
Oracle® Communications Messaging Server
MTA Developer's Reference

Release 8.0

July 2015

Oracle Communications Messaging Server MTA Developer's Reference, Release 8.0

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer
software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the
AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark
of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1. Decoding Messages . 4
2. Dequeuing Messages . 26
3. Enqueuing Messages . 56
4. Error Status Codes Summary . 62
5. MTA SDK Concepts and Overview . 65
6. MTA SDK Programming Considerations . 72
7. MTA SDK Reference . 79
8. mtaSend() Routine Specification . 186
9. Using Callable Send mtaSend() . 198

4Messaging Server 8.0 MTA Developer's Reference

1.
2.

3.

Chapter 1. Decoding Messages

Decoding Messages

The MTA has facilities for parsing and decoding single and multipart messages formatted using the
MIME Internet messaging format. Additionally, these facilities can convert messages with other formats
to MIME. For example, messages with BINHEX or UUENCODE data, the RFC 1154 format, and many
other proprietary formats. The routine provides access to these facilities,mtaDecodeMessage()
parsing either a queued message or a message from an arbitrary source such as a disk file or a data
stream.

This information includes the following topics:

Usage Modes for mtaDecodeMessage()
The Input Source
The Inspection Routine
A Simple Decoding Example
The Output Destination
Decode Contexts
A Simple Virus Scanner Example

Usage Modes for mtaDecodeMessage()

There are two usage modes for . In the first mode, messages are simply parsed,mtaDecodeMessage()
any encoded content decoded, and each resulting, atomic message part presented to an inspection
routine. This mode of usage is primarily of use to channels which interface the MTA to non-Internet mail
systems such as SMS and X.400. The second mode of operation allows the message to be rewritten
after inspection. The output destination for this rewriting may be either the MTA channel queues, or an
arbitrary destination via a caller-supplied output routine. During the inspection process in this second
usage mode, individual, atomic message parts may be discarded or replaced with text. This operational
mode is primarily of use to intermediate processing channels which need to scan message content or
perform content conversions. For example, virus scanners and encryption software. A Simple Decoding

 illustrates the first usage mode, while the second.Example A Simple Virus Scanner Example

For the first usage mode, the calling routine must supply the following items:

An input source for the message.
An inspection routine which will be passed each atomic message part of the parsed and decoded
message.
For the second usage mode, the calling routine must supply the same two items as listed for the
first usage mode, and in addition a third item must be supplied:
An output destination to direct the resulting message to.

The input source can be either a queued message file, represented by a dequeue context, or it can be
provided by a caller-supplied input routine. Use the former when processing queued messages and the
latter when processing data from disk files, data streams, or other arbitrary input sources. Since the
parser and decoder require only a single, sequential pass over its input data, it is possible to stream data
to .mtaDecodeMessage()

The output destination can be a message being enqueued and represented either by an enqueue
context, or by a caller-supplied output routine. Use an enqueue context when submitting the message to
the MTA. In all other cases, use a caller-supplied output routine.

5Messaging Server 8.0 MTA Developer's Reference

1.

2.

3.

The following are some common usage cases and their associated input sources and output
destinations.

Send to the MTA (slave channel). For this case, a caller- supplied routine accepts incoming
messages from a source outside of the MTA and then enqueues it to the MTA. The caller-supplied
input routine is used in conjunction with an enqueue context as the output source. Doing a MIME
parse and decode is not usually called for in this case. However, specialized services might be
constructed this way. For instance, a custom server that accepts MIME formatted messages, and
strips a control attachment before submitting the remainder of the message to the MTA.
An intermediate processing channel. For this case, an example is a virus scanner that scans
queued mail messages, re-enqueuing them to the MTA for delivery. In this case, a dequeue
context is used as the input source and an enqueue context as the output source.
Send from the MTA (master channel). For this case, queued messages are gatewayed to another
mail system. A dequeue context is used for the input source and an output destination is often not
needed; the inspection routine usually suffices. Channels of this sort are common place when
interfacing Messaging Server to systems that do not support MIME and for which conversion of
MIME formatted messages to other formats is required (for example, X.400 and SMS).
A command line utility to parse a message. For this case, a caller-supplied input routine is used.
No output destination is needed; an inspection routine usually suffices.

The Input Source

The message to be decoded is provided as either a dequeue context or a caller-supplied routine.

Dequeue Context

When using a dequeue context, you must observe the following:

Pass the dequeue context from to along with the mtaDecodeStart() mtaDecodeMessage()
 item code.MTA_DECODE_DQ

The recipient list of the message being dequeued must have already been read by
 before calling .mtaDequeueRecipientNext() mtaDecodeMessage()

mtaDequeueMessageFinish() must not yet have been called for the dequeue context.

After using a dequeue context with , further calls to mtaDecodeMessage()
 can't be made. Calls to can only bemtaDequeueRecipientNext() mtaDequeueLineNext()

performed after a call to .mtaDequeueRewind()

Caller-Supplied Input Routine

To use a caller-supplied input routine, pass the address of the input routine along with the
 item code to . In MTA_DECODE_PROC mtaDecodeMessage() Example 5-1 Decoding MIME Messages

, the caller supplied routine's name is .Simple Example decode_read()

When using a caller-supplied input routine, each block of data returned by the routine must be a single
line of the message. This is the default expectation of and corresponds to the mtaDecodeMessage()

 item code. If, instead, the , , , or item code areMTA_TERM_NONE MTA_TERM_CR _CRLF _LF _LFCR
specified, then the block of data need not correspond to a single, complete line of message data; it may
be a portion of a line, multiple lines, or even the entire message.

On each successful call, the input routine should return a status code of zero (). When there isMTA_OK
no more message data to provide, then the input routine should return . The call that returns theMTA_EOF
last byte of data should return zero; it is the subsequent call that must return . In the event of anMTA_EOF
error, the input routine should return a non-zero status code other than (for example,).MTA_EOF MTA_NO
This terminates the message parsing process and returns an error.mtaDecodeMessage()

6Messaging Server 8.0 MTA Developer's Reference

The Inspection Routine

Whenever is called, an inspection routine must be supplied by the caller. In mtaDecodeMessage()
, the inspection routine's name is Example 5-1 Decoding MIME Messages Simple Example

.decode_inspect()

As the message is parsed and decoded, presents each atomic message part tomtaDecodeMessage()
the inspection routine one line at a time. The presentation begins with the part's header lines. Once all of
the header lines have been presented, the lines of content are presented.

So that the inspection routine can tell if it is being presented with a line from the header or content of the
message, a data type indicator is supplied to the inspection routine each time it is called. In regards to
lines of the message's content, the data type indicator discriminates between text and binary content.
Text content is considered any content with a MIME content type of or (for example, text message

, ,), while binary content is all other MIME content types (text/plain text/html message/rfc822
, , and).application image audio

When writing an inspection routine for use with , the following points apply:mtaDecodeMessage()

Message parts need not have any content. A common case is a single part message with no
content for which the sender used the header line to express their communique.Subject:
In the case of a non-multipart message, the message has a single part. The header for this sole
part is the header for the message itself. As noted previously, there may or may not be any
content to this single part.
In the case of a multipart message, individual parts need not have a part header. In such cases,
MIME's defaults apply and imply that the content is using the US-ASCII charactertext/plain
set.
Regardless of the value of the header line, the contentContent-transfer-encoding
presented will no longer be encoded.
In the case of a multipart message, the outermost header is not presented. However, it may be
inspected by means of an output routine (see).The Output Destination

A Simple Decoding Example

This sample program found in decodes aExample 5-1 Decoding MIME Messages Simple Example
MIME formatted message using . This is not a channel program. The actualmtaDecodeMessage()
message to be decoded is compiled into the program rather than being drawn from a channel queue.

After the Messaging Server product is installed, these programs can be found in the following location:

msg_server_base/examples/mtasdk/

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment */N

where is a number. The numbers are links to some corresponding explanatory text in the section thatN
follows this code, see .Explanatory Text for Numbered Comments in the Simple Decoding Example

For the sample output generated by this program, see MIME Message Decoding Simple Example Output
.

Example 5-1 Decoding MIME Messages Simple Example

/*
 * decode_simple.c

7Messaging Server 8.0 MTA Developer's Reference

 *
 * Decode a multipart MIME message.
 *
 */
#include <stdio.h>
#include <string.h>
#include "mtasdk.h"

/*
 * Inline data for a sample message to decode
 * See explanatory comment 1
 */
static const char message[] =
 "From: sue@siroe.com\n"
 "Date: 31 Mar 2003 09:32:47 -0800\n"
 "Subject: test message\n"
 "Content-type: multipart/mixed; boundary=BoundaryMarker\n"
 "\n\n"
 "--BoundaryMarker\n"
 "Content-type: text/plain; charset=us-ascii\n"
 "Content-disposition: inline\n"
 "\n"
 "This is a\n"
 " test message!\n"
 "--BoundaryMarker\n"
 "Content-type: application/postscript\n"
 "Content-disposition: attachment; filename='a.ps'\n"
 "Content-transfer-encoding: base64\n"
 "\n"
 "IyFQUwoxMDAgMTAwIG1vdmV0byAzMDAgMzAwIGxpbmV0byBzdHJva2UKc2hv" "3Bh\n"
 "Z2UK\n"
 "--BoundaryMarker--\n";

static mta_decode_read_t decode_read;
static mta_decode_inspect_t decode_inspect;
typedef struct {
 const char *cur_position;
 const char *end_position;
} position_t;

main()
{
 position_t pos;

 /*
 * Initialize the MTA SDK
 */
 if ((ires = mtaInit(0)))
 {
 mtaLog("mtaInit() returned %d; %s\n", ires,
 mtaStrError(ires, 0));
 return(1);
 }

 /*
 * For a context to pass to mtaDecodeMessage(), we pass a
 * pointer to the message data to be parsed. The
 * decode_read() routine uses this information when
 * supplying data to mtaDecodeMessage().

8Messaging Server 8.0 MTA Developer's Reference

 * See explanatory comment 2
 */
 pos.cur_position = message;
 pos.end_position = message + strlen(message);

 /*
 * Invoke mtaDecodeMessage():
 * 1. Use decode_read() as the input routine to supply the
 * message to be MIME decoded,
 * 2. Use decode_inspect() as the routine to inspect each
 * MIME decoded message part,
 * 3. Do not specify an output routine to write the
 * resulting, MIME message, and
 * 4. Indicate that the input message source uses LF
 * record terminators.
 * See explanatory comment 3
 */
 mtaDecodeMessage((void *)&pos, MTA_DECODE_PROC,
 (void *)decode_read,
 0, NULL, decode_inspect, MTA_TERM_LF, 0);
}

/*
 * decode_read -- Provide message data to mtaDecodeMessage().
 * The entire message could just as easily be
 * given to mtaDecodeMessage()at once. However,
 * for illustration purposes, the message is
 * provided in 200 byte chunks.
 * See explanatory comment 4
 */
static int decode_read(void *ctx, const char **line, size_t
 *line_len)
{
 position_t *pos = (position_t *)ctx;

 if (!pos)
 return(MTA_NO);
 else if (pos->cur_position >= pos->end_position)
 return(MTA_EOF);
 *line = pos->cur_position;
 *line_len = ((pos->cur_position + 200) <
 pos->end_position) ? 200 :
 (pos->end_position - pos->cur_position);
 pos->cur_position += *line_len;
 return(MTA_OK);
}

/*
 * decode_inspect -- Called by mtaDecodeMessage() to output a
 * a line of the parsed message. The line is
 * simply output with additional information
 * indicating whether the line comes from a
 * header, text part, or binary part.
 * See explanatory comment 5
*/
static int decode_inspect (void *ctx, mta_decode_t *dctx, int
 data_type, const char *data,
 size_t data_len)
{

9Messaging Server 8.0 MTA Developer's Reference

 static const char *types[] = {"N", "H", "T", "B"};

 /* See explanatory comment 6 */
 if (data_type == MTA_DATA_NONE)
 return(MTA_OK);

 /* See explanatory comment 7 */
 printf("%d%s: %.*s\n",
 mtaDecodeMessageInfoInt(dctx,
 MTA_DECODE_PART_NUMBER),
 types[data_type], data_len,
 data);

10Messaging Server 8.0 MTA Developer's Reference

1.

2.

3.

4.

5.

6.

7.

 return(MTA_OK);
}

Explanatory Text for Numbered Comments in the Simple Decoding Example

The following numbered explanatory text corresponds to the numbered comments in Example 5-1
.Decoding MIME Messages Simple Example

The MIME message to be decoded. It is a multipart message with two parts. The first part contains
text, the second part a PostScript attachment.
The private context to be passed to and, in turn, passed by it to themtaDecodeMessage()
supplied input routine, . The input routine uses this context to track how manydecode_read()
bytes of the input message it has supplied to .mtaDecodeMessage()
The call to . An input routine, , is supplied to provide themtaDecodeMessage() decode_read()
message to be decoded. Since the message source has each record terminated by line feeds, the

 option is also specified. The routine is passed for use as anMTA_TERM_LF decode_inspect()
inspection routine.
The input routine, . This routine provides the message to be decoded 200 bytesdecode_read()
at a time. Note that providing only 200 bytes at a time is arbitrary: the routine could, if it chose,
provide the entire message, or 2000 bytes at a time, or a random number of bytes on each call.
After the entire message has been supplied, subsequent calls to return the decode_read()

 status.MTA_EOF
The inspection routine, . For each atomic message part, this routine is calleddecode_inspect()
repeatedly. The repeated calls provide, line by line, the part's header and decoded content.
For a given message part, the final call to provides no part data. This finaldecode_inspect()
call serves to give a last chance to accept or discard the part whendecode_inspect()
outputting the final form of the message via an optional output routine supplied to

. That optional routine is not used here.mtaDecodeMessage()
The part number for this message part is obtained with a call to .mtaDecodeMessageInfoInt()

MIME Message Decoding Simple Example Output

The following shows the output generated by the program in Example 5-1 Decoding MIME Messages
.Simple Example

1H: Content-type: text/plain; charset=us-ascii
1H: Content-disposition: inline
1T: This is a
1T: test message!
2H: Content-type: application/postscript
2H: Content-transfer-encoding: base64
2H: Content-disposition: attachment; filename="a.ps"
2B: #!PS
100 100 moveto 300 300 lineto stroke
showpage

The Output Destination

When an optional output destination is supplied to , the processed inputmtaDecodeMessage()
message is subsequently written to the output destination. When conversion to MIME is requested, the
output message will be the result of the conversion. Additionally, the written message will reflect any
changes made by the inspection routine with . That routine may bemtaDecodeMessagePartDelete()
used to delete an atomic part or replace the part with new, caller-supplied content.

11Messaging Server 8.0 MTA Developer's Reference

1.
2.

3.

The output destination can be either a message submission to the MTA (that is, an ongoing enqueue) or
an arbitrary destination represented by a caller-supplied output routine.

Enqueue Context

When using a message enqueue context, you must do the following:

Supply the enqueue context along with the item code.MTA_DECODE_NQ
Specification of the message’s recipient list must have already been completed with

 before calling .mtaEnqueueTo() mtaDecodeMessage()
mtaEnqueueFinish() must not yet have been called for the enqueue context.

After the call to has completed successfully, complete the message enqueuemtaDecodeMessage()
with . In the event of an error, the message submission should be cancelled withmtaEnqueueFinish()

. writes the entire message header and content. TheremtaEnqueueFinish() mtaDecodeMessage()
is no need for the caller to write anything to the message's header or content.

Caller-Supplied Output Routine

To use a caller-supplied output routine (for example,), supply the address of thedecode_write()
output routine along with the item code to .MTA_DECODE_PROC mtaDecodeMessage()

Each line passed to the output routine represents a complete line of the message to be output. The
output routine must add to the line any line terminators required by the output destination (for example,
carriage return, line feed pairs if transmitting over the SMTP protocol, line feed terminators if writing to a
UNIX text file, and so forth).

Decode Contexts

When calls either a caller-supplied inspection or output routine, it passes amtaDecodeMessage()
decode context to those routines. Through SDK routine calls, this decode context can be queried to
obtain information about the message part currently being processed, as shown in the following table:

12Messaging Server 8.0 MTA Developer's Reference

Message Code Description

MTA_DECODE_CCHARSET The character set specified with the parameter of the part's CHARSET
 header line. If the part lacks a Content-type: CHARSET

specification, then the value will be returned. Obtain with us-ascii
.mtaDecodeMessageInfoString()

MTA_DECODE_CDISP Value of the header line, less any optionalContent-disposition:
parameters. Will be a zero length string if the part lacks a

 header line. Obtain with Content-disposition:
mtaDecodeMessageInfoString()

MTA_DECODE_CDISP_PARAMS Parameter list to the header line, if any.Content-disposition:
The parsed list is returned as a pointer to an option context. For
further information, see .mtaDecodeMessageInfoParams()

MTA_DECODE_CSUBTYPE The content subtype specified with the part's Content-type:
header line (for example, for , for plain text/plain gif

). Defaults to when the part lacks a image/gif plain
 header line.Obtain with Content-type:

.mtaDecodeMessageInfoString()

MTA_DECODE_CTYPE The major content type specified with the part’s Content-type:
header line (for example, for , for text text/plain image

). Defaults to when the part lacks a image/gif text
 header line.Obtain with Content-type:

.mtaDecodeMessageInfoString()

MTA_DECODE_CTYPE_PARAMS Parameter list to the header line, if any. The parsedContent-type:
list is returned as a pointer to an option context. For further
information, see .mtaDecodeMessageInfoParams()

MTA_DECODE_DTYPE Data type associated with this part. Obtain with
.mtaDecodeMessageInfoInt()

MTA_DECODE_PART_NUMBER Sequential part number for the current part. The first message part is
part , the second part is , the third part is , and so on. Obtain with 0 1 2

.mtaDecodeMessageInfoInt()

A Simple Virus Scanner Example

Example 5-2 Decoding MIME Messages Complex Example shows how to use the
 routine to write an intermediate processing channel that converts messagesmtaDecodeMessage()

with formats other than MIME, for example UUENCODE content, to MIME output. It then decodes the
MIME message, scanning it for potentially harmful attachments. (In this example, an attachment is any
message part.) Any harmful attachments are removed from the message after which it is re-enqueued for
delivery. The list of harmful MIME media types and file name extensions is read from a channel option
file. An example option file for the channel is shown in .Example Option File

In this example, the MIME and header lines are used toContent-type: Content-disposition:
detect potentially harmful message attachments such as executable files. This example could be
extended to also scan the content of the attachments, possibly passing the contents to a virus scanner.
Further, the example could be modified to return as undeliverable any messages containing harmful
attachments.

13Messaging Server 8.0 MTA Developer's Reference

Note -
To configure the MTA to run this channel, see Running Your Enqueue and Dequeue

. The environment variable must give the absolute filePrograms PMDF_CHANNEL_OPTION
path to the channel's option file. Also, for a discussion on configuring special rewrite rules
for re-enqueuing dequeued mail, see .Preventing Mail Loops when Re-enqueuing Mail

For the output generated by this sample program, see Decoding MIME Messages Complex Example
.Output

After the Messaging Server product is installed, these programs can be found in the following location:

msg_server_base/examples/mtasdk/

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment */N

where is a number. The numbers are links to some corresponding explanatory text in the section thatN
follows this code, see Explanatory Text for Numbered Comments in the Decoding MIME Messages

.Complex Example

Example 5-2 Decoding MIME Messages Complex Example

/*
 * virus_scanner_simple.c
 *
 * Remove potentially harmful content from queued messages.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "mtasdk.h"

/*
 * A structure to store our channel options
 */
typedef struct {
 /* Produce debug output? */
 int debug;
 /* Unwanted MIME content types */
 char bad_mime_types[BIGALFA_SIZE+3];
 /* Length of bmt string */
 size_t bmt_len;
 /* Unwanted file types */
 char bad_file_types[BIGALFA_SIZE+3];
 /* Length of bft string */
 size_t bft_len;
} our_options_t;

/*
 * Forward declarations
 */

14Messaging Server 8.0 MTA Developer's Reference

static void error_exit(int ires, const char *msg);
static void error_report(our_options_t *options, int ires, const
 char *func);
static int is_bad_mime_type(our_options_t *options, mta_decode_t
 *dctx, char *buf, size_t maxbuflen);
static int is_bad_file_type(our_options_t *options, mta_opt_t
 *params, const char *param_name,
 char *buf, size_t maxbuflen);
static int load_options(our_options_t *options);

static mta_dq_process_message_t process_message;
static mta_decode_read_t decode_read;
static mta_decode_inspect_t decode_inspect;

/*
 * main() -- Initialize the MTA SDK, load our options, and then
 * start the message processing loop.
 */
int main()
{
 int ires;
 our_options_t options;

 /*
 * Initialize the MTA SDK
 * See explanatory comment 1
 */
 if ((ires = mtaInit(0)))
 error_exit(ires, "Unable to initialize the MTA SDK");

 /*
 * Load our channel options
 * See explanatory comment 2
 */
 if ((ires = load_options(&options)))
 error_exit(ires, "Unable to load our channel options");

 /*
 * Now process the queued messages. Be sure to indicate a
 * thread stack size sufficient to accomodate message
 * enqueue processing.
 * See explanatory comment 3
 */
 if ((ires = mtaDequeueStart((void *)&options,
 process_message, NULL, 0)))
 error_exit(ires, "Error during dequeue processing");

 /*
 * All done
 */
 mtaDone();
 return(0);
}

/*
 * process_message() -- This routine is called by
 * mtaDequeueStart() to process each queued
 * message. We dont make use of ctx2, but
 * ctx1 is a pointer to our channel options.

15Messaging Server 8.0 MTA Developer's Reference

 * See explanatory comment 4
 */
static int process_message(void **ctx2, void *ctx1, mta_dq_t *dq,
 const char *env_from, size_t
 env_from_len)
{
 const char *adr;
 int disp, ires;
 size_t len;
 mta_nq_t *nq;
 our_options_t *options = (our_options_t *)ctx1;

 /*
 * Initializations
 */
 nq = NULL;

 /*
 * A little macro to do error checking on mta*() calls
 */
#define CHECK(f,x) \
 if ((ires = x)) { error_report(options, ires, f); goto \
 done_bad; }

 /*
 * Start a message enqueue. Use the dequeue context to copy
 * envelope flags fromt the current message to this new
 * message being enqueued.
 * See explanatory comment 5
 */
 CHECK("mtaEnqueueStart",
 mtaEnqueueStart(&nq, env_from, env_from_len,
 MTA_DQ_CONTEXT, dq, 0));

 /*
 * Process the envelope recipient list
 * See explanatory comment 6
 */
 while (!(ires = mtaDequeueRecipientNext(dq, &adr, &len, 0)))
 {
 /*
 * Add this envelope recipient address to the message
 * being enqueued. Use the dequeue context to copy
 * envelope flags for this recipient from the current
 * message to the new message.
 */
 ires = mtaEnqueueTo(nq, adr, len, MTA_DQ_CONTEXT,
 dq, MTA_ENV_TO, 0);
 /* See explanatory comment 7 */
 disp = (ires) ? MTA_DISP_DEFERRED : MTA_DISP_RELAYED;
 CHECK("mtaDequeueRecipientDisposition",
 mtaDequeueRecipientDisposition(dq, adr, len,
 disp, 0));
 }

 /*
 * A normal exit from the loop occurs when
 * mtaDequeueRecipientNext() returns an MTA_EOF status.
 * Any other status signifies an error.

16Messaging Server 8.0 MTA Developer's Reference

 */
 if (ires != MTA_EOF)
 {
 error_report(options, ires, "mtaDequeueRecipientNext");
 goto done_bad;
 }

 /*
 * Begin the MIME decode of the message
 * See explanatory comment 8
 */
 CHECK("mtaDecodeMessage",
 mtaDecodeMessage(
 /* Private context is our options */
 (void *)options,
 /* Input is the message being dequeued */
 MTA_DECODE_DQ, (void *)dq,
 /* Output is the message being enqueued */
 MTA_DECODE_NQ, (void *)nq,
 /* Inspection routine */
 decode_inspect,
 /* Convert non-MIME formats to MIME */
 MTA_DECODE_THURMAN, 0));

 /*
 * Finish the enqueue
 * NOTE: ITS IMPORTANT TO DO THIS before DOING THE
 * DEQUEUE. YOU WILL LOSE MAIL IF YOU DO THE DEQUEUE FIRST
 * and then THE ENQUEUE FAILS.
 * See explanatory text 9
 */
 CHECK("mtaEnqueueFinish", mtaEnqueueFinish(nq, 0));
 nq = NULL;

 /*
 * Finish the dequeue
 */
 CHECK("mtaDequeueFinish", mtaDequeueMessageFinish(dq, 0));

 /*
 * All done with this message
 */
 return(MTA_OK);

done_bad:
 /*
 * Abort any ongoing enqueue or dequeue
 */
 if (nq)
 mtaEnqueueFinish(nq, MTA_ABORT, 0);
 if (dq)
 mtaDequeueMessageFinish(dq, MTA_ABORT, 0);

 /*
 * And return our error status
 */
 return(ires);
}

17Messaging Server 8.0 MTA Developer's Reference

#undef CHECK

/*
 * decode_inspect() -- This is the routine that inspects each
 * message part, deciding whether to accept
 * or reject it.
 * See explanatory comment 10
 */
static int decode_inspect(void *ctx, mta_decode_t *dctx,
 int data_type,const char *data,
 size_t data_len)
{
 char buf[BIGALFA_SIZE * 2 + 10];
 int i;
 our_options_t *options = (our_options_t *)ctx;

 /*
 * See if the part has:
 *
 * 1. A bad MIME content-type,
 * 2. A bad file name extension in the (deprecated)
 * NAME= content-type parameter, or
 * 3. A bad file name extension in the
 * FILENAME= content-disposition parameter.
 */
 i = 0;
 if ((i = is_bad_mime_type(ctx, dctx, buf, sizeof(buf))) ||
 is_bad_file_type(ctx,
 mtaDecodeMessageInfoParams(dctx,
 MTA_DECODE_CTYPE_PARAMS, NULL),
 "NAME", buf, sizeof(buf)) ||
 is_bad_file_type(ctx,
 mtaDecodeMessageInfoParams(dctx,
 MTA_DECODE_CDISP_PARAMS, NULL),
 "FILENAME", buf, sizeof(buf)))
 {
 char msg[BIGALFA_SIZE*4 + 10];

 /*
 * Replace this part with a text message indicating
 * that the parts content has been deleted.
 * See explanatory comment 11
 */
 if (i)
 i = sprintf(msg,
 "The content of this message part has been removed.\n"
 "It contained a potentially harmful media type of %.*s",
 strlen(buf)-2, buf+1);

 else
 i = sprintf(msg,
 "The content of this message part has been removed.\n"
 "It contained a potentially harmful file named '%s'", buf);
 return(mtaDecodeMessagePartDelete(dctx,
 MTA_REASON, msg, i,
 MTA_DECODE_CTYPE, "text", 4,
 MTA_DECODE_CSUBTYPE, "plain", 5,
 MTA_DECODE_CCHARSET, "us-ascii", 8,
 MTA_DECODE_CDISP, "inline", 6,

18Messaging Server 8.0 MTA Developer's Reference

 MTA_DECODE_CLANG, "en", 2, 0));
 }
 else
 /*
 * Keep the part
 * See explanatory comment 12
 */
 return(mtaDecodeMessagePartCopy(dctx, 0));
}

/*
 * is_bad_mime_type() -- See if the parts media type is in our
 * bad MIME content types, for example:
 * application/vbscript
 * See explanatory comment 13
 */
static int is_bad_mime_type(our_options_t *options,
 mta_decode_t *dctx, char *buf,
 size_t maxbuflen)
{
 const char *csubtype, *ctype;
 size_t i, len1, len2;
 char *ptr;

 /*
 * Sanity checks
 */
 if (!options || !options->bmt_len ||
 !options->bad_mime_types[0] ||
 !dctx)
 return(0);

 /*
 * Get the MIME content type
 */
 ctype = mtaDecodeMessageInfoString(dctx, MTA_DECODE_CTYPE,
 NULL, &len1);
 csubtype = mtaDecodeMessageInfoString(dctx,
 MTA_DECODE_CSUBTYPE,
 NULL, &len2);

 /*
 * Build the string: <0x01>type/subtype<0x01><0x00>
 */
 ptr = buf;
 *ptr++ = (char)0x01;
 for (i = 0; i < len1; i++)
 *ptr++ = tolower(*ctype++);
 *ptr++ = /;
 for (i = 0; i < len2; i++)
 *ptr++ = tolower(*csubtype++);
 *ptr++ = (char)0x01;
 *ptr = \0;

 /*
 * Now see if the literal just built occurs in the list of
 * bad MIME content types
 */
 return((strstr(options->bad_mime_types, buf)) ? -1 : 0);

19Messaging Server 8.0 MTA Developer's Reference

}

/*
 * is_bad_file_type() -- See if the part has an associated file
 * name whose file extension is in our list
 * of bad file names, such as .vbs.
 * See explanatory comment 14
 */
static int is_bad_file_type(our_options_t *options,
 mta_opt_t *params,
 const char *param_name, char *buf,
 size_t maxbuflen)
{
 const char *ptr1;
 char fext[BIGALFA_SIZE+2], *ptr2;
 size_t i, len;

 /*
 * Sanity checks
 */
 if (!options || !options->bft_len || !params || !param_name)
 return(0);

 len = 0;
 buf[0] = \0;
 if (mtaOptionString(params, param_name, 0, buf, &len,
 maxbuflen - 1) ||
 !len || !buf[0])
 /*
 * No file name parameter specified
 */
 return(0);

 /*
 * A file name parameter was specified. Parse it to
 * extract the file extension portion, if any.
 */
 ptr1 = strrchr(buf, .);
 if (!ptr1)
 /*
 * No file extension specified
 */
 return(0);

 /*
 * Now store the string created earlier in fext[]
 * Note that we drop the . from the extension.
 */
 ptr1++; /* Skip over the . */
 ptr2 = fext;
 *ptr2++ = (char)0x01;
 len = len - (ptr1 - buf);
 for (i = 0; i < len; i++)
 *ptr2++ = tolower(*ptr1++);
 *ptr2++ = (char)0x01;
 *ptr2++ = \0;

 /*
 * Now return -1 if the string occurs in

20Messaging Server 8.0 MTA Developer's Reference

 * options->bad_file_types.
 */
 return((strstr(options->bad_file_types, fext))
 ? -1 : 0);
}

/*
 * load_options() -- Load our channel options from the channels
 * option file
 * See explanatory comment 15
 */
static int load_options(our_options_t *options)
{
 char buf[BIGALFA_SIZE+1];
 size_t buflen, i;
 mta_opt_t *channel_opts;
 int ires;
 const char *ptr0;
 char *ptr1;

 /*
 * Initialize the our private channel option structure
 */
 memset(options, 0, sizeof(our_options_t));

 /*
 * Access the channels option file
 * See explanatory comment 16
 */
 channel_opts = NULL;
 if ((ires = mtaOptionStart(&channel_opts, NULL, 0, 0)))
 {
 mtaLog("Unable to access our channel option file");
 return(ires);
 }

 /*
 * DEBUG=0|1
 */
 options->debug = 0;
 mtaOptionInt(channel_opts, "DEBUG", 0, &options->debug);
 if (options->debug)
 mtaDebug(MTA_DEBUG_SDK, 0);

 /*
 * BAD_MIME_TYPES=type1/subtype1[,type2/subtype2[,...]]
 */
 buf[0] = \0;
 mtaOptionString(channel_opts, "BAD_MIME_TYPES", 0, buf,
 &buflen, sizeof(buf));

 /*
 * Now translate the comma separated list:
 *
 * Type1/Subtype1[,Type2/Subtype2[,...]]
 *
 * to
 *

21Messaging Server 8.0 MTA Developer's Reference

*<0x01>type1/subtype1[<0x01>type2/subtype2[<0x01>...]]<0x01>
 */

 ptr0 = buf;
 ptr1 = options->bad_mime_types;
 *ptr1++ = (char)0x01;
 for (i = 0; i < buflen; i++)
 {
 if (*ptr0 != ,)
 *ptr1++ = tolower(*ptr0++);
 else
 {
 *ptr1++ = (char)0x01;
 ptr0++
 }
 }
 *ptr1++ = (char)0x01;
 *ptr1 = \0;
 options->bmt_len = ptr1 - options->bad_mime_types;

 /*
 * BAD_FILE_TYPES=["."]Ext1[,["."]Ext2[,...]]
 */
 buf[0] = \0;
 buflen = 0;
 mtaOptionString(channel_opts, "BAD_FILE_TYPES", 0, buf,
 &buflen, sizeof(buf));

 /*
 * Now translate the comma separated list:
 * ["."]Ext1[,["."]Ext2[,...]]
 *
 * to
 *
 * <0x01>ext1[<0x01>ext2[<0x01>...]]<0x01>
 */
 ptr0 = buf;
 ptr1 = options->bad_file_types;
 *ptr1++ = (char)0x01;
 for (i = 0; i < buflen; i++)
 {
 switch(*ptr0)
 {
 default : /* copy after translating to lower case */
 *ptr1++ = tolower(*ptr0++);
 break;
 case . : /* discard */
 break;
 case , : /* end current type */
 *ptr1++ = (char)0x01;
 ptr0++;
 break;
 }
 }
 *ptr1++ = (char)0x01;
 *ptr1 = \0;
 options->bft_len = ptr1 - options->bad_file_types;

 /*

22Messaging Server 8.0 MTA Developer's Reference

 * Dispose of the mta_opt_t context
 * See explanatory comment 17
 */
 mtaOptionFinish(channel_opts);
 /*
 * And return a success
 */

 return(MTA_OK);
}

/*
 * error_report() Report an error condition when debugging is
 * enabled.
 */
static void error_report(our_options_t *options, int ires,
 const char *func)
{
 if (options->debug)
 mtaLog("%s() returned %d; %s",
 (func ? func : "?"), ires, mtaStrError(ires));
}

/*
 * error_exit() -- Exit with an error status and error message.
 */
static void error_exit(int ires, const char *msg)
{
 mtaLog("%s%s%s", (msg ? msg : ""), (msg ? "; " : ""),
 mtaStrError(ires));

23Messaging Server 8.0 MTA Developer's Reference

1.

 exit(1);
}

Example Option File

This example lists the MIME media types and file extensions this program is to consider potentially
harmful.

DEBUG=1
BAD_MIME_TYPES=application/vbscript
BAD_FILE_TYPES=bat,com,dll,exe,vb,vbs

Sample Input Message

The example that follows is the text of a sample input message the program in Example 5-2 Decoding
 is to process. The second message part is a file attachment. TheMIME Messages Complex Example

attached file name is . Consequently when this message is processed by thetrojan_horse.vbs
channel, it should remove the attachment as the file extension is in the list of harmful file.vbs
extensions. The sample program replaces the attachment with a text attachment indicating the content
has been deleted.

Received: from [129.153.12.22] ([129.153.12.22])
 by frodo.siroe.com (Sun Java System Messaging Server 6 2004Q2 (built Apr 7
 2003)) with SMTP id <0HD7001023OYDA00@frodo.siroe.com\> for
 for sue@sesta.com; Fri, 11 Apr 2003 13:03:23 -0700 (PDT)
Date: Fri, 11 Apr 2003 13:03:08 -0700
From: sue@sesta.com
Subject: test message
Message-id: <0HD7001033P1DA00@frodo.siroe.com\>
Content-type: multipart/mixed; boundary=BoundaryMarke

--BoundaryMarker
Content-type: text/plain; charset=us-ascii
Content-disposition: inline

This is a
 test message!

--BoundaryMarker
Content-type: application/octet-stream
Content-disposition: attachment; filename="trojan_horse.vbs"
Content-transfer-encoding: base64

IyFQUwoxMDAgMTAwIG1vdmV0byAzMDAgMzAwIGxpbmV0byBzdHJva2UKc2hvd3Bh
Z2UK

--BoundaryMarker--

Explanatory Text for Numbered Comments in the Decoding MIME Messages Complex
Example

The MTA SDK is explicitly initialized. This call is not really necessary as the MTA SDK will

24Messaging Server 8.0 MTA Developer's Reference

1.

2.

3.
4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

implicitly initialize itself when is called. However, for debugging purposes,mtaDequeueStart()
it can be useful to make this call at the start of a program so that an initialization failure will show
clearly in the diagnostic output. If the call is omitted, initialization failure will be less obvious. The
failure will still be noted in the diagnostic output, but it will be obscured through the routine call that
triggered implicit initialization.
Channel options are loaded via a call to the routine. That routine is part of thisload_options()
example and, as discussed later, uses the SDK routines for obtaining channel option values from
the channel’s option file.
The message dequeue processing loop is initiated with a call to .mtaDequeueStart()
For each queued message to be processed, will be called by process_message()

.mtaDequeueStart()
A message enqueue is started. This enqueue is used to re-enqueue the queued message
currently being processed. As the message is processed, its non-harmful content will be copied to
the new message being enqueued.
The envelope recipient list is copied from the queued message to the new message being
enqueued.
Since this is an intermediate channel, that is, it doesn’t effect final delivery of a message,
successful processing of a recipient address is associated with a disposition of

.MTA_DISP_RELAYED
After processing the message’s envelope, is invoked to decode themtaDecodeMessage()
message, breaking it into individual MIME message parts. is told to usemtaDecodeMessage()
the current dequeue context as the input source for the message to decode. This supplies the
queued message being processed as input to the MIME decoder. Further, the current enqueue
context is supplied as the output destination for the resulting message. This directs

 to output the resulting parsed message to the message being enqueued,mtaDecodeMessage()
less any harmful attachments that are explicitly deleted by the inspection routine. The routine

 is supplied as the inspection routine. If the call to decode_inspect() mtaDecodeMessage()
fails, the macro causes the queued message to be deferred and the message enqueueCHECK()
to be cancelled.
After a successful call to , the message enqueue is committed. It ismtaDecodeMessage()
important that this be done before committing the dequeue. If the operation is done in the other
order– dequeue finish followed by enqueue finish– then mail may be lost. For example, the
message would be lost if the dequeue succeeds and then deletes the underlying message file
before the enqueue, and then the enqueue fails for some reason, such as insufficient disk space.
The inspection routine, . This routine checks the MIME header lines of eachdecode_inspect()
message part for indication that the part may contain harmful content.
Message parts with harmful content are discarded with a call to

. The discarded message part is replaced with a textmtaDecodeMessagePartDelete()
message part containing a warning about the discarded harmful content.
Message parts with safe content are kept by copying them to the output message with

.mtaDecodeMessagePartCopy()
Using the configured channel options, this routine determines if a message part’s media type is in
the list of harmful types.
Using the configured channel options, this routine determines if a filename appearing in the MIME
header lines has an extension considered harmful.
The routine is used to load the channel’s site-configured options from aload_options()
channel option file.
The channel option file, if any, is opened and read by . Since an explicit filemtaOptionStart()
path is not supplied, the file path specified with the environment variablePMDF_CHANNEL_OPTION
gives the name of the option file to read.
After loading the channel’s options, the option file context is disposed of with a call to

.mtaOptionFinish()

Decoding MIME Messages Complex Example Output

The example that follows shows the output generated by the MIME decoding program found in Example
.5-2 Decoding MIME Messages Complex Example

25Messaging Server 8.0 MTA Developer's Reference

Received: from sesta.com by frodo.siroe.com
 Sun Java System Messaging Server Version 6 2004 Q2(built Apr 7 2003))
 id <0HDE00C01BFK6500@frodo.siroe.com\> for sue@sesta.com; Tue, 11
 Apr 2003 13:03:29 -0700 (PDT)
Received: from [129.153.12.22] ([129.153.12.22])
 by frodo.siroe.com (Sun Java System Messaging Server 6 2004 Q2 (built Apr 7
 2003)) with SMTP id <0HD7001023OYDA00@frodo.siroe.com\> for
 sue@sesta.com; Fri, 11 Apr 2003 13:03:23 -0700 (PDT)
Date: Fri, 11 Apr 2003 13:03:08 -0700
From: sue@sesta.com
Subject: test message
To: sue@sesta.com
Message-id: <0HD7001033P1DA00@frodo.siroe.com\>
Content-type: multipart/mixed;
 boundary="Boundary_(ID_XIIwKLBET2/DDbPzRI7yzQ)"

--Boundary_(ID_XIIwKLBET2/DDbPzRI7yzQ)
Content-type: text/plain; charset=us-ascii
Content-disposition: inline

This is a
 test message!

--Boundary_(ID_XIIwKLBET2/DDbPzRI7yzQ)
Content-type: text/plain; charset=us-ascii
Content-language: en
Content-disposition: inline

The content of this message part has been removed.
It contained a potentially harmful file named "trojan_horse.vbs"

--Boundary_(ID_XIIwKLBET2/DDbPzRI7yzQ)--

26Messaging Server 8.0 MTA Developer's Reference

1.
2.

Chapter 2. Dequeuing Messages

Dequeuing Messages

Once enqueued to the MTA, messages are processed using the SDK dequeue routines. These routines
provide channel programs and MTA utilities with programmatic access to queued messages. With these
routines, a channel program can process its queue of messages, accessing the message’s envelope
information and message content.

This chapter discusses the following dequeuing topics:

How Dequeuing Works
Basic Dequeuing Steps
Caller-Supplied Processing Routine
The Routineprocess_message()
A Simple Dequeuing Example
Processing the Message Queue
The Routineprocess_done()
A Complex Dequeuing Example
Intermediate processing channels
Intermediate Channel Example
Thread Creation Loop in mtaDequeueStart()
Multiple Calls to mtaDequeueStart()
Calling Order Dependencies

How Dequeuing Works

Channel programs wishing to dequeue messages from the MTA must associate themselves with a
specific MTA channel or channels. Without this information, the MTA SDK does not know which channel
queue to draw messages from. This information can be provided implicitly with the PMDF_CHANNEL
environment variable, or explicitly by specifying the name of the MTA channel to process when calling

.mtaDequeueStart()

The dequeue process is initiated by calling the routine . A key piece of requiredmtaDequeueStart()
information passed to is the address of a caller-supplied routine designed tomtaDequeueStart()
process a single message. This routine will be repeatedly called by until there aremtaDequeueStart()
no more queued messages in need of processing. One call is made per message to be processed.

Unless otherwise instructed, will use multiple threads of execution to processmtaDequeueStart()
queued messages. Each thread of execution will repeatedly invoke the caller-supplied routine, once for
each message to be processed. Thus, by default the caller-supplied routine is expected to be
"thread-safe." That is, it is expected to support being called simultaneously by more than one thread of
execution. If the caller-supplied routine is not thread safe, then can be instructedmtaDequeueStart()
to use a single thread of execution, as illustrated in A Complex Dequeuing Example

Basic Dequeuing Steps

The following basic steps are necessary to dequeue messages:

Initialize SDK resources and data structures with .mtaInit()
Call , passing it the address of the caller-supplied routine that is to be usedmtaDequeueStart()
to process each message. When is called, it does not return until allmtaDequeueStart()

27Messaging Server 8.0 MTA Developer's Reference

2.

