
Oracle Functional Testing Advanced
Pack for Oracle Utilities
User’s Guide
Release 5.0.0
E67845-01

October 2015

Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide, Release 5.0.0

E67845-01

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
“commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or
hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents
Preface... i

Audience ... i
Prerequisite Knowledge.. i
Related Documents ... i
Notational Conventions .. ii

Chapter 1
Overview... 1-1

Introduction.. 1-1
Terminology ... 1-2
Application Architecture .. 1-3
Understanding the Roles .. 1-3
Pointers for Getting Started .. 1-4

Chapter 2
Developing Metadata Driven Web Service Based Test Automation ... 2-1

Metadata Driven Automation Development Methodology.. 2-1
Planning .. 2-2
Design and Development .. 2-2
Test Execution... 2-3

Setting Up Automation Development Environment .. 2-3
Step 1: Setting Up the OFTAPOU Server .. 2-3
Step 2: Setting Up Workstations for Development ... 2-4
Step 3: Setting Up Application Under Test... 2-4
Step 4: Setting Up Workstations for Testing .. 2-4

Creating Web Service Based Components .. 2-5
Creating Components... 2-6
Keywords, Definitions, and the Usage .. 2-8
Handling the List Elements ... 2-11
Working with Multi-lists... 2-11
Defining Default Data at Component Level .. 2-12
Setting Up OperationName for a Web Service .. 2-12
Using Runtime Variables in Components ... 2-13
Resolving the Repeating Elements in Response XML.. 2-13
Adding Validations.. 2-13
Logging and Reporting... 2-13
Extending Components ... 2-14
Using Function Libraries.. 2-15

Creating Component Sets... 2-15
Creating Test Flows... 2-16

Creating Scenarios ... 2-17
Using Global Variables... 2-17
Test Data Management .. 2-17
Adding the Email Capabilities to Flows .. 2-19
Support for HTTPS Web Services ... 2-19
Support for Integration Flows .. 2-20
Contents - i
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Executing Test Flows.. 2-21

Chapter 3
Function Library Reference.. 3-1

OUTSPCORELIB .. 3-1
WSVALIDATELIB .. 3-8
WSCOMMONLIB.. 3-10

Chapter 4
Development Accelerator Tools ... 4-1

Component Generation Tool .. 4-1
Creating Folder Structure... 4-1
Creating Components Using Component Generation Tool .. 4-2

Component Validator ... 4-3
Creating Folder Structure... 4-4
Executing the Component Validator Script.. 4-4
Analyzing the Component Validator Results.. 4-5

Appendix
Setting Up Inbound Web Services.. A-1

Creating Inbound Web Services... A-1
Importing Inbound Web Services.. A-1
Searching Inbound Web Services... A-2
Contents - ii
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Preface

Welcome to the Oracle Functional Testing Advanced Pack for Oracle Utilities (OFTAPOU) User’s
Guide. This guide explains how to use Oracle Functional Testing Advanced Pack for Oracle
Utilities to automate the business test flows for testing the Oracle Utilities’ applications.

Oracle Functional Testing Advanced Pack for Oracle Utilities is a licensed product and requires
Oracle Functional Tester (OFT).

This preface includes the following:

• Audience

• Prerequisite Knowledge

• Related Documents

• Notational Conventions

Audience
This guide is intended for Automation Developers, and Test Engineers who will be automating
the business test flows for testing the Oracle Utilities' applications.

Prerequisite Knowledge
This guide does require an understanding of software testing concepts. The users must be familiar
with Oracle Flow Builder.

Note: Oracle Flow Builder User’s Guide can be downloaded from Oracle
Technology Network (http://www.oracle.com/technetwork/oem/downloads/
index-084446.html).

The metadata driven automation development paradigm of Oracle Functional Testing Advanced
Pack for Oracle Utilities does not require any programming experience to develop scripts for
testing. However, the advanced programming features available in Oracle OpenScript do require
an experience with the Java programming language.

Related Documents
For more information, see the following documents in the Oracle Functional Testing Advanced
Pack for Oracle Utilities documentation set:

• Oracle Functional Testing Advanced Pack for Oracle Utilities Release Notes

• Oracle Functional Testing Advanced Pack for Oracle Utilities Installation and Administration Guide
Preface - i
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

http://www.oracle.com/technetwork/oem/downloads/index-084446.html
http://www.oracle.com/technetwork/oem/downloads/index-084446.html

Notational Conventions
• Oracle Functional Testing Advanced Pack for Oracle Utilities Reference Guide for Oracle Utilities
Application Framework

• Oracle Functional Testing Advanced Pack for Oracle Utilities Reference Guide for Oracle Utilities
Mobile Workforce Management and Oracle Real-Time Scheduler

• Oracle Functional Testing Advanced Pack for Oracle Utilities Reference Guide for Oracle Utilities
Customer Care and Billing

• Oracle Functional Testing Advanced Pack for Oracle Utilities Reference Guide for Oracle Utilities
Work and Asset Management

See also:

• Oracle Application Testing Suite Documentation Library

• Oracle Functional Testing OpenScript Documentation Library

Notational Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
Preface - ii
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Chapter 1
Overview

This chapter introduces the Oracle Functional Testing Advanced Pack for Oracle Utilities
application and provides an overview of the application architecture.

• Introduction

Introduction
Oracle Functional Testing Advanced Pack for Oracle Utilities (OFTAPOU) comprises test
automation accelerators for automated testing of the Oracle Utilities applications. It is a
framework based on Oracle Functional Tester (OFT) for creating the Web services automation
scripts.

Oracle Functional Testing Advanced Pack for Oracle Utilities enables users to create the
automation scripts using keywords or metadata, and without using any programming language.
This saves the test automation development effort and avoid programming the scripts using
OpenScript Workbench.

Note: Oracle Functional Tester and OpenScript are part of Oracle Application
Testing Suite. See the Oracle Functional Tester User Guide for more information.

The accelerators contain out-of-the-box delivered test components that can be used to build test
flows for the Oracle Utilities applications. Users can extend the delivered components or create a
new component to build their customized test flows. Utilities’ application specific sample test
flows are provided in the respective reference guides.

This introduction includes the following sections:

• Terminology

• Application Architecture

• Understanding the Roles

• Pointers for Getting Started
Overview 1-1
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Introduction
Terminology
This section lists the different terms used in the document.

Term Description

Oracle Flow Builder (OFB) Helps to build and maintain components and flows for
automated testing. This tool is part of Oracle
Application Testing Suite.

Note: See the Oracle Flow Builder User’s
Guide for more information.

Keyword Pre-defined set of words used to define a specific step in
a test case.

Component Line Represents a step in a test case defined by a keyword,
and associates values and parameters.

Component Reusable automated test or part of a test.

A component is the building block of an automated test
flow, comprising one or more component lines.

Component Set Set of reusable group of components arranged in a pre-
determined order.

A component set is used to perform a set of repeatable
tasks. Component sets, along with components, are used
to define a flow.

Flow Automated test

A flow comprises one or more components and/or
component sets that are called in a pre-determined
sequence.

Databank Container of test data used by an automated test flow.

The databank is defined using comma separated values
(.csv) in a text file.
Overview 1-2
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Introduction
Application Architecture
Below is a high-level architecture diagram for Oracle Functional Testing Advanced Pack for
Oracle Utilities.

 High-Level Architecture Diagram

Components and component sets are defined using metadata in Oracle Flow Builder. Using these
components a flow can be assembled and then generated. The generated script, then, can be used
and executed using Oracle Functional Tester.

For more information about Oracle Functional Testing Advanced Pack for Oracle Utilities see the
Oracle Functional Testing Advanced Pack for Oracle Utilities Installation and Administration Guide.

Understanding the Roles
The following diagram shows various roles and the setup tasks performed by each of the roles.

 Roles and Tasks
Overview 1-3
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Introduction
Pointers for Getting Started
This section provides the references to get started with the Oracle Functional Testing Advanced
Pack for Oracle Utilities application.

Installing Oracle Functional Testing Advanced Pack for Oracle Utilities
See Oracle Functional Testing Advanced Pack for Oracle Utilities Installation and Administration Guide for
detailed installation instructions.

Administrative Setup
See Oracle Functional Testing Advanced Pack for Oracle Utilities Installation and Administration Guide for
detailed administrative setup instructions.

Developing Test Automation
See Chapter 3: Developing Metadata Driven Web Service Based Test Automation for instructions
on how to develop metadata driven Web service based automation tests using Oracle Functional
Testing Advanced Pack for Oracle Utilities.

Product Components Reference
See the Oracle Utilities product specific component reference guide for more information.

Also, see the Oracle Functional Testing Advanced Pack for Oracle Utilities Release Notes for the products
included in this Oracle Functional Testing Advanced Pack for Oracle Utilities release.
Overview 1-4
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Chapter 2
Developing Metadata Driven Web Service Based

Test Automation

The Oracle Functional Testing Advanced Pack for Oracle Utilities components, component sets,
and flows are organized in a tree hierarchy. This hierarchy compartmentalizes these for different
Oracle Utilities applications.

