Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr

Configuration Guide Release 2.1.0 Service Pack 3 E51075-03

May 2015

Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr Configuration Guide

E51075-03

Copyright © 2011, 2015 Oracle and/or its affiliates. All rights reserved.

Primary Author: UGBU Documentation

Contributing Author: UGBU Documentation

Contributor: UGBU Documentation

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

What's New	
New Features in the Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr Conf	iguration Guide 1-i
New Features for Release 2.1.0.3	1-i
Chapter 1	
Overview	11
What Is This Book?	
Other Documentation	
Oracle Utilities Application Framework Configuration Tools	
	1-7
Chapter 2	
General Configuration	
Understanding the Landis+Gyr Adapter	
Understanding the Adapter Processing	
Initial Measurement Data Load and Device Events	
Device Communication	
Configuring a Landis+Gyr Head-End System	
XAI Inbound Services	
XAI Senders	
Outbound Message Types	
External System	
Service Provider	
Processing Methods for Service Provider	
Configuring Landis+Gyr Extendable Lookups	
CIM Response Status Extendable Lookup	
CIM Data Source Extendable Lookup	
Landis+Gyr Device Event Mapping	
Landis+Gyr UOM Code to Standard UOM Mapping	
Landis+Gyr Interval Status Code to Condition Mapping	
Extending the Adapter for Landis+Gyr	
The Test Harness	
Test Harness Design	
Locating the WSDL for the Test Harness	
Web Services	
Landis+Gyr Interval Data Mapping	
Non-interval Usage with additional fields	
XML "Plain" XML format	
Non-Interval Usage to "Plain" XML Mapping	
"Plain" XML to IMD Mapping	
Non-Interval "Plain" XML to IMD Mapping	
Mapping Additional Fields	
Appendix	
Glossary	

Index

What's New

New Features in the Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr Configuration Guide

This chapter outlines new features that are documented in this guide.

New Features for Release 2.1.0.3

Feature	Description	For more information, refer to
Support for Gridstream Command Center Version 6.3	The Smart Grid Adapter for Landis+Gyr supports v6.3 of the Gridstream Command Center head-end system.	Understanding the Landis+Gyr Adapter on page 2-2
New Demand Reset Command	Added support for a new Demand Reset command.	Device Communication on page 2-8
Device Status Check Command	Added support for the Device Status command.	Device Communication on page 2-8
CIM-based On Demand Read Command	Added support for a new CIM-based On Demand Read command.	Device Communication on page 2-8
Real-Time Event Processing	Added support to subscribe to the L+G Command Center to receive real-time device events.	Subscribing to Real-Time Device Events on page 2-5
Enhanced Interval Data Format	Added support for mapping of Landis+Gyr 2-digit status codes.	Landis+Gyr Device Event Mapping on page 2-7
EMED Additional Fields	Added support for including additional fields in incoming usage data.	Landis+Gyr Interval Data Mapping on page 2-40
		Mapping Additional Fields on page 2-46
New UTC date/time format environment settings parameter to support multiple time zones.	Added the "dateTimeInUTC" parameter to the EnvironmentSettings.xq file to indicate whether the Sensus RNI system is sending date/time information in UTC time.	Initial Measurement Data Load and Device Events on page 2-3

Chapter 1 Overview

This chapter provides an overview of this configuration guide and an introduction to the Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr including the following:

- What Is This Book? •
- **Other Documentation** •
- **Oracle Utilities Application Framework Configuration Tools** ٠

What Is This Book?

This guide describes how to configure the Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr. It is intended for implementers and system administrators responsible for configuration and initial setup of the application.

The Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr is based on the Oracle Utilities Application Framework (OUAF). For information about using and configuring basic Framework functions, see the Oracle Utilities Application Framework documentation. This guide only covers configuration of functions specific to the Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr.

The body of this guide presents conceptual information to help you understand how the system works as well as how the various configuration options affect system functionality. Once you have an understanding of the system's capabilities, you can plan your data setup and design any customizations you want to implement.

When you are ready to implement your design, use **Chapter 2**: **General Configuration** to guide you through the setup process of admin data. This section lists each object that can be configured, defines any prerequisites for configuration.

This guide includes the following chapters:

- **Chapter 1: Overview** (this chapter) provides an overview of the Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr architecture and of the configuration tools and process used in implementing the product.
- Chapter 2: General Configuration provides an overview of some general configuration options used by the Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr.

Other Documentation

This section describes other documentation provided with the Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr.

Installation Documentation

Installation documentation describes the steps involved in the installation and initial set up of the system, and includes the following documents:

- Oracle Utilities Smart Grid Gateway Quick Install Guide
- Oracle Utilities Smart Grid Gateway DBA Guide
- Oracle Utilities Smart Grid Gateway Installation Guide

User Documentation

User documentation provides conceptual information and procedures related to working with the various objects used in the system, and includes the following documents:

- Oracle Utilities Application Framework Business Process Guide
- Oracle Utilities Application Framework Administration Guide
- Oracle Utilities Service and Measurement Data Foundation User's Guide

Supplemental Documentation

Supplemental documentation provides technical information related to system administration tasks and include the following documents:

- Oracle Utilities Smart Grid Gateway Server Administration Guide
- Oracle Utilities Smart Grid Gateway Batch Server Administration Guide

Oracle Utilities Smart Grid Gateway Configuration Guide

The Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr uses Oracle Service Bus (OSB) and Oracle Business Process Execution Language (BPEL) as middleware components. These tools are part of the Oracle SOA Suite. See the Oracle SOA Suite Documentation library (http://www.oracle.com/technetwork/middleware/soasuite/documentation/index.html) for more information about using these tools.

Embedded Help

Oracle Utilities Smart Grid Gateway, like all Oracle Utilities Application Framework applications, provides extensive internal documentation. For example, detailed descriptions of system objects are included in the objects' maintenance portals. The lifecycle of each business object is described on the Lifecycle tab and depicted in flow diagrams on the Summary tab. This information is extremely useful for implementers and system administrators.

Embedded help is provided for all non-obvious fields in most portals and zones. If a field has associated help text, a ? icon appears next to the field when the zone is displayed.

Online Help

Oracle Utilities Smart Grid Gateway also includes context-sensitive help for all the user interface screens users will typically work with as they use the system. Online help contains conceptual information and procedures related to working with the various objects used in the system.

The online help is divided into the following three sections:

- Oracle Utilities Application Framework: Describes the features and functions of the application framework (F1)
- Oracle Utilities Service and Measurement Data Foundation: Describes the features and functions provided in the Service and Measurement Data Foundation (D1)
- Oracle Utilities Smart Grid Gateway: Describes the features and functions provided in the smart grid gateway application (D3)

Oracle Utilities Application Framework Configuration Tools

Please refer to the general configuration guide for information on the Oracle Utilities Application Framework (OUAF) configuration tools that can be used to create and customize system entities, such as business objects, portals, zones, and UI maps. Refer to the Oracle Utilities Application Framework configuration tools documentation for instructions on using tools such as:

- Configuration Process Overview
- Data Areas
- Algorithms
- Entity Naming Conventions

This configuration guide does not duplicate the concepts and procedures presented in the Oracle Utilities Application Framework configuration tools documentation; rather, it will identify the specific objects used by the Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr that can be configured and customized using the configuration tools, as well as application parameters and objects that can be managed within the application components themselves.

This guide assumes that all individuals responsible for system configuration and implementation will be familiar with the Oracle Utilities Application Framework and will have completed training on the Oracle Utilities Application Framework Configuration Tools.

Chapter 2

General Configuration

This chapter provides details on the components and configurations required for the Smart Grid Gateway adapter for Landis+Gyr, including the following:

- Understanding the Landis+Gyr Adapter
- Understanding the Adapter Processing
- Configuring a Landis+Gyr Head-End System
- Configuring Landis+Gyr Extendable Lookups
- Extending the Adapter for Landis+Gyr
- The Test Harness

Understanding the Landis+Gyr Adapter

The Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr supports communication with the Landis+Gyr Command Center software version 6.0, including measurement data and device event loading, and command messaging in support of commissioning, connect, disconnect, decommissioning, and on-demand read. The following table describes the attributes of the adapter:

Attribute	Details
Currently Supported Version	Gridstream Command Center 6.3
Smart Meter Command Format	MultiSpeak v3.1
Bulk Usage/Event Data Format	California Metering Exchange Protocol (CMEP)
Market(s)	North America, portions of Asia Pacific, Sweden, Australia, New Zealand, and Latin America.
Commodities Supported	Electricity, Gas, Water
Architecture	PLC and RF

The adapter uses Oracle Service Bus (OSB) and Oracle Business Process Execution Language (BPEL) to facilitate communication between Oracle Utilities Smart Grid Gateway and the Landis+Gyr Command Center.

The following functionality is included:

Measurement Data and Device Event Loading - data parsing and transformation via Oracle Service Bus from Landis+Gyr format into the Oracle Utilities Service and Measurement Data Foundation unified format for measurement data and device events.

Measurement Data and Device Event Processing - configurable mapping for Landis+Gyr status codes and device event names to Oracle Utilities Service and Measurement Data Foundation standard values.

Smart Meter Command Processing - sending/receiving messages to/from the Landis+Gyr application to initiate smart meter commands from Oracle Utilities Smart Grid Gateway. The Landis+Gyr adapter supports the following types of commands and communications:

- Meter Commissioning business objects and BPEL processes to support issuing meter commissioning commands.
- Remote Connect business objects and BPEL processes to support issuing remote connect commands.
- Remote Disconnect business objects and BPEL processes to support issuing remote disconnect commands
- Meter Decommissioning business objects and BPEL processes to support issuing meter decommissioning commands.
- **On-Demand Read** business objects and BPEL processes to support issuing on-demand read commands.

Understanding the Adapter Processing

This section provides details concerning the OSB processing, BPEL Processes, OUAF objects supplied as part of the base package. This information illustrates how the base package objects were designed, and can serve as the basis for any customizations you create as part of your implementation.

