network elements to ON, OFF or Global.

When you use this option, you are first notified with the following prompt:

Before changing the loopback state of an NE, it is suggested to disable the NE.
Would you like to continue ('Y') or not ('N')? [N] Y
The loopback state of a network element can be turned ON or OFF or set to Global at
any time without having to stop and restart the ASAP Server. However, once a specific
connection is established, its loopback state will be preserved. In order for the new
loopback state to be used, the connection must be released and re-established. Any
new connections will employ the updated loopback configuration for that network
element.

Loopback parameters:

■ OFF – Set the Network element loopback to OFF

■ ON – Set Network element loopback to ON

■ Global – The Network element loopback setting is taken from the global loopback
parameter (i.e. LOOPBACK_ON parameter in the ASAP.cfg file). The value OFF is
used if the global loopback parameter LOOPBACK_ON is not specified in the
ASAP.cfg file.

asap_utils Functions

A-6 ASAP Server Configuration Guide

When changing the loopback state for dynamic NE configurations, only the template
is modified as the template represents a group of dynamic network elements.

The ’%’ can be used as a wildcard. Alone, it denotes all network elements (%). It can
also denote a group of network elements (e.g. A%, AA%, AB%, ABC%).

Execution example:

Before changing the loopback state of an NE, it is suggested to disable the NE.
Would you like to continue ('Y') or not ('N')? [N] Y
Specify NEP: [NEP_HT9]
Specify NE name: [BEIJING] T%
Specify NE loopback operation: ON ('Y') or OFF ('N') or Global('G'): [G] Y
In state table programming, the network element state can be checked by referring to
the value of the LOOPBACK_ON parameter as shown in the following state table
fragment:

100 IF_THEN '%LOOPBACK_ON == 0'
110 LOG 'NE is ALIVE (NO loopback)'
120 SEND 'ls -l /tmp'
130 SENDKEY 'ENT' 3
140 ASDL_EXIT 'SUCCEED:Successful Non Loopback State Table'
150 ENDIF ''
160 LOG 'NE is in LOOPBACK mode....'
In Java classes of the Java-enabled NEP server, the loopback state can be checked by
inspecting the value of the LOOPBACK_ON parameter passed from the NEP server to
the JNEP server (Java interpreter) during connection time as a connection parameter or
as an order parameter at the beginning of ASDL execution. For example:

>> 193902.659:Connection handler srvtodev07-58877:LOW
:com.mslv.activation.jinterpreter.JInterpConnection:
Communication Parameters passed:

DEVICE = JTEL#1
LOOPBACK_ON = 1
...
>> 193902.659:Connection handler srvtodev07-58877:LOW
:com.mslv.activation.jinterpreter.ClassManager:
...
Received invocation request for telnet_demo.TelnetProcessor.prov
>> 193902.804:Connection handler srvtodev07-58877:LOW
:com.mslv.activation.jinterpreter.JInterpConnection:
Communication Parameters passed:

HOST_IPADDR = 127.0.0.1
HOST_NAME = localhost
HOST_PASSWORD = desert1
HOST_USERID = sunen808
LOGIN_PROMPT = login:
OPEN_TIMEOUT = 5
PASSWORD_PROMPT = Password:
PORT = 23
PROMPT = $
READ_TIMEOUT = 5
VSTYPE = vt100
VS_LENGTH = 24
VS_WIDTH = 80
WRITE_TIMEOUT = 5

Order Parameters passed:

ACT_FUNC_SEC = 0

asap_utils Functions

asap_utils A-7

ASDL_CMD = ASDL_TELNET
ASDL_UNID = 6
CSDL_CMD = CSDL_TELNET
CSDL_SEQ_NO = 5
DEVICE = JTEL#1
DIAL_NO =
HOSTCLLI = TEL_HOST
IS_ROLLBACK = NO
LOOPBACK_ON = 1
...
60. Clear Alarms

This option allows you to enter an alarm code and a number of hours as parameters.
Alarms matching the alarm code that are older than the number of hours specified are
cleared.

Use "%" as a parameter to clear all alarms.

