
Oracle Real-Time Scheduler Hybrid Mobile 
Application Implementation and 
Development Guide

Release 2.3.0.0

E72834-01

March 2016



Oracle Real-Time Scheduler Hybrid Mobile Application Implementation and Development Guide, Release 
2.3.0.0 

E72834-01

Copyright © 2000, 2016 Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use 
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license 
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, 
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, 
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on 
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are 
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the 
programs, including any operating system, integrated software, any programs installed on the hardware, and/or 
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other 
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It 
is not developed or intended for use in any inherently dangerous applications, including applications that may 
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be 
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. 
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or 
hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are 
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, 
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro 
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, 
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly 
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise 
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be 
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, 
products, or services, except as set forth in an applicable agreement between you and Oracle.



Chapter 1
Overview 1-1

Architecture 1-1
Oracle Utilities Mobile Library (OUML) 1-2
Deployment Models 1-2
Inbound and Outbound Communication 1-3

Chapter 2
Development Environment Setup 2-1

Installing Prerequisite Software 2-1
Source Code 2-1
Apache Cordova Project 2-1
Plugin Installation 2-2
Device Plugins 2-2

Encryption 2-3
Local Testing 2-3
Building and Deploying the Mobile Application 2-4

iOS Deployment  2-4
Deployment from a Command Line 4
Deployment Using an IPA File 4

Android Deployment  2-5
Deployment from a Command Line 5
Deployment using an APK File 5

Chapter 3
 Oracle Utilities Mobile Library 3-1

Device Communication 3-1
Device Inbound Messages 3-1

Configuration 1
Message Storage 1
Inbound Message Event API 1
Message Acknowledgements 2

Device Outbound Messages 3-2
Online Mode 2
Offline Mode 3

Server Communication 3-3
Server Outbound Messages 3-3

Output RSI ID for Various Business Services, Service Scripts, etc. 4
Callback Logic 4
Remote Message Batch Monitor 4

Server Inbound Messages 3-4
Guaranteed Delivery 5
Remote Message 5

Logging 3-5
Changing Log Settings from a Device 5
Log Appenders 5
Log Message Format 5
Log API 5

Offline Database 3-6



Database Schema 3-6
API 3-6
Tables 3-6

Config 3-8
API -ouml.Config 3-8

Encryption APIs 3-9
Cordova Encryption Plugin APIs 3-10
Deployment 3-11

API (module - ouml.Metadata) 11
Properties 3-12
Business Objects 3-13

Business Object JavaScript (BO JS) 3-13
GenericBusinessObject APIs 14

Business Object Factory API 3-15
BOHelper API 15

Business Object Entity API 3-16
Business Object UI (HTML and Javascript) 3-16

Page View Model 17
BaseViewModel API Properties 17
 18
Buttons 20

Properties 3-22
API - ouml.PropertyEntity 3-22

Public APIs 22
Property Names  3-22
UI Layout and Navigation 3-23

HTML Content 3-23
Headers 3-24

Contents  24
Public APIs (via ouml.BaseViewModel) 24

Page Fragments 3-25
API 3-25
Menu 3-25
Indicators 3-27

Asynchronous Functions Pattern 3-28
AsyncWorker API 3-29

BO Plugins 3-29
Mobile Device APIs 3-30

Attachments 3-30
API (module - ouml.BaseViewModel) 30

File 3-31
API (module - ouml.File) 31

Camera 3-32
API (module - ouml.Camera) 32

Maps 3-32
API (module - ouml.Maps) 32

Barcoding 3-33
API (module - ouml.BaseBarcode) 3-33
Barcode Support 3-33

Signature 3-33



API (module - ouml.Signature) 3-34
Procedures 3-34

API (module - ouml.BaseViewModel) 34
UI Theme 3-34
Logging 3-34
Error Handling 3-35

Chapter 4
Mobile Application APIs 4-1

Inbound Scripts 4-1
Plugins 4-1
Images 4-1
Task List 4-2

UI JavaScript 2
HTML Pages 2

Panic Alert 4-3
UI JavaScript 3
HTML Pages 3

Assignments 4-4
Business Object JavaScript 4
Business Object UI JavaScript 4
HTML Pages 6

Page Menu Items 4-6
Depot Related Assignment 4-7

Business Object JavaScript 7
Business Object UI JavaScript 7
HTML Pages 9

Page Menu Items 4-9
Depot Task 4-10

Business Object JavaScript 10
Business Object UI JavaScript 10

Depot Task Items 4-11
Parent Business Object JavaScript 11
Business Object UI JavaScript 11
HTML Pages 12

Page Menu Items 4-12
Depot Task Assignments 4-12

Business Object Java Script 12
Business Object UI JavaScript 13
HTML Pages 14

Page Menu Items 4-14
Break Task 4-15

Business Object JavaScript 15
Business Object UI JavaScript 15
HTML Pages 16

Non Productive Tasks 4-16
Business Object JavaScript 16
Business Object UI JavaScript 16
HTML Pages 17

Page Menu Items 4-17



Period of Unavailability Task 4-17
Business Object JavaScript 17
Business Object UI JavaScript 18
HTML Pages 18

Page Menu Items 4-18
Mail 4-19

Business Object JavaScript 19
Business Object UI JavaScript 19
HTML Pages 19

Page Menu Items 4-20
Recipient Mail 4-20

Business Object JavaScript 20
Business Object UI JavaScript 20
HTML Pages 21

Page Menu Items 4-21
Crew Shift 4-21

Business Object JavaScript 21
Business Object UI JavaScript 22
HTML Pages 23

Page Menu Items 4-24
Depot Related Shift 4-24

Business Object UI JavaScript 24
HTML Pages 24

Simple Procedure 4-25
Business Object JavaScript 25
HTML Pages 25

Procedure Type 4-25
Business Object 25

Oracle Map 4-25
UI JavaScript 25
HTML Pages 26

Attachments 4-26
Business Object JavaScript 26
HTML Pages 27

Chapter 5
Customization and Extension Methodology 5-1

Themes and Images 5-2
Setting Custom Themes 5-2
Changing Images on Index.html 5-2
Changing Images of Icons on Maps 5-3
Overriding Icons 5-3

Extending Navigation 5-3
Application Level Menu Items 5-3
Page Level Menu Items 5-3

Extending Existing Screens and Functions  5-4
Hiding Menu Items And Overriding Functionality 5-4
Extending BO Files 5-6
Extending HTML Pages 5-7
Overriding M1 Plugins and Creating Custom Plugins 5-8



Custom Screens and Functions  5-8
Creating a Custom Page Not Related To a Business Object 5-8
Creating Custom Screens for a Child BO 5-9
Creating Custom Screens for a New Business Object 5-11

Device Plugins 5-12
Barcode Plugin 5-12
File Plugin 5-13
Custom Script for Barcode 5-13
Testing to Determine If the /cm Layer is Delivered 5-14

Customizable Indicators 5-14
Adding a Custom Indicator 5-15
Switching Between Indicators 5-16
            Removing an Indicator 5-16





Preface

Audience
The target audience of this guide is implementers and system administrators responsible for 
implementation and deployment of mobile applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program 
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit: 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info 

or

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

Installation, Configuration, and Release Notes
• Oracle Real-Time Scheduler Release Notes

• Oracle Real-Time Scheduler Quick Install Guide

• Oracle Real-Time Scheduler Server Application Installation Guide

• Oracle Real-Time Scheduler DBA Guide

• Oracle Real-Time Scheduler Hybrid Mobile Application Installation and Deployment Guide

User Guides
• Oracle Real-Time Scheduler Server Application User’s Guide

• Oracle Real-Time Scheduler Mobile Application User’s Guide (Java-based)

• Oracle Real-Time Scheduler Hybrid Mobile Application User’s Guide

• Oracle Real-Time Scheduler Hybrid Mobile Contractor Application User’s Guide

Implementation and Development
• Oracle Real-Time Scheduler Hybrid Mobile Application Implementation and Development Guide
Preface-ix
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Preface
Map Editor Installation and User Guides
• Oracle Real-Time Scheduler Map Editor User’s Guide 

• Oracle Real-Time Scheduler Map Editor Installation Guide 

Supplemental Documents
• Oracle Real-Time Scheduler Server Administration Guide 

• Oracle Real-Time Scheduler Security Guide
Preface-x
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Chapter 1
Overview

This guide provides development and configuration details for the Oracle Real-Time Scheduler Mobile 
Application including Oracle Utilities Mobile Library, APIs, development environment setup, 
customization and extension methodology. 