3.

4.

1.

2.

3.

queued messages requiring processing have been processed, thus blocking the thread calling it
until it is finished.
For each queued message requiring processing, an execution thread created by

 calls the routine whose address was provided in Step 2. Threads createdmtaDequeueStart()
by each sequentially process multiple messages. That is, mtaDequeueStart()

 does not create a distinct thread for each and every queued message tomtaDequeueStart()
be processed.
For a list of the tasks the processing routine should do, see .Caller-Supplied Processing Routine

Note -
The routine will use one or more threads, with each threadmtaDequeueStart()
calling the message processing routine. The maximum number of threads allowed
can be set when calling . Consequently, a program that doesmtaDequeueStart()
not support threading should specify a maximum of one thread when it calls

.mtaDequeueStart()

For a list of the tasks the processing routine should do, see Dequeue Message Processing
.Routine Tasks

After returns, deallocate SDK resources and data structures with a call to mtaDequeueStart()
.mtaDone()

Caller-Supplied Processing Routine

Channel programs typically perform some form of processing on each message they dequeue. For
instance, virus scanning, MMS conversion, decryption, delivery to a proprietary messaging system, and
so forth. When using the MTA SDK, channel programs must provide a routine which initiates this
processing on a per message basis. That is, programs must supply a routine that to be called to process
a single queued message. Throughout the rest of this text, this caller-supplied routine will be referred to
as "the caller-supplied processing routine" or, for short, "the processing routine."

When called by one of the execution threads, the processing routine uses themtaDequeueStart()
SDK to access the message's envelope, header, and any content. Upon completion of processing, the
message is then either removed from the MTA queues, or, in the event of a temporary error, left in its
queue for a later processing attempt.

Dequeue Message Processing Routine Tasks

The processing routine processes a single queued message per invocation. The specific steps that a
processing routine takes are:

Read the envelope recipient list with repeated calls to .mtaDequeueRecipientNext()
When returns the status code, the list has been exhaustedmtaDequeueRecipient() MTA_EOF
and all envelope recipient addresses have been provided. All queued messages are guaranteed
by the MTA to always have at least one envelope recipient address.
Read the message, both header and body, with repeated calls to .mtaDequeueLineNext()
When returns the status code, the message has beenmtaDequeueLineNext() MTA_EOF
exhausted; that is, there is no more message text to retrieve. The message will be an RFC 2822
conformant message. As such, the division between the message’s header and content will be
demarked by a blank line (a line with a length of zero). A message may have no content; that is, a
message may have just a header.
Process the message.
The processing in this step could be almost anything, including possibly enqueuing a new
message or messages with the MTA SDK. The details of this step will depend upon the purpose of
the program itself. Programs needing to do MIME parsing should consider using the

 routine.mtaDecodeMessage()

28Messaging Server 8.0 MTA Developer's Reference

3.

4.

1.

a.

b.

c.

For further information about message processing threads and caller-supplied message
processing routines, see .Processing the Message Queue
Report the disposition of each envelope recipient with per recipient calls to

, or a single call to mtaDequeueRecipientDisposition() mtaDequeueMessageFinish()
with the item code.MTA_DISP
The following table lists the valid recipient dispositions:

Symbolic Name Description

MTA_DISP_DEFERRED Unable to process this recipient address. Processing has
failed owing to a temporary problem, such as the network is
down, a remote host is unreachable, or a mailbox is busy.
Retry delivery for this recipient at a later time as determined
by the configuration of the channel.

MTA_DISP_DELIVERED Recipient address successfully delivered. Generate a delivery
status notification if required.

MTA_DISP_FAILED Unable to process this recipient address. Processing has
failed owing to a permanent problem, such as an invalid
recipient address, or recipient over quota. No further delivery
attempts should be made for this recipient. Generate a
non-delivery notification if required.

MTA_DISP_RELAYED Recipient address forwarded to another address or sent into a
non-RFC 1891 (NOTARY) mail system. The message's
NOTARY information was, however, preserved. There is no
need to generate a relayednnotification message.

MTA_DISP_RELAYED_FOREIGN Recipient address forwarded to another address or
gatewayed to a non-RFC 1891 (NOTARY) mail system; the
messages NOTARY information was not preserved; generate
a relayed notification message if required.

MTA_DISP_RETURN For this recipient, return the message as undeliverable.
Generate a non-delivery notification if required. This
disposition is intended for use by queue management utilities.
It is not intended for channel programs.

MTA_DISP_TIMEDOUT Unable to process this recipient address. Processing failed
due to timing out. This disposition is intended for use by the
MTA Return Job. Channel programs should not use this
disposition.

Dequeue the message with .mtaDequeueMessageFinish()
The message is not actually removed from the channel queue until this final step. This helps
ensure that mail is not lost should the channel program fail unexpectedly, or some other
unexpected disaster occurs.
When this routine is called, the resulting processing depends on the disposition of the envelope
recipient addresses reported with (see Step 4 in thismtaDequeueRecipientDisposition()
task list).
If all recipients have a permanent disposition (all of the ones listed in the previous table, except

), then any required non-delivery notifications are generated and theMTA_DISP_DEFERRED
message is permanently removed from the MTA queue.
If all recipients are to be deferred (), then no notifications are generatedMTA_DISP_DEFERRED
and the message is left in the queue for later delivery attempts.
If, however, some recipients have a permanent disposition and others are deferred, then the
following happens:

Notifications are generated for those recipients with permanent dispositions that require
notifications.
A new message is enqueued for just the deferred recipients.

29Messaging Server 8.0 MTA Developer's Reference

1.

c.

2.

The original message is removed from the queue.
Deferred messages will not be processed by this routine more than once, unless another
delivery attempt is made for the deferred message while the process is still running. How
long a message is deferred is configured as part of a channel's definition, using the

 channel keyword.backoff
When finished, the processing routine should return with a status code of zero () to indicate a0
success, and an appropriate status code in the event of an error.MTA_
If the processing routine returns before calling , then the message thatmtaDequeueFinish()
was being handled is left in its queue for a subsequent processing attempt. It will be as if the

 disposition was set for all of the message's recipients. This will be the caseMTA_DISP_DEFFERED
even if the processing routine returns a success status code of zero.
In the event that the processing routine needs to abort processing of a single message, it should
call with the flag set. If the processing routinemtaDequeueMessageFinish() MTA_ABORT
returns with a status code of , then the execution thread that called the processingMTA_ABORT
routine will perform an orderly exit. Consequently, the program can prematurely terminate itself in
a graceful fashion by causing its processing routine to begin returning the status codeMTA_ABORT
each time it is called.

The Routineprocess_message()

This caller-supplied routine is invoked by the processing threads to do the actual processing of the
messages.

The following code example shows the required syntax for a routine:process_message()

int process_message(void **ctx2, void *ctx1, mta_dq_t *dq_ctx,
 const char *env_from, int env_from_len);

The following table lists the required arguments for a routine, and gives aprocess_message
description of each.

Arguments Description

ctx2 A writable pointer that the routine can use to store a pointerprocess_message()
to a per-thread context. See the description that follows for further details.

ctx1 The caller-supplied private context passed as to .ctx1 mtaDequeueStart()

dq_ctx A dequeue context created by and representing the messagemtaDequeueStart()
to be processed by this invocation of the routine.process_message()

env_from A pointer to the envelope address for the message to be processed. SinceFrom:
Internet messages are allowed to have zero length envelope addresses, thisFrom:
address can have zero length. The address will be NULL terminated.

env_from_len The length in bytes of the envelope string. This length does not include anyFrom:
NULL terminator.

When a processing thread first begins running, it sets the value referenced by to NULL. Thisctx2
assignment is made only once per thread and is done before the first call to the process_message()
routine. Consequently, on the first call to the routine by a given execution thread,process_message
the following test is true:

*ctx2 == NULL

30Messaging Server 8.0 MTA Developer's Reference

That test will remain true until such time that the routine itself changes the valueprocess_message()
by making an assignment to . If the routine needs to maintain state across*ctx2 process_message()
all calls to itself by the same processing thread, it can allocate memory for a structure to store that state
in, and then save a pointer to that memory with . The following code snippet demonstrates this:ctx2

int process_message(void **ctx2, void *ctx1, const char *env_from,
 size_t env_from_len)
{
 struct our_state_t *state;

 state = (our_state_t *)(*ctx2);
 if (!state)
 {
 /*
 * First call for this thread.
 * Allocate a structure in which to store the state
 * information
 */
 state = (our_state_t *)calloc(1, sizeof(our_state_t));
 if (!state) return(MTA_ABORT);
 *ctx2 = (void *)state;

 /*
 * Set any appropriate initial values for the state
 * structure
 */
 ...
 }
...

For a sample routine, see the example code in the section that follows.process_message()

A Simple Dequeuing Example

The program shown in constitutes a simplified batch-SMTP channel thatExample 4-1 A Simple Dequeue
reads messages from a message queue, converting each message to batch SMTP format, and writes
the result to . If the conversion is successful, then the message is dequeued, otherwise it isstdout
deferred.

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment */N

where is a number.N

The numbers are links to some corresponding explanatory text in the section that follows this code, see
. Find the sample output in Explanatory Text for Numbered Comments in the Simple Dequeue Example

.Output from the Simple Dequeue Example

Example 4-1 A Simple Dequeue

31Messaging Server 8.0 MTA Developer's Reference

/* dequeue_simple.c -- A simple dequeue example: write BSMTP to stdout
 */
#include <stdio.h>
#include <stdlib.h>
#include "mtasdk.h"

static mta_dq_process_message_t process_message;

int main()
{
 int ires;

 /*
 * Initialize the MTA SDK
 */
 if ((ires = mtaInit(0)))
 {
 mtaLog(mtaInit() returned %d; %s\n, ires,
 mtaStrError(ires, 0));
 return(1);
 }

 /*
 * Start the dequeue loop. Since this example uses stdout
 * for output, we indicate that we only support a single
 * thread:
 * (MTA_THREAD_MAX_THREADS = 1).
 */
 /* See explanatory comment 1 */
 ires = mtaDequeueStart(NULL, process_message, NULL,
 MTA_THREAD_MAX_THREADS, 1, 0);

 /*
 * Check the return status
 */
 /* See explanatory comment 2 */
 if (!ires)
 /* Success */
 return(0);

 /*
 * Print an error message to stderr
 */
 /* See explanatory comment 3 */
 mtaLog("mtaDequeueStart() returned %d; %s\n", ires,
 ires, mtaStrError(ires, 0));

 /* And exit with an error */
 return(1);
}

/* See explanatory comment 4 */
static int process_message(void **my_ctx_2, void *my_ctx_1,
 mta_dq_t *dq, const char *env_from,
 size_t env_from_len)
{
 int ires;
 const char *to, *line;
 size_t len;

32Messaging Server 8.0 MTA Developer's Reference

 /* See explanatory comment 5 */
 if (!(*my_ctx_2))
 {
 *my_ctx_2 = (void *)1;
 printf("HELO\n");
 }
 else
 printf("RSET\n");

 /* Output the command:
 * MAIL FROM: <from-adr>
 */
 printf("MAIL FROM:<%s>\n", env_from);

 /*
 * Output the command:
 * RCPT TO: <to-adr>
 * for each recipient address
 */
 /* See explanatory comment 6 */
 while (!(ires = mtaDequeueRecipientNext(dq, &to,
 &len, 0)))
 {
 printf("RCPT TO:<%s>\n", to);
 /* See explanatory comment 7 */
 mtaDequeueRecipientDisposition(dq, to, len,
 MTA_DISP_DELIVERED, 0);
 }

 /*
 * If ires == MTA_EOF, then we exited the loop normally;
 * otherwise, theres been an error of some sort.
 */
 if (ires != MTA_EOF)
 /* See explanatory comment 8 */
 return(ires);
 /*
 * Now output the message itself
 */
 printf("DATA\n");
 /* See explanatory comment 9 */
 while (!(ires = mtaDequeueLineNext(dq, &line, &len)))
 /* See explanatory comment 10 */
 printf("%.*s\n", len, line);

 /*
 * If ires == MTA_EOF, then we exited normally;
 * otherwise, theres been an error of some sort.
 */
 if (ires != MTA_EOF)
 /* See explanatory comment 8 */
 return(ires);

 /*
 * Output the . command to terminate this message
 */
 printf(".\n");

33Messaging Server 8.0 MTA Developer's Reference

1.

2.
3.

4.
5.

6.

7.

8.

9.

10.

11.

12.

 /*
 * And dequeue the message
 */
 /* See explanatory comment 11 */
 ires = mtaDequeueMessageFinish(dq, 0);

 /*
 * All done; return ires as our result
 */
 /* See explanatory comment 12 */
 return(ires);
}

Explanatory Text for Numbered Comments in the Simple Dequeue Example

The numbered explanatory text that follows corresponds to the numbered comments in Example 4-1 A
:Simple Dequeue

To start the dequeue processing, is called, and it calls mtaDequeueStart()
, which processes each queued message. Since process_message() process_message()

uses for its output, only one message can be processed at a time. To effect that behavior,stdout
 is called with the set to one.mtaDequeueStart() MTA_THREAD_MAX_THREADS

If the call to succeeds, the program exits normally.mtaDequeueStart()
If the call to fails, a diagnostic error message is displayed and the programmtaDequeueStart()
exits with an error status.
process_message() is called by for each queued message.mtaDequeueStart()
The private context in tracks whether or not this is the first time the routineprocess_message()
has been called. On the first call, the memory pointed at by is guaranteed to be .my_ctx_2 NULL
The routine obtains each envelope recipient address, one at a time, using calls to

.mtaDequeueRecipientNext()
Each recipient is marked as delivered using . An actualmtaDequeueRecipientDisposition()
channel program would typically not make this call until after processing the message further.
If returns without first dequeuing the message, process_message() mtaDequeueStart()
defers the message for a later delivery attempt.
The routine calls to read the message header and body, one line at amtaDequeueLineNext()
time. When there are no more lines to read, returns a status of mtaDequeueLineNext()

. When a line is read successfully, returns a status of MTA_EOF mtaDequeueLineNext()
.MTA_OK

The lines returned by might not be terminated because themtaDequeueLineNext() NULL
returned line pointer might reference a line in a read-only, memory-mapped file.
Once the message has been processed and all the disposition of all recipients set,

 is called. This actually dequeues the message.mtaDequeueMessageFinish()
When all message processing is complete, exits. It is called again for eachprocess_message()
additional message to be processed.

Output from the Simple Dequeue Example

34Messaging Server 8.0 MTA Developer's Reference

1.

2.

3.

4.

5.

6.

7.
8.

9.

10.

HELO
MAIL FROM:<sue@siroe.com\>
RCPT TO:<dan@siroe.com\>
DATA
Received:from siroe.com by siroe.com (SunONE Messaging Server 6.0)id
 <01GP37SOPRW0A9KZFV@siroe.com\>; Fri, 21 Mar 2003 09:07:32 -0800(PST)
Date: Fri, 21 Mar 2003 09:07:41 -0800 (PST)
From: postmaster@siroe.com
To: root@siroe.com
Subject: mtasdk_example1.c
Message-id: <01GP37SOPRW2A9KZFV@siroe.com\>
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

Hello
 world!
.
QUIT

Processing the Message Queue

This section describes the steps undertaken by each execution thread created by mtaDequeueStart()
. Each execution thread processes a subset of the channel’s queued messages by repeatedly calling the
caller-supplied processing routine, .process_message()

To process queued messages, a processing thread takes the following steps:

The thread sets to have the value NULL:ctx2
ctx2 = NULL;
For information on the arguments, see [The process_message() process_message()

.Routine
The execution thread communicates with the Job Controller to obtain a message file to process. If
there are no more message files to process, then go to Step 9.
For the message file, the execution thread creates a dequeue context that maintains the dequeue
processing state for that message file.
The execution thread then invokes the caller-supplied routine, passing to itprocess_message()
the dequeue context created in , as shown in the example thatProcessing the Message Queue
follows:
istat = process_message(&ctx2, ctx1, &dq_ctx, env_from, env_from_len);
For information on the call arguments for , see process_message() The process_message()

.Routine
The routine then attempts to process the message, ultimately removing itprocess_message()
from the channel’s queue, or leaving the message file for a later processing attempt.
If was not called before returned, thenmtaDequeueMessageFinish() process_message()
the queued message is deferred. That is, its underlying message file is left in the channel's queue
and a later processing attempt is scheduled.
The dequeue context is destroyed.
If the routine did not return the status code, then repeat thisprocess_message() MTA_ABORT
cycle starting at Step 2.
If a caller-supplied routine was passed to , it is calledprocess_done() mtaDequeueStart()
now, for example:
process_done(&ctx2, ctx1);
Through the routine, the program can perform any cleanup necessary for theprocess_done()

35Messaging Server 8.0 MTA Developer's Reference

10.

11.

execution thread. For example, freeing up any private context and associated resources stored in
the call argument.ctx2
See for more information.The Routineprocess_done()
The thread exits.
For an example of how state (context) may be preserved within an execution thread and across
calls to , .process_message() A Complex Dequeuing Example

The Routineprocess_done()

To assist in cleaning up state information for a thread, callers can provide a routine pointed to by the
 call argument of .process_done mtaDequeueStart()

The following code example shows the required syntax for a routine.process_done()

void process_done(void *ctx2, void *ctx1)

The following table lists the arguments required for a routine, and gives a descriptionprocess_done()
of each.

Required
Arguments

Description

ctx2 The value of the last pointer stored by in the callprocess_message() ctx2
argument for this thread.

ctx1 The caller-supplied private context passed as to .ctx1 mtaDequeueStart()

The following code example demonstrates the type of actions taken by a routine.process_done()

void process_done(ctx2, ctx1)
{
 struct our_state_t *state = (struct our_state_t *)ctx2;
 if (!state)
 return;
 /*
 * Take steps to undo the state
 * (for example, close any sockets or files)
 */
 ...

 /*
 * Free the memory allocated by process_message()
 * to store the state
 */
 free(state)
}

A Complex Dequeuing Example

The program shown in is a more complicated version of the simpleExample 4-2 A Complex Dequeue
example (see). In this example, more than one concurrent dequeue threadA Simple Dequeuing Example
is permitted. Additionally, better use is made of the context support provided by ,mtaDequeueStart()

36Messaging Server 8.0 MTA Developer's Reference

and a procedure to clean up and dispose of per-thread contexts is provided.

After the Messaging Server product is installed, these programs can be found in the following location:

{{ /examples/mtasdk/}}msg_server_base

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment */N

where is a number. The numbers are links to some corresponding explanatory text in the section thatN
follows this code, see .Explanatory Text for Numbered Comments in the Complex Dequeue Example

For the output generated by this code, see .Output from the Complex Dequeue Example

Example 4-2 A Complex Dequeue

/*
 * dequeue_complex.c
 *
 * Dequeuing with more than one thread used.
 *
 */
#include <stdio.h>
#include <stdlib.h>
#if !defined(_WIN32)
#include <unistd.h>
#endif
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include "mtasdk.h"

/* See explanatory comment 1 */
typedef struct {
 int debug; /* Debug flag */
 int max_count;/* Maximum. number of messages per BSMTP file */
} my_global_context_t;

/* See explanatory comment 2 */
typedef struct {
 int id; /* Dequeue threads id */
 FILE *fp; /* Dequeue threads current output file */
 int count; /* Messages output by this dequeue thread */
} my_thread_context_t;

static const char *NotifyToStr(int ret_type, char *buf);
static const char *UniqueName(char *buf, size_t maxbuf,
 const char *suffix);
static mta_dq_process_done_t process_done;
static mta_dq_process_message_t process_message;

int main()
{
 my_global_context_t gctx;

37Messaging Server 8.0 MTA Developer's Reference

 int ires;

 /*
 * Initialize the MTA SDK
 */
 if ((ires = mtaInit(0)))
 {
 mtaLog(mtaInit() returned %d; %s\n, ires,
 mtaStrError(ires, 0));
 return(1);
 }

 /*
 * The global context is shared by all dequeue threads
 * calling process_message() as a result of a given call
 * to mtaDequeueStart(). The global context in this
 * example provides process_message() with the following:
 * (1) How many messages to put into a BSMTP file before
 * closing it and starting a new one, and
 * (2) Whether or not to produce diagnostic debug output.
 */
 /* See explanatory comment 3 */
 gctx.debug = 1;
 gctx.max_count = 5;

 /* Start the dequeue loop */
 /* See explanatory comment 4 */
 ires = mtaDequeueStart((void *)&gctx, process_message,
 process_done, 0);

 /* Check the return status */
 /* See explanatory comment 5 */
 if (!ires)
 /* Success */
 return(0);

 /* Produce an error message */
 /* See explanatory comment 6 */
 mtaLog("mtaDequeueStart() returned %d; %s", ires,
 mtaStrError(ires, 0));
 /* And exit with an error */
 returnh(1);
}

/* process_done() -- Called by mtaDequeueStart() to clean up
 * and destroy a per-thread context created by process_message().
 * See explanatory comment 7
 */
static void process_done(void *my_ctx_2, void *my_ctx_1)
{
 my_global_context_t *gctx = (my_global_context_t *)my_ctx_1;
 my_thread_context_t *tctx = (my_thread_context_t *)my_ctx_2;
 if (!tctx)
 return;

 /* Generate any requested diagnostic output requested? */
 /* See explanatory comment 8 */
 if (gctx && gctx->debug)
 mtaLog("Dequeue thread done: id=%d; context=%p; "

38Messaging Server 8.0 MTA Developer's Reference

 "messages=%d", tctx->id, tctx, tctx->count);

 /* Now clean up and destroy the context */
 if (tctx->fp)
 {
 fprintf(tctx->fp, "QUIT\n");
 fclose(tctx->fp);
 }
 free(tctx);
}

/*
 * process_message() -- Called by mtaDequeueStart() to process a
 * single message.
 * See explanatory comment 9
 */
static int process_message(void **my_ctx_2, void *my_ctx_1,
 mta_dq_t *dq, const char *env_from,
 size_t env_from_len)
{
 my_global_context_t *gctx;
 my_thread_context_t *tctx;
 int ires, ret_type;
 const char *to, *env_id, *line;
 size_t len;
 char notify_buf[100];

 /* This should never happen, but just to be safe we check */
 if (!my_ctx_1 || !my_ctx_2)
 return(MTA_ABORT);

 /* The pointer to our global context was passed as my_ctx_1 */
 /* See explanatory comment 10 */
 gctx = (my_global_context_t *)my_ctx_1;

 /*
 * In this example, we just use the per-thread context to:
 * (1) Track the output file for this dequeue thread across
 * repeated calls, and
 * (2) to count how many messages have been output by this
 * dequeue thread.
 * See explanatory comment 11
 */
 if (!(*my_ctx_2))
 {
 /* First call to process_message() by this dequeue thread.
 * Store a pointer to our context.
 */
 tctx = (my_thread_context_t *)
 calloc(1, sizeof(my_thread_context_t));
 if (!tctx)
 /* Insufficient virtual memory; give up now */
 return(MTA_ABORT);
 *my_ctx_2 = (void *)tctx;

 /* Debug output? */
 if (gctx->debug)
 {
 tctx->id = mtaDequeueThreadId(dq);

39Messaging Server 8.0 MTA Developer's Reference

 mtaLog("Dequeue thread starting: id=%d; context=%p",
 tctx->id, tctx);
 }
 }
 else
 /*
 * This dequeue thread has already called
 * process_message() previously.
 */
 tctx = (my_thread_context_t *)(*my_ctx_2);

 /* Send a HELO or a RSET? */
 if (0 == (tctx->count % gctx->max_count))
 {
 char buf[1024];
 int fd;

 /* Need to send a HELO */

 /* Send a QUIT if weve already sent a HELO previously */
 if (tctx->count > 0 && tctx->fp)
 {
 fprintf(tctx->fp, "QUIT\n");
 fclose(tctx->fp);
 tctx->fp = NULL;
 }

 /* Now open a file */
 fd = open(UniqueName(buf, sizeof(buf), ".bsmtp"),
 O_WRONLY | O_CREAT | O_EXCL, 0770);

 if (fd < 0 || !(tctx->fp = fdopen(fd, "w")))
 return(MTA_ABORT);

 /* Now send the HELO */
 fprintf(tctx->fp, "HELO %s\n", mtaChannelToHost(NULL,
 NULL, MTA_DQ_CONTEXT, dq, 0));
 }
 else
 {
 /*
 * Weve already sent a HELO. Send a RSET to start a new
 * message.
 */
 fprintf(tctx->fp, "RSET\n");
 }
 tctx->count++;

 /*
 * Output the command
 * MAIL FROM: <from-adr> RET=return-type ENVID=id
 */
 env_id = NULL;
 /* See explanatory comment 12 */
 ret_type = MTA_NOTIFY_DEFAULT;
 mtaDequeueInfo(dq, MTA_ENV_ID, &env_id, NULL,
 MTA_NOTIFY_FLAGS, &ret_type, 0);
 fprintf(tctx->fp, "MAIL FROM:<%s> RET=%s%s%s\n", env_from,
 NotifyToStr(ret_type, NULL),

40Messaging Server 8.0 MTA Developer's Reference

 (env_id ? " ENVID=" : ""),(env_id ? env_id : ""));
 /* Output the command
 * RCPT TO: <to-adr> NOTIFY=notify-type
 * for each recipient address
 * See explanatory comment 13
 */
 while (!(ires =
 mtaDequeueRecipientNext(dq, &to, &len,
 MTA_NOTIFY_FLAGS, &ret_type,
0)))
 {
 fprintf(tctx->fp, "RCPT TO:<%s> NOTIFY=%s\n", to,
 NotifyToStr(ret_type, notify_buf));

 /* Indicate that delivery to this recipient succeeded */
 /* See explanatory comment 14 */
 mtaDequeueRecipientDisposition(dq, to, len,
 MTA_DISP_DELIVERED, 0);
 }
 /*
 * If ires == MTA_EOF, then we exited the loop normally;
 * otherwise, theres been an error of some sort.
 * See explanatory comment 15
 */
 if (ires != MTA_EOF)
 return(ires);

 /* Now output the message itself */
 fprintf(tctx->fp, "DATA\n");
 /* See explanatory comment 16 */
 while (!(ires = mtaDequeueLineNext(dq, &line, &len)))
 {
 /* Check to see if we need to dot-stuff the link */
 if (len == 1 && line[0] == .)
 fprintf(tctx->fp, ".");

 /* Now output the line */
 /* See explanatory comment 17 */
 fprintf(tctx->fp, "%.*s\n", len, line);
 }

 /*
 * If ires == MTA_EOF, then we exited the loop normally;
 * If ires == MTA_EOF, then we exited the loop normally;
 * otherwise, theres been an error of some sort.
 */
 if (ires != MTA_EOF)
 return(ires);

 /* Output the "." command to terminate this message */
 fprintf(tctx->fp, ".\n");

 /* And dequeue the message */
 /* See explanatory comment 18 */
 ires = mtaDequeueMessageFinish(dq, 0);

 /* All done; might as well return ires as our result */
 return(ires);
}

41Messaging Server 8.0 MTA Developer's Reference

/*
 * Convert a bitmask of MTA_NOTIFY_ flags to a readable string
 */
/* See explanatory comment 19 */
static const char *
NotifyToStr(int ret_type, char *buf)
{
 if (!buf)
 /* Doing a RET= parameter to a MAIL FROM command */
 return((ret_type & MTA_NOTIFY_CONTENT_FULL) ?
 "FULL" : "HDRS");
 buf[0] = \0;

 if (ret_type & MTA_NOTIFY_SUCCESS)
 strcat(buf, "SUCCESS");

 if (ret_type & MTA_NOTIFY_FAILURE)
 {
 if (buf[0])
 strcat(buf, ",");
 strcat(buf, "FAILURE");
 }
 if (ret_type & MTA_NOTIFY_DELAY)
 {
 if (buf[0])
 strcat(buf, ",");
 strcat(buf, "DELAY");
 }

 if (!buf[0])
 strcat(buf, "NEVER");
 return(buf);
}
/* Generate a unique string suitable for use as a file name */
/* See explanatory comment 20 */
static const char *
UniqueName(char *buf, size_t maxbuf, const char *suffix)
{
 strcpy(buf, "/tmp");
 mtaUniqueString(buf+5, NULL, maxbuf-5);
 strcat(buf, suffix);
 return(buf);

42Messaging Server 8.0 MTA Developer's Reference

1.

2.

3.
4.

5.
6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

}

Explanatory Text for Numbered Comments in the Complex Dequeue Example

The numbered list that follows has explanatory text that corresponds to the numbered comments in
:Example 4-2 A Complex Dequeue

The global context data structure for this example. This is passed to , asmtaDequeueStart()
the call argument.ctx1
Per-thread data structure used by dequeue threads. While creates eachmtaDequeueStart()
dequeue thread, it is up to the routine to actually create any per-threadprocess_message()
context it might need.
Initialize the global context before calling .mtaDequeueStart()
Initiate dequeue processing by calling . The first call argument is a pointermtaDequeueStart()
to the global context. Each time calls , it passes inmtaDequeueStart() process_message()
the global context pointer as the second argument. In this example, is notmtaDequeueStart()
told to limit the number of dequeue threads it uses.
If the call to succeeds, the program exits normally.mtaDequeueStart()
If the call to fails, then a diagnostic error message is displayed and themtaDequeueStart()
program exits with an error status.
Each dequeue thread calls as it exits. This program cleans up and destroysprocess_done()
any per-thread contexts created by the routine.process_message()
The program generates optional diagnostic output. Calling directs the output to themtaLog()
appropriate location: if the program is run manually, and the channel log file if thestdout
program is run by the Job Controller.
mtaDequeueStart() calls once for each queued message to beprocess_message()
processed. On the first call, the memory pointed at by is guaranteed to be . Themy_ctx_2 NULL
value of the first call argument passed to is passed to mtaDequeueStart()

 as the call argument.process_message() my_ctx_1
The global context contains information pertinent to all the dequeue threads generated by the call

.mtaDequeueStart()
process_message() uses a per-thread context to save data across all calls to itself by a single
dequeue thread.
mtaDequeueInfo() is used to obtain the envelope ID and RFC 1891 notification flags, if any,
associated with the message being processed.
mtaDequeueRecipientNext() is used to obtain each envelope recipient address, one address
per call. When there are no more recipient addresses to obtain, the routine returns the status

.MTA_EOF
Each recipient is marked as delivered with a call to .mtaDequeueRecipientDisposition()
An actual channel program would typically not make this call until after processing the message
further.
If returns without dequeuing the message, defersprocess_message() mtaDequeueStart()
the message for a later delivery attempt.
The message header and body are read one line at a time with . WhenmtaDequeueLineNext()
there are no more lines to read, it returns a status of .MTA_EOF
Lines returned by might not be terminated because the returnedmtaDequeueLineNext() NULL
line pointer might point to a line in a read-only, memory-mapped file.
mtaDequeueMessageFinish() is called once the message had been fully processed and the
disposition of all its recipients set with . The messagemtaDequeueRecipientDisposition()
is not truly dequeued until this happens.
The routine converts a bitmap encoded set of RFC 1891 notification flags to anNotifyToStr()
ASCII text string.
The routine generates a unique string suitable for the use as a file name. This isUniqueName()
used to generate the unique portion of the file name. This routine can be called concurrently by

43Messaging Server 8.0 MTA Developer's Reference

20.

multiple threads and always generates a string unique amongst all processes and threads on the
system.

For information on how to run this sample program, see .Running Your Enqueue and Dequeue Programs

Output from the Complex Dequeue Example

The output that follows shows the result of 100 queued messages processed with the program in
.Example 4-2 A Complex Dequeue

11:01:16.82: Dequeue thread starting: id=10; context=32360
11:01:16.87: Dequeue thread starting: id=1; context=32390
11:01:16.93: Dequeue thread starting: id=2; context=325e8
11:01:17.00: Dequeue thread starting: id=3; context=32600
11:01:17.04: Dequeue thread starting: id=4; context=32618
11:01:17.09: Dequeue thread starting: id=5; context=32630
11:01:17.14: Dequeue thread starting: id=6; context=78e50
11:01:17.19: Dequeue thread starting: id=7; context=88a18
11:01:17.23: Dequeue thread starting: id=9; context=8ab78
11:01:17.51: Dequeue thread starting: id=8; context=8ab60
11:01:19.96: Dequeue thread done: id=2; context=325e8; messages=12
11:01:19.96: Dequeue thread done: id=5; context=32630; messages=22
11:01:19.97: Dequeue thread done: id=6; context=78e50; messages=11
11:01:19.97: Dequeue thread done: id=4; context=32618; messages=5
11:01:19.98: Dequeue thread done: id=8; context=8ab60; messages=16
11:01:20.00: Dequeue thread done: id=9; context=8ab78; messages=5
11:01:20.00: Dequeue thread done: id=3; context=32600; messages=12
11:01:20.01: Dequeue thread done: id=1; context=32390; messages=7
11:01:20.02: Dequeue thread done: id=10; context=32360; messages=6
11:01:20.03: Dequeue thread done: id=7; context=88a18; messages=4

Intermediate processing channels

Special attention is warranted for intermediate processing channels. Intermediate processing channels
are channels which re-enqueue back to the MTA the mail they dequeue from it. For example, a virus
scanner or a conversion channel, which, after scanning or converting a message, re-enqueues it back to
the MTA for further routing or delivery. Such channels should do the following:

Preserve Envelope Information
Use MTA_ENV_TO
Use Rewrite Rules to Prevent Message Loops

The sample code, , illustrates the SDK usage required to effect the firstIntermediate Channel Example
two preceding points.

Preserve Envelope Information

All queued messages have envelope fields which are unique to the message. For instance, a message
will have the RFC 1891 envelope ID that was either assigned by the MTA when the message was first
enqueued, or was specified by a remote MTA and transmitted over SMTP. The same applies to the RFC
1891 original recipient address fields that specify the original form of each of the message’s envelope
recipient addresses. Furthermore, there may be other envelope fields which have non-default settings
such as notification handling flags. Whenever possible, this information should be preserved as the
message flows from MTA channel to MTA channel. In order to preserve this information, it must be

44Messaging Server 8.0 MTA Developer's Reference

copied from the message being dequeued to the new message being enqueued. This copying process is
best done using the item code in conjunction with the and MTA_DQ_CONTEXT mtaDequeueStart()

 routines. When used with the former, it causes per-message envelope information tomtaEnqueueTo()
be automatically copied from the message being dequeued to the new message being enqueued. When
used with the latter, it causes per-recipient information to be automatically copied.

Channel programs should not attempt to explicitly copy envelope information other than the envelope
 and envelope recipient addresses. The item code should always be used toFrom: MTA_DQ_CONTEXT

implicitly perform the copy. The reason for this is straightforward: if a program attempts to do the copy
explicitly by querying the fields one by one from the message being dequeued, and then setting them
one by one in the message being enqueued, then any new envelope fields introduced in later versions of
Messaging Server will be lost unless the program is updated to explicitly know about those new fields
too.

Use MTA_ENV_TO

Intermediate processing channels should use the item code with ratherMTA_ENV_TO mtaEnqueueTo()
than the , , and item codes. This tells the MTA that the recipient address beingMTA_TO MTA_CC MTA_BCC
specified should be added to only the message’s envelope and not also to a , Resent-To: Resent-Cc:
, or header line. , and illustrateResent-Bcc: Example 4-3 Intermediate Channel Example Example 5-2
the use of the item code. Both of those examples represent intermediate processingMTA_ENV_TO
channels which are handling a previously constructed message. As such, they do not need to alter the
existing message header.
*

Download this book in PDF (1309 KB)

Previous: Decode Contexts
Next: 6. MTA SDK Reference

A Simple Virus Scanner Example

Example 5-2 shows how to use the routine to write an intermediate processingmtaDecodeMessage()
channel that converts messages with formats other than MIME, for example UUENCODE content, to
MIME output. It then decodes the MIME message, scanning it for potentially harmful attachments. (In this
example, an attachment is any message part.) Any harmful attachments are removed from the message
after which it is re-enqueued for delivery. The list of harmful MIME media types and file name extensions
is read from a channel option file. An example option file for the channel is shown in Example Option File.

In this example, the MIME Content-type: and Content-disposition: header lines are used to detect
potentially harmful message attachments such as executable files. This example could be extended to
also scan the content of the attachments, possibly passing the contents to a virus scanner. Further, the
example could be modified to return as undeliverable any messages containing harmful attachments.
Note -

To configure the MTA to run this channel, see . TheRunning Your Enqueue and Dequeue Programs
PMDF_CHANNEL_OPTION environment variable must give the absolute file path to the channel's option
file. Also, for a discussion on configuring special rewrite rules for re-enqueuing dequeued mail, see

.Preventing Mail Loops when Re-enqueuing Mail

For the output generated by this sample program, see Decoding MIME Messages Complex Example
Output.

After the Messaging Server product is installed, these programs can be found in the following location:

msg_server_base/examples/mtasdk/

Some lines of code are immediately preceded by a comment of the format:

45Messaging Server 8.0 MTA Developer's Reference

/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory text in the section that
follows this code, see Explanatory Text for Numbered Comments in the Decoding MIME Messages

.Complex Example

Use Rewrite Rules to Prevent Message Loops

Finally, intermediate processing channels often require special rewrite rules in order to prevent message
loops. Specifically, loops in which mail re-enqueued by the intermediate processing channel is queued
back to the intermediate processing channel. See forPreventing Mail Loops when Re-enqueuing Mail
further information on this topic.

Intermediate Channel Example

The sample program in this section, in , converts the body ofExample 4-3 Intermediate Channel Example
each queued message and then re-enqueues the converted messages back to the MTA. The conversion
process involves applying the rot 13 encoding used by some news readers to encode potentially
offensive message content.

To configure the MTA to run this channel, see . AlsoRunning Your Enqueue and Dequeue Programs
refer to , whichMTA SDK Programming Considerations#Preventing Mail Loops when Re-enqueuing Mail
discusses configuring special rewrite rules for programs re-enqueuing dequeued email.

Some lines of code in this example are immediately preceded by a comment of the format:

/* See explanatory comment */N

where is a number.N

The numbers are links to some corresponding explanatory text found in Explanatory Text for Numbered
.Comments in the Intermediate Channel Example

Example 4-3 Intermediate Channel Example

/* intermediate_channel.c
 * A channel program that re-enqueues queued messages after first
 * transforming their content with the "rot13" transformation.
 */
#include <stdio.h>
#include <stdlib.h>
#include "mtasdk.h"

typedef struct {
 size_t maxlen;
 char *buf;
} rot13_buf_t;

static mta_dq_process_done_t process_done;
static mta_dq_process_message_t process_message;
static char rot13(char c);
static const char *rot13str(rot13_buf_t **dst, const char *src,
 size_t srclen);

int main()
{

46Messaging Server 8.0 MTA Developer's Reference

 int ires;

 /*
 * Initialize the MTA SDK
 */
 if ((ires = mtaInit(0)))
 {
 mtaLog(mtaInit() returned %d; %s\n, ires,
 mtaStrError(ires, 0));
 return(1);
 }

 /*
 * Start the dequeue loop
 * See explanatory comment 1
 */
 ires = mtaDequeueStart(NULL, process_message,
 process_done, 0);

 /*
 * Check the return status
 * See explanatory comment 2
 */
 if (!ires)
 /*
 * Success
 */
 return(0);
 /*
 * Produce an error message
 * See explanatory comment 3 */
 */
 mtaLog("mtaDequeueStart() returned %d; %s", ires,
 mtaStrError(ires, 0));

 /*
 * And exit with an error
 */
 return(1);
}

/*
 * process_done -- Clean up the private context my_ctx_2 used by
 * process_message.
 * See explanatory comment 4
 */
static void process_done(void *my_ctx_2, void *my_ctx_1)
{
 rot13_buf_t *rbuf;

 if (!my_ctx_2)
 return;
 rbuf = (rot13_buf_t *)my_ctx_2;
 if (rbuf->buf)
 free(rbuf->buf);
 free(rbuf);
}

47Messaging Server 8.0 MTA Developer's Reference

/*
 * process_message -- Process a single message by re-enqueuing but
 * with its message body converted to the rot13
 * set. The private my_ctx_1 context is not
 * used. The private my_ctx_2 context is used
 * for a rot13 translation context.
 * See explanatory comment 5
 */

static int process_message(void **my_ctx_2, void *my_ctx_1,
 mta_dq_t *dq,
{
 size_t len;
 const char *line, *to;
 int in_header;
 mta_nq_t *nq;

 /*
 * Start a message enqueue
 */
 nq = NULL;
 /* See explanatory comment 6 */
 if (mtaEnqueueStart(&nq, env_from, env_from_len,
 MTA_DQ_CONTEXT, dq, 0))
 goto(defer);

 /*
 * Process the envelope recipient list
 * See explanatory comment 7 */
 */
 while (!mtaDequeueRecipientNext(dq, &to, &len, 0))
 /* See explanatory comment 7 */
 if (mtaEnqueueTo(nq, to, len, MTA_DQ_CONTEXT, dq,
 MTA_ENV_TO, 0) ||
 /* See explanatory comment 8 */
 mtaDequeueRecipientDisposition(dq, to, len,
 MTA_DISP_DELIVERED,0))
 /* See explanatory comment 9 */
 goto defer;
 if (mta_errno != MTA_EOF)
 goto defer;

 /*
 * First, get the messages header and write it
 * unchanged to the new message being enqueued.
 * See explanatory comment 10
 */
 in_header = 1;
 while (in_header && !mtaDequeueLineNext(dq, &line,
&len))
 {
 if (mtaEnqueueWriteLine(nq, line, len, 0))
 goto defer;
 if (!len)
 in_header = 0;
 }

 /*
 * Determine why we exited the while loop

48Messaging Server 8.0 MTA Developer's Reference

 */
 if (in_header)
 {
 /*
 * We exited before seeing the body of the message
 * See explanatory comment 12
 */
 if (mta_errno == MTA_EOF)
 /*
 * Message read completely: it must have no body
 */
 goto done;
 else
 /*
 * Error condition of some sort
 */
 goto defer;
 }

 /*
 * Now rot13 the body of the message
 * See explanatory comment 13
 */
 while (!mtaDequeueLineNext(dq, &line, &len))
 if (mtaEnqueueWriteLine(nq,
 rot13str((rot13_buf_t **)my_ctx_2,
 line, len), len, 0))
 goto defer;

 /*
 * If mta_errno == MTA_EOF, then we exited the loop
 * normally; otherwise, theres been an error of some sort
 */
 if (mta_errno != MTA_EOF)
 goto defer;

 /*
 * All done, enqueue the new message
 * See explanatory comment 14
 */
 done:
 if (!mtaEnqueueFinish(nq, 0) &&
 !mtaDequeueMessageFinish(dq, 0))
 return(0);
 /*
 * Fall through to defer the message
 */
 nq = NULL;

 /*
 * A processing error of some sort has occurred: defer the
 * message for a later delivery attempt
 * See explanatory comment 15
 */
 defer:
 mtaDequeueMessageFinish(dq, MTA_ABORT, 0);
 if (nq)
 mtaEnqueueFinish(nq, MTA_ABORT, 0);
 return(MTA_NO);

49Messaging Server 8.0 MTA Developer's Reference

}

/*
 * rot13 -- an implmentation of the rotate-by-13 translation
 * See explanatory comment 16
 */
static char rot13(char c)
{
 if (A <= c && c <= Z)
 return (((c - A + 13) % 26) + A);
 else if (a <= c && c <= z)
 return (((c - a + 13) % 26) + a);
 else return (c);
}

/*
 * rot13str -- Perform a rot13 translation on a string of text
 * See explanatory comment 17
 */
static const char *rot13str(rot13_buf_t **dst, const char *src,
 size_t srclen)
{
 size_t i;
 char *ptr;
 rot13_buf_t *rbuf = *dst;

 /*
 * First call? If so, then allocate a rot13_buf_t structure
 */
 if (!rbuf)
 {
 rbuf = calloc(1, sizeof(rot13_buf_t));
 if (!rbuf)
 return(NULL);
 *dst = rbuf;
 }

 /*
 * Need a larger buffer?
 * If so, then increase the length of rbuf->buf
 */
 if (rbuf->maxlen < srclen || !rbuf->buf)
 {
 size_t l;
 char *tmp;
 /* Round size up to the nearest 2k */
 l = 2048 * (int)((srclen + 2047) / 2048);
 tmp = (char *)malloc(l);
 if (!tmp)
 return(NULL);
 if (rbuf->buf)
 free(rbuf->buf);
 rbuf->buf = tmp;
 rbuf->maxlen = l;
 }
 /*
 * Now rot13 our input
 */
 ptr = rbuf->buf;

50Messaging Server 8.0 MTA Developer's Reference

 for (i = 0; i < srclen; i++)
 *ptr++ = rot13(*src++);

 /*
 * All done
 */

51Messaging Server 8.0 MTA Developer's Reference

1.