Technical Utilities
The following options are not applicable for the C++ SRP servers.

100. View Server Thread Listing

This option displays details of all threads within the application server including:

■ Thread ID (spid) and status

■ Login name and hostname of incoming connection threads

■ Thread name (cmd)

101. View Server Memory Statistics

This option provides statistics about the internal server memory management
subsystem including the following:

■ Memory blocks available

■ Block sizes

■ Number of such memory blocks currently in use

■ High water mark of the memory block usage

These statistics only refer to use of the ASC memory management routines.

102. View Server Memory Usage

This option provides detailed memory usage statistics for the ASC memory
management routines. The output of this RPC is appended to the application
diagnostic file.

The configuration parameter, MEMORY_LOGGING, must be >= 1 for this RPC to be
installed.

103. Flush State Table Cache

This option will request the target application to flush its memory cache of state tables.
This is usually performed to ensure that updated copies of state tables in the database

Note: In production systems, this configuration parameter should
not be set as it imposes a minor performance overhead.

asap_utils Functions

A-8 ASAP Server Configuration Guide

are read into the cache when next executed. This allows dynamic loading of updated
state tables.

104. View Server Thread Status

This option displays details about internal application threads. This includes the
following:

■ Start time of each thread

■ Number of thread context switches since thread startup

■ CPU time used by each thread

■ If applicable, thread message queue details for each thread

105. View Server Thread Sleep Status

This options details the sleep and alarm requests currently being managed by the API
including the following:

■ Time to wake up

■ Request type (Sleep, Alarm, or Poll)

■ Thread queue name and ID to which alarm notifications are to be sent

■ Socket file descriptor to which a message is to be written if the request is a poll
request

106. Initiate Server DB Admin Proc

This option will initiate the database administration procedures to the primary
database of the selected server. This routine performs the following steps:

■ Invokes the DB Admin stored procedure, if defined

■ Updates all database statistics on user-defined entities in this database

■ Recompiles all SQL entities in the database to ensure they are optimized

This capability is only enabled if the DB_ADMIN_ON configuration parameter is set.
In addition, the behavior of this option is controlled by several configuration
parameters including DB_ADMIN_TIME, DB_ADMIN_PROC and DB_ADMIN_
PROC_PARAM.

107. Change Server Diag Level

This option allows you to dynamically change the diagnostic level of an application
server when it is running. For more information on diagnostic levels, see ASAP System
Administrator’s Guide.

This change only has effect as long as the server is running. Upon restart, it assumes
the diagnostic level specified in the database configuration.

The System monitoring tool is not available to C++ SRPs.

108. Change Server Diag Line Flush

This option allows you to specify whether or not each diagnostic message written to
the diagnostic file should be physically flushed to disk after each write.

In production systems, diagnostics must not be explicitly flushed after each write as it
imposes a performance overhead.

109. Real-time System Monitoring

The ASAP Utility Script (asap_utils) is a menu that provides access from UNIX to a set
of monitoring utilities for ASAP. You can access sysmon through the Real-time System

asap_utils Functions

asap_utils A-9

Monitoring option (109) of the asap_utils menu. You can also monitor multiple servers
at the same time by selecting the Real-time System Monitoring option (109) again.
Once the data collection time period has passed, sysmon output files will be created in
the ASAP systems diagnostic file directory.

Sysmon defaults to monitoring the SARM for 300 seconds. If you want to monitor a
different ASAP component or change the length of the monitoring time, you can
change the defaults.

Tuning - Message Queue

Description Count Total Min Max Average Mean Deviation
------------ ------ ------ ---- ----- ------- ----- ----------
ASDL Provision Queue
message read wait time 1056 5995.5 0.9 62.2 5.7 15.1 10.2
messages sent (count) 1056
queue idle-time (ms) 1056 5971905.0 0.0 114374.2 5655.2 23775.0 19062.4
queue size (count) 1056 0.0 0.0 0.0 0.0 0.0 0.0
...