This section includes:

- Initial Measurement Data Load and Device Events
- Device Communication

Initial Measurement Data Load and Device Events

The initial measurement data load and subsequent device event processing use OSB to poll for, parse, and transform the head-payloads into the Oracle Utilities Smart Grid Gateway service format. Payloads contain measurements and meter events in some head-end specific format OSB then places each service call into a JMS queue within the Oracle Utilities applications. The JMS client consumes the entries and invokes the respective services in parallel then a service creates initial measurements with data in a common format with head-end-specific processing as needed. A second service creates device events with data in a common format

Initial Measurement

The usage data exported from the AMI head-end system as a file in Landis+Gyr format is loaded into Oracle Utilities as initial measurement data. The following OSB projects, delivered in the base product, help manage the usage processing:

- SGG-D3-USAGE-BASE contains components responsible for "actual" processing of incoming data. It should not be modified during configuration. This can be upgraded without affecting the customization and environment settings added to SGG-D3-USAGE-CM.
- 2. SGG-D3-USAGE-CM allows for customization and simplifies future upgrades.

When importing non-interval usage data, separate initial measurements can be created for difference measurement types. For instance, if the data includes Power Factor or Volt data, separate initial measurements are created for each of these. See **Non-Interval "Plain" XML to IMD Mapping** on page 2-44 for more information about specific units of measure that trigger the creation of separate initial measurements.

The runtime configuration settings for the SGG-D3-USAGE-CM project are stored in the EnvironmentSettings.xq XQuery file. You can use this file to adjust initial measurement data processing. For example, if you want to load raw data you would specify "true" for the content of the populateRawIMD element.

Element	Description
populateRawIMD	Determines if the initial measurement data is populated as raw data. Valid values are: • true • false
callPreProcessing	Determines if the preprocessing proxy service is called. Valid values are: • true • false

The following table describes the elements included in the EnvironmentSettings.xq file:

Element	Description	
callPostProcessing	Determines if the postprocessing proxy service is called. Valid values are: • true	
	• false	
destinationRootElementInterval	Holds the name of XAI inbound service for the interval IMD seeder.	
destinationRootElementScalar	Holds the name of XAI inbound service for the scalar IMD seeder. In most cases it is the same as destination- RootElementInterval.	
dateTimeInUTC	Indicates whether the Sensus RNI system is sending date/time information in UTC (true) or local time of the device (false). If not provided the default behavior will be local time of the device. Valid values are: • true	
	• false	
modifyResultXMLInput	Specifies the name of an XQuery document (without the "xq" extension) used to map additional fields from the "plain" XML format to the result XML format sent as initial measurement data. See Mapping Additional Fields on page 2-46 for more information.	

Processing Large Input Files

In some environments, the OSB project may begin processing a large input file before it has been completely copied to the input directory. To prevent this, configure the MinimumAge property in the "InboundProxyService" proxy service for the SGG-D3-USAGE-CM project. The MinimumAge property specifies the minimum age of files to be retrieved, based on the last modified time stamp. This enables large files to be completely copied to the input directory before they are retrieved for processing.

See Working with Adapter OSB Projects in the Oracle Utilities Smart Grid Gateway Configuration Guide for more information about setting the MinimumAge property.

Device Events

The device event data exported from the head-end system as a file in Landis+Gyr format is loaded into Oracle Utilities as a Device Event. One of your configuration tasks is to customize the device events processing.

The required functionality is delivered in the base product as two OSB projects:

- 1. SGG-D3-EVENT-BASE containing components responsible for "actual" processing of incoming data. It can be upgraded in future without affecting the customization and environment settings that done in SGG-D3-EVENT-CM project.
- 2. SGG-D3-EVENT-CM allows the customization and simplifies the future upgrades.

The runtime configuration settings for the SGG-D3-EVENT-CM project are stored in the EnvironmentSettings.xq XQuery file. You can use this file to adjust device event data processing. For example, if you want to load raw data you would specify "true" for the content of the populateRaw element.

Element	Description	
populateRaw	Determines if the device event data is populated as raw data. Valid values are: • true	
	• false	
callPreProcessing	Determines if the preprocessing proxy service is called. Valid values are:	
	• true	
	• false	
callPostProcessing	Determines if the postprocessing proxy service is called. Valid values are: • true	
	• false	
destinationRootElement	Holds the name of XAI inbound service for the device event seeder.	
dateTimeInUTC	Indicates whether the Sensus RNI system is sending date/time information in UTC (true) or local time of the device (false). If not provided the default behavior will be local time of the device. Valid values are: • true	
	• false	
modifyResultXMLInput	Specifies the name of an XQuery document (without the "xq" extension) used to map additional fields from the "plain" XML format to the result XML format sent as device event data. See Mapping Additional Fields on page 2-46 for more information.	

The following table describes the elements included in the EnvironmentSettings.xq file:

Subscribing to Real-Time Device Events

The Landis+Gyr Command Center provides the ability to "subscribe" to device events from within their online interface. This is done by creating a subscriber in Command Center with an associated callback URL as well as a list of events types that subscriber is interested to receive. When an event that is subscribed to occurs it is sent to the callback URL in real time.

Within L+G Events are configured with one of three "alarm" settings. These settings determine how often the events will be sent to subscribers:

- 1. Alarm: immediately delivered from the meter
- 2. Advisory: sent based upon a delivery schedule
- 3. Log Only: sent only upon request (not applicable for our implementation real time event processing)

Command Center will communicate the events using a CIM format that describes the message as a noun/verb combination. The details of the event itself will be contained within a "payload" element of the standard structure. The payload will be formatted using the EndDeviceEvent message structure. This message identifies device events using a CIM 4-part category number. These numbers are four period separated numbers that will describe the type of device and the event. For example: 3.33.1.257 is for "Tamper attempt suspected".

- Segment 1: End Device event domain code (e.g. 3. meter/10. collector/11. router/12. HAN device)
- Segment 2: End Device Event Domain Part Codes (e.g. 1. Access/2. Battery)
- Segment 3: End Device Event Type Codes (e.g. 1. Alarm/2. Alarm Mgt)
- Segment 4: End Device Event Index (e.g. 1. Abort/2. Access Attempt)

Refer to the Landis+Gyr documentation for details about the CIM Category Numbers. CIM Category Numbers must be mapped to standard device event names using the Landis+Gyr Device Event Mapping extendable lookup.

SGG receives these messages through a BPEL composite that saves the incoming request as a file to be picked up by OSB.

The **AMIEventSubscriber** composite is responsible for receiving the event messages based on subscriptions defined in the L+G Command Center. The callback URL configured for the subscription in the Command Center should point to this BPEL composite.

The following OSB projects parse individual device events from the message and perform the validation and mapping of the information to the Device Event Seeder Format.

- SGG-D3-CIM-EVENT-BASE contains components responsible for "actual" processing of incoming data. It can be upgraded in future without affecting the customization and environment settings that done in SGG-D3-CIM-EVENT-CM project.
- 2. SGG-D3-CIM-EVENT-CM allows the customization and simplifies the future upgrades.

The runtime configuration settings for the SGG-D3-CIM-EVENT-CM project are stored in the EnvironmentSettings.xq XQuery file. You can use this file to adjust device event data processing. For example, if you want to load raw data you would specify "true" for the content of the populateRaw element.

Element	Description	
populateRaw	Determines if the device event data is populated as raw data. Valid values are: • true	
	• false	
callPreProcessing	Determines if the preprocessing proxy service is called. Valid values are: • true	
	• false	
callPostProcessing	Determines if the postprocessing proxy service is called. Valid values are: • true	
	• false	
destinationRootElement	Holds the name of XAI inbound service for the device event seeder.	

The following table describes the elements included in the EnvironmentSettings.xq file:

Processing statistics are gathered for any real time events that are received (even if there is just one event in the message) in the same manner as device events received via the flat-file interface.

Base Package Business Objects

The Landis+Gyr adapter base package includes the following initial measurement and device event business objects:

Business Object Name	Description	
D3-InitialLoadIMDInterval	Landis+Gyr Initial Load IMD - Interval	
	Used when loading Landis+Gyr interval measurements into the system for the first time.	
D3-InitialLoadIMDScalar	Landis+Gyr Initial Load IMD - Scalar	
D3-DeviceEventMappingLookup	Landis&Gyr Device Event Mapping	
D3-HeadendUOMLookup	Landis&Gyr UOM Code to Standard UOM Mapping	
D3-IntStsCodeToCondMapLookup	Landis+Gyr Interval Status Code to Condition Mapping This is a child BO of Interval Status Code to Condition Mapping.	

Landis+Gyr Device Event Mapping

The Landis+Gyr head-end system is capable of sending a large selection of device events. The adapter maps these events into standard Oracle Utilities Smart Grid Gateway event names and categories based on the configuration of the D3-DeviceEventMappingLookup extendable lookup. Both device event names and CIM Category Numbers should be mapped using this extendable lookup.

Landis+Gyr UOM Code to Standard UOM Code Mapping

The Landis+Gyr data format references L+G specific unit of measure codes. These codes can be mapped to standard UOM codes based on the configuration of the D3-HeadendUOMLookup extendable lookup.

Interval Status Code to Condition Mapping

The Landis+Gyr "enhanced interval" format contains a 2 character status code. When L+G interval data is loaded, the status code for each interval is translated into the corresponding standard condition code based on the configuration of the D3-IntStsCodeToCondMapLookup extendable lookup.

Device Communication

The basic communication for all business processing is essentially the same. A communication request is sent from the Oracle Utilities application to Landis+Gyr. This request would be for a connect/disconnect, commission/decommission, measurement data or an on-demand read. The designated BPEL process transforms the request from Oracle Utilities format to MultiSpeak format and invokes the related Landis+Gyr web service. Landis+Gyr then returns a reply, the BPEL process transforms the reply message back to the appropriate format so that Oracle Utilities can receive the response.