This chapter is intended primarily for Automation Developers and Testers. It describes the
procedures to create components and component sets, and to create and execute test work flows.

• Metadata Driven Automation Development Methodology

• Setting Up Automation Development Environment

• Creating Web Service Based Components

• Creating Component Sets

• Creating Test Flows

• Executing Test Flows

Metadata Driven Automation Development Methodology
This section describes the metadata-driven automation development methodology that enables a
test automation engineer to create automation scripts for an Oracle Utilities application.

An application has to be tested for its base functionality and extensions or customization. For this,
the users create granular tests or larger end-to-end business test flows. Irrespective of the test
design techniques, these tests can be used for regression testing the application in case of upgrades
or customization to ensure that the existing functionality is not broken.

Typically, automation development is a time consuming exercise and teams have challenges in
knowing and implementing the industry best practices and automation tools that work best for
their product technology stack, helping them be successful in their efforts. Few of such challenges
are as follows:

• Selecting an automation tool

• Creating the automation framework

• Identifying the automation development methodology

• Ensuring the automated tests are updated for new releases

• Ensuring the coverage levels are up to date

• Configuration management of automated test programs
Developing Metadata Driven Web Service Based Test Automation 2-1
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Metadata Driven Automation Development Methodology
The metadata-driven automation development methodology provides solutions to such
challenges.

Development Methodology

For the Oracle Utilities applications built on Oracle Utilities Application Framework, Web service
based automated testing is proven to be more robust, maintainable, and faster to develop and
execute. Hence, Oracle Functional Testing Advanced Pack for Oracle Utilities comprises Web
services based components that enable creation of test flows and executing the same. UI based
automation components can also be created using Oracle Flow Builder. See the Oracle Flow Builder
User’s Guide for more information.

The following sections provide the test automation development phases in which an automated
test flow is created.

Planning
To plan an automated test flow, identify the business test flow to be automated and the
components required for the flow. If necessary, create additional components or extend the
delivered components. See the Extending Components section for details on how to extend the
components.

Design and Development
A flow design explains the order in which the components will be used to interact with each other
in the flow. It also defines the test data combinations to use.

To design and develop an automated test flow, follow these steps:

1. Create/extend the required components that are identified in planning phase.

2. Create a test flow in Oracle Flow Builder that maps to the identified business test flow in the
application.

See the Creating Test Flows section for details on how to create a test flow. See the Sample
Work Flows chapter in the respective product specific reference guides for delivered sample
flows to understand the flow creation.

3. Drag and drop the required components into the flow.
Developing Metadata Driven Web Service Based Test Automation 2-2
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Setting Up Automation Development Environment
4. Add the test data for the flow.

The test data can be modified at the runtime using the standard OpenScript databanks. See
the Test Data Management section for more details.

5. Assemble and generate the script for the test flow and then download the test script.

Test Execution
To execute the automated test flow, execute the script in OpenScript Workbench.

To use another data set to execute the script, change the databanks in the generated scripts project,
and then execute the script. See the Executing Test Flows section for more details.

The components and test flows developed using this approach are stored and version controlled
in the Oracle Flow Builder database. It takes care of the challenges in configuration management
of automated tests. This methodology and framework works only with Oracle Functional Tester.

Setting Up Automation Development Environment
The steps involved to set up the development environment for Oracle Functional Testing
Advanced Pack for Oracle Utilities are as follows:

• Step 1: Setting Up the OFTAPOU Server

• Step 2: Setting Up Workstations for Development

• Step 3: Setting Up Application Under Test

• Step 4: Setting Up Workstations for Testing

Step 1: Setting Up the OFTAPOU Server
This section explains the steps to be performed to setup the server.

• Installing Oracle Flow Builder

• Installing Oracle Functional Testing Advanced Pack for Oracle Utilities

• Administrative Tasks

Installing Oracle Flow Builder
Ensure that Oracle Flow Builder is installed before installing Oracle Functional Testing Advanced
Pack for Oracle Utilities. See Oracle Flow Builder User’s Guide for instructions to install Oracle Flow
Builder.

Note: The database connection pool size has to be (recommended) set to 50 or
higher, using the WebLogic console.

Below is the pseudo format of the URL to access the WebLogic console:

http://<OFB_HOST>:<OFB_ADMIN_PORT>/console

Installing Oracle Functional Testing Advanced Pack for Oracle Utilities
Oracle Functional Testing Advanced Pack for Oracle Utilities has to be installed on a client
workstation. See the Installing on Client Admin Workstation section for installation instructions.

Note: Oracle Functional Testing Advanced Pack for Oracle Utilities need not
be installed on the user workstations. Users only need browser access to Oracle
Flow Builder for the component and flow development.
Developing Metadata Driven Web Service Based Test Automation 2-3
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Setting Up Automation Development Environment
Administrative Tasks
See the Oracle Flow Builder User’s Guide for the Oracle Flow Builder administrative tasks (such as
stopping and starting the application instance).

Step 2: Setting Up Workstations for Development
This section provides the steps to set up the Oracle Functional Testing Advanced Pack for Oracle
Utilities developer workstations. The tasks include:

• Installing OpenScript

• Creating Test Execution Folder Structure

• Downloading and Setting up Jars

Installing OpenScript
Ensure OpenScript is installed on each user workstation where automation execution is
performed or where component and flow development is intended to be performed. See the
System Requirements section for the certified OpenScript version details.

Creating Test Execution Folder Structure
See the Creating Folder Structure for Generated Scripts section to create the folder structure for
placing the necessary test artifacts.

Downloading and Setting up Jars
See the Creating Folder Structure for Generated Scripts section to download and set up the
necessary .jar files.

Step 3: Setting Up Application Under Test
See the respective Oracle Utilities’ application specific installation guide for the setup details.

Ensure that Oracle Functional Testing Advanced Pack for Oracle Utilities related metadata exists
in this application instance. For more details, see the Post-Installation Tasks section in Oracle
Functional Testing Advanced Pack for Oracle Utilities Installation and Administration Guide.

Step 4: Setting Up Workstations for Testing
This section provides the steps to set up the Oracle Functional Testing Advanced Pack for Oracle
Utilities workstations for test environment. The tasks include:

• Installing OpenScript

• Creating a Test Execution Folder Structure

• Using the configuration.properties file

• Downloading and Setting up Jars

Installing OpenScript
Install OpenScript on each test workstation where automation execution has to be performed. See
the System Requirements section for the certified OpenScript version details.

Creating a Test Execution Folder Structure
See the Creating Folder Structure for Generated Scripts section to create the folder structure for
placing the necessary test artifacts.
Developing Metadata Driven Web Service Based Test Automation 2-4
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
Using the configuration.properties file
Update the configuration.properties file to suit the test execution product setup requirements. See
the Configuring the Runtime Properties section to understand the properties to be configured.

Downloading and Setting up Jars
See the Creating Folder Structure for Generated Scripts section to download and set up the
necessary .jar files.

Creating Web Service Based Components
This section describes the component hierarchy in Oracle Functional Testing Advanced Pack for
Oracle Utilities. The hierarchy is organized as follows:

Oracle Functional Testing Advanced Pack for Oracle Utilities Release > Product Family >
Product Release > Features > Components.

The section also explains the steps to create a Web service based component. It includes:

• Creating Components

• Keywords, Definitions, and the Usage

• Handling the List Elements

• Setting Up OperationName for a Web Service

• Using Runtime Variables in Components

• Resolving the Repeating Elements in Response XML

• Adding Validations

• Logging and Reporting

• Extending Components

• Using Function Libraries

The figure below shows the high-level component structure.

Component Structure
Developing Metadata Driven Web Service Based Test Automation 2-5
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
Creating Components
Ensure the component is created under the accurate hierarchy level.

To create a component, follow these steps:

1. Navigate to the component tree where the component has to be created.

2. Right-click the feature in the component tree.

Note: Create a new feature folder if it is not found in the delivered tree
structure.

For example: To create a “CM-MobileWorker” component under the “Resource
Management” feature for the product release ORS 2.2.0.3.0:

a. Navigate to OFTAPOU 5.0 > ORS / MWM Product Family > ORS 2.2.0.3.0 >
Resource Management.

b. Right-click the Resource Management feature.

c. Select Create Component.

Note: The component name must be prefixed with ‘CM’ and the Tags field
should have a CM tag for every component. The tagging enables porting the
custom components to latest Oracle Functional Testing Advanced Pack for
Oracle Utilities release.

Creating Component

3. Enter CM-MobileWorker in the Component field to name the component.

4. Select Web Service in the CompType drop-down list.

5. Enter a description in the Description field.

6. Click Attach Code to add the metadata. The Component window is displayed.

7. Create component lines. See the Creating a Component Line section for more information
about creating component lines.

8. Click Save & Unlock to save and create the component.
Developing Metadata Driven Web Service Based Test Automation 2-6
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
Creating a Component Line
A component consists of several component lines. Each component line comprises a keyword,
display name, attribute value, library, function, output parameters, rerunnable flag, mandatory flag.

