
[image: Oracle Corporation]

Oracle® Communications

Network Integrity

TL1 Cartridge Guide

Release 7.3.2

E66048-01

May 2016

Oracle Communications Network Integrity TL1 Cartridge Guide, Release 7.3.2

E66048-01

Copyright © 2012, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Audience
	Documentation Accessibility
	Document Revision History

1 Overview

	TL1 Cartridge Overview
	Cisco 15454 TL1 Reference Cartridge Overview
	About the Cartridge Dependencies
	Run-Time Dependencies
	Design-Time Dependencies

	Downloading and Opening the Cartridge Files in Design Studio
	Building and Deploying the Cartridge

2 About the TL1 Cartridge

	About Actions and Processors
	TL1 Property Initializer
	TL1 Property Customizer
	TL1 Connection Manager

	About Record and Playback
	About Address Validation
	About Dependent and Independent TL1 Commands
	About the Command Dictionary for the TL1 Cartridge
	Sending Commands Using the Command Dictionary
	TL1 Requests
	TL1 Response
	About the buildCommandSchema.xml Script
	About the buildCommandDocument.xml Script
	About the Command Document and Command Document Templates
	About the Command Dictionary API
	Sending a Command Using the Command Dictionary

	SSH Login Behavior
	Using the TL1 Cartridge
	Creating a Discovery Scan Action Type for TL1 Devices
	About Using Record and Playback
	Viewing and Configuring the Current Record and Playback Mode

	Design Studio Construction
	Actions

	Design Studio Extension
	Sending New Commands and Model Results
	Bypassing the Custom Banner for TL1 Devices

3 About the Cisco ONS 15454 TL1 Reference Cartridge

	About Actions and Processors
	Cisco 15454 TL1 Device Collector
	Cisco 15454 TL1 Device Modeler
	Cisco 15454 TL1 Device Persister

	About Collected Data
	Equipment Collection

	About Cartridge Modeling
	Field Mapping

	Model Correction
	Using the Cisco 15454 TL1 Reference Cartridge
	Setting Up a Scan
	TL1 Gateway Discovery
	Property Groups
	Discovered Results

	Design Studio Construction
	Model Collections
	Actions

	Design Studio Extension

Preface

This guide explains the functionality and design of the Oracle Communications Network Integrity TL1 cartridge and the design of the Cisco ONS 15454 SONET TL1 reference cartridge.

Audience

This guide is intended for Network Integrity administrators, developers, and integrators.

This guide assumes that you are familiar with the following documents:

	
Network Integrity Developer's Guide: For an understanding of cartridge deployment, cartridge development, working with cartridges, working with actions, and the extensibility SDK.

	
Network Integrity Concepts: For an understanding of the Network Integrity architecture and using Oracle Communications Design Studio for Network Integrity.

This guide assumes that your are familiar with the following concepts:

	
Oracle Communications Design Studio and its terminology

	
Oracle Communications Information Model

	
Transaction Language 1 (TL1) standards and terminology

	
Cisco ONS 15454 SONET TL1 commands

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Document Revision History

The following table lists the revision history for this guide:

	Version	Date	Description
	E66048-01
	May 2016
	Initial release.

1 Overview

This chapter provides an overview of the Oracle Communications Network Integrity TL1 cartridge and the Cisco ONS 15454 SONET TL1 reference cartridge.

TL1 Cartridge Overview

The TL1 cartridge allows you to build deployable cartridges that interact with transaction language 1 (TL1) devices or systems.

The TL1 cartridge provides the following key features:

	
Transmission control protocol (TCP), Telnet protocol, and secure shell (SSH) communication with TL1 enabled devices, gateways, and element management systems (EMSs)

	
Gateway discovery

	
Extensible command dictionary in Oracle Communications Design Studio for defining TL1 requests and responses

	
Extensible discovery results model using Design Studio

	
Record and playback of TL1 communication

The TL1 cartridge is an abstract cartridge, meaning that Design Studio is used to configure and assemble the run time cartridge against target systems or devices before deploying it into Network Integrity. Because there are no globally common commands among all TL1 devices or agents, you must build a specific extension to the TL1 cartridge to communicate to specific device or agent families. See Network Integrity Concepts for guidelines and best practices for extending cartridges.

The TL1 cartridge uses the WebNMS TL1 library (a set of Java-based APIs) to provide complete support for building TL1 management applications.

The TL1 cartridge ZIP file contains a reference implementation cartridge for discovering Cisco ONS 15454 SONET TL1 devices. See "Cisco 15454 TL1 Reference Cartridge Overview" for more information.

The TL1 cartridge connects to TL1 agents using TCP, Telnet, or SSH. Use SSH over TCP and Telnet as much as possible for security reasons. Reserve TCP and Telnet communication for devices that do not support SSH. The TL1 cartridge uses a Java secure channel (JSCH) library (a set of Java-based APIs) to provide SSH support.

The TL1 cartridge formats and parses TL1 requests and responses with the command dictionary. The command dictionary is a Design Studio cartridge development framework for defining command requests and responses. The command dictionary provides utilities that convert populated request types into command strings and convert device responses into structured data holders. For example, Design Studio is used to map the TL1 responses to the Oracle Communications Information Model to support discrepancy detection and resolution.

The TL1 cartridge does not provide Discrepancy Detection or Discrepancy Resolution actions. However, the discovery results from the TL1 cartridge can be used as input for a Discrepancy Detection or Discrepancy Resolution action run by another cartridge.

See "About the TL1 Cartridge" for more information about the TL1 cartridge and its components.

Cisco 15454 TL1 Reference Cartridge Overview

The Cisco 15454 TL1 reference cartridge shows you how to develop a cartridge that extends the TL1 cartridge to support the discovery of a specific TL1 device, gateway, or EMS. Use the Cisco 15454 TL1 reference cartridge as a model to develop your own discovery cartridge that extends the TL1 cartridge.

The Cisco 15454 TL1 reference cartridge extends the TL1 cartridge to support the collection and modeling of physical equipment data from a Cisco ONS 15454 SONET device using the TL1 protocol.

See "About the Cisco ONS 15454 TL1 Reference Cartridge" for more information about the Cisco 15454 TL1 reference cartridge and its components.

About the Cartridge Dependencies

This section provides information about dependencies that the TL1 cartridge and Cisco 15454 TL1 reference cartridge have on other entities.

Run-Time Dependencies

The TL1 cartridge and Cisco 15454 TL1 reference cartridge require that the Address_Handlers cartridge be deployed to Network Integrity.

Design-Time Dependencies

The TL1 cartridge has the following dependencies:

	
Address_Handlers

	
Network Integrity SDK

	
ora_uim_model

The Cisco 15454 TL1 reference cartridge has the following dependencies:

	
Address_Handler

	
NetworkIntegritySDK

	
ora_uim_model

	
TL1 cartridge

Downloading and Opening the Cartridge Files in Design Studio

To review and extend the TL1 cartridge and the Cisco 15454 TL1 reference cartridge, download the TL1 cartridge ZIP file from the Oracle software delivery web site:

https://edelivery.oracle.com

The TL1 cartridge ZIP file has the following structure:

	
Cisco_TL1_Cartridge

	
TL1_Cartridge

	
Address_Handlers

The Cisco_TL1_Cartridge project and the TL1_Cartridge project contain the extendable Design Studio files.

See Network Integrity Developer's Guide for information about opening files in Design Studio.

Building and Deploying the Cartridge

See Design Studio Help for information about building and deploying cartridges.

2 About the TL1 Cartridge

This chapter describes the Oracle Communications Network Integrity TL1 cartridge and its components.

About Actions and Processors

The TL1 cartridge contains the following actions:

	
Discover Abstract Base TL1

	
Discover Abstract TL1

The Discover Abstract TL1 action extends the Discover Abstract Base TL1 action, pulling in all the functionality of that action to establish and manage the TL1 connection.

The Discover Abstract Base TL1 action contains the following processors run in the following order:

	
TL1 Property Initializer

	
TL1 Connection Manager

Figure 2-1 illustrates the processor workflow of the Discover Abstract Base TL1 action.

Figure 2-1 Discover Abstract Base TL1 Action Processor Workflow

[image: Description of Figure 2-1 follows]

The Discover Abstract TL1 action adds scan parameter groups to the Discover Abstract Base TL1 action, passing the property values to the TL1Properties object.

The Discover Abstract TL1 action contains the following processors run in the following order:

	
TL1 Property Initializer (inherited)

	
TL1 Property Customizer

	
TL1 Connection Manager (inherited)

Figure 2-2 illustrates the processor workflow of the Discover Abstract TL1 action.

Figure 2-2 Discover Abstract TL1 Action Processor Workflow

[image: Description of Figure 2-2 follows]

TL1 Property Initializer

This processor is part of the Discover Abstract Base TL1 action.

This processor initializes all the properties required for connecting to TL1 and puts all the properties into a TL1Properties object (a Java class).

Table 2-1 lists the values that are initialized by the TL1 Property Initializer processor.

