Oracle® Communications Messaging Server
MTA Developer's Reference
Release 8.0

July 2015

ORACLE

Oracle Communications Messaging Server MTA Developer's Reference, Release 8.0
Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer
software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the
AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark
of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

O©CO~NOUILSWNPE

. Decoding MESSA0ESottt 4

. DEgUEBUING MEBSSA0ES . . . i i ittt e e e 26
ENQUEUING MESSAgES . . . oo 56

. Error Status Codes SUMMaArYottt e e 62

. MTA SDK Concepts and OVEIVIEWot e e e e 65

. MTA SDK Programming Considerations i 72
.MTA SDK Reference 79

. mtaSend() Routine Specification 186
.Using Callable Send mtaSend() e 198

Chapter 1. Decoding Messages

Decoding Messages

The MTA has facilities for parsing and decoding single and multipart messages formatted using the
MIME Internet messaging format. Additionally, these facilities can convert messages with other formats
to MIME. For example, messages with BINHEX or UUENCODE data, the RFC 1154 format, and many
other proprietary formats. The nt aDecodeMessage() routine provides access to these facilities,
parsing either a queued message or a message from an arbitrary source such as a disk file or a data
stream.

This information includes the following topics:

Usage Modes for nt aDecodeMessage()
The Input Source

The Inspection Routine

A Simple Decoding Example

The Output Destination

Decode Contexts

A Simple Virus Scanner Example

Usage Modes for nt aDecodeMessage()

There are two usage modes for mt aDecodeMessage() . In the first mode, messages are simply parsed,
any encoded content decoded, and each resulting, atomic message part presented to an inspection
routine. This mode of usage is primarily of use to channels which interface the MTA to non-Internet mail
systems such as SMS and X.400. The second mode of operation allows the message to be rewritten
after inspection. The output destination for this rewriting may be either the MTA channel queues, or an
arbitrary destination via a caller-supplied output routine. During the inspection process in this second
usage mode, individual, atomic message parts may be discarded or replaced with text. This operational
mode is primarily of use to intermediate processing channels which need to scan message content or
perform content conversions. For example, virus scanners and encryption software. A Simple Decoding
Example illustrates the first usage mode, while A Simple Virus Scanner Example the second.

For the first usage mode, the calling routine must supply the following items:

1. Aninput source for the message.

2. An inspection routine which will be passed each atomic message part of the parsed and decoded
message.
For the second usage mode, the calling routine must supply the same two items as listed for the
first usage mode, and in addition a third item must be supplied:

3. An output destination to direct the resulting message to.

The input source can be either a queued message file, represented by a dequeue context, or it can be
provided by a caller-supplied input routine. Use the former when processing queued messages and the
latter when processing data from disk files, data streams, or other arbitrary input sources. Since the
parser and decoder require only a single, sequential pass over its input data, it is possible to stream data
to nt aDecodeMessage() .

The output destination can be a message being enqueued and represented either by an enqueue

context, or by a caller-supplied output routine. Use an enqueue context when submitting the message to
the MTA. In all other cases, use a caller-supplied output routine.

Messaging Server 8.0 MTA Developer's Reference 4

The following are some common usage cases and their associated input sources and output
destinations.

® Send to the MTA (slave channel). For this case, a caller- supplied routine accepts incoming
messages from a source outside of the MTA and then enqueues it to the MTA. The caller-supplied
input routine is used in conjunction with an enqueue context as the output source. Doing a MIME
parse and decode is not usually called for in this case. However, specialized services might be
constructed this way. For instance, a custom server that accepts MIME formatted messages, and
strips a control attachment before submitting the remainder of the message to the MTA.

® An intermediate processing channel. For this case, an example is a virus scanner that scans
gueued mail messages, re-enqueuing them to the MTA for delivery. In this case, a dequeue
context is used as the input source and an enqueue context as the output source.

* Send from the MTA (master channel). For this case, queued messages are gatewayed to another
mail system. A dequeue context is used for the input source and an output destination is often not
needed; the inspection routine usually suffices. Channels of this sort are common place when
interfacing Messaging Server to systems that do not support MIME and for which conversion of
MIME formatted messages to other formats is required (for example, X.400 and SMS).

®* A command line utility to parse a message. For this case, a caller-supplied input routine is used.
No output destination is needed; an inspection routine usually suffices.

The Input Source

The message to be decoded is provided as either a dequeue context or a caller-supplied routine.

Dequeue Context

When using a dequeue context, you must observe the following:

1. Pass the dequeue context from nt aDecodeSt art () to nt aDecodeMessage() along with the
MI'A_DECODE_DQitem code.

2. The recipient list of the message being dequeued must have already been read by
nt aDequeueReci pi ent Next () before calling nt aDecodeMessage() .

3. nt aDequeueMessageFi ni sh() must not yet have been called for the dequeue context.

After using a dequeue context with nt aDecodeMessage(), further calls to
nt aDequeueReci pi ent Next () can't be made. Calls to nt aDequeuelLi neNext () can only be
performed after a call to nt aDequeueRewi nd() .

Caller-Supplied Input Routine

To use a caller-supplied input routine, pass the address of the input routine along with the
MI'A_DECODE_PROC item code to nt aDecodeMessage() . In Example 5-1 Decoding MIME Messages
Simple Example, the caller supplied routine's name is decode_read() .

When using a caller-supplied input routine, each block of data returned by the routine must be a single
line of the message. This is the default expectation of nt aDecodeMessage() and corresponds to the
MIA_TERM NONE item code. If, instead, the MTA_ TERM CR, CRLF, LF, or LFCRitem code are
specified, then the block of data need not correspond to a single, complete line of message data; it may
be a portion of a line, multiple lines, or even the entire message.

On each successful call, the input routine should return a status code of zero (MTA_OK). When there is
no more message data to provide, then the input routine should return MTA_EOF. The call that returns the
last byte of data should return zero; it is the subsequent call that must return MTA_EOF. In the event of an
error, the input routine should return a non-zero status code other than MTA_ECF (for example, MTA_NO).
This terminates the message parsing process and nt aDecodeMessage() returns an error.

Messaging Server 8.0 MTA Developer's Reference 5

The Inspection Routine

Whenever nt aDecodeMessage() is called, an inspection routine must be supplied by the caller. In
Example 5-1 Decoding MIME Messages Simple Example, the inspection routine's name is
decode_i nspect ().

As the message is parsed and decoded, nt aDecodeMessage() presents each atomic message part to
the inspection routine one line at a time. The presentation begins with the part's header lines. Once all of
the header lines have been presented, the lines of content are presented.

So that the inspection routine can tell if it is being presented with a line from the header or content of the
message, a data type indicator is supplied to the inspection routine each time it is called. In regards to
lines of the message's content, the data type indicator discriminates between text and binary content.
Text content is considered any content with a MIME content type of t ext or nessage (for example,
text/plain,text/htm,h message/ rfc822), while binary content is all other MIME content types (
appl i cation,inage, and audi 0).

When writing an inspection routine for use with nt aDecodeMessage() , the following points apply:

® Message parts need not have any content. A common case is a single part message with no
content for which the sender used the Subj ect : header line to express their communique.

* |n the case of a non-multipart message, the message has a single part. The header for this sole
part is the header for the message itself. As noted previously, there may or may not be any
content to this single part.

® In the case of a multipart message, individual parts need not have a part header. In such cases,
MIME's defaults apply and imply that the content is t ext / pl ai n using the US-ASCII character
set.

® Regardless of the value of the Cont ent -t r ansf er - encodi ng header line, the content
presented will no longer be encoded.

* In the case of a multipart message, the outermost header is not presented. However, it may be
inspected by means of an output routine (see The Output Destination).

A Simple Decoding Example

This sample program found in Example 5-1 Decoding MIME Messages Simple Example decodes a
MIME formatted message using nt aDecodeMessage() . This is not a channel program. The actual
message to be decoded is compiled into the program rather than being drawn from a channel queue.
After the Messaging Server product is installed, these programs can be found in the following location:
nsg_server _base/ exanpl es/ nt asdk/

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory text in the section that
follows this code, see Explanatory Text for Numbered Comments in the Simple Decoding Example.

For the sample output generated by this program, see MIME Message Decoding Simple Example Output

Example 5-1 Decoding MIME Messages Simple Example

/*
* decode_sinple.c

Messaging Server 8.0 MTA Developer's Reference 6

*

* Decode a multipart M ME nessage
*
*/

#include & t;stdio.h>

#include & t;string. h>

#i ncl ude "ntasdk. h"

/*
* |Inline data for a sanple nessage to decode
* See explanatory comrent 1
*/
static const char nessage[] =
"From sue@iroe.comn"
"Date: 31 Mar 2003 09:32:47 -0800\n"
"Subj ect: test message\n"
"Content-type: multipart/mxed; boundary=BoundaryMarker\n"
“\'n\ n"
"- - Boundar yMar ker\ n"
"Content-type: text/plain; charset=us-ascii\n"
"Content-di sposition: inline\n"
"\ "
"This is a\n"
test message!\n"
"--Boundar yMar ker\ n"
"Content-type: application/postscript\n”
"Content-di sposition: attachnent; filename="a.ps'\n"
"Cont ent -t ransf er-encodi ng: base64\n"
"\ "

" | y FQUWoX MDAgMIAW GLlvdnmVOby Az MDAgMz Aw GxpbmVOby BzdHJva2UKe 2hv"

"Z2UK\ n"
"--Boundar yMar ker--\n";

static ma_decode_read_t decode_read;
static ma_decode_i nspect_t decode_i nspect;
t ypedef struct {

const char *cur_position;

const char *end_position;
} position_t;

mai n()
{
position_t pos;
/*
* Initialize the MIA SDK
*/
if ((ires = malnit(0)))
{
ntaLog("ntalnit() returned %; %\n", ires,
ntaStrError(ires, 0));
return(l);
}
/*

* For a context to pass to ntaDecodeMessage(), we pass a
* pointer to the nessage data to be parsed. The

* decode_read() routine uses this information when

* supplying data to ntaDecodeMessage().

Messaging Server 8.0 MTA Developer's Reference

" 3Bh\ n"

* See explanatory comment 2
*/
pos. cur _position = message;
pos. end_position = nessage + strlen(mnmessage);

/*

* | nvoke ntaDecodeMessage():

* 1. Use decode_read() as the input routine to supply the
* nessage to be M ME decoded,

* 2. Use decode_inspect() as the routine to i nspect each
* M ME decoded nessage part,

* 3. Do not specify an output routine to wite the

* resulting, M ME nessage, and

* 4. Indicate that the input message source uses LF

* record termnators.

* See explanatory coment 3

*/

nt aDecodeMessage((voi d *) &np; pos, MIA_DECODE_PRCC,
(voi d *)decode_read,
0, NULL, decode_inspect, MIA TERM LF, 0);

}

/*

* decode_read -- Provide nessage data to mtaDecodeMessage().
* The entire nessage could just as easily be

* gi ven to ntaDecodeMessage()at once. However,
* for illustration purposes, the nessage is

* provided in 200 byte chunks.

* See explanatory coment 4

*/

static int decode_read(void *ctx, const char **line, size_t
*['ine_l en)

{
position_t *pos = (position_t *)ctx;
if (!pos)
return(MrTA_NO);
el se if (pos->cur_position >= pos->end_position)
return(MIA_EOF) ;
*|ine = pos->cur_position;
*line_len = ((pos->cur_position + 200) <
pos->end_position) ? 200 :
(pos->end_position - pos->cur_position);
pos->cur _position += *line_l en;
return(MTA_X) ;
}
/*
* decode_inspect -- Called by ntaDecodeMessage() to output a
* a line of the parsed message. The line is
* sinply output with additional information
* i ndi cati ng whether the line conmes froma
* header, text part, or binary part.
* See explanatory coment 5
*/

static int decode_inspect (void *ctx, nta_decode_t *dctx, int
data_type, const char *data,
size_t data_len)

Messaging Server 8.0 MTA Developer's Reference

static const char *types[] = {"N', "H', "T", "B"};

/* See explanatory coment 6 */
if (data_type == MIA_DATA NONE)
return(MTA_XK) ;

/* See explanatory coment 7 */
printf("%%: % *s\n",
nt aDecodeMessagel nf ol nt (dct x,
MIA_DECODE_PART_NUMBER) ,
types[data_type], data_len,
dat a) ;

Messaging Server 8.0 MTA Developer's Reference

return(MTA_CX) ;

Explanatory Text for Numbered Comments in the Simple Decoding Example

The following numbered explanatory text corresponds to the numbered comments in Example 5-1
Decoding MIME Messages Simple Example.

1. The MIME message to be decoded. It is a multipart message with two parts. The first part contains
text, the second part a PostScript attachment.

2. The private context to be passed to nt aDecodeMessage() and, in turn, passed by it to the
supplied input routine, decode_r ead() . The input routine uses this context to track how many
bytes of the input message it has supplied to nt aDecodeMessage() .

3. The call to nt aDecodeMessage() . An input routine, decode_r ead() , is supplied to provide the
message to be decoded. Since the message source has each record terminated by line feeds, the
MIA_TERM LF option is also specified. The routine decode_i nspect () is passed for use as an
inspection routine.

4. The input routine, decode_r ead() . This routine provides the message to be decoded 200 bytes
at a time. Note that providing only 200 bytes at a time is arbitrary: the routine could, if it chose,
provide the entire message, or 2000 bytes at a time, or a random number of bytes on each call.
After the entire message has been supplied, subsequent calls to decode_r ead() return the
MI'A_EOF status.

5. The inspection routine, decode_i nspect () . For each atomic message part, this routine is called
repeatedly. The repeated calls provide, line by line, the part's header and decoded content.

6. For a given message part, the final call to decode_i nspect () provides no part data. This final
call serves to give decode_i nspect () a last chance to accept or discard the part when
outputting the final form of the message via an optional output routine supplied to
nt aDecodeMessage() . That optional routine is not used here.

7. The part number for this message part is obtained with a call to nt aDecodeMessagel nf ol nt ().

MIME Message Decoding Simple Example Output

The following shows the output generated by the program in Example 5-1 Decoding MIME Messages
Simple Example.

1H Content-type: text/plain; charset=us-ascii

1H Content-disposition: inline

1T: This is a

1T: test nessage!

2H Content-type: application/postscript

2H. Content-transfer-encodi ng: base64

2H Content-di sposition: attachment; fil enane="a.ps"
2B: #!'PS

100 100 noveto 300 300 lineto stroke

showpage

The Output Destination

When an optional output destination is supplied to nt aDecodeMessage() , the processed input
message is subsequently written to the output destination. When conversion to MIME is requested, the
output message will be the result of the conversion. Additionally, the written message will reflect any
changes made by the inspection routine with mt aDecodeMessagePart Del et e() . That routine may be
used to delete an atomic part or replace the part with new, caller-supplied content.

Messaging Server 8.0 MTA Developer's Reference 10

The output destination can be either a message submission to the MTA (that is, an ongoing enqueue) or
an arbitrary destination represented by a caller-supplied output routine.

Enqueue Context

When using a message enqueue context, you must do the following:

1. Supply the enqueue context along with the MTA_DECCDE_NQitem code.

2. Specification of the message’s recipient list must have already been completed with
nt aEnqueueTo() before calling nt aDecodeMessage() .

3. nt aEnqueueFi ni sh() must not yet have been called for the enqueue context.

After the call to nt aDecodeMessage() has completed successfully, complete the message enqueue
with nt aEnqueueFi ni sh() . In the event of an error, the message submission should be cancelled with
nt aEnqueueFi ni sh() . nt aDecodeMessage() writes the entire message header and content. There
is no need for the caller to write anything to the message's header or content.

Caller-Supplied Output Routine

To use a caller-supplied output routine (for example, decode_wri t e()), supply the address of the
output routine along with the MTA_DECODE_PRCC item code to nt aDecodeMessage() .

Each line passed to the output routine represents a complete line of the message to be output. The
output routine must add to the line any line terminators required by the output destination (for example,
carriage return, line feed pairs if transmitting over the SMTP protocol, line feed terminators if writing to a
UNIX text file, and so forth).

Decode Contexts

When nt aDecodeMessage() calls either a caller-supplied inspection or output routine, it passes a
decode context to those routines. Through SDK routine calls, this decode context can be queried to
obtain information about the message part currently being processed, as shown in the following table:

Messaging Server 8.0 MTA Developer's Reference 11

Message Code Description

MI'A_DECODE_CCHARSET The character set specified with the CHARSET parameter of the part's
Cont ent -t ype: header line. If the part lacks a CHARSET
specification, then the value us- asci i will be returned. Obtain with
nt aDecodeMessagel nfoString() .

MIA_DECODE_CDI SP Value of the Cont ent - di sposi ti on: header line, less any optional
parameters. Will be a zero length string if the part lacks a
Cont ent - di sposi ti on: header line. Obtain with
nt aDecodeMessagel nf oSt ri ng()

MIA _DECODE_CDI SP_PARAMS Parameter list to the Cont ent - di sposi ti on: header line, if any.
The parsed list is returned as a pointer to an option context. For
further information, see nt aDecodeMessagel nf oPar ans() .

MI'A_DECODE_CSUBTYPE The content subtype specified with the part's Cont ent - t ype:
header line (for example, pl ai n fort ext/ pl ai n, gi f for
i mage/ gi f). Defaults to pl ai n when the part lacks a
Cont ent -t ype: header line.Obtain with
nt aDecodeMessagel nfoString() .

MIA_DECODE_CTYPE The major content type specified with the part’'s Cont ent -t ype:
header line (for example, t ext for t ext/ pl ai n, i mage for
i mage/ gi f). Defaults to t ext when the part lacks a
Cont ent -t ype: header line.Obtain with
nmt aDecodeMessagel nfoString() .

MIA DECODE_CTYPE_PARAMS Parameter list to the Cont ent -t ype: header line, if any. The parsed
list is returned as a pointer to an option context. For further
information, see nt aDecodeMessagel nf oPar ans() .

MIrA_DECODE_DTYPE Data type associated with this part. Obtain with
nmt aDecodeMessagel nfol nt ().

MIA DECODE _PART_NUMBER Sequential part number for the current part. The first message part is
part O, the second part is 1, the third part is 2, and so on. Obtain with
nt aDecodeMessagel nfolnt ().

A Simple Virus Scanner Example

Example 5-2 Decoding MIME Messages Complex Example shows how to use the

nt aDecodeMessage() routine to write an intermediate processing channel that converts messages
with formats other than MIME, for example UUENCODE content, to MIME output. It then decodes the
MIME message, scanning it for potentially harmful attachments. (In this example, an attachment is any
message part.) Any harmful attachments are removed from the message after which it is re-enqueued for
delivery. The list of harmful MIME media types and file name extensions is read from a channel option
file. An example option file for the channel is shown in Example Option File.

In this example, the MIME Cont ent -t ype: and Cont ent - di sposi ti on: header lines are used to
detect potentially harmful message attachments such as executable files. This example could be
extended to also scan the content of the attachments, possibly passing the contents to a virus scanner.
Further, the example could be modified to return as undeliverable any messages containing harmful
attachments.

Messaging Server 8.0 MTA Developer's Reference 12

© Note-
To configure the MTA to run this channel, see Running Your Enqueue and Dequeue
Programs. The PVDF_CHANNEL _OPTI ON environment variable must give the absolute file
path to the channel's option file. Also, for a discussion on configuring special rewrite rules
for re-enqueuing dequeued mail, see Preventing Mail Loops when Re-enqueuing Mail.

For the output generated by this sample program, see Decoding MIME Messages Complex Example
Output.

After the Messaging Server product is installed, these programs can be found in the following location:
nsg_server _base/ exanpl es/ nt asdk/

Some lines of code are immediately preceded by a comment of the format:

[* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory text in the section that
follows this code, see Explanatory Text for Numbered Comments in the Decoding MIME Messages
Complex Example.

Example 5-2 Decoding MIME Messages Complex Example

/*
* virus_scanner_sinple.c

*

* Rermove potentially harnful content from queued nmessages.
*

*/

#i nclude & t;stdio. h>
#include & t;stdlib.h>
#include & t;string. h>
#include & t;ctype. h>
#i ncl ude "ntasdk. h"

/*
* A structure to store our channel options
*/
typedef struct {
/* Produce debug out put? */
i nt debug;

/* Unwanted M ME content types */
char bad_m ne_t ypes[Bl GALFA_SI ZE+3] ;

/* Length of bmt string */
size_t bnt_len;

/* Unwanted file types */

char bad_fil e_types[Bl GALFA_SI ZE+3] ;
/* Length of bft string */

size_t bft_len;
} our_options_t;

/*

* Forward decl arati ons
*/

Messaging Server 8.0 MTA Developer's Reference 13

static void error_exit(int ires, const char *nsg);
static void error_report(our_options_t *options, int ires, const
char *func);

static int is_bad_m me_type(our_options_t *options, nta_decode_t
*dctx, char *buf, size_t maxbuflen);

static int is_bad file_type(our_options_t *options, nta_opt_t
*parans, const char *param nane,
char *buf, size_t maxbuflen);

static int |oad_options(our_options_t *options);

static nta_dg_process_nessage_t process_nessage
static nma_decode read t decode_read
static nta_decode_inspect _t decode_i nspect;

/*
* main() -- Initialize the MIA SDK, |oad our options, and then
* start the nessage processing | oop
*/
int main()
{
int ires;
our_options_t options;
/*
* Initialize the MIA SDK
* See explanatory comrent 1
*/
if ((ires = ntalnit(0)))
error_exit(ires, "Unable to initialize the MIA SDK");
/*
* Load our channel options
* See explanatory coment 2
*/
if ((ires = | oad_options(&anp; options)))
error_exit(ires, "Unable to | oad our channel options");
/*
* Now process the queued nessages. Be sure to indicate a
* thread stack size sufficient to acconodate nmessage
* enqueue processing.
* See explanatory coment 3
*/
if ((ires = ntabDequeueStart((void *)&anp; opti ons,
process_nessage, NULL, 0)))
error_exit(ires, "Error during dequeue processing");
/*
* Al done
*/
nt aDone() ;
return(0);
}
/*
* process_nessage() -- This routine is called by
* nt aDequeueStart () to process each queued
* message. W dont make use of ctx2, but
* ctxl is a pointer to our channel options.

Messaging Server 8.0 MTA Developer's Reference

14

* See explanatory coment 4

*/

static int process_nessage(void **ctx2, void *ctx1l, nta_dg_t *dq,
const char *env_from size t
env_from.len)

const char *adr;

int disp, ires;

size t len;

nta ng_t *nq;

our_options_t *options = (our_options_t *)ctxl1;

/*

* |nitializations
*/

ng = NULL;

/*
* Alittle nmacro to do error checking on nta*() calls
*
/
#define CHECK(f, x) \
if ((ires =x)) { error_report(options, ires, f); goto \
done_bad; }

* Start a nessage enqueue. Use the dequeue context to copy
* envelope flags from the current nessage to this new
* message bei ng enqueued.
* See explanatory conment 5
*/
CHECK(" nt aEnqueueStart",
nt aEnqueueSt art (&np; ng, env_from env_from.len,
MIA_DQ CONTEXT, dg, 0));

/*
* Process the envel ope recipient |ist
* See explanatory conment 6
*/
while (!(ires = ntabDequeueReci pi ent Next (dq, &anp;adr, &anp;len,

{
/*
* Add this envel ope recipient address to the nessage
* being enqueued. Use the dequeue context to copy
* envelope flags for this recipient fromthe current
* nessage to the new nessage.
*/
ires = ntaEnqueueTo(nq, adr, |en, MIA _DQ CONTEXT,
dg, MIA_ENV_TO, 0);
/* See explanatory comment 7 */
disp = (ires) ? MIA_D SP_DEFERRED : MIA DI SP_RELAYED,;
CHECK(" nt aDequeueReci pi ent Di sposi tion",
nt aDequeueReci pi ent Di sposition(dq, adr, |en,
disp, 0));
}
/*

* A normal exit fromthe | oop occurs when
* mtaDequeueReci pi ent Next () returns an MIA_EOF st at us.
* Any other status signifies an error.

Messaging Server 8.0 MTA Developer's Reference

0)))

15

*/

if (ires = MIA_EOF)

{
error_report(options, ires, "mtaDequeueReci pientNext");
got o done_bad,;

}

/*
* Begin the M ME decode of the nessage
* See explanatory coment 8
*/
CHECK(" nt aDecodeMessage”,
nt aDecodeMessage(
/* Private context is our options */
(void *)options,
/* Input is the nmessage bei ng dequeued */
MIA_DECODE _DQ, (void *)dq,
/* Qutput is the nmessage bei ng enqueued */
MIA_DECODE_NQ (void *)nq,
/* Inspection routine */
decode_i nspect,
/* Convert non-MME formats to M ME */
MIA_DECODE_THURMAN, 0));

* Finish the enqueue

* NOTE: | TS | MPORTANT TO DO THI S before DO NG THE

* DEQUEUE. YOU WLL LOSE MAIL IF YOU DO THE DEQUEUE FI RST
* and then THE ENQUEUE FAI LS.

* See explanatory text 9

*/

CHECK(" mt aEnqueueFi ni sh", m aEnqueueFi ni sh(ng, 0));
ng = NULL;

/*

* Finish the dequeue

*/

CHECK(" nt aDequeueFi ni sh", mt aDequeueMessageFi ni sh(dqg, 0));

/*
* Al done with this nessage
*
/
return(MIA_OK) ;

done_bad:
/*
* Abort any ongoi ng enqueue or dequeue
*
/
if (nq)
nt aEnqueueFi ni sh(ng, MIA_ABORT, 0);
if (da)
nt aDequeueMessageFi ni sh(dq, MIA_ABCRT, O0);
/*
* And return our error status
*
/

return(ires);

Messaging Server 8.0 MTA Developer's Reference

16

#undef CHECK

/*
* decode_inspect() -- This is the routine that inspects each
* nmessage part, deciding whether to accept
* or reject it.
* See explanatory coment 10
*/

static int decode_inspect(void *ctx, nta_decode_t *dctx,
int data_type,const char *data
size_t data_l en)

char buf[BI GALFA SI ZE * 2 + 10];
int i;
our_options_t *options = (our_options_t *)ctx;

* See if the part has:

* 1. A bad M ME content-type

* 2. A bad file name extension in the (deprecated)

* NAME= content-type paraneter, or

* 3. A bad file name extension in the

* FI LENAME= cont ent - di sposition paraneter.

*/

i =0;

if ((i =is_bad_mme_type(ctx, dctx, buf, sizeof(buf))) |

is_bad_file_type(ctx,
nt aDecodeMessagel nf oPar ans(dct X,
MIA_DECODE_CTYPE_PARANMS, NULL),
"NAME", buf, sizeof(buf)) ||
is_bad_file_type(ctx,
nt aDecodeMessagel nf oPar ans(dct X,
MIA_DECODE_CDI SP_PARAMS, NULL),
"FI LENAME", buf, sizeof (buf)))

char nsg[Bl GALFA SI ZE*4 + 10];

/*

* Replace this part with a text nessage indicating

* that the parts content has been del eted

* See explanatory conment 11

*/

if (i)

i = sprintf(nsg,
"The content of this nessage part has been renoved.\n"
"I't contained a potentially harnful nedia type of % *s"
strlen(buf)-2, buf+l);

el se
i = sprintf(mnsg,
"The content of this message part has been renoved.\n"
"It contained a potentially harnful file naned '%'", buf);

ret urn(nt aDecodeMessagePart Del et e(dct x,
MIA_REASON, nmsg, i,
MIA DECODE _CTYPE, "text", 4,
MI'A_DECODE_CSUBTYPE, "plain", 5,
MIA_DECODE_CCHARSET, "us-ascii", 8,
MIA_DECODE_CDI SP, "inline", 6,

Messaging Server 8.0 MTA Developer's Reference

17

MTA_DECCDE_CLANG, "en", 2, 0)):

}
el se
/*
* Keep the part
* See explanatory coment 12
*/
ret urn(nt aDecodeMessagePart Copy(dctx, 0));
}
/*
* is_bad_mnme_type() -- See if the parts nmedia type is in our
* bad M ME content types, for exanple:
* appl i cation/vbscri pt
* See explanatory coment 13
*/

static int is_bad_m me_type(our_options_t *options,
nt a_decode_t *dctx, char *buf,
si ze_t maxbufl en)

{
const char *csubtype, *ctype;
size_t i, lenl, len2;
char *ptr;
/*
* Sanity checks
*/
if (loptions || !options->bm _len ||
loptions->bad_mi ne_types[0] ||
Idct x)
return(0);
/*
* Get the M ME content type
*/

ctype = mtabDecodeMessagel nfoString(dctx, MIA_DECODE CTYPE,
NULL, &anp;lenl);
csubtype = nt aDecodeMessagel nf oSt ri ng(dct x,
MTI'A_DECODE_CSUBTYPE,
NULL, &anmp; | en2);

/*
* Build the string: & t;0x01>type/subtype& t; 0x01>& t; 0x00>
*
/
ptr = buf;

*ptr++ = (char)0x01;

for (i =0; i &t; lenl; i++)
*ptr++ = tol ower(*ctype++);

*ptr++ = /;

for (i =0; i &t; len2; i++)
*ptr++ = tol ower (*csubtype++);

*ptr++ = (char) 0x01;

*ptr =\0;

/*

* Now see if the literal just built occurs in the list of

* bad M ME content types
*/
return((strstr(options->bad_m ne_types, buf)) ? -1 : 0);

Messaging Server 8.0 MTA Developer's Reference

18

is_bad_file_type() -- See if the part has an associated file

nane whose file extension is in our list

* See explanatory coment 14

*/

static int is_bad_file_type(our_options_t *options,
nta_opt_t *parans,

of bad file nanes, such as .vbs.

const char *param nane, char *buf,
si ze_t maxbufl en)
{

const char *ptr1;

char fext[BlI GALFA_SI ZE+2], *ptr2;

size t i, len;

/*

* Sanity checks

*/

if (loptions || 'options->bft_len || !parans || ! param nane)

return(0);
len = 0O;
buf[0] =\0;

if (nmaOptionString(parans, paramnane, 0, buf, &anp;len,

maxbuflen - 1) ||

'len || 'buf[0])
/*
* No file nane paraneter specified
*
/
return(0);
/*

* Afile name parameter was specified.

Parse it to

* extract the file extension portion, if any.

*/
ptrl = strrchr(buf, .);
if (!ptrl)
/*
* No file extension specified
*/
return(0);
/*

* Now store the string created earlier

in fext[]

* Note that we drop the . fromthe extension.

*/
ptrl++; /* Skip over the . */
ptr2 = fext;

*ptr2++ = (char)0x01;

len = len - (ptrl - buf);

for (i =0; i &t; len; i++)
*ptr2++ = tol ower (*ptrl++);

*ptr2++ = (char)0x01;

*ptr2++ = \0;

/*
* Now return -1 if the string occurs in

Messaging Server 8.0 MTA Developer's Reference

19

* options->bad_file_types.

*/
return((strstr(options->bad_file_types, fext))
?-1: 0);
}
/*
* | oad_options() -- Load our channel options fromthe channels
* option file
* See explanatory comrent 15
*/
static int |oad_options(our_options_t *options)
{

char buf[Bl GALFA_SI ZE+1] ;
size_t buflen, i;
nta_opt _t *channel _opts;

int ires;

const char *ptrQ;

char *ptr1;

/*

* Initialize the our private channel option structure
*/

menset (options, 0, sizeof(our_options_t));

/*

* Access the channels option file

* See explanatory comrent 16

*/

channel _opts = NULL;

if ((ires = maQOptionStart(&anp; channel _opts, NULL, 0, 0)))

{
nt aLog("Unabl e to access our channel option file");
return(ires);

}

/*

* DEBUG=0]| 1

*/

opti ons->debug = 0;
nt aOpt i onl nt (channel _opts, "DEBUG', 0, &anp;options->debug);
i f (options->debug)

nt aDebug(MTA_DEBUG_SDK, 0);

/*
* BAD_M ME_TYPES=t ypel/ subtypel[, type2/ subtype2[,...]]
*/

buf [0] = \O0;

ntaQptionString(channel _opts, "BAD M ME_TYPES", 0, buf,
&anp; bufl en, sizeof (buf));

* Now translate the comma separated |ist:
* Typel/ Subtypel[, Type2/ Subtype2[,...]]

* to

Messaging Server 8.0 MTA Developer's Reference 20

*& t; 0x01>t ypel/ subtypel[& t; 0x01>t ype2/ subt ype2[& t; 0x01>...]] & t; Ox01>
*/

ptr0 = buf;

ptrl = options->bad_m ne_types;
*ptrl++ = (char)0x01;

for (i =0; i &t; buflen; i++)

{
if (*ptrOo =)
*ptrl++ = tol oner (*ptrO++);
el se
{
*ptrl++ = (char)0x01;
ptrO++
}
}
*ptrl++ = (char)0x01;
*ptrl =\0;

options->bnt _len = ptrl - options->bad_m ne_types;

/*

* BAD FILE TYPES=["."]Ext1[,["."]1Ext2[,...]]
*/

buf [0] = \O0;

bufl en = 0;

nt aOpti onString(channel _opts, "BAD FILE TYPES', 0, buf,
&anp; bufl en, sizeof (buf));

* Now translate the comma separated |ist:
* ["."1Ext1],["."]1Ext2[,...]]

* to

* &l t; 0x01>ext 1[& t; Ox01>ext 2[& t; Ox01>...]] & t; Ox01>
*/

ptr0 = buf;

ptrl = options->bad_file_types;

*ptrl++ = (char)0x01;

for (i =0; i &t; buflen; i++)

{
swi tch(*ptrO0)
{
default : /* copy after translating to | ower case */
*ptrl++ = tol oner (*ptrO++);
br eak;
case . : /* discard */
br eak;
case , : [/* end current type */
*ptrl++ = (char)0x01;
ptrO++;
br eak;
}
}
*ptrl++ = (char)0x01,;
*ptrl =\0;

options->bft_len = ptrl - options->bad_file_types;

/*

Messaging Server 8.0 MTA Developer's Reference

* Dispose of the nta_opt_t context
* See explanatory coment 17

*/

nt aOpt i onFi ni sh(channel _opts);
/*

* And return a success

*/

return(MTA_OK);
}

/*
* error_report() Report an error condition when debugging is
* enabl ed.
*/
static void error_report(our_options_t *options, int ires,
const char *func)

{
i f (options->debug)
ntaLog("%() returned %; %",
(func ? func : "?"), ires, ntaStrError(ires));

}

/*

* error_exit() -- Exit with an error status and error message.
*/

static void error_exit(int ires, const char *msg)
{
malog("%%%", (nmsg ? nsg : ""), (msg ? "; " : ""),
maStrError(ires));

Messaging Server 8.0 MTA Developer's Reference

22

exit(1);

Example Option File

This example lists the MIME media types and file extensions this program is to consider potentially
harmful.

DEBUG=1
BAD_M ME_TYPES=appl i cati on/ vbscri pt
BAD FI LE_TYPES=bat, comdl |, exe, vb, vbs

Sample Input Message

The example that follows is the text of a sample input message the program in Example 5-2 Decoding
MIME Messages Complex Example is to process. The second message part is a file attachment. The
attached file name is t r oj an_hor se. vbs. Consequently when this message is processed by the
channel, it should remove the attachment as the file extension . vbs is in the list of harmful file
extensions. The sample program replaces the attachment with a text attachment indicating the content
has been deleted.

Recei ved: from[129.153.12.22] ([129.153.12.22])

by frodo.siroe.com (Sun Java System Messagi ng Server 6 2004Q (built Apr 7
2003)) with SMIP id & t; OHD70010230YDAOO@ r odo. si roe. com > for

for sue@esta.com Fri, 11 Apr 2003 13:03:23 -0700 (PDT)

Date: Fri, 11 Apr 2003 13:03:08 -0700

From sue@esta.com

Subj ect: test nessage

Message-id: & t; OHD7001033P1DA00@ r odo. si r oe. com >

Content-type: multipart/m xed; boundary=BoundaryMar ke

- - Boundar yMar ker
Content -type: text/plain; charset=us-ascii
Content -di sposition: inline

This is a
test nessage!
- - Boundar yMar ker
Content -type: application/octet-stream
Cont ent - di sposi tion: attachnent; filename="trojan_horse. vbs"
Content -transfer-encodi ng: base64

| yFQUWoX MDAgMTIAW GlvdmvVOby Az MDAgMz AWl GxpbmVOby Bz dHIva2UKc2hvd3Bh
Z2UK

- - Boundar yMar ker - -

Explanatory Text for Numbered Comments in the Decoding MIME Messages Complex
Example

1. The MTA SDK is explicitly initialized. This call is not really necessary as the MTA SDK will

Messaging Server 8.0 MTA Developer's Reference 23

10.

11.

12.

13.

14.

15.

16.

17.

implicitly initialize itself when nt aDequeueSt art () is called. However, for debugging purposes,
it can be useful to make this call at the start of a program so that an initialization failure will show
clearly in the diagnostic output. If the call is omitted, initialization failure will be less obvious. The
failure will still be noted in the diagnostic output, but it will be obscured through the routine call that
triggered implicit initialization.

. Channel options are loaded via a call to the | oad_opt i ons() routine. That routine is part of this

example and, as discussed later, uses the SDK routines for obtaining channel option values from
the channel’s option file.

The message dequeue processing loop is initiated with a call to nt aDequeueSt art ().

For each queued message to be processed, pr ocess_nessage() will be called by

nt aDequeueStart ().

. A message enqueue is started. This enqueue is used to re-enqueue the queued message

currently being processed. As the message is processed, its hon-harmful content will be copied to
the new message being enqueued.

. The envelope recipient list is copied from the queued message to the new message being

enqueued.

. Since this is an intermediate channel, that is, it doesn't effect final delivery of a message,

successful processing of a recipient address is associated with a disposition of
MTA_ DI SP_RELAYED.

. After processing the message’s envelope, nt aDecodeMessage() is invoked to decode the

message, breaking it into individual MIME message parts. m aDecodeMessage() is told to use
the current dequeue context as the input source for the message to decode. This supplies the
gueued message being processed as input to the MIME decoder. Further, the current enqueue
context is supplied as the output destination for the resulting message. This directs

nt aDecodeMessage() to output the resulting parsed message to the message being enqueued,
less any harmful attachments that are explicitly deleted by the inspection routine. The routine
decode_i nspect () is supplied as the inspection routine. If the call to nt aDecodeMessage()
fails, the CHECK() macro causes the queued message to be deferred and the message enqueue
to be cancelled.

. After a successful call to nt aDecodeMessage() , the message enqueue is committed. It is

important that this be done before committing the dequeue. If the operation is done in the other
order— dequeue finish followed by enqueue finish— then mail may be lost. For example, the
message would be lost if the dequeue succeeds and then deletes the underlying message file
before the enqueue, and then the enqueue fails for some reason, such as insufficient disk space.
The inspection routine, decode_i nspect () . This routine checks the MIME header lines of each
message part for indication that the part may contain harmful content.

Message parts with harmful content are discarded with a call to

nt aDecodeMessagePart Del et e() . The discarded message part is replaced with a text
message part containing a warning about the discarded harmful content.

Message parts with safe content are kept by copying them to the output message with

nt aDecodeMessagePar t Copy() .

Using the configured channel options, this routine determines if a message part’'s media type is in
the list of harmful types.

Using the configured channel options, this routine determines if a filename appearing in the MIME
header lines has an extension considered harmful.

The | oad_opti ons() routine is used to load the channel’s site-configured options from a
channel option file.

The channel option file, if any, is opened and read by nt aOpt i onSt art () . Since an explicit file
path is not supplied, the file path specified with the PVDF_CHANNEL _OPTI ON environment variable
gives the name of the option file to read.

After loading the channel’s options, the option file context is disposed of with a call to

nt aOpt i onFi ni sh().

Decoding MIME Messages Complex Example Output

The example that follows shows the output generated by the MIME decoding program found in Example
5-2 Decoding MIME Messages Complex Example.

Messaging Server 8.0 MTA Developer's Reference 24

Recei ved: from sesta.com by frodo. siroe.com

Sun Java System Messagi ng Server Version 6 2004 Q2(built Apr 7 2003))
id & t; OHDEOOCO1BFK6500@ r odo. siroe. com > for sue@esta.com Tue, 11
Apr 2003 13:03:29 -0700 (PDT)

Recei ved: from[129.153.12.22] ([129.153.12.22])

by frodo.siroe.com (Sun Java System Messagi ng Server 6 2004 2 (built Apr 7
2003)) with SMIP id & t; OHD70010230YDAOO@ r odo. si roe.com > for
sue@esta.com Fri, 11 Apr 2003 13:03:23 -0700 (PDT)

Date: Fri, 11 Apr 2003 13:03:08 -0700

From sue@esta.com

Subj ect: test nessage

To: sue@esta.com

Message-id: & t; OHD7001033P1DA00@ r odo. si r oe. com >

Content-type: multipart/m xed;

boundar y="Boundary_(| D_XI | wKLBET2/ DDbPzRI 7yzQ "

--Boundary_(1 D_XI | wWKLBET2/ DDbPzRI 7yzQ)
Content -type: text/plain; charset=us-ascii
Cont ent -di sposition: inline

This is a
test nessage!

--Boundary_(1 D_XlI | wKLBET2/ DDbPzRI 7yzQ
Content-type: text/plain; charset=us-ascii
Cont ent - | anguage: en

Cont ent -di sposition: inline

The content of this message part has been renoved.
It contained a potentially harnful file naned "trojan_horse. vbs"

--Boundary_(| D_XlI | wKLBET2/ DDbPzRI 7yzQ) - -

Messaging Server 8.0 MTA Developer's Reference

25

Chapter 2. Dequeuing Messages

Dequeuing Messages

Once enqueued to the MTA, messages are processed using the SDK dequeue routines. These routines
provide channel programs and MTA utilities with programmatic access to queued messages. With these
routines, a channel program can process its queue of messages, accessing the message’s envelope
information and message content.

This chapter discusses the following dequeuing topics:

How Dequeuing Works

Basic Dequeuing Steps
Caller-Supplied Processing Routine
The process_nessage() Routine

A Simple Dequeuing Example
Processing the Message Queue

The process_done() Routine

A Complex Dequeuing Example
Intermediate processing channels
Intermediate Channel Example

Thread Creation Loop in nt aDequeueSt art ()
Multiple Calls to nt aDequeueSt art ()
Calling Order Dependencies

How Dequeuing Works

Channel programs wishing to dequeue messages from the MTA must associate themselves with a
specific MTA channel or channels. Without this information, the MTA SDK does not know which channel
gueue to draw messages from. This information can be provided implicitly with the PMDF_ CHANNEL
environment variable, or explicitly by specifying the name of the MTA channel to process when calling
nt aDequeueStart ().

The dequeue process is initiated by calling the routine mt aDequeueSt art () . A key piece of required
information passed to nt aDequeueSt art () is the address of a caller-supplied routine designed to
process a single message. This routine will be repeatedly called by nt aDequeueSt art () until there are
no more queued messages in need of processing. One call is made per message to be processed.

Unless otherwise instructed, nt aDequeueSt art () will use multiple threads of execution to process
gueued messages. Each thread of execution will repeatedly invoke the caller-supplied routine, once for
each message to be processed. Thus, by default the caller-supplied routine is expected to be
"thread-safe." That is, it is expected to support being called simultaneously by more than one thread of
execution. If the caller-supplied routine is not thread safe, then nt aDequeueSt art () can be instructed
to use a single thread of execution, as illustrated in A Complex Dequeuing Example

Basic Dequeuing Steps
The following basic steps are necessary to dequeue messages:
1. Initialize SDK resources and data structures with ntal ni t ().

2. Call nt aDequeuesSt art (), passing it the address of the caller-supplied routine that is to be used
to process each message. When nt aDequeueSt art () is called, it does not return until all

Messaging Server 8.0 MTA Developer's Reference 26

gueued messages requiring processing have been processed, thus blocking the thread calling it
until it is finished.

3. For each queued message requiring processing, an execution thread created by
nt aDequeueSt art () calls the routine whose address was provided in Step 2. Threads created
by nt aDequeueSt art () each sequentially process multiple messages. That is,
nt aDequeueSt art () does not create a distinct thread for each and every queued message to
be processed.
For a list of the tasks the processing routine should do, see Caller-Supplied Processing Routine.