The following sections describe the key components in this processing, including:

- Communication Flows
- Base Package Business Objects
- External System
- Outbound Message Types
- XAI Configuration
- BPEL Processes

Communication Flows

The table below lists the communications created for each Landis+Gyr command:

Command	Outbound	Inbound	Completion
	Communication	Communication	Event
Remote Connect (This command has sub-commands)	Initiate MR by Mtr Num Initiate Connect Disconnect	Reading Changed Notification Connect Disconnect State Changed Notification	Connect Device Create IMD Completion Event
Remote Disconnect (This command has sub-commands)	Initiate Connect Disconnect Initiate MR by Mtr Num	Connect Disconnect State Changed Notification Reading Changed Notification	Disconnect Device Create IMD Completion Event
Device Commissioning	Meter Add Notification		Device Decommissioning
Device	Meter Remove		Device
Decommissioning	Notification		Decommissioning
On-Demand Read	Initiate MR by Mtr Num	Reading Changed	Create IMD
(Scalar)		Notification	Completion Event
On-Demand Read	CIM Meter On Demand	CIM Meter On Demand	Create IMD
(Scalar) - CIM	Read (Scalar)	Read Response	Completion Event
On-Demand Read	Initiate MR by Mtr Num	Reading Changed	Create IMD
(Interval)		Notification	Completion Event
On-Demand Read	CIM Meter On Demand	CIM Meter On Demand	Create IMD
(Interval) - CIM	Read (Inteval)	Read Response	Completion Event

Command	Outbound	Inbound	Completion
	Communication	Communication	Event
Device Status Check	CIM Ping	CIM Ping Response	
Demand Reset	Schedule Demand Reset	Schedule Demand Reset	Create IMD
	(Multispeak)	Response (Multispeak)	Completion Event

Base Package Business Objects

The Landis+Gyr Adapter base package includes the following communication business objects:

Business Object Name	Description
D3-CIMGetLPData	CIM Meter On Demand Read (Interval)
D3-CIMMeterOnDemandRead	CIM Meter On Demand Read (Scalar)
D3-CIMMeterReadingResponse	CIM Meter On Demand Read Response
D3-CIMPing	CIM Ping
D3-CIMPingResponse	CIM Ping Response
D3-ConnectDisconStateChgNtf	Connect Disconnect State Changed Notification
D3-InitiateConnectDisconnect	Initiate Connect Disconnect
D3-InitiateMRByMtrNbr	Initiate Meter Read By Meter (MultiSpeak)
D3-MeterAddNotificationMultiSp	Meter Add Notification (MultiSpeak)
D3-MtrRmvNotifMultiSpeak	Meter Remove Notification (MultiSpeak)
D3-ScheduleDemandReset	Schedule Demand Reset (Multispeak)
D3-ScheduleDemandResetResponse	Schedule Demand Reset Response (Multispeak)
D3-ReadingChgNotification	Reading Changed Notification

Landis+Gyr Event Data Mapping

The Landis+Gyr event file format maps as follows into the business object, D1-DeviceEventMappingLookup:

Landis+Gyr Flat File Field	Device Event Seeder BO Element	Comments
Transaction ID (from Header record)	External Source Identifier	This is the file name.
Device Identifier	External Device Identifier	
Event Name	External Event Name	
Event Creation Date/Time	Event Date/Time	

Landis+Gyr Flat File Field	Device Event Seeder BO Element	Comments
Device Type	External Device Type	This element has no real bearing on the device type within MDM/SGG. Its valid values include (although the element itself is free-form): Meter Collector Router
Service Location ID	External Service Location ID	
Communication Module Serial Number	External Communication Module Identifier	
Event Category ID	External Event Category	
Event Severity	External Event Severity	Valid values include (although the element itself is free- form): Alert Information
Status Value	External Status Value	This represents additional information that relates to the event itself.
Status Date/Time	External Status Date/Time	The date & time at which the additional information referenced above had occurred.

External System

You must create an External System for each external system to which Oracle Utilities Smart Grid Gateway will send messages. Each external system defines a set of outbound message types that will be sent to that system. Each external system outbound message type also specifies the following:

- The processing method used to send the message (Batch, XAI, or Real-time)
- The corresponding XAI senders
- Batch Control (if Processing Method is set to Batch)
- Message XSL, W3C Schema, and Response XSL (as applicable)

Outbound Message Types

Acknowledgement and response messages are sent and received validating that commands have been transmitted. These notifications are based on the following outbound message types.

Outbound Message Type	Description	
D3-COMMS	Commission Device	
D3-CONNECT	Connect Device	

Outbound Message Type	Description
D3-DECOMMS	Decommission
D3-DEMRESET	Demand Reset
D3-DISCONNEC	Disconnect Device
D3-DVCSTSCHK	Device Status Check
D3-INITMRN	Initiate Meter Read by Meter Number
D3-INITMTR	Initiate Meter Read by Meter Number
D3-MTRADDNOT	Meter Add Notification Outbound Message Type
D3-MTRRMV	Meter Remove Notification

XAI Configuration

The XML Application Integration (XAI) utility allows you to configure your system to receive information from and to send information to external applications using XML. The Landis+Gyr adapter for Smart Grid Gateway uses one XAI inbound service to map device events. This is the same XAI inbound service used by the D1 application.

XAI Inbound Services

XAI inbound systems define the details of how messages are received from an external system, including the inbound communication business object (or business service or service script) to be invoked when the response message is received. As in the case of inbound communication business objects, the set of XAI inbound services you need to create is based on the types of messages the system is designed to send.

The Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr includes the following XAI inbound services:

XAI Inbound Service	Description	
D1-BulkRequestHeader	Bulk Request Header	
	Schema Name: D1-BulkRequestHeader	
D1-BulkRequestUpdate	Bulk Request Update	
	Schema Name: D1-BULKUPD	
D1-BulkResponse	Bulk Response	
	Schema Name: D1-BulkResponse	

XAI Inbound Service	Description
D1-DeviceEventSeeder	Used for upload of device events.
	Schema Name: D1-DeviceEventSeeder.
	The Device Event Seeder business object serves as a means of adding device events both from outside the application and from online. Its pre-processing algorithms determine the device event type - which in turn defines the device event BO that should be used to create the device event. If a device event type can't be determined, the device event is created using this BO. Such a device event can then be re-processed - and if successful, a new device event is created.
D1-InitialLoadIMD	Used for initial measurement upload.
	Schema Name: D1-IMDSeeder.
	The IMDSeeder business object is used to determine the type of initial measurement business object to instantiate when receiving usage readings from a head-end system.
D3-CIMMeterReadingsResponse	CIM Meter On Demand Read Response
	Schema Name: D3-CIMMeterReadingsResponse
	Retrieve response from CIM On Demand Read command
D3-CIMPingResponse	CIM Ping Response
	Schema Name: D3-CIMPingResponse
	Retrieve response from CIM Device Status Check command
D3-ConDisconStChgNotification	Initiate Connect Disconnect response.
	Schema Name: D3-ConnectDisconStateChgNtf
	Retrieve response from the Initiate Connect Disconnect command.
D3-ReadingChangedNotification	Reading Changed Notification
	Schema Name: D3-ReadingChgNotification
	Notification that a Landis+Gyr device reading has changed.

XAI Inbound Service	Description	
D3-ScheduleDemandResetResponse	Scheduled Demand Reset Response	
	Schema Name: D3-ScheduleDemandResetResponse	
	Retrieve response from Demand Reset command	

XAI Senders

XAI senders define the details of how messages are sent to an external system. As in the case of outbound communication business objects and outbound message types, the set of XAI senders you need to create is based on the types of messages the system is designed to accept.

The Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr includes the following XAI senders:

XAI Sender	Description
D3-Comms	Commission Device
D3-Connect	Connect Device
D3-Decomm	Decommission Device
D3-Decomms	Decommissioning Sender
D3-DemReset	Demand Reset
D3-Disconnec	Disconnect Device
D3-InitMTR	Initiate Meter Read by Meter Number Outbound Message
D3-RTSender	Real Time Sender
D3-RTSnd	Real-time Sender (Landis+Gyr)
D3- SDemReset	SG Demand Reset

BPEL Processes

These processes are responsible for performing the conversion from Oracle Utilities format to MultiSpeak 3.0 format, invoking process callouts and invoking the remote endpoint to trigger the device events.

OnDemandRead Composite Process - Invokes the remote endpoint to trigger the on-demand read event. An asynchronous reply responds to the OUAF layer when the reading arrives.

ConnectDisconnect Composite Process - Invokes the remote endpoint to trigger the connect/disconnect event. An asynchronous reply responds to the OUAF layer when confirmation of the requested event arrives.

CommissionDecommission Composite Process - Invokes the remote endpoint to trigger the commission or decommission event. After the synchronous call completes, a one of the following second business callout services is invoked to determined if the related "received" or "completed" callout should be executed:

- isExecutingCommissionReceivedCallout
- isExecutingCommissionCompletedCallout
- isExecutingDecommissionReceivedCallout
- isExecutingDecommissionCompletedCallout

CIMOnDemandRead Composite Process - Invokes the remote endpoint to trigger the CIM on-demand read event. An asynchronous reply responds to the OUAF layer when the reading arrives.

CIMDeviceStatusCheck Composite Process - this process is similar to CIM OndemandRead BPEL process. SGG uses the result of On Demand Read command to identify the status of the meter. If reads are successfully returned, then meter is running healthy otherwise it is considered as meter inactive/dead.

DemandReset Composite Process - Invokes the remote endpoint to trigger the demand reset event. An asynchronous reply responds to the OUAF layer when the reading arrives.

LGProcessCallout Composite - This business callout provides a point at which customers and implementers can incorporate custom business logic and transformations. This composite includes the WSDLs and processing logic for all of the MultiSpeak processes. The default implementation of each method is a direct return of the input.

Web Services

These web services are all defined in the Landis+Gyr head end system. The WSDLs were added to a Meta Data Storage (MDS) layer in OUAF and all references to the WSDL point to this MDS location.