Table 2-1 TL1 Properties Initialized by the TL1 Property Initializer Processor

	Parameter	Description
	
host

	
Host name or IP address of the TL1 agent.

	
port

	
Port number of the TL1 agent.

	
userid

	
The user identification name. It may be from 1 to 10 characters in length. Input is case-sensitive and can consist of numeric, upper- and lower-case alphabetic characters.

	
password

	
The user password or private identifier. It may be up to 10 characters in length.

	
sshUser

	
The user ID used to establish the SSH or Telnet session.

	
sshPassword

	
The password used to establish the SSH or Telnet session.

	
knownHostFileLocation

	
The location where the public keys of the TL1 server are stored if SSH is used. Leave blank to accept all public keys. If a directory is provided, the Network Integrity server must have permission to write to it, otherwise the TL1 cartridge defaults to accepting all public keys.

	
timeout

	
The timeout of the underlying socket connection in seconds.

	
retries

	
The number of retries that are attempted after a timeout. Obtained from the TL1 scan parameter groups.

	
loginTargetIdentifier

	
Identifies the routing information necessary for a login message sent by an OS to reach a network element (NE). Specifying this parameter is optional.

	
loginCorrelationTag

	
Used to correlate the login input command with a response. The default is empty. Specifying this parameter is optional.

	
transportProtocol

	
Identifies the TL1 protocol to use: TCP, SSH, TELNET, or OTHER. The default is SSH.

	
customTransport

	
An implementation of the WebNMS TL1TransportProvider interface. If customTransport is specified, transportProtocol must be set to OTHER. The default is empty. Specifying this parameter is optional.

	
connectionCustomizer

	
An implementation of TL1Connection.Customizer that can be configured to handle non-standard behavior, such as a Telnet banner that is not recognized by the WebNMS TL1 API.

	
gatewayDiscovery

	
A Boolean value indicating whether the discovery target is a gateway. The default is false.

	
gatewayCommand

	
The command to retrieve the list of NEs from the gateway. Specifying this parameter is optional.

	
gatewayNEFilter

	
A filter on the NE ID returned from the TL1 gateway. Specifying this parameter is optional.

	
gatewayNEFilterQualifier

	
This property works in combination with GatewayNEFilter to match the collected NEs by name and qualifier. Possible values are EQUALS, EQUALS_IGNORE_CASE, CONTAINS, CONTAINS_IGNORE_CASE, STARTS_WITH, STARTS_WITH_IGNORE_CASE, ENDS_WITH, ENDS_WITH_IGNORE_CASE. Specifying this parameter is optional.

	
gatewayNEIDResponseSectionPosition

	
Identifies where the NE ID is located in the GetNEList command response. The default is 1. Specifying this parameter is optional.

	
gatewayNEIDResponseFieldPosition

	
Identifies the field where the NE ID is located in the GetNEList command response. The default is 1. Specifying this parameter is optional.

	
mode

	
Identifies the mode of the Record and Playback feature. Valid values are Normal (no record or playback), Record (recording mode enabled), and Playback (playback mode enabled). Specifying this parameter is optional.

	
recordFileDir

	
Identifies where the cartridge writes and retrieves recorded TL1 data files. Specifying this parameter is optional.

In addition, the TL1 Property Initializer processor creates the command dictionary and loads it with all the command documents defined in the cartridge. The TL1 cartridge defines the following commands in the command dictionary:

	
ACT-USER-REQUEST

	
CANC-USER-REQUEST

See Network Integrity Developer's Guide for more information about command dictionaries. See "About the Command Dictionary for the TL1 Cartridge" for more information about using the command dictionary for TL1.

TL1 Property Customizer

This processor is part of the Discover Abstract TL1 action.

This processor populates the TL1Properties object produced by the TL1 Property Initializer processor with the parameter values configured in the Network Integrity UI. Table 2-1, "TL1 Properties Initialized by the TL1 Property Initializer Processor", lists all the parameters that are customizable in the Network Integrity UI. The host property is initialized from the scan address.

TL1 Connection Manager

This processor is part of the Discover Abstract Base TL1 action.

This processor takes the TL1Properties object and command dictionary produced by the TL1 Property Initializer processor to establish a TL1 connection. It provides a TL1Connection object to any extending cartridges and succeeding processors.

To establish a TL1 connection, this processor performs the following operations:

	
Creates a connection to the TL1 agent using the values in the TL1 Properties object.

	
Logs in to the TL1 agent using the credentials in the TL1 Properties object.

	
If a TL1 gateway is configured, issues the TL1 gateway command to retrieve the list of NEs.

	
If the command is successful, returns the TL1Connection object and the list of NE IDs.

	
When the scan ends, logs out and disconnects from the TL1 agent.

This processor logs any errors and fails the scan if it cannot establish a TL1 connection with the TL1 agent.

About Record and Playback

The TL1 cartridge can be configured to record all discovered objects.

You enable the Record and Playback feature at run time by setting a managed bean (MBean) configured on a property group on the Discover Abstract TL1 action.

When recording mode is enabled, the TL1Connection object writes the response data to a TL1 data file in Local_Dir/IP_HostName/Filename.rec, where:

	
Local_Dir is a local directory that you can configure in the MBean at runtime. If you do not set a value in the MBean, Local_Dir is set to Domain_Home/tl1Data, where Domain_Home is the Network Integrity domain.

	
IP_HostName is the host property on the TL1 Properties object.

	
Filename is either the command code passed to the TL1 Connection Manager processor or the full command string.

For example: Local_Dir/10/156/66/191/Filename.rec

When playback mode is enabled, TL1 Connection reads the TL1 data file (created in Record mode and stored on the local hard drive) and sends the data back to the discovery cartridge without polling any network devices. The resource adapter does not require a connection to the network device.

For more information about enabling or disabling the Record and Playback feature, see "About Using Record and Playback".

You can explicitly disable recording mode on a specific command, such as on commands that contain sensitive and unencrypted information (for example, plain-text user names and passwords) by calling the TL1Connection setRecordDisabled method.

The Record and Playback feature is not recommended for clustered environments because it relies on files being saved and loaded from the file system.

About Address Validation

The Discover Abstract TL1 action expects a valid IP address, host name, or IP address range in the Scope field on the Scope tab of the Network Integrity UI.

Any Discovery action extending the Discover Abstract TL1 action should use an address handler to validate entered addresses, such as the IPAddressHandler cartridge provided with Oracle Communications Design Studio.

About Dependent and Independent TL1 Commands

The TL1 cartridge can send independent TL1 commands and can send commands that are dependent on the results of another TL1 command.

For example, the TL1 cartridge can send an independent TL1 command to get the name and model type of a device. It can then send a dependent command to get additional information about the device depending on the device type:

	
If the device type is 15454, the TL1 cartridge collects additional equipment details.

	
If the model type is other than 15454, the TL1 cartridge does not collect additional equipment details.

You can send multiple independent and dependent commands. Response values are associated with their request.

About the Command Dictionary for the TL1 Cartridge

The TL1 cartridge uses the command dictionary for formatting TL1 requests and parsing TL1 responses. The command dictionary is a framework for defining data dictionary structures for the command requests and responses. It also provides utilities for converting the populated request types into command strings and converting device responses into structured data holders.

The command dictionary uses structures defined in the Design Studio data dictionary to define command requests and responses. The Design Studio data dictionary generates an XML schema compiled into Java classes using XML beans. Use the Java request and response classes to issue TL1 requests and receive TL1 responses.

The data dictionary provides the following functionality:

	
Defines the commands once so that a library of commands is available to be used in multiple cartridges.

	
Validates that mandatory parameters are specified and that the request message is valid. The request definition can specify enumerated values, data types, and ranges to provide more validation.

	
Provides a typed response for custom TL1 components so that parameters can be accessed based on name instead of position. For example, you can code getAid() rather than know that the AID is in parameter section 2, in field 3, and code getSection(2).getField(3).

See "About the Cisco ONS 15454 TL1 Reference Cartridge" for example TL1 commands.

	
Note:

Oracle recommends that you use the command dictionary when extending the Discover Abstract TL1 action. You can use the base WebNMS TL1 API methods instead of the command dictionary. You can send a complete TL1 command string with TL1Connection.send or you can use syncSend to send a WebNMS TL1Message. In both cases, a TL1Message is returned and you must extract lines, parameter blocks, and fields using WebNMS TL1 API operations. Refer to the WebNMS TL1 documentation for more information.

The TL1 cartridge defines structures in the data dictionary for TL1 message types: TL1Request and TL1Response. These must be used when defining new command dictionary Requests and responses for TL1.

Sending Commands Using the Command Dictionary

To send commands using the command dictionary:

	
In Design Studio, define TL1Request in the data dictionary. The name of the structure should match the TL1 command name, and the command request name should end with request. See "TL1 Requests" for more information.

	
In Design Studio, define the matching TL1Response in the data dictionary. The name of the structure should match the TL1 command name, and the command response name should end with response. See "TL1 Response" for more information.

	
Run the buildCommandSchema.xml Ant script.

	
Note:

The script must be copied to the extension cartridge before you can run it. See "About the buildCommandSchema.xml Script" for more information.

	
Add the JAR file generated by the buildCommandSchema.xml script to the /lib directory in the project classpath.

	
Run the buildCommandDocument.xml Ant script.

	
Note:

The script must be copied to the extension cartridge before you can run it. See "About the buildCommandDocument.xml Script" for more information.

	
In the Collector Java implementation, add the generated command document into the run-time command dictionary by coding the following:

request.getCommandDictionary().addCommandDictionaryDocument(new String[] {"command_doc.xml"});

where command_doc is the name of the command document in the src directory.

	
In the Java code, build and populate the TL1 request object. For example:

rtrvEqptRequest rtrvEqptRequest = RtrvEqptRequest.Factory.newInstance();
rtrvEqptRequest.setCTAG("1");
rtrvEqptRequest.setAID("myAID");
rtrvEqptRequest.setTID("myTID");

	
Send the command to the TL1 connection and assign the response.

RtrvEqptResponse eqptResponse = (RtrvEqptResponse)request.getTl1Connection().send(rtrvEqptRequest);
if (!TL1Constants.COMPLETION_COMPLD.equalsIgnoreCase(eqptResponse.getCompletionCode())) {
 throw new ProcessorException(createErrorMessage(eqptResponse, rtrvEqptRequest,
 request.getCommandDictionary()));
}

For more examples, refer to the Cisco 15454 TL1 reference cartridge, or see "Design Studio Extension".

TL1 Requests

TL1 requests must use the TL1Request type as the base for the request structure. When creating the TL1 request, select TL1Request from the Base list. This type is defined in the TL1 Cartridge BaseTL1Commands data dictionary.

Figure 2-3 shows a request definition for retrieving equipment. The TID and CTAG attributes are inherited from the base TL1Request, but must add and define the AID attribute.