B Note -
The nt aDequeueSt art () routine will use one or more threads, with each thread
calling the message processing routine. The maximum number of threads allowed
can be set when calling nt aDequeueSt art () . Consequently, a program that does
not support threading should specify a maximum of one thread when it calls
nt aDequeueStart ().

For a list of the tasks the processing routine should do, see Dequeue Message Processing
Routine Tasks.

4. After nt aDequeueSt art () returns, deallocate SDK resources and data structures with a call to
nt aDone() .

Caller-Supplied Processing Routine

Channel programs typically perform some form of processing on each message they dequeue. For
instance, virus scanning, MMS conversion, decryption, delivery to a proprietary messaging system, and
so forth. When using the MTA SDK, channel programs must provide a routine which initiates this
processing on a per message basis. That is, programs must supply a routine that to be called to process
a single queued message. Throughout the rest of this text, this caller-supplied routine will be referred to
as "the caller-supplied processing routine” or, for short, "the processing routine."

When called by one of the nt aDequeueSt art () execution threads, the processing routine uses the
SDK to access the message's envelope, header, and any content. Upon completion of processing, the
message is then either removed from the MTA queues, or, in the event of a temporary error, left in its
gueue for a later processing attempt.

Dequeue Message Processing Routine Tasks

The processing routine processes a single queued message per invocation. The specific steps that a
processing routine takes are:

1. Read the envelope recipient list with repeated calls to nt aDequeueReci pi ent Next () .

When nt aDequeueReci pi ent () returns the MTA_EOF status code, the list has been exhausted
and all envelope recipient addresses have been provided. All gueued messages are guaranteed
by the MTA to always have at least one envelope recipient address.

2. Read the message, both header and body, with repeated calls to nt aDequeuelLi neNext () .
When nt aDequeueli neNext () returns the MTA_EOF status code, the message has been
exhausted; that is, there is no more message text to retrieve. The message will be an RFC 2822
conformant message. As such, the division between the message’s header and content will be
demarked by a blank line (a line with a length of zero). A message may have no content; that is, a
message may have just a header.

3. Process the message.

The processing in this step could be almost anything, including possibly enqueuing a new
message or messages with the MTA SDK. The details of this step will depend upon the purpose of
the program itself. Programs needing to do MIME parsing should consider using the

nt aDecodeMessage() routine.

Messaging Server 8.0 MTA Developer's Reference 27

For further information about message processing threads and caller-supplied message
processing routines, see Processing the Message Queue.

4. Report the disposition of each envelope recipient with per recipient calls to
nt aDequeueReci pi ent Di sposi tion(), orasingle call to mt aDequeueMessageFi ni sh()
with the MTA_DI SP item code.
The following table lists the valid recipient dispositions:

Symbolic Name Description

MI'A DI SP_DEFERRED Unable to process this recipient address. Processing has
failed owing to a temporary problem, such as the network is
down, a remote host is unreachable, or a mailbox is busy.
Retry delivery for this recipient at a later time as determined
by the configuration of the channel.

MI'A_DI SP_DELI VERED Recipient address successfully delivered. Generate a delivery
status notification if required.

MI'A_DI SP_FAI LED Unable to process this recipient address. Processing has
failed owing to a permanent problem, such as an invalid
recipient address, or recipient over quota. No further delivery
attempts should be made for this recipient. Generate a
non-delivery notification if required.

MI'A DI SP_RELAYED Recipient address forwarded to another address or sent into a
non-RFC 1891 (NOTARY) mail system. The message's
NOTARY information was, however, preserved. There is no
need to generate a relayednnotification message.

MIA DI SP_RELAYED FOREI GN Recipient address forwarded to another address or
gatewayed to a non-RFC 1891 (NOTARY) mail system; the
messages NOTARY information was not preserved; generate
a relayed notification message if required.

MI'A_DI SP_RETURN For this recipient, return the message as undeliverable.
Generate a non-delivery notification if required. This
disposition is intended for use by queue management utilities.
It is not intended for channel programs.

MI'A_DI SP_TI MEDOUT Unable to process this recipient address. Processing failed
due to timing out. This disposition is intended for use by the
MTA Return Job. Channel programs should not use this
disposition.

1. Dequeue the message with nt aDequeueMessageFi ni sh().
The message is not actually removed from the channel queue until this final step. This helps
ensure that mail is not lost should the channel program fail unexpectedly, or some other
unexpected disaster occurs.
When this routine is called, the resulting processing depends on the disposition of the envelope
recipient addresses reported with nt aDequeueReci pi ent Di sposi ti on() (see Step 4 in this
task list).
If all recipients have a permanent disposition (all of the ones listed in the previous table, except
MI'A_DI SP_DEFERRED), then any required non-delivery notifications are generated and the
message is permanently removed from the MTA queue.
If all recipients are to be deferred (MTA_DI SP_DEFERRED), then no notifications are generated
and the message is left in the queue for later delivery attempts.
If, however, some recipients have a permanent disposition and others are deferred, then the
following happens:
a. Notifications are generated for those recipients with permanent dispositions that require
notifications.
b. A new message is enqueued for just the deferred recipients.

Messaging Server 8.0 MTA Developer's Reference 28

c. The original message is removed from the queue.
Deferred messages will not be processed by this routine more than once, unless another
delivery attempt is made for the deferred message while the process is still running. How
long a message is deferred is configured as part of a channel's definition, using the
backof f channel keyword.
2. When finished, the processing routine should return with a status code of zero (0) to indicate a
success, and an appropriate MTA _ status code in the event of an error.
If the processing routine returns before calling nt aDequeueFi ni sh(), then the message that
was being handled is left in its queue for a subsequent processing attempt. It will be as if the
MI'A_DI SP_DEFFERED disposition was set for all of the message's recipients. This will be the case
even if the processing routine returns a success status code of zero.
In the event that the processing routine needs to abort processing of a single message, it should
call nt aDequeueMessageFi ni sh() with the MTA_ABORT flag set. If the processing routine
returns with a status code of MTA_ABORT, then the execution thread that called the processing
routine will perform an orderly exit. Consequently, the program can prematurely terminate itself in
a graceful fashion by causing its processing routine to begin returning the MTA_ABORT status code
each time it is called.

The process_nessage() Routine

This caller-supplied routine is invoked by the processing threads to do the actual processing of the
messages.

The following code example shows the required syntax for a pr ocess_nessage() routine:

int process_nessage(void **ctx2, void *ctxl, nta_dq_t *dg_ctx,
const char *env_from int env_fromlen);

The following table lists the required arguments for a pr ocess_nessage routine, and gives a
description of each.

Arguments Description

ctx2 A writable pointer that the pr ocess_nessage() routine can use to store a pointer
to a per-thread context. See the description that follows for further details.

ctx1 The caller-supplied private context passed as ct x1 to nt aDequeueSt art ().

dg_ctx A dequeue context created by nt aDequeueSt art () and representing the message

to be processed by this invocation of the pr ocess_nessage() routine.

env_from A pointer to the envelope Fr om address for the message to be processed. Since
Internet messages are allowed to have zero length envelope Fr om addresses, this
address can have zero length. The address will be NULL terminated.

env_from| en The length in bytes of the envelope Fr om string. This length does not include any
NULL terminator.

When a processing thread first begins running, it sets the value referenced by ct x2 to NULL. This
assignment is made only once per thread and is done before the first call to the pr ocess_nessage()
routine. Consequently, on the first call to the pr ocess_nessage routine by a given execution thread,
the following test is true:

*ctx2 == NULL

Messaging Server 8.0 MTA Developer's Reference 29

That test will remain true until such time that the pr ocess_nessage() routine itself changes the value
by making an assignment to *ct x2. If the pr ocess_nessage() routine needs to maintain state across
all calls to itself by the same processing thread, it can allocate memory for a structure to store that state
in, and then save a pointer to that memory with ct x2. The following code snippet demonstrates this:

int process_nessage(void **ctx2, void *ctxl, const char *env_from
size_t env_from.len)

{

struct our_state t *state;

state = (our_state_t *)(*ctx2);
if (!state)

{
/*
* First call for this thread.
* Allocate a structure in which to store the state
* information
*/
state = (our_state_t *)calloc(1l, sizeof(our_state_t));
if (!state) return(MIA_ABORT);
*ctx2 = (void *)state;
/*
* Set any appropriate initial values for the state
* structure
*/
}

For a sample process_nessage() routine, see the example code in the section that follows.

A Simple Dequeuing Example

The program shown in Example 4-1 A Simple Dequeue constitutes a simplified batch-SMTP channel that
reads messages from a message queue, converting each message to batch SMTP format, and writes
the result to st dout . If the conversion is successful, then the message is dequeued, otherwise it is
deferred.

Some lines of code are immediately preceded by a comment of the format:

[* See explanatory comment N */

where N is a number.

The numbers are links to some corresponding explanatory text in the section that follows this code, see
Explanatory Text for Numbered Comments in the Simple Dequeue Example. Find the sample output in

Output from the Simple Dequeue Example.

Example 4-1 A Simple Dequeue

Messaging Server 8.0 MTA Developer's Reference 30

/* dequeue_sinple.c -- A sinple dequeue exanple: wite BSMIP to stdout
*/

#include & t;stdio.h>

#include & t;stdlib. h>

#i ncl ude "ntasdk. h"

static nta_dg_process_nessage_t process_nessage;

int main()
{
int ires;
/*
* |nitialize the MIA SDK
*/
if ((ires = malnit(0)))
{
ntaLog(ntalnit() returned %; %\n, ires,
ntaStrError(ires, 0));
return(l);
}
/*
* Start the dequeue |loop. Since this exanple uses stdout
* for output, we indicate that we only support a single
* thread:
* (MIA_THREAD_ MAX_THREADS = 1).
*/
/* See explanatory coment 1 */
ires = ntabDequeueStart (NULL, process_message, NULL,
MIA_THREAD_MAX_THREADS, 1, 0);
/*
* Check the return status
*/
/* See explanatory comrent 2 */
if (lires)
/* Success */
return(0);
/*
* Print an error nmessage to stderr
*/
/* See explanatory comrent 3 */
nt aLog(" nt aDequeueStart () returned %; %\n", ires,
ires, ntaStrError(ires, 0));
/[* And exit with an error */
return(l);
}

/* See explanatory conment 4 */

static int process_nessage(void **ny_ctx_2, void *nmy_ctx_1,
nma_dqg_t *dg, const char *env_from
size_t env_from.len)

int ires;

const char *to, *line;
size_t len;

Messaging Server 8.0 MTA Developer's Reference

/* See explanatory coment 5 */
if ('(*my_ctx_2))

{
*nmy_ctx 2 = (void *)1;
printf("HELO Nn");

}

el se

printf("RSET\n");

/* Qutput the command:

* MAIL FROM &l t;from adr>

*/

printf("MAIL FROM &l t; %>\n", env_fron);

/*

* Qutput the command:

* RCPT TO &l t;to-adr>

* for each recipient address
*/

/* See explanatory coment 6 */
while (!(ires = ntabDequeueReci pi ent Next (dqg, &anp;to,
&np;len, 0)))

{

printf("RCPT TO & t;%>\n", to);

/* See explanatory comment 7 */

nt aDequeueReci pi ent Di sposition(dq, to, |en,

MTA DI SP_DELI VERED, 0);

}
/*
* |f ires == MITA_EOF, then we exited the | oop normally;
* otherw se, theres been an error of sone sort.
*/

if (ires !I'= MIA_EOF)
/* See explanatory conment 8 */
return(ires);

/*

* Now out put the nessage itself

*/

printf("DATA n");

/* See explanatory coment 9 */

while (!(ires = ntaDequeueLi neNext (dq, &anp;line, &anp;len)))
/* See explanatory comment 10 */

printf("%*s\n", len, line);
/*
* |f ires == MITA_EOF, then we exited nornally;
* otherw se, theres been an error of sone sort.
*/

if (ires != MIA_EOF)
/* See explanatory conmrent 8 */
return(ires);

/*

* Qutput the . comand to terminate this nmessage
*/

printf(".\n");

Messaging Server 8.0 MTA Developer's Reference 32

/*

* And dequeue the nessage

*/

/* See explanatory coment 11 */

i res = ntabDequeueMessageFi ni sh(dg, 0);

/*

* Al done; return ires as our result
*/

/* See explanatory coment 12 */
return(ires);

Explanatory Text for Numbered Comments in the Simple Dequeue Example

The numbered explanatory text that follows corresponds to the numbered comments in Example 4-1 A
Simple Dequeue:

1.

N

ok

10.

11.

12.

To start the dequeue processing, nt aDequeueSt art () is called, and it calls
process_nessage(), which processes each queued message. Since pr ocess_nessage()
uses st dout for its output, only one message can be processed at a time. To effect that behavior,
nt aDequeueSt art () is called with the MTA_ THREAD MAX_THREADS set to one.

If the call to nt aDequeueSt art () succeeds, the program exits normally.

If the call to nt aDequeueSt art () fails, a diagnostic error message is displayed and the program
exits with an error status.

process_nessage() is called by nt aDequeueSt art () for each queued message.

. The private context in pr ocess_nessage() tracks whether or not this is the first time the routine

has been called. On the first call, the memory pointed at by ny_ct x_2 is guaranteed to be NULL.
The routine obtains each envelope recipient address, one at a time, using calls to

nt aDequeueReci pi ent Next () .

Each recipient is marked as delivered using mt aDequeueReci pi ent Di sposi ti on() . An actual
channel program would typically not make this call until after processing the message further.

If pr ocess_nessage() returns without first dequeuing the message, nt aDequeueSt art ()
defers the message for a later delivery attempt.

The routine calls nt aDequeuelLi neNext () to read the message header and body, one line at a
time. When there are no more lines to read, nt aDequeueLi neNext () returns a status of
MI'A_EOF. When a line is read successfully, nt aDequeuelLi neNext () returns a status of
MIA_OK.

The lines returned by nt aDequeueLi neNext () might not be NULL terminated because the
returned line pointer might reference a line in a read-only, memory-mapped file.

Once the message has been processed and all the disposition of all recipients set,

nt aDequeueMessageFi ni sh() is called. This actually dequeues the message.

When all message processing is complete, pr ocess_nessage() exits. Itis called again for each
additional message to be processed.

Output from the Simple Dequeue Example

Messaging Server 8.0 MTA Developer's Reference 33

HELO

MAIL FROM &l t; sue@i roe. conl >

RCPT TGO & t; dan@iroe. com >

DATA

Recei ved: from siroe. com by siroe.com (SunONE Messagi ng Server 6.0)id
&l t; 01GP37SOPRWAIKZFV@i roe. com >; Fri, 21 Mar 2003 09:07: 32 -0800(PST)

Date: Fri, 21 Mar 2003 09:07:41 -0800 (PST)

From postnaster @iroe.com

To: root @iroe.com

Subj ect: ntasdk_exanpl el.c

Message-i d: & t; 01GP37SOPRV2AIKZFV@i r oe. com >

Content -type: TEXT/PLAIN, CHARSET=US- ASCI |

Content -transfer-encoding: 7BI T

Hell o
wor | d!

.QJIT

Processing the Message Queue

This section describes the steps undertaken by each execution thread created by nt aDequeueSt art ()
. Each execution thread processes a subset of the channel's queued messages by repeatedly calling the
caller-supplied processing routine, pr ocess_nessage() .

To process queued messages, a processing thread takes the following steps:

1.

10.

The thread sets ct x2 to have the value NULL:

ctx2 = NULL;

For information on the pr ocess_nessage() arguments, see [The pr ocess_nessage()
Routine.

. The execution thread communicates with the Job Controller to obtain a message file to process. If

there are no more message files to process, then go to Step 9.

. For the message file, the execution thread creates a dequeue context that maintains the dequeue

processing state for that message file.

. The execution thread then invokes the caller-supplied pr ocess_nessage() routine, passing to it

the dequeue context created in Processing the Message Queue, as shown in the example that
follows:

i stat = process_mnessage(&ctx2, ctx1l, &dg_ctx, env_from env_fromlen);
For information on the call arguments for pr ocess_nessage(), see The process_nessage()
Routine.

. The process_nessage() routine then attempts to process the message, ultimately removing it

from the channel’s queue, or leaving the message file for a later processing attempt.

. If m aDequeueMessageFi ni sh() was not called before pr ocess_mnessage() returned, then

the queued message is deferred. That is, its underlying message file is left in the channel's queue
and a later processing attempt is scheduled.
The dequeue context is destroyed.

. Ifthe process_message() routine did not return the MTA_ABCRT status code, then repeat this

cycle starting at Step 2.

. If a caller-supplied pr ocess_done() routine was passed to nt aDequeueSt art (), itis called

now, for example:
process_done(&t x2, ctxl);
Through the pr ocess_done() routine, the program can perform any cleanup necessary for the

Messaging Server 8.0 MTA Developer's Reference 34

execution thread. For example, freeing up any private context and associated resources stored in
the ct x2 call argument.
See The process_done() Routine for more information.

11. The thread exits.
For an example of how state (context) may be preserved within an execution thread and across
calls to process_nessage(), A Complex Dequeuing Example.

The process_done() Routine

To assist in cleaning up state information for a thread, callers can provide a routine pointed to by the
process_done call argument of nt aDequeueStart ().

The following code example shows the required syntax for a pr ocess_done() routine.

voi d process_done(void *ctx2, void *ctxl)

The following table lists the arguments required for a pr ocess_done() routine, and gives a description
of each.

Required Description
Arguments
ctx2 The value of the last pointer stored by pr ocess_nessage() inthe ct x2 call

argument for this thread.

ctx1 The caller-supplied private context passed as ct x1 to nt aDequeueSt art ().

The following code example demonstrates the type of actions taken by a pr ocess_done() routine.

voi d process_done(ctx2, ctxl)

{
struct our_state_t *state = (struct our_state_t *)ctx2;
if (!state)
return;
/*
* Take steps to undo the state
* (for exanple, close any sockets or files)
*/
/*
* Free the menory allocated by process_nessage()
* to store the state
*/
free(state)
}

A Complex Dequeuing Example

The program shown in Example 4-2 A Complex Dequeue is a more complicated version of the simple
example (see A Simple Dequeuing Example). In this example, more than one concurrent dequeue thread
is permitted. Additionally, better use is made of the context support provided by mt aDequeueSt art (),

Messaging Server 8.0 MTA Developer's Reference 35

and a procedure to clean up and dispose of per-thread contexts is provided.

After the Messaging Server product is installed, these programs can be found in the following location:
{{rsg_server _base/examples/mtasdk/}}

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory text in the section that
follows this code, see Explanatory Text for Numbered Comments in the Complex Dequeue Example.

For the output generated by this code, see Output from the Complex Dequeue Example.

Example 4-2 A Complex Dequeue

* dequeue_conpl ex. c
* Dequeuing with nore than one thread used.

*/
#include & t;stdio. h>
#include & t;stdlib. h>
#if !defined(_WN32)
#i nclude & t;unistd. h>
#endi f
#include & t;string. h>
#include & t;sys/types. h>
#include & t;sys/stat. h>
#include & t;fcntl. h>
#include & t;errno. h>
#i ncl ude "ntasdk. h"

/* See explanatory coment 1 */
typedef struct {
i nt debug; /* Debug fl ag */
int max_count;/* Maxi num nunber of nessages per BSMIP file */
} ny_gl obal _context _t;

/* See explanatory coment 2 */
typedef struct {

i nt id; /* Dequeue threads id */
FILE *fp; /* Dequeue threads current output file */
i nt count; /* Messages output by this dequeue thread */

} ny_thread_context_t;

static const char *NotifyToStr(int ret_type, char *buf);

static const char *Uni queNanme(char *buf, size_t maxbuf,
const char *suffix);

static nmta_dq_process_done_t process_done;

static nta_dg_process_nessage_t process_nessage;

int main()

{
ny_gl obal _context _t gctx;

Messaging Server 8.0 MTA Developer's Reference 36

int ires;

/*
* |Initialize the MTA SDK
*/
if ((ires = nmalnit(0)))
{
ntaLog(ntalnit() returned %; %\n, ires,
ntaStrError(ires, 0));
return(l);
}
/*

* The global context is shared by all dequeue threads

* calling process_nessage() as a result of a given cal

* to mtaDequeueStart(). The global context in this

* exanpl e provi des process_message() with the foll ow ng:

* (1) How many nessages to put into a BSMIP file before
* closing it and starting a new one, and

* (2) Whether or not to produce diagnostic debug output.
*/

/* See explanatory coment 3 */

gct x. debug = 1,

gct Xx. max_count 5;

/[* Start the dequeue | oop */

/* See explanatory coment 4 */

ires = ntabDequeueStart ((void *)&anp; gctx, process_nessage
process_done, 0);

/* Check the return status */
/* See explanatory coment 5 */
if (lires)

/* Success */

return(0);

/* Produce an error nmessage */

/* See explanatory coment 6 */

nmt aLog(" nt aDequeueStart() returned %d; %", ires,
ntaStrError(ires, 0));

/* And exit with an error */

returnh(1);

}

/* process_done() -- Called by ntaDequeueStart() to clean up
* and destroy a per-thread context created by process_nessage().
* See explanatory comrent 7
*/
static void process_done(void *ny_ctx_2, void *ny_ctx_1)
{
my_gl obal _context _t *gctx = (my_gl obal _context_t *)nmy_ctx_1;
my_t hread_context _t *tctx = (my_thread_context_t *)my_ctx_2;
if (ltctx)
return;

/* Cenerate any requested di agnostic output requested? */
/* See explanatory conmment 8 */
if (gctx &anp; &np; gct x->debug)

nt aLog(" Dequeue thread done: id=%d; context=%

Messaging Server 8.0 MTA Developer's Reference

"messages=%", tctx->id, tctx, tctx->count);

/* Now cl ean up and destroy the context */
if (tctx->fp)
{
fprintf(tctx->fp, "QUT\n");
fclose(tctx->fp);
}

free(tctx);

}

/*
* process_nessage() -- Called by ntaDequeueStart() to process a
* singl e message
* See explanatory comrent 9
*/
static int process_nessage(void **ny_ctx_2, void *nmy_ctx_1,
na_dq_t *dg, const char *env_from
size_t env_from.len)

ny_gl obal _context _t *gctx;
ny_thread_context_t *tctx

int ires, ret_type;

const char *to, *env_id, *line;
size t len

char notify_buf[100];

/* This shoul d never happen, but just to be safe we check */

if (Inmy_ctx_1 || !'my_ctx_2)
return(MTA_ABORT) ;

/* The pointer to our global context was passed as ny_ctx_1 */
/* See explanatory conmment 10 */
gctx = (ny_global _context_t *)ny_ctx_1;

/*
* In this exanple, we just use the per-thread context to:
* (1) Track the output file for this dequeue thread across

* repeated calls, and
* (2) to count how many nmessages have been output by this
* dequeue thread
* See explanatory comrent 11
*/
if ('(*my_ctx_2))
{

/* First call to process_nessage() by this dequeue thread.
* Store a pointer to our context.
*/
tctx = (ny_thread_context _t *)
calloc(1, sizeof(my_thread_context_t));
if (ltetx)
/* Insufficient virtual menory; give up now */
return(MTA_ABORT) ;
*ny_ctx_2 = (void *)tctx;

[* Debug output? */
i f (gctx->debug)

{
tctx->id = nt aDequeueThreadl d(dq);

Messaging Server 8.0 MTA Developer's Reference

nt aLog(" Dequeue thread starting: id=%l; context=%",
tctx->id, tctx);

el se
/*
* This dequeue thread has already called
* process_message() previously.
*/
tctx = (ny_thread_context_t *)(*my_ctx_2);

/* Send a HELO or a RSET? */
if (0 == (tctx->count % gctx->max_count))
{

char buf[1024];

int fd;

/* Need to send a HELO */

/* Send a QU T if weve already sent a HELO previously */
if (tctx->count > 0 &anp; &anp; tctx->fp)

{
fprintf(tctx->fp, "QUT\n");
fclose(tctx->fp);
tctx->fp = NULL;

}

/* Now open a file */
fd = open(Uni queNane(buf, sizeof(buf), ".bsntp"),
O WRONLY | O CREAT | O EXCL, 0770);

if (fd &t; 0 || !'(tctx->fp = fdopen(fd, "wW')))
return(MTA_ABORT) ;

/* Now send the HELO */
fprintf(tctx->fp, "HELO %\ n", ntaChannel ToHost (NULL,
NULL, MTA_DQ CONTEXT, dq, 0));

}
el se
{
/*
* \Weve already sent a HELO Send a RSET to start a new
* message.
*/
fprintf(tctx->fp, "RSET\n");
}
t ct X- >count ++;
/*
* Qutput the conmand
* MAIL FROM & t;fromadr> RET=return-type ENVID=id
*/

env_id = NULL;
/* See explanatory coment 12 */
ret_type = MIA_NOTI FY_DEFAULT;
nt aDequeuel nfo(dgq, MIA_ENV_I D, &anp;env_id, NULL,
MIA_NOTI FY_FLAGS, &anp;ret_type, 0);
fprintf(tctx->fp, "MAIL FROM & t; %> RET=%%%\n", env_from
Noti fyToStr(ret_type, NULL),

Messaging Server 8.0 MTA Developer's Reference 39

(env_id ? " ENVID=" : ""),(env_id ? env_id : ""));

/* Qutput the command

* RCPT TO & t;to-adr> NOTI FY=notify-type

* for each recipient address

* See explanatory conment 13

*/
while (I(ires =

nt aDequeueReci pi ent Next (dqg, &anp;to, &anp;len,
MIA_NOTI FY_FLAGS, &anp;ret_type,

0)))
{
fprintf(tctx->fp, "RCPT TO & t; %> NOTI FY=%\n", to,
NotifyToStr(ret_type, notify_buf));
/* Indicate that delivery to this recipient succeeded */
/* See explanatory conmrent 14 */
nt aDequeueReci pi ent Di sposi tion(dg, to, len,
MIA_DI SP_DELI VERED, 0);
}
/*

* |f ires == MIA_EOF, then we exited the | oop normally;
* otherw se, theres been an error of sone sort.
* See explanatory comment 15
*/
if (ires != MIA _EOF)
return(ires);

/* Now out put the nessage itself */

fprintf(tctx->fp, "DATANn");

/* See explanatory comrent 16 */

while (!(ires = ntaDequeueLi neNext (dq, &anp;line, &anp;len)))

{
/* Check to see if we need to dot-stuff the link */
if (len == 1 &anp; &np; line[0] == .)
fprintf(tctx->fp, ".");
/* Now output the line */
/* See explanatory comment 17 */
fprintf(tctx->fp, "%*s\n", len, line);
}
/*
* |f ires == MIA_EOF, then we exited the | oop normally;
* |f ires == MITA_EOF, then we exited the | oop normally;
* otherw se, theres been an error of sone sort.
*/

if (ires != MIA_EOF)
return(ires);

/[* Qutput the "." conmand to terminate this nessage */
fprintf(tctx->fp, ".\n");

/* And dequeue the message */
/* See explanatory comment 18 */
ires = ntaDequeueMessageFi ni sh(dq, 0);

/* Al done; mght as well return ires as our result */
return(ires);

Messaging Server 8.0 MTA Developer's Reference

40

/*

*
*/
| *

{

}

Convert

a bitmask of MIA_NOTIFY_ flags to a readable string

See expl anatory comment 19 */
static const char *
Noti fyToStr(int ret_type, char *buf)

if (!buf)
/* Doing a RET= paraneter to a MAIL FROM command */
return((ret_type &anp; MIA_NOTI FY_CONTENT_FULL) ?

buf [0]

"FULL" : "HDRS");
=\0;

if (ret_type &anp; MIA_NOTI FY_SUCCESS)
strcat (buf, "SUCCESS");

if (ret_type &anp; MIA_NOTI FY_FAI LURE)
{
if (buf[0])
strcat (buf, ",");
strcat (buf, "FAILURE");
}
if (ret_type &anp; MIA_NOTI FY_DELAY)
{
if (buf[0])
strcat (buf, ",");
strcat (buf, "DELAY");
}
if ('buf[0])

strcat (buf, "NEVER');
return(buf);

/* Cenerate a unique string suitable for use as a file nane */
See expl anatory comment 20 */

static const char *

Uni queNanme(char *buf, size_t maxbuf, const char *suffix)

/*

{

strcpy(buf, "/tmp");

nt aUni queSt ri ng(buf +5, NULL, nmaxbuf-5);
strcat (buf, suffix);

return(buf);

Messaging Server 8.0 MTA Developer's Reference

41

Explanatory Text for Numbered Comments in the Complex Dequeue Example

The numbered list that follows has explanatory text that corresponds to the numbered comments in
Example 4-2 A Complex Dequeue:

1.

2.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

The global context data structure for this example. This is passed to nt aDequeueStart (), as
the ct x1 call argument.

Per-thread data structure used by dequeue threads. While nt aDequeueSt art () creates each
dequeue thread, it is up to the pr ocess_nessage() routine to actually create any per-thread
context it might need.

Initialize the global context before calling nt aDequeueStart ().

Initiate dequeue processing by calling mt aDequeueSt art () . The first call argument is a pointer
to the global context. Each time nt aDequeueSt art () calls process_mnessage(), it passes in
the global context pointer as the second argument. In this example, nt aDequeueSt art () is not
told to limit the number of dequeue threads it uses.

If the call to nt aDequeueSt art () succeeds, the program exits normally.

. Ifthe call to nt aDequeueSt art () fails, then a diagnostic error message is displayed and the

program exits with an error status.

. Each dequeue thread calls pr ocess_done() as it exits. This program cleans up and destroys

any per-thread contexts created by the pr ocess_nessage() routine.

. The program generates optional diagnostic output. Calling nt aLog() directs the output to the

appropriate location: st dout if the program is run manually, and the channel log file if the
program is run by the Job Controller.

. ntaDequeueStart () calls process_nessage() once for each queued message to be

processed. On the first call, the memory pointed at by my_ct x_2 is guaranteed to be NULL. The
value of the first call argument passed to nt aDequeueSt art () is passed to
process_nessage() asthe ny_ctx_1 call argument.

The global context contains information pertinent to all the dequeue threads generated by the call
nt aDequeueStart ().

process_nessage() uses a per-thread context to save data across all calls to itself by a single
dequeue thread.

nt aDequeuel nf o() is used to obtain the envelope ID and RFC 1891 noatification flags, if any,
associated with the message being processed.

nt aDequeueReci pi ent Next () is used to obtain each envelope recipient address, one address
per call. When there are no more recipient addresses to obtain, the routine returns the status
MIA_EOF.

Each recipient is marked as delivered with a call to nt aDequeueReci pi ent Di sposi tion().
An actual channel program would typically not make this call until after processing the message
further.

If pr ocess_nessage() returns without dequeuing the message, nt aDequeueSt art () defers
the message for a later delivery attempt.

The message header and body are read one line at a time with mt aDequeueLi neNext () . When
there are no more lines to read, it returns a status of MTA_EOF.

Lines returned by nt aDequeuelLi neNext () might not be NULL terminated because the returned
line pointer might point to a line in a read-only, memory-mapped file.

nt aDequeueMessageFi ni sh() is called once the message had been fully processed and the
disposition of all its recipients set with nt aDequeueReci pi ent Di sposi ti on() . The message
is not truly dequeued until this happens.

The routine Not i f yToSt r () converts a bitmap encoded set of RFC 1891 notification flags to an
ASCII text string.

The Uni queNane() routine generates a unique string suitable for the use as a file name. This is
used to generate the unique portion of the file name. This routine can be called concurrently by

Messaging Server 8.0 MTA Developer's Reference 42

multiple threads and always generates a string unique amongst all processes and threads on the
system.

For information on how to run this sample program, see Running Your Enqueue and Dequeue Programs.
Output from the Complex Dequeue Example

The output that follows shows the result of 100 queued messages processed with the program in
Example 4-2 A Complex Dequeue.

11: 01: 16. 82: Dequeue thread starting: id=10; context=32360

11: 01: 16. 87: Dequeue thread starting: id=1; context=32390

11: 01: 16. 93: Dequeue thread starting: id=2; context=325e8

11: 01: 17. 00: Dequeue thread starting: id=3; context=32600

11: 01: 17. 04: Dequeue thread starting: id=4; context=32618

11: 01:17.09: Dequeue thread starting: id=5; context=32630

11: 01:17. 14: Dequeue thread starting: id=6; context=78e50

11: 01:17.19: Dequeue thread starting: id=7; context=88al8

11: 01:17. 23: Dequeue thread starting: id=9; context=8ab78

11: 01:17.51: Dequeue thread starting: id=8; context=8ab60

11: 01: 19. 96: Dequeue thread done: id=2; context=325e8; nmessages=12
11: 01: 19. 96: Dequeue thread done: id=5; context=32630; nessages=22
11: 01: 19. 97: Dequeue thread done: id=6; context=78e50; nessages=11
11: 01: 19. 97: Dequeue thread done: id=4; context=32618; nmessages=5

11: 01: 19. 98: Dequeue thread done: id=8; context=8ab60; nmessages=16
11: 01: 20. 00: Dequeue thread done: id=9; context=8ab78; nessages=5

11: 01: 20. 00: Dequeue thread done: id=3; context=32600; nessages=12
11: 01: 20. 01: Dequeue thread done: id=1; context=32390; nessages=7

11: 01: 20. 02: Dequeue thread done: id=10; context=32360; nessages=6
11: 01: 20. 03: Dequeue thread done: id=7; context=88al8; nessages=4

Intermediate processing channels

Special attention is warranted for intermediate processing channels. Intermediate processing channels
are channels which re-enqueue back to the MTA the mail they dequeue from it. For example, a virus
scanner or a conversion channel, which, after scanning or converting a message, re-enqueues it back to
the MTA for further routing or delivery. Such channels should do the following:

® Preserve Envelope Information
® Use MTA ENV_TO
® Use Rewrite Rules to Prevent Message Loops

The sample code, Intermediate Channel Example, illustrates the SDK usage required to effect the first
two preceding points.

Preserve Envelope Information

All queued messages have envelope fields which are unique to the message. For instance, a message
will have the RFC 1891 envelope ID that was either assigned by the MTA when the message was first
enqueued, or was specified by a remote MTA and transmitted over SMTP. The same applies to the RFC
1891 original recipient address fields that specify the original form of each of the message’s envelope
recipient addresses. Furthermore, there may be other envelope fields which have non-default settings
such as notification handling flags. Whenever possible, this information should be preserved as the
message flows from MTA channel to MTA channel. In order to preserve this information, it must be

Messaging Server 8.0 MTA Developer's Reference 43

copied from the message being dequeued to the new message being enqueued. This copying process is
best done using the MTA_DQ CONTEXT item code in conjunction with the nt aDequeueSt art () and

nt aEnqueueTo() routines. When used with the former, it causes per-message envelope information to
be automatically copied from the message being dequeued to the new message being enqueued. When
used with the latter, it causes per-recipient information to be automatically copied.

Channel programs should not attempt to explicitly copy envelope information other than the envelope
From and envelope recipient addresses. The MTA_DQ CONTEXT item code should always be used to
implicitly perform the copy. The reason for this is straightforward: if a program attempts to do the copy
explicitly by querying the fields one by one from the message being dequeued, and then setting them
one by one in the message being enqueued, then any new envelope fields introduced in later versions of
Messaging Server will be lost unless the program is updated to explicitly know about those new fields
too.

Use MTA_ENV_TO

Intermediate processing channels should use the MTA_ENV_TOitem code with nt aEnqueueTo() rather
than the MTA_TO, MTA_CC, and MTA_BCC item codes. This tells the MTA that the recipient address being
specified should be added to only the message’s envelope and not also to a Resent - To: , Resent - Cc:
, or Resent - Bcc: header line. Example 4-3 Intermediate Channel Example, and Example 5-2 illustrate
the use of the MTA_ENV_TOitem code. Both of those examples represent intermediate processing
channels which are handling a previously constructed message. As such, they do not need to alter the
existing message header.

*

Download this book in PDF (1309 KB)

® Previous: Decode Contexts
® Next: 6. MTA SDK Reference

A Simple Virus Scanner Example

Example 5-2 shows how to use the nt aDecodeMessage() routine to write an intermediate processing
channel that converts messages with formats other than MIME, for example UUENCODE content, to
MIME output. It then decodes the MIME message, scanning it for potentially harmful attachments. (In this
example, an attachment is any message part.) Any harmful attachments are removed from the message
after which it is re-enqueued for delivery. The list of harmful MIME media types and file name extensions
is read from a channel option file. An example option file for the channel is shown in Example Option File.

In this example, the MIME Content-type: and Content-disposition: header lines are used to detect
potentially harmful message attachments such as executable files. This example could be extended to
also scan the content of the attachments, possibly passing the contents to a virus scanner. Further, the
example could be modified to return as undeliverable any messages containing harmful attachments.
Note -

To configure the MTA to run this channel, see Running Your Enqueue and Dequeue Programs. The
PMDF_CHANNEL_OPTION environment variable must give the absolute file path to the channel's option
file. Also, for a discussion on configuring special rewrite rules for re-enqueuing dequeued mail, see
Preventing Mail Loops when Re-enqueuing Mail.

For the output generated by this sample program, see Decoding MIME Messages Complex Example
Output.

After the Messaging Server product is installed, these programs can be found in the following location:
nsg_server _base/ exanpl es/ nt asdk/

Some lines of code are immediately preceded by a comment of the format:

Messaging Server 8.0 MTA Developer's Reference 44

[* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory text in the section that
follows this code, see Explanatory Text for Numbered Comments in the Decoding MIME Messages
Complex Example.

Use Rewrite Rules to Prevent Message Loops

Finally, intermediate processing channels often require special rewrite rules in order to prevent message
loops. Specifically, loops in which mail re-enqueued by the intermediate processing channel is queued
back to the intermediate processing channel. See Preventing Mail Loops when Re-enqueuing Mail for
further information on this topic.

Intermediate Channel Example

The sample program in this section, in Example 4-3 Intermediate Channel Example, converts the body of
each queued message and then re-enqueues the converted messages back to the MTA. The conversion
process involves applying the rot 13 encoding used by some news readers to encode potentially
offensive message content.

To configure the MTA to run this channel, see Running Your Enqueue and Dequeue Programs. Also
refer to MTA SDK Programming Considerations#Preventing Mail Loops when Re-enqueuing Mail, which
discusses configuring special rewrite rules for programs re-enqueuing dequeued email.

Some lines of code in this example are immediately preceded by a comment of the format:
[* See explanatory comment N */
where N is a number.

The numbers are links to some corresponding explanatory text found in Explanatory Text for Numbered
Comments in the Intermediate Channel Example.

Example 4-3 Intermediate Channel Example

/* intermedi ate_channel . c
* A channel programthat re-enqueues queued nessages after first
* transformng their content with the "rot13" transformation.
*/

#include & t;stdio.h>

#include & t;stdlib. h>

#i ncl ude "ntasdk. h"

typedef struct {
size t nmaxlen;
char *puf ;

} rot13_buf _t;

static mta_dq_process_done_t process_done;

static nta_dg_process_nessage_t process_nessage;

static char rotl13(char c);

static const char *rot13str(rot13_buf_t **dst, const char *src,
size_t srclen);

int main()

{

Messaging Server 8.0 MTA Developer's Reference 45

int ires;

/*
* |Initialize the MTA SDK
*/
if ((ires = nmalnit(0)))
{
ntaLog(ntalnit() returned %; %\n, ires,
ntaStrError(ires, 0));
return(l);
}
/*

* Start the dequeue | oop

* See explanatory conmment 1

*/

ires = ntaDequeueStart (NULL, process_message
process_done, 0);

/*
* Check the return status
* See explanatory comment 2

*/
if (lires)
/*
* Success
*/
return(0);
/*

* Produce an error message

* See explanatory conmment 3 */

>/

nt aLog(" nt aDequeueStart () returned %; %", ires
ntaStrError(ires, 0));

/*
* And exit with an error
*/
return(l);
}
/*
* process_done -- Clean up the private context nmy_ctx_2 used by
* process_nessage
* See explanatory conment 4
*/
static void process_done(void *ny_ctx_2, void *ny_ctx_1)
{
rot13_buf _t *rbuf;
if (I'ny_ctx_2)
return;
rbuf = (rot13_buf_t *)ny_ctx_2;
i f (rbuf->buf)
free(rbuf->buf);
free(rbuf);
}

Messaging Server 8.0 MTA Developer's Reference

/*

* process_nessage -- Process a single nessage by re-enqueui ng but
* with its nessage body converted to the rot13
* set. The private ny_ctx_1 context is not

* used. The private my_ctx_2 context is used

* for a rotl3 translation context.

* See explanatory comrent 5
*/

static int process_nessage(void **ny_ctx_2, void *nmy_ctx_1,

nma_dq_t *dq,
{
size t len;
const char *line, *to;
int in_header;
nma_nq_t *nqg;

/*

* Start a nessage enqueue

*/

ng = NULL;

/* See explanatory coment 6 */

i f (maEnqueueStart(&anp;ng, env_from env_fromlen,

MIA_DQ CONTEXT, dq, 0))
goto(defer);

/*

* Process the envelope recipient |ist

* See explanatory comment 7 */

*/

whil e (! ntaDequeueReci pi ent Next (dq, &anp;to,
/* See expl anatory coment 7 */

&anp; len, 0))

i f (mtaEnqueueTo(ng, to, |len, MIA DQ CONTEXT, dq,

MIA_ENV_TO, 0) ||
/* See expl anatory coment 8 */
nt aDequeueReci pi ent Di sposi tion(dq,

to,

| en,

MTA_DI SP_DELI VERED, 0))

/* See explanatory coment 9 */
goto defer;
if (nma_errno !'= MIA_EOF)
goto defer;

/*

* First, get the nessages header and wite it
* unchanged to the new nessage bei ng enqueued.

* See explanatory conment 10
*/
i n_header = 1;

whi |l e (in_header &anp; &np; ! ntabDequeueli neNext (dq,

&anp; | en))
{
i f (maEnqueueWitelLine(ng, line, |en,
goto defer;
if (!'len)
i n_header = 0;

}

/*
* Determne why we exited the while |oop

Messaging Server 8.0 MTA Developer's Reference

0))

&anp; | i ne,

47

>/
i f (in_header)

{
/*
* W exited before seeing the body of the nessage
* See explanatory conment 12
*/
if (nma_errno == MIA_EOF)
/*
* Message read conpletely: it nmust have no body
*/
got o done;
el se
/*
* Error condition of some sort
*/
goto defer;
}
/*

* Now rot13 the body of the nessage

* See explanatory comment 13

*/

whil e (!ntaDequeuelLi neNext (dq, &anp;line, &anp;len))

i f (mtaEnqueueWiteLine(nqg,
rot13str((rot13_buf_t **)ny_ctx_2,
line, len), len, 0))
goto defer;

/*
* |f ma_errno == MITA_ECF, then we exited the | oop
* normal ly; otherw se, theres been an error of some sort

*/

if (ma_errno != MIA_EOF)
goto defer;

/*

* Al done, enqueue the new nessage
* See explanatory comrent 14

*/
done:
i f (!maEnqueueFi ni sh(ng, 0) &anp; &anp;
I m aDequeueMessageFi ni sh(dqg, 0))
return(0);
/*
* Fall through to defer the nessage
*/
ng = NULL;
/*
* A processing error of some sort has occurred: defer the
* message for a later delivery attenpt
* See explanatory comment 15
*/
def er:

nt aDequeueMessageFi ni sh(dq, MIA_ABORT, 0);
if (nq)

nt aEnqueueFi ni sh(ng, MIA_ABORT, 0);
return(MIA_NO) ;

Messaging Server 8.0 MTA Developer's Reference

48

}

/*
* rotl3 -- an inplnentation of the rotate-by-13 translation
* See explanatory conment 16
*/
static char rot13(char c)
{
if (A&t;=rc &np;&np; ¢ &t;= 2
return (((c - A+ 13) % 26) + A
else if (a &t;=c &np;&np; c &t;= 2z)
return (((c - a + 13) % 26) + a);
el se return (c);
}
/*
* rotl3str -- Performa rotl3 translation on a string of text

* See explanatory coment 17
*/

static const char *rot13str(rot13_buf_t **dst, const char *src

size_t srclen)
{
size t i;
char *ptr;
rot13 buf t *rbuf = *dst;

/*
* First call? |If so, then allocate a rotl1l3 buf t structure
*/
if (!rbuf)
{
rbuf = calloc(l, sizeof(rotl3_buf_t));
if (!rbuf)
return(NULL);
*dst = rbuf;
}
/*

* Need a larger buffer?