This section provides a general overview and information about the mobile application components 
and architecture.

Architecture
Oracle Real-Time Scheduler simplifies and optimizes the scheduling, dispatching, and tracking of 
mobile service crews and field activities.

The mobile application consists of the Oracle Utilities Mobile library and application layers responsible 
for specific business functionality. It uses HTML5 and JavaScript to implement business logic, render 
the user interface and interact with mobile device services. Web services facilitate communication 
between the mobile application and the application server. 
Overview 1-1
Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Architecture
Oracle Utilities Mobile Library (OUML)
The Oracle Real-Time Scheduler Mobile Application is based on the Oracle Utilities Mobile Library 
(OUML) optimized to work with Oracle Utilities Application Framework (OUAF) based services, 
configurations and metadata. The Oracle Utilities Mobile Library provides a foundation layer and APIs 
for application development including offline storage, encryption, communication, logging, 
configuration, UI rendering/navigation, customization, deployment and so on. The Oracle Utilities 
Mobile Library makes use of third party libraries that are either bundled with the application or listed as 
pre-requisites. 

Please reference Chapter 3: Oracle Utilities Mobile Library for more information on working with the 
Oracle Utilities Mobile Library.

Deployment Models
The mobile application can be packaged and deployed in the format native to one of the supported 
runtime platforms. Alternately, it can be packaged as a web application and deployed to an application 
server to be accessed on the mobile device via a web browser. 

Please note that certain device specific features are not available when the application is deployed as a 
web application and accessed via web browser. 

The following table lists the features supported by application mode.

Feature Compiled Browser Based

GPS  

Capture Picture  X

Capture Signature  X

Capture Sound X X

Barcode Scanning/Reading  X

Download Attachments from MDT
(All File Types)

 X
Overview 1-2
  Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Architecture
Inbound and Outbound Communication
Inbound and Outbound communication between ORS mobile and server applications is based on 
RESTFul services and JSON payload. In situations where device is offline at the time of making 
outbound HTTP request communication modules of ORS Mobile application ensure that delivery of 
the message when device is back online and communication with server is reestablished. To simplify 
debugging and implementation activities in a development environment, guaranteed delivery and 
asynchronous messaging can be turned on or off on the Settings page within the mobile application. 

Please reference Mobile Application APIs for more details on communication between mobile and 
server applications.

Upload Attachment from MDT to Server
(Only Captured Picture and Signature) 

 X

Maps  

Feature Compiled Browser Based
Overview 1-3
  Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Chapter 2
Development Environment Setup

This section provides information needed to setup the development environment for the mobile 
application. Implementers can use this environment to add new features and test their code locally or 
on devices using the steps provided in this section. 

Prior to setting up the development environment, you must have completed general server side 
configuration. Please reference the Oracle Real-Time Scheduler Server Administration Guide for information.

Installing Prerequisite Software
Please reference the chapter on installing prerequisite software in the Oracle Real-Time Scheduler Mobile 
Application Installation and Deployment Guide for information. 

Source Code
Required libraries and source code for development and customization in the local environment 
can be copied from the <PRODUCT_HOME> directory of the shared build environment that is 
created as part of the initial install. Please refer to the Oracle Real-Time Scheduler  Mobile Application 
Installation and Deployment Guide for information on the initial install.

The <PRODUCT_HOME>/source/www folder in the shared build environment contains the 
source files which could be linked to a version control system to enable code contributions from 
multiple local development environments.

The www directory needs to be copied over or linked to the local Apache Cordova project. This 
project can be used to locally build native applications.

Apache Cordova Project
The same Apache Cordova project can be used to create native applications for different mobile 
operating systems. 

Complete the following steps to create an Apache Cordova project:

1. Install Cordova.
Please reference the installation instructions delivered with the Cordova product. The section 
on “The Command-Line Interface” includes steps to install the CLI tool information about 
Cordova project commands.

2. Create the Cordova project using the create command.
Example: cordova create <Directory name> <Application namespace> <Application 
name>

This creates the Cordova project folder on the machine.
Development Environment Setup 2-1
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide

https://git-wip-us.apache.org/repos/asf/cordova-plugin-device.git


Device Plugins
The <PRODUCT_HOME>/source/www directory has to be copied or linked to the www 
directory for the Cordova project. Any changes made in the www directory for the Cordova 
project will be reflected in the generated native application.

3. Add different mobile platforms to the Cordova project. Examples:
Cordova platform add ios
Cordova platform add android

Plugin Installation
Cordova includes a set of "core plugins" which are used by the mobile application to access native 
device features such as the file system, camera, geolocation and so on. Aside from using the Cordova 
core plugins, implementers can also develop their own plugins or use other available plugins. These 
plugins are described in the Apache Cordova documentation. 

Use the CLI tool to installing/uninstalling plugins. This is done by using the “plugin add” command: 

Example:  

cordova plugin add <path to plugin>

Note: Please reference the Oracle Real-Time Scheduler Installation and Deployment Guide in the “Plugin 
Configurations” section for the list of required plugins for the mobile application including the actual 
paths for the plugins with the release versions being used. The following section provides an overview 
of the plugin functions. 

Device Plugins
This section provides a high level description of the device plugins used with the Oracle Real-Time 
Scheduler.

Device  - The Cordova Device plugin defines a global device object, which describes the device's 
hardware and software. 

Camera - The Cordova Camera plugin provides an API for taking pictures and for choosing images 
from the system's image library.

File - The Cordova File plugin implements a File API allowing read/write access to files residing on 
the device.

Geolocation - The Cordova Geolocation plugin provides information about the device's location, 
such as latitude and longitude. Common sources of location information include Global Positioning 
System (GPS) and location inferred from network signals such as IP address, RFID, WiFi and 
Bluetooth MAC addresses, and GSM/CDMA cell IDs.

InAppBrowser - The Cordova InAppBrowser plugin provides a web browser view that displays when 
calling window.open().

Network Information - The Cordova InAppBrowser plugin provides an implementation of an old 
version of the Network Information API. It provides information about the device's cellular and wifi 
connection, and whether the device has an internet connection.

Barcode Scanner - This is an external Barcode scanner plugin for Cordova which is optional and can 
be used with the application. The plugin provides implementation for scanning barcodes and provides 
the type and the barcode for a scanned item. 
Development Environment Setup 2-2
 Mobile Application Implementation and Development GuideOracle Real-Time Scheduler



Local Testing
SQLite - This is an external SQLite plugin for Cordova which is optional and can be used with the 
application. The plugin provides implementation for using SQLite Database on the device. The plugin 
uses the same API as the HTML5 WEBSQL database.  