Web Service	Related BPEL Process	Description	
MR_CB	OnDemandRead CommissionDecommission DemandReset	This web service is defined by the Landis+Gyr head end system's implementation of MR_Server.	
		The WSDL defines the interface for requesting a meter reading from the head end system.	
		The actual definition can be obtained from L&G or downloaded from multispeak.org. Build 3.0aa is appropriate if obtained from MultiSpeak.	
		Default endpoint must be changed in configuration: http:// demo.turtletech.com/Multispeak/webapi/ MR_CB.asmx	
CD_CB	ConnectDisconnect	This web service is defined by the Landis+Gyr implementation of CB_CD.	
		The WSDL defines the interface for requesting a meter's connection or disconnection on the head end system.	
		This web service defines the interface for reporting a connection or disconnection by the head end system.	
		This web service is only invoked by the head end system; not OUAF. Only the CDStateChangedNotification web method is implemented in the composite.	
		Default endpoint must be changed in configuration: http:// demo.turtletech.com/Multispeak/webapi/ CD_CB.asmx	

Web Service	Related BPEL Process	Description	
CIMService	CIMOnDemandRead	This web service is defined by the L+G head end's implementation of AMIRequest	
	CIMDeviceStatusCheck	Server.	
		The WSDL defines the interface for requesting a meter reading from the head end system.	
		The actual definition should be obtained from L&G or downloaded from L&G SDK for CIM 2.0.	
LGProcessCallout	OnDemandRead	Imported from LGProcessCallout	
	ConnectDisconnect	Composite	
	CommissionDecommission		
		Default endpoint must be changed in	
		configuration: http://127.0.0.1:8000/soa- infra/services/default/	
		LGProcessCallout/LGProcessCallout	

Landis+Gyr Command Center Web Services

The following table describes the Land+Gyr Command Center web services and operations used for the Oracle Utilities Smart Grid Gateway command messaging:

Smart Grid Gateway Command	AMI Adapter Business Objects	Landis+Gyr Web Services	Landis+Gyr Operations
Device Commissioning	D3- MeterAddNotificationMultiSp	MR	MeterAddNotification
Device Decommissioning	D3-MtrRmvNotifMultiSpeak	MR	MeterRemoveNotification
Remote Connect/ Remote Disconnect	D3-InitiateConnectDisconnect	CD	InitiateConnectDisconnect
On-Demand Read	D3-InitiateMRByMtrNbr	MR	InitiateMeterReadByMeter Number
On-Demand Read (CIM)	D3-CIMGetLPData D3-CIMMeterOnDemandRead	CIMService	ScheduleDemandRead
Demand Reset	D3-ScheduleDemandReset	MR	CIM

Configuring a Landis+Gyr Head-End System

This section outlines the configuration required for the Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr to communicate with the Landis+Gyr Command Center software. This includes:

- XAI Inbound Services
- XAI Senders
- Outbound Message Types
- External System
- Service Provider
- Processing Methods for Service Provider

XAI Inbound Services

XAI inbound services define the details of how messages are received from an external system. This includes incoming usage and device events, as well as messages sent from the L+G Command Center in response to a command request.

The following XAI Inbound Services must be configured in your system. If these are not present in your configuration, add them. Refer to the Oracle Utilities Application Framework documentation for more information about creating XAI inbound services.

XAI Inbound Service Name	Description	Schema Type	Schema Name
D1-BulkRequestHeader	Bulk Request Header	Business Object	D1-BulkRequestHeader
D1-BulkRequestUpdate	Bulk Request Update	Business Object	D1-BULKUPD
D1-BulkResponse	Bulk Response	Business Object	D1-BulkResponse
D1-DeviceEventSeeder	Device Event Seeder	Business Object	D1-DeviceEventSeeder
D1-InitialLoadIMD	IMD Seeder	Business Object	D1-IMDSeeder
D1-PayloadErrorNotif	Payload Error Notification	Business Object	D1-PayloadErrorNotif
D1-PayloadStatistics	Payload Statistics	Business Object	D1-PayloadStatistics
D1-PayloadSummary	Payload Summary	Business Object	D1-PayloadSummary
D3-ConDisconStChgNotification	Initiate Connect Disconnect Response	Business Object	D3- ConnectDisconStateChgNtf
D3-CIMMeterReadingsResponse*	CIM Meter On Demand Read Response	Business Object	D3- CIMMeterReadingsResponse
D3-CIMPingResponse	CIM Ping Respose	Business Object	D3-CIMPingResponse
D3-ReadingChangedNotification*	Reading Changed Notification	Business Object	D3-ReadingChgNotification
D3-ScheduleDemandResetResponse	Scheduled Demand Reset Response	Business Object	D3- ScheduleDemandResetRespo nse

*The Landis+Gyr adapter supports both MultiSpeak and CIM On Demand Read commands. You only need to configure the inbound service for the protocol you wish to use.

XAI Senders

XAI senders define the details of how messages are sent to an external system, such as messages containing device command requests.

The following XAI Senders must be configured in your system. If these are not present in your configuration, add them. Refer to the Oracle Utilities Application Framework documentation for more information about creating XAI senders.

XAI Sender	Description	Operation	Service
D3-CIMODR	CIM On Demand Read	GetMeterReadings	CIMOnDemandRead
D3-Comms	Commission Device	CommissionDevice	CommissionDecommission
D3-Decomms	Decommission Device	DecommissionDevice	CommissionDecommission
D3-Connect	Connect Device	InitiateConnectDisconnect	ConnectDisconnect
D3-Disconnect	Disconnect Device	InitiateConnectDisconnect	ConnectDisconnect
D3-InitMTR	Initiate Meter Read By Meter Number	InitiateMeterReadByMeterNumber	OnDemandRead
D3-DemReset	Demand Reset	ScheduleDemandRead	DemandRead

Note: The following apply to all of the above XAI senders:

Main Tab:

- **Invocation Type**: Real-time
- XAI Class: RTHTTPSNDR (Sender routes message via HTTP real-time)
- MSG Encoding: UTF-8 message encoding

Context Tab:

- HTTP Header: SOAPAction: http://xmlns.oracle.com/ouaf/multispeak_3.0/
 <0PERATION>
- HTTP Login User: <USER_ID>
- HTTP Login Password: <PASSWORD>
- HTTP Method: POST
- HTTP URL 1: http://<EM_SERVER>:<EM_SERVER_PORT>/soa-infra/services/ D3/<SERVICE>/<SERVICE>

where:

- <OPERATION>: the operation performed by the XAI Sender (see Operation column in the table above)
- **<USER_ID>**: the user ID used to log into WebLogic Enterprise Manager
- <PASSWORD>: the password used to log into WebLogic Enterprise Manager
- **<EM_SERVER_IP>**: the machine name or IP address of server where the WebLogic Enterprise Manager is installed
- <EM_SERVER_PORT>: the port where the WebLogic Enterprise Manager is installed

 <SERVICE>: the service invoked by the XAI Sender (see Service column in the table above)

Outbound Message Types

Outbound message types define specific types of messages sent to an external system, such as messages containing device command requests.

The following outbound message types must be configured in your system. If these are not present in your configuration, add them. Refer to the Oracle Utilities Application Framework documentation for more information about creating outbound message types.

Outbound Message Type	Description
D3-COMMS	Commission Device
D3-CONNECT	Connect Device
D3-DECOMMS	Decommission Device
D3-DEMRESET	Demand Reset
D3-DISCONNEC	Disconnect Device
D3-DVCSTSCHK	Device Status Check
D3-INITMRN	Initiate Meter Read by Meter Number
D3-INITMTR	Initiate Meter Read By Meter Number
D3-MTRADDNOT	Meter Add Notification Outbound Message Type
D3-MTRRMV	Meter Remove Notification

Note: The following apply to all of the above outbound message types:

- Business Object: D1-OutboundMessage (Outbound Message)
- **Priority**: Priority 50

External System

External systems represent external applications with which the Smart Grid Gateway will exchange messages or data. In the case of the Smart Grid Gateway adapters, external systems represent the head-end systems with which the adapters communicate.

An external system that represents the L+G Command Center must be present in your system. If this is not present in your configuration, add it, along with the following Outbound Message Types. Refer to the Oracle Utilities Application Framework documentation for more information about creating external systems.

External System - Landis+Gyr:

- External System: LG
- Description: Landis+Gyr
- Outbound Message Types::

Outbound Message Type	XAI Sender
D3-CIMODR (CIM On Demand Read)	XAI sender associated with the CIM On Demand Read Outbound Message

Outbound Message Type	XAI Sender
D3-COMMS (Commission Device)	XAI sender associated with the Commission Device Outbound Message
D3-DECOMMS (Decommission Device)	XAI sender associated with the Decommission Device Outbound Message
D3-CONNECT (Connect Device)	XAI sender associated with the Connect Device Outbound Message
D3-DEMRESET (Demand Reset)	XAI sender associated with the Demand Reset Outbound Message
D3-DISCONNEC (Disconnect Device)	XAI sender associated with the Disconnect Device Outbound Message
D3-DVCSTSCHK (Device Status Check)	XAI sender associated with the Device Status Check Outbound Message
D3-INITMTR (Initiate Meter Read By Meter Number)	XAI sender associated with the Initiate Meter Read By Meter Number Outbound Message

Note: The following apply to all of the above outbound message types:

- Processing Method: Real-time
- Message XSL: D3-Request xsl
- Response XSL: D3-Response.xsl

Service Provider

Service providers represent external entities that serve various roles relative to the application, including head-end systems, billing systems to which the application sends bill determinant data, market participants in a deregulated environment, outage management systems that receive meter event data from the application, or other parties that require or provide information to the system. The head-end systems that collect and send measurement data and meter events to the application are defined as service providers.

A service provider that represents the L+G Command Center must be present in your system. If this is not present in your configuration, add it. Refer to the Oracle Utilities Service and Measurement Data Foundation documentation for more information about creating service providers.

Service Provider - Landis+Gyr:

- Service Provider: LG
- **Description**: Landis+Gyr
- External Reference ID: LG
- External System: Landis+Gyr
- Out Name/ID in Their System:
- AMI Device ID Type: Internal Meter Number
- AMI Measuring Component ID Type: Channel ID

Processing Methods for Service Provider

Processing methods define the format or means by which a service provider receives and/or sends data from and/or to the application, including as bill determinants, usage data, or device

events. Processing methods are also used to define how to create information internal to the application such as initial measurement data and device events. Processing methods can also be used to define how command requests are sent to the L+G Command Center.

The following types of processing methods must be configured for the L+G service provider. Refer to the Oracle Utilities Service and Measurement Data Foundation documentation for more information about configuring processing methods.

Initial Measurement Creation

Initial measurement creation processing methods define the business objects used to create initial measurements. The IMD Seeder XAI Inbound Service uses this processing method to determine which type of initial measurement business object to instantiate when receiving usage from the L+G Command Center.