* |f so, then increase the |l ength of rbuf->buf

*/
if (rbuf->maxlen & t; srclen || !rbuf->buf)
{
size t |;
char *tnp;
/* Round size up to the nearest 2k */
| = 2048 * (int)((srclen + 2047) [/ 2048);
tnp = (char *)malloc(l);
if ('tnp)
return(NULL);
i f (rbuf->buf)
free(rbuf->buf);
r buf - >buf =tnp
rbuf->mexlen = 1[;
}
/*
* Now rot 13 our input
*/
ptr = rbuf->buf;

Messaging Server 8.0 MTA Developer's Reference

49

for (i =0; i &t; srclen; i++)
*ptr++ = rot 13(*src++);

/*
* Al done
*/

Messaging Server 8.0 MTA Developer's Reference

50

return(rbuf->buf);

Explanatory Text for Numbered Comments in the Intermediate Channel Example

1.

N

11.

12.

13.

14.

15.

16.
17.

The dequeue processing is initiated by calling mt aDequeueSt art () . In this example, no global
context is used; hence, the first call argument to nt aDequeueSt art () is NULL.

If the call to nt aDequeueSt art () succeeds, then the program exits normally.

If the call to nt aDequeueSt art () fails, a diagnostic error message is displayed and the program
exits with an error status.

Each dequeue thread calls pr ocess_done() as it exits. The intent is to allow the program to
clean up and destroy any per-thread contexts created by the pr ocess_nessage() routine. In
this case, the buffer used by r ot 13st r () is deallocated.

. The nt aDequeueSt art () routine calls pr ocess_nessage() once for each queued message

to be processed. On the first call by a dequeue thread, the memory pointed at by nmy_ct x_2 is
NULL.

. A message enqueue starts. The dequeue context, dq, is provided so that per-message envelope

fields can be carried over to the new message from the message being dequeued.

. Each envelope recipient address is obtained, one at a time, with

nt aDequeueReci pi ent Next () . When there are no more recipient addresses to obtain,
nt aDequeueReci pi ent Next () returns the status MTA_EOF.

. Each envelope recipient address is added to the recipient list for the new message being

enqueued. The MTA_ENV_TOoption for nt aEnqueueTo() is specified so that the address is to
be added to the new message's envelope only. It should not also be added to the message’'s RFC
822 header. The new message’s header will be a copy of the header of the message being
dequeued. This copy is performed at the code location marked by comment 12.

Each recipient is marked as delivered with nt aDequeueReci pi ent Di sposition().

. In the event of an error returned from either nt aEnqueueTo() or

nt aDequeueReci pi ent Di sposi tion(), or an unexpected error return from

nt aDequeueReci pi ent Next (), the ongoing enqueue is cancelled and the processing of the
current message is deferred.

Each line of the current message is read and then copied to the new message being enqueued.
This copying continues until a blank line is read from the current message. (A blank line signifies
the end of the RFC 822 message header and the start of the RFC 822 message content.)

The code here needs to determine why it exited the read loop: because of an error, or because
the transition from the message’s header to body was detected.

The remainder of the current message is read line by line and copied to the new message being
enqueued. However, the line enqueued is first transformed using the rot13 transformation. The
per-thread context my_ct x_2 is used to hold an output buffer used by the r ot 13st r () routine.
The enqueue of the new message is finished. If that step succeeds, then the message being
dequeued is removed from the MTA queues.

In the event of an error, the new message enqueue is cancelled and the current message left in
the queues for later processing.

The rot13 character transformation.

A routine that applies the rot13 transformation to a character string.

Sample Input Message for the Intermediate Channel Example

The example that follows is a sample input message from the queue to be processed by the program
found in Example 4-3 Intermediate Channel Example.

Messaging Server 8.0 MTA Developer's Reference 51

Recei ved: from frodo. west. siroe.com by frodo.west.siroe.com
(Sun Java System Messagi ng Server 6 2004Q2(built Mar 24 2004))id

&l t; OHCHO0301E6GO700@ r odo. west . siroe. com > for sue@esta.com Fri,
28 Mar 2003 14:51:52 -0800 (PST)

Date: Fri, 28 Mar 2003 14:51:52 -0800 (PST)

From root @rodo. west. siroe.com

Subj ect: Testing

To: sue@esta.com

Message-id: & t; OHCHOO303E6GO700@ r odo. west . si roe. com >

M Me-version: 1.0

This is a test nessage.

Output from the Intermediate Channel Example

This example shows the output generated by the dequeue and re-enqueue program.

Recei ved: from sesta.com by frodo.west. siroe.com
(Sun Java System Messagi ng Server 6 2004Q@ (built Mar 24 2003))id
& t; OHCHOO0301E7DOHOO@ r odo. west . wi roe. coml > for sue@esta.com Fri,
28 Mar 2003 14:51:58 -0800 (PST)
Recei ved: from frodo. west. siroe.com by frodo.west.siroe.com
(Sun Java System Messagi ng Server 6 2004Q@ (built Mar 24 2003))id
& t; OHCHOO0301E7DOHOO@ r odo. west . wi roe. coml > for sue@esta.com Fri,
28 Mar 2003 14:51:52 -0800 (PST)
Date: Fri, 28 Mar 2003 14:51:52 -0800 (PST)
From root @rodo. west. siroe.com
Subj ect: Testing
To: sue@esta.com
Message-id: & t; OHCHOO303E6GO700@ r odo. west . si roe. com >
M ME-version: 1.0

Guvf vf n grfg zrffntr.

Thread Creation Loop in nt aDequeueSt art ()

After mt aDequeueSt art () performs any necessary initialization steps, it then starts a loop whereby it
communicates with the MTA Job Controller. Based upon information from the Job Controller, it then

creates zero or more execution threads to process queued messages.

While any execution threads are running, the thread that invoked nt aDequeueSt ar t () (the primal
thread) executes a loop containing a brief pause (that is, a sleep request). Each time the primal thread
awakens, it communicates with the Job Controller to see if it should create more execution threads. In

addition, the Job Controller itself has logic to determine if more threads are needed in the currently

running channel program, or if it should create additional processes to run the same channel program.

To demonstrate, the following code example shows pseudo-code of the nt aDequeueSt art () loop.

Messaging Server 8.0 MTA Developer's Reference

52

threads_running = 0
t hreads_nmax = MIA THREAD MAX THREADS

attentps = MIA_JBC_NMAX_ATTEMPTS

LOOP:
while (threads_running & t; threads_nax)
{

Go to DONE i f a shut down has been requested

pendi ng_nmessages = Ask the Job Controller how nmany
messsages there are to be processed

/1 If there are no pendi ng nmessages
/1 then consider what to do next
i f (pending_nessages = 0)
{
/1 Continue to wait?
if (attenmpts &t;= 0)
go to DONE

/1 Decrenment attenpts and wait
attenpts = attenpts - 1,
go to SLEEP
}
/1l Reset the attenpts counter
attenpts = MIA_JBC_MAX_ATTEMPTS

t hreads_needed = Ask the Job Controll er how nany
processing threads are needed

/1 Cannot run nore then threads_nax threads per process
if (threads_needed \> threads_nax)
t hreads_needed = t hreads_max

/'l Create additional threads if needed
if (threads_needed \> threads_running)

{
Create (threads_needed - threads_running) nore threads
threads_runni ng = t hreads_needed
}
}
SLEEP:
Sl eep for MIA_JBC RETRY_I NTERVAL seconds
-- a shut down request will cancel the sleep
go to LOOP
DONE:

Wait up to MIA_THREAD WAI T_TI MEQUT seconds
for all processing threads to exit

Return to the caller of ntaDequeueStart()

Multiple Calls to nt aDequeueSt art ()

Messaging Server 8.0 MTA Developer's Reference

53

A channel program can call nt aDequeueSt art () multiple times, either sequentially or in parallel. In the
latter case, the program would need to create threads so as to effect multiple, simultaneous calls to

nt aDequeueSt art () . However, just because this can be done does not mean that it is appropriate to
do so. In the former case of multiple sequential calls, there is no need to be making repeated calls. When
nt aDequeueSt art () returns, the channel no longer needs immediate processing and has been in that
state for the number of seconds represented by the following formula:

MIA_JBC_ATTEMPTS MAX * MIA_JBC RETRY_| NTERVAL

Instead, the channel program should exit thereby freeing up system resources. The Job Controller will
start a new channel program running when there are more messages to process.

In the latter case of multiple parallel calls, there is again no need to do so. If there is an advantage to
running more threads than a single call generates, then the channel's t hr eaddept h channel keyword
setting should be increased so that a single call does generate more threads.

The only exception to either of these cases might be if the multiple calls are each for a different channel.
Even then, however, the advantage of so doing is dubious as the same effect can be achieved through
the use of multiple processes, one for each channel.

Calling Order Dependencies

When you are constructing programs, there is a calling order for the MTA SDK routines that must be
observed; some routines must be called before others.

Figure 4-1 visually depicts the calling order dependency of the message dequeue routines. To the right of
each routine name appears a horizontal line segment, possibly broken across a column, for example,

nt aDequeueReci pi ent Next () . Routines for which two horizontal line segments, one atop the other,
appear are required routines; that is, routines that must be called in order to successfully enqueue a
message. The required routines are nt al nit (), nt aDequeueStart (),

nt aDequeueReci pi ent Next (), and nt aDqueueMessageFi ni sh().

To determine at which point a routine may be called, start in the leftmost column and work towards the
rightmost column. Any routine whose line segment lies in the first (leftmost) column may be called first.
Any routine whose line segment falls in the second column may next be called, after which any routine
whose line segment falls in the third column may be called, and so forth. When more than one routine
appears in the same column, any or all of those routines may be called in any order. Progression from
left to right across the columns is mandated by the need to call the required routines.

After calling nt aDequeueRew nd(), the read point into the underlying queued message file is reset to

the start of the message’s outermost header; that is, you are back in the third column. Figure 4-1 Calling
Order Dependency for Message Dequeue Routines

Messaging Server 8.0 MTA Developer's Reference 54

mtalInit

mtaDequeueStart .
mtaDequeueRecipientNext

mtaDequeueRecipientDisposition :
mtaDequeueLineNext
mtaDequeueRewind
mtaEnqueueCopyMessage
mtaDequeueInfo
mtaDequeueThreadId |
mtaDequeueMessageFinish

Messaging Server 8.0 MTA Developer's Reference

—_—
i

55

Chapter 3. Enqueuing Messages

Enqueuing Messages

The MTA SDK provides routines with which to construct a mail message and then submit the message to
the MTA. The MTA then effects delivery of the message to its recipients. The act of submitting a
message to the MTA for delivery is referred to as "enqueuing a message." This choice of terminology
reflects the fact that each message submitted to the MTA for delivery is placed into one or more
message queues. Using its configuration, the MTA determines how to route each message to its
destination and which message queues to place each the message into. However, programs enqueuing
messages do not need to concern themselves with these details; they merely supply the message's list
of recipients and the message itself. The recipients are specified one-by-one as RFC 2822 conformant
Internet email addresses. The message header and content is supplied in the form of an RFC 2822 and
MIME conformant email message.

When starting a coding project to enqueue messages to the MTA, always stop to consider whether
simply using SMTP will be acceptable. The advantage of using SMTP is that it will work with any MTA
SMTP server, making it portable. The disadvantages are poorer performance and lack of flexibility and
control.

This chapter covers the following enqueuing topics:

Basic Steps to Enqueue Messages
Originating Messages

A Simple Example of Enqueuing a Message
Transferring Messages into the MTA
Intermediate Processing Channels

Delivery Processing Options (Envelope Fields)
Order Dependencies

Basic Steps to Enqueue Messages

The basic steps necessary to engueue one or more messages to the MTA are:

1. Initialize SDK resources and data structures with nt al ni t () .
2. For each message to enqueue:
a. Specify the message envelope with nt aEnqueueSt art () and nt aEnqueueTo() .
b. Specify the message header with nt aEnqueueWite() or nt aEnqueueWiteLi ne().
c. Optionally, if a message body is to be supplied, terminate the message header and start
the message body by writing a blank line to the message with nt aEnqueueWite() or
nt aEnqueueW it eLine().
d. Optionally if a message body is to be supplied, write the message body with
nt aEnqueueWite() ornt aEnqueueWi t eLi ne().
e. Submit the message with nt aEnqueueFi ni sh().
3. When you have completed enqueuing messages, deallocate SDK resources and data structures
with mt aDone() .

In Step 2e, nt aEnqueueFi ni sh() commits the message to disk. As part of the enqueue process, the
MTA performs any access checks, size checks, format conversions, address rewritings, and other tasks
called for by the site's MTA configuration. After these steps are completed and the message has been
successfully written to disk, nt aEnqueueFi ni sh() returns.

Other MTA processes controlled by the MTA Job Controller then begin processing the new message so

Messaging Server 8.0 MTA Developer's Reference 56

as to effect its delivery. In fact, these processes may begin handling the new message before

nt aEnqueueFi ni sh() even returns. As such, nt aEnqueueFi ni sh() doesn't block waiting on these
processes; it returns as soon as all requisite copies of the enqueued message have been safely written
to disk. The subsequent handling of the newly enqueued message is performed by other MTA
processes, and the program which enqueued the message isn't left waiting for them.

A message submission can be aborted at any point in Step 2 by calling either mt aEnqueueFi ni sh()
with the MTA_ABORT option specified or mt aDone() . Using the first method, mt aEnqueueFi ni sh()
aborts only the specified message enqueue context while allowing additional messages to be enqueued.
Whereas, {nt aDone() aborts all active message enqueue contexts in all threads, and deallocates SDK
resources disallowing any further submission attempts until the SDK is again initialized.

Originating Messages

Messages enqueued to the MTA fall into one of two broad classes: new messages being originated and
messages which were originated elsewhere and which are being transferred into the MTA. The former
are typically the product of a local user agent or utility which uses the MTA SDK. The latter are generated
by remote user agents, and received by local programs such as SMTP or HTTP servers which then
enqueue them to the MTA for routing or delivery or both. In either case, it is the job of the MTA to route
the message to its destination, be it a local message store or a remote MTA.

The only distinction the MTA SDK makes between these two cases occurs when the message's recipient
addresses are specified. For new messages being originated, the recipient addresses should be added
to both the message header and its envelope. For messages originated elsewhere, the recipient
addresses should only be added to the message's envelope. For a discussion of messages originated
elsewhere, see Transferring Messages into the MTA, and Intermediate Processing Channels.

When originating a new message, it is easiest to use the MTA_TO, MTA_CC, and MTA_BCC item codes
with nt aEnqueueTo() . That tells the SDK to use the specified addresses as both the envelope recipient

list and to put them into the message's header. When using this approach, do not specify any Fr om ,
To:, Cc:, or Bcc: header lines in the supplied message header; the SDK will add them automatically.

An example of using this approach is found in the following section.

A Simple Example of Enqueuing a Message

The program shown in Example 3-1 Enqueuing a Message demonstrates how to enqueue a simple
"Hello World" message. The originator address associated with the message is that of the MTA
postmaster. The recipient address can be specified on the invocation command line.

After the Messaging Server product is installed, this program can be found in the following location:
msg_server_base/ exanpl es/ m asdk/

Note that certain lines of code have numbered comments immediately preceding them of the format:

[* This generates output line N */

where N corresponds to the numbers found next to certain output lines in the sample output in
Enqueuing a Message Example Output.

Refer to Running Your Test Programs for information on how to run the sample program.

Example 3-1 Enqueuing a Message

Messaging Server 8.0 MTA Developer's Reference 57

/* hello_world.c -- Asinple "Hello World!" enqueue exanple */
#include & t;stdio.h\>

#include & t;stdlib.h\>

#i ncl ude "ntasdk. h"

ma_ng_t *ctx = NULL;
static void quit(void);
#define CHECK(x) if(x) quit();

voi d

{

voi d

mai n(int argc, const char *argv[])
char buf[100];

/* Initialize the SDK */
CHECK(ntalnit(0));

/* Start a new nessage; From postmaster*/

/* This generates output line 1 */

CHECK(nt aEnqueueSt art (&anp; ct x, nt aPost mast er Addr ess(NULL, NULL
0), 0, 0));

/* Enqueue the nessage to argv[1l] or root */
/* This generates output line 2 */
CHECK(nt aEnqueueTo(ctx, (argv[1l] ? argv[1l] : "root"), 0, 0));

/* Date: header line */

/* This generates output line 3 */

CHECK(nt aEnqueueWitelLine(ctx, "Date: ", 0, ntabDateTi me(buf,
NULL, sizeof (buf), 0), 0, NULL))

/* Subject: header line */
/* This generates output line 4 */

CHECK(nt aEnqueueW i telLine(ctx, "Subject: " __FILE , O,
NULL));

/* Blank line ending the header, starting the nessage body */
/* This generates output line 5 */
CHECK(nt aEnqueueWitelLine(ctx, "", 0, NULL));

/* Text of the message body (2 lines) */

/* This generates output line 6 */

CHECK(nt aEnqueueW itelLine(ctx, "Hello", 0, NULL));
/* This generates output line 7 */

CHECK(nt aEnqueueWitelLine(ctx, " Wrld!", 0, NULL));

/* Enqueue the nessage */
CHECK(nt aEnqueueFi ni sh(ctx, 0));

/* Al done */
nt aDone() ;

quit(void)

fprintf(stderr, "The MIA SDK returned the error code %\ n
%", nta_errno, maStrError(nta_errno, 0));
if (ctx)
nt aEnqueueFi ni sh(ctx, MIA_ABORT, 0);

Messaging Server 8.0 MTA Developer's Reference 58

exit(1);

Enqueuing a Message Example Output

The example that follows shows the output generated by the enqueuing example. Comment numbers
correspond to the numbered comments in Example 3-1 Enqueuing a Message.

Comment Output Lines

Number

none Recei ved: from siroe. com by siroe.com (SunONE Messagi ng Server
6. 0)i d<01GP37SOPRWAIKZFV@i roe. com >; Fri, 21 Mar 2003 09: 07: 32
- 0800(PST)

3 Date: Fri, 21 Mar 2003 09:07:41 -0800 (PST)

1 From postnaster @iroe.com

2 To: root @iroe.com

4 Subj ect: enqueui ng_exanpl e. ¢ Message-i d:
<01GP37SOPRVWRAIKZFV@i roe. com > Cont ent -type: TEXT/ PLAI N,
CHARSET=US- ASCI | Content-transfer-encoding: 7BI T

5 missing value

6 Hell o

7 Wor | d!

Transferring Messages into the MTA

When transferring a message originated elsewhere into the MTA, programs should use the MTA_ENV_TO
item code with nt aEnqueueTo() . This way, each of the recipient addresses will only be added to the
message's envelope, and not to its already constructed header. Additionally, supply the message's
header as-is. Do not remove or add any origination or destination header lines unless necessary. Failure
to use the MTA_ENV_TOitem code will typically cause the SDK to add Resent - header lines to the
message's header.

A Complex Dequeuing Example, and A Simple Virus Scanner Example both illustrate the use of the
MIA_ENV_TOitem code.

Intermediate Processing Channels

Like programs which transfer messages into the MTA, intermediate processing channels should also use
the MTA_ENV_TOitem code with nt aEnqueueTo() . When re-enqueuing a message, intermediate
processing channels should also preserve any MTA envelope fields present in the message being
re-enqueued. This is done using the MTA_DQ CONTEXT item code in conjunction with

nt aEnqueueSt art () and nt aEnqueueTo() . Failure to preserve these envelope fields can result in
loss of delivery receipt requests, special delivery flags, and other flags which influence handling and
delivery of the message.

A Complex Dequeuing Example and A Simple Virus Scanner Example both illustrate the use of the

MIA_ENV_TOand MTA _DQ _CONTEXT item codes. item codes. Both of those examples represent
intermediate processing channels that handle previously constructed messages. As such, they do not

Messaging Server 8.0 MTA Developer's Reference 59

need to alter the existing message header, and they preserve any MTA envelope fields.

Delivery Processing Options (Envelope Fields)

A variety of delivery processing options may be set through the MTA SDK. These options are then stored
in the message envelope and are generically referred to as "envelope fields". Options which pertain to
the message as a whole are set with nt aEnqueueSt art () . Options which pertain to a specific recipient
of the message are set with nt aEnqueueTo() . These options, per message and per recipient, include
the following:

Option Description
Choices

Delivery flags ' These flags are used to communicate information between channels. For instance, a
scanning channel might set the flag to indicate suspected spam content. A delivery
channel could then see that the flag is set and, at delivery time, add a header line
indicating potential spam content. These flags may also be set using the
del i ver yfl ags channel keyword.

Notification These flags influence whether delivery or non-delivery notification messages are

flags generated. They can be set on a per recipient basis. Typically, they are used to
request a delivery receipt. Another common usage is for bulk mail to request no
notifications, neither delivery nor non-delivery.

Original This field is specified on a per recipient basis. It is used to indicate the original form of
recipient the associated recipient's address. This original address can then be used in any
address notification messages. Its use allows the recipient of the notification to see the original

address they specified rather than its evolved form. For example, the recipient would
see the name of the mailing list they posted to rather than the failed address of some
member of the list.

Envelope ID Set on a per message basis, this is an RFC 1891 envelope ID and can appear in RFC
1892 - 1894 conformant notifications about the message.

Fragmentation ' Set on a per message basis, this controls if and when the message is fragmented into
size smaller messages using the MIME nessage/ parti al mechanism.

For additional information, see the descriptions of nt aEnqueueSt art (), and nt aEnqueueTo() .

Order Dependencies

When you are constructing programs, there is a calling order for the MTA SDK routines that must be
observed. For a given enqueue context, some routines must be called before others.

The following figure visually depicts the calling order dependency of the message enqueue routines. To
the right of each routine name appears a horizontal line segment, possibly broken across a column, for
example, m aEnqueueW i t e() . Routines for which two horizontal line segments, one atop the other,
appear are required routines; that is, routines that must be called in order to successfully enqueue a
message. These routines are nt aEnqueueSt art (), mt aEnqueueTo(), and nt aEnqueueFi ni sh().
To determine at which point a routine may be called, start in the leftmost column and work towards the
rightmost column. Any routine whose line segment lies in the first (leftmost) column may be called first.
Any routine whose line segment falls in the second column may next be called, after which any routine
whose line segment falls in the third column may be called, and so forth. When more than one routine
appears in the same column, any or all of those routines may be called in any order. Progression from
left to right across the columns is mandated by the need to call the required routines. Of the required
routines, only nt aEnqueueTo() may be called multiple times for a given message.

Figure 3-1 Calling order Dependency for Message Enqueue Routines

Messaging Server 8.0 MTA Developer's Reference 60

mtaInit =
mtaEnqueueStart
mtaEnqueueTo |
mtaEnqueueWrite :
mtaEnqueueWriteLine
mtaEnqueueCopyMessagei
mtaEnqueueInfo :
mtaEnqueueError
mtaEnqueueFinish :

Messaging Server 8.0 MTA Developer's Reference

TN .

61

Chapter 4. Error Status Codes Summary

Error Status Codes Summary

This appendix describes the error status codes returned by the MTA SDK and nt aSend() .

Error Status Codes

The following table lists the error status codes, with a generic interpretation of each. For usage-specific
interpretations, refer to the specific MTA SDK routine descriptions in MTA SDK Routines, and the
nt aSend() item code descriptions in mtaSend() Routine Specification.

Return Code Numeric Description
Value
MIA_ OK 0 Normal, successful completion.
MI'A_ACCESS 1 This error typically indicates that a site-supplied access mapping table

has refused an envelope recipient address with a permanent error.
These access mapping tables include: SEND_ACCESS,

ORI G_SEND_ACCESS, MAI L_ACCESS, and ORI G_MAI L_ACCESS.This
error may also result when a mailing list has access controls which do
not allow the attempted message submission to the list.

MTA_AGAI N 2 A temporary processing error has occurred. A number of conditions
may generate this error including connectivity problems to LDAP
servers, virus scanners, spam scanners, as well as quota
problems.When the error is the result of an attempt to add an envelope
recipient address or to complete a message enqueue, additional
information may be obtained by either enabling SDK diagnostics with
nt aDebug() or using the MTA_REASON item code of
nt aEnqueueTo() or nt aEnqueueFi ni sh() . In the case of
nt aEnqueueTo(), m aEnqueueEr r or () may also be used to obtain
the extended information returned with the MTA_REASON item code.

MI'A_BADARGS 3 Bad call arguments supplied to the called routine. Typically, this will be
the result of passing an invalid context or a NULL value for a required
parameter.

MIA_EOF 4 End of data reached. When returned by m aDequeuelLi neNext () or

nt aDequeueReci pi ent Next (), this value does not indicate an
error, but rather that there are, respectively, no more message lines or
recipients to return.

MIA_FCREATE 5 Unable to create a disk file. Typically, this will be the result of
insufficient disk space, insufficient access rights to the channel queue
directories, or a file system error of some sort. The MTA SDK creates
both temporary files and message files in the channel queue
directories. The temporary files result when a message being submitted
exceeds in size the value of the MTA option: MAX_| NTERNAL_BLOCKS.

Messaging Server 8.0 MTA Developer's Reference 62

MIA_FI O 6

MTA_OPEN 7

MIA_NETWORK 8

MIA_NO 9
MIA_NOVEM 10
MTA_NOOP 11

MTA_NOSUCHCHAN 12

MI'A_NOSUCHHOST 13

MIA_NOSUCHI TEM 14

MI'A_ORDER 15

MIA_SI ZE 16

An error occurred while writing to a disk file. Typically, this will be the
result of insufficient disk space or a file system error. This error is only
reported when writing message files, either temporary files, or writing
them in the channel queue directories.

An error occurred while attempting to open a disk file. In regards to
channel option files, this indicates that the channel option file exists but
cannot be opened. Usually this is caused by insufficient access rights
or a file system error.This error may also be returned when the MTA
SDK is initialized and an MTA configuration file cannot be opened.
Again, this usually indicates a problem with permissions or the file
system. Use thei nmsi nta test -rewit e utility to obtain additional
diagnostic information. That utility often reports the name of the
underlying configuration file associated with the error.

A network read or write error has occurred. This error is associated

with message dequeue processing and indicates that a communication
error has occurred while attempting to contact or exchange information
with the MTA Job Controller. Ensure that the Job Controller is running.

Generic error message. This error message is issued in a variety of
situations. In all cases, it indicates that the attempted call has failed.
Consult the routine’s description for an interpretation specific to the
called routine. Also, consider enabling MTA SDK diagnostics with
nt aDebug() .

Insufficient virtual memory; cannot perform the requested operation.

This error code is not presently used by the MTA SDK. In general, it is
used to indicate that the requested operation was completed by doing
nothing (for example, a message enqueued to zero envelope recipients
is simply deleted).

The specified channel name does not exist in the MTA configuration.
The channel name may have been specified explicitly with a supplied
call argument or implicitly with the PMDF_CHANNEL environment
variable.

The MTA configuration lacks the necessary information to route the
specified envelope recipient address. This error typically comes up
when an unrecognized, top-level domain name is used. As such, this
usually indicates a syntactically valid recipient address which specifies
an invalid top-level domain name (for example, sue@i r oe. si r oe).
Other addressing errors, including syntax errors, may elicit this status
code.

An invalid item code was supplied. Either the supplied item code value
does not represent a known item code or it is not an item code
supported by the called routine.

Routine called out of order. For example, an attempt to read the text of
a queued message file was made before first reading the message's
entire recipient list. Or, an attempt was made to write the content of a
message being submitted before first specifying the message's
recipients. Refer to the call order diagrams in for further details.

The message being submitted cannot be enqueued: its size exceeds a
site-configured size limit. Such limits are configured with a variety of
options, including the MTA options BLOCK LI M Tand LI NE_LIM T,
as well as the channel keywords bl ockl inmit andlinelint.

Messaging Server 8.0 MTA Developer's Reference 63

MIA STRTRU 17 The supplied buffer was not large enough to receive the result string.
The result string was truncated to fit. The result string is nonetheless
NULL terminated.

MIA_STRTRUERR 18 The supplied buffer was not larger enough to receive the result string.
Truncating the result is not meaningful or has potential for causing
problems or both. Alternatively, a supplied string was too long.

MIA_ THREAD 19 Threading error detected. Specifically, the MTA SDK detected the
simultaneous use of a single SDK context by two or more processing
threads. This is not permitted.

MI'A_TI MEDOUT 20 This error code is not presently used by the MTA SDK. In general, it is
used to indicate a timeout related error.

Messaging Server 8.0 MTA Developer's Reference 64

Chapter 5. MTA SDK Concepts and Overview

MTA SDK Concepts and Overview

The Messaging Server MTA SDK is a low-level interface, with routines falling into three categories: those
that enqueue messages, those that dequeue messages, and miscellaneous routines that typically query
or set MTA states, or parse message structures, such as lists of RFC 822 addresses.

The Callable Send facility, described in Decoding Messages and MTA SDK Reference and used only for
originating mail from the local host, can be used simultaneously with the MTA SDK.

This chapter contains the following topics:

Channel Programs and Message Queuing
Managing Multiple Threads Using Contexts
Enqueuing Messages

Dequeuing Messages

String-valued Call Arguments

Item Codes and Item Lists

Channel Programs and Message Queuing

Message enqueuing and dequeuing are generally done by channel programs also referred to simply as
channels. There are two types of channel programs, master channel that dequeue messages, and
channels (sometimes referred to as slave channels) that enqueue messages. Each MTA channel has its
own message queue, referred to as a channel queue. Channel programs may also perform intermediate
roles by dequeuing messages from one message queue and re-enqueuing them to another while,
typically, processing the message at the same time. For example, the message processing might be to
convert the message body from one format to another.

Managing Multiple Threads Using Contexts

A number of SDK operations require multiple, sequential calls to the SDK routines. To manage this, the
SDK provides the caller with a pointer to an opaque data structure called a context. This mechanism
allows for management of state information across calls to the SDK. Use of the contexts allows multiple
threads within a single program to make simultaneous calls to the same SDK routine. The only limitation
is that a single, specific context may not be simultaneously used by different threads in calls to the SDK.
When such usage is detected in an SDK call, an MTA_THREAD error results.

In some cases these contexts are automatically created for you, such as dequeue and decode contexts.

In all other cases, for example for enqueue contexts, you must make an explicit call to create them. The

calls that automatically create contexts also automatically dispose of them. In all other cases, a call must
be made to explicitly dispose of a context. It is important to dispose of contexts when you no longer need
them as so doing releases resources such as virtual memory.

For more information on contexts, see Threads and Enqueue Contexts and Threads and Dequeue
Contexts.

Enqueuing Messages

Messages are introduced to the MTA by enqueuing them. Each enqueued message contains two

Messaging Server 8.0 MTA Developer's Reference 65

required components, the message envelope and the message header, and may optionally contain a
third component, the message body. The contents of the envelope and header must be provided by the
program using the SDK.

For instructions on how to enqueue messages, see the Running Your Enqueue and Dequeue Programs
in Chapter 2, MTA SDK Programming Considerations.

For an example of how to enqueue a message, see A Simple Example of Enqueuing a Message.

Message Components
This section describes the three message components: envelope, header and body.
Envelope

The message envelope contains the envelope From: address, and the list of envelope To: addresses.
The envelope is created by the SDK as the message is enqueued. The addresses to be placed in the
envelope must conform to RFC 2822. The envelope To: addresses are often referred to as envelope
recipient addresses.

Programs should rely solely upon the MTA SDK routines to read and write envelope information, since
the queued message file formats are subject to change. Using the SDK routines insulates programmers
from format changes.

The routines nt aEnqueueSt art () and nt aEnqueueTo() are used to construct a message envelope.
Header

The message header contains RFC 2822 style header lines. The program enqueuing the message has
nearly complete control over the contents of the header and can specify as many or as few header lines
as it sees fit, with a few exceptions. A header must have at a minimum three lines: From , Dat e: , and at
least one recipient header line, such as To: , Cc: , or Bcc: .

As the message is enqueued, the SDK will do its best to supply any mandatory header lines that are
missing as well as take some measures to ensure that the contents of the header lines conform to any
relevant standards. If the Fr om header line is omitted by the program using the SDK, the SDK code will
construct a default header line from the envelope Fr om address. This may not always be appropriate;
for instance, when mail is addressed to a mailing list that specifies an Err or s-t o: address, then the
Err or s- t 0: address should be used as the envelope Fr om address. In this case, it is not appropriate
to derive the header Fr om line from the envelope Fr om address. If the Dat e: header line is omitted,
the SDK code will supply it, as well as a Dat e- war ni ng: header line. Finally, if no recipient header
lines are present, then the SDK code will generate them using the envelope recipient addresses.

Any addresses appearing in the message header should conform to RFC 2822.

The header is written line-by-line using the routines nt aEnqueueW i te() and
nt aEnqueueW it eLi ne().

Body

The optional message body contains the content of the message. As with the message header, the
program engueuing the message has nearly complete control over the contents of the message body.
The only exception to this is when the message is structured with multiple parts or requires encoding, for
example if it contains binary data, or lines requiring wrapping. In such cases, the SDK will ensure that the
message body conforms to MIME standards (RFCs 2045—- 2049).

As with the message header, message body lines are written with the routines nt aEnqueueW it e()
and nt aEnqueueW i t eLi ne() .

Messaging Server 8.0 MTA Developer's Reference 66

A Sample Enqueued Message

Enqueued messages may be seen in the MTA queue directories and are merely ASCII text files. In the
following sample message, lines 1 and 2 are the message envelope, the next four lines are the header,
and the rest of the lines are the body.

j doe@i roe. com
nmsmi t h@i r oe. com

Date: Tues, 1 Apr 2003 15:01 PST
From John Doe

To: Mke Snmith

Subj ect: Lunch today

M ke,

Just confirmng our |unch appointnent today | will neet you at the
restaurant at noon.

John

Note-

As stated earlier, do not directly read from or write messages to the MTA message
gueues. Always use the SDK routines or Callable Send. The file structure of messages in
the MTA queues are subject to change. In addition, site specific constraints may be placed
on things such as encodings, and character set usage. The SDK routines automatically
handle these and other issues.

Threads and Enqueue Contexts

Each individual message being enqueued to the MTA is represented within the SDK by an opaque
enqueue context of type nt a_nq_t . This enqueue context is created by nt aEnqueueSt art () and
destroyed by nt aEnqueueFi ni sh() . Throughout the enqueue process, the message being enqueued
is referenced through its enqueue context. A program using the SDK may simultaneously enqueue
multiple messages, each message represented by its own enqueue context. Indeed, multiple threads
may simultaneously enqueue one or more messages per thread. The only requirement is that a specific
enqueue context not be simultaneously used by two or more threads. In the event that the SDK detects
simultaneous usages, it returns the MTA_THREAD error.

Enqueuing Dequeued Mail

If a message being enqueued is the result of dequeuing a message, then all envelope fields can
automatically be carried over from the old message to the new message. Both per-message fields (such
as envelope IDs) and per-recipient fields (such as delivery receipt requests) can be preserved. This
preservation is achieved by supplying the associated dequeue context to the routines

nt aEnqueueSt art (), or nt aEnqueueTo(), or both. Supplying the dequeue context to

nt aEnqueueSt art () preserves per-message envelope fields, while supplying the dequeue context to
nt aEnqueueTo() preserves the per-recipient fields for the specified envelope recipient.

The following section contains information on message dequeuing and message dequeue contexts.

Dequeuing Messages

Messaging Server 8.0 MTA Developer's Reference 67

Messages stored in the MTA message queues are removed from their queues by dequeuing them. This
is typically done by channel programs as mentioned in Channel Programs and Message Queuing. When
a message is dequeued, it is literally removed from the MTA message queues and, as far as the MTA is
concerned, no longer exists. That is, dequeuing a message relieves the MTA of all further responsibility
for the message. The responsibility is assumed to have been passed on to some other entity such as
another MTA or a message store.

The channel name used by the program identifies the MTA message queue being serviced by the
program. The channel name can either be explicitly specified by the program or determined from the run
time environment using the PVDF_CHANNEL environment variable.

© Note-
Channel naming conventions: the name must be 32 bytes or less, should be in lower case,
and if the channel will have multiple instantiations, then it should be given a generic name,
such as t cp, and then each instantiation can be given a specific version of it, such as
tcp_local ,tcp_auth,tcp_intranet.

Multiple programs may simultaneously process the same message queue. The SDK and Job Controller
will automatically coordinate such efforts, using file locks to prevent two or more programs or threads
from simultaneously processing the same message. When the message processing program is called,
the message to be process is locked so that no other jobs may access that message. The message is
then unlocked when nt aDequeueMessageFi ni sh() is called, or when the program exits, normally or
abnormally. For more information, see Dequeuing Message Processing Routine Tasks

Threads and Dequeue Contexts

Each individual message being dequeued from the MTA is represented within the SDK by an opaque
dequeue context of type nt a_dq_t . Each dequeue context is created by nt aDequeueSt art () and
passed to a caller-supplied processing procedure. Each dequeue context is then destroyed when

nt aDequeueMessageFi ni sh() is called. Throughout the dequeue process, the message being
dequeued is referenced through its dequeue context. Under typical usage, a program will have multiple
threads operating, each simultaneously dequeuing a message. However, it is not permitted for two
threads to simultaneously use the same dequeue context in calls to the SDK. In the event the SDK
detects simultaneous usages, it returns the MTA_THREAD error.

Message Processing Threads

When nt aDequeueSt art () is called, a communication path with the MTA Job Controller is
established. The Job Controller is then asked if there are messages to be processed for the channel.
Typically there will be messages to process since the Job Controller normally only starts channel
programs when there are queued messages in need of processing. Based upon information obtained
from the Job Controller, nt aDequeueSt art () will then begin to create non-joinable processing threads.
Each processing thread immediately begins processing the queued messages.

For further information about the exact steps a message processing thread goes through, see Debugging
Programs and Logging Diagnostics.

String-valued Call Arguments

Strings passed as call arguments to the MTA SDK routines also have an associated length argument.
Use of the length argument is optional; that is, if you do not know the length or do not wish to supply it,
then supply a value of zero for the length argument. However, in that case the supplied string must be
NULL terminated so that the SDK routine can determine the string's length. When a non-zero length is
supplied, then the string does not need to be NULL terminated. Wherever possible, the SDK routines
return pointers to output strings rather than returning the strings themselves. These pointers are always

Messaging Server 8.0 MTA Developer's Reference 68

thread safe; however, when associated with an SDK context they often are only valid as long as the
context itself is valid. Such limits will be noted in the description of the individual routines in Dequeuing
Messages. In some cases, an output string buffer must be supplied, as with the nt aDat eTi ne() and
nt aUni queStri ng() routines.

Internally, the MTA has several basic string sizes. Users of the SDK generally do not need to concern
themselves with this fact. However, at times it may be helpful to be aware of them as they can provide an
upper bound on the length of various strings you might encounter. As shown in the following table, for
instance, channel names will never be longer than CHANLENGTH bytes; channel option values will never
exceed a length of Bl GALFA_SI ZE bytes; and envelope addresses will never exceed a length of
ALFA_SI ZE bytes:

Symbolic Value in Typical Usage

Names Bytes

ALFA_SIZE 256 Upper limit on the length of an address

BIGALFA_SIZE 1024 Upper limit on the length of message line and channel option
value

CHANLENGTH 32 Upper limit on the length of a channel name

Item Codes and Item Lists

A number of the MTA SDK routines accept a variable length list of item code arguments. For instance,
nt al ni t () has the call syntax:

int ntalnit(int itemcode, ...)

That is to say, it accepts one or more integer-valued call arguments. These call arguments are referred to
as an "item code list" or, more simply, an "item list." Each item list must be terminated by a call argument
with the value 0. As such, the call syntax for nt al ni t () can be expressed as

int nalnit([int itemcode[, ...]], 0)

There can be zero or more item codes with non-zero values which must then be followed by an item
code with the value zero.

In the MTA SDK, item lists serve two purposes. First, they allow code using the SDK to specify optional
behaviors and actions to the SDK. Second, they provide an extension mechanism for future versions of
the SDK to extend the functionality of routines through the introduction of new item codes.

However, there is a drawback to the use of item lists; the number of items passed to an SDK routine
must be known at compile time. That is, it is difficult if not impossible for a program at run time to adjust
the number of item codes that it wishes to pass. In recognition of this limitation, all SDK routines that
accept an item code list also accept a pointer to an arbitrary length array of item codes. Such an array is
referred to as an "item list array" and is specified with the MTA | TEM LI ST item code. This mechanism
allows programs to dynamically construct the array at run time, while still using a fixed number of
arguments at compile time.

The MTA_| TEM LI ST item code is always followed by an additional call argument whose value is a
pointer to an array of nt a_i tem | i st _t type elements. Each array entry has the following five fields:

Messaging Server 8.0 MTA Developer's Reference 69

Fields Description

int itemcode Anitem code value indicating an action to be effected. The permitted item code
values are routine specific.

const void The caller-supplied address of data to be used in conjunction with the action
*item address specified by the i t em code field. Not all actions require use of this field.
size_t When the item code has an associated string value, this field optionally provides
itemlength the length in bytes of the string, not including any NULL terminator. If a value of

zero is supplied, then the string pointed at by the i t em addr ess field must be
NULL terminated.When the item code has an associated integral value, this field
supplies that value. Not all actions require the use of this field.

i nt Only used by nt aSend() . Not used by other MTA SDK routines.
item status

const char Only used by nt aSend() . Not used by other MTA SDK routines.
*item snessage

The end of the array is signified by an array entry whose item_code field has the value zero (
MIA_END_LI ST). As an example of using MTA_| TEM LI ST, consider the following nt al ni t () call:

istat = ntalnit(MIA DEBUG SDK, MIA DEBUG OS, MIA_DEBUG MV 4,
MIA_DEBUG DEQUEUE, MIA DEBUG DECCDE, 0);

In the above call, the decision to enable the listed debug modes is made at compile time. Using an item
list array allows the decision to be made at run time as illustrated in the following example:

naitemlist_t itemlist[6];
i nt index;

i ndex = 0;
i f (debug_sdk)

itemlist[index++].itemcode = MIA_DEBUG SDK;
i f (debug_os)

itemlist[index++].item code = MIA_DEBUG CS;

if (debug_mm

{
itemlist[index].itemcode = MIA DEBUG M\
itemlist[index++].itemlength = 4;

}

i f (debug_dq)

itemlist[index++].itemcode = MIA_DEBUG DEQUEUE;
i f (debug_decode)

itemlist[index++].itemcode = MIA_DEBUG DECODE;
itemlist[index].itemcode = MIA END LI ST;
istat = ntalnit(MIA_ITEM CODE, itemlist, 0);

The list of item code arguments must still be terminated with a call argument with value zero. Further,
item codes may simultaneously be passed as distinct call arguments and also in item list arrays. For
example:

Messaging Server 8.0 MTA Developer's Reference 70

nt al ni t (MIA_DEBUG SDK, MTA | TEM LI ST, itemlist1,
MTA_| NTERACTI VE, MTA_I TEM LIST, itemlist2, 0);

In the above, the item codes MTA_DEBUG_SDK, MTA | TEM LI ST, MTA | NTERACTI VE, and
MIA | TEM LI ST are all explicitly passed as call arguments. Additional item codes are passed via the
item listarraysitemlistlanditeml|ist2.

When processing item codes, they are processed from left to right as the call argument list is interpreted.
Using the above example, nt al ni t () processes MTA_DEBUG_SDK, then MTA_| TEM LI ST,

MIA_| NTERACTI VE, MTA | TEM LI ST, and finally the terminating O call argument which terminates the
item code processing. When processing the first occurrence of MTA_| TEM LI ST, the entries of

item | ist1 are processed starting with the first entry (index 0), then the second, and so on until an
entry with an item code value of O is encountered. The same processing occurs foritem | i st 2.

If two item codes set the same underlying option or value, the last processed instance of that item code
will prevail. For example, the call:

nt al ni t (MIA_DEBUG_ENQUEUE, MrA_DEBUG MM 10, 0);

will leave the enqueue debug level set to 10. While the MTA_DEBUG_ENQUEUE item code sets itto 5, the
subsequent MTA_DEBUG _MMitem code changes the setting to 10.