2.
3.

4.

5.

6.

7.

8.

9.
10.

11.

12.

13.

14.

15.

16.
17.

 return(rbuf->buf);
}

Explanatory Text for Numbered Comments in the Intermediate Channel Example

The dequeue processing is initiated by calling . In this example, no globalmtaDequeueStart()
context is used; hence, the first call argument to is .mtaDequeueStart() NULL
If the call to succeeds, then the program exits normally.mtaDequeueStart()
If the call to fails, a diagnostic error message is displayed and the programmtaDequeueStart()
exits with an error status.
Each dequeue thread calls as it exits. The intent is to allow the program toprocess_done()
clean up and destroy any per-thread contexts created by the routine. Inprocess_message()
this case, the buffer used by is deallocated.rot13str()
The routine calls once for each queued messagemtaDequeueStart() process_message()
to be processed. On the first call by a dequeue thread, the memory pointed at by is my_ctx_2

.NULL
A message enqueue starts. The dequeue context, , is provided so that per-message envelopedq
fields can be carried over to the new message from the message being dequeued.
Each envelope recipient address is obtained, one at a time, with

. When there are no more recipient addresses to obtain, mtaDequeueRecipientNext()
 returns the status .mtaDequeueRecipientNext() MTA_EOF

Each envelope recipient address is added to the recipient list for the new message being
enqueued. The option for is specified so that the address is toMTA_ENV_TO mtaEnqueueTo()
be added to the new message's envelope only. It should not also be added to the message’s RFC
822 header. The new message’s header will be a copy of the header of the message being
dequeued. This copy is performed at the code location marked by comment 12.
Each recipient is marked as delivered with .mtaDequeueRecipientDisposition()
In the event of an error returned from either or mtaEnqueueTo()

, or an unexpected error return from mtaDequeueRecipientDisposition()
, the ongoing enqueue is cancelled and the processing of themtaDequeueRecipientNext()

current message is deferred.
Each line of the current message is read and then copied to the new message being enqueued.
This copying continues until a blank line is read from the current message. (A blank line signifies
the end of the RFC 822 message header and the start of the RFC 822 message content.)
The code here needs to determine why it exited the read loop: because of an error, or because
the transition from the message’s header to body was detected.
The remainder of the current message is read line by line and copied to the new message being
enqueued. However, the line enqueued is first transformed using the rot13 transformation. The
per-thread context is used to hold an output buffer used by the routine.my_ctx_2 rot13str()
The enqueue of the new message is finished. If that step succeeds, then the message being
dequeued is removed from the MTA queues.
In the event of an error, the new message enqueue is cancelled and the current message left in
the queues for later processing.
The rot13 character transformation.
A routine that applies the rot13 transformation to a character string.

Sample Input Message for the Intermediate Channel Example

The example that follows is a sample input message from the queue to be processed by the program
found in .Example 4-3 Intermediate Channel Example

52Messaging Server 8.0 MTA Developer's Reference

Received: from frodo.west.siroe.com by frodo.west.siroe.com
 (Sun Java System Messaging Server 6 2004Q2(built Mar 24 2004))id
<0HCH00301E6GO700@frodo.west.siroe.com\> for sue@sesta.com; Fri,
 28 Mar 2003 14:51:52 -0800 (PST)
Date: Fri, 28 Mar 2003 14:51:52 -0800 (PST)
From: root@frodo.west.siroe.com
Subject: Testing
To: sue@sesta.com
Message-id: <0HCH00303E6GO700@frodo.west.siroe.com\>
MIME-version: 1.0

This is a test message.

Output from the Intermediate Channel Example

This example shows the output generated by the dequeue and re-enqueue program.

Received: from sesta.com by frodo.west.siroe.com
 (Sun Java System Messaging Server 6 2004Q2 (built Mar 24 2003))id
<0HCH00301E7DOH00@frodo.west.wiroe.com\> for sue@sesta.com; Fri,
 28 Mar 2003 14:51:58 -0800 (PST)
Received: from frodo.west.siroe.com by frodo.west.siroe.com
 (Sun Java System Messaging Server 6 2004Q2 (built Mar 24 2003))id
<0HCH00301E7DOH00@frodo.west.wiroe.com\> for sue@sesta.com; Fri,
 28 Mar 2003 14:51:52 -0800 (PST)
Date: Fri, 28 Mar 2003 14:51:52 -0800 (PST)
From: root@frodo.west.siroe.com
Subject: Testing
To: sue@sesta.com
Message-id: <0HCH00303E6GO700@frodo.west.siroe.com\>
MIME-version: 1.0

Guvf vf n grfg zrffntr.

Thread Creation Loop in mtaDequeueStart()

After performs any necessary initialization steps, it then starts a loop whereby itmtaDequeueStart()
communicates with the MTA Job Controller. Based upon information from the Job Controller, it then
creates zero or more execution threads to process queued messages.

While any execution threads are running, the thread that invoked (the primalmtaDequeueStart()
thread) executes a loop containing a brief pause (that is, a sleep request). Each time the primal thread
awakens, it communicates with the Job Controller to see if it should create more execution threads. In
addition, the Job Controller itself has logic to determine if more threads are needed in the currently
running channel program, or if it should create additional processes to run the same channel program.

To demonstrate, the following code example shows pseudo-code of the loop.mtaDequeueStart()

53Messaging Server 8.0 MTA Developer's Reference

threads_running = 0
threads_max = MTA_THREAD_MAX_THREADS
attemtps = MTA_JBC_MAX_ATTEMPTS

LOOP:
 while (threads_running < threads_max)
 {

 Go to DONE if a shut down has been requested

 pending_messages = Ask the Job Controller how many
 messsages there are to be processed

 // If there are no pending messages
 // then consider what to do next
 if (pending_messages = 0)
 {
 // Continue to wait?
 if (attempts <= 0)
 go to DONE

 // Decrement attempts and wait
 attempts = attempts - 1;
 go to SLEEP
 }
 // Reset the attempts counter
 attempts = MTA_JBC_MAX_ATTEMPTS

 threads_needed = Ask the Job Controller how many
 processing threads are needed

 // Cannot run more then threads_max threads per process
 if (threads_needed \> threads_max)
 threads_needed = threads_max

 // Create additional threads if needed
 if (threads_needed \> threads_running)
 {
 Create (threads_needed - threads_running) more threads
 threads_running = threads_needed
 }
 }

SLEEP:
 Sleep for MTA_JBC_RETRY_INTERVAL seconds
 -- a shut down request will cancel the sleep
 go to LOOP

DONE:
 Wait up to MTA_THREAD_WAIT_TIMEOUT seconds
 for all processing threads to exit

 Return to the caller of mtaDequeueStart()

Multiple Calls to mtaDequeueStart()

54Messaging Server 8.0 MTA Developer's Reference

A channel program can call multiple times, either sequentially or in parallel. In themtaDequeueStart()
latter case, the program would need to create threads so as to effect multiple, simultaneous calls to

. However, just because this can be done does not mean that it is appropriate tomtaDequeueStart()
do so. In the former case of multiple sequential calls, there is no need to be making repeated calls. When

 returns, the channel no longer needs immediate processing and has been in thatmtaDequeueStart()
state for the number of seconds represented by the following formula:

MTA_JBC_ATTEMPTS_MAX * MTA_JBC_RETRY_INTERVAL

Instead, the channel program should exit thereby freeing up system resources. The Job Controller will
start a new channel program running when there are more messages to process.

In the latter case of multiple parallel calls, there is again no need to do so. If there is an advantage to
running more threads than a single call generates, then the channel’s channel keywordthreaddepth
setting should be increased so that a single call does generate more threads.

The only exception to either of these cases might be if the multiple calls are each for a different channel.
Even then, however, the advantage of so doing is dubious as the same effect can be achieved through
the use of multiple processes, one for each channel.

Calling Order Dependencies

When you are constructing programs, there is a calling order for the MTA SDK routines that must be
observed; some routines must be called before others.

Figure 4-1 visually depicts the calling order dependency of the message dequeue routines. To the right of
each routine name appears a horizontal line segment, possibly broken across a column, for example,

. Routines for which two horizontal line segments, one atop the other,mtaDequeueRecipientNext()
appear are required routines; that is, routines that must be called in order to successfully enqueue a
message. The required routines are , , mtaInit() mtaDequeueStart()

, and .mtaDequeueRecipientNext() mtaDqueueMessageFinish()

To determine at which point a routine may be called, start in the leftmost column and work towards the
rightmost column. Any routine whose line segment lies in the first (leftmost) column may be called first.
Any routine whose line segment falls in the second column may next be called, after which any routine
whose line segment falls in the third column may be called, and so forth. When more than one routine
appears in the same column, any or all of those routines may be called in any order. Progression from
left to right across the columns is mandated by the need to call the required routines.

After calling , the read point into the underlying queued message file is reset tomtaDequeueRewind()
the start of the message’s outermost header; that is, you are back in the third column. Figure 4-1 Calling
Order Dependency for Message Dequeue Routines

55Messaging Server 8.0 MTA Developer's Reference

56Messaging Server 8.0 MTA Developer's Reference

1.
2.

a.
b.
c.

d.

e.
3.

Chapter 3. Enqueuing Messages

Enqueuing Messages

The MTA SDK provides routines with which to construct a mail message and then submit the message to
the MTA. The MTA then effects delivery of the message to its recipients. The act of submitting a
message to the MTA for delivery is referred to as "enqueuing a message." This choice of terminology
reflects the fact that each message submitted to the MTA for delivery is placed into one or more
message queues. Using its configuration, the MTA determines how to route each message to its
destination and which message queues to place each the message into. However, programs enqueuing
messages do not need to concern themselves with these details; they merely supply the message's list
of recipients and the message itself. The recipients are specified one-by-one as RFC 2822 conformant
Internet email addresses. The message header and content is supplied in the form of an RFC 2822 and
MIME conformant email message.

When starting a coding project to enqueue messages to the MTA, always stop to consider whether
simply using SMTP will be acceptable. The advantage of using SMTP is that it will work with any MTA
SMTP server, making it portable. The disadvantages are poorer performance and lack of flexibility and
control.

This chapter covers the following enqueuing topics:

Basic Steps to Enqueue Messages
Originating Messages
A Simple Example of Enqueuing a Message
Transferring Messages into the MTA
Intermediate Processing Channels
Delivery Processing Options (Envelope Fields)
Order Dependencies

Basic Steps to Enqueue Messages

The basic steps necessary to enqueue one or more messages to the MTA are:

Initialize SDK resources and data structures with .mtaInit()
For each message to enqueue:

Specify the message envelope with and .mtaEnqueueStart() mtaEnqueueTo()
Specify the message header with or .mtaEnqueueWrite() mtaEnqueueWriteLine()
Optionally, if a message body is to be supplied, terminate the message header and start
the message body by writing a blank line to the message with or mtaEnqueueWrite()

.mtaEnqueueWriteLine()
Optionally if a message body is to be supplied, write the message body with

 or . mtaEnqueueWrite() mtaEnqueueWriteLine()
Submit the message with . mtaEnqueueFinish()

When you have completed enqueuing messages, deallocate SDK resources and data structures
with . mtaDone()

In Step 2e, commits the message to disk. As part of the enqueue process, themtaEnqueueFinish()
MTA performs any access checks, size checks, format conversions, address rewritings, and other tasks
called for by the site's MTA configuration. After these steps are completed and the message has been
successfully written to disk, returns.mtaEnqueueFinish()

Other MTA processes controlled by the MTA Job Controller then begin processing the new message so

57Messaging Server 8.0 MTA Developer's Reference

as to effect its delivery. In fact, these processes may begin handling the new message before
 even returns. As such, doesn't block waiting on thesemtaEnqueueFinish() mtaEnqueueFinish()

processes; it returns as soon as all requisite copies of the enqueued message have been safely written
to disk. The subsequent handling of the newly enqueued message is performed by other MTA
processes, and the program which enqueued the message isn't left waiting for them.

A message submission can be aborted at any point in Step 2 by calling either mtaEnqueueFinish()
with the option specified or . Using the first method, MTA_ABORT mtaDone() mtaEnqueueFinish()
aborts only the specified message enqueue context while allowing additional messages to be enqueued.
Whereas, aborts all active message enqueue contexts in all threads, and deallocates SDK{mtaDone()
resources disallowing any further submission attempts until the SDK is again initialized.

Originating Messages

Messages enqueued to the MTA fall into one of two broad classes: new messages being originated and
messages which were originated elsewhere and which are being transferred into the MTA. The former
are typically the product of a local user agent or utility which uses the MTA SDK. The latter are generated
by remote user agents, and received by local programs such as SMTP or HTTP servers which then
enqueue them to the MTA for routing or delivery or both. In either case, it is the job of the MTA to route
the message to its destination, be it a local message store or a remote MTA.

The only distinction the MTA SDK makes between these two cases occurs when the message's recipient
addresses are specified. For new messages being originated, the recipient addresses should be added
to both the message header and its envelope. For messages originated elsewhere, the recipient
addresses should only be added to the message's envelope. For a discussion of messages originated
elsewhere, see , and .Transferring Messages into the MTA Intermediate Processing Channels

When originating a new message, it is easiest to use the , , and item codesMTA_TO MTA_CC MTA_BCC
with . That tells the SDK to use the specified addresses as both the envelope recipientmtaEnqueueTo()
list and to put them into the message's header. When using this approach, do not specify any , From:

, , or header lines in the supplied message header; the SDK will add them automatically.To: Cc: Bcc:

An example of using this approach is found in the following section.

A Simple Example of Enqueuing a Message

The program shown in demonstrates how to enqueue a simpleExample 3-1 Enqueuing a Message
"Hello World" message. The originator address associated with the message is that of the MTA
postmaster. The recipient address can be specified on the invocation command line.

After the Messaging Server product is installed, this program can be found in the following location:

msg_server_base/examples/mtasdk/

Note that certain lines of code have numbered comments immediately preceding them of the format:

/* This generates output line N */

where corresponds to the numbers found next to certain output lines in the sample output in N
.Enqueuing a Message Example Output

Refer to for information on how to run the sample program.Running Your Test Programs

Example 3-1 Enqueuing a Message

58Messaging Server 8.0 MTA Developer's Reference

/* hello_world.c -- A simple "Hello World!" enqueue example */
#include <stdio.h\>
#include <stdlib.h\>
#include "mtasdk.h"

mta_nq_t *ctx = NULL;
static void quit(void);
#define CHECK(x) if(x) quit();

void main(int argc, const char *argv[])
{
 char buf[100];

 /* Initialize the SDK */
 CHECK(mtaInit(0));

 /* Start a new message; From: postmaster*/
 /* This generates output line 1 */
 CHECK(mtaEnqueueStart(&ctx, mtaPostmasterAddress(NULL, NULL,
 0), 0, 0));

 /* Enqueue the message to argv[1] or root */
 /* This generates output line 2 */
 CHECK(mtaEnqueueTo(ctx, (argv[1] ? argv[1] : "root"), 0, 0));

 /* Date: header line */
 /* This generates output line 3 */
 CHECK(mtaEnqueueWriteLine(ctx, "Date: ", 0, mtaDateTime(buf,
 NULL, sizeof(buf), 0), 0, NULL))

 /* Subject: header line */
 /* This generates output line 4 */

 CHECK(mtaEnqueueWriteLine(ctx, "Subject: " __FILE__, 0,
 NULL));

 /* Blank line ending the header, starting the message body */
 /* This generates output line 5 */
 CHECK(mtaEnqueueWriteLine(ctx, "", 0, NULL));

 /* Text of the message body (2 lines) */
 /* This generates output line 6 */
 CHECK(mtaEnqueueWriteLine(ctx, "Hello", 0, NULL));
 /* This generates output line 7 */
 CHECK(mtaEnqueueWriteLine(ctx, " World!", 0, NULL));

 /* Enqueue the message */
 CHECK(mtaEnqueueFinish(ctx, 0));

 /* All done */
 mtaDone();
}

void quit(void)
{
 fprintf(stderr, "The MTA SDK returned the error code %d\n
 %s", mta_errno, mtaStrError(mta_errno, 0));
 if (ctx)
 mtaEnqueueFinish(ctx, MTA_ABORT, 0);

59Messaging Server 8.0 MTA Developer's Reference

 exit(1);
}

Enqueuing a Message Example Output

The example that follows shows the output generated by the enqueuing example. Comment numbers
correspond to the numbered comments in .Example 3-1 Enqueuing a Message

Comment
Number

Output Lines

none Received:from siroe.com by siroe.com (SunONE Messaging Server
6.0)id<01GP37SOPRW0A9KZFV@siroe.com\>; Fri, 21 Mar 2003 09:07:32
-0800(PST)

3 Date: Fri, 21 Mar 2003 09:07:41 -0800 (PST)

1 From: postmaster@siroe.com

2 To: root@siroe.com

4 Subject: enqueuing_example.c Message-id:
<01GP37SOPRW2A9KZFV@siroe.com\> Content-type: TEXT/PLAIN;
CHARSET=US-ASCII Content-transfer-encoding: 7BIT

5 missing value

6 Hello

7 World!

Transferring Messages into the MTA

When transferring a message originated elsewhere into the MTA, programs should use the MTA_ENV_TO
item code with . This way, each of the recipient addresses will only be added to themtaEnqueueTo()
message's envelope, and not to its already constructed header. Additionally, supply the message's
header as-is. Do not remove or add any origination or destination header lines unless necessary. Failure
to use the item code will typically cause the SDK to add header lines to theMTA_ENV_TO Resent-
message's header.

A Complex Dequeuing Example, and both illustrate the use of the A Simple Virus Scanner Example
 item code.MTA_ENV_TO

Intermediate Processing Channels

Like programs which transfer messages into the MTA, intermediate processing channels should also use
the item code with . When re-enqueuing a message, intermediateMTA_ENV_TO mtaEnqueueTo()
processing channels should also preserve any MTA envelope fields present in the message being
re-enqueued. This is done using the item code in conjunction with MTA_DQ_CONTEXT

 and . Failure to preserve these envelope fields can result inmtaEnqueueStart() mtaEnqueueTo()
loss of delivery receipt requests, special delivery flags, and other flags which influence handling and
delivery of the message.

A Complex Dequeuing Example and both illustrate the use of the A Simple Virus Scanner Example
 and item codes. item codes. Both of those examples representMTA_ENV_TO MTA_DQ_CONTEXT

intermediate processing channels that handle previously constructed messages. As such, they do not

60Messaging Server 8.0 MTA Developer's Reference

need to alter the existing message header, and they preserve any MTA envelope fields.

Delivery Processing Options (Envelope Fields)

A variety of delivery processing options may be set through the MTA SDK. These options are then stored
in the message envelope and are generically referred to as "envelope fields". Options which pertain to
the message as a whole are set with . Options which pertain to a specific recipientmtaEnqueueStart()
of the message are set with . These options, per message and per recipient, includemtaEnqueueTo()
the following:

Option
Choices

Description

Delivery flags These flags are used to communicate information between channels. For instance, a
scanning channel might set the flag to indicate suspected spam content. A delivery
channel could then see that the flag is set and, at delivery time, add a header line
indicating potential spam content. These flags may also be set using the

 channel keyword.deliveryflags

Notification
flags

These flags influence whether delivery or non-delivery notification messages are
generated. They can be set on a per recipient basis. Typically, they are used to
request a delivery receipt. Another common usage is for bulk mail to request no
notifications, neither delivery nor non-delivery.

Original
recipient
address

This field is specified on a per recipient basis. It is used to indicate the original form of
the associated recipient's address. This original address can then be used in any
notification messages. Its use allows the recipient of the notification to see the original
address they specified rather than its evolved form. For example, the recipient would
see the name of the mailing list they posted to rather than the failed address of some
member of the list.

Envelope ID Set on a per message basis, this is an RFC 1891 envelope ID and can appear in RFC
1892 - 1894 conformant notifications about the message.

Fragmentation
size

Set on a per message basis, this controls if and when the message is fragmented into
smaller messages using the MIME mechanism.message/partial

For additional information, see the descriptions of , and .mtaEnqueueStart() mtaEnqueueTo()

Order Dependencies

When you are constructing programs, there is a calling order for the MTA SDK routines that must be
observed. For a given enqueue context, some routines must be called before others.

The following figure visually depicts the calling order dependency of the message enqueue routines. To
the right of each routine name appears a horizontal line segment, possibly broken across a column, for
example, . Routines for which two horizontal line segments, one atop the other,mtaEnqueueWrite()
appear are required routines; that is, routines that must be called in order to successfully enqueue a
message. These routines are , , and .mtaEnqueueStart() mtaEnqueueTo() mtaEnqueueFinish()
To determine at which point a routine may be called, start in the leftmost column and work towards the
rightmost column. Any routine whose line segment lies in the first (leftmost) column may be called first.
Any routine whose line segment falls in the second column may next be called, after which any routine
whose line segment falls in the third column may be called, and so forth. When more than one routine
appears in the same column, any or all of those routines may be called in any order. Progression from
left to right across the columns is mandated by the need to call the required routines. Of the required
routines, only may be called multiple times for a given message.mtaEnqueueTo()

Figure 3-1 Calling order Dependency for Message Enqueue Routines

61Messaging Server 8.0 MTA Developer's Reference

62Messaging Server 8.0 MTA Developer's Reference

Chapter 4. Error Status Codes Summary

Error Status Codes Summary

This appendix describes the error status codes returned by the MTA SDK and .mtaSend()

Error Status Codes

The following table lists the error status codes, with a generic interpretation of each. For usage-specific
interpretations, refer to the specific MTA SDK routine descriptions in , and the MTA SDK Routines

 item code descriptions in .mtaSend() mtaSend() Routine Specification

Return Code Numeric
Value

Description

MTA_OK 0 Normal, successful completion.

MTA_ACCESS 1 This error typically indicates that a site-supplied access mapping table
has refused an envelope recipient address with a permanent error.
These access mapping tables include: , SEND_ACCESS

, , and .ThisORIG_SEND_ACCESS MAIL_ACCESS ORIG_MAIL_ACCESS
error may also result when a mailing list has access controls which do
not allow the attempted message submission to the list.

MTA_AGAIN 2 A temporary processing error has occurred. A number of conditions
may generate this error including connectivity problems to LDAP
servers, virus scanners, spam scanners, as well as quota
problems.When the error is the result of an attempt to add an envelope
recipient address or to complete a message enqueue, additional
information may be obtained by either enabling SDK diagnostics with

 or using the item code of mtaDebug() MTA_REASON
 or . In the case of mtaEnqueueTo() mtaEnqueueFinish()
, may also be used to obtainmtaEnqueueTo() mtaEnqueueError()

the extended information returned with the item code.MTA_REASON

MTA_BADARGS 3 Bad call arguments supplied to the called routine. Typically, this will be
the result of passing an invalid context or a NULL value for a required
parameter.

MTA_EOF 4 End of data reached. When returned by or mtaDequeueLineNext()
, this value does not indicate anmtaDequeueRecipientNext()

error, but rather that there are, respectively, no more message lines or
recipients to return.

MTA_FCREATE 5 Unable to create a disk file. Typically, this will be the result of
insufficient disk space, insufficient access rights to the channel queue
directories, or a file system error of some sort. The MTA SDK creates
both temporary files and message files in the channel queue
directories. The temporary files result when a message being submitted
exceeds in size the value of the MTA option: .MAX_INTERNAL_BLOCKS

63Messaging Server 8.0 MTA Developer's Reference

MTA_FIO 6 An error occurred while writing to a disk file. Typically, this will be the
result of insufficient disk space or a file system error. This error is only
reported when writing message files, either temporary files, or writing
them in the channel queue directories.

MTA_OPEN 7 An error occurred while attempting to open a disk file. In regards to
channel option files, this indicates that the channel option file exists but
cannot be opened. Usually this is caused by insufficient access rights
or a file system error.This error may also be returned when the MTA
SDK is initialized and an MTA configuration file cannot be opened.
Again, this usually indicates a problem with permissions or the file
system. Use the utility to obtain additionalimsimta test -rewrite
diagnostic information. That utility often reports the name of the
underlying configuration file associated with the error.

MTA_NETWORK 8 A network read or write error has occurred. This error is associated
with message dequeue processing and indicates that a communication
error has occurred while attempting to contact or exchange information
with the MTA Job Controller. Ensure that the Job Controller is running.

MTA_NO 9 Generic error message. This error message is issued in a variety of
situations. In all cases, it indicates that the attempted call has failed.
Consult the routine’s description for an interpretation specific to the
called routine. Also, consider enabling MTA SDK diagnostics with

.mtaDebug()

MTA_NOMEM 10 Insufficient virtual memory; cannot perform the requested operation.

MTA_NOOP 11 This error code is not presently used by the MTA SDK. In general, it is
used to indicate that the requested operation was completed by doing
nothing (for example, a message enqueued to zero envelope recipients
is simply deleted).

MTA_NOSUCHCHAN 12 The specified channel name does not exist in the MTA configuration.
The channel name may have been specified explicitly with a supplied
call argument or implicitly with the environmentPMDF_CHANNEL
variable.

MTA_NOSUCHHOST 13 The MTA configuration lacks the necessary information to route the
specified envelope recipient address. This error typically comes up
when an unrecognized, top-level domain name is used. As such, this
usually indicates a syntactically valid recipient address which specifies
an invalid top-level domain name (for example,).sue@siroe.siroe
Other addressing errors, including syntax errors, may elicit this status
code.

MTA_NOSUCHITEM 14 An invalid item code was supplied. Either the supplied item code value
does not represent a known item code or it is not an item code
supported by the called routine.

MTA_ORDER 15 Routine called out of order. For example, an attempt to read the text of
a queued message file was made before first reading the message's
entire recipient list. Or, an attempt was made to write the content of a
message being submitted before first specifying the message's
recipients. Refer to the call order diagrams in for further details.

MTA_SIZE 16 The message being submitted cannot be enqueued: its size exceeds a
site-configured size limit. Such limits are configured with a variety of
options, including the MTA options and ,BLOCK_LIMIT LINE_LIMIT
as well as the channel keywords and .blocklimit linelimit

64Messaging Server 8.0 MTA Developer's Reference

MTA_STRTRU 17 The supplied buffer was not large enough to receive the result string.
The result string was truncated to fit. The result string is nonetheless
NULL terminated.

MTA_STRTRUERR 18 The supplied buffer was not larger enough to receive the result string.
Truncating the result is not meaningful or has potential for causing
problems or both. Alternatively, a supplied string was too long.

MTA_THREAD 19 Threading error detected. Specifically, the MTA SDK detected the
simultaneous use of a single SDK context by two or more processing
threads. This is not permitted.

MTA_TIMEDOUT 20 This error code is not presently used by the MTA SDK. In general, it is
used to indicate a timeout related error.

65Messaging Server 8.0 MTA Developer's Reference

Chapter 5. MTA SDK Concepts and Overview

MTA SDK Concepts and Overview

The Messaging Server MTA SDK is a low-level interface, with routines falling into three categories: those
that enqueue messages, those that dequeue messages, and miscellaneous routines that typically query
or set MTA states, or parse message structures, such as lists of RFC 822 addresses.

The Callable Send facility, described in and and used only forDecoding Messages MTA SDK Reference
originating mail from the local host, can be used simultaneously with the MTA SDK.

This chapter contains the following topics:

Channel Programs and Message Queuing
Managing Multiple Threads Using Contexts
Enqueuing Messages
Dequeuing Messages
String-valued Call Arguments
Item Codes and Item Lists

Channel Programs and Message Queuing

Message enqueuing and dequeuing are generally done by channel programs also referred to simply as
channels. There are two types of channel programs, master channel that dequeue messages, and
channels (sometimes referred to as slave channels) that enqueue messages. Each MTA channel has its
own message queue, referred to as a channel queue. Channel programs may also perform intermediate
roles by dequeuing messages from one message queue and re-enqueuing them to another while,
typically, processing the message at the same time. For example, the message processing might be to
convert the message body from one format to another.

Managing Multiple Threads Using Contexts

A number of SDK operations require multiple, sequential calls to the SDK routines. To manage this, the
SDK provides the caller with a pointer to an opaque data structure called a context. This mechanism
allows for management of state information across calls to the SDK. Use of the contexts allows multiple
threads within a single program to make simultaneous calls to the same SDK routine. The only limitation
is that a single, specific context may not be simultaneously used by different threads in calls to the SDK.
When such usage is detected in an SDK call, an error results.MTA_THREAD

In some cases these contexts are automatically created for you, such as dequeue and decode contexts.
In all other cases, for example for enqueue contexts, you must make an explicit call to create them. The
calls that automatically create contexts also automatically dispose of them. In all other cases, a call must
be made to explicitly dispose of a context. It is important to dispose of contexts when you no longer need
them as so doing releases resources such as virtual memory.

For more information on contexts, see and Threads and Enqueue Contexts Threads and Dequeue
.Contexts

Enqueuing Messages

Messages are introduced to the MTA by enqueuing them. Each enqueued message contains two

66Messaging Server 8.0 MTA Developer's Reference

required components, the message envelope and the message header, and may optionally contain a
third component, the message body. The contents of the envelope and header must be provided by the
program using the SDK.

For instructions on how to enqueue messages, see the Running Your Enqueue and Dequeue Programs
in Chapter 2, .MTA SDK Programming Considerations

For an example of how to enqueue a message, see .A Simple Example of Enqueuing a Message

Message Components

This section describes the three message components: envelope, header and body.

Envelope

The message envelope contains the envelope From: address, and the list of envelope To: addresses.
The envelope is created by the SDK as the message is enqueued. The addresses to be placed in the
envelope must conform to RFC 2822. The envelope To: addresses are often referred to as envelope
recipient addresses.

Programs should rely solely upon the MTA SDK routines to read and write envelope information, since
the queued message file formats are subject to change. Using the SDK routines insulates programmers
from format changes.

The routines and are used to construct a message envelope.mtaEnqueueStart() mtaEnqueueTo()

Header

The message header contains RFC 2822 style header lines. The program enqueuing the message has
nearly complete control over the contents of the header and can specify as many or as few header lines
as it sees fit, with a few exceptions. A header must have at a minimum three lines: , , and atFrom: Date:
least one recipient header line, such as , , or .To: Cc: Bcc:

As the message is enqueued, the SDK will do its best to supply any mandatory header lines that are
missing as well as take some measures to ensure that the contents of the header lines conform to any
relevant standards. If the header line is omitted by the program using the SDK, the SDK code willFrom:
construct a default header line from the envelope address. This may not always be appropriate;From:
for instance, when mail is addressed to a mailing list that specifies an address, then the Errors-to:

: address should be used as the envelope address. In this case, it is not appropriateErrors-to From:
to derive the header line from the envelope address. If the header line is omitted,From: From: Date:
the SDK code will supply it, as well as a header line. Finally, if no recipient headerDate-warning:
lines are present, then the SDK code will generate them using the envelope recipient addresses.

Any addresses appearing in the message header should conform to RFC 2822.

The header is written line-by-line using the routines and mtaEnqueueWrite()
.mtaEnqueueWriteLine()

Body

The optional message body contains the content of the message. As with the message header, the
program enqueuing the message has nearly complete control over the contents of the message body.
The only exception to this is when the message is structured with multiple parts or requires encoding, for
example if it contains binary data, or lines requiring wrapping. In such cases, the SDK will ensure that the
message body conforms to MIME standards (RFCs 2045– 2049).

As with the message header, message body lines are written with the routines mtaEnqueueWrite()
and .mtaEnqueueWriteLine()

67Messaging Server 8.0 MTA Developer's Reference

A Sample Enqueued Message

Enqueued messages may be seen in the MTA queue directories and are merely ASCII text files. In the
following sample message, lines 1 and 2 are the message envelope, the next four lines are the header,
and the rest of the lines are the body.

jdoe@siroe.com
msmith@siroe.com

Date: Tues, 1 Apr 2003 15:01 PST
From: John Doe
To: Mike Smith
Subject: Lunch today

Mike,
Just confirming our lunch appointment today I will meet you at the
restaurant at noon.
John

Note -
As stated earlier, do not directly read from or write messages to the MTA message
queues. Always use the SDK routines or Callable Send. The file structure of messages in
the MTA queues are subject to change. In addition, site specific constraints may be placed
on things such as encodings, and character set usage. The SDK routines automatically
handle these and other issues.

Threads and Enqueue Contexts

Each individual message being enqueued to the MTA is represented within the SDK by an opaque
enqueue context of type . This enqueue context is created by andmta_nq_t mtaEnqueueStart()
destroyed by . Throughout the enqueue process, the message being enqueuedmtaEnqueueFinish()
is referenced through its enqueue context. A program using the SDK may simultaneously enqueue
multiple messages, each message represented by its own enqueue context. Indeed, multiple threads
may simultaneously enqueue one or more messages per thread. The only requirement is that a specific
enqueue context not be simultaneously used by two or more threads. In the event that the SDK detects
simultaneous usages, it returns the error.MTA_THREAD

Enqueuing Dequeued Mail

If a message being enqueued is the result of dequeuing a message, then all envelope fields can
automatically be carried over from the old message to the new message. Both per-message fields (such
as envelope IDs) and per-recipient fields (such as delivery receipt requests) can be preserved. This
preservation is achieved by supplying the associated dequeue context to the routines

, or , or both. Supplying the dequeue context to mtaEnqueueStart() mtaEnqueueTo()
 preserves per-message envelope fields, while supplying the dequeue context to mtaEnqueueStart()

 preserves the per-recipient fields for the specified envelope recipient.mtaEnqueueTo()

The following section contains information on message dequeuing and message dequeue contexts.

Dequeuing Messages

68Messaging Server 8.0 MTA Developer's Reference

Messages stored in the MTA message queues are removed from their queues by dequeuing them. This
is typically done by channel programs as mentioned in . WhenChannel Programs and Message Queuing
a message is dequeued, it is literally removed from the MTA message queues and, as far as the MTA is
concerned, no longer exists. That is, dequeuing a message relieves the MTA of all further responsibility
for the message. The responsibility is assumed to have been passed on to some other entity such as
another MTA or a message store.

The channel name used by the program identifies the MTA message queue being serviced by the
program. The channel name can either be explicitly specified by the program or determined from the run
time environment using the environment variable.PMDF_CHANNEL

Note -
Channel naming conventions: the name must be 32 bytes or less, should be in lower case,
and if the channel will have multiple instantiations, then it should be given a generic name,
such as , and then each instantiation can be given a specific version of it, such as tcp

, , .tcp_local tcp_auth tcp_intranet

Multiple programs may simultaneously process the same message queue. The SDK and Job Controller
will automatically coordinate such efforts, using file locks to prevent two or more programs or threads
from simultaneously processing the same message. When the message processing program is called,
the message to be process is locked so that no other jobs may access that message. The message is
then unlocked when is called, or when the program exits, normally ormtaDequeueMessageFinish()
abnormally. For more information, see Dequeuing Message Processing Routine Tasks

Threads and Dequeue Contexts

Each individual message being dequeued from the MTA is represented within the SDK by an opaque
dequeue context of type . Each dequeue context is created by andmta_dq_t mtaDequeueStart()
passed to a caller-supplied processing procedure. Each dequeue context is then destroyed when

 is called. Throughout the dequeue process, the message beingmtaDequeueMessageFinish()
dequeued is referenced through its dequeue context. Under typical usage, a program will have multiple
threads operating, each simultaneously dequeuing a message. However, it is not permitted for two
threads to simultaneously use the same dequeue context in calls to the SDK. In the event the SDK
detects simultaneous usages, it returns the error.MTA_THREAD

Message Processing Threads

When is called, a communication path with the MTA Job Controller ismtaDequeueStart()
established. The Job Controller is then asked if there are messages to be processed for the channel.
Typically there will be messages to process since the Job Controller normally only starts channel
programs when there are queued messages in need of processing. Based upon information obtained
from the Job Controller, will then begin to create non-joinable processing threads.mtaDequeueStart()
Each processing thread immediately begins processing the queued messages.

For further information about the exact steps a message processing thread goes through, see Debugging
.Programs and Logging Diagnostics

String-valued Call Arguments

Strings passed as call arguments to the MTA SDK routines also have an associated length argument.
Use of the length argument is optional; that is, if you do not know the length or do not wish to supply it,
then supply a value of zero for the length argument. However, in that case the supplied string must be
NULL terminated so that the SDK routine can determine the string's length. When a non-zero length is
supplied, then the string does not need to be NULL terminated. Wherever possible, the SDK routines
return pointers to output strings rather than returning the strings themselves. These pointers are always

69Messaging Server 8.0 MTA Developer's Reference

thread safe; however, when associated with an SDK context they often are only valid as long as the
context itself is valid. Such limits will be noted in the description of the individual routines in Dequeuing

. In some cases, an output string buffer must be supplied, as with the and Messages mtaDateTime()
 routines.mtaUniqueString()

Internally, the MTA has several basic string sizes. Users of the SDK generally do not need to concern
themselves with this fact. However, at times it may be helpful to be aware of them as they can provide an
upper bound on the length of various strings you might encounter. As shown in the following table, for
instance, channel names will never be longer than bytes; channel option values will neverCHANLENGTH
exceed a length of bytes; and envelope addresses will never exceed a length of BIGALFA_SIZE

 bytes:ALFA_SIZE

Symbolic
Names

Value in
Bytes

Typical Usage

ALFA_SIZE 256 Upper limit on the length of an address

BIGALFA_SIZE 1024 Upper limit on the length of message line and channel option
value

CHANLENGTH 32 Upper limit on the length of a channel name

Item Codes and Item Lists

A number of the MTA SDK routines accept a variable length list of item code arguments. For instance,
 has the call syntax:mtaInit()

int mtaInit(int item_code, ...)

That is to say, it accepts one or more integer-valued call arguments. These call arguments are referred to
as an "item code list" or, more simply, an "item list." Each item list must be terminated by a call argument
with the value . As such, the call syntax for can be expressed as0 mtaInit()

int mtaInit([int item_code[, ...]], 0)

There can be zero or more item codes with non-zero values which must then be followed by an item
code with the value zero.

In the MTA SDK, item lists serve two purposes. First, they allow code using the SDK to specify optional
behaviors and actions to the SDK. Second, they provide an extension mechanism for future versions of
the SDK to extend the functionality of routines through the introduction of new item codes.

However, there is a drawback to the use of item lists; the number of items passed to an SDK routine
must be known at compile time. That is, it is difficult if not impossible for a program at run time to adjust
the number of item codes that it wishes to pass. In recognition of this limitation, all SDK routines that
accept an item code list also accept a pointer to an arbitrary length array of item codes. Such an array is
referred to as an "item list array" and is specified with the item code. This mechanismMTA_ITEM_LIST
allows programs to dynamically construct the array at run time, while still using a fixed number of
arguments at compile time.

