
Oracle Commerce
MDEX Engine Partial Updates Guide

Version 6.5.2 • October 2015

Contents
Preface..7
About this guide..7
Who should use this guide...7
Conventions used in this guide..7
Contacting Oracle Support...7

Chapter 1: Types of Updates...9
Updates processed by the MDEX Engine..9
About baseline updates..9

Baseline update processing..10
Speeding up baseline updates..10

About partial updates...10
About delta updates...11
Which update to run...11

Chapter 2: Partial Updates Processing and Requirements...........................13
Introduction to partial updates..13
Partial update capabilities..13
Introduction to partial updates processing...14
MDEX Engine processing for partial updates..15

Continuous query..15
Continuous query processing and administrative queries..16
The dgraph_input directory...17
The dgraph_input/updates directory...17

Requirements for baseline and partial updates..18
General requirements for partial and baseline updates..18
Adding new leaf dimension values to records in partial updates ...18
Record specifier attribute required for partial updates..19

Chapter 3: MDEX Engine Configuration and Processing...............................21
Enabling the MDEX Engine for partial updates..21

MDEX Engine Thread Requirements for Partial Updates...21
Processing the partial update files...22
Running updates on a single file..22
Setting the merge policy...23

Dgraph mergepolicy flag...24
URL mergepolicy command..24

Listing the update files that were processed..25

Chapter 4: Partial Updates Pipeline..27
About the partial update pipeline..27
Configuring a partial update pipeline..28
Creating the record adapter...29
Creating the record manipulator...29
About the IF expression for the record manipulator...30
About the UPDATE_RECORD expression..31

Expression nodes supported by the UPDATE_RECORD expression..32
Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes..33
UPDATE_RECORD expression reference examples...34

Format of update records...35
Dimension components..36
Naming format of update source data files..36
Naming format of partial update files...37

Examples of numeric-lexicographic and simple lexicographic order..37
Index configuration in the partial update pipeline...37

iii

Chapter 5: Backing Up Baseline and Partial Updates....................................39
Types of backups...39

About baseline backups..39
About snapshot backups...39
About incremental backups...40

Backup recommendations..40
Recovering the index..40

Chapter 6: Troubleshooting Partial Updates...43
Pipeline troubleshooting recommendations...43
Troubleshooting update operations that fail...44
UPDATE_RECORD errors...44
The Dgraph checks permissions on the index directories..45
Performance impact of partial updates..45

Oracle Commerceiv

Copyright and disclaimer

Copyright © 2003, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth
in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible

v

for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers that have purchased support have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Commercevi

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide
This guide describes the different types of updates and how to configure and run a partial update.

It assumes that you have read theOracle Commerce Guided Search Concepts Guide and theOracle Commerce
Guided Search Getting Started Guide and are familiar with the terminology and basic concepts.

Who should use this guide
This guide is intended for developers who are creating Forge pipelines that run partial updates.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

Oracle Commerce MDEX Engine Partial Updates Guide

| Preface8

https://support.oracle.com

Chapter 1

Types of Updates

This section gives an overview of the different types of updates of your Oracle Commerce Guide Search
installation.

Updates processed by the MDEX Engine
The MDEX Engine processes three types of updates. While this topic introduces all three types of updates,
this guide focuses on partial updates.

• Baseline updates. Baseline updates (also called full updates) include reindexing of the data and require
stopping and restarting the MDEX Engine.

• Delta updates. Delta updates are a variation of baseline updates. In delta updates, only added, updated,
or removed source records (and not all source records) are joined in the Forge pipeline with the output of
the previous baseline update. Delta updates require stopping and restarting the MDEX Engine.

• Partial updates. Partial updates are incremental changes to the data set in the MDEX Engine. Partial
updates run in a perpetual mode (that is, they do not require the MDEX Engine to be restarted) and therefor
are referred to as perpetual partial updates.

Related Links
MDEX Engine processing for partial updates on page 15

At a high level, the MDEX Engine performs the following operations.

About baseline updates
A baseline update produces a complete re-indexing of the entire data set. It runs the update process for the
whole data set.

In your baseline update pipeline, you can add, change, or remove records, dimensions, dimension values, and
properties. In addition, configuration changes, such as dimension reordering or stop word changes require a
baseline update.

In many implementations, you can run baseline updates nightly and use this method as your update strategy,
skipping other types of updates. For small to medium-sized data sets, baselines can be run frequently, as often
as every few minutes.

Alternatively, you can run as many partial updates as needed for those changes that can be done through
partial updates, and periodically run baseline updates for those changes that require a baseline update.

Baseline update processing
In the baseline update process, Forge takes as its input the data from the pipeline configuration files and all
the source data.

As a result of ITL processing, the index is created. A copy of the index is added to the dgraph_input directory.
(The directory name used here is arbitrary and is provided as an example only. You can specify your own
name for this directory.) This is the index that the Dgraph takes as its input to start processing queries.

Note: The MDEX Engine modifies the dgraph_input directory with the information received from each
successfully applied partial update. That is, this directory is not only read by the MDEX Engine upon a
restart (after a baseline update), but is also modified by the MDEX Engine at run time.

Speeding up baseline updates
There are several techniques for speeding up the baseline update process.

• Speeding up the extraction process by using the Endeca Content Acquisition System (CAS) to enable
multithreaded document conversion, for example, from PDF or Word.

• Speeding up the indexing time during a baseline update by:
• Analyzing your pipeline for any preprocessing steps that can be reused, such as Perl scripts or large

joins.
• Analyzing the incoming data for the presence of any unnecessary wildcarding.

About partial updates
A partial update is a change in the overall data set that does not require restarting the MDEX Engine. Partial
updates allow you to update only those portions of the MDEX Engine index that have changed since the last
baseline update.

Related Links
Partial Updates Processing and Requirements on page 13

This section describes how partial updates work and the requirements for source data and the pipeline.

Oracle Commerce MDEX Engine Partial Updates Guide

Types of Updates | About partial updates10

About delta updates
A delta update produces a full baseline index, similar to the baseline update, but does so by joining a smaller
extraction of source data (only the added, updated, or removed source records) with the output from the
previous baseline update.

A delta update could be an option for you when you need to reduce the time required for loading the source
data repository and for extracting the data.

For more information on delta updates and when to use them, see the knowledge base article Implementing
Delta Updates available from My Oracle Support.

Note: Starting with version 6.0, the MDEX Engine can accommodate high volumes of changed data
during partial updates without significant performance degradation. Therefore, implementing a delta
updates pipeline may no longer be worthwhile. Instead, you can run as many partial updates as needed
for those changes that can be done through partial updates, and periodically run baseline updates for
those changes that require a baseline update.

Which update to run
In your project, you can have changes to the source data, or changes to the project configuration, such as
changes to the way you order or organize dimensions. Depending on the type of changes you make to the
source data and to the project configuration, your implementation may require a different type of update.

Baseline and delta updates let you implement all types of changes, both to the source data and to the project
configuration, but can be time consuming. A partial update is faster and lets you implement a number of the
source data changes but not project configuration changes, such as dimension reordering. For these types of
changes, periodically run baseline updates.

Partial updates with high turnover and high frequency perform fast. High turnover means that a large portion
of data can be updated or deleted. Any mix of add, delete, and update operations on a large number of records
is handled gracefully during partial updates.

In addition, you can combine record updates into larger batches. Running such large-batch partial updates
results in better overall throughput for the MDEX Engine.

Oracle Commerce MDEX Engine Partial Updates Guide

11Types of Updates | About delta updates

Chapter 2

Partial Updates Processing and Requirements

This section describes how partial updates work and the requirements for source data and the pipeline.

Introduction to partial updates
A partial update modifies only those portions of the MDEX Engine index that have changed since the last
baseline update. Partial updates can affect any number of records in the system, and the update may be run
frequently. A partial update does not require restarting the MDEX Engine.

The MDEX Engine processes partial updates concurrently with processing incoming queries. This function is
also known as continuous query.

A partial update lets you implement a number of the source data changes, but does not affect project
configuration. For project configuration changes, run a baseline update. Even if you are only making source
data changes, keep in mind that some configuration information that is derived from the data, such as dictionary
or wildcarding information, can become outdated. Therefore, to keep dictionaries up-to-date, periodically run
baseline updates.

Interaction with the Deployment Template

Oracle recommends using the Deployment Template, which is available as a download from the Oracle
Technology Network. An EAC partial update script is created and managed for you when you use the Deployment
Template; you can change this script to suit your needs. You can also create your own partial update script in
the Endeca Application Controller (EAC) environment and provision it to the EAC using Workbench.

Partial update capabilities
Partial updates can perform a limited number of operations listed below.

Supported operations

You can perform the following actions with partial updates or while running partial updates:
• Add new dimensions values. Specifically, you can add the following features to dimension values:

• Add new dimension values that include dimension value properties (including Dgraph.Spec properties).
• Add synonyms to a new leaf dimension value, when you are adding this dimension value. (One synonym

name can be used as a synonym for multiple dimension values.)