Messaging Server 8.0 MTA Developer's Reference 71

Chapter 6. MTA SDK Programming
Considerations

MTA SDK Programming Considerations

This chapter describes procedures and run time instructions useful for programmers using the
Messaging Server MTA SDK. It includes the following topics:

Running Your Enqueue and Dequeue Programs
Debugging Programs and Logging Diagnostics
Required Privileges

Compiling and Linking Programs

Running Your Test Programs

Preventing Mail Loops when Re-enqueuing Mail
Miscellaneous Programming Considerations

Running Your Enqueue and Dequeue Programs

At run time, when your program enqueues a message to, or dequeues a message from the MTA, the
SDK must be able to determine the name of the MTA channel under which to perform the enqueue or
dequeue. If this name cannot be determined, then the enqueue or dequeue operation will fail.
Consequently, when calling nt aEnqueueSt art () or nt aDequeueSt art (), a channel name can be
specified. Whether or not you need to specify this channel name depends upon the conditions under
which your program runs. While developing your program and manually running it, you may either code
the channel name into your program or specify it through your run time environment with the
PMVDF_CHANNEL environment variable. For example, to do the latter on UNIX platforms use a command
of the following form:

PNMDF_CHANNEL=channel - nane program nane

where channel-name is the name of the channel and program-name is the name of the executable
program to run.

In production, if your program will run as a master or slave channel program under the MTA Job
Controller, you do not need to specify the channel name The channel name will automatically be set by
the Job Controller using the PMDF_CHANNEL environment variable. If, however, your program will be run
manually or as a server, then either the program can specify its channel name through code or using the
PVDF_CHANNEL environment variable. For the latter, setting the environment variable is typically
achieved by wrapping your executable program with a shell script. The shell script would set the
environment and then invoke your program, as illustrated in the following code example:

Messaging Server 8.0 MTA Developer's Reference 72

#1/bi n/ sh

PVMDF_CHANNEL=_channel - nane_
PMVDF_CHANNEL_OPTI ON=_option-fil e-path_
export PMDF_CHANNEL PMDF_CHANNEL_OPTI ON
program nanme

exit

The option-file-path shown in the previous example is the full, absolute path to the channel's option file, if
any.

A program can query the SDK to determine what channel name is being used with either the

nt aChannel Get Nane(), nmt aEnqueuel nf o(), or mt aDequeuel nf o() routines. The former returns
the channel name the SDK will use when no other name is explicitly specified through code. The latter
two return the name specifically being used with a given enqueue or dequeue context.

B Note -
The SDK only reads the PMDF_CHANNEL environment variable once per program
invocation. As such, running code cannot expect to change its channel name by changing
the value of the environment variable.

Debugging Programs and Logging Diagnostics

The SDK has diagnostic facilities that may help in tracking down unusual behavior. Enable SDK
diagnostics in one of two ways: either when the SDK is initialized with nt al ni t () or afterwards with
nt aDebug() . The following table lists the diagnostics types that may be enabled through either routine:
Diagnostic Type Description
MI'A DEBUG_SDK Provide diagnostics whenever the SDK returns an error status
MI'A_DEBUG DEQUEUE ' Provide diagnostics from the MTA low-level dequeue library
MI'A_DEBUG _ENQUEUE ' Provide diagnostics from the MTA low-level enqueue library
MI'A_DEBUG_CS Provide diagnostics from the MTA low-level, operating-system dependent
library

All diagnostic output is written to st dout . In the case of a channel program, this is typically the channel's
debug file. Message enqueue and dequeue activities performed through the MTA SDK (and Callable
Send facility) will be logged when the channels involved are marked with the | oggi ng channel keyword.

Required Privileges

Use of the MTA SDK often requires access rights to the MTA message queues and configuration data.
Indeed, were such rights not required, then any user capable of logging in to the operating system of the
machine running Messaging Server could read messages out of the MTA message queues and send
fraudulent mail messages. Consequently, any programs using the MTA SDK need read access to the
MTA configuration, possibly including files with credentials required to bind to either the Job Controller or

Messaging Server 8.0 MTA Developer's Reference 73

an LDAP server or both. Additionally, programs that will enqueue messages to the MTA need write
access to the MTA message queues. Programs that will dequeue messages from the MTA need read,
write, and delete access to the MTA message queues.

To facilitate this access, site-developed programs that will enqueue or dequeue messages should be
owned and run by the account used for Messaging Server. The programs do not need to run as a
superuser with r oot access in order to enqueue or dequeue mail to the MTA. However, it is safe to
allow them to do so, if needed for concerns outside the scope of Messaging Server. For instance, if the
program will be performing other functions requiring system access rights, it needs to run as a superuser
with r oot access.

Compiling and Linking Programs

This section contains information useful for compiling and linking your C programs.

Compiling

To declare the SDK routines, data structures, constant, and error codes, C programs should use the {{
nsg_server _base/include/mtasdk.h}} header file.

Linking Instructions for Oracle Solaris

The linking instructions that follow are for the Oracle Solaris platform:

The table that follows shows the link command used to link a C program to the SDK:

% SERVER_ROOT=nsg_svr _base
% cc -0 programprogramc \ -1$SERVER ROOT/include \ -L$SERVER ROOT/lib \
- | nt asdk

In the example, msg_server_base is the directory path to the top-level Messaging Server directory, and
program is the name of your program.

If running the program in a standalone mode, that is, not under the Job Controller, then the CONFI GROOT
, INSTANCEDI R, | MTA_TAI LOR, and the LD_LI BRARY_PATH environment variables must be defined.
See the i nmsi mt a shell script used to launch MTA programs and utilities for details.

Running Your Test Programs

This section describes the tasks that are typically required for running your test programs that enqueue
or dequeue messages. The tasks are divided into two groups, those used to run your test programs in a
fully functional messaging environment, and those needed if you want to run them manually:

® To Run Test Programs in a Messaging Environment
® To Manually Run Your Test Programs

To Run Test Programs in a Messaging Environment

1. Add a test channel to the bottom of the i nt a. cnf file.
For example:

Messaging Server 8.0 MTA Developer's Reference 74

(required blank l|ine)
x_t est
x-t est - daenon

2. Add rewrite rules to the top of the i nt a. cnf file.
The following code fragment illustrates this:

X_test $W-test @-test-daenon

3. To enable your test channel so that mail can be addressed to user @ _t est , recompile your
configuration and restart the SMTP server.
Use the instructions found in the following code example:

imsima cnbuild
inmsima restart dispatcher

4. Create the j ob_control | er. sit e textfile.
The file should be owned by the Messaging Server and reside in the same directory as the
job_controller.cnf file. The following code example shows the lines you must add to the file:

[CHANNEL=x_t est]
mast er _conmmand=_fi | e- pat h_

In the above example, file-path is the full path to your executable program.

5. Make sure your executable has permissions and ownership such that the Messaging Server can
run it.

6. Restart the Job Controller.
Use the command found in the following code example:

inmsima restart job_controller

If the program performing enqueues is also a channel that will be dequeuing messages, and more
specifically, is doing intermediate processing that leaves the envelope recipient addresses
unchanged, then special rewrite rules must be used to prevent a message loop in that the channel
just enqueues the mail back to itself. For directions on how to prevent a message loop and other
specific examples of rewrite rules, see Preventing Mail Loops when Re-enqueuing Mail.

To Manually Run Your Test Programs

1. If the program does not explicitly set the channel name, then you must define the PMDF_ CHANNEL
environment variable.
The value of that variable must be the name of your channel. The following example shows how to
set the PVMDF_CHANNEL environment variable:

Messaging Server 8.0 MTA Developer's Reference 75

PNMDF_CHANNEL=x_t est
export PNMDF_CHANNEL

For further information, see Running Your Enqueue and Dequeue Programs.

2. Ensure that any environment variables required to run a program linked against the MTA SDK are
defined.
See Compiling and Linking Programs for additional information.

3. Under some circumstances, it might be useful to comment out the mast er _conmmand= line in the
job_controller.sitefile.
If you do this, you can enqueue mail to your test channel but not have the Job Controller actually
run your channel program.

4. When repeatedly testing your channel program, it is often necessary to restart the Job Controller
before each manual test run.
Otherwise, the Job Controller will hand off messages to your program on the first manual run but
not the second manual run. The Job Controller will think that retries of the messages need to be
delayed by several hours. By restarting the Job Controller, you cause it to "forget" which queued
messages are to be deferred. Thus, when you run your channel again, it will be presented with all
of the queued messages.

Preventing Mail Loops when Re-enqueuing Mail

This section shows how to add a new rewrite rule to prevent a message loop from happening if the
program is doing intermediate processing that leaves the envelope recipient addresses unchanged.
Otherwise, the channel would enqueue the mail back to itself.

For discussion purposes, suppose that the channel is to provide intermediate processing for mail

addressed to user @i r oe. com Further, the i nt a. cnf file has the following rewrite rule for
si roe. com

siroe.com $UGI roe. com

For example, as shown in the code example that follows, assume that the intermediate processing
channel's name is “xloop_test.” Near the bottom of the i nt a. cnf file with other channel definitions, you
would see the following definition:

x| oop_t est
x-| oopt est - daenon

Next, a new rewrite rule for si r oe. comneeds to be added to the top of the i nt a. cnf file:

siroe. com $U¥%i r oe. com@- | oopt est - daenmon$Nx| oop_t est
si roe. com $U@i r oe. com

The new rewrite rule causes the following:

®* When a new inbound or outbound message for user @i r oe. comis enqueued to the
x|l oop_t ext channel, it processes the message and re-enqueues it to user @i r oe. com

Messaging Server 8.0 MTA Developer's Reference 76

® In the new rewrite rule, $N says that the first (new) rewrite rule is to be ignored when the
x| oop_t est channel itself enqueues a message.

® Therefore, after the x| oop_t est channel does its processing and re-enqueues the message to
user @i r oe. com the first (new) rewrite rule is ignored and the second (old) rule is then applied,
causing the message to be routed as it would have been before the x| oop_t est channel was
added to the MTA.

Miscellaneous Programming Considerations

This section covers miscellaneous topics of interest to programmers using the SDK:

® Retrieving Error Codes
® Writing Output From a Channel Program
® Considerations for Persistent Programs

Retrieving Error Codes

With few exceptions, all routines in the SDK return an integer-valued result with a value of zero (0)
indicating success. When a non-zero value is returned, it is also saved in a per-thread data section,
which may be retrieved with either the nt aEr r no() function or the nt a_er r no C pre-processor macro.

The exceptional routines either return nothing (that is, always succeed), or return a string pointer, and
signify an error with a return value of NULL.

Writing Output From a Channel Program

The C runtime library st dout input-output destination may be usurped by the SDK, depending upon the
context under which a channel program has been invoked. As such, programs that will operate as
channels should use the nt aLog() routine to write information to their log file. Such programs should
never write output directly to st dout or st derr or other generic I/O destinations, such as Pascal's

out put , or FORTRAN's default output logical unit. There is no telling where such output might go: it
might go to the Job Controller's log file, it might even go down a network pipe to a remote client or server.

© Note-
The channel log file is a different file from the MTA log file. The nt aLog() and
nt aAccount i ngLogCl ose() are unrelated routines.

Considerations for Persistent Programs

There are two main problems to consider when creating programs that persist over long periods of time
(weeks or months):

¢ Refreshing Stale Configuration Information
® Keeping the Log File Available For Update

Refreshing Stale Configuration Information

Some programs, once started, run indefinitely. An example of this kind of program is a server that listens
continually for incoming mail connections, enqueuing received messages. Site-specific configuration
information is loaded at initialization. In the case of these long running programs, the information can
become stale due to changes to configuration information, such as rewrite rules or channel definitions.
Subsequent calls to nt al ni t () do not accomplish this task. A program must exit and restart in order to
ensure that all configuration information is reloaded.

Messaging Server 8.0 MTA Developer's Reference 77

Keeping the Log File Available For Update

A program that enqueues and dequeues messages may open the MTA log file, mai | . | og_current.
For persistent programs, care should be taken that this log file is not left open during periods of inactivity.
Otherwise, activities that require exclusive access to this file will be blocked. Before going idle, persistent

programs should call nt aAccount i ngLogCl ose() . The log file will automatically reopened when
needed.

© Note-

The MTA log file, mai | . | og_curr ent , is not the log written to by nt aLog() .

Messaging Server 8.0 MTA Developer's Reference 78

Chapter 7. MTA SDK Reference

MTA SDK Reference

The Messaging Server MTA SDK consists of numerous routines used to facilitate the enqueuing and
dequeuing of messages. This reference information contains definitions of all of the SDK routines, and
has the following sections:

® Summary of SDK Routines
This section contains a collection of tables, representing a logical grouping of the routines. Each
table lists the routines in that group.

® MTA SDK Routines
The actual reference material is organized in alphabetical order by routine name.

Summary of SDK Routines

This sections contains a series of tables, one for each of the following logical groups of commands:

Address Parsing

Dequeue

Enqueue

Error Handling

Initialization

Logging and Diagnostics
MIME Parsing and Decoding
Miscellaneous

Option File Processing

Each table lists the routines that comprise the group and gives a brief description of each.
Address Parsing
Address parsing routines are used to parse and extract message addresses.

Routine Name Description
nt aAddr essFi ni sh() Dispose of an address context
nt aAddr essGet N() Extract the Nth individual address from a list of parsed addresses

nt aAddr essPar se() Parse a list of addresses, producing an address context

Dequeue

Dequeue routines are used for dequeuing messages.

Messaging Server 8.0 MTA Developer's Reference 79

Routine Name Description

nt aDequeuel nf o() Obtain information about a queued message
nt aDequeueLi neNext () Obtain the next message line from a queued message
nt aDequeueMessageFi ni sh() Complete or cancel a message dequeue

nt aDequeueReci pi ent Di sposition() Setthe disposition of a recipient address

nt aDequeueReci pi ent Next () Obtain the next recipient address from a queued
message

nt aDequeueRew nd() Move the read point for a queued message back to the
start of its outermost header

nt aDequeueSt art () Begin processing queued messages

nt aDequeueThr eadl d() Return the thread ID associated with the specified

dequeue context.

Enqueue

Enqueue routines are used for enqueuing messages.

Routine Name Description

nt aEnqueueCopyMessage() Copy a message from a dequeue context

nt aEnqueueFi ni sh() Complete or cancel a message submission

nt aEnqueuel nf o() Obtain information about a message submission
nt aEnqueueSt art () Begin a message submission

nt aEnqueueTo() Add recipients to a message

nt aEnqueueWit e() Output a line to the message header or body

nt aEnqueueW it eLi ne() Output a line to the message header or body

Error Handling

Error handling routines used for error status retrieval.

Routine Name Description
nt akErrno() Obtain the value of the last error status for this thread

ntaStrError() Map an error status code to a printable string

Initialization

These routines are used for initialization.

Messaging Server 8.0 MTA Developer's Reference 80

Routine Name Description

nt aDone() Release resources used by the MTA SDK
ntalnit() Initialize the MTA SDK

Logging and Diagnostics

Logging and diagnostics routines are used to write diagnostic messages to debug log files.

Routine Name Description

nt aDebug() Write internal diagnostic information to the debug log file
nt aLog() Write to the debug log file
nt aLogv() Write to the debug log file

MIME Parsing and Decoding

These routines are used to parse and decode a MIME formatted message.

Routine Name Description

nt aDecodeMessage() Decode a MIME formatted message; can also convert
non-MIME formats to MIME

nt aDecodeMessagePar t Copy() Copy a message part

nt aDecodeMessagePart Del et e() Delete a message part

nt aDecodeMessagel nf ol nt () Obtain the value of an integer-valued parameter
nt aDecodeMessagel nfoString() Obtain the value of a string-valued parameter

nt aDecodeMessagel nf oPar ans() Obtain the Cont ent -t ype or Cont ent - di sposition
parameter list

Miscellaneous

These routines are used for miscellaneous tasks.

Messaging Server 8.0 MTA Developer's Reference

81

Routine Name

nt aAccount i ngLogC ose()

nt aAddr essToChannel ()
nt aBl ockSi ze()

nt aChannel Get Nane()

nt aChannel ToHost ()

nt aDat eTi me()

nt aPost nast er Addr ess()

nt aSt ackSi ze()

nt aUni queSt ri ng()
nt aVer si onMaj or ()
nt aVer si onM nor ()

nt aVer si onRevi si on()

Option File Processing

Description

Close the MTA accounting log file

Determine which channel an address rewrites to

Obtain the value of the MTA BLOCK_SI ZE option

Obtain the channel name for the running program

Determine the host name associated with a channel

Generate a date-time string for use in an RFC 822 Dat e: header line
Obtain the postmaster's address

Obtain the minimum thread stack size needed for arbitrary SDK
operations

Generate a unique string
Obtain the major version number of the MTA SDK
Obtain the minor version number of the MTA SDK

Obtain the revision number of the MTA SDK

The following table lists the routines used to process option files and gives a brief description of each.

Routine Name
ntaOptionStart ()
nt aOpti onl nt ()

nt aOpt i onFl oat ()
nmaOptionString()

nmt aOpti onFi ni sh()

MTA SDK Routines

Description

Open and read a channel option file

Obtain the value associated with an integer-valued option
Obtain the value associated with a real-valued option
Obtain the value associated with a string-valued option

Dispose of an option file context

This section describes each MTA SDK routine, including its syntax, arguments and return values, and
gives a description of the routine. The following table lists the routines in alphabetical order, as they are

found in this section:

Routine Name and Page

nt aAccount i ngLogC ose()

nt aAddr essFi ni sh()
nt aAddr essGet N()

nt aAddr essPar se()

Messaging Server 8.0 MTA Developer's Reference 82

nt aAddr essToChannel ()

nt aBl ockSi ze()

nt aChannel Get Nane()

nt aChannel ToHost ()

nt aDat eTi ne()

nt aDebug()

nt aDecodeMessage()

nt aDecodeMessagel nf ol nt ()

nt aDecodeMessagel nf oPar ans()
nt aDecodeMessagel nfoStri ng()
nt aDecodeMessagePar t Copy()

nt aDecodeMessagePart Del et e()
nt aDequeuel nf o()

nt aDequeueLi neNext ()

nt aDequeueMessageFi ni sh()

nt aDequeueReci pi ent Di sposi tion()
nt aDequeueReci pi ent Next ()

nt aDequeueRew nd()

nt aDequeueSt art ()

nt aDequeueThr eadl d()

nt aDone()

nt aEnqueueCopyMessage()

nt aEnqueueError ()

nt aEnqueueFi ni sh()

nt aEnqueuel nf o()

nt aEnqueueSt art ()

nt aEnqueueTo()

nt aEnqueueWit e()

nt aEnqueueW it eLi ne()

nt akErrno()

ntalnit()

nt aLog()

nt aLogv()

nt aOpt i onFi ni sh()

Messaging Server 8.0 MTA Developer's Reference

83

nt aOpt i onFl oat ()

nt aOpti onl nt ()
ntaOptionStart ()
nmaCptionString()

nt aPost mast er Addr ess()
nt aSt ackSi ze()
ntaStrError()

nt alni queStri ng()

nt aVer si onMaj or ()

nt aVer si onM nor ()

nt aVer si onRevi si on()

nt aAccount i ngLogC ose()

Close the MTA accounting log file, mai | . | og_current.

..

Arguments

None

Description

Long running programs should periodically close the MTA accounting log file with this routine. Interactive
programs that use the MTA SDK should use the nt al ni t () item code when initializing the SDK with
ntalnit().

Return Values

None

Example

None

nt aAddr essFi ni sh()

Dispose of an address context.

Syntax

Messaging Server 8.0 MTA Developer's Reference 84

..

voi d nt aAddressFi ni sh(nmta_adr_t *adr_ctx);

..

Arguments

Argument Description

adr_ctx An address context created by a previous call to nt aAddr essPar se() .

Description

Address contexts created with nt aAddr essPar se() must be disposed of by calling
nt aAddr essFi ni sh() . Failure to do so will result in memory leaks.

Return Values

None

Example

None

nt aAddr essGet N()

Extract an address from a list of parsed addresses.

..

int ntaAddressGet N(nta_adr _t *adr _ctx,

size_t addr ess_i ndex,
const char **address,
size t *address_| en,

i nt el ement s) ;

Arguments

Messaging Server 8.0 MTA Developer's Reference 85

Arguments Description
adr _ctx An address context created by a previous call to nt aAddr essPar se() .

addr ess_i ndex Index of the address to retrieve. It is an index into a list of addresses. The first
address has an index of 0.

addr ess Pointer to receive the selected address (a pointer to a buffer within the address
context). The address will be NULL terminated. A NULL may be passed for this call
argument if you do not wish to receive the pointer.

address_len The length in bytes of the selected address, not including any NULL terminator.
NULL may be passed for this call argument if you do not wish to receive the length.

el ement s A bitmask indicating which RFC 822 mailbox elements of the address to return,
such as phrase, route, local-part, or domain. Any combination of these elements
may be returned.

Description

This routine retrieves the Nth address from a list of parsed addresses. The list of addresses must first be
parsed with mt aAddr essPar se() .

Either the entire address or just a portion of it may be retrieved.

Elements Argument

Using the nomenclature of RFC 822, an address has the following four-element format:

phrase <@oute: | ocal - part @onai n>

© Note -
The @ out e: element is referred to as a source route and is rarely seen.

An example address with all four elements is:

Judy Smith <@iroe.comjudy.snmith@nmail.siroe.conp

The el enent s argument is a bitmask indicating which of these elements to return. The bitmask is
formed by a logical OR of the following symbolic constants defined in the nt asdk. h header file:

MI'A_ADDR_PHRASE-- In the example, the phrase part is Judy Smi t h.
MI'A_ADDR_ROUTE-- In the example, the route part is @i r oe. com
MI'A_ADDR_LQOCAL-- In the example, the local part is j udy. smi t h.
MI'A_ADDR_DOMAI N-- In the example, the domain part is emai | . si roe. com

For example, to select just the local and domain parts, use the following value for the el enent s
argument;

Messaging Server 8.0 MTA Developer's Reference 86

..

MTA ADDR LOCAL | MTA ADDR DONVAI N

..

..

MTA_ADDR ROUTE | MTA ADDR LOCAL | MTA ADDR DOVAI N

Address Argument

This routine returns a pointer to the retrieved address and not the address itself. This pointer is to a
buffer within the address context. Each time the routine is called with the same address context, that
buffer is overwritten. Therefore, care must be taken when specifying the address argument. The following
code example correctly specifies how the argument should be used when multiple calls are involved:

..

nt aAddr essGet N(adr _ctx, 0, &ptr, NULL, MIA ADDR LOCAL);
strcpy(buf, ptr);

strcat (buf, "@);

nt aAddr essGet N(adr _ctx, 0, &anp;ptr, NULL, MIA_ADDR DOMAI N) ;
strcat (buf, ptr);

..

nt aAddr essGet N(adr _ctx, 0, &anp;ptr, NULL,
MIA_ADDR LOCAL | MIA_ADDR DOWVAI N) ;
strcpy(buf, ptr);

However, since the pointer points to the same buffer for each call, and is overwritten at each call, it would
be incorrect to code it as shown in the following code example:

..

nt aAddr essGet N(adr _ctx, 0, &anp;local, NULL, MIA_ADDR LOCAL);
nm aAddr essGet N(adr _ctx, 0, &anp;donmain, NULL, MIA_ADDR _DONVAI N) ;
strcpy(buf, local);

strcat (buf, "@);

strcat (buf, domain);

Return Values

Messaging Server 8.0 MTA Developer's Reference 87

Return Value Description
0 Normal, successful completion

MI'A_BADARGS One of the following conditions occurred:

1. A NULL value for the adr _cont ent argument
2. Aninvalid address context
3. An invalid bitmask for elements

MIA_EOF The value supplied for the addr ess_i ndex is equal to or greater than the number of
addresses in the address list.

Example

The following is a code fragment that parses and displays the individual addresses from a list of two
addresses, using nt aAddr essGet N() :

i res = ntaAddressParse(&anp; adr_ctx, &anp; adr_count,
"Judy Public <judy.public@iroe.com > sue@iroe.cont,

0, 0);
for (i =0; i < adr_count; i++)
{
nt aAddr essGet N(adr _ctx, i, &anp;ptr, NULL,
MIA_ADDR LOCAL | MIrA_ADDR_DOMAI N) ;
printf("Address %: %\n", i, ptr);
}

nt aAddr essPar se()

Parse a list of comma separated RFC 822 addresses.

Syntax

i nt ntaAddressParse(nta_adr_t **adr_ctx,

size_t *addr ess_count,
const char *address_li st,
size_t address_|ist_|Ien,
i nt itemcode, ...);

Arguments

Messaging Server 8.0 MTA Developer's Reference 88

Argument Description

adr _ctx The address context created for the parsed list of addresses.
address_count The number of addresses parsed.
address_|i st A character string containing the list of comma separated RFC 822 addresses

to be parsed. The string must be NULL terminated if a value of zero is passed
foraddress_|ist_|en.

address_list_|en The length in bytes of the string of addresses to parse, not including any NULL
terminator. If a value of zero is passed for this argument, then the length of
address_|i st will automatically be determined.

i tem code An optional list of item codes. The list must be terminated with an integer
argument with value 0.

Description

This routine parses a list of one or more comma separated RFC 822 addresses. The input list can be of
any arbitrary length. The result of the parse is represented by an address context and a count of the
parsed addresses. Each parsed address can then be individually extracted from the parsed list with a call
to mt aAddr esGet N() . The address context should be disposed of with a call to

nt aAddr essFi ni sh() . When there are no valid addresses in the input line, the returned context will be

NULL and the count zero.

B Note-

There are two item codes that can be used inthe i t em code argument. A NULL value
can be passed for either or both of the adr _ct x and addr ess_count arguments. When
NULL is passed for both, all that is learned by calling the routine is whether or not the
address list is syntactically valid.

The following table lists the item codes for this routine, their additional required arguments, and gives a
description of each.

Item Codes Additional Description
Arguments

MIA DOVAI N const char Specify a domain name to append to short-form addresses,
*domai nsi ze_t such as sue, in order to create a fully qualified address, for
donai n_I en example, sue@i r oe. comlt must be followed by two

additional call arguments: the domain name to use and the
length in bytes of that domain name. If a value of O is passed
for the length, then the domain name must be NULL

terminated.
MIA ITEM LI ST nta_itemlist_t Specify a pointer to an item list array. The array must be
*itemlist terminated with a final array entry with an item code value of
0. For further information on item lists, see Item Codes and
Item Lists.

Return Values

Messaging Server 8.0 MTA Developer's Reference 89

Return Value Description
0 Normal, successful completion.

MI'A_ BADARGS A NULL value was supplied for the addr ess_| i st argument or an optional item
code argument.

MIA_NO Unable to parse the address list. The likely cause is that one or more addresses in
the list is syntactically invalid.

MIA_NOVEM Insufficient virtual memory.
MI'A_NOSUCHI TEM An invalid item code was supplied.

MIA_STRTRUERR Item code string argument is too long.

Example

See the code example for nt aAddr essGet N() for a sample code fragment that uses
nt aAddr essPar se() .

nt aAddr essToChannel ()

Determine which channel an address rewrites to.

Syntax
const char *ntaAddressToChannel (char *channel ,

size_t *channel _| en,
size_t channel _| en_max,
const char *address,
size_t address_| en,
i nt addr ess_type,
i nt itemcode, ...);

Arguments

Messaging Server 8.0 MTA Developer's Reference 90

Arguments Description

channel A pointer to a buffer to receive the NULL terminated channel name. To avoid
possible truncation of the channel name, this buffer must be at least
CHANLENGTH+1 bytes long.

channel _|en An optional pointer to a si ze_t to receive the length in bytes of the returned
channel name. This length does not include the NULL terminator that terminates
the channel name.

channel _| en_max The maximum size in bytes of the buffer pointed at by the channel argument.

addr ess The address to rewrite. The length of this address, not including any NULL
terminator, should not exceed ALFA_SI ZE bytes. If a value of O is passed for the
addr ess_| en argument, then this string must be NULL terminated.

address_len The length in bytes of the address string, addr ess. This length does not include
any NULL terminator. If a value of 0 is passed for this argument, the address
string must be NULL terminated.

address_type Indicates what type of address is being rewritten. There are two types: envelope
or header. In addition it can be either forward or reverse pointing. See the
description for a list of the possible values.

i tem code Reserved for future use. Presently, a value of 0 must be supplied for this
argument.

Description

Use this routine to determine which channel an address rewrites to. The address to be rewritten can be
an envelope or header address, and can be forward or reverse pointing. The nature of the address is
specified with the addr ess_t ype argument. The following table lists the possible values for each
combination: forward pointing envelope, reversing pointing envelope, forward pointing header, reverse
pointing header:

Types of Address Value

Forward pointing envelope address 0, MTA BCC, MTA_CC, MTA ENV_TO, MTA _TO

Reverse pointing envelope address MIA_ENV_FROM

Forward pointing header address MIA HDR BCC, MTA HDR CC, MTA HDR TO

Reverse pointing header address MIA_HDR_FROM

In most cases, a value of MTA_ENV_TOis appropriate. Other values will typically give the same result,
unless the MTA configuration has rewrite rules that are sensitive to the distinctions between the four
types of addresses.

Return Values
On successful operation, the routine returns the value of the channel argument. In the event of an error,

the value returned is NULL and the nt a_er r no variable is set with an error status code. The following
table lists the error status codes and gives a description of each.

Messaging Server 8.0 MTA Developer's Reference 91

Error Status Description

Codes
MI'A_BADARGS There are two reasons to get this return value:
1. A NULL value was supplied for the address argument.
2. An invalid value was supplied for the addr ess_t ype.
MIA_FOPEN Unable to initialize the MTA SDK; can't read one or more configuration files. Issue
the following command for further information:i msi nta test -rewite
MIA_NO There are two reasons to get this return value:

1. Unable to rewrite the supplied address. Either the address is syntactically
invalid, or it does not match any channel.
2. Unable to initialize the MTA_SDK. Issue the following command for further

information:
insinta test -rewite

MI'A_NOSUCHI TEM An invalid item code was specified.

MI'A_STRTRUERR There are two reasons to get this return value:

1. Supplied address string is too long; length can not exceed ALFA S| ZE

bytes.
2. The supplied buffer to receive the channel name is too small.

Example

None
nt aBl ockSi ze()
Obtain the size in bytes of an MTA block size unit.

Syntax

size_t mtaBl ockSi ze(voi d);

Arguments

None

Description

The MTA measures message sizes in units of blocks. Units of blocks are used, for instance, when
logging message sizes, and for the MTA_FRAGVENT _BLOCKS item code in the nt aEnqueueSt art ()
routine. By default, a block is 1024 bytes. However, sites can change this setting with the BLOCK_SI ZE
option in the opt i on. dat file.

Messaging Server 8.0 MTA Developer's Reference 92

Programs using the SDK can translate units of bytes to blocks by dividing the number of bytes by the
value returned by nt aBl ockSi ze(), that is:

byt es_per _bl ock = nt aBl ockSi ze() ;
block_|imt = byte_linmt / bytes_per_bl ock;

Return Values
In the event of a failure, the routine returns the value zero and sets nt a_er r no with an error status

code. This routine only fails when initialization of the MTA SDK fails. The following table lists the error
status codes set in nt a_er r no when there is an error returned by nt aBl ockSi ze() .

Error Description
Status
Codes

MI'A_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files. Issue
the following command for further information:i nsi nta test -rewite

MI'A_NO Unable to initialize the MTA SDK. Issue the following command for further information:
inmsima test -rewite

Example

The following code fragment displays the MTA block size setting:
printf ("BLOCK_ SIZE = %\n", ntaBl ockSize());

nt aChannel Get Name()

Determine the channel name for the currently running program.

Syntax

const char *mnt aChannel Get Nane(char *channel ,
si ze_t *channel _|en,
size_t channel _| en_max);

Arguments

Messaging Server 8.0 MTA Developer's Reference 93

Arguments Description

channel A pointer to a buffer to receive the NULL terminated channel name. To avoid
possible truncation of the channel name, this buffer must be at least
CHANLENGTH+1 bytes long.

channel _|en An optional pointer to a si ze_t to receive the length in bytes of the returned
channel name. This length does not include the NULL terminator that terminates
the channel name.

channel _| en_max The maximum size in bytes of the buffer pointed at by the channel argument.

Description

A running program can discover its channel name with this routine. The channel name is typically set
using the PMDF_CHANNEL environment variable.

Return Values

In the event of an error, the routine returns NULL. The error status code is setin nmt a_errno.

Error Status Description
Codes

MI'A_ BADARGS A NULL value passed for the channel argument.
MIA_NO Unable to determine the channel name from the runtime environment.

MI'A_STRTRUERR ' Channel buffer too small to receive the channel name. The buffer must be at least
CHANLENGTH+1 bytes long.

Example

The following code fragment uses this routine to print the channel name.

char buf [CHANLENGTH+1] ;

printf("Channel nane: %\n",
nt aChannel Get Name(buf, NULL, sizeof (buf)));

nt aChannel ToHost ()

Determine the host name associated with a channel.

Syntax

const char *ntaChannel ToHost (char **host,
size_ t *host _|en,
i nt itemcode, ...);

Messaging Server 8.0 MTA Developer's Reference 94

Arguments

Arguments Description

host A pointer to receive the host name. The host name will be NULL terminated. NULL can
be passed for this call argument.

host _| en An optional pointer to a si ze_t to receive the length in bytes of the returned host name.
This length does not include the NULL terminator that terminates the host name. A value
of NULL can be passed for this call argument.

i tem code An optional list of item codes. The list must be terminated with an integer argument with
value 0.

Description

This routine is used to determine the host name associated with a particular channel.
The channel name can be specified in one of three ways:

* Implicitly specified. For this case, no item codes other than the terminating O are specified and the
channel name is the one for the running program. The channel name is set using the
PNVDF_CHANNEL environment variable.

* Explicitly specified with the MTA_CHANNEL item code.

® Set using the MTA_DQ_CONTEXT item code, which is taken to be the channel name associated
with a specified dequeue context.

In all cases, the official host name of the selected channel is the host name that is returned. The official
host name for a channel is the one that appears on the second line of the channel definition in the MTA
configuration file, i nt a. conf .

The following table lists the item codes and any associated arguments:

Item Codes Additional Description
Arguments

MI'A_CHANNEL const char Explicitly specify a channel name for the official host name.
*channel si ze_t This item code must be followed by the two additional call
channel _|en arguments, specifying:

1. The channel name.

2. The length in bytes of that channel name.
If a value of 0 is passed for the length, the channel
name must be NULL terminated.

MIA DQ CONTEXT nta_dg_t Use the channel associated with the specified dequeue
*dg_ctx context. This item code must be followed by one additional
call argument: a pointer to a dequeue context generated by
nt aDequeueStart ().

MIA ITEM LIST nmta_itemlist_t Specify apointer to an item list array that is terminated with
*itemlist a final array entry that has an item code value of 0. For
further information on item lists, see Item Codes and Item
Lists.

When none of the above item codes are specified, the channel name is taken from the runtime

Messaging Server 8.0 MTA Developer's Reference 95

environment, using PMDF_CHANNEL environment variable.

On successful completion, the host name is stored in the buffer pointed at by the host argument, and
the value of the host argument is returned.

Return Values

In the event of an error, nt aChannel ToHost () will return NULL, but will set nt a_er r no. The following
table lists the error status codes for this routine.

Error Status Description
Codes

MI'A_BADARGS A NULL value was supplied for either of these two arguments:

1. The host argument in the routine call.
2. An argument to an item code.

MIA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files.
Issue the following command for further information:i msi nta test -rewrite

MI'A_NO One of the following errors occurred:

1. Unable to determine the channel name from the runtime environment.
2. Unable to initialize the MTA SDK. For further information, issue the
following command:
inmsinta test -rewite

MI'A_NOSUCHCHAN ' The selected channel name does not appear in the MTA configuration file,
ima.cnf.

MI'A_NOSUCHI TEM An invalid item code was specified.

Example

printf("Host nanme: %\n",
nt aChannel ToHost (NULL, NULL, MIA_ CHANNEL,
“"tcp_local", 0, 0));

nt aDat eTi me()

Obtain the current date and time in an RFC 822 and RFC 1123 complaint format.

Syntax

const char *ntabDat eTi ne(char *dat e,
size_t *date_len,
size_t date_l en_max,
time_t tinme);

Messaging Server 8.0 MTA Developer's Reference 96

Arguments

Arguments Description

dat e A pointer to a buffer to receive the NULL terminated date and time string. To avoid
possible truncation of the string, this buffer should be at least 81 bytes long.

date_len An optional pointer to a si ze_t to receive the length in bytes of the returned date
and time string. This length does not include the NULL terminator that terminates the
host name. A value of NULL can be passed for this call argument.

dat e_| en_nax The maximum size in bytes of the buffer pointed at by the dat e argument.

tinme The date and time for which to generate the string representation. To use the current
local time, pass a value of zero for this argument.

Description
This routine generates an RFC 2822 compliant date and time string suitable for use in an RFC 822

Dat e: header line. To generate a date and time string for a specific time, supply the time asthe t i ne
argument. Otherwise, supply a value of O for the t i me argument and a date and time string will be

generated for the current local time.

On successful completion, the date and time string is stored in the buffer pointed at by the dat e
argument, and the value of the dat e argument is returned.

Return Values

In the event of an error, mt aDat eTi me() will return NULL. It will set the error status code in nt a_err no

Error Status Codes Description

MI'A_ BADARGS A value of NULL was supplied for the dat e argument.
MI'A_STRTRU The dat e buffer is too small; the returned value has been truncated to fit.
Example

char buf[80+1];

printf("The current date and tine is %\n",
nt aDat eTi me(buf, NULL, sizeof (buf), (tine_t)O0);

nt aDebug()

Enable generation of MTA SDK diagnostic output.

Syntax

Messaging Server 8.0 MTA Developer's Reference 97

int ntabDebug(int itemcode, ...);

Arguments

Arguments Description
i tem code An optional list of item codes. The list must be terminated with an integer argument with

value 0.

Description

Many of the low-level MTA subroutine libraries can produce diagnostic output as can the MTA SDK itself.
This output, when enabled, is directed to st dout . When a channel program is run by the Job Controller,
st dout is directed to the channel's debug log file. Use this diagnostic output when developing programs.

© Note -
nt aDebug() may also be used in production programs; however, caution should be used,
as it can be quite verbose and voluminous, thereby degrading performance and consuming

disk space.

As described in the following table, item codes are used to select specific types of diagnostic output.

Messaging Server 8.0 MTA Developer's Reference 98

Item Codes Additional
Arguments

MIA_DEBUG _DECODE None

MIA_DEBUG DEQUEUE None

MI'A_DEBUG_ENQUEUE None

MI'A DEBUG WM size t |evel
MI'A_DEBUG_OS None
MI'A_DEBUG_SDK None

MTA | TEM LI ST ntaitemlist_t

*itemlist

Return Values

Description

Enable diagnostic output from the low-level MIME
decoding routines. This might be helpful when trying to
understand MIME conversions that occur either when
enqueuing messages (and the destination channel is
configured to invoke MIME conversions, for example,
marked with channel keywords such a t hur man or

i nner), or when using nt aDecodeMessage. ()

Enable diagnostic output from low-level queue
processing routines. Use this when trying to understand
issues around reading and processing of queued
message files. This will not help diagnose the selection
of queued messages, which is handled by the Job
Controller.Enabling this diagnostic output is the
equivalent of setting DEQUEUE_DEBUG=1 in the option
file, opti on. dat .

Enables output from low-level message enqueue
routines. Can be used to diagnose the address rewriting
process, destination channel selection, header
processing, and other types of processing that occurs
when a message is enqueued.Enabling this diagnostic
output is the equivalent of setting MM_DEBUG=5 in the
opti on. dat file.

Enable diagnostic output from the low-level message
enqueue routines. The item code must be followed by
one additional call argument: the debug level to use.
The value of level ranges from 0 to 20. Enqueue
diagnostics can be used to diagnose the address
rewriting process, destination channel selection, header
processing and other types of processing that occurs
when a message is enqueued.Enabling this diagnostic
output is equivalent to setting DEQUEUE_DEBUG=I evel
in the opt i on. dat file.

Enable diagnostic output from the low-level operating
system dependent routines. This output is helpful when
diagnosing problems associated with creating, opening,
writing, or reading files. This typically happens when
attempting to enqueue messages, which requires
permissions to create and write messages in the MTA
gueues.Enabling this output is equivalent to setting
OS_DEBUG-1 in the opt i on. dat file.

Enable diagnostic output for the MTA SDK. When this is
enabled, diagnostic information will be output whenever
the SDK returns an error result.

Specify a pointer to an item list array. The item list array
must be terminated with a final array entry with an item
code value of 0. For further information on item lists,
see Item Codes and Item Lists.

Messaging Server 8.0 MTA Developer's Reference 99

Return Values
0
MTA_BADARGS
MTIA_FOPEN

MIA_NO

Description
Successful, normal completion.
A NULL value was supplied for a pointer to an item list array.

Unable to initialize the MTA SDK. Unable to read one or more configuration files.
For further information, issue the following command:i nsinta test -rewite

Unable to initialize the MTA SDK. For further information issue the following
command:i msinta test -rewite

MIA_NOSUCHI TEM An invalid item code was specified.

Example

nt aDebug(MTA_DEBUG_SDK, MFA_MM DEBUG, 8, 0);

nt aDecodeMessage()

Decode a MIME formatted message; optionally convert non-MIME formats to MIME.

Syntax
i nt ntaDecodeMessage(void *ct X,
i nt i nput _type,
voi d *input,
i nt out put _type,
voi d *out put ,
nt a_decode_i nspect _t *i nspect,
i nt itemcode, ...);
Arguments

Messaging Server 8.0 MTA Developer's Reference 100

Arguments Description

ctx Optional pointer to a caller-supplied context or other data type. This pointer will be
passed as the ct x argument to any caller-supplied routines, such as the one supplied
as the i nspect argument. A value of NULL can be passed for this argument.

i nput _type | Input type indicator describing the input source to use, either a dequeue context or a
caller-supplied routine. There are only two valid values: MTA_DECODE_DQ,
MTIA_DECODE_PRCC.

i nput For i nput _t ype=MI'A_DECODE_DQ input must be a pointer to a dequeue context
created by nt aDequeueSt art () .Fori nput _t ype=MIA_DECODE_PROC, input must
be the address of a routine of type nt a_decode_read_t.

out put _t ype Optional output type indicator describing the output destination to use, either an
enqueue context or a caller-supplied routine. Valid values are: 0, MTA_DECODE_NQ,
MI'A_DECODE_PROC. When a value of 0 is supplied, the out put argument is ignored.

out put For out put _t ype=MI'A_DECCDE_NQ, output must be a pointer to an enqueue
context created with nt aEnqueueSt art () .For out put _t ype=MI'A_ DECODE_PRCC,
output must be the address of a routine to type nt a_decode_write_t. This
argument is ignored when a value of 0 is supplied for out put _t ype.

i nspect The address of an inspection routine of type nt a_decode_i nspect _t.

i tem code An optional list of item codes. The list must be terminated with an integer argument
with value 0.

Description

The MTA has powerful facilities for parsing and decoding single and multipart messages formatted using
the MIME Internet messaging format. Additionally, these facilities can convert messages with other
formats to MIME, for example, text parts with BINHEX or UUENCODE data, the RFC 1154 format, and
many other proprietary formats. The nt aDecodeMessage() routine provides access to these facilities,
parsing either a queued message or a message from an arbitrary source such as a disk file or a data
stream.

There are two usage modes for mt aDecodeMessage() . In the first mode, messages are simply parsed,
any encoded content decoded, and each resulting, atomic message part presented to an inspection
routine. This mode of usage is primarily of use to channels that interface the MTA to non-Internet mail
systems such as SMS and X.400. The second mode of operation allows the message to be rewritten
after inspection by an output routine. The output destination for this rewriting may be either the MTA
channel queues, or an arbitrary destination via a caller-supplied output routine.

During the inspection process in this second usage mode, individual, atomic message parts may be
discarded or replaced with text. This operational mode is primarily of use to intermediate processing
channels that need to scan message content or perform content conversions, for example, virus
scanners and encryption software.