Group Manager Msg Q
message read wait time 2469 38896.8 2.5 290.5 15.8 61.5 48.0
messages sent (count) 2469
queue idle-time (ms) 2469 18707440.6 0.0 71880.3 7576.9 18294.2 119980.0
queue size (count) 2469 27184.0 0.0 27.1 7.2 1.5 4.5
...

For more information, refer to System monitoring output files, below.

110. Print System Monitor Report

This option allows you to print gathered information on a monitored ASAP
component.

112. Load New Service Configuration into Cache

This option allows you to add new ASAP service definitions dynamically including all
CSDL and ASDL-related configurations.

113. Load New NE Configuration into Cache

This option allows you to add ASAP network interface configurations dynamically
including host NEs and NE resources.

114. Change JNEP Java Interpreter Diagnostic Level

To change the diagnostic level for JNEP, give the name of the related NEP server as
follows:

Specify Server: [NEP_S11A]

Specify New Diag Level: (KERN, LOW, SANE, PROG) [SANE] PROG

Note: Option 101, View Server Msg Queue Statistics, available in
previous versions of ASAP, as well as the configuration parameter
DIAG_MSGQUEUES and the RPC diag_msgqueues, have been
replaced by the functionality available from option 109, Real-time
System Monitoring.

The system monitoring tool is not available to C++ SRPs.

asap_utils Functions

A-10 ASAP Server Configuration Guide

115. Analyze Service Model & NEP Configuration Refresh

Performs a discrepancy analysis between the NE configuration in the cache and the
configuration read from the database. Produces a discrepancy report which
summarizes the discrepancies and includes the following fields: NEP, Host_CLLI,
Host_Update_Type, State, Estimate, Pending, In_Progress, Connect_Count, Retry_
Count, NEP_Update_Type.

116. Service Model & Configuration Refresh

Refreshes the configuration from the database using the latest values without
requiring a restart of ASAP. This command is similar to command 115, except in
addition to producing the discrepancy report, it also applies the Service Model and NE
configuration cache refresh.

117. List CSDL & ASDL version information and usage referencing

This command produces a report containing the current CSDL and ASDL version
information and usage referencing count.

B

Stored Procedures (Deprecated) B-1

BStored Procedures (Deprecated)

This appendix provides information about stored procedures.

Configuring an SRP Using Stored Procedures
This section describes the basic SRP configuration steps using stored procedures.
When configuring an SRP, you must first configure the basics before configuring a
specific SRP type.

SRP configuration information is located in static tables in the ASAP Control server
database and the SARM database.

To add an SRP to the system, perform the following steps:

■ Adding the SRP to the ASAP Start-up Procedures

■ Defining the SRP as an ASAP Component

■ Adding the SRP to the SARM Database

■ Registering the SRP

■ Set Configuration Parameters by manually editing the ASAP.cfg file. See
"Configuration Parameters"

 Adding the SRP to the ASAP Start-up Procedures
The static table tbl_appl_proc contains ASAP application information. You must
populate this table to identify the SRP as an ASAP application and add the SRP to the
ASAP start-up procedure. The ASAP startup procedure uses tbl_appl_proc to
determine what applications to start, and the startup sequence.

For more information on tbl_appl_proc, see the ASAP Developer’s Guide.

Use the following stored procedures to define, delete, and list ASAP client or server
applications:

■ CSP_new_appl – Defines a new ASAP client or server application.

■ CSP_del_appl – Deletes an ASAP client or server application.

■ CSP_list_appl – Lists ASAP application registration information for the specified
application or for all applications in the Control database.

For more information on these stored procedures, see the ASAP Developer’s Guide.

Note: This procedure does not apply to the Java SRP and OCA SRP.

Configuring an SRP Using Stored Procedures

B-2 ASAP Server Configuration Guide

 Defining the SRP as an ASAP Component
The static table tbl_component contains a list of ASAP components for each ASAP
territory and system. You must populate this table to add the SRP as an ASAP
component.

For more information on tbl_component, see the ASAP Developer’s Guide.

Use the following stored procedures to define, delete, and list ASAP components in a
territory:

■ CSP_new_component – Defines an ASAP component within a territory.

■ CSP_del_component – Deletes an ASAP component from a territory.