• Add new leaf dimension values that have been created as a result of Term Discovery extraction.

• Add an entirely new record with a new set of property values and dimension values to an existing index.
• Remove a specific record from an existing index.
• Modify selected property and dimension values in an existing record.

Note: When you remove a record or modify property and dimension values for the record, the
dimension values that are no longer associated with any records remain in the system.

• Update an existing record, selectively adding and removing dimension and property values. Specifically,
you can:

• Add property values to a record.
• Remove all property values of a property from a record.
• Add leaf dimension values (but not mid-hierarchy values) to a record.
• Remove specific dimension values from a record.
• Remove all dimension values of a dimension from a record.
• Add new auto-generated dimension values to an existing dimension.
• Update spelling dictionaries. Use the admin?op=updateaspell operation to update the spelling

dictionary while running partial updates.

Note: Use the baseline update for these operations.

Unsupported operations

You cannot do the following actions with partial updates or while running partial updates:
• Add new dimensions.
• Add new properties.
• Add new mid-hierarchy dimension values.
• Add, delete, or change any aspect of an existing dimension value. For example, you cannot add, change,

or remove dimension value properties. You also cannot add or change bounds for range or sift dimension
values, change whether a dimension value is inert (non-navigable), or whether it is collapsible.

• Add dimension value properties to any existing dimension values.
• Update the index configuration files (such as the thesaurus and stop words files).
• Update dynamic word forms. Dynamic word forms are calculated at index time and are not updated with

partial updates.

Introduction to partial updates processing
In the partial update process, Forge takes as its input the data from the partial pipeline configuration files and
the updates data.

As a result of ITL processing, the update files are created. These update files are applied to the MDEX Engine
index.

The MDEX Engine does not close its port to incoming queries while processing partial updates.

When applying a partial update, the MDEX Engine modifies the dgraph_input directory and updates it with
the new data received from a partial update. After a partial update completes successfully, the MDEX Engine
automatically deletes the contents of this update from the dgraph_input/updates directory.

Oracle Commerce MDEX Engine Partial Updates Guide

Partial Updates Processing and Requirements | Introduction to partial updates processing14

Although the MDEX Engine deletes the update files after it applies updates to the index, it continues to check
the dgraph_input/updates directory each time it restarts. If you start up the MDEX Engine with update
files in the updates directory (that have not been applied yet), the MDEX Engine applies these initial updates
first, before starting to answer queries.

Partial updates are continuously applied to the in-memory representation of the data structures in the MDEX
Engine, and to the index structures on disk that the MDEX Engine uses for processing queries.

This diagram describes partial updates processing:

MDEX Engine processing for partial updates
At a high level, the MDEX Engine performs the following operations.

1. Once it receives the update files, the MDEX Engine modifies the on-disk representation of the index to
reflect the updates.

2. After the update files are applied to the index, the MDEX Engine deletes the contents of the partial update
from the dgraph_input/updates directory.

Integrity of generation files upon recovery

If the server crashes while a partial update is being applied, when the MDEX Engine starts up again, it will go
through its list of generation files to determine if any generation file is in a bad state. If any are bad, the MDEX
Engine will automatically delete them before applying the next partial update. In other words, no manual
intervention is required in the MDEX Engine's generations directory (and any user modification to the generation
files in an attempt to rollback the generations is not supported).

Continuous query
The MDEX Engine processes partial updates concurrently with processing query requests. This function is
also known as continuous query.

Oracle Commerce MDEX Engine Partial Updates Guide

15Partial Updates Processing and Requirements | MDEX Engine processing for partial updates

During continuous query processing, the MDEX Engine Dgraph port remains open for both query processing
and partial updates processing.

Continuous query is enabled for all types of queries to the MDEX Engine, including navigation, aggregated
records and record queries, queries with text search, queries that contain filters (EQL, range and record filters),
queries containing Web services and XQuery, and all other types of queries.

A few administrative queries are processed differently during continuous query processing. For details, see
the topics in this section.

Since the MDEX Engine continues to process all incoming queries while partial updates are running, queries
are processed against either the pre-update or post-update state of the index data, depending on when they
arrive. The MDEX Engine never processes queries against the data that is in the state of being updated through
a partial update.

With continuous query, the MDEX Engine maintains its query processing performance levels, including low
query latency and partial updates latency.

MDEX Engine startup behavior

Continuous query begins at startup time for the MDEX Engine. For example, assume a scenario where a server
outage occurred during the application of a partial update. As a result, several large partial files remained in
the updates directory. When the MDEX Engine is restarted, it opens its port for both query processing and
partial updates processing. This means that the MDEX Engine's startup behavior is to process updates in
parallel with queries, that is, the MDEX Engine starts processing queries immediately even when updates are
found in the updates directory at startup time.

Continuous query processing and administrative queries
You can issue administrative queries to the MDEX Engine concurrently with running updates, without any
interruptions caused by partial updates processing, except for the following administrative and configuration
queries that are processed differently.

• admin?op=exit

• admin?op=restart

• admin?op=updateaspell

• admin?op=reload-services

• config?op=update

admin?op=exit and admin?op=restart queries cause the MDEX Engine to close its Dgraph port for
accepting future queries. Next, the MDEX Engine processes all previously received queries and shuts down
(or restarts, depending on which of these two commands is issued).

The admin?op=updateaspell operation causes the MDEX Engine to finish processing all existing preceding
queries, temporarily stop processing other queries and begin to process admin?op=updateaspell. After it
finishes processing this operation, the MDEX Engine resumes processing queries that queued up temporarily
behind this request. Only one admin?op=updateaspell operation can be processed at a time.

config?op=update and admin?op=reload-services operations cause the MDEX Engine to drain all
existing preceding queries, temporarily stop processing other queries and begin to process config?op=update
and admin?op=reload-services. After it finishes processing these operations, the MDEX Engine resumes
processing queries that queued up temporarily behind these requests.

Only one config?op=update operation can be processed at a time.

Oracle Commerce MDEX Engine Partial Updates Guide

Partial Updates Processing and Requirements | MDEX Engine processing for partial updates16

Note: config?op=update and admin?op=reload-services can be time-consuming operations.
This depends on the number of configuration files the MDEX Engine has to process for an update (during
config?op=update), or the number of XQuery modules that you have created and that have to be
compiled (during admin?op=reload-services).

Processing time for the admin?op=updateaspell administrative query can be higher compared with
the time it takes the MDEX Engine to process partial updates. Processing time depends on the scope
of updates to the spelling dictionary sent to the MDEX Engine with this operation.

You can issue all other administrative queries to the MDEX Engine concurrently with updates, without any
interruptions caused by partial updates processing.

The dgraph_input directory
The Dgraph writes to the dgraph_input directory during normal MDEX Engine operation.

The dgraph_input directory contains regular data that is read by the MDEX Engine on startup. The data
includes the Dgidx output indices, spelling correction dictionaries, thesaurus files and language-encoding files.
In previous releases, this directory was read-only.

The data in dgraph_input is modified using the data from the dgraph_input/updates directory each
time a partial update completes successfully.

Related Links
The dgraph_input/updates directory on page 17

The dgraph_input/updates directory contains partial updates data that have yet to be processed
by the MDEX Engine. The MDEX Engine checks this directory for update files, when the --updatedir
flag is specified for the Dgraph.

The dgraph_input/updates directory
The dgraph_input/updates directory contains partial updates data that have yet to be processed by the
MDEX Engine. The MDEX Engine checks this directory for update files, when the --updatedir flag is specified
for the Dgraph.

After a partial update completes successfully, the index is updated with the changes from that update. The
update files are no longer needed by the MDEX Engine and are automatically removed from the
dgraph_input/updates directory.

The default MDEX Engine behavior includes checking the dgraph_input/updates on restart. When the
Dgraph starts, it checks for the update files in the dgraph_input/updates directory, in case this directory
contains any of them. Under normal conditions, this directory should be empty since the MDEX Engine deletes
update files after applying them.

Checking the dgraph_input/updates directory is also useful if partial updates become available immediately
after a baseline update. For example, consider a case when a baseline update runs, followed by a partial
update that captures data that became available while the baseline was running. If you restart the Dgraph
immediately after this partial update, the MDEX Engine reads these most recent updates after it restarts and
then proceeds to answer queries.

If the Dgraph server crashes in the middle of a partial update, the files from that update are not deleted from
dgraph_input/updates. When the MDEX Engine is restarted, it retains the index state it had before this
partial update was attempted. After a restart, the MDEX Engine checks the contents of
dgraph_input/updates for the presence of last partial update files that were not applied and applies them.

Oracle Commerce MDEX Engine Partial Updates Guide

17Partial Updates Processing and Requirements | MDEX Engine processing for partial updates

Oracle recommends that you back up this directory to ensure that you can recover after a disk failure.