Example 5-1 Decoding MIME Messages Simple Example illustrates the first usage mode, while Example
5-2 illustrates the second.

Inspection Routine

Key to either usage mode for nt aDecodeMessage() is the inspection routine, pointed to with the
i nspect argument. The nt aDecodeMessage() routine presents each atomic message part to the

Messaging Server 8.0 MTA Developer's Reference 101

inspection routine one line at a time. The presentation begins with the part's header lines. Once all of the
header lines have been presented, the lines of content are presented next. The following points should
also be noted:

® Message parts need not have any content. A common example is a single part message with no
content for which the sender used the Subj ect : header line to express their message.

® In the case of a hon-multipart message, the message has a single part. The header for this sole
part is the header for the message itself. As noted previously, there may or may not be any
content to this single part.

® |n the case of a multipart message, individual parts need not have a part header. In such cases,
MIME defaults apply and imply that the content is t ext / pl ai n using the US-ASCII character set.

® Regardless of the value of the Cont ent -t r ansf er - encodi ng: header line, the content
presented will no longer be encoded.

* |n the case of a multipart message, the outermost header is not presented. However, it may be
inspected by means of an output routine. For a discussion of the output routine, see Output
Routine that follows.

The following code fragment shows the required syntax of an inspection routine:

int inspection_routine(void *Cct X,
nt a_decode_t *dctx,
i nt dat a_type,
const char *dat a,
size_t data_l en);

The following table lists each of the inspection routine's arguments, and gives a description of each.

Arguments Description
ctx The caller-supplied private context.

dct x A decode context created by nt aDecodeMessage() . This decode context represents
the current part being processed. This context is to be used with calls to the other
decode routines requiring a decode context. This context is automatically disposed of by
nt aDecodeMessage() .

dat a_t ype The nature of the data being presented:* For a header line: MTA_DATA HEADER
* For a line of text-based content: MTA_DATA TEXT
* For a line of binary content: MTA_DATA_BI NARY
* No data at all: MTA_DATA NONE.
Atomic part content with a MIME content type of t ext / or nessage/ is considered to
be text-based. Such content is given the data type MTA_DATA TEXT. All other atomic
part content (audi o/ , i mage/ , and appl i cati on/ *) is considered to be binary and
denoted by the data type MTA_DATA Bl NARY. The data type MTA_DATA NONE is only
presented when using an optional output routine (supplied with the out put argument in
nt aDecodeMessage()).

dat a A pointer to the data being presented. Message lines will not have carriage-return or
line-feed terminators, nor is the data itself NULL terminated. (However, in the case of
binary data, there may be carriage returns, line feeds, or even NULLs embedded within
the data itself.)

dat a_l en | The length in bytes of the data being presented. This length may be 0, which indicates a
blank line and not the absence of any data (MTA_DATA NONE).

Messaging Server 8.0 MTA Developer's Reference 102

Output Routine

When an output routine is not used, the inspection routine can detect the transition from one message
part to another by observing the part number on each call. The part number is obtained by calling
nt aDecodeMessagel nf oSt ri ng() with an item value of MTA_ DECODE_PART _NUMBER.

When the optional output routine (pointed to by the out put argument) is used, an additional data type,
MTA_DATA_NONE, is presented to the inspection routine. It is presented to the inspection routine after the
part's header and entire content have been presented. However, no data is actually presented for the
MI'A_DATA NONE type. As such, this data type merely serves to (1) let the inspection routine know that
the entire part has now been presented, and (2) allows the inspection routine a final chance to delete the
part from the data being output to the output routine. For example, it allows a virus scanner to be
activated and a judgment passed. Based upon the result of the virus scan, the part can then either be
copied to the output or not.

If it is not copying the part to the output, the inspection routine must call

nt aDecodeMessagePart Del et e() . That call will either delete the part entirely, or optionally replace it
with caller-supplied content. Calling nt aDecodeMessagePart Copy() makes the copy operation
explicit; if neither routine is called, then the part will be implicitly copied to the message being output.

When using an output routine, the inspection routine may call nt aDecodeMessagePart Del et e() or
nt aDecodeMessagePart Copy() at any time. It is not necessary to wait until the inspection routine is
called with a data type of MTA_DATA NONE. For instance, a virus scanner may want to discard a part
when it sees that the part's content type indicates an executable program. However, once either of these
routines is called, the inspection routine will not be called any further for that message part.

Dequeue Context

The message to be decoded is supplied by either a dequeue context or a caller-supplied input routine.
When using a dequeue context, observe the following points:

® Specify MTA_DECODE_DQfor the i nput _t ype call argument.
® Pass the dequeue context from mt aDequeueSt art () as the input argument.
® The recipient list of the message being dequeued must have already been read by
nt aDequeueReci pi ent Next () before calling nt aDecodeMessage() .
* nt aDequeueMessageFi ni sh() must not yet have been called for the dequeue context.
® After using a dequeue context with mt aDecodeMessage(), no further calls to
nt aDequeueReci pi ent Next () can be made.
® Calls to nt aDequeuelLi neNext () can only be performed after a call to nt aDequeueRew nd() .

Caller-Supplied Input Routine

When using a caller-supplied input routine to supply the message to be decoded, specify
MI'A_DECODE_PRQOC for the i nput _t ype argument, and pass the address of the input routine as the

i nput argument.

The following code fragment shows the syntax of a caller-supplied input routine:

int input_routine(void * ctx,
const char **|ine,
size_t * line_len);

The following table lists the arguments for a caller-supplied input routine, and gives a description of each.

Messaging Server 8.0 MTA Developer's Reference 103

Arguments Description
ctx The caller-supplied private context.

line A pointer to the start of the next line or section of data to return. The line or data does not
need to be NULL terminated.

[ine_I en The length in bytes of the line or block of data being returned. A zero length signifies zero
bytes of data. That is, a zero length does not cause nt aMessageDecode() to
automatically determine the length by searching for a NULL terminator.

On each successful call, the input routine should return a status code of 0 (MTA_CK). When there is no
more message data to provide, then the input routine should return MTA_EOF. The call that returns the
last byte of data should return 0; it is the subsequent call that must return MTA_EOF. In the event of an
error, the input routine should return a non-zero status code other than MTA_ECF, such as MTA_NO. This
will terminate the message parsing process and nt aDecodeMessage() will return an error.

) Note-
By default, each block of data must be a single line of the message. This corresponds to
the MTA_TERM NONE item code. If the MTA_TERM CR, MTA_TERM CRLF, MTA TERM LF,
or MTA_TERM LFCRitem code is specified, then the block of data need not correspond to
a single, complete line of message data It may be a portion of a line, multiple lines, or even
the entire message. See Iltem Codes for information about nt aDecodeMessage() item
codes.

Enqueue Context

The parsed message may be output either as a message enqueue or written to an arbitrary destination
via a caller-supplied output routine. When using a message enqueue context, observe the following
points:

® Specify MTA_DECODE_NQfor the out put _t ype call argument.

® Pass the enqueue context from mt aEnqueueSt art () as the output.

® Specification of the message's recipient list must have already been completed with
nt aEnqueueTo() before calling nt aDecodeMessage() .

®* nt aEnqueueFi ni sh() must not yet have been called for the enqueue context.

® After the call to nt aDecodeMessage() has completed successfully, complete the message
enqueue with nt aéEnqueueFi ni sh() .

® In the event of an error, the message submission should be cancelled, with
nt aEnqueueFi ni sh().

®* nt aDecodeMessage() will write the entire message header and content. There is no need for
the caller to write anything to the message's header or content.

Caller-Supplied Output Routine

To use a caller-supplied output routine, specify the MTA_DECODE _PROC for the out put _t ype call
argument, and pass the address of the output routine as the out put argument.

This code fragment shows the syntax of a caller-supplied output routine.

Messaging Server 8.0 MTA Developer's Reference 104

int output_routine(void *ct X,
nmt a_decode_t *dctx,
const char **line,
size_t *|line_len);

The following table lists the arguments for a caller-supplied output routine, and gives a description of
each.

Arguments Description
ctx The caller-supplied private context passed as ct x to nt aDecodeMessage() .

dct x A decode context created by nt aDecodeMessage() . This decode context should be
used with calls to the other decode routines requiring a decode context. This context is
automatically disposed of by nt aDecodeMessage() .

line Pointer to a line of the message to output. This line is not NULL terminated. The line will
also lack any carriage return or line feed record terminators.

[ine_l en The length in bytes of the message line to output. A length of O indicates a blank line.
The maximum line length presented will be Bl GALFA_SI ZE bytes (1024 bytes).

Each line passed to the output routine represents a complete line of the message to be output. The
output routine must add to the line any line terminators required by the output destination (for example,
carriage return, line feed pairs if transmitting over the SMTP protocol, or line feed terminators if writing to
a UNIX text file). Supplying a value of zero for the out put _t ype call argument, causes the output
argument to be ignored. In this case no output routine will be used.

Decode Context Queries
When mt aDecodeMessage() calls either a caller-supplied inspection or output routine, it passes to
those routines a decode context. Through various SDK routine calls, this decode context may be queried

to obtain information about the message part currently being processed.

The following table lists the informational message codes that can be obtained about a message part
being processed, and gives a description of each, including the SDK routine used to obtain it.

Messaging Server 8.0 MTA Developer's Reference 105

Message Code Description

MI'A_DECODE_CCHARSET The character set specified with the CHARSET parameter of the part's
Cont ent -t ype: header line. If the part lacks a CHARSET
specification, then the value us- asci i will be returned. Obtain with
nt aDecodeMessagel nfoString() .

MIrA_DECODE_CDI SP Value of the Cont ent - di sposi ti on: header line, less any optional
parameters. Will be a zero length string if the part lacks a
Cont ent - di sposi ti on: header line. Obtain with
nt aDecodeMessagel nfoString().

MIA DECODE_CDI SP_PARAMS Parameter list to the Cont ent - di sposi ti on: header line, if any.
The parsed list is returned as a pointer to an option context. For
further information, see nt aDecodeMessagel nf oPar ans() .

MIA_DECODE_CSUBTYPE The content subtype specified with the part's Cont ent - t ype:
header line (for example, pl ai n fort ext/ pl ai n, gi f for
i mage/ gi f). Defaults to pl ai n when the part lacks a
Cont ent - t ype: header line.Obtain with
nt aDecodeMessagel nfoStri ng() .

MIA_DECODE_CTYPE The major content type specified with the part's Cont ent -t ype:
header line (for example, t ext for t ext/ pl ai n, i mage for
i mage/ gi f). Defaults to t ext when the part lacks a
Cont ent -t ype: header line.Obtain with
nm aDecodeMessagel nfoString() .

MIA_DECODE_CTYPE_PARAMS Parameter list to the Cont ent -t ype: header line, if any. The parsed
list is returned as a pointer to an option context. For further
information, see nt aDecodeMessagel nf oPar ans() .

MIA_DECODE_DTYPE Data type associated with this part. Obtain with
nmt aDecodeMessagel nfol nt ().

MIA DECODE PART_NUMBER Sequential part number for the current part. The first message part is
part 0, the second part is 1, the third part is 2, and so on. Obtain with
nt aDecodeMessagel nfolnt ().

Item Codes

The table that follows lists the item codes for the i t em code argument passed to
nt aDecodeMessage() . The list of item codes must be terminated with an item code with a value of 0.

Item Codes Additional Description
Arguments

Messaging Server 8.0 MTA Developer's Reference 106

MIA_DECODE_LEVELS MAX max_| evel s

MI'A_DECODE_PARTS_MAX

MI'A_DECODE_THRURVAN

MTA_| TEM LI ST

MIA_TERM CR

MIA_TERM CRLF

MIA_TERM LF

MI'A_TERM LFCR

max_parts

None

nma itemlist _t

*itemlist

None

None

None

None

Messaging Server 8.0 MTA Developer's Reference

Place an upper limit on the depth of nested MIME
multiparts that will be parsed. When this limit is
reached no further parsing of deeper, nested
multiparts is performed and the parts handed over
for inspection include as text content these
deeper, nested multiparts. By default, no limit is
imposed. When dealing with looping notification
messages, it is possible for the looping message
to become deeply nested.This item code must be
followed by one additional call argument whose
value is the integer-valued upper limit to impose:
max_| evel s.

Place an upper limit on the total number of
message parts that will be parsed. When this limit
is reached, no further parsing of parts is
performed. By default, no limit is imposed.This
item code must be followed by one additional call
argument whose value is the integer-valued part
limit to impose: nax_parts.

When specified, the MIME parser will first translate
non-MIME formatted data to MIME. By default this
translation is not performed.

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry
with an item code value of 0. For further
information on item lists, see Iltem Codes and Item
Lists.

Data supplied by the input routine, pointed to by
the i nput argument, uses a single byte carriage
return terminator to terminate each line of
message data. This option is ignored when

i nput _t ype has the value MTA_DECODE_DQ

Data supplied by the input routine, pointed to by
the i nput argument, uses a two byte
carriage-return line-feed terminator to terminate
each line of message data. This option is ignored
when i nput _t ype has the value
MTA_DECODE_DQ

Data supplied by the input routine, pointed to by
the i nput argument, uses a single byte line-feed
terminator to terminate each line of message data.
This option is ignored when i nput _t ype has the
value MTA_DECODE_DQ.

Data supplied by the input routine, pointed to by
the i nput argument, uses a two byte line-feed
carriage-return terminator to terminate each line of
message data. This option is ignored when

i nput _t ype has the value MTA_DECODE_DQ

107

MIA TERM NONE None Data supplied by the input routine, pointed to by
the i nput argument, uses no line terminators.
Each call to the input routine returns a single,
complete line of message data. This option is

ignored when i nput _t ype has the value
MTA_DECODE_DQ

Return Values

Return Values Description
0 Successful, normal completion.

MI'A_ BADARGS Two conditions cause this error;

1. A NULL value was supplied for input, output (when output_type is
non-zero), or a required argument to an item code.
2. Aninvalid value supplied for either i nput _t ype or out put _t ype.

MIA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files.
For further information issue the following command:i msi nta text -rewite

MI'A_NO Can be sent for one of three reasons:

1. Error parsing the supplied message.

2. An error reading from the queued message file when MTA_DECODE_DQis

supplied for i nput _t ype.
3. Unable to initialize the MTA SDK. In this case, issue the command:
insinta test -rewite

MIA_NOVEM Insufficient virtual memory.
MI'A_NOSUCHI TEM An invalid item code was specified.

Example

For examples of using nt aDecodeMessage, see Example 5-1 Decoding MIME Messages Simple
Example and Example 5-2.

nt aDecodeMessagel nf ol nt ()

Obtain integer-valued information relating to the current message part.

Syntax

i nt ntaDecodeMessagel nfol nt(nta_decode_t *dctx,
i nt iten;

Arguments

Messaging Server 8.0 MTA Developer's Reference

108

Arguments Description

dct x A decode context created by nt aMessageDecode() .

item Item identifier specifying which value to return. See the description that follows for the list
of permitted values for this argument.

Description

This routine is used to obtain integer-valued information about the current message part. (When
nt aDecodeMessage() calls either a user-supplied inspection or output routine, it provides a decode

context describing the current message part being processed.)

The following table lists the values for the i t emargument, and gives a description of each.

Values Description

MIA_DECODE_DTYPE Data type associated with this part. The returned values will be
MTA_DATA_NONE, MTA_DATA_HEADER, MTA_DATA_TEXT, or

MIA_DATA_BI NARY.

MI'A_DECODE_PART_NUMBER Sequential part number for the current part. The first message part is
part 0, the second part is 1, the third part is 2, and so on.

Return Values

Upon normal, successful completion the value of the requested item is returned. In the event of an error,
a value of - 1 is returned and nt a_er r no is set to indicate the error status code. The following table lists

the error status codes for this routine, and gives an example of each.

Error Status Codes Description

MI'A_BADARGS A NULL value was supplied for the dct x call argument.
MI'A_NOSUCHI TEM An invalid value was supplied for the i t emcall argument.

Example

part _nunber = ntaDecodeMessagel nfol nt(dctx, MIA_PART_NUMBER);

nt aDecodeMessagel nf oPar ans()

Obtain an option context describing the current message part's content parameters.

Syntax

Messaging Server 8.0 MTA Developer's Reference 109

nta_opt _t *ntaDecodeMessagel nf oParans(n a_decode_t *dct x,
i nt item
nta_opt _t **par ans) ;

Arguments

Arguments Description
dect x A decode context created by nt aMessageDecode() .

item Item identifier specifying which content parameter list to return. See the description that
follows for the list of permitted values for this argument.

par ans An optional pointer to receive the address of the option context describing the requested
parameter list.

Description

This routine returns the parameter lists for either the Cont ent -t ype: or Cont ent - di sposi ti on:
header lines. (When nt aDecodeMessage() calls either a user-supplied inspection or output routine, it
provides a decode context describing the current part being processed.)

The following table lists the values for the item argument, and gives a description of each.

Values Description

MIA_ DECODE_CDI SP_PARAMS Parameters associated with the Cont ent - di sposi ti on: header
line, if any.

MIA DECODE_CTYPE_PARAMS Parameters associated with the Cont ent - t ype: header line, if any.

The option context returned upon normal completion does not need to be disposed of with

nt aOpt i onFi ni sh() . It will automatically be disposed of by nt aDecodeMessage() . The values of
individual parameters can be queried using nt aOpti onStri ng(), ntaOpti onlnt (), and

nt aOpt i onFl oat () . Program code need not worry about whether the underlying header line exists in
the parts header. If it does not, then calls to obtain individual parameter values will succeed, but return no

value.

) Note-

If the Cont ent -t ype: header line is not present, nt aCpt i onSt ri ng() returns an

empty string. This is in contrast to what happens when
nt aDecodeMessagel nf oSt ri ng() is used. It always returns a value for the CHARSET

parameter of the Cont ent -t ype: header line. If the Cont ent - t ype: header line is not
present, it returns the MIME default value us- asci i .

It is important to note that the option contexts returned by this routine are only valid during the lifetime of
the associated decode context. They are not valid after inspection or output of a new message part
begins, nor are they valid after nt aDecodeMessage() returns.

Return Values

Messaging Server 8.0 MTA Developer's Reference 110

Upon normal, successful completion, a pointer to an option context is returned. In the event of an error, a
NULL value is returned, and nt a_er r no is set to indicate the error status code. The following table lists
the error status codes, and gives a description of each:

Error Status Description
Codes

MI'A_BADARGS A NULL value was supplied for the dct x call argument, or an invalid decode
context was supplied for dct x.

MI'A_NOSUCHI TEM An invalid value was supplied for the i t emcall argument.

Example

char buf[64];

strcpy(buf, "us-ascii");
nt aOpti onStri ng(
nt aDecodeMessagel nf oPar ans(dct x, MIA_DECODE_CTYPE_PARAMS,
NULL), "charset", 0, buf, NULL, sizeof(buf));
printf("Message parté& squo;s character set is %\n", buf);

nt aDecodeMessagel nfoString()

Obtain string-valued information relating to the current message part.

Syntax

const char *nt aDecodeMessagel nfoString(nta_decode_t *dctx,
i nt item
const char **str,
size_t *| en);

Arguments

Arguments Description
dect x A decode context created by nt aMessageDecode() .

item Item identifier specifying which string-value item to return. See the description that follows
for the list of permitted values for this argument.

str An optional pointer to receive the address of the requested string. The string will be NULL
terminated. A value of NULL may be passed for this argument.

I en An optional pointer to receive the length of the requested string. This length is measured
in bytes and does not include the NULL terminator at the end of the string. A value of
NULL may be passed for this argument.

Messaging Server 8.0 MTA Developer's Reference 111

Description

This routine is used to obtain string-valued information about the current message part. (When
nt aDecodeMessage() calls either a user-supplied inspection or output routine, it provides a decode
context describing the current message part being processed.)

The following table lists the values for the i t emcall argument, and gives a description of each.

Values Description

MIA_DECODE_CCHARSET ' The character set specified with the CHARSET parameter of the part's
Cont ent -t ype: header line. If the part lacks a CHARSET specification,
then the value us- asci i will be returned.

MIA_DECODE_CDI SP Value of the Cont ent - di sposi ti on: header line, less any optional
parameters. If the part lacks a Cont ent - di sposi ti on: header line, the
returned value will be a zero length string.

MI'A_DECODE_CSUBTYPE The content subtype specified with the part's Cont ent -t ype: header line
(for example, pl ai n fort ext/ pl ai n, gi f fori mage/ gi f). Defaults to
pl ai n when the part lacks a Cont ent - t ype: header line.

MI'A_DECODE_CTYPE The major content type specified with the part's Cont ent -t ype: header
line (for example, t ext fort ext/ pl ai n, i mage fori mage/ gi f). Defaults
to t ext when the part lacks a Cont ent - t ype: header line.

Return Values

nt aDecodeMessagel nf oSt ri ng() always returns a value for the CHARSET parameter of the
Cont ent -t ype: header line. When the Cont ent -t ype: header line is not present, it returns the MIME
default value, us- asci i .

Upon normal, successful completion a pointer to the requested string is returned. In addition, if pointers
were provided in the st r and | en call arguments, the address of the string and its length are returned.

In the event of an error, a NULL value is returned and nt a_er r no is set to indicate the error status
code. The following table lists the error status codes, and gives a description of each.

Error Status Description
Codes

MI'A_BADARGS A NULL value was supplied for the dct x call argument, or an invalid decode
context was supplied for dct x.

MI'A_NOSUCHI TEM An invalid value was supplied for the i t emcall argument.

Example

printf("The nmessage part & squo;s character set is %\n",
nt aDecodeMessagel nf oSt ri ng(dctx, MIA_DECODE_CCHARSET,
NULL, NULL));

Messaging Server 8.0 MTA Developer's Reference 112

nt aDecodeMessagePar t Copy/()
Explicitly copy a message part to the message being written.

Syntax

i nt ntaDecodeMessagePart Copy(nta_decode_t *dctx,

i nt itemcode, ...);
Arguments
Arguments Description
dct x A decode context created by nt aMessageDecode() .

i tem code Reserved for future use. A value of zero must be supplied for this argument.

Description

When an output routine is used in conjunction with nt aDecodeMessage(), the inspection routine can
explicitly request that the current message part be copied to the output destination. After the inspection
routine calls nt aDecodeMessagePart Copy() , it will no longer be called for that message part.

If the inspection routine is called with a data type of MTA_DATA_NONE, the message part copy is implicitly
done, even if the inspection routine does not call either nt aDecodeMessagePar t Copy() or
nt aDecodeMessagePart Del et e() . Therefore, the only advantage to making an explicit call to

nt aDecodeMessagePar t Copy() is that once that call is made, the inspection routine will no longer be
called for that particular message part.

Return Values

Values Description
0 Normal, successful completion.
MI'A_BADARGS

A NULL value was supplied for the dct x call argument, or an invalid decode context
was supplied for dct x.

MI'A_NO Invalid call to this routine. Either no output routine is being used, or the call was made
from the output routine itself.Output errors encountered while attempting to write the
output may also result in this error.

Example

This routine is used in Example 5-2.

nt aDecodeMessagePart Del et e()

Prevent a message part from being written or replace it with a text part.

Syntax

Messaging Server 8.0 MTA Developer's Reference 113

i nt ntaDecodeMessagePartDel et e(mmt a_decode_t *dctx,

i nt itemcode, ...);
Arguments
Arguments Description
dct x A decode context created by nt aMessageDecode() .

i tem code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

When an output routine is used in conjunction with nt aDecodeMessage() , the inspection routine may
discard the current message part by calling this routine. As an alternative to discarding the part, it may be
replaced with a part containing caller-supplied data such as a warning message. This replacement is
achieved through the use of item codes.

Once nt aDecodeMessagePar t Del et e() has been called, the inspection routine will no longer be
called for that message part. As such, calling the routine is final and cannot be undone short of cancelling
the entire message decode operation itself (for example, by having the caller-supplied read routine return
an error, or after nt aDecodeMessage() completes, cancelling the dequeue and enqueue operations
with nt aDequeueMessageFi ni sh() and nt aEnqueueFi ni sh()).

The following table lists the item codes for this routine, any additional item code arguments each item
code requires, and gives a description of each.

Item Codes Additional Description
Arguments
MI'A_DECODE_CCHARSET const char Specify the character set used for the message part
*charsetsize_ t (for example, us-ascii,i so-8859-1). Thisitem
charset _|len code must be followed by two additional call
arguments:

1. The name of the character set

2. The length in bytes of that name
If a value of zero is passed for the length, then
the name must be NULL terminated.

Messaging Server 8.0 MTA Developer's Reference 114

MI'A_DECODE_CDI SP const char
*di sposition
size_t

di sposition_Ilen

const char
*| anguage
size_t

| anguage_| en

MI'A_DECODE_CLANG,

const char
*subt ypesi ze_t
subtype_len

MI'A_DECODE_CSUBTYPE

const char
*typesi ze_t
type_len

MT'A_DECODE_CTYPE

MTFA | TEM LI ST ma itemlist_t

*itemlist

Messaging Server 8.0 MTA Developer's Reference

Specify the content disposition for the message part
(for example, i nl i ne, att achnent ;

fil enane=a. doc). This disposition information will
be placed in a Cont ent - di sposi ti on: header
line. The item code must be followed by two
additional call arguments:

1. The disposition string

2. The length in bytes of that string
If a value of zero is passed for the length, then
the disposition string must be NULL
terminated.

Specify the language used for the message part (for
example, en, f r). This language information will be
placed in a Cont ent - | anguage: header line. The
item code must be followed by two additional call
arguments:

1. The language string

2. The length in bytes of that string.
If a value of zero is passed for the length, then
the string must be NULL terminated.

Specify the content subtype for the message part (for
example, pl ai n orht M fortext/plainor

t ext / ht m). This subtype information will be
combined with the t ype and char set information
and placed in a Cont ent -t ype: header line. The
item code must be followed by two additional call
arguments:

1. The language string

2. The length in bytes of that string
If a value of zero is passed for the length, then
the string must be NULL terminated.

Specify the major content type for the message part
(for example, t ext fortext/plainortext/htm
). This major type information will be combined with
the subtype and charset information and placed in a
Cont ent -t ype: header line. The item code must
be followed by two additional call arguments:

1. The language string

2. The length in bytes of that string.
If a value of zero is passed for the length, then
the string must be NULL terminated.

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry with
an item code value of 0. For further information on
item lists, see Item Codes and Item Lists.

115

MIA REASON const char Specifies the content and length of caller-supplied
*textsize_t text or data used to replace the deleted message
text_len part.The item code must be followed by two

additional call arguments:

1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the length, then
the string must be NULL terminated.

Return Values

Return Values Description
0 Normal, successful completion.

MI'A_ BADARGS Returned for one of two reasons:

1. A NULL value was supplied for the dct x call argument, an invalid decode
context was supplied for dct x.
2. Arequired argument to an item code was NULL.

MI'A_NO Returned for one of two reasons:

1. Invalid call. Either no output routine is being used, or the call was made
from the output routine itself.

2. Output errors encountered while attempting to write the output.

MI'A_NOSUCHI TEM An invalid item code was specified.

Example
The following code fragment shows how the routine is used to discard the message part:
nt aDecodeMessagePart Del et e(dctx, 0);

The following code fragment shows how to replace the message part with a text warning:

nt aDecodeMessagePart Del et e(dct x,
MIA_REASON, "Warning: virus infected nessage part was
di scarded. ", 0, & dquo;
MIA_DECODE_CLANG, "en", 2,
MI'A_DECODE_CCHARSET, "us-ascii", 8, 0);

The following code fragment shows the output generated by the preceding code example.

Messaging Server 8.0 MTA Developer's Reference 116

Content-type: text/plain; charset=us-ascii
Cont ent - | anguage: en

Warning: virus infected nmessage part was di scarded.
See also Example 5-2.

nt aDequeuel nf o()

Obtain information associated with an ongoing message dequeue.

Syntax

int ntabDequeuel nfo(nta_dq_t *dg_ctx,

i nt itemcode, ...);
Arguments
Arguments Description
dg_ctx A dequeue context created by nt aDequeueSt art () .

i tem code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

Information associated with an ongoing message dequeue may be obtained with nt aDequeuel nf o() .
The information to obtain is specified through the use of item codes.

© Note-
The pointers returned by nt aDequeuel nf o() are only valid during the life of the dequeue
context. Once the dequeue has been completed for that particular message, the pointers
are no longer valid.

Item Codes Additional Arguments Description

Messaging Server 8.0 MTA Developer's Reference 117

MT'A_CHANNEL const char **channel
size_t *channel _|en

MIA_DELI VERY_FLAGS size_t *dfl ags

Messaging Server 8.0 MTA Developer's Reference

Obtain the name of the channel for which
messages are being dequeued. The
channel name will be NULL
terminated.This item code must be
followed by two additional call
arguments:

1. The address of a pointer to
receive the address of the NULL
terminated channel name.

2. The address of a si ze_t to
receive the length of the channel
name.

A NULL value may be passed for
the channel _| en argument.

Return the envelope delivery flags for
either the entire message or for a
particular recipient. If called before the
first call to

nt aDequeueReci pi ent Next (), then
the delivery flags for the entire message
are returned. If called after the first call to
nt aDequeueReci pi ent Next (), then
the delivery flags are returned for the
most recently reported envelope
recipient address. The value of the
delivery flags is a logical OR of the

del i ver yf | ags channel keyword
values on each channel the message
has been enqueued to as it flows
through the MTA.This item code must be
followed by one additional call argument,
the address of a si ze_t to receive the
delivery flag setting.

118

MIrA DOVAI N const char **domain
size_t *domain_|len

MIA_ENV_I D const char **env_id
size_t *env_id_ len

Messaging Server 8.0 MTA Developer's Reference

Retrieve the destination domain name, if
any, the Job Controller has associated
with this dequeue thread. When the
channel is marked with the si ngl e_sys
channel keyword, then the Job Controller
tries to give each dequeue thread for that
channel all messages destined for the
same host as determined by the domain
name in the recipient envelope
addresses.This item code must be
followed by two additional call
arguments:

1. The address of a pointer to
receive the address of the NULL
terminated destination domain
name.

2. The address of a si ze_t to
receive the length of that domain
name.

A NULL value may be passed for
the donai n_| en argument.

Obtain the envelope ID associated with
this message. If the message was
submitted to the MTA using the SMTP
NOTARY extension (RFC 1891), then
this will be the value of the ENVI D
parameter supplied with the SMTP MAI L
FROMcommand. In all other cases, it will
be an envelope ID assigned by the
MTA.This item code must be followed by
two additional call arguments:

1. The address of a pointer to
receive the address of the NULL
terminated envelope ID.

2. The address of a si ze_t to
receive the length of that
envelope id.

A NULL value may be passed for
the env_i d_I| en argument.

119

MIA_ENV_TO const char **env_to
size_t *env_to len

MIA_ENV_FROM const char **env_from
size_t *env_fromlen

Messaging Server 8.0 MTA Developer's Reference

Return the envelope recipient address
last returned by

nt aDequeueReci pi ent Next () . If that
routine has not yet been called for the
dequeue context, then an MTA_NOerror
code will be returned.This item code
must be followed by two additional call
arguments:

1. The address of a pointer to
receive the address of the NULL
terminated recipient address.

2. The address of a si ze_t to
receive the length of that address.
A NULL value can be passed for
the env_t o_I| en argument.

Obtain the envelope Fr om address for
the message. It is possible for this to be
an empty string (that is, a string of zero
length). This is not uncommon and is
mandated by Internet standards for
automatically generated notification
addresses. Notifications must never be
sent for messages with an empty
envelope From address. The MTA SDK
adheres to this rule when generating any
requested notification messages.This
item code must be followed by two
additional call arguments:

1. The address of a pointer to
receive the address of the NULL
terminated envelope Fr om
address.

2. The address of a si ze_t to
receive the length of that address.
A NULL value can be passed for
the env_f rom | en argument.

120

MTA_| RCPT_TO const char **ircpt_to Return the intermediate form of the last
size_t *ircpt_to_len envelope recipient address returned by

nt aDequeueReci pi ent Next () . If that
routine has not yet been called for the
dequeue context, then an MTA_NOerror
code will be returned.This item code
must be followed by two additional call
arguments:

1. The address of a pointer to
receive the address of the NULL
terminated intermediate recipient
address

2. The address ofa si ze_t to
receive the length of that address.
A NULL value can be passed for
theircpt _to_ | enargument.

MTA_| TEM LI ST na_itemlist_t*itemlist Specifya pointerto an item list array.
The item list array must be terminated
with a final array entry with an item code
value of zero. For further information on
item list usage, see Item Codes and Item
Lists.

Return Values

Return Values Description
0 Normal, successful completion.

MT'A_BADARGS Received for one of three reasons:

1. A NULL value was supplied for the dq_ct x call argument
2. An invalid dequeue context was supplied for dg_ct x
3. Arequired argument to an item code was NULL.

MIA_NO An attempt was made to retrieve recipient information before calling
nt aDequeueReci pi ent Next () .
MI'A_NOSUCHI TEM An invalid item code was specified.

MIA_THREAD The MTA SDK detected simultaneous use of the dequeue context by two different
threads.

Example

The following code fragment illustrates how this routine is used to retrieve the delivery flags and
intermediate recipient address for each recipient address.

Messaging Server 8.0 MTA Developer's Reference 121

int dflags, istat;
const char *to, *ito;

while (! (istat = mtabDequeueReci pi ent Next (dgq, &anp;to, NULL, 0)))

{
nt aDequeuel nf o(dgq, MIA_DELI VERY_FLAGS, &anp; dfl ags,
MIA_| RCPT_TO, &anp;ito, NULL, 0);
printf("Delivery flags: %l\n"
"Internmediate recipient address: %\n", dflags, ito);
}

if (istat != MIA_EOF)
printf("An error occured; %\n", nmaStrError(istat));

nt aDequeueLi neNext ()

Read the next line of the message from the queued message file.

Syntax

i nt ntaDequeueLi neNext (nta_dq_t *dg_ctx,
const char **|ine,
size_t *|en);

Arguments

Arguments Description
dg_ctx A dequeue context created by nt aDequeueStart ().

line Optional address of a pointer to receive the address of the next line of the message. The
line will not be NULL terminated. A value of NULL may be passed for this argument.

| en Optional address of a si ze_t to receive the length of the returned line. A value of NULL
may be passed for this argument.

Description

After exhausting a message's list of envelope recipients by repeated calls to

nt aDequeueReci pi ent Next (), begin reading the message's header and content with

nt aDequeueLi neNext () . Each call will return one line of the message, with the first call returning the
first line of the message, the second call the second line, and so on. Once the message has been
completely read, the status code MTA_ECF will be returned.

The returned lines of the message will not be NULL terminated. This is because the underlying message
file is often mapped into memory. When that is the case, then the returned pointer is a pointer into that
memory map. Since the message files themselves do not contain NULL terminators and the file is
mapped read-only, it is not possible for the SDK to add a NULL terminator to the end of the line without
copying it first to a writable portion of memory.

Messaging Server 8.0 MTA Developer's Reference 122

The returned lines of the message will not have any line terminators such as a line feed or a carriage
return. It is up to the calling routine to supply whatever line terminators might be appropriate (for
example, adding a carriage-return line-feed pair when transmitting the line over SMTP.)

It is possible to call nt aDequeueLi neNext () with NULL values for both the | i ne and | en call
arguments. But this is of limited use; one example is when writing a channel that deletes all queued
messages after first counting the number of lines in each message for accounting purposes. More typical
of such a channel would be to supply NULL for the | i ne argument but pass a non-zero address for the

| en argument. That would then allow the channel to count up the number of bytes in the deleted
message.

Return Values

Return Description
Values
0 Normal, successful completion.

MI'A_BADARGS ' A NULL value was supplied for the dg_ct x call argument, or an invalid dequeue
context was supplied for dq_ct x.

MIA_EOF Message file has been completely read; no further lines to return.

Example

int istat;
const char *line;
size_t len;

while (!(istat = ntaDequeueli neNext (dg_ctx, &anp;line, &anp;len)))
printf("%*s\n", len, line);

if (istat !'= MIA_EOF)
printf("An error occured; %\n", nmaStrError(istat));

nt aDequeueMessageFi ni sh()

Complete a message dequeue or defer a message for later processing.

Syntax

i nt ntaDequeueMessageFi ni sh(nta_dg_t *dg_ctx,
i nt itemcode, ...);

Arguments

Messaging Server 8.0 MTA Developer's Reference 123

Arguments Description
dg_ctx A dequeue context created by nt aDequeueSt art () .

i tem code An optional list of item codes. See the description section the follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

Before completing processing of a queued message, the disposition of each envelope recipient must be
set either by repeated calls to nt aDequeueReci pi ent Di sposi ti on(), or by means of the MTA_DI SP
item code for mt aDequeueMessageFi ni sh() . For the former, a call should be made for each envelope
recipient address. For the latter, the disposition set with MTA_DI SP applies to all envelope recipients,
overriding any previous settings made with nt aDequeueReci pi ent Di sposi ti on() . It is important
that the dispositions be set correctly because they influence whether or not the message is deleted from
the channel's queue by nt aDequeueMessageFi ni sh() . Incorrectly setting the dispositions can lead to
duplicate message delivery, or, worse yet, lost mail.

To complete processing of a queued message, call nt aDequeueMessageFi ni sh() . Upon being
called, the routine performs one of three possible actions:

* |f all recipients have a disposition indicating successful processing or a permanent failure, then the
underlying message file is deleted from the channel's queue and any necessary notification
messages are sent. This corresponds to the dispositions: MTA_DI SP_DEL| VERED,

MTA_DI SP_FAI LED, MTA_DI SP_RELAYED, MTA_DI SP_RELAYED FOREI G\,
MIA DI SP_RETURN, and MTA_DI SP_TI MEDOUT.

® If all recipients have a disposition indicating a temporary processing problem or if the MTA_ABORT
item code is specified, then the message file is left in the channel's queue and a subsequent
processing attempt is scheduled. The MTA_ DI SP_DEFERRED disposition is the only disposition
that indicates a temporary processing problem. Generation of delay notifications is handled by a
special MTA process referred to as the return job. Generation of delay notifications is not handled
by mt aDequeueMessageFi ni sh() .

® |f only a subset of the recipients have a disposition indicating a temporary processing problem,
then a new message is placed in the channel's queue. This new message is identical to the
current message being processed except that its envelope recipient list contains just those
recipients whose disposition indicates a temporary processing problem. The current message
being processed is then removed from the channel's queue and any necessary notifications are
sent for the recipients that had dispositions indicating successful processing or a permanent
failure.

After nt aDequeueMessageFi ni sh() is called, the dequeue context passed to it is no longer valid,
regardless of the status it returns. When it returns an error status, it also defers the message and all of its
recipients for later processing. This is done regardless of the disposition of the recipients. Doing
otherwise could potentially lead to lost mail.

Internet standards require that notifications concerning a message be directed to the message's
envelope Fr om address. In addition, the following two rules apply:

* Automatically generated notification messages themselves must have an empty envelope Fr om

address.
® Notifications must not be sent for messages with an empty envelope Fr om address.

These two rules combine to prevent certain broad classes of message loops. The MTA SDK strictly
adheres to these Internet requirements.

Whenever a temporary processing error occurs and the channel can no longer process a queued
message, processing of the message should be deferred until a later time. Processing for all recipients is

Messaging Server 8.0 MTA Developer's Reference 124

deferred regardless of any prior disposition settings. Temporary processing errors include such errors as:
insufficient virtual memory, network problems, disk errors, and other unexpected processing errors.

The following table lists the item codes for this routine, the additional arguments they take, and gives a
description of each one.

Item Codes Additional Description
Arguments
MI'A_ABORT None When this item code is specified, processing of the message

is deferred for all recipients of the message. The message is
left in the channel's queue and a later processing attempt is

scheduled.
MTA_DI SP size_t Use the MTA_DI SP item code to set the disposition for all
di sposition recipients of the message. This disposition will override any

prior disposition settings.This item code must be followed by

one additional call argument: the disposition value to set. See
the description of nt aDequeueReci pi ent Di sposi tion()

for a discussion of the disposition settings.

MIA I TEM LI ST nta_item|ist_t Specify a pointer to an item list array. The item list array must
*itemlist be terminated with a final array entry with an item code value
of zero. For further information on item list usage, see Iltem
Codes and Item Lists.

MIA REASON const char When deferring processing of a message, the reason for the
*reasonsi ze_t deferral may be saved as part of the messages delivery
reason_| en history. This delivery history may be viewed by system

managers with the MTA gmuitility. It may also be reported in
delay notifications.This item code must be followed by two
additional call arguments:

1. The address of the string containing the reason text.
2. The length in bytes of the reason text. If a value of

zero is passed for the length, then the reason text
must be NULL terminated.

Return Values

Messaging Server 8.0 MTA Developer's Reference 125

Return Values Description
0 Normal, successful completion.

MI'A_ BADARGS Received for one of two reasons:

1. A NULL value was supplied for the dq_ct x call argument, an invalid
dequeue context was supplied for dg_ct x.
2. Arequired argument to an item code was NULL.

MIA_NO Unable to dequeue the message. This error can result from an attempt to enqueue
a new message to a subset of recipients.

MI'A_NOSUCHI TEM An invalid item code was specified.

MI'A_ORDER Call made out of sequence. The call was made either before the recipient list has
been exhausted with nt aDequeueReci pi ent Next (), or after the message had
been dequeued or deferred with nt aDequeueMessageFi ni sh() .

MIA_THREAD The MTA SDK detected simultaneous use of the dequeue context by two different
threads.

Example
There are three code examples, each showing variations on deferring a message.

The following code fragment shows how to use this routine to defer processing of a message until a later
time by calling the routine with the MTA_ABORT item code:

nt aDequeueMessageFi ni sh(dg_ctx, MIA_ABORT, 0);

The following code fragment shows how to use this routine to defer processing of a message and setting
the disposition:

nt aDequeueMessageFi ni sh(dg_ctx, MIA_ DI SP, MIA DI SP_DEFERRED, O0);

The following code fragment shows how to use this routine to defer processing of a message with a text
string explaining the reason for the deferral:

nt aDequeueMessageFi ni sh(dg_ctx, MIA_ABORT, MIA REASQN,
"Tenmporary network error", 0, 0);

nt aDequeueReci pi ent D sposi tion()

Specify the delivery status (disposition) of an envelope recipient address.

Syntax

Messaging Server 8.0 MTA Developer's Reference 126

i nt ntaDequeueReci pi ent Di sposition(nta_dg_t *dg_ct x,
const char *env_to,

size_t env_to_len,
size_t di sposi tion,
i nt itemcode, ...);
Arguments
Arguments Description
dg_ctx A dequeue context created by nt aDequeueStart ().
env_to The recipient address to effect the setting for. This must be the recipient's envelope

To: address as returned by mt aDequeueReci pi ent Next () and not some
transformation of that address. If a value of zero is passed for the env_t o_| en
argument, then this string must be NULL terminated.

env_to_| en The length in bytes of the recipient address, env_t o. This length does not include any
NULL terminator. If a value of zero is passed for this argument, then the recipient
address string must be NULL terminated.

di sposi tion The delivery status disposition to set for this recipient address. See the description
section that follows for further details.

i tem code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

Before completing processing of a queued message, the disposition of each envelope recipient must be
set either by repeated calls to nt aDequeueReci pi ent Di sposi ti on(), or by means of the MTA_DI SP
item code for mt aDequeueMessageFi ni sh() . For the former, a call should be made for each envelope
recipient address. For the latter, the disposition set with MTA_DI SP applies to all envelope recipients,
overriding any previous settings made with mt aDequeueReci pi ent Di sposi ti on() . The delivery
status dispositions, and their descriptions are listed in the table that follows. Pass one of these values for
the disposition argument.

Messaging Server 8.0 MTA Developer's Reference 127

Delivery Status Dispositions

MI'A_DI SP_DEFERRED

MI'A_DI SP_DELI VERED

MTA_DI SP_FAI LED

MIA_DI SP_RELAYED

MTA_DI SP_RELAYED_FOREl GN

MIA_DI SP_RETURN

MTA_DI SP_TI MEDOUT

Description

Processing for this recipient has experienced a temporary failure (for
example, the network is temporarily down, the disk is currently full,
the recipient is presently over quota). Schedule a later processing
attempt for this recipient.