Figure 2-3 Retrieve Equipment Request Definition

[image: Description of Figure 2-3 follows]

For examples of TL1 requests, see"About the Cisco ONS 15454 TL1 Reference Cartridge".

TL1 Response

TL1 responses must use the TL1Response type as the base for the response structure. When creating the TL1 response, select TL1Response from the Base list. This type is defined in the TL1 Cartridge BaseTL1Commands data dictionary.

	
Important:

The TL1 response must contain a single TL1ResponseLine child structure. Because TL1 commands return multiple lines of data, you must set the Maximum list of the TL1ResponseLine to Unbounded.

The TL1ResponseLine holds child parameter block structures that are of type TL1NamedParameterBlock or TL1PositionalParameterBlock. TL1 response parameter blocks are delimited by a colon. The TL1Line in the response must contain a child structure for each parameter block defined in the TL1 response.

For example, a typical TL1 Response is structured as follows (the number and type of parameter block defined is dependent on the TL1 command):

ResponseElement TL1Line (Maximum=Unbounded) TL1PositionalParameterBlock (Maximum=1) Parameter1 Parameter2 Parameter…n TL1PositionalParameterBlock (Maximum=1) Parameter1 Parameter2 Parameter…n TL1NamedParameterBlock (Maximum=1) Parameter1 Parameter2 Parameter…n

In the TL1 specification, parameter blocks have either positional fields or named fields. Positional fields place importance on the position of the value. Named fields consist of name-value pairs.

The following positional parameter block consists entirely of values, and does not contain any field names. Empty values are represented by consecutive commas.

SLOT-15,OC3-IR-4,,,1546.12

The following named parameter block contains name-value pairs.

PLUGTYPE=SX-IR-SW-SN,PN=87-31-00002,HWREV=004K, FWREV=76-99-00009-004A,SN=013510,CLEI=NOCLEI,TWL1=1546.12,TWL2=1546.92, TWL3=1547.72,TWL4=1548.51,PLUGINVENDORID=012345,PLUGINPN=ABCDE, PLUGINHWREV=ABCDE,PLUGINFWREV=01-02-03,PLUGINSN=01234,ILOSSREF=1.0, PID=CISCO_ONS15454,VID=V01,FPGA=F451,MODULETYPE=101

If a parameter block consists of positional fields and named fields, it is treated as a positional block.

For the TL1 response to be correctly populated, choose the correct parameter block when creating the TL1 response in the data dictionary.

Figure 2-4, "Retrieve Equipment Request Definition" shows a response definition for a Retrieve Equipment request, demonstrating the following elements:

	
Structure rtrv-eqpt-response is of type TL1Response.

	
The attributes timestamp, SID, CTAG, completionCode, and errorText are inherited from the base TL1Response.

	
The timestamp is the date and time the response was returned.

	
The SID is the NE Source Identifier returned by the TL1 agent.

	
The CTAG is the Correlation tag value returned from the TL1 agent.

	
The completion code contains the completion code returned by the TL1 agent. These are standard TL1 completion codes: COMPLD, DELAY, DENY, PRTL, RTRV.

	
The errorText field contains any error messages returned in the TL1 response from the agent. If the request completed successfully, the errorText field is empty.

	
The child structure responseLine is of type TL1Line and the Maximum attribute is set to Unbounded to handle multiple lines returned in the TL1 agent response.

	
The child structures block1 and block2 are of type TL1PositionalParameterBlock because the AID, AIDTYPE, EQUIP, ROLE, and STATUS are not named fields in the response.

	
The block3 group structure is of type TL1NamedParameterBlock because all fields are named. If the names of the fields do not match the name of the field returned by the device, the field will not be mapped. You should specify every field in the named parameter blocks, because the command response definition may be used by another cartridge.

Figure 2-4 Retrieve Equipment Request Definition

[image: Description of Figure 2-4 follows]

Some complex TL1 commands return multiple structured lines that contain differing command blocks. The default TL1 response mapper provided with the TL1 cartridge does not support this type of response; however, you can treat this scenario in one of the following ways:

	
Provide a custom response mapper class that can handle the different line definitions. See Network Integrity Developer's Guide for more information.

	
Use the generic WebNMS TL1 API instead of the command dictionary.

	
Create a super-set of all the returned fields. If line 1 has fields A and B, and line 2 has fields C and D, define a single parameter block that has all four fields A, B, C, and D. On some lines, the A and B are populated; on other lines, C and D are populated. This solution only works with named parameter blocks.

The TL1 cartridge defines two commands in the command dictionary:

	
ACT-USER: for logging in to the TL1 Session.

	
CANC-USER: for logging out of the TL1 Session.

For examples of TL1 responses, see "About the Cisco ONS 15454 TL1 Reference Cartridge".

About the buildCommandSchema.xml Script

The buildCommandSchema.xml Ant script compiles any schema (XSD) files ending in Commands.xml found in the datadictionary directory. The schemas are compiled using the XML Beans framework. The generated Cartridge_NameCommands.jar file is written to the /lib directory. Add the Cartridge_NameCommands.jar file to the project classpath before running the buildCommandSchema.xml script.

If the script does not find any schemas when it is run, the script does nothing.

The buildCommandSchema.xml script is located in the base directory of the TL1 cartridge project.

When extending the TL1 cartridge, copy the buildCommandSchema.xml script to the base directory of the extending cartridge.

Running the buildCommandSchema.xml script is a prerequisite to running the buildCommandDocument.xml Ant script.

About the buildCommandDocument.xml Script

The buildCommandDocument.xml Ant script compiles command documents based on schema (XSD) files ending in Commands.xml found in the datadictionary directory. The generated Data_Dictionary_Name.xml file (for example, CiscoTL1Commands.xml) is written to the src directory. The script looks for types in the schema that end with the word "request" or "response" and correlates them into a single command. See "About the Command Document and Command Document Templates" for more information.

The buildCommandDocument.xml script is located in the base directory of the TL1 cartridge project.

When extending the TL1 cartridge, copy the buildCommandDocument.xml script to the base directory of the extending cartridge.

The JAR file produced by the buildCommandSchema.xml script must be added to the project classpath before you can run the buildCommandDocument.xml script.

You can create a template file to override any of the values generated in the command document. The template contains the values to override. See "About the Command Document and Command Document Templates" for more information.

Add the generated command document to the command dictionary in the runtime operation, as shown in the following example:

request.getCommandDictionary().addCommandDictionaryDocument(new String[] {"Cartridge_NameCommands.xml"});

Enter this code into the processor implementation before sending the TL1 commands.

If the script does not find any schemas ending in Commands.xml, the script does nothing.

About the Command Document and Command Document Templates

You can create a command document template file to consistently override specific values generated in the command document. The buildCommandDocument.xml script automatically looks for such a template file.

The command document template file name must consist of the command file name and end in -template.xml. For example, if the command file name is CiscoTL1Commands.xml, name the template file CiscoTL1Commands-template.xml. Keep the template in the same directory as the command document.

The command document describes the list of supported commands. One or more command documents are added to the command dictionary to configure the supported commands. In the TL1 Cartridge, the command document is generated by the buildCommandDocument.xml Ant script. If the generated command document is incorrect, any field can be overridden by using a template.

The command document template matches the command document schema and structure exactly and is used as base values by the buildCommandDocument.xml script when creating the command document XML. As long as the commandDef name matches, the values specified in the template override the generated values.

You can specify the following information for each command in the command document template:

	
name: A unique name for the command. By default, the data dictionary structure name (minus the request or response suffix) is used for the name.

	
description (optional): A description of what the command does.

	
commandTemplate: Defines the template for the command syntax. By default, this is a velocity template string, but it could be anything depending on the CommandRequestHandler class. The buildCommandDocument.xml script inserts the data dictionary structure name (minus the request or response suffix) in this field and appends any child elements as arguments to the command. The commandTemplate field is the most likely to need to be overridden in a template file.

	
commandRequestType: Identifies the request type. By default, this is the request schema type and must be unique in the command dictionary. For example:

http://xmlns.oracle.com/communications/sce/dictionary/

CommandParserProject/Cisco+TL1+Commands/GetAlarmsRequest

This field is generated by buildCommandDocument.xml and populated by the data dictionary type ending in request.

	
commandResponseType (optional): The class name that holds the response data. Not all commands have responses. The value is used by the registered CommandResponseHandler interface. For example:

com.oracle.communications.sce.dictionary.CommandParserProject.Cisco_TL1_Commands.GetAlarmsResponse

This field is generated by buildCommandDocument.xml and populated by the data dictionary type ending in response.

	
errorResponseType (optional): The class name that holds the error response data. Not all commands have responses. This field is not used by the TL1 cartridge.

	
requestFormatter (optional): Implements the CommandRequestHandler interface and is responsible for validating the request object and merging the data in the request object with the command template and returning a command string. If a CommandRequestHandler interface is not specified at the command or dictionary level, a default implementation is used that assumes the request object is an XML object and the command template is a velocity template. The TL1 cartridge uses the default implementation of the CommandRequestHandler interface.

	
responseParser (optional): Implements the CommandResponseParser interface and is responsible for populating the response object based on the response string provided. If a responseParser is not specified at the command level or the dictionary level, the response is not parsed. For the TL1 cartridge, there is a single CommandResponseHandler called oracle.communications.integrity.tl1cartridge.TL1ResponseParser that can format any TL1 response.

About the Command Dictionary API

As a general rule, you should not need to use the command dictionary API.

The addCommandDictionaryDocument() operation is used to add the command document into the runtime command dictionary, as in the following example:

request.getCommandDictionary().addCommandDictionaryDocument(new String[] {"Cartridge_NameCommands.xml"});

The CommandDictionary class provides a general interface for:

	
Adding command definitions to and removing command definitions from the command dictionary.

	
Retrieving information about dictionaries and loaded commands, such as getDictionaryNames() and getCommandNames().

	
Setting default formatters, parsers, resolver, and types, such as setDefaultResponseType() and setDefaultRequestFormatter().