The item code is always followed by an additional call argument whose value is aMTA_ITEM_LIST
pointer to an array of type elements. Each array entry has the following five fields:mta_item_list_t

70Messaging Server 8.0 MTA Developer's Reference

Fields Description

int item_code An item code value indicating an action to be effected. The permitted item code
values are routine specific.

const void
*item_address

The caller-supplied address of data to be used in conjunction with the action
specified by the field. Not all actions require use of this field.item_code

size_t
item_length

When the item code has an associated string value, this field optionally provides
the length in bytes of the string, not including any NULL terminator. If a value of
zero is supplied, then the string pointed at by the field must beitem_address
NULL terminated.When the item code has an associated integral value, this field
supplies that value. Not all actions require the use of this field.

int
item_status

Only used by . Not used by other MTA SDK routines.mtaSend()

const char
*item_smessage

Only used by . Not used by other MTA SDK routines.mtaSend()

The end of the array is signified by an array entry whose item_code field has the value zero (
). As an example of using , consider the following call:MTA_END_LIST MTA_ITEM_LIST mtaInit()

istat = mtaInit(MTA_DEBUG_SDK, MTA_DEBUG_OS, MTA_DEBUG_MM, 4,
 MTA_DEBUG_DEQUEUE, MTA_DEBUG_DECODE, 0);

In the above call, the decision to enable the listed debug modes is made at compile time. Using an item
list array allows the decision to be made at run time as illustrated in the following example:

mta_item_list_t item_list[6];
int index;

index = 0;
if (debug_sdk)
 item_list[index++].item_code = MTA_DEBUG_SDK;
if (debug_os)
 item_list[index++].item_code = MTA_DEBUG_OS;
if (debug_mm)
{
 item_list[index].item_code = MTA_DEBUG_MM;
 item_list[index++].item_length = 4;
}
if (debug_dq)
 item_list[index++].item_code = MTA_DEBUG_DEQUEUE;
if (debug_decode)
 item_list[index++].item_code = MTA_DEBUG_DECODE;
item_list[index].item_code = MTA_END_LIST;
istat = mtaInit(MTA_ITEM_CODE, item_list, 0);

The list of item code arguments must still be terminated with a call argument with value zero. Further,
item codes may simultaneously be passed as distinct call arguments and also in item list arrays. For
example:

71Messaging Server 8.0 MTA Developer's Reference

mtaInit(MTA_DEBUG_SDK, MTA_ITEM_LIST, item_list1,
 MTA_INTERACTIVE, MTA_ITEM_LIST, item_list2, 0);

In the above, the item codes , , , and MTA_DEBUG_SDK MTA_ITEM_LIST MTA_INTERACTIVE
 are all explicitly passed as call arguments. Additional item codes are passed via theMTA_ITEM_LIST

item list arrays and .item_list1 item_list2

When processing item codes, they are processed from left to right as the call argument list is interpreted.
Using the above example, processes , then , mtaInit() MTA_DEBUG_SDK MTA_ITEM_LIST

, , and finally the terminating 0 call argument which terminates theMTA_INTERACTIVE MTA_ITEM_LIST
item code processing. When processing the first occurrence of , the entries of MTA_ITEM_LIST

 are processed starting with the first entry (index 0), then the second, and so on until anitem_list1
entry with an item code value of is encountered. The same processing occurs for .0 item_list2

If two item codes set the same underlying option or value, the last processed instance of that item code
will prevail. For example, the call:

mtaInit(MTA_DEBUG_ENQUEUE, MTA_DEBUG_MM, 10, 0);

will leave the enqueue debug level set to . While the item code sets it to , the10 MTA_DEBUG_ENQUEUE 5
subsequent item code changes the setting to .MTA_DEBUG_MM 10

72Messaging Server 8.0 MTA Developer's Reference

Chapter 6. MTA SDK Programming
Considerations

MTA SDK Programming Considerations

This chapter describes procedures and run time instructions useful for programmers using the
Messaging Server MTA SDK. It includes the following topics:

Running Your Enqueue and Dequeue Programs
Debugging Programs and Logging Diagnostics
Required Privileges
Compiling and Linking Programs
Running Your Test Programs
Preventing Mail Loops when Re-enqueuing Mail
Miscellaneous Programming Considerations

Running Your Enqueue and Dequeue Programs

At run time, when your program enqueues a message to, or dequeues a message from the MTA, the
SDK must be able to determine the name of the MTA channel under which to perform the enqueue or
dequeue. If this name cannot be determined, then the enqueue or dequeue operation will fail.
Consequently, when calling or , a channel name can bemtaEnqueueStart() mtaDequeueStart()
specified. Whether or not you need to specify this channel name depends upon the conditions under
which your program runs. While developing your program and manually running it, you may either code
the channel name into your program or specify it through your run time environment with the

 environment variable. For example, to do the latter on UNIX platforms use a commandPMDF_CHANNEL
of the following form:

PMDF_CHANNEL= channel-name program-name

where is the name of the channel and is the name of the executablechannel-name program-name
program to run.

In production, if your program will run as a master or slave channel program under the MTA Job
Controller, you do not need to specify the channel name The channel name will automatically be set by
the Job Controller using the environment variable. If, however, your program will be runPMDF_CHANNEL
manually or as a server, then either the program can specify its channel name through code or using the

 environment variable. For the latter, setting the environment variable is typicallyPMDF_CHANNEL
achieved by wrapping your executable program with a shell script. The shell script would set the
environment and then invoke your program, as illustrated in the following code example:

73Messaging Server 8.0 MTA Developer's Reference

#!/bin/sh

PMDF_CHANNEL=_channel-name_

PMDF_CHANNEL_OPTION=_option-file-path_

export PMDF_CHANNEL PMDF_CHANNEL_OPTION

program-name

exit

The shown in the previous example is the full, absolute path to the channel's option file, ifoption-file-path
any.

A program can query the SDK to determine what channel name is being used with either the
, , or routines. The former returnsmtaChannelGetName() mtaEnqueueInfo() mtaDequeueInfo()

the channel name the SDK will use when no other name is explicitly specified through code. The latter
two return the name specifically being used with a given enqueue or dequeue context.

Note -
The SDK only reads the environment variable once per programPMDF_CHANNEL
invocation. As such, running code cannot expect to change its channel name by changing
the value of the environment variable.

Debugging Programs and Logging Diagnostics

The SDK has diagnostic facilities that may help in tracking down unusual behavior. Enable SDK
diagnostics in one of two ways: either when the SDK is initialized with or afterwards with mtaInit()

. The following table lists the diagnostics types that may be enabled through either routine:mtaDebug()

Diagnostic Type Description

MTA_DEBUG_SDK Provide diagnostics whenever the SDK returns an error status

MTA_DEBUG_DEQUEUE Provide diagnostics from the MTA low-level dequeue library

MTA_DEBUG_ENQUEUE Provide diagnostics from the MTA low-level enqueue library

MTA_DEBUG_OS Provide diagnostics from the MTA low-level, operating-system dependent
library

All diagnostic output is written to . In the case of a channel program, this is typically the channel'sstdout
debug file. Message enqueue and dequeue activities performed through the MTA SDK (and Callable
Send facility) will be logged when the channels involved are marked with the channel keyword.logging

Required Privileges

Use of the MTA SDK often requires access rights to the MTA message queues and configuration data.
Indeed, were such rights not required, then any user capable of logging in to the operating system of the
machine running Messaging Server could read messages out of the MTA message queues and send
fraudulent mail messages. Consequently, any programs using the MTA SDK need read access to the
MTA configuration, possibly including files with credentials required to bind to either the Job Controller or

74Messaging Server 8.0 MTA Developer's Reference

1.

an LDAP server or both. Additionally, programs that will enqueue messages to the MTA need write
access to the MTA message queues. Programs that will dequeue messages from the MTA need read,
write, and delete access to the MTA message queues.

To facilitate this access, site-developed programs that will enqueue or dequeue messages should be
owned and run by the account used for Messaging Server. The programs do not need to run as a
superuser with access in order to enqueue or dequeue mail to the MTA. However, it is safe toroot
allow them to do so, if needed for concerns outside the scope of Messaging Server. For instance, if the
program will be performing other functions requiring system access rights, it needs to run as a superuser
with access.root

Compiling and Linking Programs

This section contains information useful for compiling and linking your C programs.

Compiling

To declare the SDK routines, data structures, constant, and error codes, C programs should use the {{
/include/mtasdk.h}} header file.msg_server_base

Linking Instructions for Oracle Solaris

The linking instructions that follow are for the Oracle Solaris platform:

The table that follows shows the link command used to link a C program to the SDK:

% SERVER_ROOT=msg_svr_base
% cc -o program program.c \ -I$SERVER_ROOT/include \ -L$SERVER_ROOT/lib \
-lmtasdk

In the example, is the directory path to the top-level Messaging Server directory, and msg_server_base
 is the name of your program.program

If running the program in a standalone mode, that is, not under the Job Controller, then the CONFIGROOT
, , , and the environment variables must be defined.INSTANCEDIR IMTA_TAILOR LD_LIBRARY_PATH
See the shell script used to launch MTA programs and utilities for details.imsimta

Running Your Test Programs

This section describes the tasks that are typically required for running your test programs that enqueue
or dequeue messages. The tasks are divided into two groups, those used to run your test programs in a
fully functional messaging environment, and those needed if you want to run them manually:

To Run Test Programs in a Messaging Environment
To Manually Run Your Test Programs

To Run Test Programs in a Messaging Environment

Add a test channel to the bottom of the file.imta.cnf
For example:

75Messaging Server 8.0 MTA Developer's Reference

1.

2.

3.

4.

5.

6.

1.

(required blank line)
x_test
x-test-daemon

Add rewrite rules to the top of the file.imta.cnf
The following code fragment illustrates this:

x_test $U%x-test@x-test-daemon

To enable your test channel so that mail can be addressed to , recompile youruser@x_test
configuration and restart the SMTP server.
Use the instructions found in the following code example:

imsimta cnbuild
imsimta restart dispatcher

Create the text file.job_controller.site
The file should be owned by the Messaging Server and reside in the same directory as the

 file. The following code example shows the lines you must add to the file:job_controller.cnf

[CHANNEL=x_test]
master_command=_file-path_

In the above example, is the full path to your executable program.file-path

Make sure your executable has permissions and ownership such that the Messaging Server can
run it.
Restart the Job Controller.
Use the command found in the following code example:

imsimta restart job_controller

If the program performing enqueues is also a channel that will be dequeuing messages, and more
specifically, is doing intermediate processing that leaves the envelope recipient addresses
unchanged, then special rewrite rules must be used to prevent a message loop in that the channel
just enqueues the mail back to itself. For directions on how to prevent a message loop and other
specific examples of rewrite rules, see .Preventing Mail Loops when Re-enqueuing Mail

To Manually Run Your Test Programs

If the program does not explicitly set the channel name, then you must define the PMDF_CHANNEL
environment variable.
The value of that variable must be the name of your channel. The following example shows how to
set the environment variable:PMDF_CHANNEL

76Messaging Server 8.0 MTA Developer's Reference

1.

2.

3.

4.

PMDF_CHANNEL=x_test
export PMDF_CHANNEL

For further information, see .Running Your Enqueue and Dequeue Programs

Ensure that any environment variables required to run a program linked against the MTA SDK are
defined.
See for additional information.Compiling and Linking Programs
Under some circumstances, it might be useful to comment out the line in the master_command=

 file.job_controller.site
If you do this, you can enqueue mail to your test channel but not have the Job Controller actually
run your channel program.
When repeatedly testing your channel program, it is often necessary to restart the Job Controller
before each manual test run.
Otherwise, the Job Controller will hand off messages to your program on the first manual run but
not the second manual run. The Job Controller will think that retries of the messages need to be
delayed by several hours. By restarting the Job Controller, you cause it to "forget" which queued
messages are to be deferred. Thus, when you run your channel again, it will be presented with all
of the queued messages.

Preventing Mail Loops when Re-enqueuing Mail

This section shows how to add a new rewrite rule to prevent a message loop from happening if the
program is doing intermediate processing that leaves the envelope recipient addresses unchanged.
Otherwise, the channel would enqueue the mail back to itself.

For discussion purposes, suppose that the channel is to provide intermediate processing for mail
addressed to . Further, the file has the following rewrite rule for user@siroe.com imta.cnf

:siroe.com

siroe.com $U@siroe.com

For example, as shown in the code example that follows, assume that the intermediate processing
channel's name is “xloop_test.” Near the bottom of the file with other channel definitions, youimta.cnf
would see the following definition:

xloop_test
x-looptest-daemon

Next, a new rewrite rule for needs to be added to the top of the file:siroe.com imta.cnf

siroe.com $U%siroe.com@x-looptest-daemon$Nxloop_test
siroe.com $U@siroe.com

The new rewrite rule causes the following:

When a new inbound or outbound message for is enqueued to the user@siroe.com
, it processes the message and re-enqueues it to .xloop_text channel user@siroe.com

77Messaging Server 8.0 MTA Developer's Reference

In the new rewrite rule, says that the first (new) rewrite rule is to be ignored when the $N
 channel itself enqueues a message.xloop_test

Therefore, after the channel does its processing and re-enqueues the message to xloop_test
, the first (new) rewrite rule is ignored and the second (old) rule is then applied,user@siroe.com

causing the message to be routed as it would have been before the channel wasxloop_test
added to the MTA.

Miscellaneous Programming Considerations

This section covers miscellaneous topics of interest to programmers using the SDK:

Retrieving Error Codes
Writing Output From a Channel Program
Considerations for Persistent Programs

Retrieving Error Codes

With few exceptions, all routines in the SDK return an integer-valued result with a value of zero (0)
indicating success. When a non-zero value is returned, it is also saved in a per-thread data section,
which may be retrieved with either the function or the C pre-processor macro.mtaErrno() mta_errno

The exceptional routines either return nothing (that is, always succeed), or return a string pointer, and
signify an error with a return value of .NULL

Writing Output From a Channel Program

The C runtime library input-output destination may be usurped by the SDK, depending upon thestdout
context under which a channel program has been invoked. As such, programs that will operate as
channels should use the routine to write information to their log file. Such programs shouldmtaLog()
never write output directly to or or other generic I/O destinations, such as Pascal's stdout stderr

, or FORTRAN's default output logical unit. There is no telling where such output might go: itoutput
might go to the Job Controller's log file, it might even go down a network pipe to a remote client or server.

Note -
The channel log file is a different file from the MTA log file. The and mtaLog()

 are unrelated routines.mtaAccountingLogClose()

Considerations for Persistent Programs

There are two main problems to consider when creating programs that persist over long periods of time
(weeks or months):

Refreshing Stale Configuration Information
Keeping the Log File Available For Update

Refreshing Stale Configuration Information

Some programs, once started, run indefinitely. An example of this kind of program is a server that listens
continually for incoming mail connections, enqueuing received messages. Site-specific configuration
information is loaded at initialization. In the case of these long running programs, the information can
become stale due to changes to configuration information, such as rewrite rules or channel definitions.
Subsequent calls to do not accomplish this task. A program must exit and restart in order tomtaInit()
ensure that all configuration information is reloaded.

78Messaging Server 8.0 MTA Developer's Reference

Keeping the Log File Available For Update

A program that enqueues and dequeues messages may open the MTA log file, .mail.log_current
For persistent programs, care should be taken that this log file is not left open during periods of inactivity.
Otherwise, activities that require exclusive access to this file will be blocked. Before going idle, persistent
programs should call . The log file will automatically reopened whenmtaAccountingLogClose()
needed.

Note -
The MTA log file, , is not the log written to by .mail.log_current mtaLog()

79Messaging Server 8.0 MTA Developer's Reference

Chapter 7. MTA SDK Reference

MTA SDK Reference

The Messaging Server MTA SDK consists of numerous routines used to facilitate the enqueuing and
dequeuing of messages. This reference information contains definitions of all of the SDK routines, and
has the following sections:

Summary of SDK Routines
This section contains a collection of tables, representing a logical grouping of the routines. Each
table lists the routines in that group.
MTA SDK Routines
The actual reference material is organized in alphabetical order by routine name.

Summary of SDK Routines

This sections contains a series of tables, one for each of the following logical groups of commands:

Address Parsing
Dequeue
Enqueue
Error Handling
Initialization
Logging and Diagnostics
MIME Parsing and Decoding
Miscellaneous
Option File Processing

Each table lists the routines that comprise the group and gives a brief description of each.

Address Parsing

Address parsing routines are used to parse and extract message addresses.

Routine Name Description

mtaAddressFinish() Dispose of an address context

mtaAddressGetN() Extract the Nth individual address from a list of parsed addresses

mtaAddressParse() Parse a list of addresses, producing an address context

Dequeue

Dequeue routines are used for dequeuing messages.

80Messaging Server 8.0 MTA Developer's Reference

Routine Name Description

mtaDequeueInfo() Obtain information about a queued message

mtaDequeueLineNext() Obtain the next message line from a queued message

mtaDequeueMessageFinish() Complete or cancel a message dequeue

mtaDequeueRecipientDisposition() Set the disposition of a recipient address

mtaDequeueRecipientNext() Obtain the next recipient address from a queued
message

mtaDequeueRewind() Move the read point for a queued message back to the
start of its outermost header

mtaDequeueStart() Begin processing queued messages

mtaDequeueThreadId() Return the thread ID associated with the specified
dequeue context.

Enqueue

Enqueue routines are used for enqueuing messages.

Routine Name Description

mtaEnqueueCopyMessage() Copy a message from a dequeue context

mtaEnqueueFinish() Complete or cancel a message submission

mtaEnqueueInfo() Obtain information about a message submission

mtaEnqueueStart() Begin a message submission

mtaEnqueueTo() Add recipients to a message

mtaEnqueueWrite() Output a line to the message header or body

mtaEnqueueWriteLine() Output a line to the message header or body

Error Handling

Error handling routines used for error status retrieval.

Routine Name Description

mtaErrno() Obtain the value of the last error status for this thread

mtaStrError() Map an error status code to a printable string

Initialization

These routines are used for initialization.

81Messaging Server 8.0 MTA Developer's Reference

Routine Name Description

mtaDone() Release resources used by the MTA SDK

mtaInit() Initialize the MTA SDK

Logging and Diagnostics

Logging and diagnostics routines are used to write diagnostic messages to debug log files.

Routine Name Description

mtaDebug() Write internal diagnostic information to the debug log file

mtaLog() Write to the debug log file

mtaLogv() Write to the debug log file

MIME Parsing and Decoding

These routines are used to parse and decode a MIME formatted message.

Routine Name Description

mtaDecodeMessage() Decode a MIME formatted message; can also convert
non-MIME formats to MIME

mtaDecodeMessagePartCopy() Copy a message part

mtaDecodeMessagePartDelete() Delete a message part

mtaDecodeMessageInfoInt() Obtain the value of an integer-valued parameter

mtaDecodeMessageInfoString() Obtain the value of a string-valued parameter

mtaDecodeMessageInfoParams() Obtain the or Content-type Content-disposition
parameter list

Miscellaneous

These routines are used for miscellaneous tasks.

82Messaging Server 8.0 MTA Developer's Reference

Routine Name Description

mtaAccountingLogClose() Close the MTA accounting log file

mtaAddressToChannel() Determine which channel an address rewrites to

mtaBlockSize() Obtain the value of the MTA optionBLOCK_SIZE

mtaChannelGetName() Obtain the channel name for the running program

mtaChannelToHost() Determine the host name associated with a channel

mtaDateTime() Generate a date-time string for use in an RFC 822 header lineDate:

mtaPostmasterAddress() Obtain the postmaster's address

mtaStackSize() Obtain the minimum thread stack size needed for arbitrary SDK
operations

mtaUniqueString() Generate a unique string

mtaVersionMajor() Obtain the major version number of the MTA SDK

mtaVersionMinor() Obtain the minor version number of the MTA SDK

mtaVersionRevision() Obtain the revision number of the MTA SDK

Option File Processing

The following table lists the routines used to process option files and gives a brief description of each.

Routine Name Description

mtaOptionStart() Open and read a channel option file

mtaOptionInt() Obtain the value associated with an integer-valued option

mtaOptionFloat() Obtain the value associated with a real-valued option

mtaOptionString() Obtain the value associated with a string-valued option

mtaOptionFinish() Dispose of an option file context

MTA SDK Routines

This section describes each MTA SDK routine, including its syntax, arguments and return values, and
gives a description of the routine. The following table lists the routines in alphabetical order, as they are
found in this section:

Routine Name and Page

mtaAccountingLogClose()

mtaAddressFinish()

mtaAddressGetN()

mtaAddressParse()

83Messaging Server 8.0 MTA Developer's Reference

mtaAddressToChannel()

mtaBlockSize()

mtaChannelGetName()

mtaChannelToHost()

mtaDateTime()

mtaDebug()

mtaDecodeMessage()

mtaDecodeMessageInfoInt()

mtaDecodeMessageInfoParams()

mtaDecodeMessageInfoString()

mtaDecodeMessagePartCopy()

mtaDecodeMessagePartDelete()

mtaDequeueInfo()

mtaDequeueLineNext()

mtaDequeueMessageFinish()

mtaDequeueRecipientDisposition()

mtaDequeueRecipientNext()

mtaDequeueRewind()

mtaDequeueStart()

mtaDequeueThreadId()

mtaDone()

mtaEnqueueCopyMessage()

mtaEnqueueError()

mtaEnqueueFinish()

mtaEnqueueInfo()

mtaEnqueueStart()

mtaEnqueueTo()

mtaEnqueueWrite()

mtaEnqueueWriteLine()

mtaErrno()

mtaInit()

mtaLog()

mtaLogv()

mtaOptionFinish()

84Messaging Server 8.0 MTA Developer's Reference

mtaOptionFloat()

mtaOptionInt()

mtaOptionStart()

mtaOptionString()

mtaPostmasterAddress()

mtaStackSize()

mtaStrError()

mtaUniqueString()

mtaVersionMajor()

mtaVersionMinor()

mtaVersionRevision()

mtaAccountingLogClose()

Close the MTA accounting log file, .mail.log_current

Syntax

void mtaAccountingClose(void)

Arguments

None

Description

Long running programs should periodically close the MTA accounting log file with this routine. Interactive
programs that use the MTA SDK should use the item code when initializing the SDK with mtaInit()

.mtaInit()

Return Values

None

Example

None

mtaAddressFinish()

Dispose of an address context.

Syntax

85Messaging Server 8.0 MTA Developer's Reference

void mtaAddressFinish(mta_adr_t *adr_ctx);

Arguments

Argument Description

adr_ctx An address context created by a previous call to .mtaAddressParse()

Description

Address contexts created with must be disposed of by calling mtaAddressParse()
. Failure to do so will result in memory leaks.mtaAddressFinish()

Return Values

None

Example

None

mtaAddressGetN()

Extract an address from a list of parsed addresses.

Syntax

int mtaAddressGetN(mta_adr_t *adr_ctx,
 size_t address_index,
 const char **address,
 size_t *address_len,
 int elements);

Arguments

86Messaging Server 8.0 MTA Developer's Reference

Arguments Description

adr_ctx An address context created by a previous call to .mtaAddressParse()

address_index Index of the address to retrieve. It is an index into a list of addresses. The first
address has an index of 0.

address Pointer to receive the selected address (a pointer to a buffer within the address
context). The address will be NULL terminated. A NULL may be passed for this call
argument if you do not wish to receive the pointer.

address_len The length in bytes of the selected address, not including any NULL terminator.
NULL may be passed for this call argument if you do not wish to receive the length.

elements A bitmask indicating which RFC 822 mailbox elements of the address to return,
such as phrase, route, local-part, or domain. Any combination of these elements
may be returned.

Description

This routine retrieves the Nth address from a list of parsed addresses. The list of addresses must first be
parsed with .mtaAddressParse()

Either the entire address or just a portion of it may be retrieved.

Elements Argument

Using the nomenclature of RFC 822, an address has the following four-element format:

phrase <@route:local-part@domain>

Note -
The element is referred to as a and is rarely seen. @route: source route

An example address with all four elements is:

Judy Smith <@siroe.com:judy.smith@email.siroe.com>

The argument is a bitmask indicating which of these elements to return. The bitmask iselements
formed by a logical OR of the following symbolic constants defined in the header file:mtasdk.h

MTA_ADDR_PHRASE-- In the example, the phrase part is . Judy Smith
MTA_ADDR_ROUTE-- In the example, the route part is . @siroe.com
MTA_ADDR_LOCAL-- In the example, the local part is . judy.smith
MTA_ADDR_DOMAIN-- In the example, the domain part is . email.siroe.com

For example, to select just the local and domain parts, use the following value for the elements
argument:

87Messaging Server 8.0 MTA Developer's Reference

MTA_ADDR_LOCAL | MTA_ADDR_DOMAIN

When a value of zero is supplied for elements the following default bitmask is assumed:

MTA_ADDR_ROUTE | MTA_ADDR_LOCAL | MTA_ADDR_DOMAIN

Address Argument

This routine returns a pointer to the retrieved address and not the address itself. This pointer is to a
buffer within the address context. Each time the routine is called with the same address context, that
buffer is overwritten. Therefore, care must be taken when specifying the address argument. The following
code example correctly specifies how the argument should be used when multiple calls are involved:

mtaAddressGetN(adr_ctx, 0, &ptr, NULL, MTA_ADDR_LOCAL);
strcpy(buf, ptr);
strcat(buf, "@");
mtaAddressGetN(adr_ctx, 0, &ptr, NULL, MTA_ADDR_DOMAIN);
strcat(buf, ptr);

Alternately, it could also be coded as shown in the following code fragment:

mtaAddressGetN(adr_ctx, 0, &ptr, NULL,
 MTA_ADDR_LOCAL | MTA_ADDR_DOMAIN);
strcpy(buf, ptr);

However, since the pointer points to the same buffer for each call, and is overwritten at each call, it would
be incorrect to code it as shown in the following code example:

mtaAddressGetN(adr_ctx, 0, &local, NULL, MTA_ADDR_LOCAL);
mtaAddressGetN(adr_ctx, 0, &domain, NULL, MTA_ADDR_DOMAIN);
strcpy(buf, local);
strcat(buf, "@");
strcat(buf, domain);

Return Values

88Messaging Server 8.0 MTA Developer's Reference

1.
2.
3.

Return Value Description

0 Normal, successful completion

MTA_BADARGS One of the following conditions occurred:

A NULL value for the argumentadr_content
An invalid address context
An invalid bitmask for elements

MTA_EOF The value supplied for the is equal to or greater than the number ofaddress_index
addresses in the address list.

Example

The following is a code fragment that parses and displays the individual addresses from a list of two
addresses, using :mtaAddressGetN()

ires = mtaAddressParse(&adr_ctx, &adr_count,
 "Judy Public <judy.public@siroe.com\>, sue@siroe.com",
 0, 0);
for (i = 0; i < adr_count; i++)
{
 mtaAddressGetN(adr_ctx, i, &ptr, NULL,
 MTA_ADDR_LOCAL | MTA_ADDR_DOMAIN);
 printf("Address %d: %s\n", i, ptr);
}

mtaAddressParse()

Parse a list of comma separated RFC 822 addresses.

Syntax

int mtaAddressParse(mta_adr_t **adr_ctx,
 size_t *address_count,
 const char *address_list,
 size_t address_list_len,
 int item_code, ...);

Arguments

89Messaging Server 8.0 MTA Developer's Reference

Argument Description

adr_ctx The address context created for the parsed list of addresses.

address_count The number of addresses parsed.

address_list A character string containing the list of comma separated RFC 822 addresses
to be parsed. The string must be NULL terminated if a value of zero is passed
for .address_list_len

address_list_len The length in bytes of the string of addresses to parse, not including any NULL
terminator. If a value of zero is passed for this argument, then the length of

 will automatically be determined.address_list

item_code An optional list of item codes. The list must be terminated with an integer
argument with value .0

Description

This routine parses a list of one or more comma separated RFC 822 addresses. The input list can be of
any arbitrary length. The result of the parse is represented by an address context and a count of the
parsed addresses. Each parsed address can then be individually extracted from the parsed list with a call
to . The address context should be disposed of with a call to mtaAddresGetN()

. When there are no valid addresses in the input line, the returned context will bemtaAddressFinish()
NULL and the count zero.

Note -
There are two item codes that can be used in the argument. A NULL valueitem_code
can be passed for either or both of the and arguments. Whenadr_ctx address_count
NULL is passed for both, all that is learned by calling the routine is whether or not the
address list is syntactically valid.

The following table lists the item codes for this routine, their additional required arguments, and gives a
description of each.

Item Codes Additional
Arguments

Description

MTA_DOMAIN const char
*domainsize_t
domain_len

Specify a domain name to append to short-form addresses,
such as , in order to create a fully qualified address, forsue
example, .It must be followed by twosue@siroe.com
additional call arguments: the domain name to use and the
length in bytes of that domain name. If a value of is passed0
for the length, then the domain name must be NULL
terminated.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The array must be
terminated with a final array entry with an item code value of

. For further information on item lists, see 0 Item Codes and
.Item Lists

Return Values

90Messaging Server 8.0 MTA Developer's Reference

Return Value Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the argument or an optional itemaddress_list
code argument.

MTA_NO Unable to parse the address list. The likely cause is that one or more addresses in
the list is syntactically invalid.

MTA_NOMEM Insufficient virtual memory.

MTA_NOSUCHITEM An invalid item code was supplied.

MTA_STRTRUERR Item code string argument is too long.

Example

See the code example for for a sample code fragment that uses mtaAddressGetN()
.mtaAddressParse()

mtaAddressToChannel()

Determine which channel an address rewrites to.

Syntax

const char *mtaAddressToChannel(char *channel,
 size_t *channel_len,
 size_t channel_len_max,
 const char *address,
 size_t address_len,
 int address_type,
 int item_code, ...);

Arguments

91Messaging Server 8.0 MTA Developer's Reference

Arguments Description

channel A pointer to a buffer to receive the NULL terminated channel name. To avoid
possible truncation of the channel name, this buffer must be at least

 bytes long.CHANLENGTH+1

channel_len An optional pointer to a to receive the length in bytes of the returnedsize_t
channel name. This length does not include the NULL terminator that terminates
the channel name.

channel_len_max The maximum size in bytes of the buffer pointed at by the argument.channel

address The address to rewrite. The length of this address, not including any NULL
terminator, should not exceed bytes. If a value of is passed for theALFA_SIZE 0

 argument, then this string must be NULL terminated.address_len

address_len The length in bytes of the address string, . This length does not includeaddress
any NULL terminator. If a value of is passed for this argument, the address0
string must be NULL terminated.

address_type Indicates what type of address is being rewritten. There are two types: envelope
or header. In addition it can be either forward or reverse pointing. See the
description for a list of the possible values.

item_code Reserved for future use. Presently, a value of must be supplied for this0
argument.

Description

Use this routine to determine which channel an address rewrites to. The address to be rewritten can be
an envelope or header address, and can be forward or reverse pointing. The nature of the address is
specified with the argument. The following table lists the possible values for eachaddress_type
combination: forward pointing envelope, reversing pointing envelope, forward pointing header, reverse
pointing header:

Types of Address Value

Forward pointing envelope address , , , 0 MTA_BCC MTA_CC, MTA_ENV_TO MTA_TO

Reverse pointing envelope address MTA_ENV_FROM

Forward pointing header address , , MTA_HDR_BCC MTA_HDR_CC MTA_HDR_TO

Reverse pointing header address MTA_HDR_FROM

In most cases, a value of is appropriate. Other values will typically give the same result,MTA_ENV_TO
unless the MTA configuration has rewrite rules that are sensitive to the distinctions between the four
types of addresses.

Return Values

On successful operation, the routine returns the value of the argument. In the event of an error,channel
the value returned is NULL and the variable is set with an error status code. The followingmta_errno
table lists the error status codes and gives a description of each.

92Messaging Server 8.0 MTA Developer's Reference

1.
2.

1.

2.

1.

2.

Error Status
Codes

Description

MTA_BADARGS There are two reasons to get this return value:

A NULL value was supplied for the address argument.
An invalid value was supplied for the .address_type

MTA_FOPEN Unable to initialize the MTA SDK; can't read one or more configuration files. Issue
the following command for further information:imsimta test -rewrite

MTA_NO There are two reasons to get this return value:

Unable to rewrite the supplied address. Either the address is syntactically
invalid, or it does not match any channel.
Unable to initialize the MTA_SDK. Issue the following command for further
information:
imsimta test -rewrite

MTA_NOSUCHITEM An invalid item code was specified.

MTA_STRTRUERR There are two reasons to get this return value:

Supplied address string is too long; length can not exceed ALFA_SIZE
bytes.
The supplied buffer to receive the channel name is too small.

Example

None

mtaBlockSize()

Obtain the size in bytes of an MTA block size unit.

Syntax

size_t mtaBlockSize(void);

Arguments

None

Description

The MTA measures message sizes in units of blocks. Units of blocks are used, for instance, when
logging message sizes, and for the item code in the MTA_FRAGMENT_BLOCKS mtaEnqueueStart()
routine. By default, a block is 1024 bytes. However, sites can change this setting with the BLOCK_SIZE
option in the file.option.dat

93Messaging Server 8.0 MTA Developer's Reference

Programs using the SDK can translate units of bytes to blocks by dividing the number of bytes by the
value returned by , that is:mtaBlockSize()

bytes_per_block = mtaBlockSize();
block_limit = byte_limit / bytes_per_block;

Return Values

In the event of a failure, the routine returns the value zero and sets with an error statusmta_errno
code. This routine only fails when initialization of the MTA SDK fails. The following table lists the error
status codes set in when there is an error returned by .mta_errno mtaBlockSize()

Error
Status
Codes

Description

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files. Issue
the following command for further information:imsimta test -rewrite

MTA_NO Unable to initialize the MTA SDK. Issue the following command for further information:
imsimta test -rewrite

Example

The following code fragment displays the MTA block size setting:

printf ("BLOCK_SIZE = %u\n", mtaBlockSize());

mtaChannelGetName()

Determine the channel name for the currently running program.

Syntax

const char *mtaChannelGetName(char *channel,
 size_t *channel_len,
 size_t channel_len_max);

Arguments

94Messaging Server 8.0 MTA Developer's Reference

Arguments Description

channel A pointer to a buffer to receive the NULL terminated channel name. To avoid
possible truncation of the channel name, this buffer must be at least

 bytes long.CHANLENGTH+1

channel_len An optional pointer to a to receive the length in bytes of the returnedsize_t
channel name. This length does not include the NULL terminator that terminates
the channel name.

channel_len_max The maximum size in bytes of the buffer pointed at by the argument.channel

Description

A running program can discover its channel name with this routine. The channel name is typically set
using the environment variable.PMDF_CHANNEL

Return Values

In the event of an error, the routine returns NULL. The error status code is set in .mta_errno

Error Status
Codes

Description

MTA_BADARGS A NULL value passed for the argument.channel

MTA_NO Unable to determine the channel name from the runtime environment.

MTA_STRTRUERR Channel buffer too small to receive the channel name. The buffer must be at least
 bytes long.CHANLENGTH+1

Example

The following code fragment uses this routine to print the channel name.

char buf[CHANLENGTH+1];

printf("Channel name: %s\n",
 mtaChannelGetName(buf, NULL, sizeof(buf)));

mtaChannelToHost()

Determine the host name associated with a channel.

Syntax

const char *mtaChannelToHost(char **host,
 size_t *host_len,
 int item_code, ...);

95Messaging Server 8.0 MTA Developer's Reference

1.
2.

Arguments

Arguments Description

host A pointer to receive the host name. The host name will be NULL terminated. NULL can
be passed for this call argument.

host_len An optional pointer to a to receive the length in bytes of the returned host name.size_t
This length does not include the NULL terminator that terminates the host name. A value
of NULL can be passed for this call argument.

item_code An optional list of item codes. The list must be terminated with an integer argument with
value .0

Description

This routine is used to determine the host name associated with a particular channel.

The channel name can be specified in one of three ways:

Implicitly specified. For this case, no item codes other than the terminating are specified and the0
channel name is the one for the running program. The channel name is set using the

 environment variable. PMDF_CHANNEL
Explicitly specified with the item code. MTA_CHANNEL
Set using the item code, which is taken to be the channel name associatedMTA_DQ_CONTEXT
with a specified dequeue context.

In all cases, the official host name of the selected channel is the host name that is returned. The official
host name for a channel is the one that appears on the second line of the channel definition in the MTA
configuration file, .imta.conf

The following table lists the item codes and any associated arguments:

Item Codes Additional
Arguments

Description

MTA_CHANNEL const char
*channelsize_t
channel_len

Explicitly specify a channel name for the official host name.
This item code must be followed by the two additional call
arguments, specifying:

The channel name.
The length in bytes of that channel name.
If a value of is passed for the length, the channel0
name must be NULL terminated.

MTA_DQ_CONTEXT mta_dq_t
*dq_ctx

Use the channel associated with the specified dequeue
context. This item code must be followed by one additional
call argument: a pointer to a dequeue context generated by

.mtaDequeueStart()

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array that is terminated with
a final array entry that has an item code value of . For0
further information on item lists, see Item Codes and Item

.Lists

When none of the above item codes are specified, the channel name is taken from the runtime

96Messaging Server 8.0 MTA Developer's Reference

1.
2.

1.
2.

environment, using environment variable.PMDF_CHANNEL

On successful completion, the host name is stored in the buffer pointed at by the argument, andhost
the value of the argument is returned.host

Return Values

In the event of an error, will return NULL, but will set . The followingmtaChannelToHost() mta_errno
table lists the error status codes for this routine.

Error Status
Codes

Description

MTA_BADARGS A NULL value was supplied for either of these two arguments:

The argument in the routine call.host
An argument to an item code.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files.
Issue the following command for further information:imsimta test -rewrite

MTA_NO One of the following errors occurred:

Unable to determine the channel name from the runtime environment.
Unable to initialize the MTA SDK. For further information, issue the
following command:
imsimta test -rewrite

MTA_NOSUCHCHAN The selected channel name does not appear in the MTA configuration file,
.imta.cnf

MTA_NOSUCHITEM An invalid item code was specified.

Example

printf("Host name: %s\n",
 mtaChannelToHost(NULL, NULL, MTA_CHANNEL,
 "tcp_local", 0, 0));

mtaDateTime()

Obtain the current date and time in an RFC 822 and RFC 1123 complaint format.

Syntax

const char *mtaDateTime(char *date,
 size_t *date_len,
 size_t date_len_max,
 time_t time);

97Messaging Server 8.0 MTA Developer's Reference

Arguments

Arguments Description

date A pointer to a buffer to receive the NULL terminated date and time string. To avoid
possible truncation of the string, this buffer should be at least 81 bytes long.

date_len An optional pointer to a to receive the length in bytes of the returned datesize_t
and time string. This length does not include the NULL terminator that terminates the
host name. A value of NULL can be passed for this call argument.

date_len_max The maximum size in bytes of the buffer pointed at by the argument.date

time The date and time for which to generate the string representation. To use the current
local time, pass a value of zero for this argument.

Description

This routine generates an RFC 2822 compliant date and time string suitable for use in an RFC 822
 header line. To generate a date and time string for a specific time, supply the time as the Date: time

argument. Otherwise, supply a value of for the argument and a date and time string will be0 time
generated for the current local time.

On successful completion, the date and time string is stored in the buffer pointed at by the date
argument, and the value of the argument is returned.date

Return Values

In the event of an error, will return NULL. It will set the error status code in mtaDateTime() mta_errno
.

Error Status Codes Description

MTA_BADARGS A value of NULL was supplied for the argument.date

MTA_STRTRU The buffer is too small; the returned value has been truncated to fit.date

Example

char buf[80+1];

printf("The current date and time is %s\n",
 mtaDateTime(buf, NULL, sizeof(buf), (time_t)0);

mtaDebug()

Enable generation of MTA SDK diagnostic output.

Syntax

98Messaging Server 8.0 MTA Developer's Reference

int mtaDebug(int item_code, ...);

Arguments

Arguments Description

item_code An optional list of item codes. The list must be terminated with an integer argument with
value .0

Description

Many of the low-level MTA subroutine libraries can produce diagnostic output as can the MTA SDK itself.
This output, when enabled, is directed to . When a channel program is run by the Job Controller, stdout

 is directed to the channel's debug log file. Use this diagnostic output when developing programs.stdout

Note -
mtaDebug() may also be used in production programs; however, caution should be used,
as it can be quite verbose and voluminous, thereby degrading performance and consuming
disk space.

As described in the following table, item codes are used to select specific types of diagnostic output.

99Messaging Server 8.0 MTA Developer's Reference

Item Codes Additional
Arguments

Description

MTA_DEBUG_DECODE None Enable diagnostic output from the low-level MIME
decoding routines. This might be helpful when trying to
understand MIME conversions that occur either when
enqueuing messages (and the destination channel is
configured to invoke MIME conversions, for example,
marked with channel keywords such a or thurman

, or when using inner) mtaDecodeMessage.()

MTA_DEBUG_DEQUEUE None Enable diagnostic output from low-level queue
processing routines. Use this when trying to understand
issues around reading and processing of queued
message files. This will not help diagnose the selection
of queued messages, which is handled by the Job
Controller.Enabling this diagnostic output is the
equivalent of setting in the optionDEQUEUE_DEBUG=1
file, .option.dat

MTA_DEBUG_ENQUEUE None Enables output from low-level message enqueue
routines. Can be used to diagnose the address rewriting
process, destination channel selection, header
processing, and other types of processing that occurs
when a message is enqueued.Enabling this diagnostic
output is the equivalent of setting in the MM_DEBUG=5

 file.option.dat

MTA_DEBUG_MM size_t level Enable diagnostic output from the low-level message
enqueue routines. The item code must be followed by
one additional call argument: the debug level to use.
The value of level ranges from to . Enqueue0 20
diagnostics can be used to diagnose the address
rewriting process, destination channel selection, header
processing and other types of processing that occurs
when a message is enqueued.Enabling this diagnostic
output is equivalent to setting DEQUEUE_DEBUG=level
in the file.option.dat

MTA_DEBUG_OS None Enable diagnostic output from the low-level operating
system dependent routines. This output is helpful when
diagnosing problems associated with creating, opening,
writing, or reading files. This typically happens when
attempting to enqueue messages, which requires
permissions to create and write messages in the MTA
queues.Enabling this output is equivalent to setting

 in the file.OS_DEBUG=1 option.dat

MTA_DEBUG_SDK None Enable diagnostic output for the MTA SDK. When this is
enabled, diagnostic information will be output whenever
the SDK returns an error result.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list array
must be terminated with a final array entry with an item
code value of . For further information on item lists,0
see .Item Codes and Item Lists

Return Values

100Messaging Server 8.0 MTA Developer's Reference

Return Values Description

0 Successful, normal completion.

MTA_BADARGS A NULL value was supplied for a pointer to an item list array.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files.
For further information, issue the following command:imsimta test -rewrite

MTA_NO Unable to initialize the MTA SDK. For further information issue the following
command:imsimta test -rewrite

MTA_NOSUCHITEM An invalid item code was specified.

Example

mtaDebug(MTA_DEBUG_SDK, MTA_MM_DEBUG, 8, 0);

mtaDecodeMessage()

Decode a MIME formatted message; optionally convert non-MIME formats to MIME.

Syntax

int mtaDecodeMessage(void *ctx,
 int input_type,
 void *input,
 int output_type,
 void *output,
 mta_decode_inspect_t *inspect,
 int item_code, ...);

Arguments

101Messaging Server 8.0 MTA Developer's Reference

Arguments Description

ctx Optional pointer to a caller-supplied context or other data type. This pointer will be
passed as the argument to any caller-supplied routines, such as the one suppliedctx
as the argument. A value of NULL can be passed for this argument.inspect

input_type Input type indicator describing the input source to use, either a dequeue context or a
caller-supplied routine. There are only two valid values: , MTA_DECODE_DQ

.MTA_DECODE_PROC

input For , input must be a pointer to a dequeue contextinput_type=MTA_DECODE_DQ
created by .For , input mustmtaDequeueStart() input_type=MTA_DECODE_PROC
be the address of a routine of type .mta_decode_read_t

output_type Optional output type indicator describing the output destination to use, either an
enqueue context or a caller-supplied routine. Valid values are: , , 0 MTA_DECODE_NQ

. When a value of is supplied, the argument is ignored.MTA_DECODE_PROC 0 output

output For , output must be a pointer to an enqueueoutput_type=MTA_DECODE_NQ
context created with .For ,mtaEnqueueStart() output_type=MTA_DECODE_PROC
output must be the address of a routine to type . Thismta_decode_write_t
argument is ignored when a value of is supplied for .0 output_type

inspect The address of an inspection routine of type .mta_decode_inspect_t

item_code An optional list of item codes. The list must be terminated with an integer argument
with value .0

Description

The MTA has powerful facilities for parsing and decoding single and multipart messages formatted using
the MIME Internet messaging format. Additionally, these facilities can convert messages with other
formats to MIME, for example, text parts with BINHEX or UUENCODE data, the RFC 1154 format, and
many other proprietary formats. The routine provides access to these facilities,mtaDecodeMessage()
parsing either a queued message or a message from an arbitrary source such as a disk file or a data
stream.