Processing Method - Inital Measurement Creation

- Service Provider: Landis+Gyr
- Processing Role: Initial Measurement Creation
- Description: How to create Initial Load IMD L+G
- Status: Active
- Default Processing Method:
 - Business Object: D3-InitialLoadIMDInterval (Landis+Gyr Initial Load IMD -Interval)
- Override Processing Method:
 - Measuring Component Type: Electric kWh
 - Business Object: D3-InitialLoadIMDScalar (Landis+Gyr Initial Load IMD Scalar)

Device Event Mapping

Device event mapping processing methods define how head-end-specific device events are mapped to standard device event names. The Device Event Seeder XAI Inbound Service uses this processing method to determine which type of device event business object to instantiate when receiving device events from the L+G Command Center.

Processing Method - Device Event Mapping

- Service Provider: Landis+Gyr
- **Processing Role**: Device Event Mapping
- Description: How to map device events L+G
- Status: Active
- Default Processing Method:
 - Business Object: D3-DeviceEventMappingLookup (Extendable Lookup L&G Device Event Mapping)
- Override Processing Method: based on implementation-specific requirements

UOM Mapping

UOM mapping processing methods define how head-end-specific unit of measure (UOM) codes are mapped to standard UOM codes. This processing method is used to determine how to map L+G UOM codes to standard UOM codes when receiving usage from the L+G Command Center.

Processing Method - UOM Mapping

- Service Provider: Landis+Gyr
- Processing Role: UOM Mapping
- Description: How to map UOMs from L+G when creating IMDs
- Status: Active
- Default Processing Method:
 - Business Object: D3-HeadendUOMLookup (UOM Code to Standard UOM Mapping)
- Override Processing Method: based on implementation-specific requirements

Commands

Command processing methods define how command requests are sent to a head-end system. More specifically, they define the type of outbound communication business object to create for each type of command, and the outbound message type to send to the head-end system.

The following types of command processing methods can be configured for the L+G service provider, based on the requirements of each implementation.

Device Commission

- Service Provider: Landis+Gyr
- **Processing Role**: Device Commission
- **Description**: How to commission devices L+G
- Status: Active
- Processing Method:
 - Default Business Object: D3-MeterAddNotificationMultiSp (Meter Add Notification (MultiSpeak))
 - Default Outbound Message Type: Meter Add Notification

Device Decommission

- Service Provider: Landis+Gyr
- Processing Role: Device Decommission
- Description: How to decommission devices L+G
- Status: Active
- Processing Method:
 - **Default Business Object**: D3-MtrRmvNotifMultiSpeak (Meter Remove Notification (MultiSpeak))
 - Default Outbound Message Type: Meter Remote Notification

On-Demand Read (Scalar)

The Landis+Gyr adapter supports two types of on demand read commands: Multispeak and CIM. You should only configure one On Demand Read (Scalar) processing method, based on the specific protocol used by your implementation.

Multispeak:

- Service Provider: Landis+Gyr
- Processing Role: On-Demand Read (Scalar)
- Description: How to request an On-Demand Read L+G

- Status: Active
- Processing Method:
 - **Default Business Object**: D3-InitiateMRByMtrNbr (Initiate Meter Read by Meter (MultiSpeak))
 - Default Outbound Message Type: Initiate Meter Read by Meter Number

CIM:

- Service Provider: Landis+Gyr
- Processing Role: On-Demand Read (Scalar)
- Description: How to request an On-Demand Read L+G
- Status: Active
- Processing Method:
 - Default Business Object: D3-CIMMeterOnDemandRead (CIM Meter On Demand Read (Scalar))
 - Default Outbound Message Type: CIM On Demand Read

On-Demand Read (Interval)

- Service Provider: Landis+Gyr
- Processing Role: On-Demand Read (Scalar)
- Description: How to request an On-Demand Read L+G
- Status: Active
- Processing Method:
 - **Default Business Object**: D3-CIMGetLPData (CIM Meter On Demand Read (Interval))
 - **Default Outbound Message Type:** CIM On Demand Read

Demand Reset

- Service Provider: Landis+Gyr
- Processing Role: Demand Reset
- Description: How to request a demand reset L+G
- Status: Active
- Processing Method:
 - **Default Business Object**: D3-ScheduleDemandReset (Schedule Demand Reset (Multispeak))
 - Default Outbound Message Type: Demand Reset

Device Status Check

- Service Provider: Landis+Gyr
- Processing Role: Device Status Check
- Description: How to request a device status check L+G
- Status: Active
- Processing Method:
 - Default Business Object: D3-CIMPing (CIM Ping)

• Default Outbound Message Type: Device Status Check

Remote Connect

- Service Provider: Landis+Gyr
 - **Processing Role**: Remote Connect
 - **Description**: How to connect a device L+G
- Status: Active
- Processing Method:
 - Default Business Object: D3-InitiateConnectDisconnect (Initiate Connect Disconnect)
 - Default Outbound Message Type: Initiate Connect Disconnect

Remote Disconnect

- Service Provider: Landis+Gyr
- Processing Role: Remote Disconnect
- Description: How to disconnect a device L+G
- Status: Active
- Processing Method:
 - Default Business Object: D3-InitiateConnectDisconnect (Initiate Connect Disconnect)
 - Default Outbound Message Type: Initiate Connect Disconnect

Configuring Landis+Gyr Extendable Lookups

This section outlines some of the extendable lookups that must be configured for use with the Landis+Gyr adapter. These include:

- •
- •
- Landis+Gyr Device Event Mapping
- Landis+Gyr UOM Code to Standard UOM Mapping
- Landis+Gyr Interval Status Code to Condition Mapping

Refer to the Oracle Utilities Application Framework documentation for more information about working with extendable lookups.

CIM Response Status Extendable Lookup

The CIM Response Status extendable lookup is used to map descriptions to response status codes received from the L+G Command Center.

Each value defined for the CIM Response Status extendable lookup should include the following:

- Response Status: The CIM status code for the response status
- Description: A description of the response status
- Usage Flag: The status of the lookup value (can be Active or Inactive)

Example: The Landis+Gyr "Tampering" device event name could be mapped to the "Device Tampering" standard device event name as follows:

- Response Status: 0
- Description: Success
- Usage Flag: Active

CIM Data Source Extendable Lookup

The CIM Data Source extendable lookup is used to map descriptions to data sources defined in the L+G Command Center.

Each value defined for the CIM Data Source extendable lookup should include the following:

- **Data Source**: The CIM code for the data source
- **Description**: A description of the data source
- Usage Flag: The status of the lookup value (can be Active or Inactive)

Example: The Landis+Gyr "Tampering" device event name could be mapped to the "Device Tampering" standard device event name as follows:

- Data Source: AMI
- Description: AMI
- Usage Flag: Active

Landis+Gyr Device Event Mapping

The Landis+Gyr Device Event Mapping extendable lookup is used to determine which type of device event business object to instantiate when receiving device events from the L+G Command Center.

Each value defined for the Landis+Gyr Device Event Mapping extendable lookup should include the following:

- Head-End System Event Name: The event name used by the Landis+Gyr Command Center
- Description: A description of the device event
- Status: The status of the lookup value (can be Active or Inactive)
- **Standard Event Name**: The standard event name for device events of this type, from the "Standard Event Name" extendable lookup.

Example: The Landis+Gyr "Tampering" device event name could be mapped to the "Device Tampering" standard device event name as follows:

- Head-End System Event Name: Tampering
- **Description**: Tampering Detected
- Status: Active
- Standard Event Name: Device Tampering

Landis+Gyr UOM Code to Standard UOM Mapping

Usage received from Landis+Gyr may use utility-specific unit of measures (UOMs). These custom UOMs must be mapped to standard UOM codes. The Landis+Gyr UOM Code to Standard UOM Mapping extendable lookup is used to determine how to map Landis+Gyr UOM codes to standard UOM codes when receiving usage from the Landis+Gyr Command Center.

Each value defined for the Landis+Gyr UOM Code to Standard UOM Mapping extendable lookup should include the following:

- Head-end UOM: The unit of measure code used by the Landis+Gyr Command Center
- Unit of Measure: The unit of measuremt defined in the system. See Defining Units of Measure in the Oracle Utilities Service and Measurement Data Foundation User's Guide for more information about creating UOM codes for use with Oracle Utilities Smart Grid Gateway.
- **Description**: A description of the unit of measure code.

Example: The Landis+Gyr "KWH" unit of measure code could be mapped to the "Kilowatt Hours" standard UOM code as follows:

- Head-end UOM: kWh
- Unit of Measure: Kilowatt Hours
- Description: Landis+Gyr Kilowatt Hours

Landis+Gyr Interval Status Code to Condition Mapping

Interval usage received from the Landis+Gyr Command Center can include Landis+Gyr interval status codes that indicate the status or condition of the interval value. These interval status codes must be mapped to standard condition codes in the system. The Landis+Gyr Interval Status Code to Condition Mapping extendable lookup is used to determine how to map Landis+Gyr interval status codes to standard status codes when receiving usage from the Landis+Gyr Command Center.

Each value defined for the Landis+Gyr Interval Status Code to Condition Mapping extendable lookup should include the following:

- Interval Status: The Landis+Gyr interval status code
- **Condition**: The condition code to which the interval status code is to be mapped, from the Measurement Condition extendable lookup.
- **Description**: A description of the interval status code.

Example: The Landis+Gyr "Missing" interval status code could be mapped to the "Missing" condition code as follows:

- Interval Status: Missing
- Condition: Missing
- **Description**: Landis+Gyr Missing

Extending the Adapter for Landis+Gyr

The Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr supports a number of commands, including:

- Commission Device
- Decommission Device
- Demand Reset
- Device Status Check (CIM)
- On-Demand Read (Multispeak)
- On-Demand Read (CIM)
- Remote Connect
- Remote Disconnect

The Adapter for Landis+Gyr can be extended to support additional commands provided by the Landis+Gyr Command Center. See **Creating Custom Commands** on page 9-26 of the *Oracle Utilities Smart Grid Gateway Configuration Guide* for more information about adding commands to the Landis+Gyr adapter.