The list below describes each entity in a component line. See the Oracle Flow Builder User's Guide for
more details.

• Keyword: Specifies the step to be performed. Example: WS-SETVARIABLEFROM
RESPONSE, WS-VALIDATE, etc

• Object: Specifies the Oracle Functional Testing Advanced Pack for Oracle Utilities function
library name from where the function is called.

• Display Name: Indicates the component line description.

• Attribute Values: Specifies the Web service XML tag name used as variable to store its value.

• Default Data: Stores the default data used in the component line.

• Function Name: Stores the function name called from the library.

• Output Parameters: Stores the output in the form of a variable.

• Rerunnable: Specifies “Yes” to create unique data for rerunnable. Rerunnable appends a
random variable to the test data.

• Mandatory: Specifies “Yes” for all the mandatory fields.

• Tooltip: Presents the data as a tool tip during the flow creation.

The figure below shows the Component page with the available component lines.

 Component Page

Add the required component lines using the Keyword drop-down list to define the Web services
based component.

See the Keywords, Definitions, and the Usage section for a list of keywords used to define the
Web service based components. See the Oracle Flow Builder User’s Guide for a complete list of
generic keywords.
Developing Metadata Driven Web Service Based Test Automation 2-7
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
This example shows different component lines created for the CM-MobileWorker component.

1. Select SETAPPTYPE in the Keyword drop-down list to define the application type. Then,
select “WS” in the Object drop-down list to denote that it is a Web services based
component.

2. Select the WS-SETWEBSERVICENAME keyword to define the Web service name.

3. Select the WS-SETTRANSACTIONTYPE keyword to define the transaction type of the
Web service call.

Note: The final script of a component is Web service call to create, update, and
delete.

4. Select the WS-LOGMESSAGE keyword to log comments in component definition. This
helps in debugging the script code for that component.

5. Select the WS-SETXMLELEMENT keyword to set the value into a specific element of
request xml.

Consider a component “CM-MobileWorker” in Oracle Utilities Mobile Workforce
Management. This component maps to the MobileWorker business object. It includes
elements, such as:

<mobileWorkerType />
<contractorId />

6. Select the WS-SETXMLLISTELEMENT keyword to set a value into the list element tags.
The list element is ‘skills’.

7. Click Save.

Keywords, Definitions, and the Usage
This section provides the description, definition (use case), and the usage details (object, display
name, attribute values, default data, function name, and output parameters) for each of the
keywords used to define Web service based components.

WS-SETWEBSERVICENAME
Sets the name of the application Web service.

Use Case: Defines the Web service to which the component’s Web service request is sent. The
Web service name is provided in the attribute values column during the component development.
This service name is appended with the WebContainerURL to form a complete WSDL URL for
processing the request. The WebContainerURL has to be specified in the flow runtime
configuration property file.

Usage Details Value

Keyword WS-SETWEBSERVICENAME

Display Name User Defined Display Name

Attribute Values Web Service Name
Developing Metadata Driven Web Service Based Test Automation 2-8
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
WS-SETXMLELEMENT
Sets the element (Xpath) value in the Web service request using either a variable or a value.

Use Case: Enables the Web service creation request (XML) with the element values populated by
setting each value for the defined element.

Usage Details Value

Keyword WS-SETXMLELEMENT

Display Name User Defined Display Name

Attribute Values Xpath of the element

WS-SETXMLLISTELEMENT
Sets the repeating list element (Xpath) value in the Web service request using either a variable or a
value.

Use Case: Enables the Web service creation request (XML) with repeating list element values
populated by setting each value set for the defined element list. The values are provided from the
test data.

Usage Details Value

Keyword WS-SETXMLLISTELEMENT

Display Name User Defined Display Name

Attribute Values Xpath of the element

WS-SETVARIABLE
Sets a value to a global variable.

Use Case: Used for setting a value to a global variable used across the flow for validations or for
setting XML elements. The values are provided from the test data.

Usage Details Value

Keyword WS-SETVARIABLE

Display Name User Defined Display Name

Output Parameters Variable Name

WS-SETVARIABLEFROMRESPONSE
Used to retrieve the XML element value from the response and stores it in a global variable for
further processing.

Use Case: Enables use of a response value, such as ID from a component, as an input to a request
in another component.

Usage Details Value

Keyword WS-SETVARIABLEFROMRESPONSE

Display Name User Defined Display Name

Attribute Values Xpath of the element in response

Output Parameters Variable Name
Developing Metadata Driven Web Service Based Test Automation 2-9
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
WS-SETTRANSACTIONTYPE
Sets a value for the transaction type.

Use Case: Used to set a value to a transaction type variable used in the request XML to pass a
request for specific operations, such as ADD, UPDATE, READ, DELETE, etc. The transaction
type is provided from the test data.

Usage Details Value

Keyword WS-SETTRANSACTIONTYPE

Display Name User Defined Display Name

WS-LOGMESSAGE
Used to set custom log messages in the execution results report.

Use Case: Provides the necessary extensibility to provide custom log messages for the generated
results report, such as to identify the start and completion of a transaction, etc.

Usage Details Value

Keyword WS-SETLOGMESSAGE

Display Name User Defined Value

Attribute Values Message

WS-CREATEWSREQUEST
Creates a Web service request XML and stores it in the “WSDLXML” global variable.

Use Case: Enables the manipulation of the Web service XML request generated before
submitting it to the application for processing, giving greater flexibility in development.

Usage Details Value

Keyword WS-CREATEWSREQUEST

Display Name User Defined Display Name

Attribute Values Web Service Name

WS-PROCESSWSREQUEST
Sends the Web services request and receives the response from the application for the specified
WSDL URL.

Use Case: Posts the generated XML request from WS-CREATEWSREQUEST to the
application, and then processes the response. This keyword performs the core process of the Web
services based request-response model.

Usage Details Value

Keyword WS-PROCESSWSREQUEST

Display Name User Defined Display Name

Attribute Values Web Service Name
Developing Metadata Driven Web Service Based Test Automation 2-10
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
Handling the List Elements
Use the WS-SETXMLLISTELEMENT keyword to define a list element of request XML. The
XML schema for the CM-MobileWorker component has the ‘Skills’ list element. The element
“skills/skillsList” has multiple occurrences in the ‘skills’ element.

The WS-SETXMLLISTELEMENT keyword allows you to enter data for such elements while
entering the test data.

<skills type="group">
<skillsList type="list" mapChild="M1_RESRC_CAP">
<mobileWorkerId suppress="true" mapField="RESRC_ID"
dataType="string"/> <sequenceNumber suppress="true"
dataType="number" mapField="SEQNO"/>
<skill mdField="M1_SKILL" fkRef="M1-SKILL" mapField="CAP_TYPE_CD"
dataType="string"/> <effectiveDate dataType="date"
mapField="EFF_DT"/>
<expirationDate dataType="date" mapField="M1_EXP_DT"/>
</skillsList>
</skills>

Working with Multi-lists
In few requests, a particular list block is repeated. If a schema contains multi list, break the
component into parts - _part1, _part2, _part3, etc.

The _part1 of the component includes root/parent elements followed by _part2 with the second
level parents, and _part3 with the third level parents, and so on. The parents are matched to the
child lists using fkRef and pkRef elements, added in the component definition. The _part1 pkRef
value should correspond to fkRef of _part2.

In the main (_part1) component, the fkRef is blank (with no test data). The fkRef and pkRef
should be integers starting with 1 (data to be provided in flow test data). The _part2 component
can be dragged multiple times (after _part1 component) to add as many list repetitions as required.

Below is a sample schema:

<exceptionInfo type="list" mapXML="USG_DATA_AREA">
 <sequence mdField="SEQ_NUM" dataType="number" isPrimeKey="true"/>
 <messageCategory mdField="MESSAGE_CAT_NBR" dataType="number"/>
 <messageNumber mdField="MESSAGE_NBR" dataType="number"/>
 <comments mdField="COMMENTS"/>
 <messageParameters type="list">
 <parameterSequence mdField="PARM_SEQ" dataType="number"
isPrimeKey="true"/>
 <messageParameterValue mdField="MSG_PARM_VAL"/>
 </messageParameters>
</exceptionInfo>

In the sample above, Part I component elements are as shown.

<exceptionInfo type="list" mapXML="USG_DATA_AREA">
 <sequence mdField="SEQ_NUM" dataType="number" isPrimeKey="true"/>
 <messageCategory mdField="MESSAGE_CAT_NBR" dataType="number"/>
 <messageNumber mdField="MESSAGE_NBR" dataType="number"/>
 <comments mdField="COMMENTS"/>
 <messageParameters type="list">

• The Part 1 component should have a Web service name specified.

• It should have fkref and pkref specified using the WS-SETXMLLISTELEMENT
keyword.
Developing Metadata Driven Web Service Based Test Automation 2-11
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
• Do not pass test data for fkRef and pkRef values. They denote the number of times the
list is repeated.