Related Links
Backing Up Baseline and Partial Updates on page 39

Oracle recommends that you back up your MDEX Engine index files periodically. This lets you revert
to a specific partial or baseline update. This section describes types of backups that you can perform
for the MDEX Engine index files, lists backup recommendations, and describes how to recover the
index by reverting to a previous state of the MDEX Engine index.

The dgraph_input directory on page 17
The Dgraph writes to the dgraph_input directory during normal MDEX Engine operation.

Requirements for baseline and partial updates
Forge processing for baseline updates and partial updates is done in separate pipelines, but is coordinated
and synchronized. The processing of partial updates affects a running MDEX Engine.

The required coordination between the baseline and partial update pipelines, coupled with the resource
restrictions on the partial update pipeline, impose constraints on the baseline update pipeline. This section
lists the requirements for running partial and baseline updates.

General requirements for partial and baseline updates
This section lists the general requirements for baseline and partial updates.

• Baseline updates are needed for configuration changes.

Periodically run baseline updates to ensure that the index representation in the MDEX Engine is in sync
with those configuration changes that can be applied only with a baseline update, such as dictionary
changes or wildcarding.

• Partial updates require a separate partial update pipeline to process the update files. You also start the
MDEX Engine with an additional command-line flag.

• All records in the partial update pipeline must be identified by a single record specifier property that is
unique for each record.

• Baseline updates must not overlap. A new baseline cannot be started until processing of the prior baseline
has been completed (completed means that the baseline update has been loaded into the MDEX Engine).

• Baseline and partial updates must not overlap. Do not run a baseline update at the same time as a partial
update, since both processes use the autogen_dimensions.xml file that can be accessed by only one
process at a time.

Adding new leaf dimension values to records in partial updates
This section describes one method of adding new leaf dimension values for existing dimensions in partial
updates. In partial updates, you can create new leaf dimension values. (You cannot add new dimensions or
new mid-hierarchy dimension values.)

These steps described in this section not in themselves add any dimension values to the navigation
tree/dimension tree. To add dimensions or dimension values to the navigation tree/dimension tree, you must
run a baseline update.

Oracle Commerce MDEX Engine Partial Updates Guide

Partial Updates Processing and Requirements | Requirements for baseline and partial updates18

Before adding a new leaf dimension value, ensure that a dimension already exists in your record set for the
leaf dimension value. For example, if you are planning to add a record with a new leaf dimension value of
Australia, ensure that a dimension region is already specified for your records.

To do this, in your baseline update pipeline, add a new dimension in theDimension editor in Developer Studio,
and select the Auto Generate mode in the Property Mapper editor. This generates dimension values for the
dimension. Run a baseline update.

In order to add leaf dimension values, you can use the Property Mapper editor option to automatically generate
new values for existing dimensions.

To add a new leaf dimension value in a partial update:

1. Add a new record to your record set that includes a leaf dimension value for the dimension that already
exists in your project (and that was added before).

2. Modify the record manipulator to indicate that you are updating dimension values. Use the UPDATE_RECORD
expression with <EXPRNODE NAME="DIM_ACTION" VALUE="ADD"/>.

3. Run a partial update. The newly added leaf dimension value is added to the project during a partial update.

For example, when you add a new record that has a value Australia, the partial update generates a new
value for region="Australia"when the new record goes through the property mapper in the partial update
pipeline.

The output XML files in Forge that result from the partial update include the new record, as well as the new
dimension value for it. When the Dgraph is updated with that file, it includes the new record, as well as the
new dimension value of Australia.

Record specifier attribute required for partial updates
A partial updates deployment must have the RECORD_SPEC attribute of one property set to TRUE. If no property
is marked as the RECORD_SPEC property, the MDEX Engine will not process partial updates.

The RECORD_SPEC attribute specifies the property that is used to identify specific records in partial updates.
For example, you may wish to use a field such as UPC, SKU, or part number to identify a record. You may set
the RECORD_SPEC attribute’s value to TRUE in any property where the values for the property meet the following
requirements:

• The value for this property on each record must be unique.
• Each record should be assigned exactly one value for this property.

Only one property in the project may have the RECORD_SPEC attribute set to TRUE. All updates that add new
records must include a valid value (that is, a value that fulfills the above criteria) for the RECORD_SPEC property.

Oracle Commerce MDEX Engine Partial Updates Guide

19Partial Updates Processing and Requirements | Requirements for baseline and partial updates

Chapter 3

MDEX Engine Configuration and Processing

This section describes how the MDEX Engine handles partial updates.

Enabling the MDEX Engine for partial updates
You must start the MDEX Engine with the Dgraph --updatedir flag to enable it to process partial updates.

The flag takes as an argument the path of the directory into which completed partial update files (from Forge)
are placed. During normal operation, the MDEX Engine does not automatically load update files placed into
this directory. The MDEX Engine checks this directory by default upon restart, after a baseline update. The
scripts that you use for partial updates must be configured to notify the running MDEX Engine to check for
new updates. After the MDEX Engine reads these files, they are deleted from this directory.

Update files are read at startup (after a baseline) as well as when the MDEX Engine receives the update signal.
Because the MDEX Engine looks for update files automatically at startup, recovery from server failure can be
achieved easily by ensuring that the MDEX Engine is provided the same --updatedir directory on recovery
as it had prior to failure. (This is true only if you restore partial updates first.) The MDEX Engine then reads
the existing files in the directory, restoring the MDEX Engine to its pre-failure state.

Related Links
Backing Up Baseline and Partial Updates on page 39

Oracle recommends that you back up your MDEX Engine index files periodically. This lets you revert
to a specific partial or baseline update. This section describes types of backups that you can perform
for the MDEX Engine index files, lists backup recommendations, and describes how to recover the
index by reverting to a previous state of the MDEX Engine index.

MDEX Engine Thread Requirements for Partial Updates
The MDEX Engine places a cap on the number of threads available for partial updates and admin operations
(such as admin?op=update, admin?op=ping, and generation merging).

This cap is set by the formula (N+1)/2, where "N" is the number of threads made available for the MDEX Engine
at startup time, using the --threads option of the dgraph command. When this cap is reached, admin operations
can no longer execute.

A smaller number of threads, as specified by the -- threads option, makes it more likely that running partial
updates will hinder or block other admin operations by using all the (N + 1) / 2 threads allowed for admin
operations

Recommended practice is to have at least 8 cores available on a MDEX machine that will run partial updates.
This will help prevent partial updates and other administrative operations from reaching their cap. It will also
help ensure that enough threads are available for other operations run by the MDEX Engine.

Note: Always set the number of MDEX Engine threads to a value that leaves at least two cores for
certain housekeeping tasks that the MDEX Engine must perform.

Processing the partial update files
To instruct the MDEX Engine to begin processing the partial update files, use the URL update command.

• In your Web browser, issue the update command with this URL syntax:
http://hostname:dgraphport/admin?op=update

For example:
http://localhost:8000/admin?op=update

Note: If you are using HTTPS mode, use https in the URL.

On receiving the URL update command, the MDEX Engine by default performs the following sequence of
operations:

1. Continues processing queries concurrently with processing the update.
2. Checks the updates directory and uploads all partial updates that have not yet been uploaded.
3. Processes the update files and deletes them.
4. Clears existing cache for all subsequently executed queries. However, queries that are currently being

executed can continue to access the existing cache.

Note: The MDEX Engine also deletes any update files that are empty. This includes files that have
opening and closing XML tags but no actual update content.

When you issue the URL update command, wait until it finishes before you issue another admin or config
URL command (such as an config?op=update command).

Running updates on a single file
In some cases, you may need to run a partial update by pointing the Dgraph to a single file by using the ad¬
min?op=update&updatefile=filename option.

The recommended way of running partial updates is by using the admin?op=update URL command that
applies all files residing in the dgraph_input/updates directory (or the directory that you specify for updates
with the --updatedir flag). However, pointing the Dgraph to a single updates file may be useful for
performance testing purposes, such as when you plan to run Eneperf in the two-stream mode to test MDEX
Engine performance with partial updates.

Note: For running Eneperf in the two-stream mode, you first need to obtain a separate request log that
contains only partial update requests issued to the MDEX Engine. You can obtain such a log when you

Oracle Commerce MDEX Engine Partial Updates Guide

MDEX Engine Configuration and Processing | Processing the partial update files22

run several partial updates on single update files. For more information on running Eneperf for testing
updates performance, see the Performance Tuning Guide.

To run a partial update on a single file:

1. Add the update file to the dgraph_input/updates directory or the directory specified using the --up¬
datedir flag.

2. In your Web browser, issue the update command with this URL syntax:
http://hostname:dgraphport/admin?op=update&updatefile=filename

where filename is the name of an update file residing in the updates directory.
You can run this command on a single file only. If you have more than one file, rerun this command once
for each file.

The MDEX Engine deletes the update file after successfully applying the results of the partial update.