Background Mode - This is an external background mode plugin for Cordova which is required only 
for iOS. This plugin prevents the application on iOS from going to sleep while in the background

Signature Capture - This is an external signature capture plugin for jQuery. This is a Javascript only 
plugin and does not require installation using the Cordova add plugin command. The plugin file needs 
to be included in the www/libs/jSignature folder. It provides a JavaScript widget for simplifying the 
creation of a signature capture field in a browser window, allowing a user to draw a signature using 
mouse, pen or finger.

Encryption
The encryption plugin is only used on devices running Android platform to: 

• Store passwords encrypted on devices

• Store  transaction data encrypted on devices (BO, Inbound, Outbound records)

For iOS, encryption is handled with native device encryption. If the Oracle Real-Time Scheduler 
Mobile Application is deployed as a web application and is being accessed on the device via web 
browser, the encryption module is not used, but rather, transaction data is stored in plain text format in 
offline database.

The encryption module is implemented entirely on the device side and there is no associated server 
side counterpart.

Transaction data generated by the application is securely stored in a non readable encrypted format 
accessible only to the authenticated user. User credentials are securely stored in private storage of the 
application in encrypted format for offline authentication. A Symmetric Key for Encryption is 
generated on the server. This key changes every time a new user session is started.

Encryption features can be enabled or disabled per specific mobile device. They can also be enabled 
system-wide via Feature Configuration by setting the Encryption value as “Default”.

Local Testing
The HTML5 code added to the www directory can be tested locally using a Google Chrome browser. 
For device-specific features, such as a camera and/or barcode scanner, the testing must be done using 
native applications. 

Use these steps to test the application in non-production mode:

1. If not already installed, install the Google Chrome desktop browser.

2. Create a shortcut to the executable on your desktop.

3. Right-click the shortcut and choose Properties, then append the following to the Target 
property:

--user-data-dir="C:/Chrome dev session" --disable-web-security

to disable cross-domain JavaScript security.

4. Start Chrome via the shortcut and load the mobile application (location: www/index.html in 
your local system). 

5. If the login page does not appear or does not work correctly, reopen the Chrome shortcut 
properties, correct the path specified in the user-data-dir parameter (to specify the 
Chrome location), then reopen Chrome and retry the login.
Development Environment Setup 2-3
 Mobile Application Implementation and Development GuideOracle Real-Time Scheduler



Building and Deploying the Mobile Application
Alternatively (instead of modifying the shortcut Target property), you can open a command window 
and enter:

chrome.exe --user-data-dir="C:/Chrome dev session" --disable-web-security

As with the shortcut, if the login page is not displayed properly, correct the path specified in the user-
data-dir parameter in the command and rerun it.

Building and Deploying the Mobile Application
This section provides information on how to deploy the Oracle Real-Time Scheduler Mobile 
Application on various device types. Please refer to the Oracle Real-Time Scheduler Mobile Application 
Installation and Deployment Guide in the chapter titled “Deploying the Mobile Applications” for steps on 
deploying the mobile client application as a web application.

iOS Deployment 
This section provides information on deploying the native application to an iOS emulator or device. 
Please reference the Apache Cordova documentation section titled “Platform Guides” under “iOS 
Platform Guide” for more information.

Deployment from a Command Line
Using Cordova CLI commands the native application (IPA) can be deployed to a iOS emulator or 
device.

 1. Use the Build command to create the iOS Xcode project, e.g., cordova build ios

The Xcode project is created under <Cordova_Project>/projects/ios directory as 
<Application_name>.xcodeproj 

 2. Open the xcodeproj file.
The Xcode IDE file opens. 

 3. Click Run to deploy and run the application to an iOS simulator or device.  
The application will get deployed on a configured iOS emulator where the application 
can be tested. 

An iOS developer account is required to run to deploy the application on an iOS device.

Deployment Using an IPA File
Using Cordova commands, the native application (IPA) can be created and deployed to an iOS device.

 1. Use the Build command to create the iOS Xcode project, e.g., cordova build ios

The Xcode project is created under <Cordova_Project>/projects/ios directory as 
<Application_name>.xcodeproj 

 2. Open the xcodeproj file.
The  Xcode IDE file opens.

 3. Select the Product > Archive option from the Xcode IDE to generate the IPA file. 

 4. Sign the IPA file. 

 5. Create the IPA file as an Ad-hoc or Enterprise deployment. 

 6. Copy the <Application_Name>.ipa file to the iTunes  Automatically Add to 
iTunes folder. 

 7. Connect your iOS device to the machine and open iTunes. 
Development Environment Setup 2-4
 Mobile Application Implementation and Development GuideOracle Real-Time Scheduler



Building and Deploying the Mobile Application
 8. Under your device on the Apps tab the <Application_Name> will be displayed and can 
be installed by clicking the Install button then Apply. 
This installs the app on the device. 

Android Deployment 
This section provides information on deploying the native application to an Android emulator or 
device. Please reference the Apache Cordova documentation section titled “Platform Guides” under 
“Android Platform Guide” for more information.

Deployment from a Command Line
Using Cordova CLI commands the native application (APK) can be deployed to a running Android 
emulator or device

• Use the Emulate command to deploy the native application to an emulator, e.g., cordova 
emulate android

The application will get deployed on a configured Android emulator where it can be tested.

• Use the Run command to deploy the native application to a device, e.g., cordova run 
android

• Make sure USB debugging is enabled on the device.

• Use a mini USB cable to plug the device to your system.

Deployment using an APK File
Using Cordova commands, the native application (APK) can be created and deployed to an Android 
device

Use the Build command to compile and build the native applications, e.g., cordova build 
android

• The application (APK) file is created under the in the Cordova project under the folder 
<Cordova project folder>\platforms\android\ant-build

• The file created will be <application_name>-debug.apk and can be installed on Android 
devices for testing. 

• To install the APK file on Android device make sure the option to install apps from 
Unknown sources is checked in your device. 

• Browse to the APK location using File Manager and open the APK which prompt option to 
install the APK.
The application will get installed on the device and can be tested by running it on the device.
Development Environment Setup 2-5
 Mobile Application Implementation and Development GuideOracle Real-Time Scheduler



Chapter 3
 Oracle Utilities Mobile Library

This section describes the key modules and APIs that are available for implementing new user interface 
pages and application features. 

Device Communication
This section provides information on communication between the server application and mobile 
devices. Although we have two categories of messages, inbound and outbound, they are both 
transferred via HTTP requests initiated by device. 

Device Inbound Messages

Configuration
MDT type uses the ASYNC_INTERVAL (seconds) property to configure the interval at which a 
REST service(M1-SyncData) will be invoked by client. Inbound message is processed by a script which 
is specified on incoming message (SCRIPT column). Inbound scripts should be located in scripts/
inbound folder and script name to filename should be mapped to the inboundMsgFiles property in 
config.js. 

Note: One JS file can have more than one inbound scripts.

Message Storage
Messages received are stored in F1_INBOUND intermediate table on device DB. Please reference the 
Database Schema section for more information.

Inbound Message Event API
Once a message is downloaded and saved to intermediate table it is handed over to inbound processing 
script. This processing script should be implemented as follows:

Processing Script Code Structure
ouml.Inbound["M1-MCPDpAsgn"] = (function (ouml){
    
function process(msgEvent) {
 
 
}

return {
        process: process
    };
})(ouml);
Oracle Utilities Mobile Library 3-1
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Device Communication
M1-MCPDPAsgn is an example script code.  This should be replaced with your actual script name. 
This script needs to implement a process method that is required to be exposed as public method of 
this module. 