Final delivery has been effected for this recipient address. Any
required delivery notifications should be generated. Intermediate
processing channels should use MTA_DI SP_RELAYED rather than
MIA_DI SP_DELI VERED. Use of MTA_DI SP_DELI VERED by an
intermediate processing channel might incorrectly generate a
delivery status notification when final delivery has not yet been
effected.

Processing for this recipient has experienced a permanent failure.
The message is and will remain undeliverable for this recipient. No
further delivery attempts are to be made for this recipient. Any
required non-delivery notifications should be generated.

The message has been successfully processed for this recipient. No
further processing by this channel is needed for this recipient
address. No delivery status natification is generated as final delivery
will be effected by another entity capable of generating any needed
notification messages. This disposition should be used by
intermediate processing channels. It should also be used by
gateways that transfer the message to other mail systems capable of
generating the necessary notification messages.

The message has been successfully processed for this recipient. No
further processing by this channel is needed for this recipient
address; however, a relayed delivery status notification should be
generated if delivery notification was requested for this recipient.
This disposition should be used by gateways that transfer the
message to other mail systems incapable of generating the
necessary notification messages.

Generate a postmaster non-delivery notification for this recipient
and, for this recipient, remove the message from the channel's
gqueue. This disposition is not intended for use by channels. Instead,
it should be used by postmaster utilities that allow the postmaster to
manually return mail messages.

Generate a timed-out non-delivery notification indicating that the
message has been undeliverable for too long and no further delivery
attempts will be made. This disposition is not intended for use by
channels. Instead, it is meant for use by the MTA return job that
scans the MTA queues, returning old, undeliverable messages to
their originators.

This table lists the item codes for this routine, and the additional required arguments, and gives a

description of each.

Messaging Server 8.0 MTA Developer's Reference 128

Item Codes Additional Description

Arguments
MIA DI SP si ze_t Use the MTA_DI SP item code to set the disposition for all
di sposition recipients of the message. This disposition will override any

prior disposition settings. This item code must be followed by
one additional call argument: the disposition value to set. See
the description of nt aDequeueReci pi ent Di sposi tion()
for a discussion of the disposition settings.

MIA I TEM LI ST nta_itemlist_t | Specify a pointer to an item list array. The item list array must
*itemlist be terminated with a final array entry with an item code value
of zero. For further information on item list usage, see Iltem
Codes and Item Lists.

MIA_ REASON const char The reason for ascribing the disposition to this recipient
*reasonsi ze_t address. This reason might then appear in any delivery or
reason_|l en non-delivery status notification for that recipient.This item

code must be followed by two additional call arguments:

1. The address of the string containing the reason text.

2. The length in bytes of the reason text. If a value of
zero is passed for the length, then the reason text
must be NULL terminated.

Return Values

Return Values Description
0 Normal, successful completion.
MT'A_BADARGS This value was returned for one of the following reasons:

1. A NULL value was supplied for the dq_ct x call argument.
2. Aninvalid dequeue context was supplied for dg_ct x.
3. Arequired argument to an item code was NULL.

MI'A_NOSUCHI TEM An invalid item code was specified.

MIA_ THREAD The MTA SDK detected simultaneous use of the dequeue context by two different
threads.

Example

This code fragment assumes a condition in which the recipient address is invalid. It returns a disposition
of MTA_DI SP_FAI LED with an explanation.

nt aDequeueReci pi ent Di sposi tion(
dg_ctx, "sue@iroe.cont, 0, MIA DI SP_FAI LED,
MIA_REASON, "lnvalid recipient address: no such user", 0, 0);

Messaging Server 8.0 MTA Developer's Reference 129

nt aDequeueReci pi ent Next ()

Obtain the next envelope recipient address for the queued message file.

Syntax

i nt ntaDequeueReci pi ent Next (nta_dq_t *dg_ct x,
const char **env_to,

size_t *env_to_len,
i nt itemcode, ...);
Arguments
Argument Description
dg_ctx A dequeue context created by nt aDequeueSt art ().
env_to Optional address of a pointer to receive the memory address of the next envelope

recipient address. The recipient address will not be NULL terminated.

env_to_| en Optional address of a si ze_t to receive the length of the returned recipient address. A
value of NULL may be passed for this argument.

item code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

The first step in processing a queued message is to retrieve its list of envelope recipient addresses. This
is done by repeatedly calling mt aDequeueReci pi ent Next () until a status code of MTA_EOF is
returned. Note that each call that returns a recipient address will return a status code of 0 (MTA_OK). The
final call, which returns MTA_ECF, will not return a recipient address.

The processing of the list of envelope recipient addresses will, in general, be unique to each channel.
Intermediate processing channels should simply re-enqueue a new message and copy the envelope
recipient list verbatim over to the new message being enqueued, being sure to specify the MTA_ENV_TO
and MTA_DQ CONTEXT item codes to nt aEnqueueTo() . The envelope recipient list must be read in its
entirety before attempting to read the message itself with nt aDequeueLi neNext () . Failure to do so will
result in an MTA_ORDER error being returned by nt aDequeueLi neNext () .

This routine accepts the same item codes as nt aDequeuel nf o() . The code fragments are equivalent
also, (compare the examples). Consequently, the nt aDequeuel nf o() routine might appear

superfluous. However, it also serves as a means of obtaining, in a single, non-repeated call, information
about the overall message itself, such as the message's envelope ID.

Return Values

Messaging Server 8.0 MTA Developer's Reference 130

Return Description
Values

0

Normal, successful completion.

MI'A_BADARGS | This value was returned for one of the following reasons:

1. A NULL value was supplied for the dq_ct x call argument.
2. An invalid dequeue context was supplied for dg_ct x.
3. A NULL value was supplied for a required item code argument.

MIA_NOVEM Insufficient virtual memory.

MIA_EOF The recipient list has been completely read; there are no further recipient addresses to

return.

MIA THREAD Concurrent use of the dequeue context by two different threads has been detected.

Example

This code fragment illustrates an intermediate processing channel using this routine to fetch recipient
addresses.

int dflags, istat;
const char *to, *ito;
while (!(istat = mtabDequeueReci pi ent Next (dgq, &anp;to, NULL,
MTA_DELI VERY_FLAGS, &anp; dfl ags,
MIA_| RCPT_TO, &anp;ito, NULL, 0)))
printf("Delivery flags: %\n"
"Intermediate recipient address: %\n", dflags, ito);
if (istat !'= MIA_EOF)
printf("An error occured; %\n", ntaStrError(istat));

nt aDequeueRew nd()

Reset the read point to the start of the message.

Syntax

i nt nt aDequeueLi neNext (nta_dqg_t *dg_ctx);

Arguments

Arguments Description

dg_ctx A dequeue context created by nt aDequeueStart ().

Messaging Server 8.0 MTA Developer's Reference 131

Description

Repositions the read point back to the start of the message.

After obtaining a message's recipient list by repeated calls to mt aDequeueReci pi ent Next (), the read
point into the underlying message file is positioned at the start of the actual message. Specifically, at the
start of the message's outermost header. Calling nt aDequeuelLi neNext () advances this read point,
with each call moving it towards the end of the message. To reposition the read point back to the start of
the message (that is, to the start of the message's outermost header), call nt aDequeueRewi nd() . Use
this call if a program needs to make a second pass through a message. For example, a program might
scan a message's content before actually processing it.

Return Values

Return Description
Values
0 Normal, successful completion.

MI'A BADARGS A NULL value was supplied for the dg_ct x call argument, or an invalid dequeue
context was supplied for dq_ct x.

MI'A_ORDER Call made out of sequence. The call was made either before the recipient list has
been exhausted with nt aDequeueReci pi ent Next (), or after the message had
been dequeued or deferred with nt aDequeueMessageFi ni sh().

MIA THREAD The MTA SDK detected simultaneous use of the dequeue context by two different
threads.

Example

None

nt aDequeueSt art ()

Initiate message dequeue processing.

Syntax
int nmtabDequeueStart (void *ct x1,
mt a_dq_process_nessage_t *process_nessage,
nt a_dqg_process_done_t *process_done,
i nt itemcode, ...);
Arguments

Messaging Server 8.0 MTA Developer's Reference 132

Arguments Description

ctx1 Optional pointer to a caller-supplied context or other data type. This pointer will
be passed as the ct x1 argument to the caller-supplied routines
process_nessage and process_done. A value of NULL may be passed for

this argument.

process_mnessage The address of a caller-supplied routine to process each message.

process_done Optional address of a caller-supplied clean up routine. A NULL value may be

passed for this argument.

i tem code An optional list of item codes. See the description section that follow for a list of
item codes. The list must be terminated with an integer argument with value 0.

Description

The nt aDequeueSt art () routine initiates processing of messages queued to a specific channel. By
default, the channel serviced will be determined from the PMDF_CHANNEL environment variable.
However, a channel name can be explicitly specified with the MTA_CHANNEL item code.

All of the item codes, their additional arguments, and a description of each are included in the table that

follows.
Iltem Codes Additional
Arguments
MI'A_CHANNEL const char
*channel si ze_t
channel | en
MTFA | TEM LI ST ma itemlist _t

*itemlist

MIA_JBC_MAX_ATTEMPTS si ze_t
attenpts

Messaging Server 8.0 MTA Developer's Reference

Description

Explicitly specify the name of the channel name
to perform dequeue processing for. This item
code must be followed by two additional call
arguments: the name of the channel and the
length in bytes of that channel name. If a value
of zero is passed for the length, then the
channel name must be NULL terminated. When
this item code is not specified, the name of the
channel to process queued messages for is
taken from the PMDF_CHANNEL environment
variable.

Specify a pointer to an item list array. The item
list array must be terminated with a final array
entry with an item code value of zero. For
further information on item list usage, see Item
Codes and Item Lists.

Specify the maximum number of contiguous
attempts that will be made to sleep and then
re-query the Job Controller for work after being
told by the Job Controller that there are no
more messages to process. The default value
for this setting is 5 attempts. If an attempt
succeeds in providing additional work, the count
of attempts is reset to zero. (The duration of
each sleep may be specified with the
MI'A_JBC_RETRY_I| NTERVAL item code.)This
item code must be followed by an additional
argument: the maximum number of contiguous
attempts to make.

133

MIA_JBC_RETRY_I NTERVAL size_t seconds

MIA THREAD MAX THREADS size_t threads

MIA_THREAD STACK_SI ZE size_t bytes

MIA_THREAD MAX_MESSAGES si ze_t
nessages

MIA_THREAD WAI T_TI MEQUT si ze_t seconds

Return Values

Messaging Server 8.0 MTA Developer's Reference

Set the number of seconds

nt aDequeueMessage() sleeps before again
guerying the Job Controller for additional work.
When not specified, a value of 10 seconds is
used. This item code must be followed by one
additional argument: the number of seconds to
sleep for.

Specify the maximum number of processing
threads to run concurrently. If not specified,
then a limit of 20 threads is assumed.This item
code must be followed by one additional
argument: the maximum number of concurrent
threads to permit.

By default, the processing threads will have a
stack whose size is sufficient for MTA SDK
operations. This is the size returned by the

nt aSt ackSi ze() routine. To request a larger
size, use this item code to specify the desired
size. Note that specification of a smaller size is
ignored: m aDequeueMessage() will never
use a stack size smaller than that returned by
nt aSt ackSi ze() .This item code must be
followed by one additional argument: the
minimum size in bytes for each thread's stack.

The number of messages to allocate per
processing thread. The channel program will
aim to run N processing threads where N is
computed as follows: N = (count of pending
gueued messages) /

MIA_THREAD MAX_MESSAGES. For example,
if there are 100 queued messages and
MI'A_THREAD_ MAX_MESSAGES has its default
value of 20 messages, then 5 processing
threads are started.This value does not control
the total number of messages presented to a
single processing thread.This item code must
be followed by one additional argument: the
number of messages for each processing
thread.

Once nt aDequeueMessage() determines that
there are no more messages to process, it
waits for all processing threads to complete
their work and exit. By default,

nt aDequeueMessage() will wait no longer
than 1800 seconds (30 minutes).This item code
must be followed by one additional argument:
the maximum number of seconds to wait.

134

Return Values Description
0 Normal, successful completion.

MI'A_ BADARGS This value is returned for one of following reasons:

1. A NULL value was supplied for the dq_ct x call argument.

2. Aninvalid dequeue context was supplied for dg_ct x.

3. A NULL value was specified for the pr ocess_nessage routine.
4. A NULL value was supplied for a required item code argument.

MIA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration
files.For further information, issue the following command:i nsi nt a t est
-rewrite

MI'A_NETWORK Error communicating with the Job Controller.

MI'A_NO Unable to initialize the MTA SDK.For further information, issue the following
command:inmsinta test -rewite

MIA_NOVEM Insufficient virtual memory.

MI'A_NOSUCHCHAN ' Specified channel is not defined in the MTA configuration file. If no channel was
explicitly specified, then the channel name specified with the PMDF_ CHANNEL
environment variable is not defined in the MTA configuration file. This error may
also be returned when the Job Controller's configuration file lacks a CHANNEL
section matching the specified channel.

MI'A_NOSUCHI TEM An invalid item code was specified.

Example

For an example of nt aDequeueSt art (), see Example 5-2.

Other Considerations for nt aDequeueSt art ()

This section contains supplementary information concerning m aDequeueSt art () . It covers the
following topics:

Multiple Calls to nt aDequeueSt art ()
Message Processing

Message Processing Procedure
process_nessage() Routine
process_done() Routine

Thread Creation Loop

Multiple Calls to nt aDequeueSt art ()

A channel program can call nt aDequeueSt ar t () multiple times: either sequentially or in parallel. In the
latter case, the program would need to create threads so as to effect multiple, simultaneous calls to

nt aDequeueSt art () . However, just because this can be done does not mean that it is appropriate to
do so. In the former case of multiple sequential calls, there's no need to be making repeated calls. When
nt aDequeueSt art () returns, the channel no longer needs immediate processing and has been in that
state for

MIA_JBC _ATTEMPTS_MAX * MTA_JBC_RETRY_| NTERVAL

Messaging Server 8.0 MTA Developer's Reference 135

seconds. Instead, the channel program should exit thereby freeing up system resources. The Job
Controller will start a new channel program running when there are more messages to process. In the
latter case of multiple parallel calls, there is again no need to do so. If there is an advantage to running
more threads than a single call generates, then the channel's t hr eaddept h channel keyword setting
should be increased so that a single call does generate more threads. The only exception to either of
these cases might be if the multiple calls are each for a different channel. Even then, however, the
advantage of so doing is dubious as the same effect can be achieved through the use of multiple
processes, one for each channel.

Message Processing

When nt aDequeueSt art () is called, a communication path with the MTA Job Controller is
established. The Job Controller is then asked if there are messages to be processed for the channel.
Typically there will be messages to process since it is the Job Controller that normally starts channel
programs, and it does so when there are queued messages in need of processing. Based upon
information obtained from the Job Controller, nt aDequeueSt art () will then begin to create
non-joinable processing threads. Each processing thread immediately begins processing the queued
messages.

Message Processing Procedure

To process queued messages, a processing thread takes the following steps:

1. The thread sets ct x2 to have the value NULL:
ctx2 = NULL;
For information on the pr ocess_nessage arguments, see process_nessage() Routine
2. The thread communicates with the Job Controller to obtain a message file to process. If there are
no more message files to process, then go to Message Processing Procedure.
3. For the message file, the thread creates a dequeue context that maintains the dequeue
processing state for that message file.
4. The thread then invokes the caller-supplied pr ocess_nessage routine, passing to it the dequeue
context created in Message Processing Procedure, for example:
i stat = process_nessage(&ctx2, ctxl, &g ctx, env_from env_fromlen);
For a description of the pr ocess_nessage routine, see process_nessage() Routine
5. The process_nessage routine then attempts to process the message, ultimately removing it
from the channel's queues or leaving the message file for a later processing attempt.
6. If nt aDequeueMessageFi ni sh() was not called before the pr ocess_nessage routine
returned, then the queued message is deferred. That is, its underlying message file is left in the
channel's queue and a later processing attempt is scheduled.
The dequeue context is destroyed.
. If the pr ocess_nessage routine did not return the MTA_ABCRT status code, then repeat this
cycle starting at Message Processing Procedure.
9. The caller-supplied pr ocess_done routine is called, for example:
process_done(&ct x2, ctxl);
For a description of the pr ocess_done routine, see process_done() Routine
10. The thread exits.

© ~

process_nessage() Routine

This caller-supplied routine is invoked by the processing threads to do the actual processing of the
messages.

The following code fragment shows the required syntax for a pr ocess_nessage routine.

Messaging Server 8.0 MTA Developer's Reference 136

int process_nessage(void **ct x2
voi d *ctx1,
nta_dqg_t *dg_ctx,
const char *env_from
i nt env_fromlen);

The following table lists the required arguments for a pr ocess_nessage routine, and gives a
description of each.

Arguments Description

ctx2 A writable pointer that the pr ocess_nessage routine can use to store a pointer to a
per-thread context. See the description that follows for further details.

ctx1 The caller-supplied private context passed as ct x1 to nt aDequeueStart ().

dg_ctx A dequeue context created by nt aDequeueSt art () and representing the message

to be processed by this invocation of the pr ocess_nessage routine.

env_from A pointer to the envelope Fr om address for the message to be processed. Since
Internet messages are allowed to have zero length envelope Fr om addresses, this
address can have zero length. The address will be NULL terminated.

env_from.| en The length in bytes of the envelope Fr om string. This length does not include any
NULL terminator.

When a processing thread first begins running, it sets the value referenced by ct x2 to NULL. This
assignment is made only once per thread and is done before the first call to the pr ocess_nessage
routine. Consequently, on the first call to the pr ocess_nessage routine, the following test is true:

*ctx2 == NULL

That test will remain true until such time that the pr ocess_nessage routine itself changes the value by
making an assignment to * ct x2. As demonstrated in the following code fragment, if the
process_nessage routine needs to maintain state across calls to itself by the same processing thread,
it can allocate memory for a structure to store that state in, and then save a pointer to that memory with
ctx2.

Messaging Server 8.0 MTA Developer's Reference 137

int process_message(void **ctx2, void *ctxl1,
const char *env_from size_t env_from.len)

struct our_state_t *state;

state = (our_state_t *)(*ctx2);
if (!state)
{
/*
* First call for this thread.
* Allocate a structure in which to store the state
* information
*/
state = (our_state_t *)calloc(1l, sizeof(our_state_t));
if (!state) return(MIA_ABORT);
*ctx2 = (void *)state;

/*
* Set any appropriate initial values for the state

* structure
*/

For a sample pr ocess_nessage routine, see Example 5-2
process_done() Routine

To assist in cleaning up state information for a thread, callers can provide a routine pointed to by the
process_done argument.

The following code fragment shows the required syntax for a pr ocess_done() routine.

voi d process_done(void *ctx2,
void *ctx1);

The following table lists the arguments required for a pr ocess_done routine, and gives a description of
each.

Required Description
Arguments
ctx2 The value of the last pointer stored by pr ocess_nessage in the ct x2 call

argument for this thread.

ctx1 The caller-supplied private context passed as ct x1 to nt aDequeueStart ().

The following code fragment demonstrates the type of actions taken by a pr ocess_done routine.

Messaging Server 8.0 MTA Developer's Reference 138

voi d process_done(ctx2, ctxl)

{
struct our_state_t *state = (our_state_t *)ctx2;
if (!state)
return;
/*
* Take steps to undo the state
* (for exanple, close any sockets or files)
*/
/*
* Free the nenory allocated by process_nessage()
* to store the state
*/
free(state)
}

Thread Creation Loop

While the processing threads are running, the thread that invoked nt aDequeueSt art () executes a
loop containing a brief pause (that is, a sleep request). Each time the nt aDequeueSt art () thread
awakens, it communicates with the Job Controller to see if it should create more processing threads. In
addition, the Job Controller itself has logic to determine if more threads are needed in the currently
running channel program, or if it should create additional processes to run the same channel program.

To demonstrate, the following code fragment shows pseudo code of the nt aDequeueSt art () loop.

Messaging Server 8.0 MTA Developer's Reference 139

threads_running = 0
t hreads_nmax = MIA THREAD MAX THREADS

attentps = MIA_JBC_NMAX_ATTEMPTS

LOOP:
whil e (threads_running < threads_nmax)
{

Go to DONE i f a shut down has been requested

pendi ng_nmessages = Ask the Job Controller how nmany
messsages there are to be processed

/1 If there are no pendi ng nmessages
/1 then consider what to do next
i f (pending_nessages = 0)
{
/1 Continue to wait?
if (attenmpts <= 0)
go to DONE

/1 Decrenment attenpts and wait
attenpts = attenpts - 1,
go to SLEEP
}
/1l Reset the attenpts counter
attenpts = MIA_JBC_MAX_ATTEMPTS

t hreads_needed = Ask the Job Controll er how nany
processing threads are needed

/1 Cannot run nore then threads_nax threads per process
if (threads_needed \> threads_nax)
t hreads_needed = t hreads_max

/'l Create additional threads if needed
if (threads_needed \> threads_running)

{
Create (threads_needed - threads_running) nore threads
threads_runni ng = t hreads_needed
}
}
SLEEP:
Sl eep for MIA_JBC RETRY_I NTERVAL seconds
-- a shut down request will cancel the sleep
go to LOOP
DONE:

Wait up to MIA_THREAD WAI T_TI MEQUT seconds
for all processing threads to exit

Return to the caller of ntaDequeueStart()

Messaging Server 8.0 MTA Developer's Reference

140

nt aDequeueThr eadl d()

Return the thread ID associated with the specified dequeue context.

Syntax

i nt ntaDequeueThreadl d(nma_dq_t *dq_ctx);

Arguments

Arguments Description

dg_ctx A dequeue context created by nt aDequeueSt art ().

Description

Each processing thread is assigned a unique integer identifier referred to as a thread ID. This thread ID
is intended as a diagnostic aid when debugging channel programs. Showing it with diagnostic messages
helps to differentiate the work of one thread from another in the channel's debug log file.

The thread ID can also be obtained with nt aDequeuel nf o() .

Return Values
In the event of an error, the value - 1 is returned and nt a_er r no is set to indicate the error status code.
Error Status Description

Code

MI'A BADARGS A NULL value was supplied for the dqg_ct x call argument, or an invalid dequeue
context was supplied for dq_ct x.

Example

nt aLog(" %08d: process_nessage() called with dg_ctx=%",
nt aDequeueThr eadl d(dq_ctx), dg_ctx);

nt aDone()

Release resources used by the MTA SDK.

Syntax

Messaging Server 8.0 MTA Developer's Reference 141

voi d nmt abDone(void);

Arguments

None

Description

Once use of the MTA SDK has been finished, nt aDone() should be called to release any resources
used by the MTA SDK. The routine should be called while the calling process is single threaded.

Return Values

None

Example

nt aDone() ;

nt aEnqueueCopyMessage()

Copy a queued message to a new message being enqueued.

Syntax

i nt nmtaEnqueueCopyMessage(nta_ng_t *ng_ctx,
nta_dg_t *dg_ctx,

i nt rew nd);
Arguments
Arguments Description
ng_ct x Message submission to copy the message data to. nq_ct x must be an enqueue context

created by nt aEnqueueStart ().

dg_ctx Queued message to copy the message data from. Must be a a dequeue context created
by nmt aDequeueStart ().

rew nd Supply a value of 1 to move the read point in the queued message file to the start of the
message before commencing the copy operation. Supply a value of zero to leave the
message read point unchanged before copying.

Description

Messaging Server 8.0 MTA Developer's Reference 142

Intermediate processing channels often need to copy verbatim a message from a channel queue to a
new message being enqueued. That is, intermediate processing channels often re-enqueue an existing,
gueued message. This verbatim copy can be accomplished with nt aEnqueueCopyMessage() . Using
this routine is significantly faster than using nt aDequeueLi neNext () and mt aEnqueueW i t eLi ne()
in a read and write loop.

When mt aEnqueueCopyMessage() is called, the copy begins at the current read point of the queued
message file associated with the supplied dequeue context, dq_ct x. The message file from that point to
its end is copied to the new message being enqueued. To start at the beginning of the queued message
(that is, to start at the beginning of its outermost header), specify a value of 1 for the r ewi nd call
argument. So doing is equivalent to first calling nt aDequeueRew nd() before

nt aEnqueueCopyMessage() .

Return Values

Return Description
Values
0 Normal, successful completion.

MI'A_BADARGS ' This value is returned for one of the following reasons:

1. A NULL value was supplied for either the ng_ct x or dg_ct x call arguments.

2. Invalid contexts were passed for either or both of those call arguments.
MIA_FCREATE Unable to create a temporary file to hold data for the new message being enqueued.
MIA _FI O An I/O error occurred while attempting to write data to a message file.

MI'A_ORDER Call made out of order. Either no recipients have yet been specified for the new
message with nt aEnqueueTo(), or the recipient list of the queued message has not
been completely read with nt aDequeueReci pi ent Next () .

MIA THREAD @ Simultaneous use of either the enqueue or dequeue context by two different threads
was detected.

Example

The following code fragment specifies starting at the beginning of the queued message by using the
rewi nd call argument.

nt aEnqueueMessageCopy(ng_ctx, dg_ctx, 1);

The code fragment that follows illustrates a second, less efficient way of copying the message.

nt aDequeueRew nd(dg_ct x)
whil e (! ntaDequeueLi neNext (dgq_ctx, &anp;line, &anp;len))
nt aEnqueueWitelLi ne(ng_ctx, line, len, NULL);

nt aEnqueueError ()

Messaging Server 8.0 MTA Developer's Reference 143

Retrieve an extended error message.

Syntax
const char *ntaEnqueueError(nta_ng_t *ng_ctx, const char **nessage,
size_t *message_| en,
i nt i tem code);
Arguments
Arguments Description
ng_ct x An enqueue context created by nt aEnqueueStart ().
nessage Optional address of a pointer to receive the address of the NULL terminated error

message text. A NULL value may be supplied for this argument.

nmessage_| en Optional address of a si ze_t to receive the length in bytes of the error message text.
A NULL value may be supplied for this argument.

i tem code Reserved for future use. A value of zero must be supplied for this call argument.

Description
When mt aEnqueueTo() returns an MTA_NO error message, there is often extended error information
available, which takes the form of a text string suitable for writing as diagnostic output. To retrieve this

information, issue m aEnqueueEr r or () immediately after receiving an MTA_NOerror return from
nt aEnqueueTo() .

Return Values
In the event of an error from nt aEnqueueEr ror (), a NULL value will be returned and nt a_errno is

set to indicate the error status code. The following table lists the error status codes, and gives a
description of them.

Error Status Codes Description
0 Normal, successful completion.

MI'A_BADARGS This value is returned for one of the following reasons:

1. A NULL value was supplied for the nq_ct x call argument.
2. Aninvalid context was passed for nq_ct Xx.

MIA_ THREAD Simultaneous use of the enqueue context by two different threads was detected.

Example

None

Messaging Server 8.0 MTA Developer's Reference 144

nt aEnqueueFi ni sh()

Complete or cancel a message enqueue operation.

Syntax

i nt ntaEnqueueFi nish(nta ng_t *ng_ctx,

i nt itemcode, ...);
Arguments
Arguments Description
ng_ct x An enqueue context created by nt aEnqueueStart ().

i tem code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

Call mt aEnqueueFi ni sh() to complete an enqueue operation, submitting a new message to the MTA
for transport and delivery. Alternatively, call mt aEnqueueFi ni sh() with the MTA_ABORT item code to
cancel an enqueue operation without submitting a new message. In either case, when

nt aEnqueueFi ni sh() is called the enqueue context passed to it, nq_ct x, is disposed of and may no
longer be used regardless of whether a success or error status code is returned.

When completing an enqueue operation, the MTA does much of the actual enqueue work, such as,
performing any configured header rewriting, content transformation, and actually writing the message
copy or copies to the MTA channel queues. Consequently, errors returned by this routine are typically
caused by either site imposed limits (that is, the message size exceeds a site configured limit), or file
system related problems (for example, the disk is full, write errors to the disk).

When mt aEnqueueFi ni sh() returns an MTA_NOerror message, there is often extended error
information available. This information may be retrieved with the MTA_REASON item code. This extended
error information takes the form of a text string suitable for writing as diagnostic output.

Before calling mt aEnqueueFi ni sh() to complete an enqueue operation, be sure that the envelope
recipient list has been specified with nt aEnqueueTo() and any header lines and content have been
written with nt aEnqueueW it e() or nt aEnqueueWiteLi ne().

When cancelling an enqueue operation, no message is submitted to the MTA, and any temporary files
that may have been created are disposed of. To cancel an enqueue operation, specify the MTA_ABORT
item code.

The following table lists the item codes for this routine, their additional arguments, and gives a
description of each.

Messaging Server 8.0 MTA Developer's Reference 145

Item Codes Additional Description

Arguments
MI'A_ABORT None Cancel the current enqueue operation. The message
represented by the enqueue context will not be enqueued to
the MTA.

MIA_ I TEM LI ST nta_item|ist_t Specify a pointer to an item list array. The item list array must
*itemlist be terminated with a final array entry with an item code value
of zero. For further information on item list usage, see Item
Codes and Item Lists.

MIA REASON const char Provide the address of a string pointer to receive any
**errnegsi ze_t extended error message information. In the event of an error
*errmsg_l en associated with submitting the message to the MTA, then the

MTA may return additional information. By providing this
pointer, that additional information may be obtained for
diagnostic purposes.This item code should be followed by
two additional item codes:

® The address of a pointer to receive the address of the
NULL terminated error text.
® The address of a si ze_t to receive the length of that

error text.
A value of NULL may be passed for the errnsg_| en
argument.

Return Values

Return Values Description

0 Normal, successful completion.

MI'A_BADARGS This value is returned for one of the following reasons:

1. A NULL value was supplied for the nq_ct x call argument.
2. Aninvalid enqueue context was supplied for nq_ct x.
3. Arequired argument to an item code was NULL.

MIA FCREATE Insufficient disk space or other I/O error encountered while attempting to create or
close a message file or a temporary file.

MIA_FI O An I/O error occurred while writing message files to the MTA channel queues or
while reading from a temporary file.

MIA_NO Error terminating the message temporary file, there appears to be insufficient disk
space to write the message copies, or there is a problem with a configured content
scanner (for example, a virus or spam filter).

MI'A_NOSUCHI TEM An invalid item code was supplied.

MI'A_ORDER The call was made out of order. Either no envelope recipient addresses have
been specified or no message content has been provided.

MIA_THREAD Simultaneous use of the enqueue context by two different threads was detected.

Messaging Server 8.0 MTA Developer's Reference 146

B Note-

In case of an error, the MTA_REASON item code can be used to receive extended error
message information

As shown in the preceding table, in the case of an error, the MTA_REASON item code can be used to
receive extended error message information

Example

See A Simple Example of Enqueuing a Message.

nt aEnqueuel nf o()
Obtain information associated with an ongoing message enqueue.

Syntax

i nt ntaEnqueuel nfo(nma_nqg_t *ng_ctx,
i nt itemcode, ...);

i nt ntaEnqueuel nfo(nmta_ng_t *ng_ctx,

Arguments

Arguments Description
ng_ct x An enqueue context created by nt aEnqueueStart () .

i tem code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

Information associated with an ongoing message enqueue operation may be obtained with
nt aEnqueuel nf o() . The information to obtain is specified through the use of item codes. Arguments to
the item codes provide memory addresses through which to return the requested data.

String pointers returned by nt aEnqueuel nf o() are only valid during the life of the enqueue context.
Once the enqueue has been completed, the associated pointers are no longer valid.

The following table lists the item codes for this routine, their additional arguments, and gives a
description of each.

Item Codes Additional Arguments Description

Messaging Server 8.0 MTA Developer's Reference 147

MTA_ALI AS_EXPAND size_t *val ue Return the setting of the alias expansion
flag. Normally, this flag has a nonzero
value that indicates that alias expansion
should be done for all envelope recipient
addresses. When the flag has a value of
zero, alias expansion will not be
performed. The value of the flag is set with
the mt aEnqueueSt art () routine.This
item code must be followed by one
additional argument: the address of
si ze_t to store the setting's value in.

MIA_ADR_SORT size_t *val ue Obtain the setting of the address sorting
flag. Normally, this flag has a non-zero
value that indicates that the list of
envelope recipients written to each
message copy in the MTA channel
gueues are to be sorted in ascending
order based upon US-ASCII ordinal
values. When this flag has a value of zero,
the list of envelope recipient addresses
will not be sorted. This item code must be
followed by one additional argument: the
address of si ze_t to store the setting's

value in.
MI'A_CHANNEL char **channel si ze_t Obtain the name of the channel that this
*channel _| en message is being enqueued by.This item

code must be followed by two additional
call arguments:

1. The address of a pointer to receive
the address of the NULL terminated
channel name.

2. The address ofasi ze_t to
receive the length of the channel
name. A NULL value may be
passed for the channel _| en
argument.

MIA DELI VERY_FLAGS size_ t *dfl ags Return the envelope delivery flags set for
the entire message by
nt aEnqueueSt art () .This item code
must be followed by one additional call
argument: the address of a si ze_t to
receive the delivery flag setting.

Messaging Server 8.0 MTA Developer's Reference 148

MIA_ENV_FROM const char **env_from

size_t *env_fromlen

MIA ENV_I D const char **env_id

size_t *env_id len

MIA EXPAND LIM T size_t *val ue

MIA FRAGVENT BLOCKS size t *val ue

Messaging Server 8.0 MTA Developer's Reference

Retrieve the envelope Fr om address
specified when the enqueue was started
with nt aEnqueueSt art () .This item
code must be followed by two additional
call arguments:

1. The address of a pointer to receive
the address of the NULL terminated
envelope From address.

2. The address ofasi ze_t to
receive the length of that address.
A NULL value may be passed for
the env_from | en argument.

Obtain the envelope ID specified with
nt aEnqueueSt art () .This item code
must be followed by two additional call
arguments:

1. The address of a pointer to receive
the address of the NULL terminated
envelope ID.

2. The address ofa si ze_t to
receive the length of that envelope
ID. A NULL value may be passed
forthe env_i d_| en argument.

Retrieve the expand limit setting specified
with nt aEnqueueSt art () . The returned
value will be a positive integer value.
When no expand limit has been set, the
returned value will be a large integer value
(for example, 2,147,483,647 on 32-bit
processors).This item code must be
followed by one additional argument: the
address of a si ze_t to store the setting's
value in.

Obtain the value, if any, specified for the
MI'A_FRAGVENT _BLOCKS setting when
the message enqueue was initiated. The
returned value will be a positive integer
value. When no value was set, the
returned value will be a large integer value
(for example, 2,147,483,647 on 32-bit
processors).This item code must be
followed by one additional argument: the
address of a si ze_t to store the setting's
value in.

149

MIA_FRAGVENT_LI NES size_t *val ue Obtain the value specified for the
MI'A_FRAGVENT LI NES setting when the
message enqueue was initiated. The
returned value will be a positive integer
value. When no value was set, the
returned value will be a large integer value
(for example, 2,147,483,647 on 32-bit
processors).This item code must be
followed by one additional argument: the
address of a si ze_t to store the setting's
value in.

MIA_NOTI FY_FLAGS size_t *nflags Return the delivery status notification flags
set for the entire message when the
enqueue was started. The returned value
is a bit map constructed using the
MTA_NOTI FY_ constants defined in
nt asdk. h. If no setting was effected with
nt aEnqueueSt art (), then the returned
value will be the MTA default of:
MTA_NOTI FY_DELAY {{

MIA_NOTI FY_FAI LURE MIA _NOTI FY_CONTENT_FULL This item code must be followed by one
additional call argument: the address of a
si ze_t to receive the setting of the
delivery status notification flags.

Return Values

Return Values Description
0 Normal, successful completion.
MT'A_BADARGS This value is returned for one of the following reasons:

1. A NULL value was supplied for the nq_ct x call argument.
2. Aninvalid enqueue context was supplied for ng_ct x.
3. Arequired argument to an item code was NULL.

MI'A_NOSUCHI TEM An invalid item code was specified.

MIA_ THREAD Simultaneous use of the enqueue context by two different threads was detected.

Example

The following code fragment obtains the name of the channel used as the source channel for the
enqueue.

Messaging Server 8.0 MTA Developer's Reference 150

nta_ng_t *naq;
const char *channel ;

nt aEnqueueSt art (&anp; nq, "sue@iroe.con', 0, 0);
nt aEnqueuel nf o(ng, MIA_CHANNEL, &anp;channel, NULL, 0);
printf("Source channel = %\n", channel);

nt aEnqueueSt art ()

Initiate a message submission.

Syntax

int ntaEnqueueStart(nta_ng_t **nq,
const char *env_from

size_t env_fromlen,
i nt itemcode, ...);
Arguments
Arguments Description
ng_ct x On a successful return, a pointer to an enqueue context created by
nt aEnqueueSt art () . This enqueue context represents the message enqueue
operation initiated by the call.
env_from Optional pointer to the address to use as the envelope Fr om address for the

message being submitted. The address must be compliant with RFC 2822. When
used as an envelope address, the MTA will reduce it to an RFC 2821 compliant
transport address. The string must be NULL terminated if a value of zero is passed
for env_from | en. The length of this string, not including any NULL terminator,
may not exceed ALFA_SI ZE bytes.A value of NULL may be supplied for this
argument. When that is done, the env_from | en argument is ignored and an
empty envelope Fr om address is used for the message submission.

env_from.| en The length in bytes, not including any NULL terminator, of the envelope Fr om
address supplied with env_f r om If a value of zero is passed for this argument, then
the envelope Fr om address string must be NULL terminated.

i tem code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

To submit a message to the MTA for delivery, an enqueue operation must be initiated. This is achieved
by calling nt aEnqueueSt ar t () . When the call is successful, an enqueue context representing the
enqueue operation will be created and a pointer to the context returned via the nq_ct x call argument.
This context must then be used to specify the message's envelope recipient list and content, both header
and body. Once the recipient list and content have been specified, the submission may be completed

Messaging Server 8.0 MTA Developer's Reference 151

with nt aEnqueueFi ni sh() . That same routine is also used to cancel an enqueue operation. For
further information on message enqueue processing, see Basic Steps to Enqueue Messages.

Enqueue contexts are disposed of with nt aEnqueueFi ni sh(), either as part of completing or
cancelling a message enqueue operation.

When initiating an enqueue operation, the envelope Fr om address for the message should be specified
with the env_f romand env_f r om | en call arguments, or through use of a dequeue context with the
MIA_DQ CONTEXT item code. In either case, it is important to keep in mind the usage of the envelope
From address. MTAs transporting the message use it as a return path, that is, the address to which
notifications about the message should be returned. Specifically, it is the address to which the message
will be returned in the form of a non-delivery notification (NDN) should the message prove undeliverable.
It is also the address to which any delivery status notifications (DSNs) will be sent. As such, the envelope
From address specified should be an address suitable for receiving such natifications.

© Note-
Automatically generated messages such as NDNs and DSNs are required to have an
empty envelope Fr om address, that is, a zero length address. These rules are mandated
by Internet standards so as to prevent broad classes of looping messages. It is imperative
that they be observed; failure to do so may result in exponentially growing mail loops that
affect not only your own mail system but possibly mail systems of other sites with which
you exchange mail.

When explicitly specifying the envelope Fr om address via the env_f romand env_from | en call
arguments, note the following points:

® The length of the address may not exceed 256 bytes. This is the length limit imposed by RFCs
2821 and 2822. It is also the size denoted by the ALFA_SI ZE constant.

® Older MTAs may not support envelope addresses of lengths exceeding 129 bytes. This is the
length limit imposed by RFC 821.

® To specify an empty envelope Fr om address, supply an empty string for env_f r omand a length
of zero for env_f rom_| en, or supply a value of NULL for env_f r omand any value for
env_fromlen.

When using a dequeue context to supply the envelope Fr om address, simply supply a value of NULL
and zero for, respectively, the env_fromand env_from | en call arguments. Be sure to also supply the
dequeue context with the MTA_DQ_ CONTEXT item code. For example:

ires = ntaEnqueueStart(&nqg, NULL, 0, MIA DQ CONTEXT, dg, 0);

If the submitted message lacks a Fr om header line, then the address supplied as the envelope Fr om
address will also be used to generate a Fr om header line. This is the reason why

nt aEnqueueSt art () allows an RFC 2822 compliant address to be supplied for the envelope Fr om
address. When placing the supplied address into the envelope, the MTA reduces it to an RFC 2821
compliant address (for example, removes any RFC 2822 phrases or comment fields).

When submitting a message, the MTA requires a source channel to associate with the enqueue
operation. By default, the name of the source channel will be derived from the PMDF_ CHANNEL
environment variable. However, this may be overridden one of two ways: by supplying a dequeue context
with the MTA_DQ_CONTEXT item code, or by explicitly specifying the channel name with the
MI'A_CHANNEL item code. Use of a dequeue context implicitly specifies the source channel name to be
the name of the channel associated with the dequeue context.

Messaging Server 8.0 MTA Developer's Reference 152

B Note-

An explicitly specified channel name will take precedence over a channel name specified

with a dequeue context.

As part of initiating a message submission, item codes may be used to specify additional envelope
information for the message as well as select non-default values for MTA parameters that influence

message enqueue processing.

The following table lists the items codes for this routine, their additional arguments, and gives a

description of each.

Iltem Codes Additional Arguments
MTA_ALI AS_EXPAND None
MTA_ALI AS_NOEXPAND None
MIA_ADR_NOSORT None
MIA_ADR_SORT None

Messaging Server 8.0 MTA Developer's Reference

Description

When this item code is specified, each
envelope recipient address is allowed
to undergo alias expansion (for
example, mailing list expansion). This
is the default behavior.

Use of this item code inhibits alias
expansion for the envelope recipient
addresses. The default behavior is to
permit alias expansion.

Inhibit sorting of the envelope
recipient list in the message copies
written to the MTA channel queues.
By default, the envelope recipient
address list is sorted. Use this option if
it is imperative that the envelope
recipients be processed in some
specific order. Maintaining the order
requires control of all MTA channels
that the message will pass through.

Allow the envelope recipient list to be
sorted in the message copies written
to the MTA channel queues. This is
the default behavior.

153

MI'A_CHANNEL char *channel si ze_t Explicitly specify the name of the
channel _l en channel under which to enqueue this

message. That is, explicitly specify the
name of the source channel to use for
this message submission. The name
specified will override any name
implicitly specified with the
MIA_DQ_CONTEXT item code.This
item code must be followed by two
additional call arguments:

1. The address of the string
containing the channel name.

2. The length in bytes of that
channel name. If a value of
zero is specified for the length,
then the channel name string
must be NULL terminated.

MI'A_DELI VERY_FLAGS size_ t dfl ags Specify additional envelope delivery
flags to set for this message. The
logical OR of any existing setting and
the value here supplied will be used
for the message's delivery flag setting.
In general, the delivery flag setting
associated with a message will be the
logical OR of the values set by each
channel a message has travelled
through. Note that channels also can
set this value with the
del i ver yf | ags channel keyword.
When this item code is not used, the
delivery flags inherited from a supplied
dequeue context will be used. If no
dequeue context is supplied, then the
value of the delivery flags will be set
to zero.This item code should be
followed by an additional call
argument: the value to combine with
any existing setting.

MIA DELI VERY_FLAGS ABS size_t dfl ags Ignore any previous envelope delivery
flag setting for the message and
replace the setting with the value
specified with this item code.This item
code should be followed by an
additional call argument: the delivery
flag setting to effect.

Messaging Server 8.0 MTA Developer's Reference 154

MIA DQ CONTEXT na dg_t *dg_ctx When a dequeue context is supplied
with this item code, the message
submission will take all of its envelope
fields, except for the recipient list, from
the envelope of the queued message
represented by the dequeue context,
including the envelope Fr om field.
These assumed settings can then be
overridden on an individual basis
through the use of other item codes,
and the env_fromand
env_from | en call arguments.Use
of this item code changes the defaults
for the envelope fields from the MTA
defaults to the values used in the
dequeue context.Intermediate
processing channels are strongly
encouraged to use this item code. Use
of this feature allows envelope
information to be automatically copied
from the queued message being
processed to the new message that
will be enqueued as a result.This item
code must be followed by one
additional argument: the pointer to the
dequeue context to use.