Note: For performance reasons, Oracle recommends running partial updates in batch mode, by only
using the admin?op=update command. This command applies all update files present in the
dgraph_input/updates directory.

Setting the merge policy
You can set the merge policy of the MDEX Engine via a Dgraph command flag or a URL command.

An MDEX Engine's merge policy determines how frequently it merges partial update generations. The data
layer that stores the index is a versioning data store. As a result:

• Old versions can be accessed while new versions are created.
• Old versions are garbage-collected when no longer needed.

A version is persisted as a sequence of generation files. A new version appends a new generation file to the
sequence. Query latency depends, in part, on the number and size of generation files used to store the index.

Generation files are combined through a process called merging. Merging is a background task that does not
affect the MDEX Engine functionality, but may affect its performance. Because of this, you can set the policy
that dictates the aggressiveness of the merges; this policy is called the merge policy.

The merge policy can be controlled through a Dgraph flag or through the admin interface via a URL command.
Using these controls, you can set the merge policy to one of two settings:

• balanced – This policy that strikes a balance between low latency and high throughput. This is the default
policy of the MDEX Engine.

• aggressive – This policy merges frequently and completely to keep query latency low at the expense of
average throughput.

The balanced policy is recommended for the majority of applications. But aggressive merging may help those
applications that meet the following criteria:

• Query latency is the primary concern.
• A large fraction of the records (for example, 20%) are either modified or deleted by partial updates before

re-baselines.
• The time to perform an aggressive merge is less than the time between partial updates.

Oracle Commerce MDEX Engine Partial Updates Guide

23MDEX Engine Configuration and Processing | Setting the merge policy

Note: Under normal conditions, you do not need to change the default balanced policy. However, you
may need to change to an aggressive policy based on a recommendation from Oracle Commerce Support.

Dgraph mergepolicy flag
The Dgraph --mergepolicy flag allows you to set the default merge policy of the MDEX Engine at startup
time.

The format of the flag is:
--mergepolicy <policy>

where policy is one of these two arguments:
• balanced – Sets a policy that strikes a balance between low latency and high throughput. This is the

default policy, which means that a balanced policy is used if you do not specify the --mergepolicy flag
when the MDEX Engine starts up.

• aggressive – Sets a policy that merges frequently and completely to keep query latency low at the
expense of average throughput.

The MDEX Engine will exit with a fatal error if the --mergepolicy flag is used without an argument or with
an argument other than balanced or aggressive.

URL mergepolicy command
Use the URL mergepolicy command to force a merge, and (optionally) to change the merge policy of a
running MDEX Engine.

You use the URL mergepolicy command to:
• Manually force a merge. This is called a one-time version because after the merge is performed (via a

temporary aggressive change to the merge policy), the merge policy reverts to its previous setting.
• Change the merge policy of the running MDEX Engine.

Performing one-time merges

The one-time version of the command is intended for the use case of performing a complete merge of all
generations without making a change to the default merge policy.

The format of the one-time version of the command is:
/admin?op=merge&mergepolicy=aggressive

The assumption is that the MDEX Engine is using a balanced merge policy, and you want to temporarily apply
an aggressive policy so that the merge can be performed. After the merge is performed, the merge policy
reverts to its previous setting.

When you issue the command, the resulting Web page will look like this example:
Dgraph admin, OK.
Dgraph Manual merge started at Sat Jul 17 09:52:47 2010

Changing the current merge policy

The sticky version of the command is intended to change the merge policy of the running MDEX Engine. The
duration of the policy change is for the life of the current Dgraph process (that is, until the MDEX Engine is
restarted) or until another sticky change is performed during the current Dgraph process.

Oracle Commerce MDEX Engine Partial Updates Guide

MDEX Engine Configuration and Processing | Setting the merge policy24

The format of the sticky version of the command is:
/admin?op=merge&mergepolicy=<policy>&stickymergepolicy

where policy is either balanced or aggressive.

The command also performs a merge operation if warranted.

This example:
http://localhost:8000/admin?op=merge&mergepolicy=aggressive

forces a merge (if one is needed) and changes the current merge policy to an aggressive policy.

Listing the update files that were processed
The updatehistory URL command returns the list of update files processed since this Dgraph was started
for the first time.

This command has no options.

Note: This command does not track the history of empty update files.

To display the update history:

• Use the Dgraph updatehistory URL command, similar to the following example:
http://localhost:8000/admin?op=updatehistory

The command displays a "Dgraph Server update directory history contents" page with results similar to this
example:
Checking history for update directory for directory "C:\Endeca\Apps\wine\da¬
ta\dgraphs\Dgraph1\dgraph_input\updates"

 Files in update directory history
"updates/wine-sgmt0.records.xml_2010.07.12.16.29.28"

Oracle Commerce MDEX Engine Partial Updates Guide

25MDEX Engine Configuration and Processing | Listing the update files that were processed

Chapter 4

Partial Updates Pipeline

This section describes how to create a partial updates pipeline.

About the partial update pipeline
A partial update requires its own pipeline (separate from the baseline update pipeline) that only deals with
partial updates. Use Developer Studio to create the partial update pipeline.

Each input record in a partial update pipeline describes a transformation to be performed on a single record
in the running application. This means, for example, that a single update cannot change the spelling of a
property on many records; instead, a separate update must be generated to change the spelling on each
record in the application.

The following partial update pipeline is used as an example:

The partial update pipeline is executed at frequent intervals. Between runs, updates are queued. When the
partial update process starts, all the queued updates are processed and written to a staging area. When Forge
is complete, the updates are read from the staging area into the running application.

The sample partial update pipeline works as follows:

1. The partial update pipeline reads its input, using a record adapter (named LoadUpdateData) with the Multi
File field checked.

2. The input records are transformed into record updates by a record manipulator (named UpdateManipulator)
using IF and UPDATE_RECORD expressions.

Note: In this diagram, the dimension server is not connected to the record manipulator (called the
UpdateManipulator in the diagram). While this configuration of the partial update pipeline works for
the pipeline used here as an example, in cases when your partial update pipeline is updating dimension
values, you also must connect the dimension server to the record manipulator that handles the
transformations for the record updates. This way, the record manipulator will know with which
dimensions it is working.

3. The record updates are written out to the dgraph_input/updates directory (or another directory that
you specify) using an update adapter. After the files are applied to the MDEX Engine, they are removed
from this directory. Therefore, it is important to back up the update files to another parallel directory, in case
you want to replay them against the data in the MDEX Engine.

Configuring a partial update pipeline
To configure a project for partial updates, create a separate partial update pipeline.

This pipeline can be based on the existing baseline pipeline, although it requires its own components. One of
the ways to start creating a partial update pipeline is to copy your existing baseline update pipeline and modify
it. If you copy the baseline update pipeline that uses its own record adapter, cache, and assembler components,
remove these components in your partial update pipeline.

This section lists high-level tasks required to create a partial update pipeline. For information on a specific
task, such as adding a new record manipulator component, see the related sections in this chapter.

To configure a partial update pipeline:

1. Add a new record adapter component. Its purpose is to load only the updates that occurred since the last
baseline update.

2. Add a new record manipulator component configured specifically for the partial update pipeline. The record
manipulator decides whether the record is going to be added, replaced, updated or removed.

3. Add a new update adapter component. The update adapter instructs Forge where to temporarily place the
update-related processed data files (such as the dgraph_input/updates directory). These files are
removed after being applied to the MDEX Engine. Next, the update adapter writes out the record file(s) that
define the new, removed, or modified records.

4. Add additional dimension components, if you are updating dimension values. Ensure that you have a
dimension server in your partial update pipeline that is connected to the record manipulator and the update
adapter.

Oracle Commerce MDEX Engine Partial Updates Guide

Partial Updates Pipeline | Configuring a partial update pipeline28

Creating the record adapter
You start building your partial update pipeline by adding a new record adapter component. Its purpose is to
load only the updates that occurred since the last baseline update.

Note: The following procedure for configuring the record adapter is specific to an example where a
record adapter is configured for a file-based record source with multiple wildcard-matching files. Your
partial update pipeline may not necessarily contain a record source like this, but you still need to configure
a record adapter to load the updates that occurred since the last baseline update.

To configure the record adapter:

1. In Developer Studio, specify the following basic settings in the General tab of the Record Adapter editor:
DescriptionOption

Must be Input.Direction

Enter an input URL as a path, with the filename being a pattern.URL

For example, a URL pattern of ../incoming/updates/*.txt.gz means that
Forge will read any file in the incoming/updates directory that has the txt.gz
suffix. Each file that matches the pattern will be read in strict lexicographic order of
their filenames.

Select this option to specify that Forge can read data from more than one input file
and that the input URL is to be interpreted as a pattern.

Multi File

2. You can leave the other tabs (Sources, Record Index, and so on) in their default state.

Creating the record manipulator
The record manipulator in the partial update pipeline examines whether the record is going to be added,
replaced, updated or removed.