There are two usage modes for . In the first mode, messages are simply parsed,mtaDecodeMessage()
any encoded content decoded, and each resulting, atomic message part presented to an inspection
routine. This mode of usage is primarily of use to channels that interface the MTA to non-Internet mail
systems such as SMS and X.400. The second mode of operation allows the message to be rewritten
after inspection by an output routine. The output destination for this rewriting may be either the MTA
channel queues, or an arbitrary destination via a caller-supplied output routine.

During the inspection process in this second usage mode, individual, atomic message parts may be
discarded or replaced with text. This operational mode is primarily of use to intermediate processing
channels that need to scan message content or perform content conversions, for example, virus
scanners and encryption software.

Example 5-1 Decoding MIME Messages Simple Example illustrates the first usage mode, while Example
 illustrates the second.5-2

Inspection Routine

Key to either usage mode for is the inspection routine, pointed to with the mtaDecodeMessage()
 argument. The routine presents each atomic message part to theinspect mtaDecodeMessage()

102Messaging Server 8.0 MTA Developer's Reference

inspection routine one line at a time. The presentation begins with the part's header lines. Once all of the
header lines have been presented, the lines of content are presented next. The following points should
also be noted:

Message parts need not have any content. A common example is a single part message with no
content for which the sender used the header line to express their message. Subject:
In the case of a non-multipart message, the message has a single part. The header for this sole
part is the header for the message itself. As noted previously, there may or may not be any
content to this single part.
In the case of a multipart message, individual parts need not have a part header. In such cases,
MIME defaults apply and imply that the content is using the US-ASCII character set.text/plain

Regardless of the value of the header line, the contentContent-transfer-encoding:
presented will no longer be encoded.
In the case of a multipart message, the outermost header is not presented. However, it may be
inspected by means of an output routine. For a discussion of the output routine, see Output

 that follows. Routine

The following code fragment shows the required syntax of an inspection routine:

int inspection_routine(void *ctx,
 mta_decode_t *dctx,
 int data_type,
 const char *data,
 size_t data_len);

The following table lists each of the inspection routine's arguments, and gives a description of each.

Arguments Description

ctx The caller-supplied private context.

dctx A decode context created by . This decode context representsmtaDecodeMessage()
the current part being processed. This context is to be used with calls to the other
decode routines requiring a decode context. This context is automatically disposed of by

.mtaDecodeMessage()

data_type The nature of the data being presented:* For a header line: MTA_DATA_HEADER
* For a line of text-based content: MTA_DATA_TEXT
* For a line of binary content: MTA_DATA_BINARY
* No data at all: . MTA_DATA_NONE
Atomic part content with a MIME content type of is considered totext/ or message/
be text-based. Such content is given the data type . All other atomicMTA_DATA_TEXT
part content (, and is considered to be binary andaudio/, image/ application/*)
denoted by the data type . The data type is onlyMTA_DATA_BINARY MTA_DATA_NONE
presented when using an optional output routine (supplied with the argument in output

). mtaDecodeMessage()
|

data A pointer to the data being presented. Message lines will not have carriage-return or
line-feed terminators, nor is the data itself NULL terminated. (However, in the case of
binary data, there may be carriage returns, line feeds, or even NULLs embedded within
the data itself.)

data_len The length in bytes of the data being presented. This length may be , which indicates a0
blank line and not the absence of any data ().MTA_DATA_NONE

103Messaging Server 8.0 MTA Developer's Reference

Output Routine

When an output routine is not used, the inspection routine can detect the transition from one message
part to another by observing the part number on each call. The part number is obtained by calling

 with an item value of .mtaDecodeMessageInfoString() MTA_DECODE_PART_NUMBER

When the optional output routine (pointed to by the argument) is used, an additional data type, output
, is presented to the inspection routine. It is presented to the inspection routine after theMTA_DATA_NONE

part's header and entire content have been presented. However, no data is actually presented for the
 type. As such, this data type merely serves to (1) let the inspection routine know thatMTA_DATA_NONE

the entire part has now been presented, and (2) allows the inspection routine a final chance to delete the
part from the data being output to the output routine. For example, it allows a virus scanner to be
activated and a judgment passed. Based upon the result of the virus scan, the part can then either be
copied to the output or not.

If it is not copying the part to the output, the inspection routine must call
. That call will either delete the part entirely, or optionally replace itmtaDecodeMessagePartDelete()

with caller-supplied content. Calling makes the copy operationmtaDecodeMessagePartCopy()
explicit; if neither routine is called, then the part will be implicitly copied to the message being output.

When using an output routine, the inspection routine may call or mtaDecodeMessagePartDelete()
 at any time. It is not necessary to wait until the inspection routine ismtaDecodeMessagePartCopy()

called with a data type of . For instance, a virus scanner may want to discard a partMTA_DATA_NONE
when it sees that the part's content type indicates an executable program. However, once either of these
routines is called, the inspection routine will not be called any further for that message part.

Dequeue Context

The message to be decoded is supplied by either a dequeue context or a caller-supplied input routine.
When using a dequeue context, observe the following points:

Specify for the call argument. MTA_DECODE_DQ input_type
Pass the dequeue context from as the input argument. mtaDequeueStart()
The recipient list of the message being dequeued must have already been read by

 before calling . mtaDequeueRecipientNext() mtaDecodeMessage()
mtaDequeueMessageFinish() must not yet have been called for the dequeue context.
After using a dequeue context with , no further calls to mtaDecodeMessage()

 can be made. mtaDequeueRecipientNext()
Calls to can only be performed after a call to . mtaDequeueLineNext() mtaDequeueRewind()

Caller-Supplied Input Routine

When using a caller-supplied input routine to supply the message to be decoded, specify
 for the argument, and pass the address of the input routine as the MTA_DECODE_PROC input_type

 argument.input

The following code fragment shows the syntax of a caller-supplied input routine:

int input_routine(void * ctx,
 const char **line,
 size_t * line_len);

The following table lists the arguments for a caller-supplied input routine, and gives a description of each.

104Messaging Server 8.0 MTA Developer's Reference

Arguments Description

ctx The caller-supplied private context.

line A pointer to the start of the next line or section of data to return. The line or data does not
need to be NULL terminated.

line_len The length in bytes of the line or block of data being returned. A zero length signifies zero
bytes of data. That is, a zero length does not cause tomtaMessageDecode()
automatically determine the length by searching for a NULL terminator.

On each successful call, the input routine should return a status code of (). When there is no0 MTA_OK
more message data to provide, then the input routine should return . The call that returns theMTA_EOF
last byte of data should return ; it is the subsequent call that must return . In the event of an0 MTA_EOF
error, the input routine should return a non-zero status code other than , such as . ThisMTA_EOF MTA_NO
will terminate the message parsing process and will return an error.mtaDecodeMessage()

Note -
By default, each block of data must be a single line of the message. This corresponds to
the item code. If the , , ,MTA_TERM_NONE MTA_TERM_CR MTA_TERM_CRLF MTA_TERM_LF
or item code is specified, then the block of data need not correspond toMTA_TERM_LFCR
a single, complete line of message data It may be a portion of a line, multiple lines, or even
the entire message. See for information about itemItem Codes mtaDecodeMessage()
codes.

Enqueue Context

The parsed message may be output either as a message enqueue or written to an arbitrary destination
via a caller-supplied output routine. When using a message enqueue context, observe the following
points:

Specify for the call argument. MTA_DECODE_NQ output_type
Pass the enqueue context from as the output. mtaEnqueueStart()
Specification of the message's recipient list must have already been completed with

 before calling . mtaEnqueueTo() mtaDecodeMessage()
mtaEnqueueFinish() must not yet have been called for the enqueue context.
After the call to has completed successfully, complete the messagemtaDecodeMessage()
enqueue with . mtaEnqueueFinish()
In the event of an error, the message submission should be cancelled, with

. mtaEnqueueFinish()
mtaDecodeMessage() will write the entire message header and content. There is no need for
the caller to write anything to the message's header or content.

Caller-Supplied Output Routine

To use a caller-supplied output routine, specify the for the callMTA_DECODE_PROC output_type
argument, and pass the address of the output routine as the argument.output

This code fragment shows the syntax of a caller-supplied output routine.

105Messaging Server 8.0 MTA Developer's Reference

int output_routine(void *ctx,
 mta_decode_t *dctx,
 const char **line,
 size_t *line_len);

The following table lists the arguments for a caller-supplied output routine, and gives a description of
each.

Arguments Description

ctx The caller-supplied private context passed as to .ctx mtaDecodeMessage()

dctx A decode context created by . This decode context should bemtaDecodeMessage()
used with calls to the other decode routines requiring a decode context. This context is
automatically disposed of by .mtaDecodeMessage()

line Pointer to a line of the message to output. This line is not NULL terminated. The line will
also lack any carriage return or line feed record terminators.

line_len The length in bytes of the message line to output. A length of indicates a blank line.0
The maximum line length presented will be bytes (1024 bytes).BIGALFA_SIZE

Each line passed to the output routine represents a complete line of the message to be output. The
output routine must add to the line any line terminators required by the output destination (for example,
carriage return, line feed pairs if transmitting over the SMTP protocol, or line feed terminators if writing to
a UNIX text file). Supplying a value of zero for the call argument, causes the outputoutput_type
argument to be ignored. In this case no output routine will be used.

Decode Context Queries

When calls either a caller-supplied inspection or output routine, it passes tomtaDecodeMessage()
those routines a decode context. Through various SDK routine calls, this decode context may be queried
to obtain information about the message part currently being processed.

The following table lists the informational message codes that can be obtained about a message part
being processed, and gives a description of each, including the SDK routine used to obtain it.

106Messaging Server 8.0 MTA Developer's Reference

Message Code Description

MTA_DECODE_CCHARSET The character set specified with the parameter of the part's CHARSET
 header line. If the part lacks a Content-type: CHARSET

specification, then the value will be returned. Obtain with us-ascii
.mtaDecodeMessageInfoString()

MTA_DECODE_CDISP Value of the header line, less any optionalContent-disposition:
parameters. Will be a zero length string if the part lacks a

 header line. Obtain with Content-disposition:
.mtaDecodeMessageInfoString()

MTA_DECODE_CDISP_PARAMS Parameter list to the header line, if any.Content-disposition:
The parsed list is returned as a pointer to an option context. For
further information, see .mtaDecodeMessageInfoParams()

MTA_DECODE_CSUBTYPE The content subtype specified with the part's Content-type:
header line (for example, for , for plain text/plain gif

). Defaults to when the part lacks a image/gif plain
 header line.Obtain with Content-type:

.mtaDecodeMessageInfoString()

MTA_DECODE_CTYPE The major content type specified with the part's Content-type:
header line (for example, for , for text text/plain image

). Defaults to when the part lacks a image/gif text
 header line.Obtain with Content-type:

.mtaDecodeMessageInfoString()

MTA_DECODE_CTYPE_PARAMS Parameter list to the header line, if any. The parsedContent-type:
list is returned as a pointer to an option context. For further
information, see .mtaDecodeMessageInfoParams()

MTA_DECODE_DTYPE Data type associated with this part. Obtain with
.mtaDecodeMessageInfoInt()

MTA_DECODE_PART_NUMBER Sequential part number for the current part. The first message part is
part , the second part is , the third part is , and so on. Obtain with 0 1 2

.mtaDecodeMessageInfoInt()

Item Codes

The table that follows lists the item codes for the argument passed to item_code
. The list of item codes must be terminated with an item code with a value of .mtaDecodeMessage() 0

Item Codes Additional
Arguments

Description

107Messaging Server 8.0 MTA Developer's Reference

MTA_DECODE_LEVELS_MAX max_levels Place an upper limit on the depth of nested MIME
multiparts that will be parsed. When this limit is
reached no further parsing of deeper, nested
multiparts is performed and the parts handed over
for inspection include as text content these
deeper, nested multiparts. By default, no limit is
imposed. When dealing with looping notification
messages, it is possible for the looping message
to become deeply nested.This item code must be
followed by one additional call argument whose
value is the integer-valued upper limit to impose:

.max_levels

MTA_DECODE_PARTS_MAX max_parts Place an upper limit on the total number of
message parts that will be parsed. When this limit
is reached, no further parsing of parts is
performed. By default, no limit is imposed.This
item code must be followed by one additional call
argument whose value is the integer-valued part
limit to impose: .max_parts

MTA_DECODE_THRURMAN None When specified, the MIME parser will first translate
non-MIME formatted data to MIME. By default this
translation is not performed.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry
with an item code value of 0. For further
information on item lists, see Item Codes and Item

.Lists

MTA_TERM_CR None Data supplied by the input routine, pointed to by
the argument, uses a single byte carriageinput
return terminator to terminate each line of
message data. This option is ignored when

 has the value .input_type MTA_DECODE_DQ

MTA_TERM_CRLF None Data supplied by the input routine, pointed to by
the argument, uses a two byteinput
carriage-return line-feed terminator to terminate
each line of message data. This option is ignored
when has the value input_type

.MTA_DECODE_DQ

MTA_TERM_LF None Data supplied by the input routine, pointed to by
the argument, uses a single byte line-feedinput
terminator to terminate each line of message data.
This option is ignored when has theinput_type
value .MTA_DECODE_DQ

MTA_TERM_LFCR None Data supplied by the input routine, pointed to by
the argument, uses a two byte line-feedinput
carriage-return terminator to terminate each line of
message data. This option is ignored when

 has the value .input_type MTA_DECODE_DQ

108Messaging Server 8.0 MTA Developer's Reference

1.

2.

1.
2.

3.

MTA_TERM_NONE None Data supplied by the input routine, pointed to by
the argument, uses no line terminators.input
Each call to the input routine returns a single,
complete line of message data. This option is
ignored when has the value input_type

.MTA_DECODE_DQ

Return Values

Return Values Description

0 Successful, normal completion.

MTA_BADARGS Two conditions cause this error:

A NULL value was supplied for input, output (when output_type is
non-zero), or a required argument to an item code.
An invalid value supplied for either or .input_type output_type

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files.
For further information issue the following command:imsimta text -rewrite

MTA_NO Can be sent for one of three reasons:

Error parsing the supplied message.
An error reading from the queued message file when isMTA_DECODE_DQ
supplied for .input_type
Unable to initialize the MTA SDK. In this case, issue the command:
imsimta test -rewrite

MTA_NOMEM Insufficient virtual memory.

MTA_NOSUCHITEM An invalid item code was specified.

Example

For examples of using , see mtaDecodeMessage Example 5-1 Decoding MIME Messages Simple
 and .Example Example 5-2

mtaDecodeMessageInfoInt()

Obtain integer-valued information relating to the current message part.

Syntax

int mtaDecodeMessageInfoInt(mta_decode_t *dctx,
 int item);

Arguments

109Messaging Server 8.0 MTA Developer's Reference

Arguments Description

dctx A decode context created by .mtaMessageDecode()

item Item identifier specifying which value to return. See the description that follows for the list
of permitted values for this argument.

Description

This routine is used to obtain integer-valued information about the current message part. (When
 calls either a user-supplied inspection or output routine, it provides a decodemtaDecodeMessage()

context describing the current message part being processed.)

The following table lists the values for the argument, and gives a description of each.item

Values Description

MTA_DECODE_DTYPE Data type associated with this part. The returned values will be
, , , or MTA_DATA_NONE MTA_DATA_HEADER MTA_DATA_TEXT

.MTA_DATA_BINARY

MTA_DECODE_PART_NUMBER Sequential part number for the current part. The first message part is
part , the second part is , the third part is , and so on.0 1 2

Return Values

Upon normal, successful completion the value of the requested item is returned. In the event of an error,
a value of is returned and is set to indicate the error status code. The following table lists-1 mta_errno
the error status codes for this routine, and gives an example of each.

Error Status Codes Description

MTA_BADARGS A NULL value was supplied for the call argument.dctx

MTA_NOSUCHITEM An invalid value was supplied for the call argument.item

Example

part_number = mtaDecodeMessageInfoInt(dctx, MTA_PART_NUMBER);

mtaDecodeMessageInfoParams()

Obtain an option context describing the current message part's content parameters.

Syntax

110Messaging Server 8.0 MTA Developer's Reference

mta_opt_t *mtaDecodeMessageInfoParams(mta_decode_t *dctx,
 int item,
 mta_opt_t **params);

Arguments

Arguments Description

dctx A decode context created by .mtaMessageDecode()

item Item identifier specifying which content parameter list to return. See the description that
follows for the list of permitted values for this argument.

params An optional pointer to receive the address of the option context describing the requested
parameter list.

Description

This routine returns the parameter lists for either the or Content-type: Content-disposition:
header lines. (When calls either a user-supplied inspection or output routine, itmtaDecodeMessage()
provides a decode context describing the current part being processed.)

The following table lists the values for the item argument, and gives a description of each.

Values Description

MTA_DECODE_CDISP_PARAMS Parameters associated with the headerContent-disposition:
line, if any.

MTA_DECODE_CTYPE_PARAMS Parameters associated with the header line, if any.Content-type:

The option context returned upon normal completion does not need to be disposed of with
. It will automatically be disposed of by . The values ofmtaOptionFinish() mtaDecodeMessage()

individual parameters can be queried using , , and mtaOptionString() mtaOptionInt()
. Program code need not worry about whether the underlying header line exists inmtaOptionFloat()

the parts header. If it does not, then calls to obtain individual parameter values will succeed, but return no
value.

Note -
If the header line is not present, returns anContent-type: mtaOptionString()
empty string. This is in contrast to what happens when

 is used. It always returns a value for the mtaDecodeMessageInfoString() CHARSET
parameter of the header line. If the header line is notContent-type: Content-type:
present, it returns the MIME default value . us-ascii

It is important to note that the option contexts returned by this routine are only valid during the lifetime of
the associated decode context. They are not valid after inspection or output of a new message part
begins, nor are they valid after returns.mtaDecodeMessage()

Return Values

111Messaging Server 8.0 MTA Developer's Reference

Upon normal, successful completion, a pointer to an option context is returned. In the event of an error, a
NULL value is returned, and is set to indicate the error status code. The following table listsmta_errno
the error status codes, and gives a description of each:

Error Status
Codes

Description

MTA_BADARGS A NULL value was supplied for the call argument, or an invalid decodedctx
context was supplied for .dctx

MTA_NOSUCHITEM An invalid value was supplied for the call argument.item

Example

char buf[64];

strcpy(buf, "us-ascii");
mtaOptionString(
 mtaDecodeMessageInfoParams(dctx, MTA_DECODE_CTYPE_PARAMS,
 NULL), "charset", 0, buf, NULL, sizeof(buf));
printf("Message part’s character set is %s\n", buf);

mtaDecodeMessageInfoString()

Obtain string-valued information relating to the current message part.

Syntax

const char *mtaDecodeMessageInfoString(mta_decode_t *dctx,
 int item,
 const char **str,
 size_t *len);

Arguments

Arguments Description

dctx A decode context created by .mtaMessageDecode()

item Item identifier specifying which string-value item to return. See the description that follows
for the list of permitted values for this argument.

str An optional pointer to receive the address of the requested string. The string will be NULL
terminated. A value of NULL may be passed for this argument.

len An optional pointer to receive the length of the requested string. This length is measured
in bytes and does not include the NULL terminator at the end of the string. A value of
NULL may be passed for this argument.

112Messaging Server 8.0 MTA Developer's Reference

Description

This routine is used to obtain string-valued information about the current message part. (When
 calls either a user-supplied inspection or output routine, it provides a decodemtaDecodeMessage()

context describing the current message part being processed.)

The following table lists the values for the call argument, and gives a description of each.item

Values Description

MTA_DECODE_CCHARSET The character set specified with the parameter of the part's CHARSET
 header line. If the part lacks a specification,Content-type: CHARSET

then the value will be returned.us-ascii

MTA_DECODE_CDISP Value of the header line, less any optionalContent-disposition:
parameters. If the part lacks a header line, theContent-disposition:
returned value will be a zero length string.

MTA_DECODE_CSUBTYPE The content subtype specified with the part's header lineContent-type:
(for example, for , for). Defaults to plain text/plain gif image/gif

 when the part lacks a header line.plain Content-type:

MTA_DECODE_CTYPE The major content type specified with the part's headerContent-type:
line (for example, for , for). Defaultstext text/plain image image/gif
to when the part lacks a header line.text Content-type:

Return Values

mtaDecodeMessageInfoString() always returns a value for the parameter of the CHARSET
 header line. When the header line is not present, it returns the MIMEContent-type: Content-type:

default value, .us-ascii

Upon normal, successful completion a pointer to the requested string is returned. In addition, if pointers
were provided in the and call arguments, the address of the string and its length are returned.str len

In the event of an error, a NULL value is returned and is set to indicate the error statusmta_errno
code. The following table lists the error status codes, and gives a description of each.

Error Status
Codes

Description

MTA_BADARGS A NULL value was supplied for the call argument, or an invalid decodedctx
context was supplied for .dctx

MTA_NOSUCHITEM An invalid value was supplied for the call argument.item

Example

printf("The message part’s character set is %s\n",
 mtaDecodeMessageInfoString(dctx, MTA_DECODE_CCHARSET,
 NULL, NULL));

113Messaging Server 8.0 MTA Developer's Reference

mtaDecodeMessagePartCopy()

Explicitly copy a message part to the message being written.

Syntax

int mtaDecodeMessagePartCopy(mta_decode_t *dctx,
 int item_code, ...);

Arguments

Arguments Description

dctx A decode context created by .mtaMessageDecode()

item_code Reserved for future use. A value of zero must be supplied for this argument.

Description

When an output routine is used in conjunction with , the inspection routine canmtaDecodeMessage()
explicitly request that the current message part be copied to the output destination. After the inspection
routine calls , it will no longer be called for that message part.mtaDecodeMessagePartCopy()

If the inspection routine is called with a data type of , the message part copy is implicitlyMTA_DATA_NONE
done, even if the inspection routine does not call either or mtaDecodeMessagePartCopy()

. Therefore, the only advantage to making an explicit call to mtaDecodeMessagePartDelete()
 is that once that call is made, the inspection routine will no longer bemtaDecodeMessagePartCopy()

called for that particular message part.

Return Values

Values Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the call argument, or an invalid decode contextdctx
was supplied for .dctx

MTA_NO Invalid call to this routine. Either no output routine is being used, or the call was made
from the output routine itself.Output errors encountered while attempting to write the
output may also result in this error.

Example

This routine is used in .Example 5-2

mtaDecodeMessagePartDelete()

Prevent a message part from being written or replace it with a text part.

Syntax

114Messaging Server 8.0 MTA Developer's Reference

1.
2.

int mtaDecodeMessagePartDelete(mta_decode_t *dctx,
 int item_code, ...);

Arguments

Arguments Description

dctx A decode context created by .mtaMessageDecode()

item_code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value .0

Description

When an output routine is used in conjunction with , the inspection routine maymtaDecodeMessage()
discard the current message part by calling this routine. As an alternative to discarding the part, it may be
replaced with a part containing caller-supplied data such as a warning message. This replacement is
achieved through the use of item codes.

Once has been called, the inspection routine will no longer bemtaDecodeMessagePartDelete()
called for that message part. As such, calling the routine is final and cannot be undone short of cancelling
the entire message decode operation itself (for example, by having the caller-supplied read routine return
an error, or after completes, cancelling the dequeue and enqueue operationsmtaDecodeMessage()
with and).mtaDequeueMessageFinish() mtaEnqueueFinish()

The following table lists the item codes for this routine, any additional item code arguments each item
code requires, and gives a description of each.

Item Codes Additional
Arguments

Description

MTA_DECODE_CCHARSET const char
*charsetsize_t
charset_len

Specify the character set used for the message part
(for example, ,). This itemus-ascii iso-8859-1
code must be followed by two additional call
arguments:

The name of the character set
The length in bytes of that name
If a value of zero is passed for the length, then
the name must be NULL terminated.
|

115Messaging Server 8.0 MTA Developer's Reference

1.
2.

1.
2.

1.
2.

1.
2.

MTA_DECODE_CDISP const char
*disposition
size_t
disposition_len

Specify the content disposition for the message part
(for example, , ; inline attachment

). This disposition information willfilename=a.doc
be placed in a headerContent-disposition:
line. The item code must be followed by two
additional call arguments:

The disposition string
The length in bytes of that string
If a value of zero is passed for the length, then
the disposition string must be NULL
terminated.

MTA_DECODE_CLANG, const char
*language
size_t
language_len

Specify the language used for the message part (for
example, ,). This language information will been fr
placed in a header line. TheContent-language:
item code must be followed by two additional call
arguments:

The language string
The length in bytes of that string.
If a value of zero is passed for the length, then
the string must be NULL terminated.

MTA_DECODE_CSUBTYPE const char
*subtypesize_t
subtype_len

Specify the content subtype for the message part (for
example, or for or plain html text/plain

). This subtype information will betext/html
combined with the and informationtype charset
and placed in a header line. TheContent-type:
item code must be followed by two additional call
arguments:

The language string
The length in bytes of that string
If a value of zero is passed for the length, then
the string must be NULL terminated.

MTA_DECODE_CTYPE const char
*typesize_t
type_len

Specify the major content type for the message part
(for example, for or text text/plain text/html
). This major type information will be combined with
the subtype and charset information and placed in a

 header line. The item code mustContent-type:
be followed by two additional call arguments:

The language string
The length in bytes of that string.
If a value of zero is passed for the length, then
the string must be NULL terminated.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry with
an item code value of 0. For further information on
item lists, see .Item Codes and Item Lists

116Messaging Server 8.0 MTA Developer's Reference

1.
2.

1.

2.

1.

2.

MTA_REASON const char
*textsize_t
text_len

Specifies the content and length of caller-supplied
text or data used to replace the deleted message
part.The item code must be followed by two
additional call arguments:

The language string
The length in bytes of that string.
If a value of zero is passed for the length, then
the string must be NULL terminated.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS Returned for one of two reasons:

A NULL value was supplied for the call argument, an invalid decodedctx
context was supplied for .dctx
A required argument to an item code was NULL.

MTA_NO Returned for one of two reasons:

Invalid call. Either no output routine is being used, or the call was made
from the output routine itself.
Output errors encountered while attempting to write the output.

MTA_NOSUCHITEM An invalid item code was specified.

Example

The following code fragment shows how the routine is used to discard the message part:

mtaDecodeMessagePartDelete(dctx, 0);

The following code fragment shows how to replace the message part with a text warning:

mtaDecodeMessagePartDelete(dctx,
 MTA_REASON, "Warning: virus infected message part was
 discarded.", 0,”
 MTA_DECODE_CLANG, "en", 2,
 MTA_DECODE_CCHARSET, "us-ascii", 8, 0);

The following code fragment shows the output generated by the preceding code example.

117Messaging Server 8.0 MTA Developer's Reference

Content-type: text/plain; charset=us-ascii
Content-language: en

Warning: virus infected message part was discarded.

See also .Example 5-2

mtaDequeueInfo()

Obtain information associated with an ongoing message dequeue.

Syntax

int mtaDequeueInfo(mta_dq_t *dq_ctx,
 int item_code, ...);

Arguments

Arguments Description

dq_ctx A dequeue context created by .mtaDequeueStart()

item_code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value 0.

Description

Information associated with an ongoing message dequeue may be obtained with .mtaDequeueInfo()
The information to obtain is specified through the use of item codes.

Note -
The pointers returned by are only valid during the life of the dequeuemtaDequeueInfo()
context. Once the dequeue has been completed for that particular message, the pointers
are no longer valid.

Item Codes Additional Arguments Description

118Messaging Server 8.0 MTA Developer's Reference

1.

2.

MTA_CHANNEL const char **channel
size_t *channel_len

Obtain the name of the channel for which
messages are being dequeued. The
channel name will be NULL
terminated.This item code must be
followed by two additional call
arguments:

The address of a pointer to
receive the address of the NULL
terminated channel name.
The address of a tosize_t
receive the length of the channel
name.
A NULL value may be passed for
the argument.channel_len

MTA_DELIVERY_FLAGS size_t *dflags Return the envelope delivery flags for
either the entire message or for a
particular recipient. If called before the
first call to

, thenmtaDequeueRecipientNext()
the delivery flags for the entire message
are returned. If called after the first call to

, thenmtaDequeueRecipientNext()
the delivery flags are returned for the
most recently reported envelope
recipient address. The value of the
delivery flags is a logical OR of the

 channel keyworddeliveryflags
values on each channel the message
has been enqueued to as it flows
through the MTA.This item code must be
followed by one additional call argument,
the address of a to receive thesize_t
delivery flag setting.

119Messaging Server 8.0 MTA Developer's Reference

1.

2.

1.

2.

MTA_DOMAIN const char **domain
size_t *domain_len

Retrieve the destination domain name, if
any, the Job Controller has associated
with this dequeue thread. When the
channel is marked with the single_sys
channel keyword, then the Job Controller
tries to give each dequeue thread for that
channel all messages destined for the
same host as determined by the domain
name in the recipient envelope
addresses.This item code must be
followed by two additional call
arguments:

The address of a pointer to
receive the address of the NULL
terminated destination domain
name.
The address of a tosize_t
receive the length of that domain
name.
A NULL value may be passed for
the argument.domain_len

MTA_ENV_ID const char **env_id
size_t *env_id_len

Obtain the envelope ID associated with
this message. If the message was
submitted to the MTA using the SMTP
NOTARY extension (RFC 1891), then
this will be the value of the ENVID
parameter supplied with the SMTP MAIL

 command. In all other cases, it willFROM
be an envelope ID assigned by the
MTA.This item code must be followed by
two additional call arguments:

The address of a pointer to
receive the address of the NULL
terminated envelope ID.
The address of a tosize_t
receive the length of that
envelope id.
A NULL value may be passed for
the argument.env_id_len

120Messaging Server 8.0 MTA Developer's Reference

1.

2.

1.

2.

MTA_ENV_TO const char **env_to
size_t *env_to_len

Return the envelope recipient address
last returned by

. If thatmtaDequeueRecipientNext()
routine has not yet been called for the
dequeue context, then an errorMTA_NO
code will be returned.This item code
must be followed by two additional call
arguments:

The address of a pointer to
receive the address of the NULL
terminated recipient address.
The address of a tosize_t
receive the length of that address.
A NULL value can be passed for
the argument.env_to_len

MTA_ENV_FROM const char **env_from
size_t *env_from_len

Obtain the envelope address forFrom:
the message. It is possible for this to be
an empty string (that is, a string of zero
length). This is not uncommon and is
mandated by Internet standards for
automatically generated notification
addresses. Notifications must never be
sent for messages with an empty
envelope address. The MTA SDKFrom:
adheres to this rule when generating any
requested notification messages.This
item code must be followed by two
additional call arguments:

The address of a pointer to
receive the address of the NULL
terminated envelope From:
address.
The address of a tosize_t
receive the length of that address.
A NULL value can be passed for
the argument.env_from_len

121Messaging Server 8.0 MTA Developer's Reference

1.

2.

1.
2.
3.

MTA_IRCPT_TO const char **ircpt_to
size_t *ircpt_to_len

Return the intermediate form of the last
envelope recipient address returned by

. If thatmtaDequeueRecipientNext()
routine has not yet been called for the
dequeue context, then an errorMTA_NO
code will be returned.This item code
must be followed by two additional call
arguments:

The address of a pointer to
receive the address of the NULL
terminated intermediate recipient
address
The address of a tosize_t
receive the length of that address.
A NULL value can be passed for
the argument.ircpt_to_len

MTA_ITEM_LIST mta_item_list_t*item_list Specify a pointer to an item list array.
The item list array must be terminated
with a final array entry with an item code
value of zero. For further information on
item list usage, see Item Codes and Item

.Lists

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS Received for one of three reasons:

A NULL value was supplied for the call argumentdq_ctx
An invalid dequeue context was supplied for dq_ctx
A required argument to an item code was NULL.

MTA_NO An attempt was made to retrieve recipient information before calling
.mtaDequeueRecipientNext()

MTA_NOSUCHITEM An invalid item code was specified.

MTA_THREAD The MTA SDK detected simultaneous use of the dequeue context by two different
threads.

Example

The following code fragment illustrates how this routine is used to retrieve the delivery flags and
intermediate recipient address for each recipient address.

122Messaging Server 8.0 MTA Developer's Reference

int dflags, istat;
const char *to, *ito;

while (!(istat = mtaDequeueRecipientNext(dq, &to, NULL, 0)))
{
 mtaDequeueInfo(dq, MTA_DELIVERY_FLAGS, &dflags,
 MTA_IRCPT_TO, &ito, NULL, 0);
 printf("Delivery flags: %d\n"
 "Intermediate recipient address: %s\n", dflags, ito);
}
if (istat != MTA_EOF)
 printf("An error occured; %s\n", mtaStrError(istat));

mtaDequeueLineNext()

Read the next line of the message from the queued message file.

Syntax

int mtaDequeueLineNext(mta_dq_t *dq_ctx,
 const char **line,
 size_t *len);

Arguments

Arguments Description

dq_ctx A dequeue context created by .mtaDequeueStart()

line Optional address of a pointer to receive the address of the next line of the message. The
line will not be NULL terminated. A value of NULL may be passed for this argument.

len Optional address of a to receive the length of the returned line. A value of NULLsize_t
may be passed for this argument.

Description

After exhausting a message's list of envelope recipients by repeated calls to
, begin reading the message's header and content with mtaDequeueRecipientNext()

. Each call will return one line of the message, with the first call returning themtaDequeueLineNext()
first line of the message, the second call the second line, and so on. Once the message has been
completely read, the status code will be returned.MTA_EOF

The returned lines of the message will not be NULL terminated. This is because the underlying message
file is often mapped into memory. When that is the case, then the returned pointer is a pointer into that
memory map. Since the message files themselves do not contain NULL terminators and the file is
mapped read-only, it is not possible for the SDK to add a NULL terminator to the end of the line without
copying it first to a writable portion of memory.

123Messaging Server 8.0 MTA Developer's Reference

The returned lines of the message will not have any line terminators such as a line feed or a carriage
return. It is up to the calling routine to supply whatever line terminators might be appropriate (for
example, adding a carriage-return line-feed pair when transmitting the line over SMTP.)

It is possible to call with NULL values for both the and callmtaDequeueLineNext() line len
arguments. But this is of limited use; one example is when writing a channel that deletes all queued
messages after first counting the number of lines in each message for accounting purposes. More typical
of such a channel would be to supply NULL for the argument but pass a non-zero address for the line

 argument. That would then allow the channel to count up the number of bytes in the deletedlen
message.

Return Values

Return
Values

Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the call argument, or an invalid dequeuedq_ctx
context was supplied for .dq_ctx

MTA_EOF Message file has been completely read; no further lines to return.

Example

int istat;
const char *line;
size_t len;

while (!(istat = mtaDequeueLineNext(dq_ctx, &line, &len)))
 printf("%.*s\n", len, line);
if (istat != MTA_EOF)
 printf("An error occured; %s\n", mtaStrError(istat));

mtaDequeueMessageFinish()

Complete a message dequeue or defer a message for later processing.

Syntax

int mtaDequeueMessageFinish(mta_dq_t *dq_ctx,
 int item_code, ...);

Arguments

124Messaging Server 8.0 MTA Developer's Reference

Arguments Description

dq_ctx A dequeue context created by .mtaDequeueStart()

item_code An optional list of item codes. See the description section the follows for a list of item
codes. The list must be terminated with an integer argument with value .0

Description

Before completing processing of a queued message, the disposition of each envelope recipient must be
set either by repeated calls to , or by means of the mtaDequeueRecipientDisposition() MTA_DISP
item code for . For the former, a call should be made for each envelopemtaDequeueMessageFinish()
recipient address. For the latter, the disposition set with applies to all envelope recipients,MTA_DISP
overriding any previous settings made with . It is importantmtaDequeueRecipientDisposition()
that the dispositions be set correctly because they influence whether or not the message is deleted from
the channel's queue by . Incorrectly setting the dispositions can lead tomtaDequeueMessageFinish()
duplicate message delivery, or, worse yet, lost mail.

To complete processing of a queued message, call . Upon beingmtaDequeueMessageFinish()
called, the routine performs one of three possible actions:

If all recipients have a disposition indicating successful processing or a permanent failure, then the
underlying message file is deleted from the channel's queue and any necessary notification
messages are sent. This corresponds to the dispositions: , MTA_DISP_DELIVERED

, , , MTA_DISP_FAILED MTA_DISP_RELAYED MTA_DISP_RELAYED_FOREIGN
, and . MTA_DISP_RETURN MTA_DISP_TIMEDOUT

If all recipients have a disposition indicating a temporary processing problem or if the MTA_ABORT
item code is specified, then the message file is left in the channel's queue and a subsequent
processing attempt is scheduled. The disposition is the only dispositionMTA_DISP_DEFERRED
that indicates a temporary processing problem. Generation of delay notifications is handled by a
special MTA process referred to as the return job. Generation of delay notifications is not handled
by . mtaDequeueMessageFinish()
If only a subset of the recipients have a disposition indicating a temporary processing problem,
then a new message is placed in the channel's queue. This new message is identical to the
current message being processed except that its envelope recipient list contains just those
recipients whose disposition indicates a temporary processing problem. The current message
being processed is then removed from the channel's queue and any necessary notifications are
sent for the recipients that had dispositions indicating successful processing or a permanent
failure.

After is called, the dequeue context passed to it is no longer valid,mtaDequeueMessageFinish()
regardless of the status it returns. When it returns an error status, it also defers the message and all of its
recipients for later processing. This is done regardless of the disposition of the recipients. Doing
otherwise could potentially lead to lost mail.

Internet standards require that notifications concerning a message be directed to the message's
envelope address. In addition, the following two rules apply:From:

Automatically generated notification messages themselves must have an empty envelope From:
address.
Notifications must not be sent for messages with an empty envelope address. From:

These two rules combine to prevent certain broad classes of message loops. The MTA SDK strictly
adheres to these Internet requirements.

Whenever a temporary processing error occurs and the channel can no longer process a queued
message, processing of the message should be deferred until a later time. Processing for all recipients is

125Messaging Server 8.0 MTA Developer's Reference

1.
2.

deferred regardless of any prior disposition settings. Temporary processing errors include such errors as:
insufficient virtual memory, network problems, disk errors, and other unexpected processing errors.

The following table lists the item codes for this routine, the additional arguments they take, and gives a
description of each one.

Item Codes Additional
Arguments

Description

MTA_ABORT None When this item code is specified, processing of the message
is deferred for all recipients of the message. The message is
left in the channel's queue and a later processing attempt is
scheduled.

MTA_DISP size_t
disposition

Use the item code to set the disposition for allMTA_DISP
recipients of the message. This disposition will override any
prior disposition settings.This item code must be followed by
one additional call argument: the disposition value to set. See
the description of mtaDequeueRecipientDisposition()
for a discussion of the disposition settings.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list array must
be terminated with a final array entry with an item code value
of zero. For further information on item list usage, see Item

.Codes and Item Lists

MTA_REASON const char
*reasonsize_t
reason_len

When deferring processing of a message, the reason for the
deferral may be saved as part of the messages delivery
history. This delivery history may be viewed by system
managers with the MTA utility. It may also be reported inqm
delay notifications.This item code must be followed by two
additional call arguments:

The address of the string containing the reason text.
The length in bytes of the reason text. If a value of
zero is passed for the length, then the reason text
must be NULL terminated.

Return Values

126Messaging Server 8.0 MTA Developer's Reference

1.

2.

Return Values Description

0 Normal, successful completion.

MTA_BADARGS Received for one of two reasons:

A NULL value was supplied for the call argument, an invaliddq_ctx
dequeue context was supplied for .dq_ctx
A required argument to an item code was NULL.

MTA_NO Unable to dequeue the message. This error can result from an attempt to enqueue
a new message to a subset of recipients.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_ORDER Call made out of sequence. The call was made either before the recipient list has
been exhausted with , or after the message hadmtaDequeueRecipientNext()
been dequeued or deferred with .mtaDequeueMessageFinish()

MTA_THREAD The MTA SDK detected simultaneous use of the dequeue context by two different
threads.

Example

There are three code examples, each showing variations on deferring a message.

The following code fragment shows how to use this routine to defer processing of a message until a later
time by calling the routine with the item code:MTA_ABORT

mtaDequeueMessageFinish(dq_ctx, MTA_ABORT, 0);

The following code fragment shows how to use this routine to defer processing of a message and setting
the disposition:

mtaDequeueMessageFinish(dq_ctx, MTA_DISP, MTA_DISP_DEFERRED, 0);

The following code fragment shows how to use this routine to defer processing of a message with a text
string explaining the reason for the deferral:

mtaDequeueMessageFinish(dq_ctx, MTA_ABORT, MTA_REASON,
 "Temporary network error", 0, 0);

mtaDequeueRecipientDisposition()

Specify the delivery status (disposition) of an envelope recipient address.

Syntax

127Messaging Server 8.0 MTA Developer's Reference

int mtaDequeueRecipientDisposition(mta_dq_t *dq_ctx,
 const char *env_to,
 size_t env_to_len,
 size_t disposition,
 int item_code, ...);

Arguments

Arguments Description

dq_ctx A dequeue context created by .mtaDequeueStart()

env_to The recipient address to effect the setting for. This must be the recipient's envelope
 address as returned by and not someTo: mtaDequeueRecipientNext()

transformation of that address. If a value of zero is passed for the env_to_len
argument, then this string must be NULL terminated.

env_to_len The length in bytes of the recipient address, . This length does not include anyenv_to
NULL terminator. If a value of zero is passed for this argument, then the recipient
address string must be NULL terminated.

disposition The delivery status disposition to set for this recipient address. See the description
section that follows for further details.

item_code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value .0

Description

Before completing processing of a queued message, the disposition of each envelope recipient must be
set either by repeated calls to , or by means of the mtaDequeueRecipientDisposition() MTA_DISP
item code for . For the former, a call should be made for each envelopemtaDequeueMessageFinish()
recipient address. For the latter, the disposition set with applies to all envelope recipients,MTA_DISP
overriding any previous settings made with . The deliverymtaDequeueRecipientDisposition()
status dispositions, and their descriptions are listed in the table that follows. Pass one of these values for
the disposition argument.