The Oracle Utilities Mobile Library invokes a process method with an event object with the following 
structure.

• msgEvent.message – inbound message in JSON format (format of this message is as 
defined on server, specific to a script)

• msgEvent.error(ouml.ClientError) – this method should be called in case an error occurs 
in processing this message. An instance of ouml.Error should be passed to it. This error 
message is saved to F1_INBOUND table’s error column.

• msgEvent.complete(transaction) – this method should be called on successful message 
processing. Transaction used, if any, should be passed to this method and same will be used 
by the Oracle Utilities Mobile Library to update the F1_INBOUND’S PROC column. If no 
transaction is passed then a new transaction is created.

Message Acknowledgements
On successful download and save to the intermediate table, a message delivery acknowledgement is 
sent back with very next REST service call. This only indicates the delivery part, not the processing. 
On successful message processing another acknowledgment is sent with a flag to indicate whether or 
not the processing was successful. If during message processing an error occurs, the same error is also 
sent back to the server. 

The Input to the REST service contains following payload:

{
"msgId": msg_id column value from F1_INBOUND, 
"isProc": true/flase (true when PROC column value is Y)
"errorData": {error object}, error column value}
}

Device Outbound Messages
An outbound message is essentially a RESTful service invocation initiated by client which delivers a 
message (JSON payload) to that service on server. There are two types of outbound RESTful 
invocations modes from client: 

Online Mode
A service invocation where response from the service is required to proceed further with the business 
flow. For this type of outbound call, client has to be connected to network as if device is offline we 
cannot proceed further.:

Online Mode API Parameters Description

ouml.AJAX.invokeService service – service to be executed 
args –  {onSuccess: <callback>, 
onFailure: <callback>, method: 
<GET or POST>, contentType: 
<content type header>, headers: 
{<all headers passed as is to ajax 
call>}
}
payload - JSON Data

Invokes a service immediately 
(device has to be connected 
to network) and returns the 
results via an asynchronous 
callback.

This API adds mandatory 
headers required for 
authentication and 
connecting to server.
Oracle Utilities Mobile Library 3-2
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Server Communication
Offline Mode
A message is posted to a service however the actual call to service would be made only when the device 
is connected. Such outbound messages (service calls) are delivered to server  as and when the device is 
connected and client business flow is not dependent on response from server. However it is ensured 
that no message will be lost and it will be delivered to server eventually. Client ensures that message 
sent via this outbound module are stored in offline storage and delivered in same sequence they were 
posted. Application crash or network connectivity should not result into any message loss.

Server Communication
This section describes the outbound and inbound messaging used by the system. 

Server Outbound Messages
This section refers to messages that are outbound from the server inbound to the mobile device.

Outbound messages are maintained through the M1-MessageToDevice business object. The different 
states that the outbound message can transition to are defined and managed by the business object's 
lifecycle.

For data synchronization the device sends: 

• Device ID

• A list of acknowledgements. Includes Remote Message ID, PROC_SW Y/N (whether it’s 
been processed yet), and optional error details.

The device receives: 

• A list of new messages to be processed. 
This includes Remote Message ID, business object, message name, payload, priority.

• Ordered by priority (with high-priority messages first) and then in Created Date-Time order.

• Number of messages is based on bucket size.

The following “rules” apply for client applications that process outbound messages:

• Valid MDT_ID
Defined in the server application. 

Offline Mode API Parameters Description

ouml.OutboundWorker.queueOutbound args – 
{
transaction:<tx object>,
onSuccess: <callback>,
onFailure: <callback>,
input: { service: <service 
name>, payload: <JSON 
data>}
}

Message posted via this 
API will be saved to 
F1_OUTBOUND table 
using passed transaction 
else a new transaction 
will be used. Transaction 
object will be returned 
via success callback so 
that same can be used to 
execute the next 
transaction in case of 
multiple commits. 
Whenever device comes 
online the payload will be 
delivered to the specified 
service.
Oracle Utilities Mobile Library 3-3
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Server Communication
• Number of messages received is based on bucket size defined on the MDT Type.
There may be more or less messages than what is received, however the bucket size limits the 
number of messages received at one time.  The system continues to send the messages in 
batches until the queue is empty.

• If the device does not acknowledge receipt of the message, the same message will be sent 
again.
It is possible to set “callback” settings to cancel messages so that they aren’t continually sent. 

• If the device does acknowledge receipt, the message must be processed.
Messages should be processed in order, high-priority first.

• Error details are provided in the outbound message.

If the caller wants to work with the output message IDs from M1-InvokeRSIScript or M1-
GetRSIIdsByContext , it could be an RSI_ID (30 chars) OR a REMOTE_MSG_ID (14 chars).

All Callback and Error scripts, ditto.  The existing element <rsiMessageId> may be 30 chars or 14 
chars.

Callbacks are done only for messages that have not been delivered.  If a message is delivered but never 
processed, it will remain in Queued status forever, unless some other process handles it.  You may want 
a Monitor for that.

Output RSI ID for Various Business Services, Service Scripts, etc.
• Business Services: Invoke Remote Script (M1-InvokeRSIScript) and Get Remote Script 

Invocation By Context (M1-GetRSIIdsByContext)

• Output message IDs can now be either an RSI ID (30 characters long) or a Remote Message 
ID (14 characters long).

• Callback and Error Scripts

• Existing schema message IDs can now be either an RSI ID (30 characters long) or a Remote 
Message ID (14 characters long).

Callback Logic
Callbacks are done only for messages that have not been delivered. If a message is delivered but never 
processed, it will remain in Queued status forever, unless some other process handles it.

Call back is configured, in seconds, under Master Configuration > Global Configuration, field: 
Remote Script Call Back Seconds.

This indicates the number of seconds that should pass (from the message’s creation date time) before the 
callback is executed. This works when the Remote Message monitor batch process triggers the remote 
message’s monitor algorithm (which executes callback scripts when applicable).

Remote Message Batch Monitor
The remote message monitor, a timed monitor batch process, can be set to monitor the rules associated 
with the current state of messages that go between the server application and mobile devices. It is 
recommended that you set this monitor to run very frequently such as every 5 minutes so that processed 
messages can be transitioned to a non-queued state (to improve performance on queries for unprocessed 
messages).

Server Inbound Messages
This section refers to messages that are outbound from the mobile device and inbound to the server.

As described in Client side outbound messages section above, these messages to server are delivered by 
invoking specific services as per the given context or business logic, e.g., Get Shift, update shift, update 
task, etc.
Oracle Utilities Mobile Library 3-4
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Logging
Guaranteed Delivery
A special kind of inbound messaging called Guaranteed Delivery ensures that messages from a 
device are stored in the application database first, and then processed afterwards. This ensures 
that even though the message cannot be processed immediately because of other factors, the 
message is at least guaranteed to be delivered to the server.

Guaranteed Delivery Algorithm
The remote message guaranteed delivery algorithm, M1-REMMSG-GD, processes guaranteed delivery 
requests through remote message creation (through the business object M1-CrewMessage) and state 
transition. Your implementation must configure the base algorithm on Installation Options/
Guaranteed Delivery. This is configured by navigating to Installation Options > Algorithms, System 
Event: Guaranteed Delivery.

Remote Message
The Remote Message table uses a Device Message ID field that stores a unique ID sent from the 
mobile device to distinguish inbound messages sent from the server application. This field is later used 
by the Guaranteed Delivery (M1-REMMSG-GD) algorithm to verify whether or not an inbound 
message already exists in the Remote Message table before creating a new record (to avoid duplicate 
entries for inbound messages).