■ CSP_list_component – Lists ASAP components.

For more information on these stored procedures, see the ASAP Developer’s Guide.

 Adding the SRP to the SARM Database
The static table tbl_asap_srp defines an SRP in ASAP. You must populate this table to
add the SRP to the SARM database. Any ASAP application process that communicates
with the SARM as an SRP using the SRP API must be defined in this table.

For more information on tbl_asap_srp, see the ASAP Developer’s Guide.

Use the following stored procedures to define, delete, and list SRPs in the system:

■ SSP_new_srp – Defines an SRP for the system in the SARM database.

■ SSP_del_srp – Deletes an SRP from the SARM database.

■ SSP_list_srp – Lists SRP definitions

For more information on these stored procedures, see the ASAP Developer’s Guide.

 Registering the SRP
This step applies to C SRP APIs only.

For more information on configuring the OCA SRP, see "About JSRP, Web Service, and
OCA SRP Components". For more information on configuring the C++ SRP, see "Using
the C++ SRP API". For instructions on configuring the Java SRP, see "About JSRP, Web
Service, and OCA SRP Components".

Sybase Open Client/Open Server comes bundled with ASAP and is installed
automatically during ASAP installation.

The ASAP administrator or DBA must register the SRP by editing the Sybase
interfaces file as follows:

■ Add the ASAP component server names.

■ Specify the service as “tcp” (on Oracle , specify “tcl tcp”).

■ Assign port numbers for the servers.

Use the dsedit utility located in the $SYBASE/SYBASE_OCS/bin directory to perform
these procedures. Before using dsedit, do the following:

■ Log on as the asap user.

■ Ensure that the $SYBASE variable points to the ASAP_Home/SYBASE directory,
where ASAP_Home is the directory in which ASAP is installed.

■ Set the $DISPLAY variable by typing:

Configuring NEPs Using Stored Procedures

Stored Procedures (Deprecated) B-3

export DISPLAY=<your IP address>:0.0
■ Ensure that the $LANG variable is set to English. If you are currently using a

non-English language setting, you must temporarily set the $LANG variable to
English by typing:

export LANG=C

Configuring NEPs Using Stored Procedures
The configuration of an NEP using stored procedures requires the following steps:

■ Adding the NEP to ASAP Start-up Procedures

■ Adding the NEP as an ASAP Component

■ Adding the NEP to the SARM Database

■ Adding the NEP to the Sybase Interfaces File

■ Configuring Ports for the JInterpreter

These configuration procedures apply to all NEP core and optional components. These
include EDD, SNMP, and generic communication protocols (such as Telnet, FTP, Serial,
and socket).

 Adding the NEP to ASAP Start-up Procedures
tbl_appl_proc is a static table that contains ASAP application information. ASAP uses
this table to determine which applications to start, and the startup sequence. You must
populate this table to add an NEP to the startup procedure.

Use the following stored procedures to define, list, and delete ASAP client or server
applications:

■ CSP_new_appl – This stored procedure defines a new ASAP client or server
application.

■ CSP_list_appl – This stored procedure lists ASAP application registration
information for the specified appl_cd or all applications from the Control
database.

■ CSP_del_appl – This stored procedure deletes ASAP Application registration
information from the Control database.

For more information on these stored procedures and “tbl_appl_proc”, refer to the
ASAP Developer’s Guide.

 Adding the NEP as an ASAP Component
tbl_component is a static table that contains a list of ASAP components for each ASAP
territory and system. You must populate this table to add an NEP as an ASAP
component.

Use the following stored procedures to define, list, and delete ASAP components in a
territory are:

■ CSP_new_component – This stored procedure defines an ASAP component in a
territory.

■ CSP_list_component – This stored procedure lists ASAP components.

■ CSP_del_component – This stored procedure deletes an ASAP component.

Configuring NEPs Using Stored Procedures

B-4 ASAP Server Configuration Guide

For more information on these stored procedures and tbl_component, refer to the
ASAP Developer’s Guide.