For example: If the list is repeated thrice, then in the test data, value 1=1, value2=2, and
value3=3.

• All the first level (parent level) elements should be declared in the Part 1 component.

In the sample above, Part II component elements are as shown:

 <parameterSequence mdField="PARM_SEQ" dataType="number"
isPrimeKey="true"/>
 <messageParameterValue mdField="MSG_PARM_VAL"/>

• For part 2 components, do not specify the Web service name.

• Part 2 components consists of multi-list elements that repeat.

• Park 2 components should include fkRef and pkRef values that map parent to the child
list elements.

Defining Default Data at Component Level
In Oracle Functional Testing Advanced Pack for Oracle Utilities, test data can be maintained at
the component level for quick and easy use at the flow level.

In each component line the “Default Data” column is available to hold the default data. Using this
field, default test data can be populated in the component. While using a component with default
data in a flow, the default data can easily be copied from component to flow using the “Move”
option available on the Flow Test Data window.

Even after the default data is populated in the flow test data, data elements in the test data entry
page can still be edited, if required. This helps to build the flow faster for cases where
administration and master test data are predetermined.

Data Flow

Setting Up OperationName for a Web Service
An OperationName determines the action to be taken while executing a Web service request. The
value for the keyword “WS-SETTRANSACTIONTYPE” is specified while adding the test data
for the flow. If designed so, the same component can be used to add record, update record, or
delete record operations.

For example: To create a new mobile worker, or to update or delete an existing mobile worker, set
up the transaction type for appropriate the instance of the component in the flow.
Developing Metadata Driven Web Service Based Test Automation 2-12
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
Using Runtime Variables in Components
In some cases, few elements from the response component execution have to be passed as inputs
to another component’s request XML. To achieve this, store the output of first component in the
global variable by using the WS-SETVARIABLEFROMRESPONSE keyword. This keyword
requires Xpath of the response element whose value are to be stored. It should be specified in the
Attribute Values column. The global variable which holds this value in the script is defined in the
Output Parameter column.

The WS-SETVARIABLEFROMRESPONSE keyword stores the mobileWorkerId obtained after
a mobile worker component execution to the global variable gVar_mobileWorkerId1 declared in
the Output Parameter column.

See the Creating Test Flows section for procedure about how a dependent component reads such
global variables

Resolving the Repeating Elements in Response XML
If the response XML has repeating elements, the value embedded within the repeating elements is
retrieved as below.

Consider the response as follows:

<ContactDetails>
<Phone> 123-456-7890 </Phone>
<Phone>234-567-8901 </Phone>
<email> joe@oracle.com </email>
</ContactDetails>

1. Use the WS-SETVARIABLEFROMRESPONSE keyword to retrieve the response of the
Web service invocation into the global variable. gVar1 is defined in the Output Parameter
column as below:

The keyword resolves all occurrences of the Phone element and stores all values in the gVar1
variable separated by comma. gVar1 will be set to “123-456-7890,234-567-8901”.

2. Use the FUNCTIONCALL keyword to call the setVariableValueUsingListIndex function
available in the OUTSPCORE library.

The keyword retrieves the value(s) based on the parameters passed. Parameters passed are
global variables storing the values (gVar1 and index).

See Chapter 3: Function Library Reference for more details.

Adding Validations
To validate the response, use the FUNCTIONCALL keyword to validate the content, in
particular, the Xpath of response XML. Select the function library wSVALIDATELIB from the
Object drop-down list and the function to be called from the Function Name drop-down list.

See Chapter 3: Function Library Reference for a complete reference of the Validation function
library.

Logging and Reporting
Apart from OpenScript, Oracle Functional Testing Advanced Pack for Oracle Utilities provides
the following types of logging and reporting:

1. Test execution log file: The test execution logs are created in the Logs folder and separate
logs are generated for each flow.
Developing Metadata Driven Web Service Based Test Automation 2-13
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Web Service Based Components
2. Email report in HTML format: The test execution email provides brief information about
the overall test execution. It comprises of the following:

• Test step

• Test data

• Result (Pass/Fail)

The figure below is a snippet of a generated email.

Logging and Reporting Result

Extending Components
The components delivered can be customized; however, modifying the existing components is not
supported. Any attempt to do so does not allow other components to work with the modified
component.

A component can be extended by making its copy or clone and saving it with a different name
prefixed and tagged by CM, and then adding or modifying the metadata or key words as follows:

1. Create a subsystem (Feature) to store extended components.

2. Right-click a base component and select Copy Component.

3. Select and right-click on the subsystem (Feature) created in Step 1, and then select Paste
Component from the component context menu.

4. Enter a new name (that is different from the component being cloned). The name should
always be prefixed with 'CM'.

5. Add the 'CM' tag in the Tag field, and then click Save.

6. Right-click the cloned component and select Attach Code from the context menu to modify
it.

7. Follow the steps listed out in the Creating Components section to proceed with
modifications.
Developing Metadata Driven Web Service Based Test Automation 2-14
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Component Sets
The figure below shows how the Oracle Utilities Application Framework (OUAF) component F1-
ToDoEntryAdd is extended.

Extending Components

Using Function Libraries
This section explains how to use the function libraries shipped with this Oracle Functional Testing
Advanced Pack for Oracle Utilities release and create new help libraries.

Function libraries shipped with Oracle Flow Builder and Oracle Functional Testing Advanced
Pack for Oracle Utilities can be accessed in the Component window using the
FUNCTIONCALL key word and specifying the library name in the Object column and the
function name in the Function Name column. Define the variable name in the Output
Parameters field to store the return value of the function.

Function parameters can be provided while entering test data for the component in a flow. See the
Test Data Management section for more details.

See Chapter 3: Function Library Reference for a list of libraries and functions available in Oracle
Functional Testing Advanced Pack for Oracle Utilities.

Creating Component Sets
A component set is a group of components arranged in a pre-determined order. It can be used to
perform a set of tasks that are repeatable.

For example: The M1-CrewShift component in Oracle Utilities Mobile Workforce Management is
actually a component set. To create an M1-CrewShift component in a flow, ensure M1-
MobileWorker, M1-Vehicle, and M1-MultiPersonCrew are available. Then, create the dependant
M1-CrewShift component. To avoid dragging and dropping these four components to a flow, they
can be grouped in a sequence to form a component set. It can later be used to create flows.

To create a component set, follow these steps:

1. Navigate to the component set tree to locate the feature under which the component set
should be created.

2. Right-click the feature and select Create Component Set. The Component Set page is
displayed.

3. Enter a unique component name CM-CrewShift and add a Description.

4. Click Create Structure.

5. Drag and drop the components M1-MobileWorker, M1-Vehicle, M1-MultiPersonCrew, M1-
CrewShift to the component set structure root.

6. Click Unlock to remove the lock on the component set.
Developing Metadata Driven Web Service Based Test Automation 2-15
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Test Flows
Creating Test Flows
Test flows are actual business tests executed on the application under test. The flows are
assembled in Oracle Flow Builder by using predetermined components and are updated with data
to guide the flow execution.

This section explains the steps to create a flow. It also includes:

• Creating Scenarios

• Using Global Variables

• Test Data Management

• Adding the Email Capabilities to Flows

To create a flow, identify the components required to create the flow.

Note: The components delivered with Oracle Functional Testing Advanced
Pack for Oracle Utilities have to be extended or new components have to be
created.

To create a flow, follow these steps:

1. Navigate to the feature in the flow tree to create the flow.

For example: The “Assign and Complete a CrewShift” flow includes the following
components:

• M1-MobileWorker

• M1-Vehicle

• M1-MultiPersonCrew

• M1-CrewShift (to create a crew shift)

• M1-Activity (to create an activity)

• M1-CrewShift (to plan a crew shift)

• M1-CheckIfActivityIsScheduled (to check if the activity has been scheduled)

• M1-CrewShift (to start the crew shift)

• M1-GetAssignmentIdForTaskId (to get the assignment ID for the activity)

• M1-Assignment (to enroute to the assignment)

• M1-Assignment (to start the assignment)

• M1-Assignment (to complete the assignment)

• M1-CrewShift (to complete the crew shift)

2. Right-click the product “ORS 2.2.0.1.0” under “ORS / MWM Product Family” and select
Create Flow.

3. In the Create Flow pane, enter the Flow Name, Flow Type, and Description.

4. Click Create Structure in the Create Flow pane. This creates a new flow and a new scenario
is added to the flow tree.

5. Expand the flow tree and select the scenario to add the components.

6. Drag and drop the components from the Select Component pane to the Flow Creation
pane. See the Creating Scenarios section for information about adding scenarios to a flow.

7. The test data needs to be entered at the component level while defining a flow and before the
flow is assembled. To add data for M1-MobileWorker component, right click it and select
Enter Test Data. Similarly, data can be added for the remaining components.
Developing Metadata Driven Web Service Based Test Automation 2-16
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Test Flows
8. Enter the test data in the Enter Component Test Data page.