Logging
System logs are sometimes needed to diagnose how the server application is communicating with 
devices, investigate errors, or for other troubleshooting or informational purposes.

Mobile log files can be accessed in the MDT portal under the Log tab. 

Changing Log Settings from a Device
Device users can change log settings from the Oracle Real-Time Scheduler Mobile Application 
Settings page. This includes turning logging on or off, as allowed by the user’s permissions, setting the 
log level, and setting appenders.

Log Appenders
The logging module supports the following types of appenders to display logging messages: 

• Console Appender (CONSOLE): Writes log messages on the web console.

• File Appender (FILE): Writes log messages in a local file on the client. The log files in the 
client are then sent to the server when requested.

• Remote Appender (AJAX): Sends log messages (json/xml/text) to the server with an 
asynchronous HTTP request.

• Popup Window Appender (POPUP): Opens a new window/sub window in the browser 
and writes log messages in real time. 

Users can enable more than one appenders at the same time to write logs from setting page of 
application 

Log Message Format 
Log entries use the following format. 

[Unique Prefix] - Date Time Log-Level Log Message (Origin Module Line Number) 

Log API
The Oracle Utilities Mobile Library Logging module exposes the APIs required by your 
implementation to facilitate system logging. Any application module that requires logging uses this 
Oracle Utilities Mobile Library 3-5
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Offline Database
module with the single log instance maintained for the complete application. Logs get the appropriate 
instance from ouml.JSLogger and use the exposed API.

For example to log an info message your implementation would use:

• ouml.JSLogger.info('Your message ');

• Extra public APIs exposed by this object (not part of the Oracle Utilities Mobile Library or 
parent business object)

• mdtdebug(message): The module that needs to log a framework level debug 
message calls this method. 
Passes the log message arguments to the methods.

• debug(message): The module that needs to log a debug message calls this method.
Passes the log message arguments to the methods.

• info(message): The module that needs to log an info message calls this method.
Passes the log message arguments to the methods.

• warn(message): The module that needs to log a warn message calls this method.
Passes the log message arguments to the methods.

• error(message): The module that needs to log an error message calls this method.
Passes the log message arguments to the methods.

• perf(message): The module that needs to log a perf message calls this method.
Passes the log message arguments to the methods

• fatal(message): The module that needs to log a fatal message calls this method.
Passes the log message arguments to the methods

•  setLevel(level): These methods set the logging level of the logger instance that the 
application has acquired initially. The level that is to be set should be within the set of 
levels supported by Logger. Else default logging level will be used

• syncLogFile() : This method synchronizes the log files to the server.

Offline Database
This section provides information regarding client side offline database tables and APIs available to 
interact with the offline database.

A WebSQL database is used for local data storage if the application is opened in a web browser. If the 
application is installed as a native app on a device and "sqliteDB" property is set (in config.js) then the 
SQLite DB on the device is used. The database is initialized with an initial size of 5MB. 

Database Schema

API
getHandle - Returns the DB handle object. This returns a singleton instance of an object that should 
be used for any DB transactions. 

Tables 
At application launch, the tables indicated below are created in the browser database or in SQLite if 
they do not already exist. You can reference this schema and browse the database during development 
or debugging. 
Oracle Utilities Mobile Library 3-6
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Offline Database
F1_BIZOBJ
This table stores both deployment and transaction data for all business objects. GEN_COL1 to 
GEN_COL10 can be used to store specific fields that can be used to query the business object. 

F1-Inbound
This table supports inbound messages.

F1-Outbound
This business object supports outbound messages.

Offline Field Description

BO_KEY combination of business objects PK1-PK5 
(pk1^pk2^pk3^pk4^pk5)

BO_CODE Business object code

MO_CODE Maintenance object code

DATA JSON data for a business object

TYPE Type of data (DEPLOYMENT or TRANSACTION).

DATE_UPDATED Timestamp(local) when the data was modified.

VERSION Version of the record.

GEN_COL1 - GEN_COL10 Generic columns for storing business object attributes used in 
search and application logic.

Offline Field Description

MSG_ID Unique message ID for the inbound message.

PAYLOAD JSON Data received in a message.

SCRIPT Script code (message processing script).

PRIORITY Priority of the message. 

ACK_REQUESTED Flag to indicate whether acknowledgement is requested.

ACK Flag to indicate whether acknowledgement was returned. 

PROC Flag to indicate whether the message is processed.  

PROC_ACK Flag to indicate whether processing acknowledgement was sent. 

ERROR Error message received during processing, if any. 

Offline Field Description

ID Unique message ID of the outbound message.

SERVICE Service name.

PAYLOAD Service input payload. 
Oracle Utilities Mobile Library 3-7
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Config
Config
Each application layer has its own config.js file where a new property can be added. A property defined 
in the lower layer can also be overwritten by defining a new property with the same name.

Some of the properties that are of type array cannot be overridden completely but values from each 
layer are merged. Please reference the description of each property.

API -ouml.Config
• apps - an array of app owner codes (owner code) (e.g. ["M1","CM"])

• restServerURL - OUAF REST API URL

• mobileAppURL -  Mobile app URL

• DEFAULT_MDT_URL - DEFAULT MDT URL

• DEFAULT_DEPLOYMENT_ID - DEFAULT_DEPLOYMENT_ID,

• mainMenu - menu items that should be available on every page menu 

• applicationFolder - A folder name used to store the files on local device filesystem

• URLMapping - Mapping of URLs. This mapping can be used to override default UI pages 

• initScript- Initial script that gets executed after successful login, this script decides the 
application home page.

• getConfig - Returns the value of a property (the property available in topmost app)

• boFiles – list all the files required by a business object. If the only file that a business object requires 
is same file as the name of business object and is available in scripts/bo folder then no need to 
include that. In case of CM config, files are assumed to be present in scripts/bo folder.

• getBOFiles - Returns the JS file names required by a business object. This API is internally 
used by ouml.Loader.loadBO so implementers will not have to ever use this. This property 
returns the value of boFiles variable after merging it from all layers.

• pageFiles – list all the files required by a UI page (business object or non-business object). If the 
page id (div having data-role =page) is same as file name then no need to include that file. provide 
absolute path starting from product folder (e.g. cm/taskList.js)

• getPageFiles - Returns the JS file names required by a Page(bo pages too) UI. This API is 
internally used by ouml.Loader.loadPage API so implementers will not have to ever use this. 
This property returns the value of pageFiles variable after merging it from all layers.

• commonJSfiles – List all JS files that should be loaded on successful login. This property is used 
by login module and it loads all the files defined at different layer, after merging it from all 
layers. Common JS files like plugins.js or common.js which hosts common APIs not specific 
to a business object or a Page should be declared in this property. File should contain the path 
starting from product folder name (e.g. m1/scripts/plugins/plugins.js)

• inboundMsgFiles – List mapping between an inbound script and corresponding file containing 
the script. File MUST be present in scripts/inbound folder. CM can override base .

• getInboundMsgFiles - Returns the inbound message handler file names for a given script 
code.This API reads the value from inboundMsgFiles variable in config.js of each app layer 
and returns the files from appropriate layer. This API is internally used by the Oracle Utilities 
Mobile Library and implementers will not have to use this.