128Messaging Server 8.0 MTA Developer's Reference

Delivery Status Dispositions Description

MTA_DISP_DEFERRED Processing for this recipient has experienced a temporary failure (for
example, the network is temporarily down, the disk is currently full,
the recipient is presently over quota). Schedule a later processing
attempt for this recipient.

MTA_DISP_DELIVERED Final delivery has been effected for this recipient address. Any
required delivery notifications should be generated. Intermediate
processing channels should use rather than MTA_DISP_RELAYED

. Use of by anMTA_DISP_DELIVERED MTA_DISP_DELIVERED
intermediate processing channel might incorrectly generate a
delivery status notification when final delivery has not yet been
effected.

MTA_DISP_FAILED Processing for this recipient has experienced a permanent failure.
The message is and will remain undeliverable for this recipient. No
further delivery attempts are to be made for this recipient. Any
required non-delivery notifications should be generated.

MTA_DISP_RELAYED The message has been successfully processed for this recipient. No
further processing by this channel is needed for this recipient
address. No delivery status notification is generated as final delivery
will be effected by another entity capable of generating any needed
notification messages. This disposition should be used by
intermediate processing channels. It should also be used by
gateways that transfer the message to other mail systems capable of
generating the necessary notification messages.

MTA_DISP_RELAYED_FOREIGN The message has been successfully processed for this recipient. No
further processing by this channel is needed for this recipient
address; however, a relayed delivery status notification should be
generated if delivery notification was requested for this recipient.
This disposition should be used by gateways that transfer the
message to other mail systems incapable of generating the
necessary notification messages.

MTA_DISP_RETURN Generate a postmaster non-delivery notification for this recipient
and, for this recipient, remove the message from the channel's
queue. This disposition is not intended for use by channels. Instead,
it should be used by postmaster utilities that allow the postmaster to
manually return mail messages.

MTA_DISP_TIMEDOUT Generate a timed-out non-delivery notification indicating that the
message has been undeliverable for too long and no further delivery
attempts will be made. This disposition is not intended for use by
channels. Instead, it is meant for use by the MTA return job that
scans the MTA queues, returning old, undeliverable messages to
their originators.

This table lists the item codes for this routine, and the additional required arguments, and gives a
description of each.

129Messaging Server 8.0 MTA Developer's Reference

1.
2.

1.
2.
3.

Item Codes Additional
Arguments

Description

MTA_DISP size_t
disposition

Use the item code to set the disposition for allMTA_DISP
recipients of the message. This disposition will override any
prior disposition settings. This item code must be followed by
one additional call argument: the disposition value to set. See
the description of mtaDequeueRecipientDisposition()
for a discussion of the disposition settings.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list array must
be terminated with a final array entry with an item code value
of zero. For further information on item list usage, see Item

.Codes and Item Lists

MTA_REASON const char
*reasonsize_t
reason_len

The reason for ascribing the disposition to this recipient
address. This reason might then appear in any delivery or
non-delivery status notification for that recipient.This item
code must be followed by two additional call arguments:

The address of the string containing the reason text.
The length in bytes of the reason text. If a value of
zero is passed for the length, then the reason text
must be NULL terminated.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value was returned for one of the following reasons:

A NULL value was supplied for the call argument.dq_ctx
An invalid dequeue context was supplied for .dq_ctx
A required argument to an item code was NULL.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_THREAD The MTA SDK detected simultaneous use of the dequeue context by two different
threads.

Example

This code fragment assumes a condition in which the recipient address is invalid. It returns a disposition
of with an explanation.MTA_DISP_FAILED

mtaDequeueRecipientDisposition(
 dq_ctx, "sue@siroe.com", 0, MTA_DISP_FAILED,
 MTA_REASON, "Invalid recipient address: no such user", 0, 0);

130Messaging Server 8.0 MTA Developer's Reference

mtaDequeueRecipientNext()

Obtain the next envelope recipient address for the queued message file.

Syntax

int mtaDequeueRecipientNext(mta_dq_t *dq_ctx,
 const char **env_to,
 size_t *env_to_len,
 int item code, ...);

Arguments

Argument Description

dq_ctx A dequeue context created by .mtaDequeueStart()

env_to Optional address of a pointer to receive the memory address of the next envelope
recipient address. The recipient address will not be NULL terminated.

env_to_len Optional address of a to receive the length of the returned recipient address. Asize_t
value of NULL may be passed for this argument.

item_code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value .0

Description

The first step in processing a queued message is to retrieve its list of envelope recipient addresses. This
is done by repeatedly calling until a status code of ismtaDequeueRecipientNext() MTA_EOF
returned. Note that each call that returns a recipient address will return a status code of (). The0 MTA_OK
final call, which returns , will not return a recipient address.MTA_EOF

The processing of the list of envelope recipient addresses will, in general, be unique to each channel.
Intermediate processing channels should simply re-enqueue a new message and copy the envelope
recipient list verbatim over to the new message being enqueued, being sure to specify the MTA_ENV_TO
and item codes to . The envelope recipient list must be read in itsMTA_DQ_CONTEXT mtaEnqueueTo()
entirety before attempting to read the message itself with . Failure to do so willmtaDequeueLineNext()
result in an error being returned by .MTA_ORDER mtaDequeueLineNext()

This routine accepts the same item codes as . The code fragments are equivalentmtaDequeueInfo()
also, (compare the examples). Consequently, the routine might appearmtaDequeueInfo()
superfluous. However, it also serves as a means of obtaining, in a single, non-repeated call, information
about the overall message itself, such as the message's envelope ID.

Return Values

131Messaging Server 8.0 MTA Developer's Reference

1.
2.
3.

Return
Values

Description

0 Normal, successful completion.

MTA_BADARGS This value was returned for one of the following reasons:

A NULL value was supplied for the call argument.dq_ctx
An invalid dequeue context was supplied for .dq_ctx
A NULL value was supplied for a required item code argument.

MTA_NOMEM Insufficient virtual memory.

MTA_EOF The recipient list has been completely read; there are no further recipient addresses to
return.

MTA_THREAD Concurrent use of the dequeue context by two different threads has been detected.

Example

This code fragment illustrates an intermediate processing channel using this routine to fetch recipient
addresses.

int dflags, istat;
const char *to, *ito;
while (!(istat = mtaDequeueRecipientNext(dq, &to, NULL,
 MTA_DELIVERY_FLAGS, &dflags,
 MTA_IRCPT_TO, &ito, NULL, 0)))
 printf("Delivery flags: %d\n"
 "Intermediate recipient address: %s\n", dflags, ito);
if (istat != MTA_EOF)
 printf("An error occured; %s\n", mtaStrError(istat));

mtaDequeueRewind()

Reset the read point to the start of the message.

Syntax

int mtaDequeueLineNext(mta_dq_t *dq_ctx);

Arguments

Arguments Description

dq_ctx A dequeue context created by .mtaDequeueStart()

132Messaging Server 8.0 MTA Developer's Reference

Description

Repositions the read point back to the start of the message.

After obtaining a message's recipient list by repeated calls to , the readmtaDequeueRecipientNext()
point into the underlying message file is positioned at the start of the actual message. Specifically, at the
start of the message's outermost header. Calling advances this read point,mtaDequeueLineNext()
with each call moving it towards the end of the message. To reposition the read point back to the start of
the message (that is, to the start of the message's outermost header), call . UsemtaDequeueRewind()
this call if a program needs to make a second pass through a message. For example, a program might
scan a message's content before actually processing it.

Return Values

Return
Values

Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the call argument, or an invalid dequeuedq_ctx
context was supplied for .dq_ctx

MTA_ORDER Call made out of sequence. The call was made either before the recipient list has
been exhausted with , or after the message hadmtaDequeueRecipientNext()
been dequeued or deferred with .mtaDequeueMessageFinish()

MTA_THREAD The MTA SDK detected simultaneous use of the dequeue context by two different
threads.

Example

None

mtaDequeueStart()

Initiate message dequeue processing.

Syntax

int mtaDequeueStart(void *ctx1,
 mta_dq_process_message_t *process_message,
 mta_dq_process_done_t *process_done,
 int item_code, ...);

Arguments

133Messaging Server 8.0 MTA Developer's Reference

Arguments Description

ctx1 Optional pointer to a caller-supplied context or other data type. This pointer will
be passed as the argument to the caller-supplied routines ctx1

 and . A value of NULL may be passed forprocess_message process_done
this argument.

process_message The address of a caller-supplied routine to process each message.

process_done Optional address of a caller-supplied clean up routine. A NULL value may be
passed for this argument.

item_code An optional list of item codes. See the description section that follow for a list of
item codes. The list must be terminated with an integer argument with value .0

Description

The routine initiates processing of messages queued to a specific channel. BymtaDequeueStart()
default, the channel serviced will be determined from the environment variable.PMDF_CHANNEL
However, a channel name can be explicitly specified with the item code.MTA_CHANNEL

All of the item codes, their additional arguments, and a description of each are included in the table that
follows.

Item Codes Additional
Arguments

Description

MTA_CHANNEL const char
*channelsize_t
channel_len

Explicitly specify the name of the channel name
to perform dequeue processing for. This item
code must be followed by two additional call
arguments: the name of the channel and the
length in bytes of that channel name. If a value
of zero is passed for the length, then the
channel name must be NULL terminated. When
this item code is not specified, the name of the
channel to process queued messages for is
taken from the environmentPMDF_CHANNEL
variable.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item
list array must be terminated with a final array
entry with an item code value of zero. For
further information on item list usage, see Item

.Codes and Item Lists

MTA_JBC_MAX_ATTEMPTS size_t
attempts

Specify the maximum number of contiguous
attempts that will be made to sleep and then
re-query the Job Controller for work after being
told by the Job Controller that there are no
more messages to process. The default value
for this setting is attempts. If an attempt5
succeeds in providing additional work, the count
of attempts is reset to zero. (The duration of
each sleep may be specified with the

 item code.)ThisMTA_JBC_RETRY_INTERVAL
item code must be followed by an additional
argument: the maximum number of contiguous
attempts to make.

134Messaging Server 8.0 MTA Developer's Reference

MTA_JBC_RETRY_INTERVAL size_t seconds Set the number of seconds
 sleeps before againmtaDequeueMessage()

querying the Job Controller for additional work.
When not specified, a value of seconds is10
used. This item code must be followed by one
additional argument: the number of seconds to
sleep for.

MTA_THREAD_MAX_THREADS size_t threads Specify the maximum number of processing
threads to run concurrently. If not specified,
then a limit of threads is assumed.This item20
code must be followed by one additional
argument: the maximum number of concurrent
threads to permit.

MTA_THREAD_STACK_SIZE size_t bytes By default, the processing threads will have a
stack whose size is sufficient for MTA SDK
operations. This is the size returned by the

 routine. To request a largermtaStackSize()
size, use this item code to specify the desired
size. Note that specification of a smaller size is
ignored: will nevermtaDequeueMessage()
use a stack size smaller than that returned by

.This item code must bemtaStackSize()
followed by one additional argument: the
minimum size in bytes for each thread's stack.

MTA_THREAD_MAX_MESSAGES size_t
messages

The number of messages to allocate per
processing thread. The channel program will
aim to run N processing threads where N is
computed as follows: N = (count of pending
queued messages) /

 For example,MTA_THREAD_MAX_MESSAGES.
if there are queued messages and 100

 has its defaultMTA_THREAD_MAX_MESSAGES
value of messages, then processing20 5
threads are started.This value does not control
the total number of messages presented to a
single processing thread.This item code must
be followed by one additional argument: the
number of messages for each processing
thread.

MTA_THREAD_WAIT_TIMEOUT size_t seconds Once determines thatmtaDequeueMessage()
there are no more messages to process, it
waits for all processing threads to complete
their work and exit. By default,

 will wait no longermtaDequeueMessage()
than 1800 seconds (30 minutes).This item code
must be followed by one additional argument:
the maximum number of seconds to wait.

Return Values

135Messaging Server 8.0 MTA Developer's Reference

1.
2.
3.
4.

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of following reasons:

A NULL value was supplied for the call argument.dq_ctx
An invalid dequeue context was supplied for .dq_ctx
A NULL value was specified for the routine.process_message
A NULL value was supplied for a required item code argument.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration
files.For further information, issue the following command:imsimta test
-rewrite

MTA_NETWORK Error communicating with the Job Controller.

MTA_NO Unable to initialize the MTA SDK.For further information, issue the following
command:imsimta test -rewrite

MTA_NOMEM Insufficient virtual memory.

MTA_NOSUCHCHAN Specified channel is not defined in the MTA configuration file. If no channel was
explicitly specified, then the channel name specified with the PMDF_CHANNEL
environment variable is not defined in the MTA configuration file. This error may
also be returned when the Job Controller's configuration file lacks a CHANNEL
section matching the specified channel.

MTA_NOSUCHITEM An invalid item code was specified.

Example

For an example of , see .mtaDequeueStart() Example 5-2

Other Considerations for mtaDequeueStart()

This section contains supplementary information concerning . It covers themtaDequeueStart()
following topics:

Multiple Calls to mtaDequeueStart()
Message Processing
Message Processing Procedure

 Routineprocess_message()
 Routineprocess_done()

Thread Creation Loop

Multiple Calls to mtaDequeueStart()

A channel program can call multiple times: either sequentially or in parallel. In themtaDequeueStart()
latter case, the program would need to create threads so as to effect multiple, simultaneous calls to

. However, just because this can be done does not mean that it is appropriate tomtaDequeueStart()
do so. In the former case of multiple sequential calls, there's no need to be making repeated calls. When

 returns, the channel no longer needs immediate processing and has been in thatmtaDequeueStart()
state for

MTA_JBC_ATTEMPTS_MAX * MTA_JBC_RETRY_INTERVAL

136Messaging Server 8.0 MTA Developer's Reference

1.

2.

3.

4.

5.

6.

7.
8.

9.

10.

seconds. Instead, the channel program should exit thereby freeing up system resources. The Job
Controller will start a new channel program running when there are more messages to process. In the
latter case of multiple parallel calls, there is again no need to do so. If there is an advantage to running
more threads than a single call generates, then the channel's channel keyword settingthreaddepth
should be increased so that a single call does generate more threads. The only exception to either of
these cases might be if the multiple calls are each for a different channel. Even then, however, the
advantage of so doing is dubious as the same effect can be achieved through the use of multiple
processes, one for each channel.

Message Processing

When is called, a communication path with the MTA Job Controller ismtaDequeueStart()
established. The Job Controller is then asked if there are messages to be processed for the channel.
Typically there will be messages to process since it is the Job Controller that normally starts channel
programs, and it does so when there are queued messages in need of processing. Based upon
information obtained from the Job Controller, will then begin to createmtaDequeueStart()
non-joinable processing threads. Each processing thread immediately begins processing the queued
messages.

Message Processing Procedure

To process queued messages, a processing thread takes the following steps:

The thread sets to have the value NULL: ctx2
 ctx2 = NULL;

For information on the arguments, see process_message Routineprocess_message()
The thread communicates with the Job Controller to obtain a message file to process. If there are
no more message files to process, then go to . Message Processing Procedure
For the message file, the thread creates a dequeue context that maintains the dequeue
processing state for that message file.
The thread then invokes the caller-supplied routine, passing to it the dequeueprocess_message
context created in , for example: Message Processing Procedure

 istat = process_message(&ctx2, ctx1, &dq_ctx, env_from, env_from_len);
For a description of the routine, see process_message Routineprocess_message()
The routine then attempts to process the message, ultimately removing itprocess_message
from the channel's queues or leaving the message file for a later processing attempt.
If was not called before the routinemtaDequeueMessageFinish() process_message
returned, then the queued message is deferred. That is, its underlying message file is left in the
channel's queue and a later processing attempt is scheduled.
The dequeue context is destroyed.
If the routine did not return the status code, then repeat thisprocess_message MTA_ABORT
cycle starting at . Message Processing Procedure
The caller-supplied routine is called, for example: process_done

 process_done(&ctx2, ctx1);
For a description of the routine, see process_done Routineprocess_done()
The thread exits.

process_message() Routine

This caller-supplied routine is invoked by the processing threads to do the actual processing of the
messages.

The following code fragment shows the required syntax for a routine.process_message

137Messaging Server 8.0 MTA Developer's Reference

int process_message(void **ctx2,
 void *ctx1,
 mta_dq_t *dq_ctx,
 const char *env_from,
 int env_from_len);

The following table lists the required arguments for a routine, and gives aprocess_message
description of each.

Arguments Description

ctx2 A writable pointer that the routine can use to store a pointer to aprocess_message
per-thread context. See the description that follows for further details.

ctx1 The caller-supplied private context passed as to .ctx1 mtaDequeueStart()

dq_ctx A dequeue context created by and representing the messagemtaDequeueStart()
to be processed by this invocation of the routine.process_message

env_from A pointer to the envelope address for the message to be processed. SinceFrom:
Internet messages are allowed to have zero length envelope addresses, thisFrom:
address can have zero length. The address will be NULL terminated.

env_from_len The length in bytes of the envelope string. This length does not include anyFrom:
NULL terminator.

When a processing thread first begins running, it sets the value referenced by to NULL. Thisctx2
assignment is made only once per thread and is done before the first call to the process_message
routine. Consequently, on the first call to the routine, the following test is true:process_message

*ctx2 == NULL

That test will remain true until such time that the routine itself changes the value byprocess_message
making an assignment to . As demonstrated in the following code fragment, if the *ctx2

 routine needs to maintain state across calls to itself by the same processing thread,process_message
it can allocate memory for a structure to store that state in, and then save a pointer to that memory with

.ctx2

138Messaging Server 8.0 MTA Developer's Reference

int process_message(void **ctx2, void *ctx1,
 const char *env_from, size_t env_from_len)
{
 struct our_state_t *state;

 state = (our_state_t *)(*ctx2);
 if (!state)
 {
 /*
 * First call for this thread.
 * Allocate a structure in which to store the state
 * information
 */
 state = (our_state_t *)calloc(1, sizeof(our_state_t));
 if (!state) return(MTA_ABORT);
 *ctx2 = (void *)state;

 /*
 * Set any appropriate initial values for the state
 * structure
 */
 ...
 }
...

For a sample routine, see process_message Example 5-2

process_done() Routine

To assist in cleaning up state information for a thread, callers can provide a routine pointed to by the
 argument.process_done

The following code fragment shows the required syntax for a routine.process_done()

void process_done(void *ctx2,
 void *ctx1);

The following table lists the arguments required for a routine, and gives a description ofprocess_done
each.

Required
Arguments

Description

ctx2 The value of the last pointer stored by in the callprocess_message ctx2
argument for this thread.

ctx1 The caller-supplied private context passed as to .ctx1 mtaDequeueStart()

The following code fragment demonstrates the type of actions taken by a routine.process_done

139Messaging Server 8.0 MTA Developer's Reference

void process_done(ctx2, ctx1)
{
 struct our_state_t *state = (our_state_t *)ctx2;
 if (!state)
 return;
 /*
 * Take steps to undo the state
 * (for example, close any sockets or files)
 */
 ...

 /*
 * Free the memory allocated by process_message()
 * to store the state
 */
 free(state)
}

Thread Creation Loop

While the processing threads are running, the thread that invoked executes amtaDequeueStart()
loop containing a brief pause (that is, a sleep request). Each time the threadmtaDequeueStart()
awakens, it communicates with the Job Controller to see if it should create more processing threads. In
addition, the Job Controller itself has logic to determine if more threads are needed in the currently
running channel program, or if it should create additional processes to run the same channel program.

To demonstrate, the following code fragment shows pseudo code of the loop.mtaDequeueStart()

140Messaging Server 8.0 MTA Developer's Reference

threads_running = 0
threads_max = MTA_THREAD_MAX_THREADS
attemtps = MTA_JBC_MAX_ATTEMPTS

LOOP:
 while (threads_running < threads_max)
 {

 Go to DONE if a shut down has been requested

 pending_messages = Ask the Job Controller how many
 messsages there are to be processed

 // If there are no pending messages
 // then consider what to do next
 if (pending_messages = 0)
 {
 // Continue to wait?
 if (attempts <= 0)
 go to DONE

 // Decrement attempts and wait
 attempts = attempts - 1;
 go to SLEEP
 }
 // Reset the attempts counter
 attempts = MTA_JBC_MAX_ATTEMPTS

 threads_needed = Ask the Job Controller how many
 processing threads are needed

 // Cannot run more then threads_max threads per process
 if (threads_needed \> threads_max)
 threads_needed = threads_max

 // Create additional threads if needed
 if (threads_needed \> threads_running)
 {
 Create (threads_needed - threads_running) more threads
 threads_running = threads_needed
 }
 }

SLEEP:
 Sleep for MTA_JBC_RETRY_INTERVAL seconds
 -- a shut down request will cancel the sleep
 go to LOOP

DONE:
 Wait up to MTA_THREAD_WAIT_TIMEOUT seconds
 for all processing threads to exit

 Return to the caller of mtaDequeueStart()

141Messaging Server 8.0 MTA Developer's Reference

mtaDequeueThreadId()

Return the thread ID associated with the specified dequeue context.

Syntax

int mtaDequeueThreadId(mta_dq_t *dq_ctx);

Arguments

Arguments Description

dq_ctx A dequeue context created by .mtaDequeueStart()

Description

Each processing thread is assigned a unique integer identifier referred to as a thread ID. This thread ID
is intended as a diagnostic aid when debugging channel programs. Showing it with diagnostic messages
helps to differentiate the work of one thread from another in the channel's debug log file.

The thread ID can also be obtained with .mtaDequeueInfo()

Return Values

In the event of an error, the value is returned and is set to indicate the error status code.-1 mta_errno

Error Status
Code

Description

MTA_BADARGS A NULL value was supplied for the call argument, or an invalid dequeuedq_ctx
context was supplied for .dq_ctx

Example

mtaLog("%08d: process_message() called with dq_ctx=%p",
 mtaDequeueThreadId(dq_ctx), dq_ctx);

mtaDone()

Release resources used by the MTA SDK.

Syntax

142Messaging Server 8.0 MTA Developer's Reference

void mtaDone(void);

Arguments

None

Description

Once use of the MTA SDK has been finished, should be called to release any resourcesmtaDone()
used by the MTA SDK. The routine should be called while the calling process is single threaded.

Return Values

None

Example

mtaDone();

mtaEnqueueCopyMessage()

Copy a queued message to a new message being enqueued.

Syntax

int mtaEnqueueCopyMessage(mta_nq_t *nq_ctx,
 mta_dq_t *dq_ctx,
 int rewind);

Arguments

Arguments Description

nq_ctx Message submission to copy the message data to. must be an enqueue contextnq_ctx
created by .mtaEnqueueStart()

dq_ctx Queued message to copy the message data from. Must be a a dequeue context created
by .mtaDequeueStart()

rewind Supply a value of to move the read point in the queued message file to the start of the1
message before commencing the copy operation. Supply a value of zero to leave the
message read point unchanged before copying.

Description

143Messaging Server 8.0 MTA Developer's Reference

1.
2.

Intermediate processing channels often need to copy verbatim a message from a channel queue to a
new message being enqueued. That is, intermediate processing channels often re-enqueue an existing,
queued message. This verbatim copy can be accomplished with . UsingmtaEnqueueCopyMessage()
this routine is significantly faster than using and mtaDequeueLineNext() mtaEnqueueWriteLine()
in a read and write loop.

When is called, the copy begins at the current read point of the queuedmtaEnqueueCopyMessage()
message file associated with the supplied dequeue context, . The message file from that point todq_ctx
its end is copied to the new message being enqueued. To start at the beginning of the queued message
(that is, to start at the beginning of its outermost header), specify a value of for the call1 rewind
argument. So doing is equivalent to first calling before mtaDequeueRewind()

.mtaEnqueueCopyMessage()

Return Values

Return
Values

Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:

A NULL value was supplied for either the or call arguments.nq_ctx dq_ctx
Invalid contexts were passed for either or both of those call arguments.

MTA_FCREATE Unable to create a temporary file to hold data for the new message being enqueued.

MTA_FIO An I/O error occurred while attempting to write data to a message file.

MTA_ORDER Call made out of order. Either no recipients have yet been specified for the new
message with , or the recipient list of the queued message has notmtaEnqueueTo()
been completely read with .mtaDequeueRecipientNext()

MTA_THREAD Simultaneous use of either the enqueue or dequeue context by two different threads
was detected.

Example

The following code fragment specifies starting at the beginning of the queued message by using the
 call argument.rewind

mtaEnqueueMessageCopy(nq_ctx, dq_ctx, 1);

The code fragment that follows illustrates a second, less efficient way of copying the message.

mtaDequeueRewind(dq_ctx)
while (!mtaDequeueLineNext(dq_ctx, &line, &len))
 mtaEnqueueWriteLine(nq_ctx, line, len, NULL);

mtaEnqueueError()

144Messaging Server 8.0 MTA Developer's Reference

1.
2.

Retrieve an extended error message.

Syntax

const char *mtaEnqueueError(mta_nq_t *nq_ctx, const char **message,
 size_t *message_len,
 int item_code);

Arguments

Arguments Description

nq_ctx An enqueue context created by .mtaEnqueueStart()

message Optional address of a pointer to receive the address of the NULL terminated error
message text. A NULL value may be supplied for this argument.

message_len Optional address of a to receive the length in bytes of the error message text.size_t
A NULL value may be supplied for this argument.

item_code Reserved for future use. A value of zero must be supplied for this call argument.

Description

When returns an error message, there is often extended error informationmtaEnqueueTo() MTA_NO
available, which takes the form of a text string suitable for writing as diagnostic output. To retrieve this
information, issue immediately after receiving an error return from mtaEnqueueError() MTA_NO

.mtaEnqueueTo()

Return Values

In the event of an error from , a value will be returned and ismtaEnqueueError() NULL mta_errno
set to indicate the error status code. The following table lists the error status codes, and gives a
description of them.

Error Status Codes Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:

A NULL value was supplied for the call argument.nq_ctx
An invalid context was passed for .nq_ctx

MTA_THREAD Simultaneous use of the enqueue context by two different threads was detected.

Example

None

145Messaging Server 8.0 MTA Developer's Reference

mtaEnqueueFinish()

Complete or cancel a message enqueue operation.

Syntax

int mtaEnqueueFinish(mta_nq_t *nq_ctx,
 int item_code, ...);

Arguments

Arguments Description

nq_ctx An enqueue context created by .mtaEnqueueStart()

item_code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value .0

Description

Call to complete an enqueue operation, submitting a new message to the MTAmtaEnqueueFinish()
for transport and delivery. Alternatively, call with the item code tomtaEnqueueFinish() MTA_ABORT
cancel an enqueue operation without submitting a new message. In either case, when

 is called the enqueue context passed to it, , is disposed of and may nomtaEnqueueFinish() nq_ctx
longer be used regardless of whether a success or error status code is returned.

When completing an enqueue operation, the MTA does much of the actual enqueue work, such as,
performing any configured header rewriting, content transformation, and actually writing the message
copy or copies to the MTA channel queues. Consequently, errors returned by this routine are typically
caused by either site imposed limits (that is, the message size exceeds a site configured limit), or file
system related problems (for example, the disk is full, write errors to the disk).

When returns an error message, there is often extended errormtaEnqueueFinish() MTA_NO
information available. This information may be retrieved with the item code. This extendedMTA_REASON
error information takes the form of a text string suitable for writing as diagnostic output.

Before calling to complete an enqueue operation, be sure that the envelopemtaEnqueueFinish()
recipient list has been specified with and any header lines and content have beenmtaEnqueueTo()
written with or .mtaEnqueueWrite() mtaEnqueueWriteLine()

When cancelling an enqueue operation, no message is submitted to the MTA, and any temporary files
that may have been created are disposed of. To cancel an enqueue operation, specify the MTA_ABORT
item code.

The following table lists the item codes for this routine, their additional arguments, and gives a
description of each.

146Messaging Server 8.0 MTA Developer's Reference

1.
2.
3.

Item Codes Additional
Arguments

Description

MTA_ABORT None Cancel the current enqueue operation. The message
represented by the enqueue context will not be enqueued to
the MTA.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list array must
be terminated with a final array entry with an item code value
of zero. For further information on item list usage, see Item

.Codes and Item Lists

MTA_REASON const char
**errmsgsize_t
*errmsg_len

Provide the address of a string pointer to receive any
extended error message information. In the event of an error
associated with submitting the message to the MTA, then the
MTA may return additional information. By providing this
pointer, that additional information may be obtained for
diagnostic purposes.This item code should be followed by
two additional item codes:

The address of a pointer to receive the address of the
NULL terminated error text.
The address of a to receive the length of thatsize_t
error text.
A value of NULL may be passed for the errmsg_len
argument.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:

A NULL value was supplied for the call argument.nq_ctx
An invalid enqueue context was supplied for .nq_ctx
A required argument to an item code was NULL.

MTA_FCREATE Insufficient disk space or other I/O error encountered while attempting to create or
close a message file or a temporary file.

MTA_FIO An I/O error occurred while writing message files to the MTA channel queues or
while reading from a temporary file.

MTA_NO Error terminating the message temporary file, there appears to be insufficient disk
space to write the message copies, or there is a problem with a configured content
scanner (for example, a virus or spam filter).

MTA_NOSUCHITEM An invalid item code was supplied.

MTA_ORDER The call was made out of order. Either no envelope recipient addresses have
been specified or no message content has been provided.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was detected.

147Messaging Server 8.0 MTA Developer's Reference

Note -
In case of an error, the item code can be used to receive extended errorMTA_REASON
message information

As shown in the preceding table, in the case of an error, the item code can be used toMTA_REASON
receive extended error message information

Example

See .A Simple Example of Enqueuing a Message

mtaEnqueueInfo()

Obtain information associated with an ongoing message enqueue.

Syntax

int mtaEnqueueInfo(mta_nq_t *nq_ctx,
 int item_code, ...);

 int mtaEnqueueInfo(mta_nq_t *nq_ctx,

Arguments

Arguments Description

nq_ctx An enqueue context created by .mtaEnqueueStart()

item_code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value .0

Description

Information associated with an ongoing message enqueue operation may be obtained with
. The information to obtain is specified through the use of item codes. Arguments tomtaEnqueueInfo()

the item codes provide memory addresses through which to return the requested data.

String pointers returned by are only valid during the life of the enqueue context.mtaEnqueueInfo()
Once the enqueue has been completed, the associated pointers are no longer valid.

The following table lists the item codes for this routine, their additional arguments, and gives a
description of each.

Item Codes Additional Arguments Description

148Messaging Server 8.0 MTA Developer's Reference

1.

2.

MTA_ALIAS_EXPAND size_t *value Return the setting of the alias expansion
flag. Normally, this flag has a nonzero
value that indicates that alias expansion
should be done for all envelope recipient
addresses. When the flag has a value of
zero, alias expansion will not be
performed. The value of the flag is set with
the routine.ThismtaEnqueueStart()
item code must be followed by one
additional argument: the address of

 to store the setting's value in.size_t

MTA_ADR_SORT size_t *value Obtain the setting of the address sorting
flag. Normally, this flag has a non-zero
value that indicates that the list of
envelope recipients written to each
message copy in the MTA channel
queues are to be sorted in ascending
order based upon US-ASCII ordinal
values. When this flag has a value of zero,
the list of envelope recipient addresses
will not be sorted. This item code must be
followed by one additional argument: the
address of to store the setting'ssize_t
value in.

MTA_CHANNEL char **channelsize_t
*channel_len

Obtain the name of the channel that this
message is being enqueued by.This item
code must be followed by two additional
call arguments:

The address of a pointer to receive
the address of the NULL terminated
channel name.
The address of a tosize_t
receive the length of the channel
name. A NULL value may be
passed for the channel_len
argument.

MTA_DELIVERY_FLAGS size_t *dflags Return the envelope delivery flags set for
the entire message by

.This item codemtaEnqueueStart()
must be followed by one additional call
argument: the address of a tosize_t
receive the delivery flag setting.

149Messaging Server 8.0 MTA Developer's Reference

1.

2.

1.

2.

MTA_ENV_FROM const char **env_from
size_t *env_from_len

Retrieve the envelope addressFrom:
specified when the enqueue was started
with .This itemmtaEnqueueStart()
code must be followed by two additional
call arguments:

The address of a pointer to receive
the address of the NULL terminated
envelope address.From:
The address of a tosize_t
receive the length of that address.
A NULL value may be passed for
the argument.env_from_len

MTA_ENV_ID const char **env_id
size_t *env_id_len

Obtain the envelope ID specified with
.This item codemtaEnqueueStart()

must be followed by two additional call
arguments:

The address of a pointer to receive
the address of the NULL terminated
envelope ID.
The address of a tosize_t
receive the length of that envelope
ID. A NULL value may be passed
for the argument.env_id_len

MTA_EXPAND_LIMIT size_t *value Retrieve the expand limit setting specified
with . The returnedmtaEnqueueStart()
value will be a positive integer value.
When no expand limit has been set, the
returned value will be a large integer value
(for example, 2,147,483,647 on 32-bit
processors).This item code must be
followed by one additional argument: the
address of a to store the setting'ssize_t
value in.

MTA_FRAGMENT_BLOCKS size_t *value Obtain the value, if any, specified for the
 setting whenMTA_FRAGMENT_BLOCKS

the message enqueue was initiated. The
returned value will be a positive integer
value. When no value was set, the
returned value will be a large integer value
(for example, 2,147,483,647 on 32-bit
processors).This item code must be
followed by one additional argument: the
address of a to store the setting'ssize_t
value in.

150Messaging Server 8.0 MTA Developer's Reference

1.
2.
3.

MTA_FRAGMENT_LINES size_t *value Obtain the value specified for the
 setting when theMTA_FRAGMENT_LINES

message enqueue was initiated. The
returned value will be a positive integer
value. When no value was set, the
returned value will be a large integer value
(for example, 2,147,483,647 on 32-bit
processors).This item code must be
followed by one additional argument: the
address of a to store the setting'ssize_t
value in.

MTA_NOTIFY_FLAGS size_t *nflags Return the delivery status notification flags
set for the entire message when the
enqueue was started. The returned value
is a bit map constructed using the

 constants defined in MTA_NOTIFY_
. If no setting was effected with mtasdk.h

, then the returnedmtaEnqueueStart()
value will be the MTA default of:

 {{MTA_NOTIFY_DELAY

MTA_NOTIFY_FAILURE MTA_NOTIFY_CONTENT_FULL This item code must be followed by one
additional call argument: the address of a

 to receive the setting of thesize_t
delivery status notification flags.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:

A NULL value was supplied for the call argument.nq_ctx
An invalid enqueue context was supplied for .nq_ctx
A required argument to an item code was NULL.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was detected.

Example

The following code fragment obtains the name of the channel used as the source channel for the
enqueue.

151Messaging Server 8.0 MTA Developer's Reference

mta_nq_t *nq;
const char *channel;

mtaEnqueueStart(&nq, "sue@siroe.com", 0, 0);
mtaEnqueueInfo(nq, MTA_CHANNEL, &channel, NULL, 0);
printf("Source channel = %s\n", channel);

mtaEnqueueStart()

Initiate a message submission.

Syntax

int mtaEnqueueStart(mta_nq_t **nq,
 const char *env_from,
 size_t env_from_len,
 int item_code, ...);

Arguments

Arguments Description

nq_ctx On a successful return, a pointer to an enqueue context created by
. This enqueue context represents the message enqueuemtaEnqueueStart()

operation initiated by the call.

env_from Optional pointer to the address to use as the envelope address for theFrom:
message being submitted. The address must be compliant with RFC 2822. When
used as an envelope address, the MTA will reduce it to an RFC 2821 compliant
transport address. The string must be NULL terminated if a value of zero is passed
for . The length of this string, not including any NULL terminator,env_from_len
may not exceed bytes.A value of NULL may be supplied for thisALFA_SIZE
argument. When that is done, the argument is ignored and anenv_from_len
empty envelope address is used for the message submission.From:

env_from_len The length in bytes, not including any NULL terminator, of the envelope From:
address supplied with . If a value of zero is passed for this argument, thenenv_from
the envelope address string must be NULL terminated.From:

item_code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value .0

Description

To submit a message to the MTA for delivery, an enqueue operation must be initiated. This is achieved
by calling . When the call is successful, an enqueue context representing themtaEnqueueStart()
enqueue operation will be created and a pointer to the context returned via the call argument.nq_ctx
This context must then be used to specify the message's envelope recipient list and content, both header
and body. Once the recipient list and content have been specified, the submission may be completed

152Messaging Server 8.0 MTA Developer's Reference

with . That same routine is also used to cancel an enqueue operation. FormtaEnqueueFinish()
further information on message enqueue processing, see .Basic Steps to Enqueue Messages

Enqueue contexts are disposed of with , either as part of completing ormtaEnqueueFinish()
cancelling a message enqueue operation.

When initiating an enqueue operation, the envelope address for the message should be specifiedFrom:
with the and call arguments, or through use of a dequeue context with the env_from env_from_len

 item code. In either case, it is important to keep in mind the usage of the envelope MTA_DQ_CONTEXT
 address. MTAs transporting the message use it as a return path, that is, the address to whichFrom:

notifications about the message should be returned. Specifically, it is the address to which the message
will be returned in the form of a non-delivery notification (NDN) should the message prove undeliverable.
It is also the address to which any delivery status notifications (DSNs) will be sent. As such, the envelope

 address specified should be an address suitable for receiving such notifications.From:

Note -
Automatically generated messages such as NDNs and DSNs are required to have an
empty envelope address, that is, a zero length address. These rules are mandatedFrom:
by Internet standards so as to prevent broad classes of looping messages. It is imperative
that they be observed; failure to do so may result in exponentially growing mail loops that
affect not only your own mail system but possibly mail systems of other sites with which
you exchange mail.

When explicitly specifying the envelope address via the and callFrom: env_from env_from_len
arguments, note the following points:

The length of the address may not exceed 256 bytes. This is the length limit imposed by RFCs
2821 and 2822. It is also the size denoted by the constant. ALFA_SIZE
Older MTAs may not support envelope addresses of lengths exceeding 129 bytes. This is the
length limit imposed by RFC 821.
To specify an empty envelope address, supply an empty string for and a lengthFrom: env_from
of zero for , or supply a value of NULL for and any value for env_from_len env_from

. env_from_len

When using a dequeue context to supply the envelope address, simply supply a value of NULLFrom:
and zero for, respectively, the and call arguments. Be sure to also supply theenv_from env_from_len
dequeue context with the item code. For example:MTA_DQ_CONTEXT

ires = mtaEnqueueStart(&nq, NULL, 0, MTA_DQ_CONTEXT, dq, 0);

If the submitted message lacks a header line, then the address supplied as the envelope From: From:
address will also be used to generate a header line. This is the reason why From:

 allows an RFC 2822 compliant address to be supplied for the envelope mtaEnqueueStart() From:
address. When placing the supplied address into the envelope, the MTA reduces it to an RFC 2821
compliant address (for example, removes any RFC 2822 phrases or comment fields).

When submitting a message, the MTA requires a source channel to associate with the enqueue
operation. By default, the name of the source channel will be derived from the PMDF_CHANNEL
environment variable. However, this may be overridden one of two ways: by supplying a dequeue context
with the item code, or by explicitly specifying the channel name with the MTA_DQ_CONTEXT

 item code. Use of a dequeue context implicitly specifies the source channel name to beMTA_CHANNEL
the name of the channel associated with the dequeue context.

153Messaging Server 8.0 MTA Developer's Reference

Note -
An explicitly specified channel name will take precedence over a channel name specified
with a dequeue context.

As part of initiating a message submission, item codes may be used to specify additional envelope
information for the message as well as select non-default values for MTA parameters that influence
message enqueue processing.

The following table lists the items codes for this routine, their additional arguments, and gives a
description of each.

Item Codes Additional Arguments Description

MTA_ALIAS_EXPAND None When this item code is specified, each
envelope recipient address is allowed
to undergo alias expansion (for
example, mailing list expansion). This
is the default behavior.

MTA_ALIAS_NOEXPAND None Use of this item code inhibits alias
expansion for the envelope recipient
addresses. The default behavior is to
permit alias expansion.

MTA_ADR_NOSORT None Inhibit sorting of the envelope
recipient list in the message copies
written to the MTA channel queues.
By default, the envelope recipient
address list is sorted. Use this option if
it is imperative that the envelope
recipients be processed in some
specific order. Maintaining the order
requires control of all MTA channels
that the message will pass through.

MTA_ADR_SORT None Allow the envelope recipient list to be
sorted in the message copies written
to the MTA channel queues. This is
the default behavior.

154Messaging Server 8.0 MTA Developer's Reference

1.

2.

MTA_CHANNEL char *channelsize_t
channel_len

Explicitly specify the name of the
channel under which to enqueue this
message. That is, explicitly specify the
name of the source channel to use for
this message submission. The name
specified will override any name
implicitly specified with the

 item code.ThisMTA_DQ_CONTEXT
item code must be followed by two
additional call arguments:

The address of the string
containing the channel name.
The length in bytes of that
channel name. If a value of
zero is specified for the length,
then the channel name string
must be NULL terminated.

MTA_DELIVERY_FLAGS size_t dflags Specify additional envelope delivery
flags to set for this message. The
logical OR of any existing setting and
the value here supplied will be used
for the message's delivery flag setting.
In general, the delivery flag setting
associated with a message will be the
logical OR of the values set by each
channel a message has travelled
through. Note that channels also can
set this value with the

 channel keyword.deliveryflags
When this item code is not used, the
delivery flags inherited from a supplied
dequeue context will be used. If no
dequeue context is supplied, then the
value of the delivery flags will be set
to zero.This item code should be
followed by an additional call
argument: the value to combine with
any existing setting.

MTA_DELIVERY_FLAGS_ABS size_t dflags Ignore any previous envelope delivery
flag setting for the message and
replace the setting with the value
specified with this item code.This item
code should be followed by an
additional call argument: the delivery
flag setting to effect.

155Messaging Server 8.0 MTA Developer's Reference

1.

2.

MTA_DQ_CONTEXT mta_dq_t *dq_ctx When a dequeue context is supplied
with this item code, the message
submission will take all of its envelope
fields, except for the recipient list, from
the envelope of the queued message
represented by the dequeue context,
including the envelope field.From:
These assumed settings can then be
overridden on an individual basis
through the use of other item codes,
and the and env_from

 call arguments.Useenv_from_len
of this item code changes the defaults
for the envelope fields from the MTA
defaults to the values used in the
dequeue context.Intermediate
processing channels are strongly
encouraged to use this item code. Use
of this feature allows envelope
information to be automatically copied
from the queued message being
processed to the new message that
will be enqueued as a result.This item
code must be followed by one
additional argument: the pointer to the
dequeue context to use.