9. Click Save & Close to return to the Flow Creation page.

10. Click Assemble.
This completes the procedure to define a test flow in Oracle Flow Builder.

Creating Scenarios
See the Adding Scenarios to Flow section in the Oracle Flow Builder User's Guide to understand
how to create and use scenarios in the flow.

Using Global Variables
This section explains the usage of global variables to pass data across components.

The component M1-CrewShift is a dependant component and during runtime needs The IDs of
the M1-MobileWorker, M1-Vehicle, and M1 MultiPersonCrew components in addition to the
other data.

To add component references to a dependant component (M1-CrewShift), follow these steps:

1. To add the MobileWorker ID, select gVar_mobileWorkerId1 from the Value1 drop-down
list against the resourceAllocationList/resourceId display name.

2. To add VehicleId, select gVar_vehicleId1 from the Value2 drop-down list against the
resourceAllocationList/resourceId display name.

3. To add MultiPersonCrewId, select gVar_CrewId in the Value 1 drop-down list against the
crewId display name.

Test Data Management
The test data can be mentioned in the flow meta data. The Oracle Flow Builder code generator
generates OpenScript databanks (CSV files) for each component. Number and names of the
columns in the generated databanks are based on the test data provided. The databanks can be
updated with new data before test execution.

 Sample CSV File

The generated script for the test flow can be executed for multiple sets of data. The data sets have
to be provided in the component databank CSV for each of the component. The first data set for
a flow will be generated by the script generator using the Oracle Flow Builder data.
Developing Metadata Driven Web Service Based Test Automation 2-17
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Test Flows
Case 1: The component is called just once in the flow and it has repeating list elements (such as
location). The figure below shows the CSV generated for the component.

 Case 1: CSV for Component
The figure below shows the CSV after adding a second set of data. (Since the data has repeating
list elements, the second data set starts two rows after the first with the prefix SET2_).

Case 1: CSV After Adding Second Data Set

Case 2: The component is called more than once in the flow and it does not have repeating list
elements. The figure below shows the CSV generated for the component. In the figure, the text
enclosed in the curly brackets is the variable.

Case 2: CSV for Component

Note: The taskId column points to the AssgnmntId global variable declared
within the curly brackets. The value stored in AssgnmntId will be set from the
execution or the previous component and stored in AssgnmntId.
Developing Metadata Driven Web Service Based Test Automation 2-18
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Test Flows
The figure below shows the CSV values after adding the second data set. (since the data has
repeating list elements, the second data set starts two rows after the first with the prefix SET2_).

Case 2: CSV After Adding Second Data Set

Adding the Email Capabilities to Flows
The test execution report can be sent to users as an email. To add email capabilities in a flow, add
the component line mentioned in the table below towards the end in the flow.

Usage Details Value

Keyword FUNCTIONCALL

Object wSCOMMONLIB

Function Name generateAndSendReport

The email configuration properties file is in the server at:

install directory] /data/function-libraries/function-libs/OUTSP/
configuration.properties

Update the values mentioned below to configure the email:

#Email Details
gStrSMTP_HOST_NAME=internal-mail-router.oracle.com
gStrSMTP_PORT=25
gStrTO_EMAIL_RECIPIENTS=<user_email_id>

Support for HTTPS Web Services
While connecting to the edge applications that use the https protocol, before executing the scripts
through Oracle Application Testing Suite, the security certificate should be saved on the system
from where the Oracle Application Testing Suite test cases are being executed, and then register
the certificate in the Java security certificates repository.

To import the security key store into Java key store follow these steps:

1. Enter the URL (https) of the application in the browser (Internet Explorer).

2. Click the Continue to this Website (not recommended) link on the Security certificate
page.

3. Click Certificate error in the address bar.

4. Click the View certificates link on the Certificate Invalid pop-up window.

5. On the Details tab, click Copy to File.

6. Click Browse and select the file you want to export. Click Next.

7. Review the settings and click Finish.
Developing Metadata Driven Web Service Based Test Automation 2-19
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Creating Test Flows
8. Login to the machine where this certificate has to be imported into the Java key store, and
then open the command prompt.

9. If the Java path is not set in the environment variables, navigate to the Java/jdk/bin directory
and execute the following command:

keytool -import -alias <Alias Name> -file <path of the file which
we exported in Step 7> -keystore <Java keystore path>

Note: The Java key store path in the machine where OpenScript is installed in
the INSTALL_DIR\OracleOATS directory is
INSTALL_DIR\OracleATS\jdk\jre\lib\security\cacerts.

10. Enter “changeit” as the Password.

11. Enter Yes to import the certificate.

The property file attributes for https requests are as below:

##Handling Https WSDL - Java key Store
gStrJavaKeyStorePath=INSTALL_DIR\\OracleATS\\jdk\\jre\\lib\\securi

ty
gStrJavaKeyStorePwd=changeit

12. The setup is ready to process the https requests.

Support for Integration Flows
To test an end-to-end flow, the functional testing typically involves accessing different applications
integrated for running the flow. In order to execute the integration tests, create flows that span
multiple applications. These flows send/receive information to and from different applications.

To perform complete end-end tests, add the url as an attribute in the properties file as shown
below:

configuration.properties

Integration Environments
gStrMWMApplication=https\://slc09ute.us.oracle.com\:9590/ouaf/XAIApp/
xaiserver
gStrCCBAppliation=https\://slc05ats.us.oracle.com\:8501/ouaf/XAIApp/
xaiserver
gStrMDMAppliation=https\://slc08ftq.us.oracle.com\:5251/ouaf/XAIApp/
xaiserver

Below is the example where the Oracle Utilities Customer Care and Billing service AT-C1Premise
is called:

Test data:

Calling CCB service: gStrCCBAppliation/AT-C1Premise
Calling MWM Service: gStrMWMApplication/AT-M1CrewShift

Note that this test data is a combination of environment and application service names.
Developing Metadata Driven Web Service Based Test Automation 2-20
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Executing Test Flows
Executing Test Flows
This section explains the steps to execute a test flow.

• Generating OpenScript Projects

• Creating Folder Structure for the Generated Scripts

• Configuring the Runtime Properties

Generating OpenScript Projects
To generate an OpenScript project, follow these steps:

1. On the flow tree page, right-click a flow and select Generate OFT Scripts.

2. Enter the local folder details where the OpenScript project has to be generated.

The OpenScript project generated from the test flow has the following structure:

• Master Driver folder - This is an OpenScript project containing the script.java file which is
the master driver script invoking all the scenario scripts in the scenario folder.

• Scenario folder - This is an OpenScript project. There will be one OpenScript project for
each scenario defined in the flow. Each scenario’s script will be invoked from the Master
Driver script.

• Components - Components will be the OpenScript instructions called from the scenario
scripts. Each component is enclosed within a step group in OpenScript.

Creating Folder Structure for the Generated Scripts
After generating and downloading the OpenScript project, create the following folder structure to
organize the generated test scripts. This folder structure needs to be created on every workstation
where the automation scripts are executed.

Below is the sample folder structure to organize the test scripts generated.

Folder Structure for Generated Scripts

• ebs-function-libs

Stores the generic function library. Oracle Functional Testing Advanced Pack for Oracle
Utilities needs three generic function libraries, namely GENLIB, WEBLABELLIB, and
WEBTABLEOBJ.
Developing Metadata Driven Web Service Based Test Automation 2-21
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Executing Test Flows
These function libraries should be copied from the Oracle Flow Builder server. Below is the
server location from where above libraries can be copied.

<OFB_INSTALL_DIR>/data/function-libraries/ebs-function-libs

• outsp-function-libs

Stores the Oracle Functional Testing Advanced Pack for Oracle Utilities related function
libraries.

Extract the product specific function libraries by following the steps specified in the
Extracting OFTAPOU Packages section in Oracle Functional Testing Advanced Pack for Oracle
Utilities Installation and Administration Guide.

Copy all the directories under <OFTAPOU_HOME>\OatsouLibrary\modules\oatsou-
function-libs\directory to <OpenScript_INSTALL_DIR>/outsp-function-libs/.

Note: For details about the <OFTAPOU_HOME> location, see the
Extracting OFTAPOU Packages section in Oracle Functional Testing Advanced
Pack for Oracle Utilities Installation and Administration Guide.

• genericJars

For executing the generated Web service automation code, the following third party jars are
required. These jars need to be copied to the genericJars folder.

Jar Name Jar Version Download URL

soa-model-core 1.4.1.4 http://www.membrane-soa.org/downloads/

groovy 2.0.4 http://groovy.codehaus.org/Download

groovy-xml http://groovy.codehaus.org/Download

sjsxp 1.0.2 https://java.net/projects/sjsxp/downloads/

asm 4.0 http://asm.ow2.org/download/index.html

httpclient 4.2.2 http://archive.apache.org/dist/
httpcomponents/httpclient/

httpcore http://archive.apache.org/dist/
httpcomponents/httpcore/

Jdom 1.1.1 http://www.jdom.org/dist/binary/archive/

The jars mentioned above can be copied from the Oracle Functional Testing Advanced Pack for
Oracle Utilities server place to the following location:

<OFB_INSTALL_DIR>/data/function-libraries/genericjars

• xsd - Stores the run time generated XSDs required for processing the Web Services request.