• capabilitiesMapping – define a mapping between a capability type (defined on server) and 
corresponding script to be executed on client for a given capability. These scripts should be 
defined in common.js (e.g. cm/ui/common.js) or some JS file that is loaded via 
commonJSFiles so that whenever a capability request (e.g. scan barcode) is made this file 
should be already loaded.
Oracle Utilities Mobile Library 3-8
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Encryption APIs
• oracleMapProperties-  Used to configure the Oracle MapViewer properties. The  
serverConfig property is very important. This is the name of the Feature Configuration 
created for the Oracle MapViewer on the server. The client gets all the MapViewer 
information like URL, Datasource, Tile Layer etc using the Feature configuration. Besides the 
serverConfig the images for activities can be changed here. The style for  the information 
window which pops up on clicking an activity marker can also be modified here.

• sqliteDB – Set to false by default out of the box. If set to true the SQLite plugin is used to 
create a SQLite database on the client devices instead of using the HTML5 WEBSQL 
database. This flag can be set to true only if the SQLite plugin is installed for the Cordova 
project used to build the native application. 

Encryption APIs
For android devices, encryption is provided by a cordova plugin.  However, instead of using cordova 
plugin APIs directly, you should use the APIs indicated in the table below in the ouml.Crypto module.

 The Oracle Utilities Mobile Library uses these APIs internally to store data to the F1_BIZOBJ table if 
the encryption is enabled for devices. Please reference Chapter 2: Encryption for more information.

These APIs return the original input as is if the encryption is not enabled for this device.  Callers of the 
APIs can check the output in success callback to confirm if the data was indeed encrypted (or 
decrypted).

API Parameters Description

ouml.Crypto.encrypt args = {onSuccess: <success 
callback>, 
onFailure:<failure 
callback>, input: {data:  
<text string or an array 
of text strings>}, 
encryptionKey : <optional, key to be 
used>}

Encrypted input data will be returned 
via success callback as {output: 
<encrypted text>, encrypted: 
<true|false>}. If the input was an 
array then output will be an array e.g. 
{output: []} with each array element 
corresponding to input array element. 
Encryption key is not required unless 
you have to use a different encryption 
key than what is configured on server. 
Encrypted property is set to false if no 
encryption was done in case of iOS 
device or encryption not enabled for 
this devce.

ouml.Crypto.decrypt args = {onSuccess: <success 
callback>, 
onFailure:<failure 
callback>, input: {data:  
<text string or an array 
of text strings>}, 
encryptionKey : <optional, key to be 
used>}

Decrypted input data will be returned 
via success callback as {output: 
<decrypted text>, decrypted: 
<true|false>}. If the input was an 
array then output will be an array e.g. 
{output: []} with each array element 
corresponding to input array element. 
Encryption key is not required unless 
you have to use a different decryption 
key than what is configured on server. 
Decrypted property is set to false if no 
decryption was done in case of iOS 
device or encryption not enabled for 
this devce.
Oracle Utilities Mobile Library 3-9
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Cordova Encryption Plugin APIs
Cordova Encryption Plugin APIs
The plugin call takes the following parameters:

 1. success: Function name of the function to be called on successful execution of the 
plugin. This function is called with a string parameter depending upon the value of the 
action parameter.

 2. failure: Function name of the function to be called on execution failure of the plugin.  
This function is also called with a string parameter containing the error message of the 
error which occurred while executing the plugin leading to failure.

 3. “Crypto”: The plugin identifier.

 4. action: The action parameter passed to the plugin. This includes one of the following 
values:

 a. encrypt
For this action, the plugin will return the encrypted string of the input text on 
success. The encryption key will be passed along with the input text as parameter to 
the plugin in json format.

b. decrypt
For this action, the plugin will return the decrypted string of the input encrypted 
text on success. The encryption key will be passed along with the input text as 
parameter to the plugin in json format

c. hash
For this action, the plugin will return the hashed value of the input string on success.

 5. json: The input parameter to plugin in json format. It will contain the input string to be 
encrypted along with the symmetric encryption key to be used for encryption.

Process Details
1. Users log in to the system in online mode. The user credentials are stored in persistent storage 

using the hashed value obtained from custom Cordova plugin for offline authentication.

2.  After login the following device options are fetched from server in online mode and are 
stored in local storage:

a. MDT_ENCRYPTION_FLAG

b. MDT_ENCRYPTION_KEY

If the user logs in offline mode then the last stored values of these device options are 
used in the application.

If transaction data exists on the device then the new values obtained from the server for 
these device options are not overwritten in the local storage. Thus the 
MDT_ENCRYPTION_FLAG and MDT_ENCRYPTION_KEY device options values 
on the device cannot be changed after transaction data is generated on the device.

3. Using the MDT_ENCRYPTION_FLAG device option the encryption module can be turned 
on (‘M1ON’) or off (‘M1OF) for a particular device using the MDT portal page.

4. If MDT_ENCRYPTION_FLAG set to ‘M1ON’ then the transaction data generated on the 
hybrid client is stored in encrypted format in local storage and its decrypted after reading 
from local storage to get the original form before use. If MDT_ENCRYPTION_FLAG is 
‘M1OF’ then all transaction data on device is stored in readable text format.

If the value is set to is M1DF (default), then the value is fetched as per the Master Global 
Configuration.
Oracle Utilities Mobile Library 3-10
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Deployment
5. The MDT_ENCRYPTION_KEY is stored in local storage in encrypted format. It is 
encrypted using the base64 encoding value of username:password as encryption key and 
using the same encryption algorithm which is used to encrypt transaction data.

Deployment data is not encrypted on the device as it is not transactional data. 

Deployment
The application consists of code and metadata:

• Code is installed (for native apps) or deployed (for webapp) as an application.

• Metadata that is required for the application to work properly, is downloaded on a successful 
logon in JSON format and stored in the offline database. Deployment metadata is stored in 
F1_BIZOBJ table with DEPLOYMENT as value in "type" column. The Oracle Utilities 
Mobile Library provides various APIs to access deployment metadata in simple format Data 
consist of various Oracle Utilities Application Framework objects including:

• Labels

• Lookups and Extended Lookups

• Messages

• Business Object Lifecycle

• Business Objects Data (non transactional objects)

These objects can be configured on the server. Please reference the Oracle Real-Time Scheduler Server 
Administration Guide for more details.

API (module - ouml.Metadata)

API Parameters Description

getLabel Label/field Id Returns the label description (should 
be used instead of hardcoding text 
strings on UI). Check ViewModel 
wrapper API for usage on HTML 
pages.

getLookup Lookup ID Returns an array of items containing 
lookup value and description in the 
format [{lookupValue: “”, 
description:””},] Check ViewModel 
wrapper API for usage on HTML 
pages.

getLookupDesc Lookup, lookupValue Returns the description for a specific 
lookup value of a lookup. Check 
ViewModel wrapper API for usage on 
HTML pages.

getExtLookup Extended Lookup BO Name Returns an array containing lookup 
value and description in the format 
[{lookupValue: “”, description:””},] 
Check ViewModel wrapper API for 
usage on HTML pages.
Oracle Utilities Mobile Library 3-11
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Properties
To read the value of a Business Object in deployment, you can use BOEntity APIs.

Properties 
The following properties are downloaded at login.