The CommandHandler class provides methods for performing the following operations on a single command:

	
Formatting requests.

	
Parsing responses.

	
Checking for errors and returning messages.

Sending a Command Using the Command Dictionary

TL1 commands can be sent to the TL1 agent over the TL1 connection, and TL1 responses can be parsed, after the following tasks are completed:

	
Define TL1 requests and responses in the Design Studio data dictionary.

	
Run the buildCommandSchema.xml script to generate XML Beans JARs.

	
Run the buildCommandDocument.xml to generate the command document XML file.

	
Add the command document to the runtime command dictionary.

To send a command:

	
Add the tl1Connection to the processor input parameters.

	
Create the request object and populate the parameters. For example:

RtrvEqptRequest rtrvEqptRequest = RtrvEqptRequest.Factory.newInstance();
rtrvEqptRequest.setCTAG("1");
rtrvEqptRequest.setAID("myAID");
rtrvEqptRequest.setTID("myTID");

	
Send the request instance and cast the response object. For example:

RtrvEqptResponse response = (RtrvEqptResponse)request.getTl1Connection().send(rtrvEqptRequest);

	
Check the completion code. For example:

if (!TL1Constants.COMPLETION_COMPLD.equalsIgnoreCase(eqptResponse.getCompletionCode())) {
 throw new ProcessorException(createErrorMessage(eqptResponse, rtrvEqptRequest, request.getCommandDictionary()));
}

	
Extract any data necessary for modeling. For example:

for (RtrvEqptLine line : eqptResponse.getRtrvEqptLineArray()) {
 String aid = line.getRtrvEqptBlock1().getAID();
 String equip = line.getRtrvEqptBlock2().getEQUIP();
 String status = line.getRtrvEqptBlock2().getSTATUS();
}

SSH Login Behavior

The following sequence describes the SSH login behavior:

	
If the SSH Known Host File Location parameter is not set, the TL1 cartridge accepts all public keys from target devices.

	
If the SSH Known Host File Location parameter is set:

	
And Network Integrity cannot write to the specified directory, the behavior is to accept all public keys from target devices.

	
And Network Integrity can write to the specified directory, all public keys are stored in the directory for each connection to a device, and all public keys are verified when the cartridge reconnects with a device to ensure that keys match. If the keys do not match, the public key is replaced.

Using the TL1 Cartridge

This section describes how to use the TL1 cartridge after it is deployed to the server.

Creating a Discovery Scan Action Type for TL1 Devices

You can create a discovery scan to discover TL1 device information in one or more network systems.

The TL1 cartridge has the following scan parameter groups:

	
TL1Parameters: A group of the most commonly configured parameters for TL1 devices.

	
TL1AdvancedParameters: A group of additional parameters that do not need to be configured for most TL1 devices because the default values are accepted by most.

To create a TL1 discovery scan, follow the instructions explained in the Network Integrity Help and do the following during the creation process:

	
On the General tab, do the following:

	
From the Scan Action list, select the name of your TL1 Discovery action.

The Scan Type field displays Discovery.

	
Configure the following mandatory parameters:

	
In the User Name field, enter the user ID to start the TL1 session.

	
In the Password field, enter the password for the user ID.

	
In the Port field, enter the TL1 connection port.

	
In the Timeout field, enter the timeout length of the underlying socket connection in seconds.

	
In the Retries field, enter the number of retries that the cartridge attempts after a timeout.

	
(Optional) Configure the following optional parameters:

	
To retry to connect after a timeout, enter the number of retries in the Retries field.

	
To specify the transport protocol used by the TL1 device, select a protocol from the Transport Protocol list.

	
If you selected SSH from the Transport Protocol list, enter the SSH session user ID and password in the SSH User and SSH Password fields.

	
To specify where TL1 server SSH public keys are stored, enter a directory path in the SSH Known Host File Location field. All public keys are accepted when this field is left blank.

See Table 2-3, "TL1 Cartridge Scan Parameter Groups" for more information.

	
(Optional) Configure the advanced TL1 parameters:

	
To identify the routing information for Network Integrity to send login messages to an NE, enter the target device in the Login Target Identifier (TID) field.

	
To correlate an input command with an output response, enter the TL1 identifier in the Login CTAG field.

	
To indicate whether the TL1 discovery scan is being used to discover the NEs from specific gateways, select True from the Gateway Discovery list.

	
If the Gateway Discovery list is set to True, configure the Gateway NE List Command field, Gateway NE Filter field, Gateway NEFilter Qualifier list, Gateway Response ID Section field, and Gateway Response ID field to filter the TL1 gateway being discovered.

See Table 2-4, "TL1 Cartridge Advanced Scan Parameter Groups" for more information.

	
On the Scope tab, do one of the following:

	
Enter an IP address.

	
Enter a range of IP addresses (for example, 10.156.12.* or 11.155.12.11-23 or 10.156.67.0/24).

	
Enter a host name.

The TL1 cartridge supports IPv4 and IPv6 IP address formats.

You can enter multiple addresses.

	
Make any other required configurations.

About Using Record and Playback

The record feature allows you to record TL1 responses from devices for auditing, demonstration, or debugging the cartridge. The playback feature allows you to replay recorded files to simulate interaction with the device.

When record mode is enabled, the raw TL1 responses are written to a TL1 data file stored on the server.

When playback mode is enabled, the TL1 connection reads the TL1 data file (created in Record mode and stored on the server) and sends the data back to the discovery cartridge. The resource adapter does not require a connection to the network device.

Record and Playback is not recommended for clustered environments because it relies on files being saved and loaded from the file system.

A property group on the Discover Abstract TL1 action controls the Record and Playback feature. MBeans allow you to adjust the record and playback functionality in the runtime system without the need to restart systems or servers.

The Record and Playback feature mode property has three valid values:

	
Normal: The Record and Playback feature recording mode and playback mode are disabled.

	
Record: The Record and Playback feature recording mode is enabled.

	
Playback: The Record and Playback feature playback mode is enabled.

Viewing and Configuring the Current Record and Playback Mode

The MBean Browser in Oracle Enterprise Manager is used to view the mode property of the Record and Playback feature. See Network Integrity System Administrator's Guide for more information.

To view the current Record and Playback feature mode:

	
In the MBean Browser, navigate to the oracle.communications.integrity.ActionProperty.ActionProperties MBean.

	
Run the listPropertyGroups operation.

This operation lists the configurable property groups. The Returned Value table displays the current mode.

To configure the Record and Playback feature mode:

	
In the MBean Browser, navigate to the oracle.communications.integrity.ActionProperty.ActionProperties MBean.

	
Select the Action_Name:TL1 Property Initializer:RecordPlayback property group, where Action_Name is the name of the extending action.

	
Run the listProperties action, using the full property group name in the argument.

	
Copy the Action_Name:TL1 Property Initializer:RecordPlayback:mode string from the Return Value table.

	
Open the setProperty operation and paste the string into the Property field.

	
In the Value field, set the value of the Record and Playback feature to either Normal, Record, or Playback.

	
Click the Invoke button.

To set the location where the recorded data is saved, open the recordFileDir action property and specify the desired directory. The directory must exist on the server and must be accessible by the Oracle WebLogic Server user.

Design Studio Construction

This section provides information about the composition of the TL1 cartridge from the Design Studio perspective.

Actions

The following tables outline the Design Studio construction of the TL1 cartridge actions and associated components:

	
Table 2-2, "TL1 Cartridge Actions"

	
Table 2-3, "TL1 Cartridge Scan Parameter Groups"

	
Table 2-4, "TL1 Cartridge Advanced Scan Parameter Groups"

	
Table 2-5, "TL1 Cartridge Processors"

	
Table 2-6, "TL1 Cartridge Data Dictionary Structure"

Table 2-2 TL1 Cartridge Actions

	Action Name	Result Category	Address Handler	Scan Parameter Group	Processors
	
Discover Abstract Base TL1

	
Device

	
IPAddressHandler

	
N/A

	
	
TL1 Property Initializer

	
TL1 Connection Manager

	
Discover Abstract TL1

	
Device

	
IPAddressHandler

	
See Table 2-3 and Table 2-4.

	
	
TL1 Property Customizer

Table 2-3 TL1 Cartridge Scan Parameter Groups

	Characteristic Name	Parameter Type	Description	UI Label
	
tl1user

	
Text field

	
The user ID to start the TL1 Session. It can consist of up to 10 alphanumeric case-sensitive characters.

	
User Name

	
tl1Password

	
Text field

	
The password associated with the user name. It can consist of up to 10 alphanumeric case-sensitive characters.

	
Password

	
tl1Port

	
Text field

	
The port used for the TL1 connection. Valid range is 1 through 65535. The default is 6252 (TL1 SSH).

	
Port

	
tl1Timeout

	
Text field

	
The timeout of the underlying socket connection in seconds. The default is 5 seconds.

	
Timeout (Seconds)

	
tl1Retries

	
Text field

	
The number of retries that are attempted after a timeout. The default is 0.

	
Retries

	
transportProtocol

	
Drop down

	
Identifies the TL1 protocol to use: TCP, SSH, TELNET or OTHER. The default is SSH.

	
Transport Protocol

	
sshUser

	
Text field

	
The user ID used to establish the SSH session. This field is mandatory if transportProtocol is set to SSH.

	
SSH User

	
sshPassword

	
Text field

	
The password used to establish the SSH session. This field is mandatory if transportProtocol is set to SSH.

	
SSH Password

	
sshKnownHostFileDir

	
Text field

	
The location where the public keys of the TL1 server are stored if SSH is used. Leave blank to accept all public keys. If a directory is provided, the Network Integrity server must have permission to write to it, otherwise the TL1 cartridge defaults to accepting all public keys.

	
SSH Known Host File Location

Table 2-4 TL1 Cartridge Advanced Scan Parameter Groups

	Characteristic Name	Parameter Type	Description	UI Label
	
tl1LoginTID (optional)

	
Text field

	
Identifies the routing information necessary for a login message sent by an OS to reach an NE.