MIA_ENV_I D const char *env_id Explicitly specify an envelope ID string
size t env_id |len for the message. The supplied value

must conform to the syntax of an
xt ext objectin RFC 1891 and may
not have a length exceeding 100
bytes. The value specified with this
item code will override any value
implicitly specified with the
MI'A_DQ CONTEXT item code. If no
value is supplied either explicitly or
implicitly, then the MTA will generate a
unique envelope ID for the
message.This item code must be
followed by two additional call
arguments:

1. The address of the envelope ID
string.

2. The length in bytes of that
string. If a value of zero is
supplied for the length, then the
string must be NULL
terminated.

Messaging Server 8.0 MTA Developer's Reference 155

MIA EXPAND LIM T size t limt

MIA_FRAGVENT _BLOCKS size_t bl ocks

MIA_FRAGVENT LI NES size t lines

Messaging Server 8.0 MTA Developer's Reference

If the message has more envelope
recipients than the specified limit, then
processing of the recipient list (that is,
alias expansion) will be deferred. This
deferral is performed by enqueuing
the message to the reprocess
channel. At a later time, and running
in a separate process, the reprocess
channel will complete the processing
of the envelope recipient list. This item
code must be followed by one
additional argument: the limit to
impose. By default, no limit is
imposed.

A large enqueued message may
automatically be fragmented into
several, smaller messages using
MIME's message/ parti al content
type. At the destination MTA system,
these smaller messages may
automatically be re-assembled back
into one single message. The
MI'A_FRAGVENT_BLOCKS item code
allows specification of a size threshold
for which messages larger than the
threshold will automatically be
fragmented. The limit specified is
measured in units of blocks. (By
default, a block is 1024 bytes.)
However, sites may change that size
with the MTA BLOCK_SI ZE option.
Consequently, code using this option
should use the nt aBl ockSi ze()
option should they need to convert
some other unit to blocks.This item
code must be followed by one
additional argument: the block size
threshold to impose. By default, no
threshold is imposed.

A large enqueued message can be
automatically fragmented into several,
smaller messages using the MIME
content type nessage/ parti al . At
the destination MTA system, these
smaller messages can be
automatically re-assembled back into
one single message. The
MI'A_FRAGVENT LI NES item code
allows specification of a line count
threshold for which messages
exceeding the threshold will
automatically be fragmented.This item
code must be followed by one
additional argument: the line count
threshold to impose. By default, no
threshold is imposed.

156

MTA_NOTI FY_FLAGS size_t nfl ags Specify the delivery status notification

flags to be set for the entire message.
The specified value is a bit map
constructed using the MTA_NOTI FY_
constants defined in nt asdk. h. If no
setting is made, then the value from a
supplied dequeue context will be
used. If no dequeue context is
supplied, then the MTA default value
is used. The default value
is:{{MTA_NOTIFY_DELAY

MI'A_NOTI FY_FAI LURE MTA_NOTI FY_CONTENT_FULL | Flags for individual recipient address

Return Values

Return Values
0
MI'A_BADARGS

MIA_NO

MIA_NOVEM
MTA_NOSUCHCHAN
MIA_NOSUCHI TEM
MIA_STRTRUERR

Example

may be specified when

nmt aEnqueueTo() is called.This item
code must be followed by one
additional call argument: the address
of an integer to receive the setting of
the delivery status notification flags.

Description
Normal, successful completion.

This value is returned for one of the following reasons:

1. A NULL value was supplied for the nq_ct x call argument.
2. Aninvalid enqueue context was supplied for nq_ct x.
3. Arequired argument to an item code was NULL.

Unable to determine the channel name from the PMDF_CHANNEL environment
variable,

Insufficient virtual memory.
Specified channel name does not exist in the MTA configuration.
An invalid item code was specified.

The supplied envelope From: address is too long; it may not exceed a length of
ALFA_SI ZE bytes. Or the supplied channel name has a length exceeding
CHANLENGTH bytes.

This routine is used as part of Example 5-2.

nt aEnqueueTo()

Add an envelope recipient to a message being submitted.

Syntax

Messaging Server 8.0 MTA Developer's Reference 157

int nmtaEnqueueTo(nta_ng_t *ng_ctx,
const char *to_adr,
size_t to_adr_len,
i nt itemcode, ...);

Arguments

Arguments Description
ng_ct x Pointer to an enqueue context created with mt aEnqueueStart ().

to_adr An address to add to the message being enqueued. The address must be compliant
with RFC 2822. When used as an envelope address, the MTA will reduce it to an RFC
2821 compliant transport address. If a value of zero is passed for t o_adr _| en the
address string must be NULL terminated. The length of this string, not including any
NULL terminator, may not exceed ALFA Sl ZE bytes.

to_adr | en The length in bytes, not including any NULL terminator, of the address supplied with
t o_adr . If a value of zero is passed for this argument, then the address string must be
NULL terminated.

item code | An optional list of item codes. See the description section below for a list of item codes.
The list must be terminated with an integer argument with value 0.

Description

After initiating a message enqueue operation with nt aEnqueueSt art () , the envelope recipient list for
the message must to be constructed. This list is the actual list of recipients to which the message is to be
delivered. A message must have at least one envelope recipient address; otherwise, there is no one to
deliver the message to. In the envelope there is no distinction between To: , Cc: , or Bcc: addressees.
Additionally, the list of addressees appearing in the message's header need not be the same as those
appearing in the envelope. This is the case with list-oriented mail. The address in the message's header
is often the list's mail address; whereas, the addresses in the envelope are the those of the list's
individual members.

By default, when an address is added to a message with mt aEnqueueTo() , it is added as both an
envelope recipient address as well as a To: addressee in the message's To: header line. The address
is therefore considered to be an active transport address as well as a header address. This case
corresponds to the MTA_TOitem code. To instead mark an active transport address for addition to either
a Cc: or Bcc: header line, use the MTA_CCor MTA_BCC item code.

Addresses that only appear in the message's header are sometimes referred to as inactive addresses.
Such addresses added with nt aEnqueueTo() may be noted as such with the MTA_HDR TO,
MIA_HDR_CC, and MTA_HDR BCCitem codes. They can also be manually added by constructing the To:
, Cc:, or Bcc: header lines with nt aEnqueueW it e() ornt aEnqueueWiteLi ne().

Messaging Server 8.0 MTA Developer's Reference 158

B Note-
The MTA SDK will automatically generate multiple message copies when Bcc: recipients
exist for the message. Specifically, when a message has N envelope recipient addresses
which are Bcc: recipients, the MTA SDK will automatically generate N+1 message copies:
one copy for each of the Bcc: recipients and an additional copy for the remaining, non-
Bcc: recipients. Each copy for a Bcc: recipient will only disclose that Bcc: recipient in
the message's header. The message copy for all of the non-Bcc: recipients will disclose
none of the Bcc: recipients in its header

An address may be added as only an active transport address without addition to any header line. This is
done with the MTA_ENV_TOitem code. This item code should be used by intermediate processing
channels that copy verbatim the outer message header from the old message to the new, which prevents
duplication of addresses in the new message's header.

When an active transport address is added to a message, it is possible that the MTA will reject the
address. For example, the address can be rejected when there is a mapping table, such as the
SEND_ACCESS mapping table. When an address is rejected by the MTA, extended error text is made
available by the MTA. This extended information can be captured through use of the MTA_REASON item
code.

The following table lists the item codes for this routine, their additional arguments, and gives a
description of each.

Item Codes Additional Description
Arguments
MIA _BCC None The address is an active transport address that should

also appear in a Bcc: header line. The address will be
added to both the envelope recipient list as well as the
message's header. For further information about Bcc:

, see the note under Description.

MIA _CC None The address is an active transport address that should
also appear in a Cc: header line. As such, the
address will be added to both the envelope recipient
list as well as the message's header.

MTA_DELI VERY_FLAGS size_t Specify additional envelope delivery flags to set for

df | ags this recipient. The logical OR of any existing setting for
the recipient and the value here supplied will be used
for the recipient's delivery flag setting. The existing
setting for the recipient will be either the message's
setting, which was set with nt aEnqueueStart (), or
any setting copied over from the dequeue context for
this recipient with the MTA_DQ_CONTEXT item code.
This item code should be followed by one additional
call argument: the value to combine with any existing

setting.
MIA DELI VERY_FLAGS ABS si ze_t Ignore any previous envelope delivery flag setting for
df I ags the recipient and replace the setting with the value

specified with this item code.This item code should be
followed by one additional call argument: the delivery
flag setting to effect.

Messaging Server 8.0 MTA Developer's Reference 159

MIA_DQ CONTEXT

MIA_ENV_TO

MIA_HDR_BCC

MIA_HDR CC

MIA_HDR_TO

MIA_NOTI FY_FLAGS

MIA_ORCPT_TO

Messaging Server 8.0 MTA Developer's Reference

nta dg_t
*dqg_ct x

None

None

None

None

size_t
nfl ags

const char
*or cpt
size t
orcpt _len

When a dequeue context is supplied using this item
code, the specified envelope recipient address is
compared to the envelope recipient list for the queued
message represented by the dequeue context. If a
match is found, envelope fields for the recipient are
copied from the queued message to the new message
being enqueued. If no match is found, an MTA_NO
error status is returned.This item code must be
followed by one additional argument: the pointer to the
dequeue context to use.

The address is an active transport address; add it to
the envelope recipient list. Do not add it to any header
lines. This designation is often used by intermediate
processing channels.

The address is not an active transport address; do not
add it to the envelope recipient list. The address
should, however, be added to a Bcc: header line.
Note that since a Bcc: header line is usually only
placed in the message copy destined to the Bcc:
recipient, use of this item code only arises when the
Bcc: recipient's header address differs from their
transport address and, consequently, the two need to
be added with separate calls to nt aEnqueueTo() .

The address is not an active transport address; do not
add it to the envelope recipient list. The address
should, however, be added to a Cc: header line.

The address is not an active transport address; do not
add it to the envelope recipient list. The address
should, however, be added to a To: header line.

Delivery status notification flags specific to this
envelope recipient address. A value specified with this
item code overrides any setting made for the message
itself when the enqueue context was created. It also
overrides any value inherited from a dequeue context.
Note that this item code has no effect when
MI'A_HDR_BCC, MTA_HDR_CC, or MTA_HDR TOis
specified; notification flags only apply to active
transport addresses. For further details, see the
description of this item code for

nt aEnqueueSt ar t () .This item code must be
followed by one additional call argument: the address
of an integer to receive the setting of the delivery
status notification flags.

Specify the original envelope recipient address in RFC
1891 original-recipient address format (for example,
rfc822; sue@ir oe. comfor sue@i r oe. con).This
item code must be followed by two additional
arguments:

1. The pointer to the original recipient address.

2. The length in bytes of that address. If a value of
zero is supplied for the length, then the address
string must be NULL terminated.

160

MIA REASON const char | Provide the address of a string pointer to receive any
**errnsg extended error message information. In the event of
size_ t an error associated with submitting the recipient to the
*errmsg_| en MTA, then the MTA may return additional information.

By providing this pointer, that additional information
may be obtained for diagnostic purposes.This item
code should be followed by two additional item codes:

1. The address of a pointer to receive the address
of the NULL terminated error text.

2. The address of a si ze_t to receive the length
of that error text. A value of NULL can be
passed for the er r nsg_| en argument.

MIA_TO None The address is an active transport address that should
also appear in a To: header line. This is the default
interpretation of addresses added with
nt aEnqueueTo() .

Return Values

Return Values Description
0 Normal, successful completion.
MI'A_ BADARGS This value is returned for one of the following reasons:

1. A NULL value was supplied for the nq_ct x call argument.
2. Aninvalid enqueue context was supplied for nq_ct x.
3. Arequired argument to an item code was NULL.

MIA_NO If MTA_DQ CONTEXT was specified, then the supplied envelope To: address does
not match any envelope recipient address in the queued message represented by
the supplied dequeue context. Otherwise, the MTA rejected the envelope recipient
address. It could be syntactically invalid, refused by a mapping table, such as
SEND_ACCESS. Consider using the MTA_REASON item code.

MIA_NOSUCHI TEM An invalid item code was specified.

MI'A_ORDER The call was made out of order: the message's envelope recipient list has already
been terminated by a call to nt aEnqueueW it e() or
nt aEnqueueW i t eLi ne().

MIA_STRTRUERR The supplied envelope To: address or original envelope To: address is too long.
Neither may exceed a length of ALFA_SI ZE bytes.

Example

This routine is used in Example 5-2.

nt aEnqueueWit e()

Write message data to the message being submitted.

Messaging Server 8.0 MTA Developer's Reference 161

Syntax

int nmtaEnqueueWite(nta_ng_t *ng_ctx,
const char *strl,
size_t | enl,
const char *str2, ...);

Zero or more string pointer-length pairs can be supplied to this routine. The list of pairs must be
terminated by a NULL call argument.

Arguments

Arguments Description
ng_ct x Pointer to an enqueue context created with nt aEnqueueStart ().

strl Pointer to a string of text to write to the message. The string must be NULL terminated if
a value of zero is passed for | enl.

l enl The length in bytes, not including any NULL terminator, of the string st r 1. If a value of
zero is passed for this argument, then the string st r 1 must be NULL terminated.

str2 Pointer to a second string of text to write to the message. The string must be NULL
terminated if a value of zero is passed for | en2. If only supplying a single string, then
pass a NULL value for this argument.

Description

After a message's list of envelope recipient addresses has been supplied with mt aEnqueueTo() , the
message itself must be supplied. This is done by repeatedly calling nt aEnqueueW i t e() . First the
message's header should be supplied, followed by a blank line, followed by any message content. Each
line of message data must be terminated by a US-ASCI!I line-feed character (Ox0A). Each call to

nt aEnqueueW it e() can supply one or more bytes of the message's data. Unlike

nt aEnqueueW it eLi ne(), a single call to nt aEnqueueW it e() does not necessarily correspond to
a single, complete line of message data; it could correspond to a partial line, a complete line, multiple
lines, or even one or more complete lines plus a partial line. This flexibility with nt aEnqueueW it e()
exists because it is up to the caller to supply the message line terminators. Calling either

nt aEnqueueW it e() or nt aEnqueueWit eLi ne() terminates the message's envelope recipient list.
Once either of these routines have been called, nt aEnqueueTo() can no longer be called for the same
enqueue context.

Return Values

Messaging Server 8.0 MTA Developer's Reference 162

Return Description
Values

0 Normal, successful completion.

MT'A_BADARGS | This value is returned for one of the following reasons:

1. A NULL value was supplied for the nq_ct x call argument.
2. An invalid enqueue context was supplied for ng_ct x, or a required argument to
an item code was NULL.

MIA FCREATE Unable to create a disk file.
MIA_FI O Error writing to a disk.
MI'A_ORDER Call made out of order. No envelope recipient addresses have been supplied.

MIA THREAD @ Simultaneous use of the enqueue context by two different threads was detected.

Example

The code fragment that follows shows two ways to produce the same results. They both write two header
lines to the message:

nt aEnqueueWite(nq, "From sue@iroe.comn", 0, NULL);
nt aEnqueueWite(nq, "Subject: test\n", 0, NULL);

nt aEnqueueWite(nq, "From sue@iroe.com nSubject: test\n", O,
NULL) ;

The following code fragment shows the two header lines output by each code fragment in the preceding
code example.

From sue@iroe.com
Subj ect: test

This code fragment demonstrates how to terminate the message header by writing a blank line.

nt aEnqueueWite(nqg, "\n", 0, NULL);

The following code fragment shows a single call to {{mtaEnqueueWrite()}}that writes out an entire
header, including the terminating blank line.

nt aEnqueueWite(nq, "Date: today\nFrom sue@iroe.comn"
"To: bob@iroe.com nSubject: test\n\n", O,

NULL) ;

Messaging Server 8.0 MTA Developer's Reference 163

The following code example shows an alternate way of writing the routine call, but with one pair per line.

nt aEnqueueWite(nq, "Date: today\n", O,
"From sue@iroe.comn", O,
"To: bob®@iroe.comn", O,
"Subj ect: test\n", O,
"\n", O,
NULL) ;

nt aEnqueueW i t eLi ne()

Write a complete, single line of message data to the message being submitted.

Syntax
int ntaEnqueueWite(nta_ng_t *ng_ctx,
const char *strl,
size_t | enl,
const char *str2, ...);

Zero or more string pointer-length pairs can be supplied to this routine. The list of pairs must be
terminated by a NULL call argument.

Arguments

Arguments Description
ng_ct x Pointer to an enqueue context created with mt aEnqueueStart ().

strl Pointer to a string of text to write to the message. The string must be NULL terminated if
a value of zero is passed for | enl.

l enl The length in bytes, not including any NULL terminator, of the string st r 1. If a value of
zero is passed for this argument, then the string st r 1 must be NULL terminated.

str2 Pointer to a second string of text to write to the message. The string must be NULL
terminated if a value of zero is passed for | en2. If only supplying a single string, then
pass a NULL value for this argument.

Description

After a message's list of envelope recipient addresses has been supplied with mt aEnqueueTo() , the
message itself must be supplied. This can be done by repeatedly calling nt aEnqueueW i t eLi ne() .
First the message's header should be supplied, followed by a blank line, followed by any message
content. Each call to this routine must supply a single, complete line of the message. The line should not
include a line-feed terminator as m aEnqueueW i t eLi ne() will supply the terminator automatically.

Calling nt aEnqueueW i t eLi ne() terminates the message's envelope recipient list. Once the routine is
called, nt aEnqueueTo() can no longer be called for the same enqueue context.

Return Values

Messaging Server 8.0 MTA Developer's Reference 164

Return Description
Values

0 Normal, successful completion.

MI'A_BADARGS ' This value is returned for one of the following reasons:

1. A NULL value was supplied for the nq_ct x call argument.
2. Aninvalid enqueue context was supplied for ng_ct x, or a required argument to
an item code was NULL.

MIA_FCREATE Unable to create a disk file.
MTA_FI O Error writing to a disk.
MI'A_ORDER Call made out of order. No envelope recipient addresses have been supplied.

MIA THREAD ' Simultaneous use of the enqueue context by two different threads was detected.

Example

This code fragment writes out two header lines.

..

nt aEnqueueWitelLi ne(ng, "From sue@iroe.con, 0, NULL);
nt aEnqueueWitelLi ne(nq, "Subject: test", 0, NULL);

..

From sue@iroe.com
Subj ect: test

..

nt aEnqueueWitelLine(nq, "", 0, NULL);

..

char buf[64];

m aEnqueueW i t eLi ne(nq,
"Date: ", O,
nt aDat eTi me(buf, NULL, sizeof(buf), 0), O,
NULL) ;

nt akErr no()

Messaging Server 8.0 MTA Developer's Reference 165

Obtain the last returned error status for the calling thread.

Syntax

int ntaErrno(void);

Arguments

None

Description

When an MTA SDK routine is called by a processing thread and returns an error status code, the SDK
saves that status code in thread-specific data. The same processing thread can obtain the most recently
saved status code for its own thread of execution by calling nt aEr r no() .

For convenience purposes, the nt asdk. h header file also defines nt a_er r no as a macro that calls
nt aEr r no() . Specifically:

#define nta_errno ntaErrno()

Return Values

The last error return status code returned by an MTA SDK routine called by this processing thread.

For a description of the MTA SDK error status codes, see Chapter 9, Error Status Codes Summary

Example

The following code fragment demonstrates how to obtain the most recent error status code for its own
thread.

if (!maEnqueueStart(&anp;ng, fromadr, 0, 0))
printf("Error returned: %\n", ntaErrno());

nalnit()

Initialize the MTA SDK.

Syntax

Messaging Server 8.0 MTA Developer's Reference 166

int ntalnit(int itemcode, ...);

Arguments

Arguments Description

i tem code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

Call the nt al ni t () routine to initialize the MTA SDK. As part of the initialization process, the SDK will
load the MTA configuration. This loading process will be the typical cause of initialization failures; either
there's an error in a configuration file, a missing but required configuration file, or a configuration file can't
be accessed for reading. To prevent that last error case, ensure that your programs run under a UID that
has read access to the MTA configuration files, especially the compiled configuration file produced by the
i msi mtacnbuil d utility.

While there is no benefit to doing so, it is safe to call nt al ni t () multiple times, either before or after
calling mt aDone() . (To de-initialize the SDK, use nt aDone() .)

Although the MTA SDK is self-initializing, the initialization must occur while the process is
single-threaded. As such, multi-threaded programs must call nt al ni t () and must do so while still

single threaded.

When the SDK is initialized, the SDK can be told using an item code whether or not the calling program
will be functioning as an interactive utility or not. When being used by an interactive utility, such as a
management utility or a user agent, the SDK ensures that accounting files are closed after every
operation that records accounting information. This prevents the accounting file from being left open by a
single process for long periods of time. To specify that the SDK will be used by an interactive utility,
specify the MTA | NTERACTI VE item code. By default, the SDK assumes that it will be run by a channel
program or other program that wishes to achieve maximum performance while using the SDK. This
corresponds to the MTA_CHANNEL item code. Also, when the SDK self-initializes itself, it assumes
MI'A_CHANNEL and not MTA | NTERACTI VE. As part of initializing the SDK, a nhumber of diagnostic
facilities can be enabled. These are enabled using the MTA_DEBUG _ item codes described in the
following table. These diagnostic facilities may also be enabled at any time using the nt aDebug()

routine.

Item Code Additional Description
Arguments
MI'A_CHANNEL None Indicate that the SDK is being used by a channel

program or other non-interactive program. By default
this is the assumed usage. Interactive programs should
use the MTA_| NTERACTI VE item code.

Messaging Server 8.0 MTA Developer's Reference 167

MI'A_DEBUG DECCDE None

MI'A_DEBUG _DEQUEUE None

MI'A_DEBUG_ENQUEUE None

MIA DEBUG_ MM size_t level
MIA_DEBUG_CS None
MI'A_DEBUG_SDK None

Enable diagnostic output from the low-level MIME
decoding routines used by the MTA SDK. This
diagnostic output may prove helpful when attempting to
understand any MIME conversions that occur either
when enqueuing messages to the MTA and the
destination channel is configured to invoke MIME
conversions (for example, marked with channel
keywords such as t hur man or i nner), or when using
the SDK message decoding routine,

nt aDecodeMessage. ()

Enable diagnostic output from the low-level queue
processing routines used by the MTA SDK. Use this
diagnostic output when attempting to understand issues
surrounding reading and processing of queued
message files. This diagnostic output will not help
diagnose the selection of queued messages as that is
handled by a separate process: the MTA Job
Controller.Enabling this diagnostic output is equivalent
to setting DEQUEUE _DEBUG=1 in the MTA option file,
option. dat .

Enable diagnostic output from the low-level message
enqueue routines used by the MTA SDK. Enqueue
diagnostics can be used to diagnose the address
rewriting process, destination channel selection, header
processing, and other types of processing that occurs
when a message is enqueued to the MTA.Enabling this
diagnostic output is equivalent to setting MV DEBUG=5
in the MTA option file.

Enable diagnostic output from the low-level message
enqueue routines used by the MTA SDK.This item code
must be followed by one additional call argument: the
debug level to use.The debug level is an integer value
in the range 0- 20. Enqueue diagnostics may be used
to diagnose the address rewriting process, destination
channel selection, header processing, and other types
of processing that occurs when a message is enqueued
to the MTA.Enabling this diagnostic output is equivalent
to setting DEQUEUE_DEBUG=I evel in the MTA option
file.

Enable diagnostic output from the low-level operating
system dependent routines used by the MTA SDK. Use
of this diagnostic output is helpful when diagnosing
problems associated with creating, opening, writing, or
reading files. Such problems typically arise when
attempting to enqueue messages to the MTA, a process
that requires permissions to create and write messages
in the MTA queues.Enabling this diagnostic output is
equivalent to setting OS_ DEBUG=1 in the MTA option
file.

Enable diagnostic output for the MTA SDK. When this
output is enabled, diagnostic information will be output
whenever the SDK returns an error result.

Messaging Server 8.0 MTA Developer's Reference 168

MTA_| TEM LI ST nta_itemlist_t | Specify a pointer to an item list array. The item list array
*itemlist must be terminated with a final array entry with an item
code value of zero. For further information on item list
usage, see Iltem Codes and Item Lists.

MTA_| NTERACTI VE None Indicate that the SDK will be used by an interactive
program. In an interactive scenario, the SDK manages
some of the MTA resources differently than when
running as a channel program. For instance, closing the
MTA log file after every completed message submission
or dequeue operation.

Return Values

Return Values Description
0 Normal, successful completion.
MI'A_BADARGS A required argument to an item code was NULL.

MT'A_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files.
Issue the following command for further information:i nsi ma test -rewrite

MIA_NO Unable to initialize the MTA SDK. Issue the following command for further
information:i msi nta test -rewite

MI'A_NOSUCHI TEM An invalid item code was specified.

Example

For normal use:

ntalnit(0);

To select SDK diagnostics:

nt al ni t (MIA_DEBUG_SDK, 0);

nt aLog()

Write diagnostic output to the channel's log file.

Syntax

voi d ntalLog(const char *fnt, ...);

Messaging Server 8.0 MTA Developer's Reference 169

Arguments

Arguments Description

fm Pointer to a pri nt f () formatting string. The string must be NULL terminated. See your
platform’'s C run-time library documentation for information on the formatting substitutions
accepted by printf().

Description

Programs that wish to write diagnostic output should use nt aLog() and nt aLogv() . These two
routines ensure that diagnostic output is directed to the same output stream as other diagnostic
information generated by the MTA SDK. With one exception, consider a call to nt aLog() as being
identical to calling the C run-time library routine pri nt f () . The call arguments for the two routines are
identical, including the formatting argument, f it . The single exception is that, unlike pri ntf (), acall to
nt aLog() always produces a single line of output to the channel's log file. Consequently, do not attempt
to write either partial or multiple lines with a single call to nt aLog() .

Do not include a terminating line feed or other record terminator in the output. That is, do not puta \ n at
the end of the formatting string.

A time stamp with a resolution of hundredths of a second prefaces each line of diagnostic output
generated with nt aLog() . The time stamp uses the system clock and is reported in the local time zone.

Return Values

None

Example

char buf[64];

nt aLog(" Versi on: %d. %d- %",

nt aVer si onMaj or (), ntaVersi onM nor (),

nt aVer si onRevi sion());
ntaLog("Date/tinme: %",

nt aDat eTi me(buf, NULL, sizeof (buf), 0));
nt aLog(" Post mast er address: %",

nt aPost mast er Addr ess(NULL, NULL));

The following output is generated by the preceding code example.

12: 43:24.62: Version: 6.0-0
12:43:24.62: Date/tinme: Thu, 01 May 2003 12:43:24 -0700
12: 43: 24. 63: Postnaster address: postnman@rai |l hub. siroe. com

nt aLogv()

Write diagnostic output to the channel's log file.

Messaging Server 8.0 MTA Developer's Reference 170

Syntax

voi d ntalLogv(const char *fnt
va_li st ap);

Arguments

Arguments Description

fmt Pointer to a pri nt f () formatting string. The string must be NULL terminated. See your
platform's C run-time library documentation for information on the formatting substitutions
accepted by printf ().

ap Ava_li st structure as defined by the system st dar g. h header file.

Description

The nt aLogv () routine is provided for programs that either need to provide a diagnostic interface
accepting ava_l i st () argument, or want to provide some generalization of nt aLog() . Use of

nt aLogv() ensures that diagnostic output is directed to the same output stream as other diagnostic
information generated by the MTA SDK.

With one exception, consider a call to nt aLogv() as being identical to calling the C run-time library
routine vpri nt f (). The call arguments for the two routines are identical including the formatting
argument, f nt . The single exception is that, unlike vprintf (), acall to mt aLogv() always produces a
single line of output to the channel's log file. Consequently, do not attempt to write either partial or
multiple lines with a single call to nt aLogv() .

Do not include a terminating line feed or other record terminator in the output. That is, do not puta \ n at
the end of the formatting string.

Return Values

None

Example

The following code fragment demonstrates a way to provide a generalization of nt aLog() using
nt aLogv().

Messaging Server 8.0 MTA Developer's Reference 171

#i ncl ude <stdarg. h>

voi d ourLog(our_context _t *ctx, const char *fmt, ...)

{
char new_fnt[10240];

va_list ap;
/*
* Genrate a new formatting string that includes as a prefix
* the value of ctx-\>d then followed by the contents of the
* supplied formatting string.
*/
snprintf(new fmt, sizeof(newfnt),
"id=%l; %", ctx-\>d, fnt);
va_start(ap, fmt);
nt aLogv(new fnt, ap);
va_end(ap);

nt aOpt i onFi ni sh()
Dispose of an option context.

Syntax

void ntaQptionFinish(nta_opt_t *opt_ctx);

Arguments

Arguments Description

opt_ctx An option context created by nt aOpti onStart ().

Description
Option contexts should be disposed of with a call to mt aOpt i onFi ni sh() . The one exception to this
rule are option contexts returned by nt aDecodeMessagel nf oPar ans() . While those contexts may be

passed to nt aOpt i onFi ni sh() , they do not need to be because nt aDecodeMessage() will
automatically dispose of them.

Return Values

None

Example

Messaging Server 8.0 MTA Developer's Reference 172

nt aOpt i onFi ni sh(opt);

nt aOpt i onFl oat ()

Interpret and return an option's value as a floating point number.

Syntax

int naOptionFloat(nta_opt_t *opt_ctx,
const char *nane,
size t | en,
doubl e *val);

Arguments

Arguments Description

opt _ctx An option context created by nt aOpti onSt art (). ANULL value is permitted for this
argument. When a NULL is passed, then no option value is returned.

nane Name of the option to obtain the value for. The length of this string should not exceed
ALFA_SI ZE bytes. This string must be NULL terminated if a value of zero is passed for

| en.

I en Length in bytes, not including any NULL terminator, of the option name supplied with
name. If a value of zero is supplied, then the option name string must be NULL
terminated.

val Pointer to a floating point of type double to receive the option's value. If the option was
not specified in the option file, then the value referenced by this pointer will be left
unchanged.

Description

Use nt aOpt i onFl oat () to retrieve the value of an option, interpreting its value as a floating point
number. If the option is specified in the option file and its value is a valid floating point number, then its
value will be returned using the val call argument. If the option is not specified or its value does not
correctly specify a floating point number, then no value is returned and the memory pointed at by val is
left unchanged.

The nt aOpti onFloat () }}routine can be called with a NULL value for the
{{opt _ct x argument. When this is done, nt aOpt i onFl oat () immediately returns with a status code
of zero and no value is returned.

This routine does not provide an indication of whether or not the option was specified in the option file. If
it is important to know whether or not the option was specified, then use nt aOpti onStri ng() to testto
see if the option was specified.

Return Values

Messaging Server 8.0 MTA Developer's Reference 173

Return Values Description
0 Normal, successful completion.

MIA_STRTRUERR The supplied option name is too long. Its length must not exceed ALFA_SI ZE
bytes.

Example

The following code example retrieves the value of an option named aspect _r ati o. Before calling
nt aOpt i onFl oat (), a default value is set for the variable to receive the value of the option. If the
option was not specified in the option file, then the variable will retain that default setting. If the option
was specified, then the variable will assume the value set in the file.

ratio = 1.0;
nt aOpti onFl oat (opt, "aspect_ratio", 0, &anp;ratio);

If it is important to know whether or not the option was specified, then use nt aOpti onStri ng() to test
to see if the option was specified as shown in the following code example. In this example, when the
routine returns, the code determines that the option was specified by whether or not the value of the

buf | en variable has changed.

char buf[1];
size_t buflen;

buflen = Oxffffffff;
ntaOptionString(opt, "aspect_ratio", 0, buf, &anp;buflen,

si zeof (buf));
ratio_specified = (buflen !'= Oxffffffff) 2 1 : O;

nt aOpti onl nt ()

Interpret and return an option's value as an integer number.

Syntax

int ntaOptionlnt(nta_opt_t *opt_ctx,
const char *name,
size t | en,
i nt *val);

Arguments

Messaging Server 8.0 MTA Developer's Reference 174

Arguments Description

opt _ctx An option context created by nt aOpti onSt art () . ANULL value is permitted for this
argument. When a NULL is passed, then no option value is returned.

nane Name of the option to obtain the value for. The length of this string should not exceed
ALFA Sl ZE bytes. This string must be NULL terminated if a value of zero is passed for
| en.

l en Length in bytes, not including any NULL terminator, of the option name supplied with
name. If a value of zero is supplied, then the option name string must be NULL
terminated.

val Pointer to an integer of type i nt to receive the option's value. If the option was not
specified in the option file, then the value referenced by this pointer will be left
unchanged.

Description

Use nt aOpt i onl nt () to retrieve the value of an option, interpreting its value as an integer-valued
number. If the option is specified in the option file and its value is a valid integer, then its value will be
returned using the val call argument. If the option is not specified or its value does not correctly specify
an integer, then no value is returned and the memory pointed at by val is left unchanged.

The routine can be called with a NULL value for the opt _ct x argument. When this is done,
nt aOpt i onl nt () immediately returns with a status code of zero and no value is returned.

This routine does not provide an indication of whether or not the option was specified in the option file. If
it is important to know whether or not the option was specified, then use nt aOpti onStri ng() to testto
see if the option was specified as shown in the code example.

Return Values

Return Values Description
0 Normal, successful completion.

MI'A_STRTRUERR ' The supplied option name is too long. Its length must not exceed ALFA_SI ZE
bytes.

Example

In the following code example, the value of an option named max_Dbl ocks is retrieved. Before calling
nt aOpt i onl nt (), a default value is set for the variable to receive the value of the option. If the option
was not specified in the option file, then the variable will retain that default setting. If the option was
specified, then the variable will assume the value set in the file.

bl ocks = 1024;
nt aOpti onl nt (opt, "max_bl ocks", 0, &anp; bl ocks);

The following code example illustrates how upon return from nt aOpt i onStri ng(), the code
determines that the option was specified by whether or not the value of the buf | en variable has
changed.

Messaging Server 8.0 MTA Developer's Reference 175

char buf[1];
size_t buflen;

buflen = Oxffffffff;
ntaQptionString(opt, "max_bl ocks", 0, buf, &anp;buflen, sizeof(buf));
bl ocks_specified = (buflen = Oxffffffff) 2 1 : O;

ntaOptionStart ()

Open, parse, and load into memory an MTA option file.

Syntax

int maOptionStart(ma_opt_t **opt_ctx,
const char *path,
size t | en,
i nt i tem code);

Arguments

Arguments Description

opt _ctx On successful return, a pointer to an option context created by nt aCOpti onStart ().
This option context represents the options read from the option file.

pat h Optional file path to the option file to read. If not specified, then the path specified by the
PVDF_CHANNEL _OPTI ON environment variable will be used. If a value of zero is supplied
for | en, and there is a non-NULL value for pat h, the value must be NULL terminated.
The length of the file path, not including any NULL terminator, may not exceed
ALFA_SI ZE bytes.

I en Length in bytes, not including any NULL terminator, of the file path. This argument is
ignored when a NULL is passed for pat h. When pat h is non-NULL and a value of zero
is supplied for | en, then the file path string must be NULL terminated.

i tem code Reserved for future use. A value of zero must be supplied for this call argument.

Description
MTA option files such as channel option files may be read, parsed, and loaded into memory with

nt aOpti onSt art (). Once loaded into memory, the values of individual options may be retrieved with
the routines shown in the table that follows:

Messaging Server 8.0 MTA Developer's Reference 176

Routine Names Description
nt aOpt i onFl oat () | Retrieve the value of a floating point valued option.
nt aOptionlnt () Retrieve the value of an integer valued option.

ntaOptionString() Retrieve the string representation of an options value.

These routines are designed such that if the requested option does not exist, then no value is returned.
This allows code to assign to a variable an option's default value, then attempt to retrieve an explicitly set
value from the option file. During the retrieval, the address of the variable can be passed. If the option is
specified in the option file, then the value of the variable will be replaced with the value from the option
file. If the option is not specified, then the default value stored in the variable is left unchanged. Code
examples of such usage are provided in the individual routine descriptions.

Once finished obtaining the values of any options, unload the options from memory and dispose of the
option context with nt aOpt i onFi ni sh() .

When the underlying option file does not exist, nt aOpti onSt art () still returns a success status code.
However, a NULL value is returned for the pointer to the option context. The other option routines accept
a NULL value for an option context pointer and will behave as though the requested option is not
specified in the option file. This behavior reflects the fact that MTA option files are considered optional. If
a channel's option file does not exist, then the channel is supposed to use its default settings for its
options. This also simplifies coding, allowing programs not to have to worry about whether or not the
option file exists and whether or not the option context pointer is NULL. If, however, the existence of an
option file is mandatory, then a program can detect that the file does not exist by seeing if the returned
value for the option context pointer is NULL as shown in the code example section that follows.

If an explicit option file path is specified with the pat h call argument, then the path can be a relative file
path or an absolute file path. File paths can be prefixed with any of the symbolic MTA directory names
specified inthe i nt a_t ai | or file. For example, the entry shown in the following code fragment

specifies a file named nmsc__gat eway. cnf located in the nnsc subdirectory of the MTA configuration
directory. Note that a colon separates the symbolic name from the remainder of the path.

| MTA_TABLE: / mrsc/ mrsc_gat eway. cnf

If no file path is specified, then the file specified with the PMDF_CHANNEL _OPTI ON environment variable
will be opened and read. That environment variable is established by the Job Controller for the channel
programs that it runs. It will always have the following format:

| MTA_TABLE: _channel - nane__opti on

where channel - nane is the name of the channel being run. The following example demonstrates how
the environment variable settings are effected for t cp_I ocal channel:

PMDF_CHANNEL=t cp_| ocal
PVDF_CHANNEL_OPTI ON=I MTA_TABLE: t cp_| ocal _opti on

Return Values

Messaging Server 8.0 MTA Developer's Reference 177

Return Values Description
0 Normal, successful completion.

MI'A_ BADARGS A NULL value was supplied for the opt _ct x call argument.

MIA_FOPEN Unable to open the option file. File access permissions are the likely cause for this
error.

MI'A_NO An error occurred while reading or parsing the option file.

MIA_NOVEM Insufficient virtual memory.

MIA_STRTRUERR The supplied file path is too long. Its length must not exceed ALFA_SI ZE bytes.

Example

opt _ctx = NULL;
if (nmaOptionStart(&anp; opt_ctx, NULL, 0, 0))

/*
* Error loading the option file
*/
else if (!lopt_ctx)
/*
* Option file did not exist
*/

nt aOptionString()

Return an option's value as a string.

Syntax

int ntaCOptionString(ma_opt_t *opt_ctx,
const char *nane,

size_t | en,

const char *str,

size t *str_|en,
size_t str_l en_max);

Arguments

Messaging Server 8.0 MTA Developer's Reference 178

Arguments Description

opt _ctx An option context created by nt aOpti onSt art () . ANULL value is permitted for this
argument. When a NULL is passed, then no option value is returned.

nane Name of the option to obtain the value for. The length of this string should not exceed
ALFA Sl ZE bytes. This string must be NULL terminated if a value of zero is passed

for | en.

l en Length in bytes, not including any NULL terminator, of the option name supplied with
name. If a value of zero is supplied, then the option nhame string must be NULL
terminated.

str A pointer to a buffer to receive the NULL terminated value of the specified option. The
MTA allows channel options to have a maximum length of Bl GALFA_SI ZE bytes. As a
result, this buffer should in general have a length of at least Bl GALFA_SI ZE+1 bytes.
If the option was not specified in the option file, then the contents of the buffer is left
untouched.

str_len An optional pointer to a si ze_t to receive the length in bytes of the returned option
value string, st r. A value of NULL may be passed for this call argument.

str_| en_max The maximum size in bytes of the buffer pointed at by st r.

Description

Use nt aOpti onStri ng() to retrieve the string representation of an option's value. If the option is
specified in the option file, then its value and length will be returned via the str and str _| en call
arguments. If the option is not specified then no value is returned and the memory pointed at by st r and
str_| en are left unchanged. This routine can be called with a NULL value for the opt _ct x argument.
When this is done, nt aOpti onSt ri ng() immediately returns with a status code of zero and no option

value is returned.

Return Values

Return Values Description
0 Normal, successful completion.

MI'A_STRTRU Supplied buffer pointed at by buf is too small. The returned value has been
truncated to fit. Truncated value is NULL terminated. The buffer should have a
length of at least Bl GALFA_SI ZE+1 bytes.

MI'A_STRTRUERR ' The supplied option name is too long. Its length must not exceed ALFA_SI ZE
bytes.

Example

In the code example that follows, the value of an option named mai | _ur | is retrieved. Before calling

nt aOpti onString(), a default value is set for the variable to receive the value of the option. If the
option was not specified, then the variable will retain that default setting. If the option was specified, then
the variable will assume the value set by that specification.

Messaging Server 8.0 MTA Developer's Reference 179

char url[1024];

strepy(url, "mail _to:webnaster @iroe.cont);
ntaOptionString(opt, "mail _url", 0, url, NULL, sizeof(url));

nt aPost mast er Addr ess()

Obtain the MTA local postmaster address.

Syntax

const char *ntaPost mast er Address(const char **address,
size_t *| en,
int itemcode, ...)

Arguments

Arguments Description

addr ess Optional pointer to receive the memory address of the string buffer containing the MTA
local postmaster address. The string will be NULL terminated. A value of NULL may be
passed for this argument.

I en Optional address of a si ze_t to receive the length in bytes of the postmaster address. A
value of NULL may be passed for this argument.

item Reserved for future use. A value of zero (0) must be passed for this argument.

code

Description

This routine returns a pointer to a NULL terminated string containing the MTA local postmaster address.
This address is suitable, for instance, for inclusion in the Fr om header line of notification messages as

shown in the code example for this routine.

It is usually not a good idea for programs to send mail to the postmaster's address. In many situations,
sending mail to the postmaster when failures occur can lead to mail loops if the mail sent to the
postmaster itself fails, and generates a message to the postmaster, which then fails, and generates yet
another message to the postmaster, and so on.

On a successful completion, the address of the string buffer containing the postmaster's address is
returned using the addr ess call argument. That same address is also returned as the return status.

Return Values

In the event of an error, a value of NULL is returned as the status and nt a_er r no is set with a status
code indicating the underlying error.

Messaging Server 8.0 MTA Developer's Reference 180

Error Description
Status
Codes

MI'A_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files. For
further information, issue the following command:i nsi nta test -rewite

MIA_NO Unable to initialize the MTA SDK. For further information, issue the following command:
inmsima test -rewite

Example

The following example shows how to use this routine to include the postmaster address in the Fr om
header line of a notification message:

nt aEnqueueWi t eLi ne(nq, "From Postnaster <", O,
nt aPost nast er Address(NULL, NULL, 0), O,
"\>", 0, NULL);

nt aSt ackSi ze()

Obtain the minimum thread stack size required when using the MTA SDK.

Syntax

size_t mtaStackSi ze(void);

Arguments

None

Description

A number of the run-time libraries used by the MTA SDK make intensive use of stack variables. As a
result, some MTA SDK operations can require a larger than usual thread stack size. The minimum thread
stack size required for typical MTA SDK operations, such as message dequeue and enqueue operations,
can be obtained with nt aSt ackSi ze(') . When writing multi-threaded code, ensure that any threads that
will be calling SDK routines have a stack size at least as large as the value returned by

nt aSt ackSi ze() . Failure to do may result in abnormal process terminations when a thread overruns its

stack.

Return Values

The minimum thread stack size required for MTA SDK operations.

Example

Messaging Server 8.0 MTA Developer's Reference 181

None

ntaStrError()

Obtain a text description of an error status code.

Syntax

const char *mtaStrError(int code,
int itemcode);

Arguments

Arguments Description
code The MTA SDK error status to obtain a text description for.

i tem code Reserved for future use. A value of zero must be supplied for this call argument.

Description

Use nt aStr Error () to obtain English language descriptions of MTA SDK error codes. These
descriptions are intended solely for use in fine-grained diagnostic output. They are not intended for
reading by end users of programs written using the MTA SDK.

Return Values

A pointer to a NULL terminated string containing the error code description.

Example

ires = ntaEnqueueStart(&anp;nqg, from 0, 0);
if (ires)
printf("maEnqueueStart() returned %d; %\n",
ires, ntaStrError(ires, 0));

nmt aUni queStri ng()

Generate a system-wide unique string.