• Properties

• KeyValue

• sessionId

• decimalSeparator

• API - ouml.Properties

getExtLookupDesc Extended lookup BO Name, 
lookup Value

Returns the description for a specific 
lookup value of a extended lookup 
BO Check ViewModel wrapper API 
for usage on HTML pages.

getMessage Message category, 
message Id

Returns the message. (To get 
formatted message with parameters, 
use ouml.ClientError API)

getNextBOStates Bo name, bo status Returns a list of next valid states which 
the business object can transition to 
from a given state. It returns an array 
of objects with this format 
{boNextStatusLabel, boStatus, role} 

getStatusReasons Bo Name, status Returns an array containing the status 
reasons valid for a given state. Format 
of the output is [{description: “”, 
selectability:, “”, statusReasonCd: 
“”},{}]

isFinalBOState Bo Name, Status Returns true if there are no next valid 
states for a given business object and 
state, otherwise returns false.

getBOInfo Bo Name Returns all information(metadata) 
about a BO. A JSON object with 
description, owner code, each valid 
states and related info.

getAncestors Bo Name Returns an array of items with 
business object information for all 
business objects in the hierarchy. At 

0th index is the top most parent and 
given business object at the end of the  
array.

getAncestorNames Bo Name Returns an array of business object 
names for all business objects in the 

hierarchy. At 0th index is the top most 
parent and given business object at the 
end of the array.

API Parameters Description
Oracle Utilities Mobile Library 3-12
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Business Objects
Business Objects
Please reference the Oracle Utilities Application Framework documentation for details of server 
side implementation and metadata associated with business objects. Mobile client implementation of 
business objects includes the following artifacts:

• Business Object JavaScript (BO JS) - A JavaScript file located in the scripts/bo/ folder 
with the same name as the business object name.

• Business Object User Inteface (BO UI) - An HTML file for the BO UI located in the ui/
bo/ folder with the same name as the business object name.

• Business Object User Inteface JavaScript (BO UI JS) – A JavaScript file located in the ui/
bo folder with the same name as the business object name.

• boFiles – config.js mapping for the BO JS files.
This is only specified if the business object name and the JavaScript name are not the same.

• pageFiles – cconfig.js mapping for the BO UI JS files.
This is only specified if the file name is not same as the Page ID.

Business object data is received by Inbound Service and processed by inbound scripts.  Please 
reference the Device Inbound Messages section for more information.

Javascript in the Oracle Utilities Mobile Library uses revealing module pattern or prototype pattern or 
a combination of both  where prototype is wrapped in revealing module. Every Javascript class/
module is attached to a namespace that starts with “ouml”. 

Please make yourself comfortable with Object Oriented Programming in JavaScript which is a pre-
requisite for writing new BO classes. (https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Introduction_to_Object-Oriented_JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model)

Business Object JavaScript (BO JS)
Every BO JS must extend GenericBusinessObject class, if there is no parent to this business object 
otherwise it must extend the parent class. 

Example business object class: 

ouml.BusinessObject["M1-Assignment"] = (function (ouml){
    //define private variables and functions here (vars and 
functions that should not be accessible from anywhere else except 
this module)
var util = ouml.Utilities;
    /**
     * M1-Assignment BO constructor (variable name m1Assignment can 
be named anything).
     * @constructor
     * @memberof ouml.BusinessObject
     * 
     */
    var m1Assignment = function(data){
        this.bo = "M1-Assignment";
        //Invoke the parent BO, if any or generic BO, and pass the 
"this" reference. So that parent can use same "this" reference.
        ouml.GenericBusinessObject.call(this, data);
    };

    //set the prototype to parent BO, so we extend the parent's 
functions.
    m1Assignment.prototype = 
Object.create(ouml.GenericBusinessObject.prototype);
Oracle Utilities Mobile Library 3-13
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model


Business Objects
    //point the constructor property to this key (in case we need to 
make use of it later)
    m1Assignment.prototype.constructor =  m1Assignment;

   return m1Assignment;
   })(ouml);

GenericBusinessObject APIs

API Parameters Description

<constructor> Data – BO JSON 
data (optional)

If BO JSON data is provided it will be set to 
this.data property of this instance. To create a 
new BO instance you should use 
ouml.BusinessObjectFactory.getBusinessObject

addBO {onSuccess: 
<success 
callback>, 
onFailure: <failure 
callback>, 
transaction: 
<transaction to be 
used>, 
input.outbound: 
<outbound 
message details>}

Inserts the BO data to F1_BIZOBJ tables.Use 
this API only when a record doesn’t already exist 
for this BO in DB (otherwise use updateBO). If 
a save operation should also send an outbound 
message via guaranteed delivery to server, set the 
service name and payload in input.outbound 
argument. Input.outbound = {service: <service 
name>, payload: <service payload JSON> }

This API invokes getDTO API of BO and uses 
the returned value to save to DB. (getDTO 
returns the mapping of BO JSON to 
F1_BIZOBJ column)

getData JSON path of a 
filed

Returns the value of a JSON path on BO data. 
Directly accessing a value in a nested JSON 
structure might result into “undefined is not a 
function” error so to avoid that use this API.

getDTO Every BO must implement this method. This 
should map the BO JSON data to columns in 
F1_BIZOBJ

hasUndefinedOr
EmptyField

JSON path of a 
field

Returns true if the field is undefined or is empty.

setData Field, Data When supplied with only one argument, it 
should be the BO JSON data. If you need to set 
the value of a specific field pass both field and 
data.

setFieldData Field,Data Set the value of a specific field to given data.

updateBO {onSuccess: 
<success 
callback>, 
onFailure: <failure 
callback>, 
transaction: 
<transaction to be 
used>, 
input.outbound: 
<outbound 
message details>}

It is like addBO but instead of inserting a new 
record it will update the data
Oracle Utilities Mobile Library 3-14
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Business Objects
Business Object Factory API
This API is used to create a new instance of a business object.  The API ensures that before returning 
a business object instance, all the parent business object related files are loaded and then only a new 
instance is created and returned.

BOHelper API

API Description

getBusinessObject Accepts the business object name 
and data as arguments and returns a 
new instance of a BO initialized 
with data, if provided. Data can be 
set on an initialized business object 
instance by accessing data property 
of instance.

loadRawData args = {transaction: , input: 
{boKey: , bocode: , mocode:, 
genCol1:}, onSuccess: , onFailure}

Specify column name value pairs in 
input arguments. Success callback 
will be called with  an argument in 
format {output: <BOJSONdata>} 
if more than one record were 
fetched output will be an array of 
BO JSON data. Use this API when 
you need just the data but no BO 
instance. Creating a BO instance 
loads all BO related JS files, 
however if you are interested only in 
BO JSON data this API can be very 
light weight when compared with 
getBusinessObject API. 

getRowCount args = {transaction:<tx>, 
onSuccess:<success callback>, 
onFailure:<failure callback>, 
input: { <db column key value 
pairs>}}

Success callback is called with row 
count (based on filter criteria passed 
in input) as {count:<value>, 
transaction:<tx>}

getBOStatusDescr BO Name, Status Returns the description for a BO 
and its given status code.

checkProcedureStatus args = {transaction:<tx>, 
onSuccess:<success callback>, 
onFailure:<failure callback>, 
input: {boKey: <value>}}

Success callback is called with a true 
or false as an argument, true when 
all procedures are complete or there 
are no procedures

getNewBOPrimeKey Returns a new primary key. This 
API is useful for those business 
objects that are not received from 
the server but are created on the 
client first and then posted to the 
server.

isProcedurePending args = {transaction:<tx>, 
onSuccess:<success callback>, 
onFailure:<failure callback>, 
input: {boKey: <value>}}

Success callback is called with a true 
or false as an argument, true when 
any procedure is pending or false 
when none is pending or none 
exists.
Oracle Utilities Mobile Library 3-15
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Business Objects
Business Object Entity API
This module is the lower level API to insert/update records in F1_BIZOBJ table. In most of the cases 
BusinessObject addBO/updateBO and other APIs from BOHelper should be used. However for 
exceptional scenarios following APIs can be used. Both BOHelper and BusinessObject uses these 
APIs internally.