• Etc - Consists of the property file for providing runtime and email configuration details, such
as test environment name, application user and password, email ID, etc.

• Logs - Stores the runtime generated test execution logs that can be later used for debugging.

• flows - Stores the downloaded flows, product wise. The applications need to create their
application specific folder in the “flows” folder to download and store the flows.

The figure mentioned above shows the flows arranged application wise.

• tools - This folder.
Developing Metadata Driven Web Service Based Test Automation 2-22
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

http://www.membrane-soa.org/downloads/
http://groovy.codehaus.org/Download
http://groovy.codehaus.org/Download
https://java.net/projects/sjsxp/downloads/
http://asm.ow2.org/download/index.html
http://archive.apache.org/dist/httpcomponents/httpclient/
http://archive.apache.org/dist/httpcomponents/httpcore/
http://www.jdom.org/dist/binary/archive/

Executing Test Flows
Configuring the Runtime Properties
The configuration.properties file is located in the etc\ folder. It is used to store the runtime test
execution parameters, such as application URL, application access information, email
configuration, etc.

To use the email functionality for receiving the test execution report, provide the values
mentioned below in the configuration.properties file (etc\configuration.properties file).

#Email Details
gStrSMTP_HOST_NAME=
gStrSMTP_PORT=
gStrTO_EMAIL_RECIPIENTS=

To provide the test environment details, provide the below values:

Application URL pointing to test execution
gStrApplicationURL =
gStrApplicationXAIServerPath=
gStrEnvironmentName=

To provide the application user information for login, provide the values for below keys:

gStrApplicationUserName =
gStrApplicationUserPassword =

If the test suite has any database-side validations, provide the database details as below:

gStrApplicationDBConnectionString =
gStrApplicationDBUsername =
gStrApplicationDBPassword =

The path for the output files generated for reporting is as below:

Output file details
gStrOutputFilePath =
gStrXSDFiles=

See the Support for Integration Flows section for properties related to integration environment.
Developing Metadata Driven Web Service Based Test Automation 2-23
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Chapter 3
Function Library Reference

This chapter lists the Oracle Functional Testing Advanced Pack for Oracle Utilities function
libraries and functions available to create components and flows in Oracle Flow Builder for testing
Oracle Functional Testing Advanced Pack for Oracle Utilities.

The chapter explains the following libraries:

• OUTSPCORELIB

• WSVALIDATELIB

• WSCOMMONLIB

OUTSPCORELIB
Use the OUTSPCORELIB function library to develop the component code and flows for Web
services and general applications. The library includes functions with date and time processing and
string processing capabilities, as well as database and file operations.

This section provides a list of the functions included in the library, along with their usage details.

runBatchFile
Executes a existing batch file.

Example:

runBatchFile("C://Test//Test.bat")

Input Parameters: String
Return Type: void

killBatchFile
Kills the batch process in execution.

Example:

killBatchFile ("cmd.exe")

Input Parameters: String
Return Type: void
Function Library Reference 3-1
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

OUTSPCORELIB
getCurrentTimeInMilliSeconds
Gets the time in milliseconds.

Example:

getCurrentTimeInMilliSeconds ()

Input Parameters: <none>
Return Type: Sting

rand
Gets the random number for the given range.

Example:

rand(int lo, int hi) ()

Input Parameters: lo, hi
Return Type: int

randomStringWithGivenRange
Gets the random string for the given range.

Example:

randomStringWithGivenRange(int lo, int hi)

Input Parameters: lo, hi
Return Type: String

Randomstring
Generates the random string based on the parameters passed. ‘lo’ and ‘hi’ are the lowest and
highest numbers to be used to generate the random string.

Example:

randomstring (lowerLim, higherLim)

Input Parameters: int lowerLim , int higherLim
Return Type: String

compare2Strings
Compares two strings and returns a boolean result based on the result of comparison.

Note: This function returns “True” if strings provided are same. Else, it returns
‘False’.

Example:

compare2Strings (String_A, String_B)

Input Parameters: String_A, String_B
Return Type: String

randomNumberUsingDateTime
Gets the random string with date and time in it.

Example:

randomNumberUsingDateTime()

Input Parameters: <none>
Return Type: String
Function Library Reference 3-2
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

OUTSPCORELIB
getCurrentDateTimeWithGivenDateFormat
Gets the current date and time in the specified format.

Example:

getCurrentDateTimeWithGivenDateFormat(String dFormat)
getCurrentDateTimeWithGivenDateFormat("mm-dd-yyyy:hh.mm.ss")

Input Parameters: dFormat
Return Type: String

getDateDiffInSecsWithGivenDateFormat()
Gets the difference in the date.

Example:

getDateDiffInSecsWithGivenDateFormat(String dateStart, String
dateStop, String dFormat)
getDateDiffInSecsWithGivenDateFormat(“12-13-2014”, “12-29-2014”,
“mm-dd-yyy”)

Input Parameters: String dateStart, String dateStop, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateTime
Gets the adjusted time with the given date and time.

Example:

getAdjustedTimeWithGivenDateTime(String dateTime, String offset,
String dFormat)
getAdjustedTimeWithGivenDateTime(“12-13-2014”, “-02:30”,”mm-dd-
yyyy”)

Input Parameters: String dateTime, String offset, String dFormat
Return Type: String

getAdjustedTimeWithCurrentDateTime
Returns the date and time after adding the specified offset to the current date and time in the
specified date/time format. Date and time are the inputs to this function.

Example:

getAdjustedTimeWithCurrentDateTime(String offset, String dFormat)
getAdjustedTimeWithCurrentDateTime("-2.30", "mm-dd-yyyy")

Input Parameters: String dateTime, String offset, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateAndTime
Returns the date and time after adding the specified offset to specified date and time in the
specified date/time format.

Example:

getAdjustedTimeWithGivenDateAndTime(String cuDate,String
cuTime,String offset, String dFormat)
getAdjustedTimeWithGivenDateAndTime("12-13-2014","12:15:00","-
2.30", "mm-dd-yyyy")

Input Parameters: String cuDate, String cuTime, String offset,
String dFormat
Return Type: String
Function Library Reference 3-3
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

OUTSPCORELIB
addDaysToCurrentDateWithGivenFormat
Adds the number of days to the current date and returns the result in the specified format.

Example:

addDaysToCurrentDateWithGivenFormat(String noOfDays, String
dFormat)
addDaysToCurrentDateWithGivenFormat("45", "mm-dd-yyyy")

Input Parameters: String noOfDays, String dFormat
Return Type: String

serverDate
Gets the server date.

Example:

serverDate()

Input Parameters: <none>
Return Type: String

executeSQLQry
Executes SQL and returns the record set.

Example:

executeSQLQry(String Query)
executeSQLQry("SELECT * FROM EMP")

Input Parameters: String Query
Return Type: Result Set

executeSQLQryWithGivenDBDetails
Executes SQL and returns the record set.

Example:

executeSQLQryWithGivenDBDetails(String Query, String
ConnectionString ,String DBUsername,String DBPassword)
executeSQLQryWithGivenDBDetails("SELECT * FROM EMP", CONN_STR,
"system", "system00")

Input Parameters: String Query, String ConnectionString,String
DBUsername,String DBPassword
Return Type: Result Set
Exceptions: Database exception

serverTime
Gets the server time.

Example:

serverTime()

Input Parameters: <none>
Return Type: String
Function Library Reference 3-4
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

OUTSPCORELIB
waitForTime
Waits for the specified time.

Example:

waitForTime(String strWaitTimeInMinutes)
waitForTime(“15”)

Input Parameters: String strWaitTimeInMinutes
Return Type: void

verifyLastBatchRun
Verifies if the batch is in execution in the last x minutes.

Example:

verifyLastBatchRun(String Batch_CD, String strMaXTimeToCheck)
verifyLastBatchRun("1234567890", "90")

Input Parameters: String Batch_CD, String strMaXTimeToCheck
Return Type: String

getCurrentOffsetTime
Gets the current offset time.

Example:

getCurrentOffsetTime(String cuDate, String cuTime, String
offset,String timeFormat)
getCurrentOffsetTime("12-13-2014", "12:30:00", "+2:30","mm-dd-
yyyy")

Input Parameters: String cuDate, String cuTime, String offset,
String timeFormat
Return Type: String

addDaysToAGivenDate
Adds days to the provided date.

Example:

addDaysToAGivenDate(String date, String noOfDays)
addDaysToAGivenDate("12-13-2014", "19")

Input Parameters: String date, String noOfDays
Return Type: String

randomNumber
Gets the random number.

Example:

randomNumber()

Input Parameters: <none>
Return Type: String
Function Library Reference 3-5
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

OUTSPCORELIB
createFile
Creates file in the specified path.