To configure the record manipulator:

1. In Developer Studio, specify the following settings in the Sources tab of the Record Manipulator editor:
DescriptionOption

Select the name of the property mapper.Record source

Select a dimension server if the record manipulator is performing any
DIM_ACTION or DVAL_ACTION operations; if not, you can selectNone
(as in the sample pipeline).

Dimension source

You can leave the tab empty.Record Index

2. In the Expression editor, add expressions similar to those described in "About the IF expression for the
record manipulator." You open the Expression editor by double-clicking the record manipulator component
in the Pipeline Diagram. You can add expressions after the record manipulator is created.

Oracle Commerce MDEX Engine Partial Updates Guide

29Partial Updates Pipeline | Creating the record adapter

About the IF expression for the record manipulator
The record manipulator used in a partial update pipeline is essentially an IF expression that calls one of three
UPDATE_RECORD expressions based on a conditional evaluation of the incoming record.

Note: The following sample code shows one example of what an expression for the record manipulator
might look like. Depending on the field values in your data, the logic that you add to your expressions
may be different from this example.

The IF expression is coded as follows:
<RECORD_MANIPULATOR FRC_PVAL_IDX="TRUE" NAME="UpdateManipulator">
 <RECORD_SOURCE>PropDimMapper</RECORD_SOURCE>
 <EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">
 <COMMENT>
- If the record has a "Remove" field value equal to "1", then delete it.
- If the record has an "Update" field value equal to "1", then update it
- Otherwise, add the new record.
 </COMMENT>
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Remove"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="1"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="UPDATE_RECORD" TYPE="VOID" URL="">
 <EXPRNODE NAME="ACTION" VALUE="DELETE_OR_IGNORE"/>
 </EXPRESSION>
 <EXPRNODE NAME="ELSE_IF" VALUE=""/>
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Update"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="1"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="UPDATE_RECORD" TYPE="VOID" URL="">
 <EXPRNODE NAME="ACTION" VALUE="UPDATE"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="P_Price"/>
 </EXPRESSION>
 <EXPRNODE NAME="ELSE" VALUE=""/>
 <EXPRESSION LABEL="" NAME="UPDATE_RECORD" TYPE="VOID" URL="">
 <EXPRNODE NAME="ACTION" VALUE="ADD_OR_REPLACE"/>
 </EXPRESSION>

Oracle Commerce MDEX Engine Partial Updates Guide

Partial Updates Pipeline | About the IF expression for the record manipulator30

 </EXPRESSION>
 </RECORD_MANIPULATOR>

About the UPDATE_RECORD expression
The UPDATE_RECORD expression updates existing records by adding, removing, or replacing dimensions,
dimension values, or property values. The expression can also delete existing records and add new ones.

If different types of partial updates are processed using separate pipelines, the UPDATE_RECORD expression
can be written to perform the same action on all of the input.

For example, a partial update pipeline written to handle only price and availability changes would always
generate UPDATE-type record updates. If the same partial update pipeline needs to handle REPLACE updates
(that is, reclassification of a record), the input data must contain some indication of what type of update to
perform. Most commonly, this will simply be a property on the input record, which is checked inside an IF
expression.

The UPDATE_RECORD expression takes a snapshot of the record at the time it is evaluated and generates a
corresponding record update. Thus, the update contains the property names and values, as well as
classifications, that are in effect at the time of evaluation. If properties are renamed, have their values changed,
or classifications are added or deleted after the record update expression has been evaluated, the changes
have no impact on the record update that will be generated. Only one record update can be generated per
record.

Note the following:
• For ADD record updates, a complete record must be set up before the expression is evaluated.
• For REPLACE record updates, all the necessary property values and dimension values (as well as the

property specifying the RECORD_SPEC) must be on the record.
• For ADD_OR_REPLACE record updates, if no record exists with the specified property value for the property

that has been designated as the RECORD_SPEC, the system adds a new record. If the record exists, it is
replaced.

• For DELETE record updates, the RECORD_SPEC property must be on the record. This property is used to
identify the record to be deleted. All other properties and dimension values are ignored.

• For DELETE_OR_IGNORE record updates, if a record exists with the specified property value for the property
that has been designated as the RECORD_SPEC, the system removes the record. If the record does not
exist, the action is ignored and no error message is generated.

• For UPDATE record updates, further specification is necessary to describe how to handle the property
values and dimension values on the record. UPDATE-type record updates must also include the
RECORD_SPEC property with each record. Each property or dimension can have only one type of update
performed, but a single record update may impact any or all of the properties and dimensions on a record.

Related Links
Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes on page 33

The DIM_ACTION expression node requires the use of a DIMENSION_ID node to specify the numeric
ID of the dimension to be modified.

Expression nodes supported by the UPDATE_RECORD expression on page 32
This section provides a reference table of all expression nodes supported by the UPDATE_RECORD
expression.

UPDATE_RECORD expression reference examples on page 34
This section provides reference examples of the UPDATE_RECORD expression.

Oracle Commerce MDEX Engine Partial Updates Guide

31Partial Updates Pipeline | About the UPDATE_RECORD expression

Expression nodes supported by the UPDATE_RECORD expression
This section provides a reference table of all expression nodes supported by the UPDATE_RECORD expression.

DescriptionEXPRNODE
name

The type of action to perform on the record, as indicated by the VALUE attribute. Valid
values for this attribute are:

ACTION

• ADD – Adds a new record if it does not exist, or generates an error message if it already
exists.

• ADD_OR_REPLACE – Adds a new record if it does not exist, or replaces it if it already
exists.

• REPLACE – Replaces a record if it exists, or generates an error message if it does not
exist.

• DELETE – Removes a record if it exists, or generates an error message if it does not
exist.

• DELETE_OR_IGNORE – Removes a record if it exists, but does not generate an error
message if it does not exist.

• UPDATE – Updates a record if it exists, or generates an error message if it does not
exist.

Examples:
<EXPRNODE NAME="ACTION" VALUE="UPDATE"/>
<EXPRNODE NAME="ACTION" VALUE="ADD_OR_REPLACE"/>

If ACTION=UPDATE, the VALUE attribute specifies the type of update to perform on all the
values of the named property. Valid values for this attribute are as follows:

PROP_ACTION

• ADD – All values for the property on the update record are added to the current record.
• DELETE – All values for the property on the update record are removed from the current

record.
• REPLACE – All values for the property are removed from the current record, then all

values for the property on the update record are added to the current record. This node
must be followed by a PROP_NAME expression node that names the property to be
modified. For example:
<EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
<EXPRNODE NAME="PROP_NAME" VALUE="P_WineType"/>

If ACTION=UPDATE, the VALUE attribute specifies the type of update to perform on all the
values of the named dimension. Valid values for this attribute are as follows:

DIM_ACTION

• ADD – All dimension values in the dimension on the update record are added to the
current record.

• DELETE – All dimension values in the dimension on the update record are removed
from the current record.

Note: Previously-existing parental dimension values are also removed upon a
delete operation. For example, assume you have a parent dimension value (dval)
with id=1, a child dval with id=2, and a record with dval 1 assigned. With the
update operation, you first add dval 2 to the record (it replaces dval 1, since it is

Oracle Commerce MDEX Engine Partial Updates Guide

Partial Updates Pipeline | About the UPDATE_RECORD expression32

DescriptionEXPRNODE
name

more specific), and then remove dval 2. The record now has no dvals attached
to it, despite its initial assignment to dval 1 which was never explicitly deleted.
The parental dval is removed at the time when a child dval is added. However,
this change is not visible until the child dval is deleted, at which point no dvals
remain on the record.

• REPLACE – All dimension values in the dimension are removed from the current record,
then all dimension values in the dimension on the update record are added to the current
record. This node must be followed by a DIMENSION_ID expression node that specifies
the numeric ID of the dimension to be modified. For example:
<EXPRNODE NAME="DIM_ACTION" VALUE="ADD"/>
<EXPRNODE NAME="DIMENSION_ID" VALUE="8000"/>

If ACTION=UPDATE, removes the dimension value from the record. Note that the VALUE
attribute only supports DELETE. This node must be followed by a DVAL_ID expression
node that specifies the numeric ID of the dimension value to be removed. For example:
<EXPRNODE NAME="DVAL_ACTION" VALUE="DELETE"/>
<EXPRNODE NAME="DVAL_ID" VALUE="8031"/>

DVAL_ACTION

Related Links
UPDATE_RECORD expression reference examples on page 34

This section provides reference examples of the UPDATE_RECORD expression.
Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes on page 33

The DIM_ACTION expression node requires the use of a DIMENSION_ID node to specify the numeric
ID of the dimension to be modified.

About the UPDATE_RECORD expression on page 31
The UPDATE_RECORD expression updates existing records by adding, removing, or replacing
dimensions, dimension values, or property values. The expression can also delete existing records
and add new ones.

Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes
The DIM_ACTION expression node requires the use of a DIMENSION_ID node to specify the numeric ID of
the dimension to be modified.

Similarly, the DVAL_ACTION expression node requires a DVAL_ID node to specify the numeric ID of the
dimension value to be modified.

To obtain IDs for the DIM_ACTION and DVAL_ACTION expression nodes:

• To obtain the dimension IDs for the DIM_ACTION expression, use the Dimension editor in Developer
Studio.

• To obtain the IDs for the DVAL_ACTION expression, open the Dimensions.xml configuration file with a
text editor and look for the specific dimension value.

Oracle Commerce MDEX Engine Partial Updates Guide

33Partial Updates Pipeline | About the UPDATE_RECORD expression

For example, consider this dimension named Designation:
<DIMENSION NAME="Designation" SRC_TYPE="INTERNAL">
 <DIMENSION_ID ID="7"/>
 <DIMENSION_NODE>
 <DVAL TYPE="EXACT">
 <DVAL_ID ID="7"/>
 <SYN CLASSIFY="FALSE" DISPLAY="TRUE"
 SEARCH="FALSE">Designation</SYN>
 </DVAL>
 <DIMENSION_NODE>
 <DVAL TYPE="EXACT">
 <DVAL_ID ID="8031"/>
 <SYN CLASSIFY="TRUE" DISPLAY="TRUE"
 SEARCH="TRUE">Best Buy</SYN>
 </DVAL>
 </DIMENSION_NODE>
...
 </DIMENSION_NODE>
</DIMENSION>

The dimension ID is 7, while the ID of the dimension value named Best Buy is 8031. If you want to use a
DVAL_ACTION expression node to modify the Best Buy dimension value, the corresponding a DVAL_ID
expression node would use a value of 8031.

Related Links
About the UPDATE_RECORD expression on page 31

The UPDATE_RECORD expression updates existing records by adding, removing, or replacing
dimensions, dimension values, or property values. The expression can also delete existing records
and add new ones.

Expression nodes supported by the UPDATE_RECORD expression on page 32
This section provides a reference table of all expression nodes supported by the UPDATE_RECORD
expression.

UPDATE_RECORD expression reference examples on page 34
This section provides reference examples of the UPDATE_RECORD expression.

UPDATE_RECORD expression reference examples
This section provides reference examples of the UPDATE_RECORD expression.

Example 1

An expression configured to convert input records to ADD_OR_REPLACE RECORD updates:
<EXPRESSION TYPE="VOID" NAME="UPDATE_RECORD">
 <EXPRNODE NAME="ACTION" VALUE="ADD_OR_REPLACE"/>
</EXPRESSION>

Example 2

An expression configured to convert input records to replace the Price property, and the price range and
availability classifications:
<EXPRESSION TYPE="VOID" NAME="UPDATE_RECORD">
 <EXPRNODE NAME="ACTION" VALUE="UPDATE"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>

Oracle Commerce MDEX Engine Partial Updates Guide

Partial Updates Pipeline | About the UPDATE_RECORD expression34

 <EXPRNODE NAME="PROP_NAME" VALUE="Price"/>
 <EXPRNODE NAME="DIM_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="DIMENSION_ID" VALUE="100"/><!--100=PriceRange-->
 <EXPRNODE NAME="DIM_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="DIMENSION_ID" VALUE="200"/><!--200=Availability-->
</EXPRESSION>

Related Links
Expression nodes supported by the UPDATE_RECORD expression on page 32

This section provides a reference table of all expression nodes supported by the UPDATE_RECORD
expression.

Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes on page 33
The DIM_ACTION expression node requires the use of a DIMENSION_ID node to specify the numeric
ID of the dimension to be modified.

About the UPDATE_RECORD expression on page 31
The UPDATE_RECORD expression updates existing records by adding, removing, or replacing
dimensions, dimension values, or property values. The expression can also delete existing records
and add new ones.

Format of update records
The UPDATE_RECORD expression, as used in the sample partial update pipeline, requires that each incoming
record have one of the Delimited formats described below.

Format of records to be deleted

The first column in the header row must be a Remove column. The first column in each record must have a
value of 1 to delete the record:
Remove|P_WineID|P_Year|P_Wine|P_Winery|...|
1|34699|1992|A Red Blend Alexander Valley|Lyeth|...|

Format of records to be updated

The first column in the header row must be an Update column. The first column in each record must have a
value of 1 to update the record properties:
Update|P_WineID|P_Wine|P_PriceStr|
1|34701|Albarino Rias Baixas|1000.00|

Format of records to be added

The header row of records to be added do not begin with a Remove or Update column. Instead, they use the
normal set of header row columns (P_WineId, P_Year, and so on). The first column in each record has a
normal property value:
P_WineID|P_Year|P_Wine|P_Winery|P_PriceStr|...|
99000|1992|First New Wine Added|Lyeth|18.00|...|

Format of records in your implementation

If your implementation uses Delimited format records, you can use the above format to specify how the records
are handled. If you use another format, you must use a record manipulator with the appropriate expressions
to handle your source records.

Oracle Commerce MDEX Engine Partial Updates Guide

35Partial Updates Pipeline | Format of update records

Dimension components
The sample partial update pipeline contains two dimension adapters and one dimension server.

Dimension adapters

To support classification, the same dimensions that are loaded in the baseline update pipeline must be loaded
in the partial update pipeline. To cut down on startup time, the dimensions can be split into multiple files, and
only the dimensions actually used by the partial update pipeline need to be loaded. In the baseline update
pipeline, multiple dimension adapters can feed into the same dimension server to consolidate the separate
dimension files.

The sample pipeline uses two dimension adapters, one for the dimensions.xml file and the other for the
winetype_dimension.xml file. For both dimension adapters, theDimension Source field (on the Sources
tab) is set to None.

Dimension server

The dimension server uses the two dimension adapters as sources.

TheURL field (General tab) specifies the location to which the autogen_dimensions.xml.gz file is written.
This file contains persistent dimension data produced by auto-generation and also data produced by the record
to dimension adapter.

There are special considerations when using AutoGen classification with partial updates. When new dimension
values are generated in the partial update pipeline, the dimension changes are included in the updates sent
to the MDEX Engine.

Because the baseline and partial update pipelines share the same autogen file, changes to
Autogen_dimensions.xml are also shared between the two. However, at any given time, only one of the
two update processes can modify the Autogen_dimensions.xml file.

Rather than suspend partial updates during baseline updates, Forge supports the --noAutoGen command-line
option, which turns off the creation of new dimension values. Classification with existing dimension values
continues normally, but classification failures result in no matching dimension values, rather than in the creation
of new ones.

Naming format of update source data files
When Forge processes update source data files, it is important to keep two issues in mind concerning the
names of the data files.

• The update files should be processed by Forge in order of their creation. The reason is that if a specific
record appears in more than one update file, you want the latest update to be processed last, so that it will
override earlier versions when the Dgraph loads the update record files.

• Forge reads the files in strict lexicographic order of their filenames. Therefore, you should use a naming
scheme that ensures the processing of the update files in chronological order of their creation (i.e., last
created, last processed).

For these reasons, it is strongly recommended that you use a timestamp format as the naming scheme for the
filenames. If necessary, use leading zeros to force the desired numeric order. For example, if you have two
files named 9.xml and 10.xml, Forge will process 10.xml before 9.xml; therefore, you must rename 9.xml
to 09.xml so that it is processed before 10.xml.

Related Links

Oracle Commerce MDEX Engine Partial Updates Guide

Partial Updates Pipeline | Dimension components36

Naming format of partial update files on page 37
When Forge generates partial update files, they need to be named in a manner that allows the MDEX
Engine to read them in the right order.

Naming format of partial update files
When Forge generates partial update files, they need to be named in a manner that allows the MDEX Engine
to read them in the right order.

The MDEX Engine reads update files that it receives in numeric-lexicographic order of their filenames.

Therefore, the scripts that you use for partial updates should rename the Forge output files with a timestamp.
In other words, the scripts should name update files in ascending numeric-lexicographic order over time to
ensure that updates are processed by the MDEX Engine in the order they are produced by Forge.

Related Links
Naming format of update source data files on page 36

When Forge processes update source data files, it is important to keep two issues in mind concerning
the names of the data files.

Examples of numeric-lexicographic and simple lexicographic order on page 37
While the MDEX Engine reads files in numeric-lexicographic order, Forge reads them in simple
lexicographic order. Keep this difference in mind when naming files.

Examples of numeric-lexicographic and simple lexicographic order
While the MDEX Engine reads files in numeric-lexicographic order, Forge reads them in simple lexicographic
order. Keep this difference in mind when naming files.

The following examples illustrate the ordering modes:
• Simple lexicographic order is the order in which Forge reads partial update files. Using this order, Forge

compares the file names lexicographically. For example, when comparing 5.txt and 10.txt, "5" is
compared with "1". Based on this comparison, Forge first reads 10.txt and then 5.txt.