 Adding the NEP to the SARM Database
tbl_nep is a static table that is referenced by the SARM and the NEP. This table
maintains the relationship between the NEP and the secondary pool of devices that are
used by the NEP to establish auxiliary connections to host NEs. Each NEP references
this table upon start up to determine the secondary pool of devices available to all
session managers within that NEP. It spawns a command processor thread for each
device in the secondary pool of devices. You must populate this table to configure
these connections.

Use the following stored procedures to define, list, and delete the auxiliary pool of
devices or connections for an NEP:

■ SSP_new_nep – This stored procedure defines a secondary (dialup) pool of
devices or connections for a specified NEP in the SARM database.

■ SSP_del_nep – This stored procedure deletes an NEP secondary pool definition
from the SARM database.

■ SSP_list_nep – This stored procedure lists NEP secondary pool definitions.

For more information on these stored procedures and “tbl_nep”, refer to the ASAP
Developer’s Guide.

 Adding the NEP to the Sybase Interfaces File
You must add the NEP server to the Sybase interfaces file. For more information, refer
to the ASAP Installation Guide.

 Configuring Ports for the JInterpreter
You can enable or disable the JInterpreter for an NEP by defining or not defining the
listener entry in tbl_listeners. If no $NEP_jlistener entry is configured for the server
$NEP, the NEP is not Java-enabled. This configuration must be specified before
startup; it is not runtime applicable.

During installation, ASAP defines a default NEP enabled with a JInterpreter.

Every NEP must maintain a dedicated connection to its JInterpreter (configured in tbl_
listeners).

You can enable or disable the ports on the JInterpreter in one of two ways:

■ Using the Service Activation Configuration Tool (SACT) – refer to Chapter 2,
"Configuring ASAP Servers."

■ Using the following stored procedures to define, list, and delete the auxiliary pool
of devices or connections for an NEP:

■ CSP_new_listener – This stored procedure defines a listener entry for an NEP.

■ CSP_del_listener – This stored procedure deletes a listener entry for an NEP.

■ CSP_get_listener – This stored procedure lists listener entries for an NEP.

For more information on “tbl_listeners”, refer to the ASAP Developer’s Guide.

Configuring Resource Pools Using Stored Procedures

Stored Procedures (Deprecated) B-5

Configuring Multiple JInterpreters
Each NEP has an entry in tbl_appl_proc. If the NEP is java-enabled, ensure that the
following conditions are met:

■ There should be a corresponding entry in $SYBASE/interfaces file. See "Adding
the NEP to the Sybase Interfaces File".

■ There should be a corresponding entry in tbl_listeners."Configuring Ports for the
JInterpreter".

■ There should be a unique JInterpreter script under ASAP_Home/programs.

The JInterpreter script located in ASAP_Home/programs directory is a template.
For each NEP, copy the JInterpreter script file in the format:

$NEP_ID_jinterpreter.

For example, if you have the following NEPs:

NEP_S123, NEP1S123, NEP2S123, NEP3S123

you must copy JInterpreter script for each NEP as follows:

cp JInterpreter NEP_S123_jinterpreter

cp JInterpreter NEP1S123_jinterpreter

cp JInterpreter NEP2S123_jinterpreter

cp JInterpreter NEP3S123_jinterpreter

Additional Considerations when Configuring Multiple JInterpreters

In the situation described above, where multiple JNEPs are deployed and the
Jinterpreter_<NEP> files were created by making hard copies of the Jinterpreter,
additional issues should be considered.

If you deploy using SAM/Studio the file updated is the Jinterpreter file. The updates
are not propagated into the additional interpreter files (e.g. NEP_S123_jinterpreter,
NEP1S123_jinterpreter, NEP2S123_jinterpreter, NEP3S123_jinterpreter from the
example above.) Not all the NEPs would have knowledge of what has been deployed.
This implies that changes to the Jinterpreter file would have to be manually
propagated to these other files or they will have to be re-copied.

If you have some Class B JNEPs, they may connect to other databases, perform many
lookups, perform many file management task, ftp transfers or other tasks. In this case,
some but not all of your JNEPs may need different JVM startup parameters.