Example:

createFile(String FilePath)
createFile("C:\Logs.txt")

Input Parameters: String FilePath
Return Type: void

getWaitConditionState
Waits for the specified time.

Example:

getWaitConditionState(long StartTime, float TimeInMinutes)
getWaitConditionState("12345L", "12.00")

Input Parameters: long StartTime, float TimeInMinutes
Return Type: boolean

compare2Files
Compares two files.

Example:

compare2Files(String strFileName_A, String strFileName_B)
compare2Files("C:\Logs01", "C:\Logs04")

Input Parameters: strFileName_A, String strFileName_B
Return Type: String

copyFile
Copies files from source to destination.

Example:

copyFile(String srcFilePath, String destFilePath)
copyFile("C:\temp.txt", "D:\temp.txt")

Input Parameters: strFileName_A, String strFileName_B
Return Type: void

deleteFile
Deletes a file.

Example:

deleteFile(String filePath)
deleteFile("C:\temp.txt")

Input Parameters: String filePath
Return Type: void
Function Library Reference 3-6
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

OUTSPCORELIB
executeSQLQryUpdate
Executes SQL for the update query.

Example:

executeSQLQryUpdate(String Query, String ConnectionString,String
DBUsername,String DBPassword)
executeSQLQryUpdate("UPDATE EMP SET NAME="Oracle" where
EMPID='123'" CONN_STR, "system", "system00")

Input Parameters: String Query, String ConnectionString,String
DBUsername, String DBPassword
Return Type: String

getDistinctObjects
Returns the count of distinct objects in a specific column in a table.

Example:

getDistinctObjects(String tableName, String columnName, String
condition, String ConnectionString ,String DBUsername,String
DBPassword)
getDistinctObjects ("EMP", "EMPID" CONN_STR, "system", "system00")

Input Parameters: String tableName, String columnName, String
condition, String ConnectionString,String DBUsername, String
DBPassword
Return Type: String

setVariableValueUsingListIndex
Handles the resolving repeating elements in the response XML and retrieves the value(s) based on
the parameters passed. The parameters passed are global variable (gVar1) and index value.

Example:

setVariableValueUsingListIndex(String listVariableName,String
index)
setVariableValueUsingListIndex(“data1,data2,data3”, 2)

Input Parameters: String listVariableName: List values separated by
comma
String index: the index number to retrieve value
Return Type: String: Value

closeConnections
Closes the database connection opened for database verification.

Example:

closeConnection()

Input Parameters: <none>
Return Type: <none>

executeSQLQryForSingleRecord
Executes the SQL query for a single record.

Example:

executeSQLQrySingleRecord(String Query,String recId)

Input Parameters: Query,recId
Return Type: String
Function Library Reference 3-7
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

WSVALIDATELIB
appendStrings
Appends strings provided in the parameters.

Example:

appendStrings (String strValue1, String strValue2, String
strValue3, String strValue4, String strValue5, String strValue6

Input Parameters: string1, string2, string3, string4, string5,
string6

Return Type: String

getCurrentMonth
Gets the current month.

Example:

getCurrentMonth()

Input Parameters: none
Return Type: String

WSVALIDATELIB
Use the WSVALIDATELIB function library to validate the test components (referred to as
verification points) in the components. The library covers validation routines for string and XML
elements in the returned response XML.

This section provides a list of functions in the library, along with the usage details.

elementNotNull
Verifies if the specified element in response is null.

Example:

elementNotNull(String responseTag)
elementNotNull(mobileNumber)

Input Parameters: String responseTag
Return Type: void

elementIsNull
Verifies if the specified element in response is not null.

Example:

elementIsNull (String responseTag)
elementIsNull (mobileNumber)

Input Parameters: String responseTag
Return Type: void

elementValueEquals
Verifies if the specified element value in response is equal to the provided value.

elementValueEquals(String responseTag, String expectedValue)
elementValueEquals(mobileNumber, "1234567890")

Input Parameters: String responseTag, String expectedValue
Return Type: void
Function Library Reference 3-8
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

WSVALIDATELIB
elementValueNotEquals
Verifies if the specified element value in response is not equal to the provided value.

Example:

elementValueNotEquals(String responseTag, String expectedValue)
elementValueNotEquals (mobileNumber, "1234567890")

Input Parameters: String responseTag, String expectedValue
Return Type: void

elementValueGreaterThan
Verifies if the specified element value in response is greater than the provided value.

Example:

elementValueGreaterThan(String responseTag, String valueToCompare)
elementValueGreaterThan("count","5")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementValueGreaterThanEqualTo
Verifies if the specified element value in response is greater than or equal to the provided value.

Example:

elementValueGreaterThanEqualTo(String responseTag,String
valueToCompare)
elementValueGreaterThanEqualTo("totalRecords", "50")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementValueLesserThan
Verifies if the specified element value in response is less than the provided value.

elementValueLesserThan(String responseTag,String valueToCompare)
elementValueLesserThan ("counter", "50")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementValueLesserThanEqualTo
Verifies if the specified element value in response is less than or equal to the provided value.

Example:

elementValueLesserThanEqualTo(String responseTag,String
valueToCompare)
elementValueLesserThanEqualTo ("attempts", "10")

Input Parameters: String responseTag, String valueToCompare
Return Type: void
Function Library Reference 3-9
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

WSCOMMONLIB
elementContains
Verifies if the specified element is available in the response.

Example:

elementContains(String responseTag,String valueToBeChecked)
elementContains("batchName", "F1-BILLING)

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementNotContains
Verifies if the specified element is not available in the response.

Example:

elementNotContains(String responseTag, String valueToBeChecked)
elementNotContains ("description", "billing")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

reponseNotContains
Verifies if the specified value or element is not available in the response.

Example:

reponseNotContains(String value)
reponseNotContains("Failed")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

responseContains
Verifies if the specified value or element is available in the response.

responseContains(String value)
responseContains("Exception")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

WSCOMMONLIB
Use the WSCOMMONLIB function library to perform common operations in the Oracle
Functional Testing Advanced Pack for Oracle Utilities Web services testing, such as composing
request, sending request, composing email summary, converting it to HTML format, sending an
email, and parsing WSDL.

Note: This library does not have any component development functions other
than the generateAndSendReport function that provides result reporting and
email capabilities to the user. See the Logging and Reporting section in Chapter 2:
Developing Metadata Driven Web Service Based Test Automation for more
details.

This section provides the functions included in the library, along with their usage details.
Function Library Reference 3-10
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

WSCOMMONLIB
generateAndSendReport
Generates the HTML test execution report and sends the execution summary via email. The email
settings can be specified in the configuration.properties file available in the /etc directory of the
execution folder structure.

generateAndSendReport ()

Input Parameters: NA
Return Type: NA
Function Library Reference 3-11
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Chapter 4
Development Accelerator Tools

This chapter provides information about the development accelerator tools.

• Component Generation Tool

• Component Validator

Component Generation Tool
Each of the Oracle Functional Testing Advanced Pack for Oracle Utilities (OFTAPOU)
components correspond to a business entity in the application being tested. That business entity is
used to create an Inbound Web Service using Business Service/Service Script or Business Object.

All Oracle Flow Builder components have to be manually created by extracting the xpath of each
of the schema elements in the XSD for a business component/Inbound Web Service. The
extraction of xpath from an XSD is tedious given the sheer number of components that we have
for each of the application. The maximum effort/time for automation using Oracle Flow Builder
goes into the creation of the components.

The automated Component Generation Tool (CGT) reads the WSDL URL and the component
name supplied in a user friendly format (excel sheet), and generates the respective Excel sheets for
component (one for each WSDL URL). For each WSDL URL that is read by the tool, a request is
sent to the URL for retrieving the WSDL XSD. Once the tool retrieves the WSDL XSD from the
application, the schema xpath of the XSD is developed and inserted in to an output component
template Excel. The template with details is uploaded to create new components.

This section includes information about the following:

• Creating Folder Structure

• Creating Components Using Component Generation Tool

Creating Folder Structure
To create the pre-requisite folder structure, follow these steps:

1. Create the Inbound Web Services for all Business Objects (BO), Business Service (BS), and
Service Script (SS) necessary for automation in the environment.

2. Create the following folder structure in local drive (Example: D:)

a. ebs-function-libs: Includes library files used to develop flows.

b. etc: Includes the configuration.properties file where all the environment details are
listed.

c. flows: Contains the flows generated through Oracle Flow Builder.
Development Accelerator Tools 4-1
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Component Generation Tool
d. generic jars: Includes jar files needed for execution.

e. logs: Includes the logs placed during the flow execution.

f. outsp-function-libs: Contains the Core function libraries and function libraries related
to Oracle Utilities Meter Data Management.

g. tools: Includes the Component Generator and Component Validator to generate and
validate components.

h. xsd: Includes the generated xml files.

The necessary folder structure is in place now.