	
Login Target Identifier (TID)

	
tl1LoginCTAG (optional)

	
Text field

	
Correlates the login input command with a response. Default value is 1.

	
Login CTAG

	
tl1GatewayFlag

	
Drop down

	
A Boolean value to indicate whether the discovery target is a gateway. The default is false.

	
Gateway Discovery

	
tl1GatewayNEListCommand (optional)

	
Text field

	
The command to retrieve the list of NEs from the gateway. This field is mandatory if tl1GatewayFlag is set to True.

	
Gateway NE List Command

	
tl1GatewayNEFilter (optional)

	
Text field

	
A filter on the NE ID returned from TL1 gateway.

	
Gateway NE Filter

	
tl1GatewayNEFilterQualifier (optional)

	
Drop down

	
This property works in combination with Gateway NE Filter to match the collected NEs by name and qualifier.

	
Gateway NE Filter Qualifier

	
gatewayNEIDResponseSectionPosition (optional)

	
Text field

	
Identifies where the NE ID is located in the GetNEList command response. The default value is 0.

	
Gateway Response ID Section

	
gatewayNEIDResponseFieldPosition (optional)

	
Text field

	
Identifies the field where the NE ID is located in the GetNEList command response. The default value is 0.

	
Gateway Response ID Field

Table 2-5 TL1 Cartridge Processors

	Processor Name	Variable
	
TL1 Property Initializer

	
Input: N/A

Output:

	
tl1Properties

A properties class that holds the TL1 connection properties.

	
commandDictionary

The command dictionary containing the TL1 commands.

	
TL1 Property Customizer

	
Input:

	
tl1Properties

Customized with values from scan parameter groups.

Output: N/A

	
TL1 Connection Manager

	
Input: tl1Properties, commandDictionary

Output:

	
tl1Connection

An active connection to the TL1 agent specified in the TL1 Properties.

	
gatewayNEList

A list of NE IDs that were returned from the TL1 Gateway. Only the IDs that matched Gateway NE Filter are returned. If it is not a gateway discovery, there will be a single empty entry in the list, which is an empty string. This construction allows for the same set of processors inside a For Each processor to support gateway and non-gateway discovery.

	
gatewayNEDataMap

A map that contains the details of the NE response from the gateway. The key is the NE ID (that matches the value from gatewayNEList) and the value is the data retrieved from the gateway for the NE. If it is not a gateway discovery, the map will be empty.

Table 2-6 TL1 Cartridge Data Dictionary Structure

	Element	Parameters	Notes
	
TL1Request

	
	
TID (string)

	
CTAG (string)

	
The TL1Request is the base type of all TL1 Requests. It is expected that all TL1 command requests extend this type.

	
TL1Response

	
	
timestamp (dateTime)

	
SID (string)

	
CTAG (string)

	
completionCode (string)

	
errorText (string)

	
The TL1Response is the base type of all TL1 Responses. It is expected that all TL1 command responses extend this type.

	
ACT-USER-REQUEST (TL1Request)

	
	
TID (string)

	
CTAG (string)

	
userid (string)

	
password (string)

	
The TL1 request is used to log the user in to the TL1 session.

	
ACT-USER-RESPONSE (TL1Response)

	
	
timestamp (dateTime)

	
SID (string)

	
CTAG (string)

	
completionCode (string)

	
errorText (string)

	
The TL1 response is the response login of the TL1 session.

	
CANC-USER-REQUEST (TL1Request)

	
	
TID (string)

	
CTAG (string)

	
userid (string)

	
The TL1 request is used to log the user off from the TL1 session.

	
CANC-USER-RESPONSE (TL1Response)

	
	
timestamp (dateTime)

	
SID (string)

	
CTAG (string)

	
completionCode (string)

	
errorText (string)

	
The TL1 response is the response from logging off the user from the TL1 session.

	
TL1ResponseLine

	
N/A

	
The base structure type for a TL1 Response Line.

	
TL1NamedParameterBlock

	
N/A

	
The base structure type for a named parameter block in a TL1 Response. All child elements must be named exactly as they are in the TL1 response. Not all child parameters from the TL1 message section must be specified. A subset is possible.

	
TL1PositionalParameterBlock

	
N/A

	
The base structure type for a positional parameter block in a TL1 Response. Position (order) of the child attributes is more important than the name of the attribute. Because position is important, all parameters should be specified, but parameters can be truncated off the end if they are not needed.

Design Studio Extension

This section contains examples and explanations about how to extend certain aspects of the TL1 cartridge. Refer to Network Integrity Developer's Guide for more information. See Network Integrity Concepts for guidelines and best practices for extending cartridges.The following examples are explained in this section:

	
Sending New Commands and Model Results

	
Bypassing the Custom Banner for TL1 Devices

Sending New Commands and Model Results

This example explains how to create a discovery action that sends new commands and model results defined in the command dictionary. In this example, the extending action models the collected data into the Information Model using the TL1Connection and TL1 commands defined in the command dictionary.

To create a discovery action that sends new commands and model results:

	
Open Design Studio in the Design perspective.

	
Create a new cartridge project called SampleTL1.

	
Open the Package Explorer view and expand TL1_Cartridge.

	
Copy buildCommandDocument.xml and buildCommandSchema.xml from the TL1_Cartridge directory and paste them in the SampleTL1 directory.

	
In your SampleTL1 cartridge project, create a Discovery action called Discover Sample TL1 and extend it with the Discover Abstract TL1 action.

	
Create a data dictionary called SampleTL1Commands to hold the TL1 command request and response definitions.

Ending the dictionary name with Commands ensures that it automatically builds with the run script.

	
In SampleTL1Commands, define new TL1 request structures:

	
Each new TL1 request structure must extend the TL1Request structure: select TL1Request from the Base list.

	
Each TL1 request structure name should end with Request so that the run script can generate a correct command template for the requests and responses.

For example, define a structure named rtrv-eqpt-request.

	
Add a child element called AID.

See the Cisco 15454 TL1 reference cartridge for an example command request structure.

	
In SampleTL1Commands, define new TL1 response structures:

	
Each new TL1 response structure must extend the TL1Response structure: select TL1Response from the Base list.

	
Each TL1 response structure name should end with response so that the run script can generate a correct command template for the requests and responses.

For example, define a structure named rtrv-eqpt-response.

See the Cisco 15454 TL1 reference cartridge for an example command response structure.

	
Note:

The response structure must match the response structure being returned by the TL1 agent.

	
Under rtrv-eqpt-response, add a child structure called rtrv-eqpt-line:

	
From the Type list, select TL1ResponseLine.

	
From the Maximum list, select Unbounded.

	
Under rtrv-eqpt-line, add a child structure called rtrv-eqpt-block1:

	
From the Type list, select TL1PositionalParameterBlock.

The position of the response parameter is significant for this block. See "TL1 Response" for more information about child structure types and parameter blocks.

	
Add a child element called AID and set the Type list to String.

	
Continue to add parameter blocks until the response definition resembles Figure 2-5, then save your changes.

Figure 2-5 Response Structure

[image: response definition response structure]

	
Open the Package Explorer view and run the buildCommandSchema.xml Ant script.

The buildCommandSchema.xml file builds the data dictionary schema using XML Beans and creates SampleTL1Commands.jar in the /lib directory.

	
Add SampleTL1Commands.jar to the build path.

	
Run the buildCommandDocument.xml Ant file.

The buildCommandDocument.xml file creates SampleTL1Commands.xml in the /src directory.

	
Open SampleTL1Commands.xml and make note of the commandTemplate field value.

	
Close SampleTL1Commands.xml.

	
Create a command document template by making a copy of SampleTL1Commands.xml and naming it SampleTL1Commands-template.xml.

	
Open SampleTL1Commands-template.xml and modify the CTAG value from $!cmd.CTAG to 12345. Also, delete the requestType and responseType elements because those values are not being overridden.

	
Re-run buildCommandDocument.xml.

	
Open SampleTL1Commands.xml and verify that the commandTemplate field value is set to the version from the command document template.

	
Open the Discover Sample TL1 action editor.

	
On the Processor tab, add a For Each processor after the TL1 Connection Manager processor and select gatewayNEList as the parameter to iterate over. Name the iteration variable neID.

	
Create a new discovery processor named Sample TL1 Collector that creates and sends TL1 requests to collect data. Place it inside the For Each processor.

	
Open the Sample TL1 Collector processor.

	
On the Context Parameters tab and add the following parameters as input:

	
The commandDictionary parameter from the TL1 Property Initializer processor.

	
The tl1Connection parameter from the TL1 Connection Manager processor.

	
The neID parameter from the Discover Sample TL1 processor.

	
Add an output parameter:

	
In the Parameter Name field, enter rtrvEqptResponse.

	
In the Parameter Type field, enter com.oracle.xmlns.communications.sce.dictionary.sampleTL1.sampleTL1Commands.RtrvEqptResponse.

	
On the Details tab, click Implementation Class.

The Java implementation for the processor is created.

	
Add the following code to the invoke method of the implementation class:

try {
 request.getCommandDictionary().addCommandDictionaryDocument(new String[] {"SampleTL1Commands.xml"});

This method adds the commands defined in the XML file to the runtime command dictionary.

	
Add the following code to the invoke method of the implementation class:

RtrvEqptRequest rtrvEqptRequest = RtrvEqptRequest.Factory.newInstance();
 rtrvEqptRequest.setCTAG("1");
 rtrvEqptRequest.setAID("myAID");
 rtrvEqptRequest.setTID("myTID");

 RtrvEqptResponse response = (RtrvEqptResponse)request.getTl1Connection().send(rtrvEqptRequest);

 return new SampleTL1CollectorProcessorResponse(response);

} catch (Exception e) {
 throw new ProcessorException(e);
}

This code creates a new RTRV-EQPT request, sets request arguments, sends the request to the TL1Connection, and gets a response. The RtrvEqptResponse instance is returned by the processor so that subsequent processors can use the value.