MTA_ENV_ID const char *env_id
size_t env_id_len

Explicitly specify an envelope ID string
for the message. The supplied value
must conform to the syntax of an

 object in RFC 1891 and mayxtext
not have a length exceeding 100
bytes. The value specified with this
item code will override any value
implicitly specified with the

 item code. If noMTA_DQ_CONTEXT
value is supplied either explicitly or
implicitly, then the MTA will generate a
unique envelope ID for the
message.This item code must be
followed by two additional call
arguments:

The address of the envelope ID
string.
The length in bytes of that
string. If a value of zero is
supplied for the length, then the
string must be NULL
terminated.

156Messaging Server 8.0 MTA Developer's Reference

MTA_EXPAND_LIMIT size_t limit If the message has more envelope
recipients than the specified limit, then
processing of the recipient list (that is,
alias expansion) will be deferred. This
deferral is performed by enqueuing
the message to the reprocess
channel. At a later time, and running
in a separate process, the reprocess
channel will complete the processing
of the envelope recipient list.This item
code must be followed by one
additional argument: the limit to
impose. By default, no limit is
imposed.

MTA_FRAGMENT_BLOCKS size_t blocks A large enqueued message may
automatically be fragmented into
several, smaller messages using
MIME's contentmessage/partial
type. At the destination MTA system,
these smaller messages may
automatically be re-assembled back
into one single message. The

 item codeMTA_FRAGMENT_BLOCKS
allows specification of a size threshold
for which messages larger than the
threshold will automatically be
fragmented. The limit specified is
measured in units of blocks. (By
default, a block is 1024 bytes.)
However, sites may change that size
with the MTA option.BLOCK_SIZE
Consequently, code using this option
should use the mtaBlockSize()
option should they need to convert
some other unit to blocks.This item
code must be followed by one
additional argument: the block size
threshold to impose. By default, no
threshold is imposed.

MTA_FRAGMENT_LINES size_t lines A large enqueued message can be
automatically fragmented into several,
smaller messages using the MIME
content type . Atmessage/partial
the destination MTA system, these
smaller messages can be
automatically re-assembled back into
one single message. The

 item codeMTA_FRAGMENT_LINES
allows specification of a line count
threshold for which messages
exceeding the threshold will
automatically be fragmented.This item
code must be followed by one
additional argument: the line count
threshold to impose. By default, no
threshold is imposed.

157Messaging Server 8.0 MTA Developer's Reference

1.
2.
3.

MTA_NOTIFY_FLAGS size_t nflags Specify the delivery status notification
flags to be set for the entire message.
The specified value is a bit map
constructed using the MTA_NOTIFY_
constants defined in . If nomtasdk.h
setting is made, then the value from a
supplied dequeue context will be
used. If no dequeue context is
supplied, then the MTA default value
is used. The default value
is:{{MTA_NOTIFY_DELAY

MTA_NOTIFY_FAILURE MTA_NOTIFY_CONTENT_FULL Flags for individual recipient address
may be specified when

 is called.This itemmtaEnqueueTo()
code must be followed by one
additional call argument: the address
of an integer to receive the setting of
the delivery status notification flags.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:

A NULL value was supplied for the call argument.nq_ctx
An invalid enqueue context was supplied for .nq_ctx
A required argument to an item code was NULL.

MTA_NO Unable to determine the channel name from the environmentPMDF_CHANNEL
variable,

MTA_NOMEM Insufficient virtual memory.

MTA_NOSUCHCHAN Specified channel name does not exist in the MTA configuration.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_STRTRUERR The supplied envelope From: address is too long; it may not exceed a length of
 bytes. Or the supplied channel name has a length exceeding ALFA_SIZE

 bytes.CHANLENGTH

Example

This routine is used as part of .Example 5-2

mtaEnqueueTo()

Add an envelope recipient to a message being submitted.

Syntax

158Messaging Server 8.0 MTA Developer's Reference

int mtaEnqueueTo(mta_nq_t *nq_ctx,
 const char *to_adr,
 size_t to_adr_len,
 int item_code, ...);

Arguments

Arguments Description

nq_ctx Pointer to an enqueue context created with .mtaEnqueueStart()

to_adr An address to add to the message being enqueued. The address must be compliant
with RFC 2822. When used as an envelope address, the MTA will reduce it to an RFC
2821 compliant transport address. If a value of zero is passed for theto_adr_len
address string must be NULL terminated. The length of this string, not including any
NULL terminator, may not exceed bytes.ALFA_SIZE

to_adr_len The length in bytes, not including any NULL terminator, of the address supplied with
. If a value of zero is passed for this argument, then the address string must beto_adr

NULL terminated.

item_code An optional list of item codes. See the description section below for a list of item codes.
The list must be terminated with an integer argument with value .0

Description

After initiating a message enqueue operation with , the envelope recipient list formtaEnqueueStart()
the message must to be constructed. This list is the actual list of recipients to which the message is to be
delivered. A message must have at least one envelope recipient address; otherwise, there is no one to
deliver the message to. In the envelope there is no distinction between , , or addressees.To: Cc: Bcc:
Additionally, the list of addressees appearing in the message's header need not be the same as those
appearing in the envelope. This is the case with list-oriented mail. The address in the message's header
is often the list's mail address; whereas, the addresses in the envelope are the those of the list's
individual members.

By default, when an address is added to a message with , it is added as both anmtaEnqueueTo()
envelope recipient address as well as a addressee in the message's header line. The addressTo: To:
is therefore considered to be an active transport address as well as a header address. This case
corresponds to the item code. To instead mark an active transport address for addition to eitherMTA_TO
a or header line, use the or item code.Cc: Bcc: MTA_CC MTA_BCC

Addresses that only appear in the message's header are sometimes referred to as inactive addresses.
Such addresses added with may be noted as such with the , mtaEnqueueTo() MTA_HDR_TO

, and item codes. They can also be manually added by constructing the MTA_HDR_CC MTA_HDR_BCC To:
, , or header lines with or .Cc: Bcc: mtaEnqueueWrite() mtaEnqueueWriteLine()

159Messaging Server 8.0 MTA Developer's Reference

Note -
The MTA SDK will automatically generate multiple message copies when recipientsBcc:
exist for the message. Specifically, when a message has N envelope recipient addresses
which are recipients, the MTA SDK will automatically generate N+1 message copies:Bcc:
one copy for each of the recipients and an additional copy for the remaining, non-Bcc:

 recipients. Each copy for a recipient will only disclose that recipient inBcc: Bcc: Bcc:
the message's header. The message copy for all of the non- recipients will discloseBcc:
none of the recipients in its header Bcc:

An address may be added as only an active transport address without addition to any header line. This is
done with the item code. This item code should be used by intermediate processingMTA_ENV_TO
channels that copy verbatim the outer message header from the old message to the new, which prevents
duplication of addresses in the new message's header.

When an active transport address is added to a message, it is possible that the MTA will reject the
address. For example, the address can be rejected when there is a mapping table, such as the

 mapping table. When an address is rejected by the MTA, extended error text is madeSEND_ACCESS
available by the MTA. This extended information can be captured through use of the itemMTA_REASON
code.

The following table lists the item codes for this routine, their additional arguments, and gives a
description of each.

Item Codes Additional
Arguments

Description

MTA_BCC None The address is an active transport address that should
also appear in a header line. The address will beBcc:
added to both the envelope recipient list as well as the
message's header. For further information about Bcc:
, see the note under .Description

MTA_CC None The address is an active transport address that should
also appear in a header line. As such, theCc:
address will be added to both the envelope recipient
list as well as the message's header.

MTA_DELIVERY_FLAGS size_t
dflags

Specify additional envelope delivery flags to set for
this recipient. The logical OR of any existing setting for
the recipient and the value here supplied will be used
for the recipient's delivery flag setting. The existing
setting for the recipient will be either the message's
setting, which was set with , ormtaEnqueueStart()
any setting copied over from the dequeue context for
this recipient with the item code.MTA_DQ_CONTEXT
This item code should be followed by one additional
call argument: the value to combine with any existing
setting.

MTA_DELIVERY_FLAGS_ABS size_t
dflags

Ignore any previous envelope delivery flag setting for
the recipient and replace the setting with the value
specified with this item code.This item code should be
followed by one additional call argument: the delivery
flag setting to effect.

160Messaging Server 8.0 MTA Developer's Reference

1.
2.

MTA_DQ_CONTEXT mta_dq_t
*dq_ctx

When a dequeue context is supplied using this item
code, the specified envelope recipient address is
compared to the envelope recipient list for the queued
message represented by the dequeue context. If a
match is found, envelope fields for the recipient are
copied from the queued message to the new message
being enqueued. If no match is found, an MTA_NO
error status is returned.This item code must be
followed by one additional argument: the pointer to the
dequeue context to use.

MTA_ENV_TO None The address is an active transport address; add it to
the envelope recipient list. Do not add it to any header
lines. This designation is often used by intermediate
processing channels.

MTA_HDR_BCC None The address is not an active transport address; do not
add it to the envelope recipient list. The address
should, however, be added to a header line.Bcc:
Note that since a header line is usually onlyBcc:
placed in the message copy destined to the Bcc:
recipient, use of this item code only arises when the

 recipient's header address differs from theirBcc:
transport address and, consequently, the two need to
be added with separate calls to .mtaEnqueueTo()

MTA_HDR_CC None The address is not an active transport address; do not
add it to the envelope recipient list. The address
should, however, be added to a header line.Cc:

MTA_HDR_TO None The address is not an active transport address; do not
add it to the envelope recipient list. The address
should, however, be added to a header line.To:

MTA_NOTIFY_FLAGS size_t
nflags

Delivery status notification flags specific to this
envelope recipient address. A value specified with this
item code overrides any setting made for the message
itself when the enqueue context was created. It also
overrides any value inherited from a dequeue context.
Note that this item code has no effect when

, , or isMTA_HDR_BCC MTA_HDR_CC MTA_HDR_TO
specified; notification flags only apply to active
transport addresses. For further details, see the
description of this item code for

.This item code must bemtaEnqueueStart()
followed by one additional call argument: the address
of an integer to receive the setting of the delivery
status notification flags.

MTA_ORCPT_TO const char
*orcpt
size_t
orcpt_len

Specify the original envelope recipient address in RFC
1891 original-recipient address format (for example,

 for).Thisrfc822;sue@siroe.com sue@siroe.com
item code must be followed by two additional
arguments:

The pointer to the original recipient address.
The length in bytes of that address. If a value of
zero is supplied for the length, then the address
string must be NULL terminated.

161Messaging Server 8.0 MTA Developer's Reference

1.

2.

1.
2.
3.

MTA_REASON const char
**errmsg
size_t
*errmsg_len

Provide the address of a string pointer to receive any
extended error message information. In the event of
an error associated with submitting the recipient to the
MTA, then the MTA may return additional information.
By providing this pointer, that additional information
may be obtained for diagnostic purposes.This item
code should be followed by two additional item codes:

The address of a pointer to receive the address
of the NULL terminated error text.
The address of a to receive the lengthsize_t
of that error text. A value of NULL can be
passed for the argument.errmsg_len

MTA_TO None The address is an active transport address that should
also appear in a header line. This is the defaultTo:
interpretation of addresses added with

.mtaEnqueueTo()

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:

A NULL value was supplied for the call argument.nq_ctx
An invalid enqueue context was supplied for .nq_ctx
A required argument to an item code was NULL.

MTA_NO If was specified, then the supplied envelope address doesMTA_DQ_CONTEXT To:
not match any envelope recipient address in the queued message represented by
the supplied dequeue context. Otherwise, the MTA rejected the envelope recipient
address. It could be syntactically invalid, refused by a mapping table, such as

. Consider using the item code.SEND_ACCESS MTA_REASON

MTA_NOSUCHITEM An invalid item code was specified.

MTA_ORDER The call was made out of order: the message's envelope recipient list has already
been terminated by a call to or mtaEnqueueWrite()

.mtaEnqueueWriteLine()

MTA_STRTRUERR The supplied envelope address or original envelope To: address is too long.To:
Neither may exceed a length of bytes.ALFA_SIZE

Example

This routine is used in .Example 5-2

mtaEnqueueWrite()

Write message data to the message being submitted.

162Messaging Server 8.0 MTA Developer's Reference

Syntax

int mtaEnqueueWrite(mta_nq_t *nq_ctx,
 const char *str1,
 size_t len1,
 const char *str2, ...);

Zero or more string pointer-length pairs can be supplied to this routine. The list of pairs must be
terminated by a NULL call argument.

Arguments

Arguments Description

nq_ctx Pointer to an enqueue context created with .mtaEnqueueStart()

str1 Pointer to a string of text to write to the message. The string must be NULL terminated if
a value of zero is passed for .len1

len1 The length in bytes, not including any NULL terminator, of the string . If a value ofstr1
zero is passed for this argument, then the string must be NULL terminated.str1

str2 Pointer to a second string of text to write to the message. The string must be NULL
terminated if a value of zero is passed for . If only supplying a single string, thenlen2
pass a NULL value for this argument.

Description

After a message's list of envelope recipient addresses has been supplied with , themtaEnqueueTo()
message itself must be supplied. This is done by repeatedly calling . First themtaEnqueueWrite()
message's header should be supplied, followed by a blank line, followed by any message content. Each
line of message data must be terminated by a US-ASCII line-feed character (). Each call to 0x0A

 can supply one or more bytes of the message's data. Unlike mtaEnqueueWrite()
, a single call to does not necessarily correspond tomtaEnqueueWriteLine() mtaEnqueueWrite()

a single, complete line of message data; it could correspond to a partial line, a complete line, multiple
lines, or even one or more complete lines plus a partial line. This flexibility with mtaEnqueueWrite()
exists because it is up to the caller to supply the message line terminators. Calling either

 or terminates the message's envelope recipient list.mtaEnqueueWrite() mtaEnqueueWriteLine()
Once either of these routines have been called, can no longer be called for the samemtaEnqueueTo()
enqueue context.

Return Values

163Messaging Server 8.0 MTA Developer's Reference

1.
2.

Return
Values

Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:

A NULL value was supplied for the call argument.nq_ctx
An invalid enqueue context was supplied for , or a required argument tonq_ctx
an item code was NULL.

MTA_FCREATE Unable to create a disk file.

MTA_FIO Error writing to a disk.

MTA_ORDER Call made out of order. No envelope recipient addresses have been supplied.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was detected.

Example

The code fragment that follows shows two ways to produce the same results. They both write two header
lines to the message:

mtaEnqueueWrite(nq, "From: sue@siroe.com\n", 0, NULL);
mtaEnqueueWrite(nq, "Subject: test\n", 0, NULL);

mtaEnqueueWrite(nq, "From: sue@siroe.com\nSubject: test\n", 0,
 NULL);

The following code fragment shows the two header lines output by each code fragment in the preceding
code example.

From: sue@siroe.com
Subject: test

This code fragment demonstrates how to terminate the message header by writing a blank line.

mtaEnqueueWrite(nq, "\n", 0, NULL);

The following code fragment shows a single call to {{mtaEnqueueWrite()}}that writes out an entire
header, including the terminating blank line.

mtaEnqueueWrite(nq, "Date: today\nFrom: sue@siroe.com\n"
 "To: bob@siroe.com\nSubject: test\n\n", 0,
 NULL);

164Messaging Server 8.0 MTA Developer's Reference

The following code example shows an alternate way of writing the routine call, but with one pair per line.

mtaEnqueueWrite(nq, "Date: today\n", 0,
 "From: sue@siroe.com\n", 0,
 "To: bob@siroe.com\n", 0,
 "Subject: test\n", 0,
 "\n", 0,
 NULL);

mtaEnqueueWriteLine()

Write a complete, single line of message data to the message being submitted.

Syntax

int mtaEnqueueWrite(mta_nq_t *nq_ctx,
 const char *str1,
 size_t len1,
 const char *str2, ...);

Zero or more string pointer-length pairs can be supplied to this routine. The list of pairs must be
terminated by a NULL call argument.

Arguments

Arguments Description

nq_ctx Pointer to an enqueue context created with .mtaEnqueueStart()

str1 Pointer to a string of text to write to the message. The string must be NULL terminated if
a value of zero is passed for .len1

len1 The length in bytes, not including any NULL terminator, of the string . If a value ofstr1
zero is passed for this argument, then the string must be NULL terminated.str1

str2 Pointer to a second string of text to write to the message. The string must be NULL
terminated if a value of zero is passed for . If only supplying a single string, thenlen2
pass a NULL value for this argument.

Description

After a message's list of envelope recipient addresses has been supplied with , themtaEnqueueTo()
message itself must be supplied. This can be done by repeatedly calling .mtaEnqueueWriteLine()
First the message's header should be supplied, followed by a blank line, followed by any message
content. Each call to this routine must supply a single, complete line of the message. The line should not
include a line-feed terminator as will supply the terminator automatically.mtaEnqueueWriteLine()

Calling terminates the message's envelope recipient list. Once the routine ismtaEnqueueWriteLine()
called, can no longer be called for the same enqueue context.mtaEnqueueTo()

Return Values

165Messaging Server 8.0 MTA Developer's Reference

1.
2.

Return
Values

Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:

A NULL value was supplied for the call argument.nq_ctx
An invalid enqueue context was supplied for , or a required argument tonq_ctx
an item code was NULL.

MTA_FCREATE Unable to create a disk file.

MTA_FIO Error writing to a disk.

MTA_ORDER Call made out of order. No envelope recipient addresses have been supplied.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was detected.

Example

This code fragment writes out two header lines.

mtaEnqueueWriteLine(nq, "From: sue@siroe.com", 0, NULL);
mtaEnqueueWriteLine(nq, "Subject: test", 0, NULL);

This code fragment shows the header output as a result of the preceding code example.

From: sue@siroe.com
Subject: test

The following code fragment shows how to terminate the header by writing a blank line.

mtaEnqueueWriteLine(nq, "", 0, NULL);

The following code fragment that produces a header line.Date:

char buf[64];

mtaEnqueueWriteLine(nq,
 "Date: ", 0,
 mtaDateTime(buf, NULL, sizeof(buf), 0), 0,
 NULL);

mtaErrno()

166Messaging Server 8.0 MTA Developer's Reference

Obtain the last returned error status for the calling thread.

Syntax

int mtaErrno(void);

Arguments

None

Description

When an MTA SDK routine is called by a processing thread and returns an error status code, the SDK
saves that status code in thread-specific data. The same processing thread can obtain the most recently
saved status code for its own thread of execution by calling .mtaErrno()

For convenience purposes, the header file also defines as a macro that calls mtasdk.h mta_errno
. Specifically:mtaErrno()

#define mta_errno mtaErrno()

Return Values

The last error return status code returned by an MTA SDK routine called by this processing thread.

For a description of the MTA SDK error status codes, see Chapter 9, Error Status Codes Summary

Example

The following code fragment demonstrates how to obtain the most recent error status code for its own
thread.

if (!mtaEnqueueStart(&nq, from_adr, 0, 0))
 printf("Error returned: %d\n", mtaErrno());

mtaInit()

Initialize the MTA SDK.

Syntax

167Messaging Server 8.0 MTA Developer's Reference

int mtaInit(int item_code, ...);

Arguments

Arguments Description

item_code An optional list of item codes. See the description section that follows for a list of item
codes. The list must be terminated with an integer argument with value .0

Description

Call the routine to initialize the MTA SDK. As part of the initialization process, the SDK willmtaInit()
load the MTA configuration. This loading process will be the typical cause of initialization failures; either
there's an error in a configuration file, a missing but required configuration file, or a configuration file can't
be accessed for reading. To prevent that last error case, ensure that your programs run under a UID that
has read access to the MTA configuration files, especially the compiled configuration file produced by the

 utility.imsimta cnbuild

While there is no benefit to doing so, it is safe to call multiple times, either before or aftermtaInit()
calling . (To de-initialize the SDK, use .)mtaDone() mtaDone()

Although the MTA SDK is self-initializing, the initialization must occur while the process is
single-threaded. As such, multi-threaded programs must call and must do so while stillmtaInit()
single threaded.

When the SDK is initialized, the SDK can be told using an item code whether or not the calling program
will be functioning as an interactive utility or not. When being used by an interactive utility, such as a
management utility or a user agent, the SDK ensures that accounting files are closed after every
operation that records accounting information. This prevents the accounting file from being left open by a
single process for long periods of time. To specify that the SDK will be used by an interactive utility,
specify the item code. By default, the SDK assumes that it will be run by a channelMTA_INTERACTIVE
program or other program that wishes to achieve maximum performance while using the SDK. This
corresponds to the item code. Also, when the SDK self-initializes itself, it assumes MTA_CHANNEL

 and not . As part of initializing the SDK, a number of diagnosticMTA_CHANNEL MTA_INTERACTIVE
facilities can be enabled. These are enabled using the item codes described in theMTA_DEBUG_
following table. These diagnostic facilities may also be enabled at any time using the mtaDebug()
routine.

Item Code Additional
Arguments

Description

MTA_CHANNEL None Indicate that the SDK is being used by a channel
program or other non-interactive program. By default
this is the assumed usage. Interactive programs should
use the item code.MTA_INTERACTIVE

168Messaging Server 8.0 MTA Developer's Reference

MTA_DEBUG_DECODE None Enable diagnostic output from the low-level MIME
decoding routines used by the MTA SDK. This
diagnostic output may prove helpful when attempting to
understand any MIME conversions that occur either
when enqueuing messages to the MTA and the
destination channel is configured to invoke MIME
conversions (for example, marked with channel
keywords such as or), or when usingthurman inner
the SDK message decoding routine,
mtaDecodeMessage.()

MTA_DEBUG_DEQUEUE None Enable diagnostic output from the low-level queue
processing routines used by the MTA SDK. Use this
diagnostic output when attempting to understand issues
surrounding reading and processing of queued
message files. This diagnostic output will not help
diagnose the selection of queued messages as that is
handled by a separate process: the MTA Job
Controller.Enabling this diagnostic output is equivalent
to setting in the MTA option file, DEQUEUE_DEBUG=1

.option.dat

MTA_DEBUG_ENQUEUE None Enable diagnostic output from the low-level message
enqueue routines used by the MTA SDK. Enqueue
diagnostics can be used to diagnose the address
rewriting process, destination channel selection, header
processing, and other types of processing that occurs
when a message is enqueued to the MTA.Enabling this
diagnostic output is equivalent to setting MM_DEBUG=5
in the MTA option file.

MTA_DEBUG_MM size_t level Enable diagnostic output from the low-level message
enqueue routines used by the MTA SDK.This item code
must be followed by one additional call argument: the
debug level to use.The debug level is an integer value
in the range . Enqueue diagnostics may be used0-20
to diagnose the address rewriting process, destination
channel selection, header processing, and other types
of processing that occurs when a message is enqueued
to the MTA.Enabling this diagnostic output is equivalent
to setting in the MTA optionDEQUEUE_DEBUG=level
file.

MTA_DEBUG_OS None Enable diagnostic output from the low-level operating
system dependent routines used by the MTA SDK. Use
of this diagnostic output is helpful when diagnosing
problems associated with creating, opening, writing, or
reading files. Such problems typically arise when
attempting to enqueue messages to the MTA, a process
that requires permissions to create and write messages
in the MTA queues.Enabling this diagnostic output is
equivalent to setting in the MTA optionOS_DEBUG=1
file.

MTA_DEBUG_SDK None Enable diagnostic output for the MTA SDK. When this
output is enabled, diagnostic information will be output
whenever the SDK returns an error result.

169Messaging Server 8.0 MTA Developer's Reference

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list array
must be terminated with a final array entry with an item
code value of zero. For further information on item list
usage, see .Item Codes and Item Lists

MTA_INTERACTIVE None Indicate that the SDK will be used by an interactive
program. In an interactive scenario, the SDK manages
some of the MTA resources differently than when
running as a channel program. For instance, closing the
MTA log file after every completed message submission
or dequeue operation.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS A required argument to an item code was NULL.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files.
Issue the following command for further information:imsimta test -rewrite

MTA_NO Unable to initialize the MTA SDK. Issue the following command for further
information:imsimta test -rewrite

MTA_NOSUCHITEM An invalid item code was specified.

Example

For normal use:

mtaInit(0);

To select SDK diagnostics:

mtaInit(MTA_DEBUG_SDK, 0);

mtaLog()

Write diagnostic output to the channel's log file.

Syntax

void mtaLog(const char *fmt, ...);

170Messaging Server 8.0 MTA Developer's Reference

Arguments

Arguments Description

fmt Pointer to a formatting string. The string must be NULL terminated. See yourprintf()
platform's C run-time library documentation for information on the formatting substitutions
accepted by .printf()

Description

Programs that wish to write diagnostic output should use and . These twomtaLog() mtaLogv()
routines ensure that diagnostic output is directed to the same output stream as other diagnostic
information generated by the MTA SDK. With one exception, consider a call to as beingmtaLog()
identical to calling the C run-time library routine . The call arguments for the two routines areprintf()
identical, including the formatting argument, . The single exception is that, unlike , a call tofmt printf()

 always produces a single line of output to the channel's log file. Consequently, do not attemptmtaLog()
to write either partial or multiple lines with a single call to .mtaLog()

Do not include a terminating line feed or other record terminator in the output. That is, do not put a at\n
the end of the formatting string.

A time stamp with a resolution of hundredths of a second prefaces each line of diagnostic output
generated with . The time stamp uses the system clock and is reported in the local time zone.mtaLog()

Return Values

None

Example

char buf[64];

mtaLog("Version: %d.%d-%d",
 mtaVersionMajor(), mtaVersionMinor(),
 mtaVersionRevision());
mtaLog("Date/time: %s",
 mtaDateTime(buf, NULL, sizeof(buf), 0));
mtaLog("Postmaster address: %s",
 mtaPostmasterAddress(NULL, NULL));

The following output is generated by the preceding code example.

12:43:24.62: Version: 6.0-0
12:43:24.62: Date/time: Thu, 01 May 2003 12:43:24 -0700
12:43:24.63: Postmaster address: postman@mailhub.siroe.com

mtaLogv()

Write diagnostic output to the channel's log file.

171Messaging Server 8.0 MTA Developer's Reference

Syntax

void mtaLogv(const char *fmt
 va_list ap);

Arguments

Arguments Description

fmt Pointer to a formatting string. The string must be NULL terminated. See yourprintf()
platform's C run-time library documentation for information on the formatting substitutions
accepted by .printf()

ap A structure as defined by the system header file.va_list stdarg.h

Description

The routine is provided for programs that either need to provide a diagnostic interfacemtaLogv()
accepting a argument, or want to provide some generalization of . Use of va_list() mtaLog()

 ensures that diagnostic output is directed to the same output stream as other diagnosticmtaLogv()
information generated by the MTA SDK.

With one exception, consider a call to as being identical to calling the C run-time librarymtaLogv()
routine . The call arguments for the two routines are identical including the formattingvprintf()
argument, . The single exception is that, unlike , a call to always produces afmt vprintf() mtaLogv()
single line of output to the channel's log file. Consequently, do not attempt to write either partial or
multiple lines with a single call to .mtaLogv()

Do not include a terminating line feed or other record terminator in the output. That is, do not put a at\n
the end of the formatting string.

Return Values

None

Example

The following code fragment demonstrates a way to provide a generalization of using mtaLog()
.mtaLogv()

172Messaging Server 8.0 MTA Developer's Reference

#include <stdarg.h>

void ourLog(our_context_t *ctx, const char *fmt, ...)
{
 char new_fmt[10240];
 va_list ap;

 /*
 * Genrate a new formatting string that includes as a prefix
 * the value of ctx-\>id then followed by the contents of the
 * supplied formatting string.
 */
 snprintf(new_fmt, sizeof(new_fmt),
 "id=%d; %s", ctx-\>id, fmt);
 va_start(ap, fmt);
 mtaLogv(new_fmt, ap);
 va_end(ap);
}

mtaOptionFinish()

Dispose of an option context.

Syntax

void mtaOptionFinish(mta_opt_t *opt_ctx);

Arguments

Arguments Description

opt_ctx An option context created by .mtaOptionStart()

Description

Option contexts should be disposed of with a call to . The one exception to thismtaOptionFinish()
rule are option contexts returned by . While those contexts may bemtaDecodeMessageInfoParams()
passed to , they do not need to be because willmtaOptionFinish() mtaDecodeMessage()
automatically dispose of them.

Return Values

None

Example

173Messaging Server 8.0 MTA Developer's Reference

mtaOptionFinish(opt);

mtaOptionFloat()

Interpret and return an option's value as a floating point number.

Syntax

int mtaOptionFloat(mta_opt_t *opt_ctx,
 const char *name,
 size_t len,
 double *val);

Arguments

Arguments Description

opt_ctx An option context created by . A NULL value is permitted for thismtaOptionStart()
argument. When a NULL is passed, then no option value is returned.

name Name of the option to obtain the value for. The length of this string should not exceed
 bytes. This string must be NULL terminated if a value of zero is passed for ALFA_SIZE

.len

len Length in bytes, not including any NULL terminator, of the option name supplied with
name. If a value of zero is supplied, then the option name string must be NULL
terminated.

val Pointer to a floating point of type double to receive the option's value. If the option was
not specified in the option file, then the value referenced by this pointer will be left
unchanged.

Description

Use to retrieve the value of an option, interpreting its value as a floating pointmtaOptionFloat()
number. If the option is specified in the option file and its value is a valid floating point number, then its
value will be returned using the call argument. If the option is not specified or its value does notval
correctly specify a floating point number, then no value is returned and the memory pointed at by isval
left unchanged.

The mtaOptionFloat()}}routine can be called with a NULL value for the
 argument. When this is done, immediately returns with a status code{{opt_ctx mtaOptionFloat()

of zero and no value is returned.

This routine does not provide an indication of whether or not the option was specified in the option file. If
it is important to know whether or not the option was specified, then use to test tomtaOptionString()
see if the option was specified.

Return Values

174Messaging Server 8.0 MTA Developer's Reference

Return Values Description

0 Normal, successful completion.

MTA_STRTRUERR The supplied option name is too long. Its length must not exceed ALFA_SIZE
bytes.

Example

The following code example retrieves the value of an option named . Before calling aspect_ratio
, a default value is set for the variable to receive the value of the option. If themtaOptionFloat()

option was not specified in the option file, then the variable will retain that default setting. If the option
was specified, then the variable will assume the value set in the file.

ratio = 1.0;
mtaOptionFloat(opt, "aspect_ratio", 0, &ratio);

If it is important to know whether or not the option was specified, then use to testmtaOptionString()
to see if the option was specified as shown in the following code example. In this example, when the
routine returns, the code determines that the option was specified by whether or not the value of the

 variable has changed.buflen

char buf[1];
size_t buflen;

buflen = 0xffffffff;
mtaOptionString(opt, "aspect_ratio", 0, buf, &buflen,
 sizeof(buf));
ratio_specified = (buflen != 0xffffffff) ? 1 : 0;

mtaOptionInt()

Interpret and return an option's value as an integer number.

Syntax

int mtaOptionInt(mta_opt_t *opt_ctx,
 const char *name,
 size_t len,
 int *val);

Arguments

175Messaging Server 8.0 MTA Developer's Reference

Arguments Description

opt_ctx An option context created by . A NULL value is permitted for thismtaOptionStart()
argument. When a NULL is passed, then no option value is returned.

name Name of the option to obtain the value for. The length of this string should not exceed
 bytes. This string must be NULL terminated if a value of zero is passed for ALFA_SIZE

.len

len Length in bytes, not including any NULL terminator, of the option name supplied with
name. If a value of zero is supplied, then the option name string must be NULL
terminated.

val Pointer to an integer of type to receive the option's value. If the option was notint
specified in the option file, then the value referenced by this pointer will be left
unchanged.

Description

Use to retrieve the value of an option, interpreting its value as an integer-valuedmtaOptionInt()
number. If the option is specified in the option file and its value is a valid integer, then its value will be
returned using the call argument. If the option is not specified or its value does not correctly specifyval
an integer, then no value is returned and the memory pointed at by is left unchanged.val

The routine can be called with a NULL value for the argument. When this is done, opt_ctx
 immediately returns with a status code of zero and no value is returned.mtaOptionInt()

This routine does not provide an indication of whether or not the option was specified in the option file. If
it is important to know whether or not the option was specified, then use to test tomtaOptionString()
see if the option was specified as shown in the code example.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_STRTRUERR The supplied option name is too long. Its length must not exceed ALFA_SIZE
bytes.

Example

In the following code example, the value of an option named is retrieved. Before calling max_blocks
, a default value is set for the variable to receive the value of the option. If the optionmtaOptionInt()

was not specified in the option file, then the variable will retain that default setting. If the option was
specified, then the variable will assume the value set in the file.

blocks = 1024;
mtaOptionInt(opt, "max_blocks", 0, &blocks);

The following code example illustrates how upon return from , the codemtaOptionString()
determines that the option was specified by whether or not the value of the variable hasbuflen
changed.

176Messaging Server 8.0 MTA Developer's Reference

char buf[1];
size_t buflen;

buflen = 0xffffffff;
mtaOptionString(opt, "max_blocks", 0, buf, &buflen, sizeof(buf));
blocks_specified = (buflen != 0xffffffff) ? 1 : 0;

mtaOptionStart()

Open, parse, and load into memory an MTA option file.

Syntax

int mtaOptionStart(mta_opt_t **opt_ctx,
 const char *path,
 size_t len,
 int item_code);

Arguments

Arguments Description

opt_ctx On successful return, a pointer to an option context created by .mtaOptionStart()
This option context represents the options read from the option file.

path Optional file path to the option file to read. If not specified, then the path specified by the
 environment variable will be used. If a value of zero is suppliedPMDF_CHANNEL_OPTION

for , and there is a non-NULL value for , the value must be NULL terminated.len path
The length of the file path, not including any NULL terminator, may not exceed

 bytes.ALFA_SIZE

len Length in bytes, not including any NULL terminator, of the file path. This argument is
ignored when a NULL is passed for . When is non-NULL and a value of zeropath path
is supplied for , then the file path string must be NULL terminated.len

item_code Reserved for future use. A value of zero must be supplied for this call argument.

Description

MTA option files such as channel option files may be read, parsed, and loaded into memory with
. Once loaded into memory, the values of individual options may be retrieved withmtaOptionStart()

the routines shown in the table that follows:

177Messaging Server 8.0 MTA Developer's Reference

Routine Names Description

mtaOptionFloat() Retrieve the value of a floating point valued option.

mtaOptionInt() Retrieve the value of an integer valued option.

mtaOptionString() Retrieve the string representation of an options value.

These routines are designed such that if the requested option does not exist, then no value is returned.
This allows code to assign to a variable an option's default value, then attempt to retrieve an explicitly set
value from the option file. During the retrieval, the address of the variable can be passed. If the option is
specified in the option file, then the value of the variable will be replaced with the value from the option
file. If the option is not specified, then the default value stored in the variable is left unchanged. Code
examples of such usage are provided in the individual routine descriptions.

Once finished obtaining the values of any options, unload the options from memory and dispose of the
option context with .mtaOptionFinish()

When the underlying option file does not exist, still returns a success status code.mtaOptionStart()
However, a NULL value is returned for the pointer to the option context. The other option routines accept
a NULL value for an option context pointer and will behave as though the requested option is not
specified in the option file. This behavior reflects the fact that MTA option files are considered optional. If
a channel's option file does not exist, then the channel is supposed to use its default settings for its
options. This also simplifies coding, allowing programs not to have to worry about whether or not the
option file exists and whether or not the option context pointer is NULL. If, however, the existence of an
option file is mandatory, then a program can detect that the file does not exist by seeing if the returned
value for the option context pointer is NULL as shown in the code example section that follows.

If an explicit option file path is specified with the call argument, then the path can be a relative filepath
path or an absolute file path. File paths can be prefixed with any of the symbolic MTA directory names
specified in the file. For example, the entry shown in the following code fragmentimta_tailor
specifies a file named located in the subdirectory of the MTA configurationmmsc_gateway.cnf nmsc
directory. Note that a colon separates the symbolic name from the remainder of the path.

IMTA_TABLE:/mmsc/mmsc_gateway.cnf

If no file path is specified, then the file specified with the environment variablePMDF_CHANNEL_OPTION
will be opened and read. That environment variable is established by the Job Controller for the channel
programs that it runs. It will always have the following format:

IMTA_TABLE:_channel-name__option

where is the name of the channel being run. The following example demonstrates howchannel-name
the environment variable settings are effected for channel:tcp_local

PMDF_CHANNEL=tcp_local
PMDF_CHANNEL_OPTION=IMTA_TABLE:tcp_local_option

Return Values

178Messaging Server 8.0 MTA Developer's Reference

Return Values Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the call argument.opt_ctx

MTA_FOPEN Unable to open the option file. File access permissions are the likely cause for this
error.

MTA_NO An error occurred while reading or parsing the option file.

MTA_NOMEM Insufficient virtual memory.

MTA_STRTRUERR The supplied file path is too long. Its length must not exceed bytes.ALFA_SIZE

Example

opt_ctx = NULL;
if (mtaOptionStart(&opt_ctx, NULL, 0, 0))
 /*
 * Error loading the option file
 */
else if (!opt_ctx)
 /*
 * Option file did not exist
 */

mtaOptionString()

Return an option's value as a string.

Syntax

int mtaOptionString(mta_opt_t *opt_ctx,
 const char *name,
 size_t len,
 const char *str,
 size_t *str_len,
 size_t str_len_max);

Arguments

179Messaging Server 8.0 MTA Developer's Reference

Arguments Description

opt_ctx An option context created by . A NULL value is permitted for thismtaOptionStart()
argument. When a NULL is passed, then no option value is returned.

name Name of the option to obtain the value for. The length of this string should not exceed
 bytes. This string must be NULL terminated if a value of zero is passedALFA_SIZE

for .len

len Length in bytes, not including any NULL terminator, of the option name supplied with
name. If a value of zero is supplied, then the option name string must be NULL
terminated.

str A pointer to a buffer to receive the NULL terminated value of the specified option. The
MTA allows channel options to have a maximum length of bytes. As aBIGALFA_SIZE
result, this buffer should in general have a length of at least bytes.BIGALFA_SIZE+1
If the option was not specified in the option file, then the contents of the buffer is left
untouched.

str_len An optional pointer to a to receive the length in bytes of the returned optionsize_t
value string, . A value of NULL may be passed for this call argument.str

str_len_max The maximum size in bytes of the buffer pointed at by .str

Description

Use to retrieve the string representation of an option's value. If the option ismtaOptionString()
specified in the option file, then its value and length will be returned via the and callstr str_len
arguments. If the option is not specified then no value is returned and the memory pointed at by and str

 are left unchanged. This routine can be called with a NULL value for the argument.str_len opt_ctx
When this is done, immediately returns with a status code of zero and no optionmtaOptionString()
value is returned.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_STRTRU Supplied buffer pointed at by is too small. The returned value has beenbuf
truncated to fit. Truncated value is NULL terminated. The buffer should have a
length of at least bytes.BIGALFA_SIZE+1

MTA_STRTRUERR The supplied option name is too long. Its length must not exceed ALFA_SIZE
bytes.

Example

In the code example that follows, the value of an option named is retrieved. Before calling mail_url
, a default value is set for the variable to receive the value of the option. If themtaOptionString()

option was not specified, then the variable will retain that default setting. If the option was specified, then
the variable will assume the value set by that specification.

180Messaging Server 8.0 MTA Developer's Reference

char url[1024];

strcpy(url, "mail_to:webmaster@siroe.com");
mtaOptionString(opt, "mail_url", 0, url, NULL, sizeof(url));

mtaPostmasterAddress()

Obtain the MTA local postmaster address.

Syntax

const char *mtaPostmasterAddress(const char **address,
 size_t *len,
 int item code, ...)

Arguments

Arguments Description

address Optional pointer to receive the memory address of the string buffer containing the MTA
local postmaster address. The string will be NULL terminated. A value of NULL may be
passed for this argument.

len Optional address of a to receive the length in bytes of the postmaster address. Asize_t
value of NULL may be passed for this argument.

item
code

Reserved for future use. A value of zero () must be passed for this argument.0

Description

This routine returns a pointer to a NULL terminated string containing the MTA local postmaster address.
This address is suitable, for instance, for inclusion in the header line of notification messages asFrom:
shown in the code example for this routine.

It is usually not a good idea for programs to send mail to the postmaster's address. In many situations,
sending mail to the postmaster when failures occur can lead to mail loops if the mail sent to the
postmaster itself fails, and generates a message to the postmaster, which then fails, and generates yet
another message to the postmaster, and so on.

On a successful completion, the address of the string buffer containing the postmaster's address is
returned using the call argument. That same address is also returned as the return status.address

Return Values

In the event of an error, a value of NULL is returned as the status and is set with a statusmta_errno
code indicating the underlying error.

181Messaging Server 8.0 MTA Developer's Reference

Error
Status
Codes

Description

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more configuration files. For
further information, issue the following command:imsimta test -rewrite

MTA_NO Unable to initialize the MTA SDK. For further information, issue the following command:
imsimta test -rewrite

Example

The following example shows how to use this routine to include the postmaster address in the From:
header line of a notification message:

mtaEnqueueWriteLine(nq, "From: Postmaster <", 0,
 mtaPostmasterAddress(NULL, NULL, 0), 0,
 "\>", 0, NULL);

mtaStackSize()

Obtain the minimum thread stack size required when using the MTA SDK.

Syntax

size_t mtaStackSize(void);

Arguments

None

Description

A number of the run-time libraries used by the MTA SDK make intensive use of stack variables. As a
result, some MTA SDK operations can require a larger than usual thread stack size. The minimum thread
stack size required for typical MTA SDK operations, such as message dequeue and enqueue operations,
can be obtained with . When writing multi-threaded code, ensure that any threads thatmtaStackSize()
will be calling SDK routines have a stack size at least as large as the value returned by

. Failure to do may result in abnormal process terminations when a thread overruns itsmtaStackSize()
stack.

Return Values

The minimum thread stack size required for MTA SDK operations.

Example

182Messaging Server 8.0 MTA Developer's Reference

None

mtaStrError()

Obtain a text description of an error status code.

Syntax

const char *mtaStrError(int code,
 int item_code);

Arguments

Arguments Description

code The MTA SDK error status to obtain a text description for.

item_code Reserved for future use. A value of zero must be supplied for this call argument.

Description

Use to obtain English language descriptions of MTA SDK error codes. ThesemtaStrError()
descriptions are intended solely for use in fine-grained diagnostic output. They are not intended for
reading by end users of programs written using the MTA SDK.

Return Values

A pointer to a NULL terminated string containing the error code description.