Consider whether it is the best choice to start all NEPs with high JVM allocation if only
a small percentage of them needs it. It may make more sense for the majority to be
configured as soft links to Jinterpreter and the small percentage that need the high
JVM allocation to be standalone copies.

To simplify maintenance in a case where you have added JNEPs which are all the
same, consider creating a soft link to the original Jinterpreter file.

Sample Scripts
Refer to ASAP_Home\ASAP\samples\JeNEP\PLSQL for a sample Oracle script that
configures ASAP for JInterpreter connectivity.

Configuring Resource Pools Using Stored Procedures
Use the following stored procedures to define, delete, and list reserouce pools:

Configuring Resource Pools Using Stored Procedures

B-6 ASAP Server Configuration Guide

■ SSP_new_resource – This stored procedure defines an NEP resource (“device”) to
be used for NE access in the SARM database.

■ SSP_del_resource – This stored procedure deletes an NEP resource record from
the SARM database.

■ SSP_list_resource – This stored procedure lists NEP resource records.

For more information on these stored procedures and tbl_resource_pool, refer to the
ASAP Developer’s Guide.

	Contents
	Preface
	Audience
	Downloading Oracle Communications Documentation
	Related Documents

	1 ASAP Server Configuration Overview
	Overview of ASAP Server Configuration Tasks

	2 Configuring ASAP Servers
	About the Service Activation Configuration Tool
	About Service Activation Configuration Tool Resource Definitions
	About Using the Service Activation Schema to Write an XML File
	About Configuring an XML Configuration File to Prompt for Values
	About Configuring an XML File to Replace Values with Environment Variables

	About the Service Activation Configuration Tool
	Configuring the SACT Scripts and UNIX Environment Variables
	Running the SACT Scripts

	Transforming ASAP Database Configurations or Service Models into XML

	3 About the Control and Daemon Servers
	About Control Servers and Fork Agents
	About the ASAP Daemon Server

	4 Configuring Service Request Processors
	About Service Request Processor Servers
	SRP Translation of Native SRP Work Orders to ASAP Work Orders

	Configuring a C SRP Emulator
	Adding a C SRP Emulator
	Deleting a C SRP Emulator
	Adding Configuration Parameters to a C SRP Emulator

	Configuring the C++ Csol SRP Emulator
	Starting the C++ Csol SRP Emulator

	Using the C++ SRP API

	5 Configuring Java Service Request Processors and Web Services
	About Java Service Request Processor Servers
	About JSRP, Web Service, and OCA SRP Components
	About the JSRP Server and Web Service Interfaces
	About Connecting JSRP JMS and Web Service Interfaces to a Remote Application
	Modifying JSRP Parameters (Deployment Descriptors) in WebLogic
	Configuring Validation of Received Data

	Setting Log Levels
	Uninstalling the Java SRP

	Configuring a Custom Java SRP client
	Sample Code for a Custom JSRP Client
	Sample Script to Run the Custom JSRP Client

	Configuring a OCA SRP
	Setting OCA SRP Configuration Parameters

	6 Managing the Service Activation Request Manager
	About Managing Service Activation Request Manager Servers
	SARM to SRP Event Notification
	SRP Work Order Event Management

	NEP to SARM Event Notifications
	Returned Parameter Types and Formats

	7 Configuring Network Element Processors, Resource Pools, and Devices
	About Configuring Network Element Processors
	NEP Components
	Session Manager
	Command Processor

	Interpreters
	Interpreter Cache Flush
	JInterpreter
	Customizing the JInterpreter
	Managing Provisioning Classes
	Dynamic Reloading of Provisioning Classes
	Using the JInterpreter Utility Script

	State Table Interpreter
	Customizing Interpreter State Table Actions

	Connection Management
	Connection Requests
	Primary Connection
	Auxiliary Connections
	Dial-up Connections

	Disconnection Requests
	Drop Timeout Parameter
	Idle ASDL Generation
	Automatic Maintenance Mode

	Connection Thresholds
	Spawn Threshold
	Kill Threshold
	Maximum Available Connections