	
Open the Discover Sample TL1 action editor.

	
Create a new discovery processor called Sample TL1 Modeler to model the TL1 response data output from the Sample TL1 Collector processor. Place it in the For Each processor after the Sample TL1 Collector processor.

	
Open the Sample TL1 Modeler processor to the Context Parameters tab.

	
Add rtrvEqptResponse from the Sample TL1 Collector processor as an input parameter.

	
Design an implementation for the Sample TL1 Modeler processor that converts the TL1 responses to the Oracle Communications Information Model.

	
Build, deploy, and test your cartridge.

The new processors are run in the order shown in Figure 2-6.

Figure 2-6 Sending New Commands and Modeling Results Processor Workflow

[image: Description of Figure 2-6 follows]

Bypassing the Custom Banner for TL1 Devices

Certain TL1 devices display a banner after connecting, which is not handled by the default WebNMS telnet implementation. This example explains how to create a discovery action that extends the Discover TL1 action to bypass the custom banner.

For information about the WebNMS TL1 API specification, see the WebNMS documentation.

To bypass the custom banner for TL1 devices:

	
Create a new discovery action that extends the Discover TL1 action.

	
Create a new discovery processor called TL1 Connection Customizer Initializer. Place it before the TL1 Connection Manager processor.

	
Implement a WebNMS TL1 ConnectionHandler class, SkipBannerConnectionHandler. In the postConnect method, get the transport provider from the TL1Session and issue appropriate reads to bypass the banner.

	
In the new processor, register your customizer:

properties.setConnectionCustomizer(new Customizer() {
 @Override
 public void customize(TL1Connection connection) {
 connection.setConnectionHandler(new SkipBannerConnectionHandler());
 }

	
Build, deploy, and test your cartridge.

The new processor is run in the order shown in Figure 2-7.

Figure 2-7 TL1 Connection Customizer Extension Cartridge Workflow

[image: Description of Figure 2-7 follows]

3 About the Cisco ONS 15454 TL1 Reference Cartridge

This chapter describes the functionality and design of the Oracle Communications Network Integrity Cisco ONS 15454 SONET TL1 reference cartridge (Cisco 15454 TL1 reference cartridge) and how to use and build the cartridge.

About Actions and Processors

The Cisco 15454 TL1 reference cartridge contains the Discover Cisco 15454 TL1 action. The Discover Cisco 15454 TL1 action discovers Cisco 15454 TL1 devices in your network. This discovery action extends the Discover Abstract TL1 action to establish the TL1 connection and set the TL1 properties.

The Discover Cisco 15454 TL1 action scans devices and provides a physical hierarchical model of the discovered data. This cartridge is designed to discover Cisco ONS 15454 SONET devices only. The scan fails if you use this cartridge to discover non-Cisco or other Cisco devices.

This discovery action inherits all the processors from the Discover Abstract TL1 actions. For more information about the inherited processors, see "About the TL1 Cartridge".

The Discover Cisco 15454 TL1 action contains the following processors run in the following order:

	
TL1 Property Initializer (inherited)

	
TL1 Property Customizer (inherited)

	
TL1 Connection Manager (inherited)

	
Cisco 15454 TL1 Device Collector

	
Cisco 15454 TL1 Device Modeler

	
Cisco 15454 TL1 Device Persister

Figure 3-1 illustrates the processor workflow of the Discover Cisco 15454 TL1 action.

Figure 3-1 Discover Cisco 15454 TL1 Action Processors Workflow

[image: Description of Figure 3-1 follows]

Cisco 15454 TL1 Device Collector

This processor retrieves the device data using TL1 protocol and makes it available for modeling. This processor runs four TL1 commands for each device.

	
RTRV-NETYPE: to get network element (NE) level details.

	
RTRV-NE-GEN: to get NE level details.

	
RTRV-INV: to get card level details.

	
RTRV-EQPT: to get card level details.

Cisco 15454 TL1 Device Modeler

This processor models the data collected by the Cisco 15454 TL1 Device Collector processor, building the hierarchical relationship for physical devices and children equipment, equipment holders, and physical ports.

Cisco 15454 TL1 Device Persister

The Cisco 15454 TL1 Device Persister persists the physical device tree to the Network Integrity database.

About Collected Data

This section discusses the data that is collected for modeling, listing, and explaining each request and response command.

Equipment Collection

This section shows the TL1 request definition and sample TL1 responses that the processors could receive from a device.

The RTRV-NETYPE request resembles the following example:

RTRV-NETYPE:[<TID>]::<CTAG>;

The RTRV-NETYPE response line is made up of a positional parameter block with the following format:

SID DATE TIME
M CTAG COMPLD
"<VENDOR>,<MODEL>,<NETYPE>,<SW_ISSUE>"
;

Example 3-1 shows an example RTRV-NETYPE response.

Example 3-1 RTRV-NETYPE Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
"CISCO,ONS15454,ADM&MSPP&MSTP,5.00.00"
;

The RTRV-NE-GEN request resembles the following example:

RTRV-NE-GEN:[<TID>]::<CTAG>;

The RTRV-NE-GEN response line is made up of one named parameter block with the following format:

SID DATE TIME
M CTAG COMPLD
"[IPADDR=<IPADDR>],[IPMASK=<IPMASK>],[DEFRTR=<DEFRTR>],[IPV6ADDR=<ipv6addr>],[IPV6PREFLEN=<ipv6preflen>],[IPV6DEFRTR=<ipv6defrtr>],[IPV6ENABLE=<ipv6enable>],[IIOPPORT=<IIOPPORT>],[NTP=<NTP>],[NAME=<NAME>],[SWVER=<SWVER>],[LOAD=<LOAD>],[PROTSWVER=<PROTSWVER>],[PROTLOAD=<PROTLOAD>],[DEFDESC=<DEFDESC>],[PLATFORM=<PLATFORM>],[SECUMODE=<SECUMODE>],[SUPPRESSIP=<SUPPRESSIP>],[MODE=<MODE>],[MSPUBVLANID=<MSPUBVLANID>],[MSINTLVLANID=<MSINTLVLANID>],[AUTOPM=<AUTOPM>],[SERIALPORTECHO=<SERIALPORTECHO>],[OSIROUTINGMODE=<OSIROUTINGMODE>],[OSIL1BUFSIZE=<OSIL1BUFSIZE>],[OSIL2BUFSIZE=<OSIL2BUFSIZE>], [NET=<NET>] >],[BKUPNTP=<BKUPNTP>]"
;

Example 3-2 shows an example RTRV-NE-GEN response.

Example 3-2 RTRV-NE-GEN Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
IPADDR=192.168.100.52,IPMASK=255.255.255.0,DEFRTR=192.168.100.1,IPV6ADDR="[3ffe:0501:0008:0000:0260:97ff:fe40:efab]",IPV6PREFLEN=64,IPV6DEFRTR="[3ffe:0501:0008:0000:0260:97ff:fe40:e000]",IPV6ENABLE=NO,IIOPPORT=57970,NTP=192.168.100.52,NAME="NODENAME",SWVER=2.01.03,LOAD=02.13-E09A-08.15,PROTSWVER=2.01.02,PROTLOAD=02.12-E09A-09.25,DEFDESC=\"NE DEFAULTS FEATURE\",PLATFORM=15454-ANSI,SECUMODE=NORMAL,SUPPRESSIP=YES,PROXYSRV=N,FIREWALL=N,MSPUBVLANID=1,MSINTLVLANID=2,AUTOPM=NO,SERIALPORTECHO=Y,OSIROUTINGMODE=ES,OSIL1BUFSIZE=512,OSIL2BUFSIZE=512"
;

The RTRV-INV request resembles the following example:

RTRV-INV:[<TID>]:<AID>:<CTAG>[::::];

The RTRV-INV response line is made up of three parameter blocks: a positional block, followed by an empty block, followed by a named block. The response line has the following format:

SID DATE TIME
M CTAG COMPLD
"<AID>,<AIDTYPE>::[PLUGTYPE=<PLUGTYPE>],[PN=<PN>],[HWREV=<HWREV>],[FWREV=<FWREV>],[SN=<SN>],[CLEI=<CLEI>],[TWL=<TWL>],[PLUGINVENDORID=<PLUGINVENDORID>],[PLUGINPN=<PLUGINPN>],[PLUGINHWREV=<PLUGINWREV>],[PLUGINFWREV=<PLUGINFWREV>],[PLUGINSN=<PLUGINSN>],[ILOSSREF=<ILOSSREF>],[PID=<PID>],[VID=<VID>],[FPGA=<FPGA>],[MODULETYPE=<MODULETYPE>]"
;

Example 3-3 shows an example RTRV-INV response.

Example 3-3 RTRV-INV Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
"SLOT-15,OC3-IR-4::PLUGTYPE=SX-IR-SW-SN,PN=87-31-00002,HWREV=004K,FWREV=76-99-00009-004A,SN=013510,CLEI=NOCLEI,TWL1=1546.12,TWL2=1546.92,TWL3=1547.72,TWL4=1548.51,PLUGINVENDORID=012345,PLUGINPN=ABCDE,PLUGINHWREV=ABCDE,PLUGINFWREV=01-02-03,PLUGINSN=01234,ILOSSREF=1.0,PID=CISCO_ONS15454,VID=V01,FPGA=F451,MODULETYPE=101"
;

The RTRV-EQPT request resembles the following example:

RTRV-EQPT:[<TID>]:<AID>:<CTAG>[::::];

The RTRV-EQPT response line is made up of four parameter blocks:

	
Block 1 uses the TL1PositionalParameterBlock format and models the following element:

	
AID

	
Block 2 uses the TL1PositionalParameterBlock format and models the following elements:

	
AIDTYPE

	
EQUIP

	
ROLE

	
STATUS

	
Block 3 uses the TL1NamesParameterBlock format. This block does not need to model any values. The CARDNAME element is modeled in this block as a container.