The Test Harness

Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr (LG) includes a test harness that can be configured to simulate the Landis+Gyr Gridstream Command Center head-end system for testing the two-way commands. The test harness is Multispeak 3.0 standard compliant and includes a BPEL composite, web services for standard meter functions, and an XML file that can be used to contain information for one or more meters. This chapter describes the test harness and it's components, including:

- Test Harness Design
- Locating the WSDL for the Test Harness
- Web Services

Test Harness Design

The LG Harness is divided into two main layers. A "front end" set of services implements the LG-specified interfaces. They receive requests corresponding to:

- MR_CB (Meter Reading_Customer Billing)
 - MeterAddNotification
 - MeterRemoveNotification
 - InitiateMeterReadByMeterNumber
- CD_CB (Connect/Disconnect_Customer Billing)
 - InitiateConnectDisconnect

The LG Harness will send below responses to corresponding BPEL composites:

- CB_MR (Customer Billing_Meter Reading)
 - ReadingChangedNotification
- CB_CD (Customer Billing_Connect/Disconnect)
 - CDStateChangedNotification

Each of these services calls into the "back end" layer which defines meters and sets their attributes. These meters are stored in a file within the test harness called meterdb.xml. This file can be modified pre-deployment. Post-deployment changes to the file are not supported. However, the Test Harness retains an in-memory "database" of the meters in the file. The in-memory representation can be modified using the Utility web services. Note that any changes to the in-memory structure will be lost when the server is restarted or the Test Harness composite is redeployed.

Locating the WSDL for the Test Harness

Follow these procedures to locate the test harness WSDL:

How to Use Enterprise Manager to Locate the WSDL

- 1. Open Enterprise Manager and use the navigation pane to open the dashboard of the test harness composite:
- 2. The top bar of the dashboard contains several buttons and icons. One of these is a "world" icon with a puzzle piece over it. Click this icon to display a list of the WSDLs and endpoint URIs for the composite:
- 3. Click the UtilService WSDL URL link to see the WSDL in the browser, or right click and save it to your machine

Depending on your requirements, it may be necessary to download the associated schema found in the wsdl:types section. The URL can be pasted into a browser tab and downloaded in the same manner as the WSDL. The main schema has imported schemas that may also be required.

How to Use a Direct URL to locate the WSDL

The WSDL can be accessed without Enterprise Manager by understanding the paths used on the SOA server. In general, they have the following form:

http://{server name}:{port number}/soa-infra/services/{partition}/
{Composite}/{Web Service}?WSDL

So by default, the test harness WSDL can be found at

http://{server name}:{port number}/soa-infra/services/LG_Test/ LGTestHarness/UtilService?WSDL

Web Services

This section describes the web services included in the test harness BPEL composite, including:

- General Services
- Locate Meter Services
- Meter Administration Services
- Meter Attribute Administration Services

General Services

This section describes the general services of the test harness composite, including:

- LoadMeterIndex
- ViewAuditTrail

LoadMeterIndex

This web service loads the data store from the internal file. By default, if the store is already in memory, it will NOT reload. This behavior can be overridden with the forceReload parameter.

Input - LoadMeterIndexInput

Part: payload

Element: LoadMeterIndexRequest

Parameter	Description
forceReload	A switch telling the system whether to reload the meter index from the configuration file. Default is false.

Output - LoadMeterIndexOutput

Part: payload

Element: LoadMeterIndexResult

Parameter	Description
loaded	A boolean value for whether or not the index was reloaded from the configuration file

Fault - UtilityFault

Fault with similar mapping to SGG/OUAF faults:

Typically, the faultCode, faultString, faultActor, and detail/text elements will be populated.

ViewAuditTrail

This web service returns the audit log for the entire session.

Input - ViewAuditTrailInput

Part: payload

Element: ViewAuditTrailRequest

Output - ViewAuditTrailOutput

Part: payload

Element: ViewAuditTrailResult

An Entry consisting of a timestamp and an Operation. Each entry may have an associated meter object showing the latest update.

Fault - See UtilityFault on page 2-31.

Locate Meter Services

This section describes the locate meter web services of the test harness composite, including:

- FindMeters
- IsMeterDefined
- GetMeter

FindMeters

This web service queries the data store for one or more meters. The difference between GetMeter and FindMeters is GetMeter can return at most one meter and it must match the provided ID exactly. GetMeter will throw an error if the ID is not found. FindMeters can return more than one meter (when using the regex) and will not throw an error when the ID does not match any of the meters in the index.

Input - FindMetersInput

Part: payload

Element: FindMetersRequest

Parameter	Description
id	The meter ID for which to search
isRegex	The provided id can be a regex value when this parameter is true. Hint: to search for all meters in the system, use ".*" for the ID.

Output - FindMetersOutput

Part: payload

Element: FindMetersResult

Zero or more meter objects can be returned from the search

Fault - See **UtilityFault** on page 2-31. Unlike other methods, FindMeters does not throw an exception if the meter is not found. As such, it can be used to test for the existence of a Meter prior to querying for it.

IsMeterDefined

This web service queries whether a particular meter is defined in the data store.

Input - IsMeterDefinedInput

Part: payload

Element: IsMeterDefinedRequest

Parameter	Description
id	The meter ID for which to search
Output - IsMete	rDefinedOutput
Part: payload	

Element: IsMeterDefinedResult

Whether or not the provided ID is part of the index.

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

GetMeter

This web service returns all the attributes of a single meter from the in-memory data store. The difference between GetMeter and FindMeters is GetMeter can return at most one meter and it must match the provided ID exactly. GetMeter will throw an error if the ID is not found. FindMeters can return more than one meter (when using the regex) and will not throw an error when the ID does not match any of the meters in the index.

Input - GetMeterInput

Part: payload

Element: GetMeterRequest

Parameter	Description
id	The meter ID for which to search
Output - GetMe	terOutput
Part: payload	
Element: GetMeterResult	
The meter object requested by the ID.	

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

Meter Administration Services

This section describes the meter administration services of the test harness composite, including:

- AddMeters
- RemoveMeter
- AddMeterChannel
- RemoveMeterChannel
- ReadScalarMeter

AddMeters

This web service adds a set of meters to the in-memory data store. This will not permanently add it to the control file.

Input - AddMetersInput

Part: payload

Element: AddMetersRequest

Parameter	Description
id	The identification code for the meter.
macID	A MAC address that must be unique within the system.
utility	An informational string.
serviceType	One of the valid ServiceType values (see schema). "Electric" is the only option at this time.
isCommissioned	Whether or not the meter is in a commissioned state.

Parameter	Description
loadActionCode	One of the possible LoadActionCode values used in Connect and Disconnect (see schema).
outageEventType	One of the possible OutageEventType values used in Device Status Check (see schema).
executionStatus	One of the possible ExecutionStates (see schema). These values control how the meter will respond to commands.
groupName	The name linking multiple meters together into a set.
jobExecutionStatus	One of the possible Job Execution Status values (see schema). This attribute determines how requested jobs perform.
updateIfExisting	Whether or not to update the meter with the provided values if it already exists in the index.
Comment	An informational string describing the purpose of the meter.
Channels	A listing of unit of measures supported by this meter.
uomCode	A code describing the unit of measure for the channel.
uomName	A short string containing the name of the unit of measure.
decimals	The number of digits to the right of the decimal that should be gener- ated when reading the meter.
description	A longer description of the unit of measure.

Output - AddMetersOutput

Part: payload

Element: AddMetersResult

Whether or not each meter was added to the index.

Fault - See UtilityFault on page 2-31

RemoveMeter

This web service removes a meter from the in-memory data store. This will not permanently remove it from the control file.

Input - RemoveMeterInput

Part: payload

Element: RemoveMeterRequest

Parameter	Description
id	The ID for the meter to be removed

Output - RemoveMeterOutput

Part: payload

Element: RemoveMeterResult

Whether or not the meter was removed from the index.

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

AddMeterChannel

This web service adds a new channel to a single meter.

Input - AddMeterChannelInput

Part: payload

Element: AddMeterChannelRequest

Parameter	Description
id	The identification code for the meter.
uomCode	A code describing the unit of measure for the channel.
uomName	A short string containing the name of the unit of measure.
decimals	The number of digits to the right of the decimal that should be generated when reading the meter.
description	A longer description of the unit of measure.

Output - AddMeterChannelOutput

Part: payload

Element: AddMeterChannelResult

Whether or not the channel was added to the index.

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

RemoveMeterChannel

This web service removes a Channel from a meter.

Input - RemoveMeterChannelInput

Part: payload

Element: RemoveMeterChannelRequest

Parameter	Description
id	The ID for the meter to be removed.
uomCode	A code describing the unit of measure for the channel.
uomName	A short string containing the name of the unit of measure.

These three parameters are combined to locate a unique channel

Output - RemoveMeterChannelOutput

Part: payload

Element: RemoveMeterChannelResult

Whether or not the channel was removed from the meter.

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

ReadScalarMeter

This web service generates a scalar reading for each channel of a given meter.

Input - ReadScalarMeterInput

Part: payload

Parameter	Description	
id	The ID for the meter to be read	
Dutput - ReadSc	alarMeterOutput	
Part: payload		
Element: ReadS	calarMeterResult	
Zero or more scalar readings for the given meter.		
Parameter	Description	
Parameter	Description	
Parameter uomCode	Description A code describing the unit of measure for the channel.	
Parameter uomCode uomName	Description A code describing the unit of measure for the channel. A short string containing the name of the unit of measure. The number of digits to the right of the decimal that should be generated	

Meter Attribute Administration Services

This section describes the meter administration services of the test harness composite, including:

- GetLoadActionCode
- SetLoadActionCode
- IsCommissioned
- SetCommissioned
- GetExecutionStatus
- SetExecutionStatus

GetLoadActionCode

This web service queries whether the given meter is connected or disconnected. This method is used by the Connect/Disconnect service. The values for load action code are:

- Connect
- Disconnect

Input - GetLoadActionCodeInput

Part: payload

Element: GetLoadActionCodeRequest

Parameter	Description
id	The ID for the meter for which the load action code status should be retrieved

Output - GetLoadActionCodeOutput

Part: payload

Element: GetLoadActionCodeResult

The connection status of the requested meter.