Example

ires = mtaEnqueueStart(&nq, from, 0, 0);
if (ires)
 printf("mtaEnqueueStart() returned %d; %s\n",
 ires, mtaStrError(ires, 0));

mtaUniqueString()

Generate a system-wide unique string.

Syntax

183Messaging Server 8.0 MTA Developer's Reference

const char *mtaUniqueString(char *buf,
 size_t *len,
 size_t max_len);

Arguments

Arguments Description

buf A pointer to a buffer to receive the NULL terminated unique string. The buffer should be
at least 20 bytes long.

len An optional pointer to a to receive the length in bytes of the returned uniquesize_t
string. This length does not include the NULL terminator that terminates the returned
unique string. A value of NULL can be passed for this call argument.

len_max The maximum size in bytes of the buffer pointed at by .buf

Description

The routine may be used to generate a system-wide unique string. The stringsmtaUniqueString()
generated are suitable for use as MIME boundary markers and file names. On a successful completion,
the unique string is stored in the buffer pointed at by the argument. Additionally, the value of the buf buf
argument is returned as the routines return status.

Return Values

In the event of an error, will return NULL. The error status code may be obtainedmtaUniqueString()
by examining the value of .mta_errno

Error Status Codes Description

MTA_BADARGS A value of NULL was supplied for the argument.buf

MTA_STRTRUERR The buffer is too small.buf

Example

This routine is used in .Example 5-2

mtaVersionMajor()

Obtain the major version number associated with the MTA SDK library.

Syntax

int mtaVersionMajor(void);

184Messaging Server 8.0 MTA Developer's Reference

Arguments

None

Description

Return the major version number associated with the MTA SDK library.

Return Values

The SDK major version number.

Example

printf("MTA SDK Version %d.%d-%d\n"
 mtaVersionMajor(), mtaVersionMinor(),
 mtaVersionRevision())

mtaVersionMinor()

Obtain the minor version number associated with the MTA SDK library.

Syntax

int mtaVersionMinor(void);

Arguments

None

Description

Return the minor version number associated with the MTA SDK library.

Return Values

The SDK minor version number.

Example

printf("MTA SDK Version %d.%d-%d\n"
 mtaVersionMajor(), mtaVersionMinor(),
 mtaVersionRevision());

185Messaging Server 8.0 MTA Developer's Reference

mtaVersionRevision()

Obtain the revision level associated with the MTA SDK library.

Syntax

int mtaVersionRevision(void);

Arguments

None

Description

Return the revision level associated with the MTA SDK library.

Return Values

The SDK revision level.

Example

printf("MTA SDK Version %d.%d-%d\n"
mtaVersionMajor(), mtaVersionMinor(), mtaVersionRevision());

186Messaging Server 8.0 MTA Developer's Reference

Chapter 8. mtaSend() Routine Specification

mtaSend() Routine Specification

This chapter contains the functional specification of the routine. It includes the followingmtaSend()
sections:

List of Item Codes
 SyntaxmtaSend()

List of Item Codes

MTA_ADR_NOSTATUS
MTA_ADR_STATUS
MTA_BCC
MTA_BLANK
MTA_CC
MTA_CHANNEL
MTA_CFILENAME
MTA_CFILENAME_NONE
MTA_CTYPE
MTA_ENC_BASE64
MTA_ENC_BASE85
MTA_ENC_BINHEX
MTA_ENC_BTOA
MTA_ENC_COMPRESSED_BASE64
MTA_ENC_COMPRESSED_BINARY
MTA_ENC_COMPRESSED_UUENCODE
MTA_ENC_HEXADECIMAL
MTA_ENC_NONE
MTA_ENC_PATHWORKS
MTA_ENC_QUOTED_PRINTABLE
MTA_ENC_UNKNOWN
MTA_ENC_UUENCODE
MTA_END_LIST
MTA_ENV_FROM
MTA_ENV_TO
MTA_FRAGMENT_BLOCKS
MTA_FRAGMENT_LINES
MTA_FROM
MTA_HDR_ADRS
MTA_HDR_BCC
MTA_HDR_CC
MTA_HDR_FILE
MTA_HDR_LINE
MTA_HDR_NOADRS
MTA_HDR_NORESENT
MTA_HDR_PROC
MTA_HDR_RESENT
MTA_HDR_TO
MTA_HDRMSG_FILE

187Messaging Server 8.0 MTA Developer's Reference

MTA_HDRMSG_PROC
MTA_IGNORE_ERRORS
MTA_INTERACTIVE
MTA_ITEM_LIST
MTA_MAX_TO
MTA_MODE_BINARY
MTA_MODE_TEXT
MTA_MSG_FILE
MTA_MSG_PROC
MTA_NOBLANK
MTA_NOIGNORE_ERRORS
MTA_PRIV_DISABLE_PROC
MTA_PRIV_ENABLE_PROC
MTA_SUBADDRESS
MTA_SUBJECT
MTA_TO
MTA_USER

mtaSend() Syntax

int mtaSend(mta_item_list_t *item_list)

Arguments

item_list

The routine takes only one argument, , which is a pointer to an array of itemmtaSend() item_list
descriptors. Each item descriptor specifies an action to be taken, and provides the information needed to
perform that action.

The list of item descriptors is terminated with an entry containing the () item code.MTA_END_LIST 0

Each item descriptor has the following C-style structure declaration:

struct {
 int item_code;
 const void *item_address;
 int item_length;
 int item_status;
 const char *item_smessage;
} mta_item_list_t;

Item Descriptor Fields

item_code

Integer item code specifying an action to be taken by . The include file described in mtaSend() MTA
 defines these codes. Each item code is described later in this chapter,SDK Concepts and Overview

starting at .Item Codes

item_address

The caller-supplied address of data to be used in conjunction with the action specified by the

188Messaging Server 8.0 MTA Developer's Reference

 field. Not all actions require that an be supplied.item_code item_address

item_length

When the item code has an associated string value, this field optionally provides the length in bytes of
the string, not including any NULL terminator. If a value of zero () is supplied, then the string pointed to0
by must be NULL terminated, so that can automatically determine theitem_address mtaSend()
string's length.

When the item code has an associated integer value, this field supplies that value.

item_status

When the item code is specified, this field will contain processing status for theMTA_ADR_STATUS
associated envelope recipient address.

item_smessage

When the item code is specified, this field will contain the rewritten form of theMTA_ADR_STATUS
envelope recipient address when the returned value of is zero, or a textual error messageitem_status
when the returned value of is non-zero.item_status

Description

Use to send a message. The routine performs the processing carried out to address themtaSend()
message, generate the message’s header and body, and enqueue the message as specified with the

 argument. For instructions on how to use , see item_list mtaSend() Using Callable Send
.mtaSend()

Item Codes

MTA_ADR_NOSTATUS

Do not return status messages for , , and addresses. This is the default setting.To: Cc: Bcc:

The and fields are ignored for this item code.item_address item_length

MTA_ADR_STATUS

Return textual status messages for each envelope recipient address (that is, an active transport address)
specified with any of these item codes: , , , , , or MTA_TO MTA_CC MTA_BCC MTA_HDR_TO MTA_HDR_CC

. When a recipient address is successfully processed, the value of the associated MTA_HDR_BCC
 field will be zero and will be a pointer to a NULL terminated stringitem_status item_smessage

containing the rewritten form of the address. When a recipient address fails to be processed successfully,
the value of the associated field will be non-zero and will be a pointeritem_status item_smessage
to a NULL terminated error message string.

After calling with , call the function to dispose ofmtaSend() MTA_ADR_STATUS mtaSendDispose()
any dynamic memory allocated by .mtaSend()

The and fields are ignored for this item code.item_address item_length

MTA_BCC

Specify a blind carbon copy (address. The and fields specify theBcc:) item_address item_length

189Messaging Server 8.0 MTA Developer's Reference

address and length of a string containing a address. The length of the address may not exceedBcc:
ALFA_SIZE bytes.

MTA_BCC is used to specify a address that should appear in both the message's header andBcc:
envelope.

MTA_BLANK

When processing multiple input sources, insert a blank line between the input from each source.
Ordinarily, the input files are appended one after the other with no delimiters or separators. This is the
action selected with the item code. By specifying the action, MTA_NOBLANK MTA_BLANK mtaSend()
inserts a blank line between each input file. This is especially useful when the first input file is to be
treated as a source of header information and the second as the message body or part thereof. This
produces the requisite blank line between the message header and body.

The and fields are ignored for this item code.item_address item_length

MTA_CC

Specify a carbon copy () address. The and fields specify the addressCc: item_address item_length
and length of a string containing a address. The length of the address may not exceed ALFA_SIZECc:
bytes.

MTA_CC is used to specify a address that should appear in both the message's header andCc:
envelope.

MTA_CHANNEL

Specify the channel to act as, when enqueuing the message. If not specified, then mail will be enqueued
as though sent from the local, , channel. The and fields specify thel item_address item_length
address and length of a text string containing the name of the channel to act as. The length of the string
may not exceed CHANLENGTH bytes.

MTA_CFILENAME

When is specified, the name of the message input file will be included as a parameterMTA_CFILENAME
in the MIME header line. This action, when specified, will hold for all subsequent inputContent-type:
files until an action is seen in the same item list.MTA_CFILENAME_NONE

MTA_FILENAME_NONE is the default.

MTA_CFILENAME_NONE

The default action for including or not including the name of the message input file as a parameter in the
MIME header line. This item code specifies that no input file is to be included.Content-type:

When has been specified, it will hold for all subsequent input files until an MTA_CFILENAME
 action is seen in the same item list.MTA_CFILENAME_NONE

The and fields are ignored for this item code.item_address item_length

MTA_CTYPE

Specify the body of a header line. The and fieldsContent-type: item_address item_length
specify the address and length of a text string to place in the body of a header line.Content-type:

190Messaging Server 8.0 MTA Developer's Reference

The length of the string may not exceed ALFA_SIZE bytes. Only one body may beContent-type:
specified.

MTA_ENC_BASE64

Encode data from all subsequent input sources using MIME's BASE64 encoding. This setting may be
changed with any of the other item codes. The default encoding is The MTA_ENC_ MTA_ENC_UNKNOWN.

 and fields are ignored for this item code.item_address item_length

MTA_ENC_BASE85

Encode data from all subsequent input sources using Adobe’s ASCII85 encoding (BASE85). This setting
may be changed with any of the other item codes. The default encoding is MTA_ENC_

 The and fields are ignored for this item code.MTA_ENC_UNKNOWN. item_address item_length

MTA_ENC_BINHEX

Encode data from all subsequent input sources using the BINHEX encoding. This setting may be
changed with any of the other item codes. The default encoding is The MTA_ENC_ MTA_ENC_UNKNOWN.

 and fields are ignored for this item code.item_address item_length

MTA_ENC_BTOA

Encode data from all subsequent input sources using the UNIX binary-to-ASCII (BTOA) encoding. This
setting may be changed with any of the other item codes. The default encoding is MTA_ENC_

. The and fields are ignored for this item code.MTA_ENC_UNKNOWN item_address item_length

MTA_ENC_COMPRESSED_BASE64

Encodes data from all subsequent input sources using MIME's BASE64 encoding after first compressing
it using Gnu zip. This setting may be changed with any of the other item codes. The defaultMTA_ENC_
encoding is . The and fields are ignored for this itemMTA_ENC_UNKNOWN item_address item_length
code.

MTA_ENC_COMPRESSED_BINARY

Compress the data with Gnu zip. No other encoding of the data will be done. This setting may be
changed with any of the other item codes. The default encoding is . The MTA_ENC_ MTA_ENC_UNKNOWN

 and fields are ignored for this item code.item_address item_length

MTA_ENC_COMPRESSED_UUENCODE

Encode data from all subsequent input sources using UUENCODE, after first compressing the data with
Gnu zip. This setting may be changed with any of the other item codes. The default encodingMTA_ENC_
is . The and fields are ignored for this item code.MTA_ENC_UNKNOWN item_address item_length

MTA_ENC_HEXADECIMAL

Encode data from all subsequent input sources using a hexadecimal encoding. This setting may be
changed with any of the other item codes. The default encoding is . The MTA_ENC_ MTA_ENC_UNKNOWN

 and fields are ignored for this item code.item_address item_length

MTA_ENC_NONE

191Messaging Server 8.0 MTA Developer's Reference

Data from all subsequent input sources is left unencoded (that is, not encoded). This setting may be
changed with any of the other item codes. The default encoding is . The MTA_ENC_ MTA_ENC_UNKNOWN

 and fields are ignored for this item code.item_address item_length

MTA_ENC_PATHWORKS

Encodes multipart and binary message contents using the OpenVMS Pathworks format. This setting may
be changed with any of the other item codes. The default encoding is .MTA_ENC_ MTA_ENC_UNKNOWN
The and fields are ignored for this item code.item_address item_length

MTA_ENC_QUOTED_PRINTABLE

Encode data from all subsequent input sources using MIME's quoted printable encoding. This setting
may be changed with any of the other item codes. The default encoding is MTA_ENC_

. The and fields are ignored for this item code.MTA_ENC_UNKNOWN item_address item_length

MTA_ENC_UNKNOWN

Data from all subsequent input sources is left unencoded (that is, not encoded). This setting may be
changed with any of the other item codes. The default encoding is . The MTA_ENC_ MTA_ENC_UNKNOWN

 and fields are ignored for this item code.item_address item_length

MTA_ENC_UUENCODE

Encode data from all subsequent input sources using UUENCODE. This setting may be changed with
any of the other item codes. The default encoding is . The MTA_ENC_ MTA_ENC_UNKNOWN

 and fields are ignored for this item code.item_address item_length

MTA_END_LIST

Terminate an item list. This item code, when encountered, signals the end of the item list. The
 and fields are ignored for this item code.item_address item_length

MTA_ENV_FROM

Specify the envelope address to associate with a message. The and From: item_address
 fields specify the address and length of a text string containing the envelope item_length From:

address to use for the message submission. The length of the string may not exceed ALFA_SIZE bytes.
Only one envelope address may be specified.From:

The action should be used when the envelope address is not a local address.MTA_ENV_FROM From:
When the address is a local address, then only the user name should be specified using the MTA_USER
action.

If this action and the actions are not specified, then the user name associated with the currentMTA_USER
process will be used.

Do not use this item code in conjunction with the or item codes.MTA_USER MTA_SUB_USER

MTA_ENV_TO

Specify an envelope-only address (that is, an active recipient), which should not appear in theTo:
message's header. The and fields specify the address and length of aitem_address item_length

192Messaging Server 8.0 MTA Developer's Reference

string containing a address. The length of the address may not exceed ALFA_SIZE bytes.To:

MTA_FRAGMENT_BLOCKS

Specify the maximum number of blocks per message. If, when the message is enqueued, the message
size exceeds this limit, then the message will be fragmented into smaller messages, each fragment no
larger than the specified block size. The individual fragments are MIME compliant messages that use
MIME's content type. MIME compliant mailers or user agents that receive themessage/partial
fragments may automatically reassemble the fragmented message. (MTA channels must be marked with
the keyword in order for automatic message reassembly to occur.)defragment

The size of a block may vary from site to site. Sites can change this value from its default value of 1,024
bytes. Use the MTA SDK routine to determine the size in bytes of a block.mtaBLOCK_SIZE

The field specifies the maximum block size per message or message fragment. Byitem_length
default, no limit is imposed.

MTA_FRAGMENT_LINES

Specify the maximum number of message lines per message. If, when the message is enqueued, the
number of message lines exceeds this limit, then the message will be fragmented into smaller messages,
each fragment with no more than the specified number of lines. The individual fragments are MIME
compliant messages that use MIME's content type. MIME compliant mailers or usermessage/partial
agents that receive the fragments may automatically reassemble the fragmented message. (MTA
channels must be marked with the keyword in order for automatic message reassembly todefragment
occur.)

The field specifies the maximum number of message lines per message or messageitem_length
fragment. By default, no limit is imposed.

MTA_FROM

Specify the address to use in the message header's header line. The and From: item_address
 fields specify the address and length of a text string containing the address. Theitem_length From:

length of the string may not exceed ALFA_SIZE bytes. Only one address may be specified.From:

If this action is not used, then the header line will be derived from the envelope address.From: From:

MTA_HDR_ADRS

Specify to request that the message also be sent to recipient addresses found in anyMTA_HDR_ADRS
input header files. The and fields are ignored for this item code.item_address item_length

MTA_HDR_BCC

Specify a header-only address (that is, an inactive recipient), which should only appear in theBcc:
message's header. The and fields specify the address and length of aitem_address item_length
string containing a address. The length of the address may not exceed ALFA_SIZE bytes.Bcc:

MTA_HDR_CC

Specify a header-only carbon copy () address (that is, an inactive recipient), which should onlyCc:
appear in the message's header. The and fields specify the address anditem_address item_length
length of a string containing a address. The length of the address may not exceed ALFA_SIZECc:
bytes.

193Messaging Server 8.0 MTA Developer's Reference

MTA_HDR_FILE

Specify the name of an input file containing message header lines. The first input file may be a file
containing a message header. In this case, it should be specified using this item code rather than

. This will ensure that the input file receives the proper processing (such as, is notMTA_MSG_FILE
encoded, accessed using text mode access). The routine uses the header lines from themtaSend()
input file to form an initial message header. This initial header is then modified as necessary. This
functionality is useful when forwarding mail.

Note that any recipient addresses in the header file will be ignored unless is alsoMTA_HDR_ADRS
specified.

The and fields specify the address and length of a text string containingitem_address item_length
the input file’s name. The length of the string may not exceed ALFA_SIZE bytes.

MTA_HDR_LINE

Specify an additional header line to include in the message header. The and item_address
 fields specify the address and length of the header line (field name and body) to place initem_length

the message header. The length of the string may not exceed ALFA_SIZE bytes. Any number of header
lines may be added. Use one item list entry per header line.

MTA_HDR_NOADRS

Recipient addresses must be explicitly specified and any addresses in an input header file will be ignored
(but will still appear in the message header). The and fields are ignoreditem_address item_length
for this item code.

This is the default action for recipient addresses found in input header files.

MTA_HDR_NORESENT

Specify to cause additional addresses to be added to existing header lines ratherMTA_HDR_NORESENT
than through the introduction of Resent- header lines.

The and fields are ignored for this item code.item_address item_length

MTA_HDR_PROC

Specify the address of a procedure that will return, one line at a time, header lines for the message
header. The field specifies the address of the procedure to invoke. The item_address item_length
field is ignored.

The calling format that must be used by the procedure is given in .Message Headers and Content

MTA_HDR_RESENT

The action selects the default behavior whereby header lines are added asMTA_HDR_RESENT Resent-
necessary to the message header when the associated header line appears in any input header files. For
instance, a header line will be added if a header line already appears. The Resent-to: To:

 and fields are ignored for this item code.item_address item_length

MTA_HDR_TO

194Messaging Server 8.0 MTA Developer's Reference

Specify a header-only address (that is, an inactive recipient), which should only appear in theTo:
message's header. The and fields specify the address and length of aitem_address item_length
string containing a address. The length of the address may not exceed ALFA_SIZE bytes.To:

MTA_HDRMSG_FILE

Specify the name of an input file containing both the message header and message body. The content of
the file represents an RFC 2822 formatted message with at least one blank line separating the RFC 2822
header from the message body. The routine uses the header lines from the input file to formmtaSend()
an initial message header. This initial header is then modified as necessary.

The and fields specify the address and length of a text string containingitem_address item_length
the input file’s name. The length of the string may not exceed ALFA_SIZE bytes.

MTA_HDRMSG_PROC

Specify the address of a procedure that will return, one line at a time, each line of an RFC 822 formatted
message. The RFC 822 header must come first, followed by at least one blank line, followed by the
message body. The field specifies the address of the procedure to invoke. The callingitem_address
format that must be used by the procedure is given in .Message Headers and Content

MTA_IGNORE_ERRORS

Send the message as long as at least one address was okay and at least one input source wasTo:
okay. By default, the message will not be sent if any of the addresses are illegal (such as, badTo:
syntax, restricted, unknown host), or if any of the input sources proved to be bad (such as, could not
open an input file). The and fields are ignored for this item code.item_address item_length

MTA_INTERACTIVE

Do not ignore user-to-channel access checks when enqueuing mail. This should, in general, be used by
programs such as user agents that enqueue mail for users.

The and fields are ignored for this item code.item_address item_length

MTA_ITEM_LIST

The routine immediately begins processing the list of item descriptors pointed at by mtaSend()
. This new list will be used immediately; any remaining items in the current list will beitem_address

ignored.

The field is ignored for this item code.item_length

MTA_MAX_TO

Specify the maximum number of envelope addresses per message copy. If, when the message isTo:
enqueued, the number of envelope addresses for the message exceeds this limit, then the messageTo:
will be broken into multiple copies, each copy with no more than the specified number of envelope To:
addresses.

The field specifies the maximum number of envelope addresses per message copy.item_length To:
By default, no limit is imposed.

MTA_MODE_BINARY

195Messaging Server 8.0 MTA Developer's Reference

Read subsequent input files as raw binary files. This setting may be changed with the MTA_MODE_TEXT
item code. The default access mode is .MTA_MODE_TEXT

The and fields are ignored for this item code.item_address item_length

MTA_MODE_TEXT

Read subsequent input files as record-oriented text files. This setting may be changed with the
 item code. The default access mode is .MTA_MODE_BINARY MTA_MODE_TEXT

The and fields are ignored for this item code.item_address item_length

MTA_MSG_FILE

Specify an input file to read and include in the message body. The file will be read using the current
access mode and encoded using the current encoding as specified by and itemMTA_MODE_ MTA_ENC_
codes.

The and fields specify the address and length of a text string containingitem_address item_length
the name of the input file. The length of the string may not exceed ALFA_SIZE bytes.

MTA_MSG_PROC

Specify the address of a procedure that will return, one line at a time, data for the message body. Each
line of input obtained from the procedure will be treated using the current access mode and encoded
using the current encoding as specified by and item codes. Note, however, thatMTA_MODE_ MTA_ENC_
the block access mode will not be applied to input procedures.

The field specifies the address of the procedure to invoke. The field isitem_address item_length
ignored.

The calling format that must be used by the procedure is given in .Message Headers and Content

MTA_NOBLANK

When processing multiple input source, do not insert a blank line between the input from one source and
the next. This is the default behavior. The input from each input source is appended one after the other
with no delimiters or separators marking the transition between sources.

The and fields are ignored for this item code.item_address item_length

MTA_NOIGNORE_ERRORS

Send the message only if all addresses are okay and all input sources are okay. This is the default.To:

The and fields are ignored for this item code.item_address item_length

MTA_PRIV_DISABLE_PROC

The address of a procedure to invoke immediately after enqueuing a message so as to disable process
privileges. See the description of for details on the use of this item code.MTA_PRIV_ENABLE_PROC

This item code must be used in conjunction with item.MTA_PRIV_ENABLE_PROC

The field is ignored for this item code.item_length

196Messaging Server 8.0 MTA Developer's Reference

MTA_PRIV_ENABLE_PROC

The address of a procedure to invoke immediately before enqueuing a message so as to enable process
privileges.

Privileges are required to enqueue messages. It is possible to provide with the address ofmtaSend()
two procedures to call. One procedure is called immediately prior to enqueuing a message thereby
allowing process privileges to be enabled. The second procedure is then called immediately after the
message has been enqueued thereby allowing process privileges to be disabled.

For further details on the use of this item code, see .Required Privileges for mtaSend()

This item code must be used in conjunction with .MTA_PRIV_DISABLE_PROC

The field is ignored for this item code.item_length

MTA_SUBADDRESS

Specify a subaddress to use when generating a return address from a user name specified with the
 item code. The and fields specify the address and length of aMTA_USER item_address item_length

text string containing the subaddress. The length of the string may not exceed ALFA_SIZE bytes. Only
one subaddress may be specified per message.

The action must be used in conjunction with this item code.MTA_USER

MTA_SUBJECT

Specify the body of a header line. The and fields specify theSubject: item_address item_length
address and length of a text string to place in the body of a header line. The length of theSubject:
string may not exceed ALFA_SIZE bytes. Only one body may be specified.Subject:

MTA_TO

Specify a address that should appear in both the message’s header and envelope. The To:
 and fields specify the address and length of a string containing a item_address item_length To:

address. The length of the address may not exceed ALFA_SIZE bytes.

MTA_USER

Specify the user name to use for the envelope and header line addresses. The From: From:
 and fields specify the address and length of a text string containing theitem_address item_length

user name.

Use this item code when the envelope address is a local address.From:

If the envelope address is not a local address, then the MTA_ENV_FROM action should be used.From:

If this action and the actions are not specified, then the user name associated with theMTA_ENV_FROM
current process will be used.

On UNIX, the process must have the same (real) as the or account. If the process lacksUID root mta
sufficient privileges, the error will be returned.MTA_ACCESS

Do not use this item code in conjunction with the item code.MTA_ENV_FROM

197Messaging Server 8.0 MTA Developer's Reference

198Messaging Server 8.0 MTA Developer's Reference

1.

a.
b.
c.

d.

a.

b.
2.
3.

Chapter 9. Using Callable Send mtaSend()

Using Callable Send mtaSend()

The Sun Java System Messaging Server MTA Callable Send facility, , is a single proceduremtaSend()
that is used to send (enqueue) mail messages of local origin; that is, to originate mail from the local host.
Because the routine is not as flexible as the SDK routines and will take possiblymtaSend()
undesirable, but necessary, authentication steps (such as, the addition of a header line), theSender:
MTA SDK routines should generally be used by programs that need to resend, forward, send through a
gateway, or otherwise route mail messages.

The routine may be used simultaneously with the MTA SDK routines.mtaSend()

This chapter covers the following topics:

Sending a Message
Envelope and Header AddressesFrom

, , and AddressesTo Cc Bcc
Message Headers and Content
Required Privileges for mtaSend()
mtaSendDispose()
Compiling and Linking Programs
Examples of Using mtaSend()

Sending a Message

Each message sent with must have a corresponding item list describing the message. ThemtaSend()
entries in this item list specify the message's and addresses as well as input sources for theFrom: To:
content of the message.

The basic steps in sending a message with are:mtaSend()

Build an item list to pass to .mtaSend()
To build an item list, complete the following steps:

Specify any special processing options, such as , or .MTA_BLANK MTA_IGNORE_ERRORS
Specify the message's envelope address with the item.From: MTA_USER
Specify the message's , , and addresses with the , , and To: Cc: Bcc: MTA_TO MTA_CC

 items.MTA_BCC
Specify an initial message header in one of two ways:
Specify an input source that supplies each of the initial message header lines (

,). MTA_HDR_FILE MTA_HDR_PROC
Specify the content of individual message header lines with individual item codes (

,).MTA_SUBJECT MTA_HDR_LINE
Specify the input sources for the message body with the or MTA_MSG_FILE

 items.MTA_MSG_PROC
Terminate the item list with an item code of value 0 ().MTA_END_LIST

Pass the item list to .mtaSend()
Check the return status from .mtaSend()
For a description of all item codes and their return status values, see mtaSend() Routine

.Specification

To enqueue additional messages, simply repeat these steps.

199Messaging Server 8.0 MTA Developer's Reference

Envelope and Header AddressesFrom

The envelope address for a message should be specified with the item code. With thisFrom: MTA_USER
item code, only the local part of a mail address may be specified, that is, the user name. The

 routine will automatically append the official local host name to the user name so as tomtaSend()
produce a valid mail address.

The item code may be used to explicitly specify a complete envelope addressMTA_ENV_FROM From:
but this is usually not necessary. Applications that enqueue nonlocal mail should probably be using the
SDK routines rather than .mtaSend()

If neither nor are specified, then the user name associated with the currentMTA_USER MTA_ENV_FROM
process will be used for the envelope address. When is used, the header lineFrom: MTA_USER From:
will be derived from the envelope address. When is used, the header lineFrom: MTA_ENV_FROM From:
will be derived from the user name of the current process. In either case, if a header line isFrom:
supplied in an initial header, then a header line will be added to the message header. TheSender:
initial header line will be left intact and the address specified, and address will beFrom: Sender:
derived from either the envelope address () or from the user name of the currentFrom: MTA_USER
process, that is, from .MTA_ENV_FROM

Only privileged users may use to specify a user name different than that of the currentMTA_USER
process. To be considered a "privileged" process on UNIX systems, the process must have the same
(real) user ID () as either the or Messaging Server account.UID root

To, , and AddressesCc Bcc

The list of , , and addresses to send a message to is built up, one address at a time, withTo: Cc: Bcc:
item-list entries. Each item-list entry specifies the type of address (, , or) and a stringTo: Cc: Bcc:
containing the address.

The type of address is denoted by the item code, , , or , associated with theMTA_TO MTA_CC MTA_BCC
item-list entry. The routine uses this information to build the message envelope addressmtaSend() To:
list and , , and header.To: Cc: Bcc:

To specify an envelope-only address that should not appear in the message header (for example, an
active transport address), use . Likewise, to specify a header-only address that should notMTA_ENV_TO
appear in the envelope, such as, an inactive address, use , , or MTA_HDR_TO MTA_HDR_CC

, as appropriate.MTA_HDR_BCC

When one or more of the , , or addresses is illegal, the routine will not, byTo: Cc: Bcc: mtaSend()
default, indicate which addresses were in error. However, the differentiation can be achieved by using
the item code. When this item code is used, the field associated withMTA_ADR_STATUS item_status
an address will be set either to zero (0) if the address was accepted, or to a non-zero value if there was
an error processing the address.

When is zero, points to a NULL terminated string containing theitem_status item_smessage
rewritten form of the address. When has a non-zero value, points to aitem_status item_smessage
NULL terminated string containing an error message suitable for printing for diagnostic purposes.

Message Headers and Content

The body of a message, that is, the message content, is built up from zero or more input files or
procedures. The input files and procedures are read or invoked in the order specified in the item list
passed to the routine. The message body is built up by appending the next input source tomtaSend()
the end of the previous input source. A blank line will be inserted in the message as a separator between

200Messaging Server 8.0 MTA Developer's Reference

input sources if the item is requested in the item list. The and MTA_BLANK MTA_MSG_FILE
 item codes are used to specify the name or address of input files or procedures.MTA_MSG_PROC

An initial message header may be supplied from either an input file or procedure. The message header
will then be modified as needed when the message is enqueued. The and MTA_HDR_FILE

 items are used to specify the name or address of an input file or procedure. If an initialMTA_HDR_PROC
message header is to be supplied, it must appear in the item list before any or MTA_MSG_FILE

 items. A blank line must be supplied at the end of the message header, or at the start ofMTA_MSG_PROC
the first message-body input source. This blank line will automatically be supplied when the MTA_BLANK
item code is specified in the item list.

The and items control the access mode and encodings applied to message bodyMTA_MODE_ MTA_ENC_
input sources. These items set the current access mode and encoding to be applied to all subsequent
input sources that appear in the item list. The default access mode is , which uses textMTA_MODE_TEXT
mode access. The default encoding is , which results in no encoding of the data.MTA_ENC_UNKNOWN

The binary access mode will not be applied to input procedures. The access mode and encoding item
codes do not apply to input sources for an initial message header, which is always accessed using the
default access mode and never encoded.

Input procedures use the following calling format:

ssize_t proc(const char **bufadr)

where is the address of pointer to the starting memory location of the nextconst char **bufadr
piece of input data.

The return value is , which gives the length of the input data. A value that is equal to or greaterssize_t
than zero () indicates success. A value of minus one () indicates that there is no further data to return0 -1
(). Any other negative value indicates an error for which processing should be aborted.EOF

The procedure will be repeatedly called until a negative value is returned, which indicates all input data
has been retrieved or an error occurred.

Required Privileges for mtaSend()

Like the MTA SDK routines, privileges are required in order to use . Enqueuing messagesmtaSend()
requires privileges sufficient to create, open, read from, and write to the MTA message queue directories.
On UNIX, this is accomplished by having your executable program owned and run by the MTA account
or, alternatively, owned by the MTA and have the attribute set.setuid

In order to submit mail under a user name that differs from that of the calling process, privileges are
required. On UNIX platforms, the process must have the same (real) as either the orUID root
Messaging Server account.

In some applications, it is important to keep strict control over when privileges are enabled and disabled.
To this end, the and item codes may be used toMTA_PRIV_ENABLE_PROC MTA_PRIV_DISABLE_PROC
specify the addresses of two procedures to call immediately prior to and immediately after enqueuing a
message. This allows the required privileges to be enabled only when they are needed, that is, when the
message is enqueued, and to remain disabled at all other times.

The routine does not use a condition handler, so if a fatal error occurs while enqueuing amtaSend()
message, it is up to the calling program to trap the error and, if necessary, disable any privileges that
should be disabled. These procedures, if specified, should accept no arguments and return no function
result (return value).

The privileges to be enabled must either be granted to the program using (for example, themtaSend()
program may have been installed with privileges), or the process running the program must have the

201Messaging Server 8.0 MTA Developer's Reference

requisite privileges. The routine and the MTA do not provide these privileges.mtaSend()

mtaSendDispose()

For each call to where is used, there should be a subsequent call to mtaSend() MTA_ADR_STATUS
.mtaSendDispose()

Syntax

void mtaSendDispose(mta_item_list_t *item_list)

Arguments

Argument Description

item_list Pointer to an array with elements of type . This should be an arraymta_item_list_t
previously passed to .mtaSend()

Description

Each call to this routine disposes of virtual memory allocated by for returning address statusmtaSend()
information requested with the item code.MTA_ADR_STATUS

Return Values

None

Example

...
item_list[index++].item_code=MTA_ADR_STATUS;
item_list[index++].item_code=MTA_ITEM_END;
istat=mtaSend(item_list);
...
mtaSendDispose(item_list);

Compiling and Linking Programs

Programs that use are linked using the same steps as the MTA SDK routines. For details,mtaSend()
see .MTA SDK Programming Considerations

Examples of Using mtaSend()

Several example programs, written in C, are provided in this section:

Example 7-1 Send a Simple Message
Example 7-2 Specifying an Initial Message Header
Example 7-3 Sending a Message to Multiple Recipients
Example 7-4 Using an Input Procedure to Generate the Message Body

202Messaging Server 8.0 MTA Developer's Reference

The example routines shown in this section may be found in the directory.examples/mta/sdk

Sending a Simple Message

The program shown in demonstrates how to send a simpleExample 7-1 Send a Simple Message
message to the account. The source code itself is used as the input source for the body of theroot
message to be sent. The address associated with the message is that of the process running theFrom:
program. Comments in the program example explain the sample output line they generate.

Example 7-1 Send a Simple Message

/* send_simple.c Send a simple message */
#include <string.h\>
#include "mtasdk.h"

/* Push an entry onto the item list */
#define ITEM(item,adr) item_list[index].item_code = item;\
 item_list[index].item_address = adr;\
 item_list[index].item_length = adr ? strlen(adr) : 0; \
 item_list[index].item_status = 0;\
 item_list[index++].item_smessage = NULL

main ()
{
 mta_item_list_t item_list[4];
 int index = 0;

 ITEM(MTA_TO, "root"); /* Becomes the To: line in the output */
 ITEM(MTA_SUBJECT, "send_simple.c");
 ITEM(MTA_MSG_FILE, __FILE__);/* Becomes the Subject: line */
 ITEM(MTA_END_LIST, 0);
 exit(mtaSend(item_list));
}

Output for Example 1 Sending a Simple Message

Date: 04 Oct 1992 22:24:07 -0700 (PDT)
From: jdoe@sesta.com
Subject: send_simple.c
To: root@sesta.com
Message-id: <01GPKF10JIB89LV1WX@sesta.com\>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

/* send_simple.c -- Send a simple message */
#include <string.h\>
#include "mtasdk.h"

...

Example 2 Specifying an Initial Message Header

203Messaging Server 8.0 MTA Developer's Reference

The program shown in illustrates the use of the Example 7-2 Specify an Initial Message Header
 and item codes to enqueue a message that has already beenMTA_HDRMSG_FILE MTA_HDR_ADRS

composed, including the headers, and stored in a file. The input file is given in the Input File for Example
. The resulting message is shown in 2 Specifying an Initial Message Header Output for Example 2

.Specifying an Initial Message Header

When the entire message, header and body, is contained in a single file, use the MTA_HDRMSG_FILE
item code in place of the and item codes.MTA_HDR_FILE MTA_MSG_FILE

Example 7-2 Specifying an Initial Message Header

/* send_header.c -- Send a message with initial header */
#include <string.h\>
#include "mtasdk.h"

/* Push an entry onto the item list */
#define ITEM(item,adr) item_list[index].item_code = item;\
 item_list[index].item_address = adr;\
 item_list[index].item_length = adr ? strlen(adr) : 0;\
 item_list[index].item_status = 0;\
 item_list[index++].item_smessage = NULL

main ()
{
 MTA_item_list_t item_list[3];
 int index = 0;

 ITEM(MTA_HDR_ADRS, 0);
 ITEM(MTA_HDRMSG_FILE, "send_header.txt");
 ITEM(MTA_END_LIST, 0);
 exit(mtaSend(item_list));
}

Input File for Example 2 Specifying an Initial Message Header

Subject: MTA SDK callable Send example
To: root@sesta.com
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT
Comments: Ignore this message -- it’s just a test

This is a test of the emergency broadcasting system!

1234567890123456789012345678901234567890123456789012345678901234
5678901234567890

0000000001111111111222222222233333333334444444444555555555566666
6666677777777778

Output for Example 2 Specifying an Initial Message Header

204Messaging Server 8.0 MTA Developer's Reference

Date: 04 Jan 2003 22:42:25 -0800 (PST)
From: system@sesta.com
Subject: MTA SDK callable Send example
To: system@sesta.com
Message-id: <01GPKFNPUQF89LV1WX@sesta.com\>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT
Comments: Ignore this message -- it's just a test

This is a test of the emergency broadcasting system!

1234567890123456789012345678901234567890123456789012345678901234
5678901234567890

0000000001111111111222222222233333333334444444444555555555566666
6666677777777778

Example 3 Sending a Message to Multiple Recipients

The program in demonstrates the followingExample 7-3 Sending a Message to Multiple Recipients
points:

Sending a message to multiple recipients.
Obtaining the status (legal, illegal) of each envelope recipient address (that is, active transport
address).

The message is sent to one address, a address, and a address. After isTo: Cc: Bcc: mtaSend()
called, any status message associated with each address is displayed.

The log output produced by running the program is shown in Output for Example 3 Sending a Message
.to Multiple Recipients

The following items of note are identified in the comments in the program:

Instruct to return a status message for each envelope recipient address.mtaSend()
Specify some , , and addresses.To: Cc: Bcc:
Send the message.
Display any returned status messages.

Example 7-3 Sending a Message to Multiple Recipients

205Messaging Server 8.0 MTA Developer's Reference

/* send_multi.c -- Send a message to multiple recipients */
#include <stdio.h\>
#include <string.h\>
#include "mtasdk.h"

#define ITEM(item,adr) item_list[index].item_code = item;\
 item_list[index].item_address = adr;\
 item_list[index].item_length = adr ? strlen(adr) : 0;\
 item_list[index].item_status = 0;\
 item_list[index++].item_smessage = NULL

main ()
{
 int index = 0, istat, i;
 mta_item_list_t item_list[7];

 /* Specify the Subject: header line and message input source */
 ITEM(MTA_SUBJECT, "send_multi.c");
 ITEM(MTA_MSG_FILE, __FILE__);

 /* Return per address status/error messages */
 ITEM(MTA_ADR_STATUS, 0); /* Instructs mtaSend() to return a */
 /* status message for each envelope */
 /* recipient address */

 /* Specify regular Bcc:, To:, and Cc: addresses */
 ITEM(MTA_BCC, "root");
 ITEM(MTA_TO, "abuse@sample.com");
 ITEM(MTA_CC, "postmaster@sample.com");

 /* Now terminate the item list */
 ITEM(MTA_END_LIST, 0);

 /* And send the message */
 istat = mtaSend(item_list);/* Sends the message. */

 /* Display the address status messages provided that no */
 /* error other than MTA_HOST has occurred */

 for (i = 0; i < index; i++) /* Display any returned status */
 /* messages */
 if (item_list[i].item_smessage)
 printf ("%s: %s - %s\n",
 (const char *)item_list[i].item_address,
 item_list[i].item_status ? "Failed" :
 "Succeeded",
 item_list[i].item_smessage);

 /* Dispose of status messages */
 mtaSendDispose(item_list);
 exit(istat);
}

Output for Example 3 Sending a Message to Multiple Recipients

206Messaging Server 8.0 MTA Developer's Reference

Succeeded: root@sample.com
Succeeded: abuse@sample.com
Succeeded: postmaster@sample.com

Example 4 Using an Input Procedure to Generate the Message Body

The program shown in uses anExample 7-4 Using an Input Procedure to Generate the Message Body
input procedure as the source for the body of a message to be sent. In the program, the input procedure

 will read input until the runtime library routine signals an EOF condition, formsg_proc fgets()
example, a has been input. The address of the procedure is passed to control-D msg_proc

 using a item code. The routine repeatedly calls the mtaSend() MTA_MSG_PROC mtaSend() msg_proc
procedure, until a negative value is returned by the procedure.

Example 7-4 Using an Input Procedure to Generate the Message Body

207Messaging Server 8.0 MTA Developer's Reference

/* send_input.c -- Demonstrate the use of MTA_MSG_PROC */
#include <stdio.h\>
#include <stdlib.h\>
#include <string.h\>
#include "mtasdk.h"
#ifdef _WIN32
typedef long ssize_t;
#endif

/* Push an entry onto the item list */
#define ITEM(item,adr) item_list[index].item_code = item;\
item_list[index].item_address = adr;\
item_list[index].item_length = 0;\
item_list[index].item_status = 0;\
item_list[index++].item_smessage = NULL

ssize_t msg_proc(const char **bufadr)
{
 static char buf[1024];

 if (!bufadr)
 return(-2); /* Call error; abort */

 printf("input: ");
 if (fgets(buf, sizeof(buf), stdin))
 {
 *bufadr = buf;
 buflen = strlen(buf);
 if (buf[buflen-1] == ’\n’)
 buflen -= 1;
 return(buflen);
 }
 else
 return(-1); /* EOF */
}

main ()
{
 int istat, index = 0;
 mta_item_list_t item_list[4];

 STRITEM(MTA_SUBJECT, "send_input.c");
 STRITEM(MTA_TO, "root");
 ITEM(MTA_MSG_PROC, msg_proc);
 ITEM(MTA_END_LIST, 0);
 exit(mtaSend(item_list));
}

	Decoding Messages
	Dequeuing Messages
	Enqueuing Messages
	Error Status Codes Summary
	MTA SDK Concepts and Overview
	MTA SDK Programming Considerations
	MTA SDK Reference
	mtaSend() Routine Specification
	Using Callable Send mtaSend()