	
Block 4 uses the TL1PositionalParameterBlock format and models the following element:

	
PST

	
SST

The response line has the following format:

SID DATE TIME
M CTAG COMPLD
"<AID>:<AIDTYPE>,<EQUIP>,[<ROLE>],[<STATUS>]:[<PROTID>],[<PRTYPE>],[<RVRTV>],[<RVTM>],[<CARDNAME>],[<IOSCFG>],[<CARDMODE>],[<PEERID>],[<REGENNAME>],[<PEERNAME>],[<TRANSMODE>],[<RETIME>],[<SHELFROLE>],[<FRPROLE>],[<FRPSTATE>],[<FRPHOLDOFFTIME>],[<ADMINCVLAN>],[<ADMINSVLAN>],[<CFMSTATE>],[<CCTIMER>],[<SWITCHWITHCRCALARM>],[<CRCTHR>],[<CRCPOLLINTRVL>],[<CRCSOAKCOUNT>]:<PST>,[<SST>]"
;

	
Note:

This format, taken from Cisco documentation, does not show the third parameter block as named block, but is inferred from the example response provided.

Example 3-4 shows an example RTRV-EQPT response.

Example 3-4 RTRV-EQPT Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
"SLOT-1:10GE-XP,UNEQUIP,,NA:CARDMODE=10GEXP-L2ETH,FRPROLE=SLAVE,FRPSTATE=DISABLED,FRPHOLDOFFTIME=DISABLED,ADMINCVLAN=0,ADMINSVLAN=0,CFMSTATE=N,CCTIMER=ONE-SEC,SWITCHWITHCRCALARM=Y,CRCTHR=10E-2,CRCPOLLINTRVL=60,CRCSOAKCNT=10:OOS-AU,AINS&UEQ"
"SLOT-2:GE-XP,UNEQUIP,,NA:CARDMODE=GEXP-L2ETH,FRPROLE=SLAVE,FRPSTATE=DISABLED,FRPHOLDOFFTIME=DISABLED,ADMINCVLAN=0,ADMINSVLAN=0,CFMSTATE=N,CCTIMER=ONE-SEC,SWITCHWITHCRCALARM=Y,CRCTHR=10E-2,CRCPOLLINTRVL=60,CRCSOAKCNT=10:OOS-AU,AINS&UEQ"
;

About Cartridge Modeling

The Cisco 15454 TL1 reference cartridge models collected data according to the Information Model. Collected data is modeled into the following entities:

	
PhysicalDevice

	
Equipment

	
PhysicalPort

	
EquipmentHolder

Static field model entities are compliant with version 1.0.1 of the Information Model. Dynamic field model entities are application specific.

Field Mapping

The following tables explain the field mappings for each Information Model object.

	
Table 3-1, "Physical Device Field Mapping"

	
Table 3-2, "Equipment (Shelf) Field Mapping"

	
Table 3-3, "Equipment (Card) Field Mapping"

	
Table 3-4, "Equipment Holder Field Mapping"

	
Table 3-5, "Physical Port Field Mapping"

Table 3-1 Physical Device Field Mapping

	Information Model Attribute	Information Model Support	TL1 Data Source	Type
	
ID

	
Static

	
N/A

	
String

	
Name

	
Static

	
RTRV-NE-GEN: NAME

	
String

	
Description

	
Static

	
RTRV-NE-GEN: DEFDESC

	
String

	
Serial Number

	
Static

	
N/A

	
String

	
Native EMS Name

	
Static

	
RTRV-NE-GEN: NAME

	
String

	
Physical Location

	
Static

	
N/A

	
String

	
Software Version

	
Dynamic

	
RTRV-NE-GEN: SWVER

	
String

	
Protect Software Version

	
Dynamic

	
RTRV-NE-GEN: PROTSWVER

	
String

	
Model Name

	
Dynamic

	
RTRV-NETYPE: MODEL

	
String

Values: ONS15454, ONS15600, Unknown

	
NE Type

	
Dynamic

	
RTRV-NETYPE: NETYPE

	
String

Values: ADM, DCS, MSPP, MSTP

	
Discovered Vendor Name

	
Dynamic

	
RTRV-NETYPE: VENDOR

	
String

Table 3-2 Equipment (Shelf) Field Mapping

	Information Model Attribute	Information Model Support	TL1 Data Source	Type
	
ID

	
Static

	
N/A

	
String

	
Name

	
Static

	
N/A

	
String

Programatically generated.

	
Description

	
Static

	
N/A

	
String

	
Serial Number

	
Static

	
N/A

	
String

	
Native EMS Name

	
Static

	
N/A

	
String

Programatically generated.

	
Physical Location

	
Static

	
N/A

	
String

	
Note:

A shelf is not an entity that can be directly discovered. Therefore, shelves do not have any characteristics defined beyond the existing entity attributes.

Table 3-3 Equipment (Card) Field Mapping

	Information Model Attribute	Information Model Support	TL1 Data Source	Type
	
ID

	
Static

	
N/A

	
String

	
Name

	
Static

	
RTRV-INV: AIDTYPE

	
String

	
Description

	
Static

	
N/A

	
String

	
Serial Number

	
Static

	
RTRV-INV: SN

	
String

	
Native EMS Name

	
Static

	
RTRV-INV: AIDTYPE

	
String

	
Physical Location

	
Static

	
N/A

	
String

	
Discovered Part Number

	
Dynamic

	
RTRV-INV: PN

	
String

	
Firmware Revision

	
Dynamic

	
RTRV-INV: FWREV

	
String

	
Hardware Revision

	
Dynamic

	
RTRV-INV: HWREV

	
String

	
Note:

Equipment is modeled only if RTRV-EQPT:EQUIP for that equipment is set to EQUIP.
Although the TL1 <AID> field is not modeled, it is used to determine the slot the equipment is mounted in.

Table 3-4 Equipment Holder Field Mapping

	Information Model Attribute	Information Model Support	TL1 Data Source	Type
	
ID

	
Static

	
N/A

	
String

	
Name

	
Static

	
N/A

	
String

Programmatically generated. SLOT-# to match the RTRV-INV: AID values.

	
Description

	
Static

	
N/A

	
String

	
Serial Number

	
Static

	
N/A

	
String

	
Native EMS Name

	
Static

	
N/A

	
String

Programmatically generated. SLOT-# to match the RTRV-INV: AID values.

	
Physical Location

	
Static

	
N/A

	
String

	
Note:

Equipment holders cannot be discovered directly, so they are automatically created and populated. Because the cartridge is for a Cisco ONS 15454 SONET device, the cartridge will create the shelf with 17 slots ready to be populated with card equipment. For other models, a mapping file can be used to list how many slots each model has based on the RTRV-NETYPE: MODEL field.
Because equipment holders are not discoverable, they are created without a specification.

Table 3-5 Physical Port Field Mapping

	Information Model Attribute	Information Model Support	TL1 Data Source	Type
	
ID

	
Static

	
N/A

	
String

	
Name

	
Static

	
N/A

	
String

	
Description

	
Static

	
N/A

	
String

	
Serial Number

	
Static

	
N/A

	
String

	
Native EMS Name

	
Static

	
N/A

	
String

	
Physical Location

	
Static

	
N/A

	
String

	
Port Number

	
Static

	
N/A

	
String

	
Custom Port Name

	
Static

	
N/A

	
String

	
Note:

Physical ports cannot be discovered directly, so they are automatically created and populated using the value provided in the Cisco15454Cards property group that maps card types to the number of ports. No ports are created on the parent card if no entry exists in the property group.

Model Correction

Model correction occurs when the TL1 information received through discovery does not conform to the Information Model or is incomplete and therefore cannot be saved to the Network Integrity database.

The Cisco 15454 TL1 reference cartridge applies model corrections in the following cases:

	
Missing EquipmentHolder under Equipment: TL1 does not directly discover slots. EquipmentHolder entities are created automatically under the shelf of the Cisco 15454. Because this Cisco 15454 shelf is specific to a model, the cartridge creates the 17 slots automatically.

	
Missing Equipment (Shelf) under PhysicalDevice: TL1 does not discover card and node level details. The existence of a shelf is not explicit and must be derived.

	
Missing PhysicalPort under Equipment: TL1 does not directly discover ports. PhysicalPort entities are created automatically under the cards of the Cisco 15454 depending on configured property values, as shown in the example below:

PhysicalDevice (Cisco 15454 Physical Device)
 Equipment (Cisco 15454 Shelf)
 EquipmentHolder (Specificationless entity)
 Equipment (Cisco 15454 Card)
 PhysicalPort (Specificationless entity)

Using the Cisco 15454 TL1 Reference Cartridge

This section describes how to use the Cisco 15454 TL1 reference cartridge.

Setting Up a Scan

The Cisco 15454 TL1 reference cartridge does not introduce any new scan parameter groups. Because the Cisco 15454 TL1 reference cartridge extends the TL1 cartridge, the configurable scan parameter groups are those from the TL1 cartridge.

TL1 Gateway Discovery

The Cisco ONS 15454 SONET device can act as a TL1 gateway, through which the Cisco 15454 TL1 reference cartridge can discover other devices connected to the gateway. When discovering a TL1 gateway, you can configure and filter the list of returned NEs in the Network Integrity UI.

To discover TL1 devices through a Cisco ONS 15454 SONET TL1 gateway, create a TL1 discovery scan in the same way that you create a discovery scan for TL1 devices. See "Using the TL1 Cartridge" for the procedure. When setting the values in the General tab in the Scan Action Parameters area, do the following to set the Advanced TL1 scan parameter groups:

	
Set the Gateway Discovery list to True.

	
In the Gateway NE List Command field, enter the following TL1 request: RTRV-MAP-NETWORK:[<TID>]::<CTAG>;.

The RTRV-MAP-NETWORK request collects the list of devices that are in the span of control of the device that is acting as a TL1 gateway.