Creating Components Using Component Generation Tool
To create a component using the Component Generation Tool, follow these steps:

1. Login to the Oracle Utilities Application Framework (OUAF) application.

2. Identify the WSDL URL for the target Business Objects/ Business Services for the specific
edge application.

3. Enter the WSDL URL and the component details in the input sheet in Component
Generation Tool.

The component names should follow the naming convention as follows:

<OwnerFlag>-<entityName>

For example:

C1-Person, F1-Batch

4. In the OpenScript application, create a “OATS” repository and point it to the Oracle
Application Testing Suite folder.

5. Ensure the values in the etc > configuration.properties file are valid.

6. Navigate to OATS > tools > Scripts and select ComponentExcelGenerator.

7. Execute this tool in OpenScript to generate the component Excel. An output Excel is
generated and saved in the OATS > tools > Output_Excels folder.

Below is a sample Excel file for the D1-SmartMeter component. The Excel can be updated
with new elements as required.

Output Excel
Development Accelerator Tools 4-2
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Component Validator
8. Import the component into Oracle Flow Builder as follows:

a. Login to the Oracle Functional Testing Advanced Pack for Oracle Utilities environment.

b. Click the Components link on the top-right corner. It brings up the Component Tree
in the left pane.

c. Navigate to the folder where the component: has to be created.

d. Right-click folder and select Create Component.

e. Enter the required values, and then click Attach Code.

f. On the Component window, click Upload & Populate.

g. Click Browse and navigate to the OATS > tools > Output_Excels folder to select the
component Excel generated in step 7. Then, click Open.

h. Click Start to upload and populate the component.

The component Excel is imported into Oracle Flow Builder and a component is created.

Component Excel

9. After import, the component will be listed out in the component tree in Oracle Flowe
Builder.

Component Validator
Errors in the component definition are hard to identify. Further, regular application upgrades can
cause the components to be outdated. Identifying such components is rather difficult. Also, it is
very important that the component definition is pristine and clear.

Component Validator tool automatically validates a given list of components in Oracle Flow
Builder against their corresponding entities in the edge application. This saves time and effort
during the component upgrades. Also, code generation and execution issues will be minimized if
the component definition is accurate.

Component Validator parses through each of the component lines and highlights the incorrect
component lines. Further, it identifies the missing schema elements in the component definition
with respect to the edge application’s business entity’s schema. All the findings are displayed as a
report for the user to act on.
Development Accelerator Tools 4-3
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Component Validator
This section includes information about the following:

• Creating Folder Structure

• Executing the Component Validator Script

• Analyzing the Component Validator Results

Creating Folder Structure
To create the pre-requisite folder structure, follow these steps:

1. Install the latest OpenScript version (12.5.0.2 Build 537).

2. Create the following folder structure in local drive (Example: D:)

a. ebs-function-libs: Includes library files used to develop flows.

b. etc: Includes the configuration.properties file where all the environment details are
listed.

c. flows: Contains the flows generated through Oracle Flow Builder.

d. generic jars: Includes jar files needed for execution.

e. logs: Includes the logs placed during the flow execution.

f. outsp-function-libs: Contains the Core function libraries and function libraries related
to Oracle Utilities Meter Data Management.

g. tools: Includes the Component Generator and Component Validator to generate and
validate components.

h. xsd: Includes the generated xml files.

3. Login to the environment being used.

4. Create the Inbound Web Services for all Business Objects (BO), Business Service (BS), and
Service Script (SS) necessary for automation in the environment.

Executing the Component Validator Script
To execute the Component Validator script, follow these steps:

1. Navigate to OATS > tools > Input_Excels and open Validator_Input_File.csv.

2. Enter the necessary details.

The Component_Validator shows two databanks attached:

• OFB_Environment_Details.csv - Includes the Oracle Flow Builder environment
details where existing components are validated. The structure of the databank is as
below:

DBUsername - Oracle Flow Builder database user name

DBPassword - Oracle Flow Builder database user password

DBServer - Oracle Flow Builder server name

DBPort - Database port number

DBSID - Database SID

• Validator_Input_File.csv - Includes the URLs of the Web services for which
validations need to be done. Below is the structure of the databank:

WSDLURL - URL of the WSDL file to be validated. There can be multiple entries for
WSDL URLs to validate multiple components at a time.
Development Accelerator Tools 4-4
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Component Validator
CompName - The component name created in Oracle Functional Testing Advanced
Pack for Oracle Utilities for the specified Web service.

ReleaseName - The release name in which a component is created and validated.

3. Navigate to OATS > tools > Scripts and then execute Component_Validator in
OpenScript.

4. The logs can be found in OATS > tools > logs as ComponentValidatorResults.csv.

Below is a sample log file providing issues found during the validation.

Sample Log File

Analyzing the Component Validator Results
To analyze Component Validator log file, follow these steps:

1. Navigate to the logs folder available in the folder structure.

2. Open ComponentValidatorResults.csv file where the logs are generated.

The first column displays the component that is validated and the second column shows the
WSDL URL against which the component has been validated.

3. Check the third column for detailed comments:

a. The log statement displays missing elements from the component schema. The
component schema can be corrected by adding the missing elements.

b. Basic validation for the all keywords is done. For example: The following log statement is
displayed when the application type is not defined.

"Keyword SETAPPTYPE not set in the component as the first line.
- Fail"
Development Accelerator Tools 4-5
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Appendix
Setting Up Inbound Web Services

The Oracle Utilities application-specific components are developed using the Web services
method, and these components need the Inbound Web Services to be defined in the application.

This chapter includes the following sections:

• Creating Inbound Web Services

• Importing Inbound Web Services

• Searching Inbound Web Services

Creating Inbound Web Services
To create an Inbound Web Service, follow these steps:

1. Login to the Oracle Utilities application.

2. Navigate to Admin > I > +Inbound Web Service.

3. On the Inbound Web Service page, do the following:

a. Enter the Inbound Web Service Name.

b. Enter the Description and the Detailed Description.

c. Select the appropriate trace,debug.active,post error option from the drop down.

d. Select the Annotation.

e. Enter the Operation Name, and then select the Schema Type, Schema Name, and
Transaction Type.

f. Click Save.

Importing Inbound Web Services
To import an Inbound Web Service into the Oracle Utilities application, follow these steps:

Note: Ensure the exported Inbound Web Services are available in the local
machine.

1. Login to the Oracle Utilities application.

2. Click Admin > B > Bundle Import.

3. On the Inbound Web Service Import page, enter the reference and detailed description.

4. Copy paste the bundle details from the Inbound Web Services bundle.
Setting Up Inbound Web Services A-1
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

Searching Inbound Web Services
5. Click Apply bundle. The “Imported Successfully” message appears in the Message text
column.

Searching Inbound Web Services
To search an Inbound Web Service in an Oracle Utilities application, follow these steps:

1. Login to the Oracle Utilities application.

2. Navigate to Admin > I > Inbound Web Service.

3. On the Inbound Web Service Search page, do the following:

a. Enter the name of the required Web Service in the Name field.

Alternatively, enter the description in the Description field.

b. Click Refresh.

The Web Service, if found, is retrieved and displayed.
Setting Up Inbound Web Services A-2
Oracle Functional Testing Advanced Pack for Oracle Utilities User’s Guide

	Contents
	Preface
	Audience
	Prerequisite Knowledge
	Related Documents
	Notational Conventions

	Chapter 1
	Overview
	Introduction
	Terminology
	Application Architecture
	Understanding the Roles
	Pointers for Getting Started

	Chapter 2
	Developing Metadata Driven Web Service Based Test Automation
	Metadata Driven Automation Development Methodology
	Planning
	Design and Development
	Test Execution

	Setting Up Automation Development Environment
	Step 1: Setting Up the OFTAPOU Server
	Step 2: Setting Up Workstations for Development
	Step 3: Setting Up Application Under Test
	Step 4: Setting Up Workstations for Testing

	Creating Web Service Based Components
	Creating Components
	Keywords, Definitions, and the Usage
	Handling the List Elements
	Working with Multi-lists
	Defining Default Data at Component Level
	Setting Up OperationName for a Web Service
	Using Runtime Variables in Components
	Resolving the Repeating Elements in Response XML
	Adding Validations
	Logging and Reporting
	Extending Components
	Using Function Libraries

	Creating Component Sets
	Creating Test Flows
	Creating Scenarios
	Using Global Variables
	Test Data Management
	Adding the Email Capabilities to Flows
	Support for HTTPS Web Services
	Support for Integration Flows

	Executing Test Flows

	Chapter 3
	Function Library Reference
	OUTSPCORELIB
	WSVALIDATELIB
	WSCOMMONLIB

	Chapter 4
	Development Accelerator Tools
	Component Generation Tool
	Creating Folder Structure
	Creating Components Using Component Generation Tool

	Component Validator
	Creating Folder Structure
	Executing the Component Validator Script
	Analyzing the Component Validator Results

	Appendix
	Setting Up Inbound Web Services
	Creating Inbound Web Services
	Importing Inbound Web Services
	Searching Inbound Web Services