	Device Throughput
	Device Enabling/Disabling
	Automatic Device Re-enabling

	Device Screen and Line Diagnostics
	Connection-related ASDLs
	Resending Completed ASDLs

	Configuring NEPs
	Adding an NEP
	Deleting an NEP
	Adding Configuration Parameters to an NEP
	JNEP Logging

	Configuring Resource Pools and Resource Pool Devices
	Adding a Resource Pool and Device
	Deleting a Resource Pool and Device

	Configuring NE Blackout Periods
	Checking NE Blackout Periods
	Configuration Parameters for NE Blackout

	8 Managing the Admin Server
	About Managing Admin Servers

	9 Configuration Parameters
	About ASAP Configuration Parameters
	Determining Configuration Parameters
	Configuration Parameter Scope
	Environment Variable Support
	UNIX Environment Variables

	Common API Configuration Parameters
	Logical-to-Network Application Name Mapping
	ASAP Monitoring Parameters
	Connection Pool Manager and Debugging Tools
	Application Logical to Network Application Name Mapping
	SQL Server Security-Related Parameters
	RPC-Related Parameters
	Network Connection-Related Parameters
	Application Diagnostics-Related Parameters
	Self-Balancing Binary Tree-Related Parameters

	Server API Configuration Parameters
	Sybase Open Server Parameters
	Sybase Open Server Debugging Trace Flag Parameters

	Application Server Memory Management Parameters
	Client Library Parameters
	DB Library Parameters
	Poll Management Parameters
	Database Administration Parameters
	IPC Diagnostic Parameters
	Security-Related Parameters
	High-Availability Parameters
	Application Server Performance Parameters

	Client API Configuration Parameters
	Client Application Signal Handling

	SRP API Parameters
	SARM Connectivity Parameters
	Loopback Testing Parameters
	Interpreter Operation
	SQL Server Connectivity
	State Table Debugger Support
	Loopback Support

	NEP API Parameters
	ASDL Processing Parameters
	Connectivity Parameters
	Switch Direct Parameters

	NE Communication API Parameters
	Device Driver Support
	Terminal Communication Support
	Serial Device Driver Support
	Generic EDD API Parameters
	CSOL API Parameters
	Auditing Level Parameter
	WebLogic Server Parameters

	Control Server Configuration Parameters
	Control Server Alarm Generation
	Control Server Database and File System Monitoring
	Fork Agent Process Generation Configuration
	Control Server Database Administration Parameters
	SRP Emulator Server Configuration Parameters

	SARM Server Configuration Parameters
	Mask for WO ID Generation
	Configuration for VNO External Validation
	SARM Work Order Processing
	SARM Thread Configuration Management
	SARM Message Pool Size
	SARM Batch Error Thresholds
	SARM International Messages
	OCA Work Order Entry
	UNID Manager
	SARM Switch Direct
	Admin Server Parameters
	Persistent ADM Data in SARM
	Socket Connections
	Database Administration Parameters for the SARM DB

	NEP Server Configuration Parameters
	ADM Server Configuration Parameters
	Database Administration Parameters for the ADMIN Database

	Generic EDD API Parameters
	BX25_EDD Configuration Parameters
	PADEDD Configuration Parameters
	UTILITY Configuration Parameters
	Login Information for the SARM Database
	Login Information for ADM Database

	A asap_utils
	asap_utils Functions
	SARM Utilities
	Admin Server Utilities
	NEP Utilities
	Technical Utilities

	B Stored Procedures (Deprecated)
	Configuring an SRP Using Stored Procedures
	Adding the SRP to the ASAP Start-up Procedures
	Defining the SRP as an ASAP Component
	Adding the SRP to the SARM Database
	Registering the SRP

	Configuring NEPs Using Stored Procedures
	Adding the NEP to ASAP Start-up Procedures
	Adding the NEP as an ASAP Component
	Adding the NEP to the SARM Database
	Adding the NEP to the Sybase Interfaces File
	Configuring Ports for the JInterpreter
	Configuring Multiple JInterpreters

	Sample Scripts

	Configuring Resource Pools Using Stored Procedures