• Numeric-lexicographic order is the order in which the MDEX Engine reads partial update files. Using this
order, the MDEX Engine breaks a file name into a numeric prefix and a non-numeric suffix, and compares
the numeric prefixes numerically. It breaks ties in numeric prefixes by proceeding to compare suffixes
lexicographically. For example, when comparing 10hello.txt, 010jello.txt, and 5z.txt, "10" is
compared with "010" and "5" numerically. This identifies 5z.txt as the file name that should be ordered
first. To resolve the tie between "10" and "010", "h" is compared with "j". As a result, 5z.txt is processed
first, 10hello.txt is processed next, and 010jello.txt is processed last.

Related Links
Naming format of partial update files on page 37

When Forge generates partial update files, they need to be named in a manner that allows the MDEX
Engine to read them in the right order.

Index configuration in the partial update pipeline
Using the partial updates, you can update only records and dimensions. You cannot update the index
configuration files, such as the thesaurus and stop words files.

Oracle Commerce MDEX Engine Partial Updates Guide

37Partial Updates Pipeline | Naming format of partial update files

Chapter 5

Backing Up Baseline and Partial Updates

Oracle recommends that you back up your MDEX Engine index files periodically. This lets you revert to a
specific partial or baseline update. This section describes types of backups that you can perform for the MDEX
Engine index files, lists backup recommendations, and describes how to recover the index by reverting to a
previous state of the MDEX Engine index.

Types of backups
In your implementation, you can run only baseline, or baseline and delta, updates without having to run partial
updates. You can also run frequent partial updates along with periodic baseline updates. In each case, you
need to back up your MDEX Engine index files periodically.

Typical backup scenarios fall into three categories:
• Baseline backup
• Snapshot backup
• Incremental backup

About baseline backups
A baseline backup is a periodic backup of baseline updates only.

Baseline backups are always useful. In particular, they are useful when your baseline updates are so fast that
you can recover from failures by rerunning baseline updates.

Performing baseline backups works well in implementations in which you run baseline or delta updates only,
without having to run partial updates. In these cases, it is sufficient to back up baseline update files so that
you can recover the index by restarting the MDEX Engine with the dgraph_input directory reconstructed
from a baseline backup.

About snapshot backups
A snapshot backup is a periodic backup of the dgraph_input directory after stopping the MDEX Engine.
Snapshot backups are useful if your baseline updates are relatively infrequent.

Snapshot backups are useful when you run baseline or delta updates with periodic partial updates in between,
and can afford to periodically stop and restart the MDEX Engine, which lets you back up the dgraph_input

directory. For example, you may run a baseline update daily, partial update hourly, and stop and restart the
MDEX Engine nightly to back up dgraph_input.

About incremental backups
An incremental backup includes a backup of partial updates that have occurred since the last baseline backup
or snapshot backup. Incremental backups allow you to revert to a more granular state of the MDEX Engine
index.

In this scenario, you run baseline or delta updates with periodic partial updates in between, and back up partial
update files, so that you can recover the index to its specific state at a particular date and time. In addition,
you also create baseline or snapshot backups.

Backup recommendations
Use the recommendations provided in this section to back up the index files used by the MDEX Engine.

• Back up the Dgraph input directory after each baseline update. Periodically, back up the dgraph_input
directory and all its subdirectories to an alternate location. dgraph_input is the directory where the MDEX
Engine index is stored. When backing it up, ensure that you use a naming scheme that will allow you to
retrieve baseline update files based on date and time.

Back up the dgraph_input directory only when the MDEX Engine is stopped. Do not back up this directory
when the Dgraph is running. If you try to copy it while the Dgraph is running, you may capture files in an
inconsistent state.

• Back up partial update files. Prior to running partial updates, ensure that the partial update files are saved
automatically in another backup directory. You may need to modify your partial updates script so that this
backup occurs automatically. Use a time stamp naming scheme to ensure that you can retrieve the update
files if needed.

The files in the dgraph_input/updates directory are deleted after a partial update completes successfully.
Therefore, if you want to revert to a particular partial update, back up all files and subdirectories in this
directory.

• Periodically delete previous backups of partial update files. In other words, you do not have to retain all
incremental backups—only retain those incremental backups that occurred since the most recent baseline
or snapshot backup. When you restore the index, you only need to use the partial update files since the
baseline backup or snapshot backup of the dgraph_input directory (this is the copy of the directory on
which you will restart the MDEX Engine).

Once you do a baseline or snapshot backup, you can delete all backups of partial updates that took place
before the baseline or snapshot backups, if you choose to do so.

Recovering the index
You can recover the index by reverting to a particular baseline or partial update.

You can revert the MDEX Engine to the index representing the state of data after a specific baseline or partial
update. To do so, restart the MDEX Engine on the index files that were backed up after this baseline update,

Oracle Commerce MDEX Engine Partial Updates Guide

Backing Up Baseline and Partial Updates | Backup recommendations40

and point the MDEX Engine at the dgraph_input/updates directory that contains partial update files that
occurred since this baseline update.

To revert to a previously applied baseline or partial update:

1. Stop the MDEX Engine.
2. Clean up the active dgraph_input and dgraph_input/updates directories.
3. In the backup directory for baseline update files, locate the files from the last successful baseline update.
4. Copy the backed-up baseline update files into dgraph_input.
5. In the backup directory for partial update XML files, locate the files since the baseline update you are

reverting to.
6. Copy all backed-up partial update XML configuration files from all partial updates that occurred since the

baseline update to which you want to revert into the dgraph_input/updates directory.
If you are using the Deployment Template, the app-dir/data/partials/cumulative_partials
directory is where all partial updates since the last baseline are typically stored. You can reapply them by
copying the necessary files to the Dgraph updates directory and apply the updates afterwards.

7. Restart the MDEX Engine. The MDEX Engine reads the files in dgraph_input and in
dgraph_input/updates.

If you are using the Deployment Template, the numPartialsBackups setting (in the PartialForge module of
the AppConfig.xml configuration file) determines how many cumulative partials to store. If you do not define
this number high enough, you may not have all the previous update files to even restore the state of the index.
If this is the case, you will have to run a full baseline.

Oracle Commerce MDEX Engine Partial Updates Guide

41Backing Up Baseline and Partial Updates | Recovering the index

Chapter 6

Troubleshooting Partial Updates

This section contains recommendations for troubleshooting partial updates, and describes how the MDEX
Engine treats failed partial update operations.

Pipeline troubleshooting recommendations
Setting up partial updates correctly involves making sure that the record adapter, record manipulator, update
adapter, dimension server, and other pipeline components are configured properly.

Use the following recommendations to troubleshoot a partial update pipeline:
• For all incoming records, verify that your project has an property configured as the record specifier. Only

one property in the project can have the RECORD_SPEC attribute set to TRUE.
• For the record adapter, verify that the information provided to it is in the right format. The format should

correspond to the pattern that you specified in the URL field. The record adapter works properly if all of
the files with the extension *.txt.gz are formatted in the same way. For example, a URL pattern of
incoming/updates/*.txt.gz means that Forge reads any file that has the txt.gz suffix in the
incoming/updates directory. Each file that matches the pattern is read in sequence.

• If you are supplying multiple update files, verify that the Multi file field is checked in the Record Adapter
editor in Developer Studio.

• For the record manipulator, verify that you are correctly using the expressions used for removing and
manipulating the data.

• For the update adapter, verify that theOutput URL field in Developer Studio points to the directory in which
completed updated records from the last partial update will be placed by Forge, for the consumption by
the MDEX Engine.

• For the update adapter, verify that the partial update pipeline output prefix is identical to the one used for
baseline updates.

• For the naming format of the update source data files, use a timestamp as the naming scheme. This ensures
that Forge processes the files in the proper order of their creation.

• For the EAC partial update script that runs partial updates, verify that it is configured properly. The default
script is created for you when you use the deployment templates to create the project; you can modify it
to suit your needs.

Troubleshooting update operations that fail
Verify that the MDEX Engine processes the updates according to your configuration in the partial updates
pipeline.

The MDEX Engine processes updates on a record-by-record basis. Updates fail or succeed entirely at the
record level. This means that a record update that fails (for example, because it attempts to assign an unknown
dimension value to the record), leaves the value of the record unchanged. Property value changes or dimension
value changes in the failed record update have no effect.

In addition, if an error occurs during a record update, and subsequent update operations relate to the same
record, these operations may also fail. However, in general, previous and future record updates and dimension
updates are not affected by a specific record update failure.

For example, if a partial update operation fails, because you try to delete a record that does not exist, or add
a child dimension value to a dimension that does not exist, the MDEX Engine does all of the following:

• Continues the partial update process.
• Logs a message to stderr, or to the file specified by --out on the command line.
• Writes a copy of the entire file containing the failed update record or dimension value to the

<updatedir>/failed_updates directory, which the MDEX Engine automatically creates in your working
directory.