	
In the Gateway Response ID Section field, enter 0.

	
In the Gateway Response ID field, enter 1.

The response line has the following format:

SID DATE TIME
M CTAG COMPLD
"<IPADDR>,<NODENAME>,<PRODUCT>"
;

Example 3-5 shows an example RTRV-MAP-NETWORK response.

Example 3-5 RTRV-MAP-NETWORK Response Example

TID-000 1998-06-20 14:30:00
M 001 COMPLD
"172.20.222.225,TID-000,15454"
;

Property Groups

The Cisco 15454 TL1 reference cartridge uses a property group called Cisco15454Cards as a mapping table for the modeling processor to create physical ports on the cards. You can modify, add, or remove properties in this property group using the Enterprise Manager MBean Browser.

In the MBean Browser, this property group is found at the following location:

Discover Cisco 15454 TL1:Cisco 15454 TL1 Device Modeler:Cisco15454Cards

See Network Integrity System Administrator's Guide for more information about property groups and the MBean Browser.

Table 3-6 shows the preconfigured values for the Cisco15454Cards property group.

Table 3-6 Cisco15454Cards Property Group Values

	Name	Example Value
	
OC3IR4

	
4

	
10GEXP

	
4

The discovered card name is taken from the AIDTYPE field in the RTRV-INV TL1 response. When adding new entries, remove spaces and dashes from the card name. For example, if the AIDTYPE is OC3-IR-4, enter the name in the property group as OC3IR4.

If the AIDTYPE of a card cannot be found in the table, no physical port is created under the card.

Discovered Results

Discovered results have a result group for each device.

Table 3-7 lists the specifications that are used to model entities discovered by the Cisco 15454 TL1 reference cartridge in the Information Model.

Table 3-7 Cisco 15454 TL1 Reference Cartridge Discovery Specifications

	Specification	Information Model Entity
	
Cisco 15454 Physical Device

	
PhysicalDevice

	
Cisco 15454 Shelf

	
Equipment

	
Cisco 15454 Card

	
Equipment

The tree below shows the hierarchy of the modeled devices:

PhysicalDevice (Cisco 15454 Physical Device)
 Equipment (Cisco 15454 Shelf)
 EquipmentHolder (Specificationless entity)
 Equipment (Cisco 15454 Card)
 PhysicalPort (Specificationless entity)

Physical device and shelf entities are modeled explicitly as Cisco model-specific specifications.

Cards are modeled using a generic Cisco 15454 card specification, instead of a card-specific specification. Depending on the inventory system used, you might want to explicitly model each card type as a specification.

Equipment holder (slot) entities are modeled without a specification because slots are not directly discoverable. Therefore, no parameters beyond the base entity attributes are populated. Because a slot is not a physical object, there is no need to explicitly define a specification for it. By creating a slot without a specification, you can extend the cartridge to assign any custom specification you require.

Ports are not directly discoverable. You can use and develop a property group to model ports on cards. See "Property Groups" for more information.

Figure 3-2 shows a sample set of discovered data from the Cisco 15454 TL1 reference cartridge.

Figure 3-2 Sample Discovery Data From Cisco 15454 TL1 Reference Cartridge

[image: Description of Figure 3-2 follows]

Design Studio Construction

This section provides information about the composition of the TL1 cartridge from the Oracle Communications Design Studio perspective.

Model Collections

Table 3-8 shows the Design Studio construction of the Cisco 15454 model collection.

Table 3-8 Cisco 15454 Model Collection

	Specification Name	Information Model Entity Type
	
Cisco 15454 Physical Device

	
PhysicalDevice

	
Cisco 15454 Shelf

	
Equipment

	
Cisco 15454 Card

	
Equipment

Actions

The following tables outline the Design Studio construction of the Cisco 15454 TL1 reference cartridge actions and associated components:

	
Table 3-9, "TL1 Cartridge Actions"

	
Table 3-10, "TL1 Cartridge Processors"

	
Table 3-11, "Property Groups"

Table 3-9 TL1 Cartridge Actions

	Action Name	Result Category	Address Handler	Scan Parameter Groups	Processors
	
Discover Cisco 15454 TL1

	
Device

	
IPAddressHandler

	
TL1 cartridge parameters. See Table 2-3 and Table 2-4.

	
	
TL1 Property Initializer

	
TL1 Property Customizer

	
TL1 Connection Manager

	
Cisco 15454 TL1 Device Collector

	
Cisco 15454 TL1 Device Modeler

	
Cisco 15454 TL1 Device Persister

Table 3-10 TL1 Cartridge Processors

	Processor Name	Variable
	
TL1 Property Initializer

	
See "About the TL1 Cartridge" for more information.

	
TL1 Connection Manager

	
See "About the TL1 Cartridge" for more information.

	
TL1 Property Customizer

	
See "About the TL1 Cartridge" for more information.

	
Cisco 15454 TL1 Device Collector

	
Input:

	
neName

The name of the NE returned from the gateway command.

	
tl1Connection

	
gatewayNEDataMap

	
tl1Properties

	
commandDictionary

Output:

	
eqptResponse

The response from RTRV-EQPT.

	
invResponse

The response from RTRV-INV.

	
netypeResponse

The response from RTRV-NEYPE.

	
negenResponse

The response from RTRV-NE-GEN.

	
Cisco 15454 TL1 Device Modeler

	
Input: neName, gatewayNEDataMap, eqtResponse, invResponse, netypeResponse, negenResponse

Output: physicalTree

	
Cisco 15454 TL1 Device Persister

	
Input: physicalTree

Output: N/A

Table 3-11 Property Groups

	Property Group	Type	Property	Processor
	
Cisco15454Cards

	
Managed and Map

	
OC3IR4

	
Cisco 15454 TL1 Device Modeler

	
Cisco15454Cards

	
Managed and Map

	
10GEXP

	
Cisco 15454 TL1 Device Modeler

Design Studio Extension

The source code to this cartridge is provided. You can change any part of the code to customize this cartridge to fit your environment, or you can use the code as an example on which to model your own custom TL1 device cartridge.

For more information about extensibility, see Network Integrity Developer's Guide and Network Integrity Concepts.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
[image: Oracle Logo]
OEBPS/img/disco_tl1_abs.gif

OEBPS/img/tl1_data_dict_rtrv_eq_def.gif
8 myTLL 53 =8

[Data Schema : myTL1 [o3e)
———
Type (Al] | Details| Activation | 05M| Tags | Usage | Information
Filter % | 1ype TUiRequest | % [select..
< gt || g e Siucre 5
™
48 CTAG From B BaseTL1Commands
w < AD Name trv-eqpt request
" ' Display Name Retrieve Equipment Request [defaut] ~
Path Jrtr-eqpt-request
Namespace [hitp://umins oracle.com) communications/sce/dictionary/myTLL/myTLL
Multplicity

© Required ® Optional () Range

M [T

OEBPS/img/tl1_data_dict_ext_wf.gif

OEBPS/img/tl1_resp_structure.gif
b U rtrv-eqpt-request
+ T tr-eqpt-response
<3 timestamp
<45 S0
4R CTAG
4% completionCode
43 errorTet
PR pr——
P p——
< AD
4 T rrv-eqpt-block
43 AIDTYPE
<5 EQuIP
43 ROLE
&Y STATUS
4 T rv-eqptblock3
43 CARDNAME
4 T rtrv-eqpt-blockd
<5 PST
&€y SST

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Communications
Network Integrity TL1
Cartridge Guide, Release
7.3.2

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Communications
Network Integrity TL1
Cartridge Guide, Release
7.3.2

OEBPS/img/disco_tl1_abs_base.gif
ol

OEBPS/img/tl1_cisco15454_tree.gif
Entity Tree for: NODE10.0.0.34 (Device) @ Entity Detail @

[
Entity Name.
| NODEL0.0.0.34
) SHELF-L
E5l01-1
£10C3 R4
PORT-0
PORT-1
PORT-2.

sLor-18

Atributes
Name
Entity Type i
isca 15454 Physical Device Description
Cisca 15454 Shelf Ntive EVIS Name.
Equpment Holder Setial Number

Physical Location

(Csco 15454 Card Protect Software Versian

Physical ort Software Version
Physical Port ModelHame
Physical Port Discovered Vendor Name
Physical Port NEType
Equipment Holder Relationships

Equipment Holder Chid Physical Devices
Eauipment Holder L9

Eauipment Holder Mapped Device Interfaces
Eauipment Holder None

Eauipment Holder Physical Comnectors
Eauipment Holder Hore

Eauipment Holder Physical Ports

Eauipment Holder Hone:

Epment Holder { rois

Eauipment Holder Hone

Eauipment Holder Mapped LogicalDevice
Eauipment Holder Hone

Eauipment Holder Equipments

Eaupment Holder SHELF-1(Cisco 1545+ Shelf)
Eauipment Holder Places

Equipment Holder i

NODELD.0.0.34

E DEFALLTS FEATURE
NODELD.0.0.34

20102
20105
Ohsi54se

asco
ADMENSPPEMSTP

OEBPS/img/tl1_data_dict_const1.gif
8 myTLL 53 |

=0

[Data Schema : myTL1

[o)C)

Description myTLL

s ctvation] O5M Tos Usoge]nfomaton

TUiResponse

Tupe
Primitive Type
From
Name

Structure

) BoseTL1Commands

irv-eqpt-response

Retreve Equipment Responsd]

Jrtrv-eqpt-response

hitp://xins.oracle.com/communications/sce/dictionary|

OEBPS/dcommon/oracle.gif

OEBPS/img/tl1_ref_processor_wf.gif
))))))

Fl g 3 3 5 5
] g H £ k] c
: I -
g ; g R
ERE- - - -

OEBPS/img/tl1_byp_cust_ban.gif
19Seuely uopdaUUO) T1L

U] J9ZIWOISND UORIBUUOD T1L

19ziwoysn) Aysadoud T1L