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

SetLoadActionCode

This web service updates the load action code for a given meter. This method is used by the Connect/Disconnect service. The values for load action code are:

- Connect
- Disconnect

Input - SetLoadActionCodeInput

Part: payload

Element: SetLoadActionCodeRequest

Parameter	Description	
id	The ID for the meter for which the load action code status should be set.	
value	The new value of LoadActionCode to set on the meter.	

Output - SetLoadActionCodeOutput

Part: payload

Element: SetLoadActionCodeResult

The boolean response indicates the success or failure of the update (not the current field status).

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

IsCommissioned

This web service queries the commissioning status for a given meter. This service is used by the Commission/Decommission process. The commissioning attribute can be true or false.

Input - IsCommissionedInput

Part: payload

Element: IsCommissionedRequest

Parameter	Description	
id	The ID for the meter for which the Commissioned status should be retrieved	

Output - IsCommissionedOutput

Part: payload

Element: IsCommissionedResult

The value of the Commissioned status attribute for the requested meter.

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

SetCommissioned

This web service updates the commissioning status for a given meter. This service is used by the Commission/Decommission process. The commissioning attribute can be true or false.

Input - SetCommissionedInput

Part: payload

Element: SetCommissionedRequest

Parameter	Description	
id	The ID for the meter for which the Commissioned status should be set	
value	The new value of Commissioned status to set on the meter	

Output - SetCommissionedOutput

Part: payload

Element: SetCommissionedResult

The boolean response indicates the success or failure of the update (not the current field status).

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

GetExecutionStatus

This web service queries the status of the property controlling the overall execution of the command. The possible values of execution status are:

- Success The command should complete successfully
- ResponseTimeout The asynchronous response will never arrive

- · SyncOperationFail A simulated fault will occur in the during the initial request
- · AsyncOperationFailure A simulated fault will occur in the asynchronous response

Input - GetExecutionStatusInput

Part: payload

Element: GetExecutionStatusRequest

Parameter	Description
id	The ID for the meter for which the ExecutionStatus should be retrieved

Output - GetExecutionStatusOutput

Part: payload

Element: GetExecutionStatusResult

The value of the ExecutionStatus attribute for the requested meter.

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

SetExecutionStatus

This web service updates the property controlling the overall completion of the command. The possible values of execution status are:

- Success The command should complete successfully
- ResponseTimeout The asynchronous response will never arrive
- SyncOperationFail A simulated fault will occur in the during the initial request
- AsyncOperationFailure A simulated fault will occur in the asynchronous response

Input - SetExecutionStatusInput

Part: payload

Element: SetExecutionStatusRequest

Parameter	Description	
id	The ID for the meter for which the ExecutionStatus should be set	
value	The new value of ExecutionStatus to set on the meter	

Output - SetExecutionStatusOutput

Part: payload

Element: SetExecutionStatusResult

The boolean response indicates the success or failure of the update (not the current field status).

Fault - See UtilityFault on page 2-31. Thrown when meter id is not found.

Landis+Gyr Interval Data Mapping

This section describes how data in Landis+Gyr import files is mapped to the XML document format created by OSB and sent to Oracle Utilities Smart Grid Gateway.

When Landis+Gyr data is processed, it is initially recieved in a tilda-separated file format, which is converted into a "plan" XML format before being converted into the "result" XML format which is sent to the IMD Seeder and/or Device Event Seeder inbound services.

Non-interval Usage with additional fields

The following is a sample file of non-interval usage that contains additional fields.

```
ID~PremiseID~ESIID~Provisioned~Meter~kWh~DateTime~Peak~PeakDateTime~Dm
d~TouA~TouB~TouC~TouD~TouE~Volts~PF~PrevKWh~KWhRecv
EMED01~SL002~~~96968280~34315.000~08042010120000AM~2.66~03122009063000
AM~~34315.000~0.000~0.000~0.000~~~34285.000~30
EMED01~SL001~~~96968285~33693.000~08042010120000AM~2.62~03122009061500
AM~~33693.000~0.000~0.000~0.000~~~33653.000~40
```

This data is mapped to the "plain" XML format.

XML "Plain" XML format

The "Plain" XML contain elements to hold the extra fields (highlighted in bold)

```
<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"</pre>
elementFormDefault="qualified"
          targetNamespace=" http://xmlns.oracle.com/LandisGyrUsage"
           xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:element name="MeterReads">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="MeterRead">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="Origin"/>
              <xs:element name="ServProvExtRefId"/>
              <xs:element name="RecordType">
                  <xs:simpleType>
                    <xs:restriction base="xs:string">
                      <xs:enumeration value="MEPMD01" />
                      <xs:enumeration value="EMED01" />
                    </xs:restriction>
                  </xs:simpleType>
                </xs:element>
              <xs:element name="RecordVersion" minOccurs="0">
                  <xs:simpleType>
                    <xs:restriction base="xs:string">
                      <xs:enumeration value="20080519" />
                    </xs:restriction>
                  </xs:simpleType>
                </xs:element>
              <xs:element name="TimeStamp" />
              <xs:element name="Premise" minOccurs="0" />
              <xs:element name="ESIID" minOccurs="0" />
              <xs:element name="Provisioned" minOccurs="0" />
              <xs:element name="MeterID" />
              <xs:element name="Purpose" minOccurs="0" />
```

```
<xs:element name="Comodity" minOccurs="0" />
              <xs:element name="Units" minOccurs="0" />
              <xs:element name="CalcConst" minOccurs="0"/>
              <xs:element name="Interval" minOccurs="0"/>
              <xs:element name="Count" minOccurs="0"/>
              <xs:element name="FirstIntervalDateTime" />
              <xs:element name="Data">
                <xs:complexType>
                  <xs:sequence>
                    <xs:element name="Row" maxOccurs="unbounded"</pre>
minOccurs="0">
                      <xs:complexType>
                        <xs:attribute name="v" />
                        <xs:attribute name="s" />
                      </xs:complexType>
                    </xs:element>
                  </xs:sequence>
                </xs:complexType>
              </xs:element>
              <xs:element name="kWh" minOccurs="0" />
              <xs:element name="Peak" minOccurs="0" />
              <xs:element name="PeakDateTime" minOccurs="0" />
              <xs:element name="Dmd" minOccurs="0" />
              <xs:element name="TouA" minOccurs="0" />
              <xs:element name="TouB" minOccurs="0" />
              <xs:element name="TouD" minOccurs="0" />
              <xs:element name="TouC" minOccurs="0" />
              <xs:element name="TouE" minOccurs="0" />
              <xs:element name="Volts" minOccurs="0" />
              <xs:element name="PF" minOccurs="0" />
              <xs:element name="ExtraFields" minOccurs="0">
                <rs:complexType>
                  <xs:sequence>
                    <xs:element name="ExtraField" maxOccurs="255"</pre>
minOccurs="0">
                      <rs:complexType>
                        <xs:sequence>
                          <xs:element name="FieldName" minOccurs="0" />
                         <xs:element name="FieldValue" minOccurs="0" />
                        </xs:sequence>
                      </xs:complexType>
                    </rs:element>
                  </xs:sequence>
                </xs:complexType>
              </xs:element>
              <xs:element name="RawData"/>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```

Non-Interval Usage to "Plain" XML Mapping

The following table shows the mapping between fields in incoming non-interval data and child elements of MeterReads/MeterRead element in the "Plain" XML format:

L+G Interval Structure Field	"Plain" XML element
ID	RecordType
Premise ID	Premise
ESIID	ESIID
Provisioned	Provisioned
Meter	MeterID
kWh	kWh
Date/Time of initial Read	FirstIntervalDateTime
Peak	Peak
Peak Date/Time	PeakDateTime
Dmd	Dmd
TouA	TouA
TouB	TouB
TouC	TouC
TouD	TouD
TouE	TouE
Volts	Volts
PF	PF
<extrafieldname1></extrafieldname1>	ExtraFields/ExtraField/FieldName with value of <extrafieldname1></extrafieldname1>
	ExtraFields/ExtraField/FieldValue with value in <extrafieldname1></extrafieldname1>
<extrafieldname2></extrafieldname2>	ExtraFields/ExtraField/FieldName with value of <extrafieldname2></extrafieldname2>
	ExtraFields/ExtraField/FieldValue with value in <extrafieldname2></extrafieldname2>
<extrafieldname3></extrafieldname3>	ExtraFields/ExtraField/FieldName with value of <extrafieldname3></extrafieldname3>
	ExtraFields/ExtraField/FieldValue with value in <extrafieldname3></extrafieldname3>

L+G Interval Structure Field	"Plain" XML element
<extrafieldnamen></extrafieldnamen>	ExtraFields/ExtraField/FieldName with value of <extrafieldnamen></extrafieldnamen>
	ExtraFields/ExtraField/FieldValue with value in <extrafieldnamen></extrafieldnamen>
RawData	A record content from incoming file.

"Plain" XML to IMD Mapping

The following table outlines how data from the "plain" XML format is mapped to the InitialLoadIMD format when the Landis+Gyr record type is set to "MEPMD01" (interval usage).

"Plain" XML element	InitialLoadIMD element	Note
Record Type	N/A	
RecordVersion	N/A	
Premise ID	N/A	
ESIID	N/A	
Provisioned	N/A	
Meter ID	dvcIdN	as is
Purpose	N/A	
Commodity	N/A	
Units	externalUOM	as is
CalcConst	mcm	as is
Interval	spi	Transform from DDHHMM to SPI
Count	N/A	
FirstIntervalDateTime	stDt	Convert to OUAF date/ time format
Data	msrs	Value -> msrs/mL/q
Status -> msrs/mL/sts/ stsL/st		
N/A	imdType	'D1IL
Origin	externalId	the origin attribute in "Plain" XML (incoming file name)
N/A	serviceProviderExternalId	L+G
RawData	rawData	Vendor-specific "raw" data

Non-Interval "Plain" XML to IMD Mapping

The following table outlines how non-interval data in the "plain" XML format is mapped to the InitialLoadIMD format when the Landis+Gyr record type is set to "EMED01" (non-interval usage).

"Plain" XML Element	InitialLoadIMD element	Notes
RecordType	N/A	
Premise	N/A	
ESIID	N/A	
Provisioned	N/A	
MeterID	dvcIdN	as is
kWh	enQty	as is
	uom	KWH
TimeStamp	enDt	Convert to OUAF date/time format
		This should be mapped to enDt. Relevant only to non-interval data.
Peak	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KW</uom>
PeakDateTime	enDt	Convert to OUAF date/time format
Dmd	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KW and 'Dmd' in "<mcidn></mcidn></uom>
TouA	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KWH and 'kWh Rate A' in "<mcidn></mcidn></uom>
TouB	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KWH' and 'kWh Rate B' in "<mcidn></mcidn></uom>
TouC	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KWH and 'kWh Rate C' in "<mcidn></mcidn></uom>

"Plain" XML Element	InitialLoadIMD element	Notes
TouD	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KWH and 'kWh Rate D' in "<mcidn></mcidn></uom>
TouE	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KWH and 'kWh Rate E' in "<mcidn></mcidn></uom>
Volts	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with Volts</uom>
PF	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with PF</uom>
N/A	imdType	D1IL
Origin	externalId	the origin element in "Plain" XML (incoming file name)
N/A	serviceProviderExternal Id	L+G
	iu	This is a constant. There is no such field in incoming structure.
RawData	rawData	Vendor-specific "raw" data
		When the "populateRawIMD" parameters in the EnvironmentSettings.xq file is set to true.

Mapping Additional Fields

Measurement and device event files received from the Landis+Gyr head-end system can include additional fields containing data to be imported into Oracle Utilities Smart Grid Gateway. These additional fields must be mapped to elements within the XML document processed by OSB and sent to Smart Grid Gateway.

This mapping can be performed through use of a custom XQuery document, specified in the EnvironmentSettings.xq file via the "modifyResultXMLInput" parameter.

The following sample XQuery documents illustrate how additional fields can be mapped into the XML format sent to Smart Grid Gateway.

Sample XQuerys - Initial Measurements

The following XQuery is an example that shows a transformation that passes in a root element with 3 children (the "result" XML, the "plain" XML, the environment settings) that returns a modified "result" XML For testing purposes, it changes the original value in the <enQty> "result" element and replaces it with a value from the "plain" XML depending on an environment setting variable. The <serviceProviderExternalId> value was also replaced by a hard-coded value.