Note: The failed_updates directory may fill up with failed update files. To prevent your system
from running out of disk space, periodically clean this directory.

Update files that are due for processing are deleted after each partial update that has successfully processed
them. They do not accumulate in the dgraph_input/updates directory.

The default directory the MDEX Engine uses for storing failed update files is
<updatedir>/failed_updates/.

Note: You can use the --failedupdatedir flag for the Dgraph to specify the directory in which the
MDEX Engine should store the failed update files.

Therefore, to troubleshoot failed update operations, provision enough disk space in your working directory for
/failed_updates, and check this directory for failed update operations, if you notice any failed update errors
in the log.

During development, use the --updateverbose flag to specify that the MDEX Engine should output verbose
messages while processing updates. Do not use this flag on production systems, because it negatively impacts
partial update performance.

Keep in mind that when the MDEX Engine starts up, it begins to process queries and updates in parallel. This
means that if there are update files in the updates directory at startup time, the MDEX Engine (after opening
its port) begins to process those updates at the same time that it begins to accept and service queries.

UPDATE_RECORD errors
If the UPDATE_RECORD expression is not configured properly in the record manipulator (which is used for
updating dimension values or property values), Forge issues errors.

The following expression errors cause Forge to generate errors:

Oracle Commerce MDEX Engine Partial Updates Guide

Troubleshooting Partial Updates | Troubleshooting update operations that fail44

• ACTION is not one of ADD, ADD_OR_REPLACE, REPLACE, DELETE, DELETE_OR_IGNORE, or UPDATE.
• ACTION is ADD and a record with that specification already exists. In this case, the record to be added is

skipped instead of replacing the existing record. Use an ACTION of ADD_OR_REPLACE to add a record if
it does not exist or replace it if it does.

• ACTION is UPDATE and a record with that specification does not exist. In this case, the record to be updated
is skipped.

• ACTION is UPDATE and a sub-action is not specified.
• ACTION is not UPDATE and a sub-action is specified.
• ACTION is DELETE and a record with that specification does not exist. In this case, the record to be deleted

is skipped and an error message is generated. Use an ACTION of DELETE_OR_IGNORE to suppress the
error message if the record does not exist.

• More than one sub-ACTION (such as DVAL_ACTION) is specified for a given property, dimension, or
dimension value.

The Dgraph checks permissions on the index directories
Starting with the version 6.1.2, the Dgraph checks permissions on the index directories before applying partial
updates.

If the required read/write permissions are missing, the Dgraph fails to apply the update and issues an error in
the standard error log. It also logs the path to the index directories to which it does not have read/write
permissions.

The Dgraph checks permissions on these directories in the Endeca/myApp/dgidx_output/myApp_indexes:
• /committed

• /generations

(The filepaths assume that the Deployment Template scripts are used to set up the application.)

Both of these directories should have read and write permissions to allow accessing them by the Dgraph.
However, due to file system issues or hardware maintenance issues combined with the implementation's
topology, it is possible that under some conditions these permissions are reset. This may make these directories
unaccessible by the Dgraph.

Performance impact of partial updates
This section provides a reference list of performance gains of partial updates.

• Partial updates do not require periodically running baselines for performance improvements. Update
operations done through multiple partial updates do not require running a periodic baseline update due to
performance concerns or memory-use constraints.

After you run the first few partial updates, MDEX Engine query performance decreases slightly. After this
initial performance decrease, query performance stabilizes.

• Startup performance after partial updates decreases slightly and stabilizes afterwards. Overall, startup
time is roughly proportional only to the total size of the MDEX Engine index, regardless of how many
updates played a role in its state.

• Partial updates with high turnover and high frequency perform fast. High turnover means that a large portion
of the data is being updated or deleted. Any mix of add, delete, and update operations on a large number
of records is handled gracefully during partial updates.

Oracle Commerce MDEX Engine Partial Updates Guide

45Troubleshooting Partial Updates | The Dgraph checks permissions on the index directories

In addition, you can combine record updates into larger batches. Running such large-batch partial updates
results in better overall throughput for the MDEX Engine. (The overall downtime for running one specific
partial update with high data turnover may be longer, but in total, the time it takes to run one large-batch
partial update is shorter compared with running many smaller scale partial updates in previous releases.)

• The MDEX Engine is stable in the face of hardware crashes. A power failure of the MDEX Engine server
does not affect the state of indexed data. It leaves indexed data on disk in a consistent state no matter at
which point in time a crash occurs. If a crash occurs during a partial update, the files from the
dgraph_input/updates directory are not deleted. After a restart, the MDEX Engine checks the
dgraph_input/updates directory for the presence of any files that were not applied and applies them.

Oracle Commerce MDEX Engine Partial Updates Guide

Troubleshooting Partial Updates | Performance impact of partial updates46

Index

A
aggressive merge policy

definition 23
setting with dgraph flag 24

B
Backups

baseline 39
incremental 40
recommendations 40
recovering the index 40
snapshot 39
types of 39

balanced merge policy
definition 23
setting with dgraph flag 24

Baseline updates
backups 39
general requirements 18
introduced 9
overview 9
pipeline details 18
processing overview 10
requirements 18
speeding up 10

C
continuous query 16

D
Delta updates

introduced 9
overview 11

Dgraph
failed updates 44
mergepolicy flag 24
updatehistory command 25

dgraph_input 17
dgraph_input/updates 17
DIM_ACTION 33
Dimension adapter 36
Dimension components

Dimension adapter 36
Dimension server 36

Dimension server 36
DVAL_ACTION 33

I
IF expression 30

L
Leaf dimensions adding 18

M
MDEX Engine processing for partial updates 15
merge policy

for partial updates 23
setting with dgraph flag 24
setting with URL command 24

N
numeric-lexicographic 37

P
Partial updates

capabilities 13
general requirements 18
IF expression for record manipulator 30
Index configuration 38
introduced 9, 13
introduction to processing 14
leaf dimensions 18
MDEX Engine processing 15
merge policy 23
naming format of data files 36
naming format of partial update files 37
overview 10
performance impact 45
pipeline details 27
pipeline, configuring 28
record adapter component 29
record manipulator component 29
record specifier 19
requirements 18
starting the MDEX Engine 21
UPDATE_RECORD expression 31
UPDATE_RECORD expression examples 34
UPDATE_RECORD expression formats 35
URL update command parameters 22

performance impact of partial updates 45
Perpetual partial updates, about 9

R
Record Adapter

creating for partial updates 29
Record manipulator

creating for partial updates 29
IF expression 30

Record specifier attribute
required for partial updates 19

recovering the index 40
reverting to an index state 40

S
simple lexicographic 37

T
partial updates 21
Troubleshooting

failed updates 44
recommendations for pipeline 43
UPDATE_RECORD errors 44

U
UPDATE_RECORD

supported expression nodes 32
troubleshooting errors 44

UPDATE_RECORD expression 31
examples 34
formats 35

updatehistory 25
updates processed by the MDEX Engine 9

Oracle Commerce48

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Types of Updates
	Updates processed by the MDEX Engine
	About baseline updates
	Baseline update processing
	Speeding up baseline updates

	About partial updates
	About delta updates
	Which update to run

	Partial Updates Processing and Requirements
	Introduction to partial updates
	Partial update capabilities
	Introduction to partial updates processing
	MDEX Engine processing for partial updates
	Continuous query
	Continuous query processing and administrative queries
	The dgraph_input directory
	The dgraph_input/updates directory

	Requirements for baseline and partial updates
	General requirements for partial and baseline updates
	Adding new leaf dimension values to records in partial updates
	Record specifier attribute required for partial updates

	MDEX Engine Configuration and Processing
	Enabling the MDEX Engine for partial updates
	MDEX Engine Thread Requirements for Partial Updates

	Processing the partial update files
	Running updates on a single file
	Setting the merge policy
	Dgraph mergepolicy flag
	URL mergepolicy command

	Listing the update files that were processed

	Partial Updates Pipeline
	About the partial update pipeline
	Configuring a partial update pipeline
	Creating the record adapter
	Creating the record manipulator
	About the IF expression for the record manipulator
	About the UPDATE_RECORD expression
	Expression nodes supported by the UPDATE_RECORD expression
	Obtaining IDs for the DIM_ACTION and DVAL_ACTION expression nodes
	UPDATE_RECORD expression reference examples

	Format of update records
	Dimension components
	Naming format of update source data files
	Naming format of partial update files
	Examples of numeric-lexicographic and simple lexicographic order

	Index configuration in the partial update pipeline

	Backing Up Baseline and Partial Updates
	Types of backups
	About baseline backups
	About snapshot backups
	About incremental backups

	Backup recommendations
	Recovering the index

	Troubleshooting Partial Updates
	Pipeline troubleshooting recommendations
	Troubleshooting update operations that fail
	UPDATE_RECORD errors
	The Dgraph checks permissions on the index directories
	Performance impact of partial updates

	Index