Syntax

Messaging Server 8.0 MTA Developer's Reference 182

const char *ntaUni queString(char *puf,
size t *len,
size_t max_len);

Arguments

Arguments Description

buf A pointer to a buffer to receive the NULL terminated unique string. The buffer should be
at least 20 bytes long.
An optional pointer to a si ze_t to receive the length in bytes of the returned unique

string. This length does not include the NULL terminator that terminates the returned
unique string. A value of NULL can be passed for this call argument.

| en

| en_max The maximum size in bytes of the buffer pointed at by buf .

Description

The nt aUni queSt ri ng() routine may be used to generate a system-wide unique string. The strings
generated are suitable for use as MIME boundary markers and file names. On a successful completion,
the unique string is stored in the buffer pointed at by the buf argument. Additionally, the value of the buf

argument is returned as the routines return status.

Return Values

In the event of an error, nt aUni queSt ri ng() will return NULL. The error status code may be obtained
by examining the value of nt a_er r no.

Error Status Codes Description

MI'A_BADARGS A value of NULL was supplied for the buf argument.

MIA_STRTRUERR The buf buffer is too small.

Example

This routine is used in Example 5-2.

nt aVer si onMaj or ()

Obtain the major version number associated with the MTA SDK library.

Syntax

i nt ntaVersionMjor(void);

Messaging Server 8.0 MTA Developer's Reference 183

Arguments

None

Description

Return the major version number associated with the MTA SDK library.

Return Values

The SDK major version number.

Example

..

printf("MIA SDK Version %l. %d- %\ n"
mt aVer si onMaj or (), ntaVersionM nor (),
nt aVer si onRevi si on())

nt aVer si onM nor ()

Obtain the minor version number associated with the MTA SDK library.

..

int mtaVersi onM nor(void);

..

Arguments

None

Description

Return the minor version number associated with the MTA SDK library.

Return Values

The SDK minor version number.

Example

..

printf("MIA SDK Version %l. %d- %d\ n"
nt aVer si onMpj or (), ntaVersi onM nor (),
nt aVer si onRevi sion());

Messaging Server 8.0 MTA Developer's Reference 184

nt aVer si onRevi si on()

Obtain the revision level associated with the MTA SDK library.

..

Arguments

None

Description

Return the revision level associated with the MTA SDK library.

Return Values

The SDK revision level.

..

printf("MIA SDK Version %l. %d- %@\ n"
mt aVer si onMaj or (), ntaVersionM nor(), ntaVersionRevision());

Messaging Server 8.0 MTA Developer's Reference 185

Chapter 8. mtaSend() Routine Specification

mtaSend() Routine Specification

This chapter contains the functional specification of the nt aSend() routine. It includes the following
sections:

® |ist of ltem Codes
®* ntaSend() Syntax

List of Item Codes

MIA_ADR_NOSTATUS
MIA_ADR_STATUS

MIA_BCC

MIA_BLANK

MIA_CC

MTA_CHANNEL

MTA_CFI LENAME

MTA_CFI LENAVE_NONE
MIA_CTYPE

MIA_ENC_BASE64
MIA_ENC_BASES5

MIA_ENC_BI NHEX
MIA_ENC_BTOA
MIA_ENC_COVPRESSED_BASE64
MIA_ENC_COVPRESSED Bl NARY
MIA_ENC_COVPRESSED_UUENCCODE
MI'A_ENC_HEXADECI MAL
MIA_ENC_NONE
MIA_ENC_PATHWORKS
MIA_ENC_QUOTED_PRI NTABLE
MIA_ENC_UNKNOWN
MIA_ENC_UUENCODE
MIA_END LI ST
MIA_ENV_FROM

MIA_ENV_TO

MIA_FRAGVENT BLOCKS
MIA_FRAGVENT LI NES
MIA_FROM

MIA_HDR_ADRS

MIA_HDR BCC

MIA_HDR CC

MIA_HDR FI LE

MIA_HDR LI NE
MI'A_HDR_NOADRS

MIA_HDR NORESENT
MI'A_HDR_PROC
MIA_HDR_RESENT
MIA_HDR TO

MI'A_HDRVBG FI LE

Messaging Server 8.0 MTA Developer's Reference 186

MI'A_HDRVBG_PROC
MTA_| GNORE_ERRORS
MTA_| NTERACTI VE

MTA_| TEM LI ST
MIA_MAX_TO
MI'A_MODE_BI NARY
MIA_MODE_TEXT
MIA_MSG _FI LE
MIA_MSG_PROC
MI'A_NOBLANK

MIA_NOI GNORE_ERRORS
MIA_PRI V_DI SABLE_PROC
MIA_PRI V_ENABLE_PROC
MI'A_SUBADDRESS
MIA_SUBJECT

MIA_TO

MIA_USER

nt aSend() Syntax

int maSend(nta_itemlist_ t *itemlist)

Arguments
itemlist

The nt aSend() routine takes only one argument, i t em | i st, which is a pointer to an array of item
descriptors. Each item descriptor specifies an action to be taken, and provides the information needed to
perform that action.

The list of item descriptors is terminated with an entry containing the MTA_END LI ST (0) item code.

Each item descriptor has the following C-style structure declaration:

..

struct {
int i tem code;
const void *item address;
int item.length;
int i tem st at us;

const char *item smessage;
} nma_itemlist_t;

..

Item Descriptor Fields

i tem code

Integer item code specifying an action to be taken by nt aSend() . The include file described in MTA
SDK Concepts and Overview defines these codes. Each item code is described later in this chapter,
starting at Item Codes.

i tem address

The caller-supplied address of data to be used in conjunction with the action specified by the

Messaging Server 8.0 MTA Developer's Reference 187

i t em_code field. Not all actions require that an i t em _addr ess be supplied.

item.|ength

When the item code has an associated string value, this field optionally provides the length in bytes of
the string, not including any NULL terminator. If a value of zero (0) is supplied, then the string pointed to

by i tem addr ess must be NULL terminated, so that nt aSend() can automatically determine the
string's length.

When the item code has an associated integer value, this field supplies that value.
item status

When the item code MTA_ADR STATUS is specified, this field will contain processing status for the
associated envelope recipient address.

i tem snessage

When the item code MTA_ADR_STATUS is specified, this field will contain the rewritten form of the
envelope recipient address when the returned value of i t em st at us is zero, or a textual error message
when the returned value of i t em st at us is non-zero.

Description

Use nt aSend() to send a message. The routine performs the processing carried out to address the
message, generate the message’s header and body, and enqueue the message as specified with the
item | i st argument. For instructions on how to use m aSend(), see Using Callable Send

nt aSend() .

Item Codes

MIA_ADR_NOSTATUS

Do not return status messages for To: , Cc: , and Bcc: addresses. This is the default setting.

Theitem address andi t em | engt h fields are ignored for this item code.

MIA_ADR_STATUS

Return textual status messages for each envelope recipient address (that is, an active transport address)
specified with any of these item codes: MTA_TO, MTA_CC, MTA_BCC, MTA_ HDR TO, MTA_HDR_CC, or
MIA_HDR_BCC. When a recipient address is successfully processed, the value of the associated

i t em st at us field will be zero and i t em snmessage will be a pointer to a NULL terminated string
containing the rewritten form of the address. When a recipient address fails to be processed successfully,
the value of the associated i t em st at us field will be non-zero and i t em _snessage will be a pointer
to a NULL terminated error message string.

After calling nt aSend() with MTA_ADR_STATUS, call the nt aSendDi spose() function to dispose of
any dynamic memory allocated by nt aSend() .

Theitem address andi t em | engt h fields are ignored for this item code.

MIA_BCC

Specify a blind carbon copy (Bcc:) address. The it em address anditem | engt h fields specify the

Messaging Server 8.0 MTA Developer's Reference 188

address and length of a string containing a Bcc: address. The length of the address may not exceed
ALFA_SIZE bytes.

MI'A BCCis used to specify a Bcc: address that should appear in both the message's header and
envelope.

MI'A_BLANK

When processing multiple input sources, insert a blank line between the input from each source.
Ordinarily, the input files are appended one after the other with no delimiters or separators. This is the
action selected with the MTA_NOBLANK item code. By specifying the MTA_BLANK action, nt aSend()
inserts a blank line between each input file. This is especially useful when the first input file is to be
treated as a source of header information and the second as the message body or part thereof. This
produces the requisite blank line between the message header and body.

Theitem address and it em | engt h fields are ignored for this item code.

MTA CC

Specify a carbon copy (Cc:) address. The i t em address and i t em | engt h fields specify the address
and length of a string containing a Cc: address. The length of the address may not exceed ALFA_SIZE
bytes.

MI'A_CCis used to specify a Cc: address that should appear in both the message's header and
envelope.

MI'A_CHANNEL

Specify the channel to act as, when enqueuing the message. If not specified, then mail will be enqueued
as though sent from the local, | , channel. The i t em addr ess and i t em_| engt h fields specify the
address and length of a text string containing the name of the channel to act as. The length of the string
may not exceed CHANLENGTH bytes.

MI'A_CFl LENAMVE

When MTA_CFI LENAME is specified, the name of the message input file will be included as a parameter
in the MIME Cont ent -t ype: header line. This action, when specified, will hold for all subsequent input
files until an MTA_CFI LENAME_NONE action is seen in the same item list.

MTA_FI LENAME_NONE is the default.

MTA_CFI LENAVE_NONE

The default action for including or not including the name of the message input file as a parameter in the
MIME Cont ent -t ype: header line. This item code specifies that no input file is to be included.

When MITA_CFI LENAME has been specified, it will hold for all subsequent input files until an
MI'A_CFI LENAME_NONE action is seen in the same item list.

Theitem address andi t em | engt h fields are ignored for this item code.

MTA_CTYPE

Specify the body of a Cont ent -t ype: header line. The i t em address and i t em | engt h fields
specify the address and length of a text string to place in the body of a Cont ent -t ype: header line.

Messaging Server 8.0 MTA Developer's Reference 189

The length of the string may not exceed ALFA_SIZE bytes. Only one Cont ent -t ype: body may be
specified.

MIA_ENC_BASE64

Encode data from all subsequent input sources using MIME's BASE64 encoding. This setting may be
changed with any of the other MTA_ENC item codes. The default encoding is MTA_ENC_UNKNOWN. The
i tem address anditem | engt h fields are ignored for this item code.

MIA_ENC_BASES5

Encode data from all subsequent input sources using Adobe’s ASCII85 encoding (BASES85). This setting
may be changed with any of the other MTA_ENC _item codes. The default encoding is
MIA_ENC_UNKNOMN. Theitem address anditem | engt h fields are ignored for this item code.

MIA_ENC_BI NHEX

Encode data from all subsequent input sources using the BINHEX encoding. This setting may be
changed with any of the other MTA_ENC _ item codes. The default encoding is MTA_ENC_UNKNOWN. The
i tem address anditem | engt h fields are ignored for this item code.

MIA_ENC_BTOA

Encode data from all subsequent input sources using the UNIX binary-to-ASCIl (BTOA) encoding. This
setting may be changed with any of the other MTA_ENC _ item codes. The default encoding is
MIA_ENC_UNKNOWN. The i t em address and i t em | engt h fields are ignored for this item code.

MIA_ENC_COVPRESSED_ BASE64

Encodes data from all subsequent input sources using MIME's BASE64 encoding after first compressing
it using Gnu zip. This setting may be changed with any of the other MTA_ENC _ item codes. The default
encoding is MTA_ENC_UNKNOWN. The i t em address and it em | engt h fields are ignored for this item
code.

MI'A_ENC_COVPRESSED_BI NARY

Compress the data with Gnu zip. No other encoding of the data will be done. This setting may be
changed with any of the other MTA_ENC _ item codes. The default encoding is MTA_ENC_UNKNOMN. The
i tem address anditem | engt h fields are ignored for this item code.

MIA_ENC_COVPRESSED UUENCODE

Encode data from all subsequent input sources using UUENCODE, after first compressing the data with
Gnu zip. This setting may be changed with any of the other MTA_ENC item codes. The default encoding
is MTA_ENC_UNKNOMN. The i t em addr ess and i t em | engt h fields are ignored for this item code.

MIA_ENC_HEXADECI MAL

Encode data from all subsequent input sources using a hexadecimal encoding. This setting may be
changed with any of the other MTA_ENC _ item codes. The default encoding is MTA_ENC_UNKNOWN. The
i tem address anditem | engt h fields are ignored for this item code.

MIA_ENC_NONE

Messaging Server 8.0 MTA Developer's Reference 190

Data from all subsequent input sources is left unencoded (that is, not encoded). This setting may be
changed with any of the other MTA_ENC _ item codes. The default encoding is MTA_ENC_UNKNOMN. The
item address anditem| engt h fields are ignored for this item code.

MIA_ENC_PATHWORKS

Encodes multipart and binary message contents using the OpenVMS Pathworks format. This setting may
be changed with any of the other MTA_ENC _ item codes. The default encoding is MTA_ENC_UNKNOWN.
Theitem address and it em | engt h fields are ignored for this item code.

MIA_ENC_QUOTED_PRI NTABLE

Encode data from all subsequent input sources using MIME's quoted printable encoding. This setting
may be changed with any of the other MTA_ENC _item codes. The default encoding is
MIA_ENC_UNKNOMN. The i t em addr ess and it em | engt h fields are ignored for this item code.

MIA_ENC_UNKNOWN

Data from all subsequent input sources is left unencoded (that is, not encoded). This setting may be
changed with any of the other MTA_ENC _ item codes. The default encoding is MTA_ENC_UNKNOWN. The
i tem address anditem | engt h fields are ignored for this item code.

MIA_ENC_UUENCODE

Encode data from all subsequent input sources using UUENCODE. This setting may be changed with
any of the other MTA_ENC _ item codes. The default encoding is MTA_ENC_UNKNOWN. The
i tem address anditem | engt h fields are ignored for this item code.

MIA_END LI ST

Terminate an item list. This item code, when encountered, signals the end of the item list. The
i tem address anditem | engt h fields are ignored for this item code.

MIA_ENV_FROM

Specify the envelope Fr om address to associate with a message. The i t em addr ess and

i t em | engt h fields specify the address and length of a text string containing the envelope Fr om
address to use for the message submission. The length of the string may not exceed ALFA_SIZE bytes.
Only one envelope Fr om address may be specified.

The MTA_ENV_FROMaction should be used when the envelope Fr om address is not a local address.
When the address is a local address, then only the user name should be specified using the MTA_USER
action.

If this action and the MTA_USER actions are not specified, then the user name associated with the current
process will be used.

Do not use this item code in conjunction with the MTA_USER or MTA_SUB_USER item codes.

MIA_ENV_TO

Specify an envelope-only To: address (that is, an active recipient), which should not appear in the
message's header. The i t em addr ess and i t em_| engt h fields specify the address and length of a

Messaging Server 8.0 MTA Developer's Reference 191

string containing a To: address. The length of the address may not exceed ALFA_SIZE bytes.

MIA_FRAGVENT BLOCKS

Specify the maximum number of blocks per message. If, when the message is enqueued, the message
size exceeds this limit, then the message will be fragmented into smaller messages, each fragment no
larger than the specified block size. The individual fragments are MIME compliant messages that use
MIME's message/ parti al content type. MIME compliant mailers or user agents that receive the
fragments may automatically reassemble the fragmented message. (MTA channels must be marked with
the def r agnent keyword in order for automatic message reassembly to occur.)

The size of a block may vary from site to site. Sites can change this value from its default value of 1,024
bytes. Use the MTA SDK routine nt aBLOCK_SI ZE to determine the size in bytes of a block.

The i t em | engt h field specifies the maximum block size per message or message fragment. By
default, no limit is imposed.

MIA_FRAGVENT_LI NES

Specify the maximum number of message lines per message. If, when the message is enqueued, the
number of message lines exceeds this limit, then the message will be fragmented into smaller messages,
each fragment with no more than the specified number of lines. The individual fragments are MIME
compliant messages that use MIME's nessage/ parti al content type. MIME compliant mailers or user
agents that receive the fragments may automatically reassemble the fragmented message. (MTA
channels must be marked with the def r agnment keyword in order for automatic message reassembly to
occur.)

The i t em | engt h field specifies the maximum number of message lines per message or message
fragment. By default, no limit is imposed.

MIA_FROM
Specify the address to use in the message header's Fr om header line. The i t em addr ess and
i t em | engt h fields specify the address and length of a text string containing the Fr om address. The

length of the string may not exceed ALFA_SIZE bytes. Only one Fr om address may be specified.

If this action is not used, then the Fr om header line will be derived from the envelope Fr om address.

MIA_HDR_ADRS

Specify MTA_HDR_ADRS to request that the message also be sent to recipient addresses found in any
input header files. The i t em address and i t em | engt h fields are ignored for this item code.

MIA_HDR_BCC

Specify a header-only Bcc: address (that is, an inactive recipient), which should only appear in the
message's header. The i t em addr ess and i t em | engt h fields specify the address and length of a
string containing a Bcc: address. The length of the address may not exceed ALFA_SIZE bytes.

MIA_HDR CC

Specify a header-only carbon copy (Cc:) address (that is, an inactive recipient), which should only
appear in the message's header. The i t em address and i t em | engt h fields specify the address and
length of a string containing a Cc: address. The length of the address may not exceed ALFA_SIZE
bytes.

Messaging Server 8.0 MTA Developer's Reference 192

MIA_HDR_FI LE

Specify the name of an input file containing message header lines. The first input file may be a file
containing a message header. In this case, it should be specified using this item code rather than
MI'A_MSG_FI LE. This will ensure that the input file receives the proper processing (such as, is not
encoded, accessed using text mode access). The nt aSend() routine uses the header lines from the
input file to form an initial message header. This initial header is then modified as necessary. This
functionality is useful when forwarding mail.

Note that any recipient addresses in the header file will be ignored unless MTA_HDR_ADRS is also
specified.

The i tem address and it em | engt h fields specify the address and length of a text string containing
the input file’'s name. The length of the string may not exceed ALFA_SIZE bytes.

MIA_HDR_LI NE

Specify an additional header line to include in the message header. The i t em addr ess and

i tem | engt h fields specify the address and length of the header line (field name and body) to place in
the message header. The length of the string may not exceed ALFA_SIZE bytes. Any number of header
lines may be added. Use one item list entry per header line.

MIA_HDR_NOADRS

Recipient addresses must be explicitly specified and any addresses in an input header file will be ignored
(but will still appear in the message header). The i t em address and it em | engt h fields are ignored
for this item code.

This is the default action for recipient addresses found in input header files.

MI'A_HDR_NORESENT

Specify MTA_HDR_NORESENT to cause additional addresses to be added to existing header lines rather
than through the introduction of Resent- header lines.

Theitem address and it em | engt h fields are ignored for this item code.

MIA_HDR PROC

Specify the address of a procedure that will return, one line at a time, header lines for the message
header. The i t em addr ess field specifies the address of the procedure to invoke. The i tem | engt h
field is ignored.

The calling format that must be used by the procedure is given in Message Headers and Content.

MIA_HDR_RESENT

The MTA_HDR_RESENT action selects the default behavior whereby Resent - header lines are added as
necessary to the message header when the associated header line appears in any input header files. For
instance, a Resent -t 0: header line will be added if a To: header line already appears. The

item address anditem | engt h fields are ignored for this item code.

MIA_HDR TO

Messaging Server 8.0 MTA Developer's Reference 193

Specify a header-only To: address (that is, an inactive recipient), which should only appear in the
message's header. The i t em addr ess and i t em | engt h fields specify the address and length of a
string containing a To: address. The length of the address may not exceed ALFA_SIZE bytes.

MIA_HDRVSG FI LE

Specify the name of an input file containing both the message header and message body. The content of
the file represents an RFC 2822 formatted message with at least one blank line separating the RFC 2822
header from the message body. The nt aSend() routine uses the header lines from the input file to form
an initial message header. This initial header is then modified as necessary.

The i tem address and it em | engt h fields specify the address and length of a text string containing
the input file’'s name. The length of the string may not exceed ALFA_SIZE bytes.

MTA_HDRVSG_PROC

Specify the address of a procedure that will return, one line at a time, each line of an RFC 822 formatted
message. The RFC 822 header must come first, followed by at least one blank line, followed by the
message body. The i t em addr ess field specifies the address of the procedure to invoke. The calling
format that must be used by the procedure is given in Message Headers and Content.

MTA_| GNORE_ERRORS

Send the message as long as at least one To: address was okay and at least one input source was
okay. By default, the message will not be sent if any of the To: addresses are illegal (such as, bad
syntax, restricted, unknown host), or if any of the input sources proved to be bad (such as, could not
open an input file). The i t em address andi t em | engt h fields are ignored for this item code.

MI'A_| NTERACTI VE

Do not ignore user-to-channel access checks when enqueuing mail. This should, in general, be used by
programs such as user agents that enqueue mail for users.

The i tem address andi t em | engt h fields are ignored for this item code.

MTA | TEM LI ST

The nt aSend() routine immediately begins processing the list of item descriptors pointed at by
i t em addr ess. This new list will be used immediately; any remaining items in the current list will be
ignored.

The it em | engt h field is ignored for this item code.

MIA MAX TO

Specify the maximum number of envelope To: addresses per message copy. If, when the message is
enqueued, the number of envelope To: addresses for the message exceeds this limit, then the message
will be broken into multiple copies, each copy with no more than the specified number of envelope To:
addresses.

The i t em | engt h field specifies the maximum number of envelope To: addresses per message copy.
By default, no limit is imposed.

MIA_MODE_BI NARY

Messaging Server 8.0 MTA Developer's Reference 194

Read subsequent input files as raw binary files. This setting may be changed with the MTA_MODE_TEXT
item code. The default access mode is MTA_MODE_TEXT.

Theitem address andi t em | engt h fields are ignored for this item code.

MTA_MODE_TEXT

Read subsequent input files as record-oriented text files. This setting may be changed with the
MIA_MODE_BI NARY item code. The default access mode is MTA_MODE_TEXT.

Theitem address and it em | engt h fields are ignored for this item code.

MIA_MSG FI LE

Specify an input file to read and include in the message body. The file will be read using the current
access mode and encoded using the current encoding as specified by MTA_MODE_ and MTA_ENC_ item
codes.

Theitem address and it em | engt h fields specify the address and length of a text string containing
the name of the input file. The length of the string may not exceed ALFA_SIZE bytes.

MIA_MSG_PROC

Specify the address of a procedure that will return, one line at a time, data for the message body. Each
line of input obtained from the procedure will be treated using the current access mode and encoded
using the current encoding as specified by MTA_MODE_and MTA_ENC _ item codes. Note, however, that
the block access mode will not be applied to input procedures.

The i t em addr ess field specifies the address of the procedure to invoke. The i t em | engt h field is
ignored.

The calling format that must be used by the procedure is given in Message Headers and Content.

MI'A_NOBLANK

When processing multiple input source, do not insert a blank line between the input from one source and
the next. This is the default behavior. The input from each input source is appended one after the other
with no delimiters or separators marking the transition between sources.

Theitem address and it em | engt h fields are ignored for this item code.

MI'A_NO GNORE_ERRORS

Send the message only if all To: addresses are okay and all input sources are okay. This is the default.
Theitem address and it em | engt h fields are ignored for this item code.

MTA_ PRI V_DI SABLE_PROC

The address of a procedure to invoke immediately after enqueuing a message so as to disable process
privileges. See the description of MTA_PRI V_ENABLE_PRCC for details on the use of this item code.

This item code must be used in conjunction with MTA_PRI V_ENABLE PROC item.

The it em | engt h field is ignored for this item code.

Messaging Server 8.0 MTA Developer's Reference 195

MTA_PRI V_ENABLE_PROC

The address of a procedure to invoke immediately before enqueuing a message so as to enable process
privileges.

Privileges are required to enqueue messages. It is possible to provide nt aSend() with the address of
two procedures to call. One procedure is called immediately prior to enqueuing a message thereby
allowing process privileges to be enabled. The second procedure is then called immediately after the
message has been enqueued thereby allowing process privileges to be disabled.

For further details on the use of this item code, see Required Privileges for nt aSend() .

This item code must be used in conjunction with MTA_PRI V_DI SABLE_PROC.

The i t em | engt h field is ignored for this item code.

MI'A_SUBADDRESS

Specify a subaddress to use when generating a return address from a user name specified with the
MIA_USERitem code. The it em address and i t em | engt h fields specify the address and length of a
text string containing the subaddress. The length of the string may not exceed ALFA_SIZE bytes. Only
one subaddress may be specified per message.

The MI'A_USER action must be used in conjunction with this item code.

MTA_SUBJECT

Specify the body of a Subj ect : header line. The i t em addr ess and i t em | engt h fields specify the
address and length of a text string to place in the body of a Subj ect : header line. The length of the
string may not exceed ALFA_SIZE bytes. Only one Subj ect : body may be specified.

MIA_TO

Specify a To: address that should appear in both the message’s header and envelope. The
i tem address andit em | engt h fields specify the address and length of a string containing a To:
address. The length of the address may not exceed ALFA_SIZE bytes.

MIA_USER

Specify the user name to use for the envelope Fr om and header line Fr om addresses. The

i tem address anditem | engt h fields specify the address and length of a text string containing the
user name.

Use this item code when the envelope Fr om address is a local address.

If the envelope Fr om address is not a local address, then the MTA_ENV_FROM action should be used.

If this action and the MTA_ENV_FROMactions are not specified, then the user name associated with the
current process will be used.

On UNIX, the process must have the same (real) Ul D as the r oot or nt a account. If the process lacks
sufficient privileges, the MTA_ACCESS error will be returned.

Do not use this item code in conjunction with the MTA_ENV_FROMitem code.

Messaging Server 8.0 MTA Developer's Reference 196

Messaging Server 8.0 MTA Developer's Reference 197

Chapter 9. Using Callable Send mtaSend()

Using Callable Send mtaSend|()

The Sun Java System Messaging Server MTA Callable Send facility, nt aSend() , is a single procedure
that is used to send (enqueue) mail messages of local origin; that is, to originate mail from the local host.
Because the nt aSend() routine is not as flexible as the SDK routines and will take possibly
undesirable, but necessary, authentication steps (such as, the addition of a Sender : header line), the
MTA SDK routines should generally be used by programs that need to resend, forward, send through a
gateway, or otherwise route mail messages.

The nt aSend() routine may be used simultaneously with the MTA SDK routines.
This chapter covers the following topics:

Sending a Message

Envelope and Header Fr omAddresses
To, Cc, and Bcc Addresses

Message Headers and Content
Required Privileges for mt aSend()

nt aSendDi spose()

Compiling and Linking Programs
Examples of Using nt aSend()

Sending a Message

Each message sent with mt aSend() must have a corresponding item list describing the message. The
entries in this item list specify the message's Fr om and To: addresses as well as input sources for the
content of the message.

The basic steps in sending a message with nt aSend() are:

1. Build an item list to pass to nt aSend() .
To build an item list, complete the following steps:
a. Specify any special processing options, such as MTA_ BLANK, or MTA | GNORE_ERRORS.
b. Specify the message's envelope Fr om address with the MTA_USER item.
c. Specify the message's To: , Cc: , and Bcc: addresses with the MTA_ TO, MTA_CC, and
MI'A_BCCitems.
d. Specify an initial message header in one of two ways:
® Specify an input source that supplies each of the initial message header lines (
MIA_HDR FI LE, MTA_HDR_PRQOC).
® Specify the content of individual message header lines with individual item codes (
MIA_SUBJECT, MTA_HDR LI NE).
a. Specify the input sources for the message body with the MTA_NMSG_FI LE or
MIA MSG PRCC items.
b. Terminate the item list with an item code of value 0 (MTA_END LI ST).
Pass the item list to nt aSend() .
3. Check the return status from nt aSend() .
For a description of all item codes and their return status values, see mtaSend() Routine
Specification.

N

To enqueue additional messages, simply repeat these steps.

Messaging Server 8.0 MTA Developer's Reference 198

Envelope and Header Fr omAddresses

The envelope Fr om address for a message should be specified with the MTA_USER item code. With this
item code, only the local part of a mail address may be specified, that is, the user name. The

nt aSend() routine will automatically append the official local host name to the user name so as to
produce a valid mail address.

The MTA_ENV_FROMitem code may be used to explicitly specify a complete envelope Fr om address
but this is usually not necessary. Applications that enqueue nonlocal mail should probably be using the
SDK routines rather than m aSend() .

If neither MTA_USER nor MTA_ENV_FROMare specified, then the user name associated with the current
process will be used for the envelope Fr om address. When MTA_USER is used, the Fr om header line
will be derived from the envelope Fr om address. When MTA_ENV_FROMis used, the Fr om header line
will be derived from the user name of the current process. In either case, if a Fr om header line is
supplied in an initial header, then a Sender : header line will be added to the message header. The
initial Fr om header line will be left intact and the address specified, and Sender : address will be
derived from either the envelope Fr om address (MTA_USER) or from the user name of the current
process, that is, from MTA_ENV_FROM

Only privileged users may use MTA_USER to specify a user name different than that of the current
process. To be considered a "privileged" process on UNIX systems, the process must have the same
(real) user ID (Ul D) as either the r oot or Messaging Server account.

To, Cc, and Bcc Addresses

The list of To: , Cc: , and Bcc: addresses to send a message to is built up, one address at a time, with
item-list entries. Each item-list entry specifies the type of address (To: , Cc: , or Bcc:) and a string
containing the address.

The type of address is denoted by the item code, MTA_TO, MTA_CC, or MTA_BCC, associated with the
item-list entry. The mt aSend() routine uses this information to build the message envelope To: address
listand To: , Cc: , and Bcc: header.

To specify an envelope-only address that should not appear in the message header (for example, an
active transport address), use MTA_ENV_TO. Likewise, to specify a header-only address that should not
appear in the envelope, such as, an inactive address, use MTA_ HDR_TO, MTA_HDR_CC, or
MI'A_HDR_BCC, as appropriate.

When one or more of the To: , Cc: , or Bcc: addresses is illegal, the nt aSend() routine will not, by
default, indicate which addresses were in error. However, the differentiation can be achieved by using
the MTA_ADR_STATUS item code. When this item code is used, the i t em st at us field associated with
an address will be set either to zero (0) if the address was accepted, or to a non-zero value if there was
an error processing the address.

When it em st at us is zero, i t em smessage points to a NULL terminated string containing the
rewritten form of the address. When i t em st at us has a non-zero value, i t em snmessage points to a
NULL terminated string containing an error message suitable for printing for diagnostic purposes.

Message Headers and Content

The body of a message, that is, the message content, is built up from zero or more input files or
procedures. The input files and procedures are read or invoked in the order specified in the item list
passed to the nt aSend() routine. The message body is built up by appending the next input source to
the end of the previous input source. A blank line will be inserted in the message as a separator between

Messaging Server 8.0 MTA Developer's Reference 199

input sources if the MTA_BLANK item is requested in the item list. The MTA_NMSG _FI LE and
MIA_NMSG_PROC item codes are used to specify the name or address of input files or procedures.

An initial message header may be supplied from either an input file or procedure. The message header
will then be modified as needed when the message is enqueued. The MTA_HDR_FI LE and
MIA_HDR_PROC items are used to specify the name or address of an input file or procedure. If an initial
message header is to be supplied, it must appear in the item list before any MTA_MSG _FI LE or
MIA_MSG_PROC items. A blank line must be supplied at the end of the message header, or at the start of
the first message-body input source. This blank line will automatically be supplied when the MTA_BLANK
item code is specified in the item list.

The MTA_MODE_ and MTA_ENC items control the access mode and encodings applied to message body
input sources. These items set the current access mode and encoding to be applied to all subsequent
input sources that appear in the item list. The default access mode is MTA_MODE_TEXT, which uses text
mode access. The default encoding is MTA_ENC_UNKNOWN, which results in no encoding of the data.

The binary access mode will not be applied to input procedures. The access mode and encoding item
codes do not apply to input sources for an initial message header, which is always accessed using the
default access mode and never encoded.

Input procedures use the following calling format:
ssize_t proc(const char **bufadr)

where const char **buf adr is the address of pointer to the starting memory location of the next
piece of input data.

The return value is ssi ze_t , which gives the length of the input data. A value that is equal to or greater
than zero (0) indicates success. A value of minus one (- 1) indicates that there is no further data to return
(EOF). Any other negative value indicates an error for which processing should be aborted.

The procedure will be repeatedly called until a negative value is returned, which indicates all input data
has been retrieved or an error occurred.

Required Privileges for nt aSend()

Like the MTA SDK routines, privileges are required in order to use nt aSend() . Enqueuing messages
requires privileges sufficient to create, open, read from, and write to the MTA message queue directories.
On UNIX, this is accomplished by having your executable program owned and run by the MTA account
or, alternatively, owned by the MTA and have the set ui d attribute set.

In order to submit mail under a user name that differs from that of the calling process, privileges are
required. On UNIX platforms, the process must have the same (real) Ul D as either the r oot or
Messaging Server account.

In some applications, it is important to keep strict control over when privileges are enabled and disabled.
To this end, the MTA_PRI V_ENABLE PROC and MTA_ PRI V_DI SABLE PROC item codes may be used to
specify the addresses of two procedures to call immediately prior to and immediately after enqueuing a
message. This allows the required privileges to be enabled only when they are needed, that is, when the
message is enqueued, and to remain disabled at all other times.

The nt aSend() routine does not use a condition handler, so if a fatal error occurs while enqueuing a
message, it is up to the calling program to trap the error and, if necessary, disable any privileges that
should be disabled. These procedures, if specified, should accept no arguments and return no function
result (return value).

The privileges to be enabled must either be granted to the program using nt aSend() (for example, the
program may have been installed with privileges), or the process running the program must have the

Messaging Server 8.0 MTA Developer's Reference 200

requisite privileges. The nt aSend() routine and the MTA do not provide these privileges.

nt aSendDi spose()

For each call to nt aSend() where MTA_ADR_STATUS is used, there should be a subsequent call to
nt aSendDi spose() .

..

..

Arguments

Argument Description

itemlist Pointerto an array with elements of type nta_item | i st _t. This should be an array
previously passed to nt aSend() .
Description

Each call to this routine disposes of virtual memory allocated by nt aSend() for returning address status
information requested with the MTA_ADR_STATUS item code.

Return Values

None

Example

..

itemlist[index++].item code=MIA_ADR STATUS;
itemlist[index++].item code=MIA_| TEM END;
istat=ntaSend(itemlist);

nt aSendDi spose(itemlist);

Compiling and Linking Programs
Programs that use nt aSend() are linked using the same steps as the MTA SDK routines. For details,

see MTA SDK Programming Considerations.

Examples of Using nt aSend()

Several example programs, written in C, are provided in this section:

Example 7-1 Send a Simple Message

Example 7-2 Specifying an Initial Message Header

Example 7-3 Sending a Message to Multiple Recipients

Example 7-4 Using an Input Procedure to Generate the Message Body

Messaging Server 8.0 MTA Developer's Reference 201

The example routines shown in this section may be found in the exanpl es/ nt a/ sdk directory.

Sending a Simple Message

The program shown in Example 7-1 Send a Simple Message demonstrates how to send a simple
message to the r oot account. The source code itself is used as the input source for the body of the
message to be sent. The Fr om address associated with the message is that of the process running the
program. Comments in the program example explain the sample output line they generate.

Example 7-1 Send a Simple Message

/* send_sinple.c Send a sinple nessage */
#include & t;string.h\>
#i ncl ude "nt asdk. h"

/* Push an entry onto the itemlist */

#define ITEMitemadr) itemlist[index].itemcode = item\
itemlist[index].itemaddress = adr;\
itemlist[index].itemlength = adr ? strlen(adr) : 0; \
itemlist[index].itemstatus = 0;\
itemlist[index++].itemsmessage = NULL

main ()

{
na_itemlist_t itemlist[4];
int index = 0O;

| TEM MTA_TO "root"); /* Becones the To: line in the output */
| TEM MTA_SUBJECT, "send_sinple.c");

| TEM MTA_MSG FILE, _ FILE_);/* Becones the Subject: line */

| TEM MTA_END_LI ST, 0);

exit(maSend(itemlist));

Output for Example 1 Sending a Simple Message

Date: 04 Cct 1992 22:24:07 -0700 (PDT)

From jdoe@esta.com

Subj ect: send_sinple.c

To: root @esta.com

Message-id: & t; 01GPKF10JI B8ILVIWK@est a. com >
M ME-version: 1.0

Content -type: TEXT/ PLAIN, CHARSET=US- ASCl |
Content-transfer-encoding: 7BIT

/* send_sinple.c -- Send a sinple nessage */
#include & t;string.h\>
#i ncl ude "ntasdk. h"

Example 2 Specifying an Initial Message Header

Messaging Server 8.0 MTA Developer's Reference 202

The program shown in Example 7-2 Specify an Initial Message Header illustrates the use of the
MIA_HDRMSBG FI LE and MTA_HDR ADRS item codes to enqueue a message that has already been
composed, including the headers, and stored in a file. The input file is given in the Input File for Example
2 Specifying an Initial Message Header. The resulting message is shown in Output for Example 2
Specifying an Initial Message Header.

When the entire message, header and body, is contained in a single file, use the MTA_HDRVSG FI LE
item code in place of the MTA_HDR FI LE and MTA_MSG_FI LE item codes.

Example 7-2 Specifying an Initial Message Header

..

/* send_header.c -- Send a nessage with initial header */
#include & t;string.h\>
#i ncl ude "ntasdk. h"

/* Push an entry onto the itemlist */

#define ITEMitemadr) itemlist[index].itemcode = item\
itemlist[index].itemaddress = adr;\
itemlist[index].itemlength = adr ? strlen(adr) : O;\
itemlist[index].itemstatus = 0;\
itemlist[index++].itemsnmessage = NULL

mai n ()

{
MIA itemlist_t itemlist[3];
int index = 0;

| TEM MTA_HDR_ADRS, 0);

| TEM MTA_HDRVSG FI LE, "send_header.txt");
| TEM MTA_END_LI ST, 0);
exit(maSend(itemlist));

..

Subj ect: MIA SDK cal | abl e Send exanpl e

To: root @esta.com

M ME-version: 1.0

Cont ent -type: TEXT/ PLAIN, CHARSET=US- ASCl |
Content-transfer-encoding: 7BIT

Conments: lgnore this nmessage -- it& squo;s just a test

This is a test of the energency broadcasting system

1234567890123456789012345678901234567890123456789012345678901234
5678901234567890

0000000001111111111222222222233333333334444444444555555555566666
6666677777777778

Output for Example 2 Specifying an Initial Message Header

Messaging Server 8.0 MTA Developer's Reference 203

Date: 04 Jan 2003 22:42:25 -0800 (PST)

From system@esta.com

Subj ect: MIA SDK cal | abl e Send exanpl e

To: system@esta.com

Message-id: & t; 01GPKFNPUQF8ILVIWK@est a. com >

M ME-version: 1.0

Content -type: TEXT/ PLAIN, CHARSET=US- ASCI |
Content-transfer-encoding: 7BIT

Conments: lgnore this nmessage -- it's just a test

This is a test of the energency broadcasting system

1234567890123456789012345678901234567890123456789012345678901234
5678901234567890

0000000001111111111222222222233333333334444444444555555555566666
6666677777777778

Example 3 Sending a Message to Multiple Recipients

The program in Example 7-3 Sending a Message to Multiple Recipients demonstrates the following
points:

¢ Sending a message to multiple recipients.
® Obtaining the status (legal, illegal) of each envelope recipient address (that is, active transport
address).

The message is sent to one To: address, a Cc: address, and a Bcc: address. After nt aSend() is
called, any status message associated with each address is displayed.

The log output produced by running the program is shown in Output for Example 3 Sending a Message
to Multiple Recipients.

The following items of note are identified in the comments in the program:

® |nstruct nt aSend() to return a status message for each envelope recipient address.
® Specify some To: , Cc:, and Bcc: addresses.

® Send the message.

® Display any returned status messages.

Example 7-3 Sending a Message to Multiple Recipients

Messaging Server 8.0 MTA Developer's Reference 204

/* send_nulti.c -- Send a message to nultiple recipients */
#include & t;stdio.h\>

#include & t;string.h\>

#i ncl ude "ntasdk. h"

#define I TEMitemadr) itemlist[index].itemcode = item)\
itemlist[index].itemaddress = adr;\
itemlist[index].itemlength = adr ? strlen(adr) : O;\
itemlist[index].itemstatus = 0;\
itemlist[index++].itemsnmessage = NULL

mai n ()
{
int index = 0, istat, i;
nta itemlist t itemlist[7];

/* Specify the Subject: header line and message input source */
| TEM MTA_SUBJECT, "send_nmulti.c");
| TEM MTA_MSG FILE, __FILE);

/* Return per address status/error messages */

| TEM MTA_ADR_STATUS, 0); /* Instructs maSend() to return a */
/* status nmessage for each envel ope */
/* recipient address */

/* Specify regular Bcc:, To:, and Cc: addresses */
| TEM MTA_BCC, "root");

| TEM MTA_TO, "abuse@anpl e.conl');

| TEM MTA_CC, "postnaster @anpl e. cont');

/* Now termnate the itemlist */
| TEM MTA_END LI ST, 0);

/* And send the message */
istat = nmtaSend(itemlist);/* Sends the nessage. */

/* Display the address status nessages provided that no */

/* error other than MIA HOST has occurred */
for (i =0; i &t; index; i++) /* Display any returned status */
/* messages */

if (itemlist[i].itemsnessage)
printf ("%: % - %\n",
(const char *)itemlist[i].item address,
itemlist[i].itemstatus ? "Failed"
"Succeeded",
itemlist[i].itemsnmessage);

/* Dispose of status nessages */
nt aSendDi spose(itemlist);

exit(istat);

}

Output for Example 3 Sending a Message to Multiple Recipients

Messaging Server 8.0 MTA Developer's Reference 205

Succeeded: root @anpl e.com
Succeeded: abuse@anpl e. com
Succeeded: postnaster @anpl e. com

Example 4 Using an Input Procedure to Generate the Message Body

The program shown in Example 7-4 Using an Input Procedure to Generate the Message Body uses an
input procedure as the source for the body of a message to be sent. In the program, the input procedure
nmsg_pr oc will read input until the runtime library routine f get s() signals an EOF condition, for
example, a cont r ol - D has been input. The address of the procedure nsg_pr oc is passed to

nt aSend() using a MTA_MSG_PROC item code. The nt aSend() routine repeatedly calls the nsg_pr oc

procedure, until a negative value is returned by the procedure.

Example 7-4 Using an Input Procedure to Generate the Message Body

Messaging Server 8.0 MTA Developer's Reference 206

..

/* send_input.c -- Denonstrate the use of MIA_MSG PROCC */
#include & t;stdio.h\>

#include & t;stdlib.h\>

#include & t;string.h\>

#i ncl ude "nt asdk. h"

#i fdef _WN32

typedef |ong ssize_t;

#endi f

/* Push an entry onto the itemlist */

#define I TEMitemadr) itemlist[index].itemcode = item)\
itemlist[index].itemaddress = adr;\
itemlist[index].item|ength 0;\
itemlist[index].itemstatus = 0;\
itemlist[index++].item snessage = NULL

ssize_t nsg_proc(const char **bufadr)

{
static char buf[1024];

if (!bufadr)
return(-2); /* Call error; abort */

printf("input: ");
if (fgets(buf, sizeof(buf), stdin))
{
*puf adr = buf;
buflen = strlen(buf);
if (buf[buflen-1] == & squo;\né&r squo;)

buflen -= 1;
return(bufl en);
}
el se
return(-1); [/* EOF */
}
main ()
{

int istat, index = O;
nta_itemlist_t itemlist[4];

STRI TEM MIA_SUBJECT, "send_i nput.c");
STRI TEM MTA_TO, "root");

| TEM MTA_MSG_PROC, nsg_proc);

| TEM MTA_END LI ST, 0);
exit(maSend(itemlist));

Messaging Server 8.0 MTA Developer's Reference 207

	Decoding Messages
	Dequeuing Messages
	Enqueuing Messages
	Error Status Codes Summary
	MTA SDK Concepts and Overview
	MTA SDK Programming Considerations
	MTA SDK Reference
	mtaSend() Routine Specification
	Using Callable Send mtaSend()