```
declare namespace lan = "http://xmlns.oracle.com/LandisGyrUsage";
declare namespace xf = "http://tempuri.org/D3/lgimd";
declare namespace soap = "http://schemas.xmlsoap.org/soap/envelope/";
declare function xf:modifyResultXML($modifyResultXMLInput as
element(*)) as element(*) {
<InitialLoadIMDList>
  for $InitLoadIMD in $ modifyResultXMLInput/InitialLoadIMDList/
InitialLoadIMD
 return
    <InitialLoadIMD>
      <preVEE>
        <dvcIdN>{ data($InitLoadIMD/preVEE/dvcIdN) }</dvcIdN>
        <externalId>{ data($InitLoadIMD/preVEE/externalId) }<//r>
externalId>
        <uom>{ data($InitLoadIMD/preVEE/uom) }</uom>
        <mcIdN>{ data($InitLoadIMD/preVEE/mcIdN) }</mcIdN>
        <enDt>{ data($InitLoadIMD/preVEE/enDt) }</enDt>
        if ($modifyResultXMLInput/EnvironmentSettings/test1="true")
        then <enQty>{ data($modifyResultXMLInput/lan:MeterReads/
lan:MeterRead/lan:ExtraFields/lan:ExtraField[lan:FieldName = 'EF4']/
lan:FieldValue) }</enQty>
         else <enQty>{ data($modifyResultXMLInput/lan:MeterReads/
lan:MeterRead/lan:ExtraFields/lan:ExtraField[lan:FieldName = 'EF2']/
lan:FieldValue) }</enQty>
         }
        <imdType>{ data($InitLoadIMD/preVEE/imdType) }</imdType>
      </preVEE>
      <serviceProviderExternalId>NewSPId</serviceProviderExternalId>
    </InitialLoadIMD>
}
</InitialLoadIMDList>
};
declare variable $modifyResultXMLInput as element(*) external;
xf:modifyResultXML($modifyResultXMLInput)
```

Sample XQuery - Device Events

The following XQuery is an example that shows a transformation that passes in a root element with 3 children (the "result" XML, the "plain" XML, and the environment settings) and returns a modified "result" XML For testing purposes, it changes the original value in the <externalCommunicationModuleIdentifier> "result" element and replaces it with a value from the "plain" XML depending on an environment setting variable. The <externalServiceLocationId> value is also replaced by a hard-coded value.

```
declare namespace lan = "http://xmlns.oracle.com/LandisGyrEvent";
declare namespace xf = "http://tempuri.org/D3/event";
declare namespace soap = "http://schemas.xmlsoap.org/soap/envelope/";
declare function xf:modifyResultXML($modifyResultXMLInput as
element(*)) as element(*) {
 <DeviceEventSeeder>
   <externalSenderId>{ data($modifyResultXMLInput/DeviceEventSeeder/
externalSenderId) </externalSenderId>
   <deviceIdentifierNumber>{ data($modifyResultXMLInput/
DeviceEventSeeder/deviceIdentifierNumber) }</deviceIdentifierNumber>
    <externalEventName>{ data($modifyResultXMLInput/DeviceEventSeeder/
externalEventName) }</externalEventName>
   <eventDateTime>{ data($modifyResultXMLInput/DeviceEventSeeder/
eventDateTime) }</eventDateTime>
   <externalSourceIdentifier>{ data($modifyResultXMLInput/
DeviceEventSeeder/externalSourceIdentifier) }
externalSourceIdentifier>
   <eventInformation>
      <externalEventCategory>{ data($modifyResultXMLInput/
DeviceEventSeeder/eventInformation/externalEventCategory) }
externalEventCategory>
      <externalEventSeverity>{ data($modifyResultXMLInput/
DeviceEventSeeder/eventInformation/externalEventSeverity) }
externalEventSeverity>
      <externalDeviceType>{ data($modifyResultXMLInput/
DeviceEventSeeder/eventInformation/externalDeviceType) }
externalDeviceType>
     <externalServiceLocationId>{ 1234 }</externalServiceLocationId>
      if ($modifyResultXMLInput/EnvironmentSettings/testA="true")
      then <externalCommunicationModuleIdentifier>{
data($modifyResultXMLInput/lan:DeviceEvents/lan:DeviceEvent/
lan:DeviceType) }</externalCommunicationModuleIdentifier>
      else <externalCommunicationModuleIdentifier>{
data($modifyResultXMLInput/lan:DeviceEvents/lan:DeviceEvent/
lan:CategoryId) }</externalCommunicationModuleIdentifier>
      }
      <externalStatusValue>{ data($modifyResultXMLInput/
DeviceEventSeeder/eventInformation/externalStatusValue) }
externalStatusValue>
      <externalStatusDateTime>{ data($modifyResultXMLInput/
DeviceEventSeeder/eventInformation/externalStatusDateTime) }
externalStatusDateTime>
    </eventInformation>
 </DeviceEventSeeder>
};
declare variable $modifyResultXMLInput as element(*) external;
```

```
xf:modifyResultXML($modifyResultXMLInput)
```

Appendix

Glossary

This glossary provides definitions of commonly used terms.

Command Effective Date/Time

The date and time when a device command becomes effective.

Command Expiration Date/Time

The date and time when a device command expires.

Commissioning

A command issued to establish communication between a device and the head-end system. The goal is to ensure connectivity has been established with the device, that any information needed to communicate with the meter has been defined in both Oracle Utilities Smart Grid Gateway and the head end system, and the meter will begin capturing usage and events.

Decommissioning

A command issued to inform the head-end system when a meter needs to be removed from a service point, so that no further reads or events will arrive from the meter. Decommissioning is invoked when a meter must be removed or deactivated. The goal is to stop any communication between the device and the head-end system.

Head-End System

A system that collects measurement data and meter events for eventual submission to the application. Many devices can communicate to the application through a single head-end system. A utility may have numerous head-end systems through which they communicate with devices.

On-Demand Read

A request for the most up-to-date reading from a particular meter. It is not guaranteed to return immediately; it could require a person to manually read the meter. The purposes are to check the meter's operational status and/or obtain a more recent reading than is currently available.

Payload

An upload component which contains measurements and meter events in a format specific to the

head-end. Payloads are part of the initial upload of measurement data.

Remote Connect

A command issued when a meter needs to be connected at a service point.

Index

Α

Adapter 2-2 processing 2-3

В

BPEL Processes 2-14 CommissionDecommission 2-14 ConnectDisconnect 2-14 LGProcessCallout 2-14 OnDemandRead 2-14 Business Objects 2-7, 2-9 D3-ConnectDisconStateChgNtf 2-9 D3-DeviceEventMappingLookup 2-7 D3-HeadendUOMLookup 2-7 D3-InitialLoadIMDInterval 2-7 D3-InitialLoadIMDScalar 2-7 D3-InitiateConnectDisconnect 2-9 D3-InitiateMRByMtrNbr 2-9 D3-IntStsCodeToCondMapLookup 2-7 D3-MeterAddNotificationMSType 2-9 D3-MtrRmvNotifMultiSpeak 2-9 D3-ReadingChgNotification 2-9

С

Communication Processes 2-8

D

D3-CIMGetLPData 2-9 D3-CIMMeterOnDemandRead 2-9 D3-CIMMeterReadingResponse 2-9 D3-CIMPing 2-9 D3-CIMPingResponse 2-9 D3-ScheduleDemandReset 2-9 D3-ScheduleDemandResetResponse 2-9 Device Event Mapping 2-7 Device Events 2-4

Ε

External System 2-10

G

General Configuration 2-1

I

Inbound Services 2-11 D1-BulkRequestHeader 2-11 D1-BulkRequestUpdate 2-11 D1-BulkResponse 2-11 D1-DeviceEvent 2-12 D3-ConDisconStChgNotification 2-12 D3-ReadingChangedNotification 2-12 Initial Measurement 2-3

0

Oracle Service Bus 2-3 OUAF 2-7 Overview 1-1

W

Web Services 2-15 CD_CB 2-15 LGProcessCallout 2-16 MR_CB 2-15

Χ

XAI configuration 2-11 inbound services 2-11 senders 2-13