Every column of F1_BIZOBJ table has a corresponding property in this class. Underscore in column 
name is removed and a camelCase approach is used to name the JS variables corresponding to a DB 
column. E.g. bo_key DB column maps to boKey inJS.

Business Object UI (HTML and Javascript)
Every BO has a top level UI page (UI Map/HTML file), which is the main landing page when you use 
navigateToBOPage API. This page usually has list of sections and each section point to a <DIV> in 
either same HTML file or other HTML fragments(files) included via an overridden API( 
loadPageFragments). HTML file name must match the BO name and the top level DIV which has 
data-role=page should have BO name as the value for div’s id attribute. E.g. for M1-Assignment BO, 
file name would be M1-Assignment.html and the top level div in that page is:

<div data-role="page" id="M1-Assignment">
    <script src="M1-Assignment.js"></script>

For a non BO Page too the div Id should uniquely identify a page and if the JS file name, html file and 
the div id all are same then the Oracle Utilities Mobile Library can load the JS file automatically without 
any script include.

getStoredProcedureData args = {onSuccess: <success 
Callback>, onFailure:<failure 
callback>}

Success callback returns all the 
procedures having moCode=M1-
PRCTYP and all procedures types 
with moCode=M1-PRCTYP

isProcedureFailed args = {transaction:<tx>, 
onSuccess:<success callback>, 
onFailure:<failure callback>, 
input: {boKey: <value>}}

Success callback is called with a true 
or false as an argument, true when 
any procedure has failed or true if 
when none is in failed state or none 
exists.If no boKey is passed all 
procedures are checked

add Inserts this record into f1_bizobj table

update Updates this record in f1_bizobj table, 
uses boCode and boKey to uniquely 
identify a record

read Read a record from table

purge Deletes the record from DB

setOutboundMsg args = {service: <service name>,
payload: <JSON data>}

Invoking this method before calling 
update/add method would ensure that 
an outbound update is also sent to 
server using same transaction. 

API Description
Oracle Utilities Mobile Library 3-16
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Business Objects
As you can see above we are including a script inside the div, this is important as with jQuery mobile, 
you cannot expect any script outside the page div to be loaded. So if you ever have to load a JS file for 
any page (BO or non BO) it should be included inside the page div.

Having said that if the JS file name is same as the bo name or the id of page div (for non-business 
objects), then we need not include this file in HTML code and the Oracle Utilities Mobile Library 
automatically includes a file with this name in same directory as the page.

Page View Model
Every UI JS must extend the BaseViewModel class, if there is no parent to this BO otherwise it must 
extend the parent class. Code for every UI page (bo/non bo) should be attached to a specific 
namespace (ouml.ViewModel) as shown in this example BO class:

ouml.ViewModel["M1-Assignment"] = (function(ouml) {
function m1Assignment() {
    ouml.ViewModel["M1-Common"].call(this);
  model = this;
};
//set the prototype to parent BO, so we extend the parent's 
functions.
    m1Assignment.prototype = Object.create(ouml.ViewModel["M1-
Common"].prototype);

    //point the constructor property to this key (in case we need to 
make use of it later)
    m1Assignment.prototype.constructor =  m1Assignment;
    return m1Assignment;

})(ouml);

Note: In this example we have a common parent for all business objects, which extends 
BaseViewModel hence we are extending M1-Common here.

This is the basic minimum code that every business object (nonBO) UI must have.

BaseViewModel API Properties

LABELS A reference to all labels, can be used in HTML as:
<span data-bind="text: LABELS.M1_SITE_ADDRESS" id="siteAddress-
label"></span>

LOOKUPS A reference to all Lookups. usage:
<select class="ui-select" id="keepWithCrew" data-role="none" data-
bind="value:stateSpecificFields.keepWithCrew, options: 
LOOKUPS.M1_SAME_CREW_FLG, optionsText: 'description', optionsValue: 
'lookupValue', optionsCaption: 'Select One ...'"></select>

EXTLOOKUPS A reference to all Extended lookups. Usage:
<select id="customerContactType" data-bind="options: EXTLOOKUPS['M1-
CustomerContactType'], optionsText: 'description',  optionsValue: 'lookupValue', 
value: completionInfo.customerContactDetails.customerContactType, 
optionsCaption: ''"data-role="none"></select>

pageTitle This is a knockout observable array, so anytime value is changed it will 
automatically reflect on UI title. 
model.pageTitle(model.LABELS.M1_SHIFT_LBL)

pageButtons This is a knockout observable array, all page buttons are stored here. Please 
reference the setPageButtons API under Page View Model for more information.
Oracle Utilities Mobile Library 3-17
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Business Objects
pageMenuItems This is a knockout observable array containing all menu items.

pageIndicators This is a knockout observable array containing all page indicators.

API Parameters Description

showBackButton Boolean(true|false) Sets the visibility of back button on a page. Visible 
when set to true.

showPanicButton Boolean(true|false) Sets the visibility of Panic Alert button on a page. 
Visible when set to true.

showMapButton Boolean(true|false) Sets the visibility of Map button on a page. Visible 
when set to true.

loadPageFragments This API when implemented by a page will be invoked 
before displaying the page content. This API must 
return an array of HTML file names. The content of 
each file will be appended to the currently active mobile 
page’s content..Use this API to create a UI from 
multiple HTML files, and reuse same HTMl file in 
multiple pages. Each HTML file should contain divs 
which can be navigated to by showSection API. All the 
Divs should have visibility of none, otherwise they will 
appear on UI as soon as a fragment (an html file) is 
loaded. Please reference the UI Layout and Navigation 
section for more details.

load args = 
{onSuccess:<callba
ck>}

This API when implemented by a page will be invoked 
just after page HTML/JS files are loaded. Implementer 
must invoke args.onSuccess() on completion of the 
work of this method. It is assumed that something 
asynchronous can happen in this overridden method 
hence the onSuccess callback is provide to indicate the 
completion of that work. E.g. loading appropriate data 
from DB and binding the UI via KO.

setPageButtons Applicable only for business object pages. This API 
when implemented by a business object page will be 
invoked during page load process to allow the page to 
customize the page specific buttons. Overridden 
method must set  pageButtonList  property to an array 
of buttons, each button object should match this 
structure: {buttonLabel : <string value>, buttonAction: 
<click handler function on viewModel >}. Default 
Oracle Utilities Mobile Library implementation of this 
method adds next valid states of current BO’s state to 
pageButtonList, and set the state name as handler 
function name, which means for every state the BO UI 
JS file (ViewModel) should have a corresponding 
method.
Oracle Utilities Mobile Library 3-18
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Business Objects
onInboundMessage {inboundMsg } – 
inbound message 
received from 
server

This method will be invoked every time a new message 
is received via InboundWorker. Message received from 
server will be passed as an argument 
(inboundMsg.msgData). (each inbound message 
processing script decides whether or not to notify the 
current page)

navigateToBOPage bo – Name of the 
BO
args = {inputArgs: 
{key:value}, 
inputData: {key: 
value}}

Loads the BO JS files, BO UI page/html and BO UI JS 
files in that order. Even if your HTML file for a 
business object has no JS included via script tag it will 
load the matching file (same name as bo) in same folder 
as the main html file. It also loads the pageFiles 
specified in config.js for a given pageID (div’s id)

navigateToPage bo – Name of the 
BO
args = {inputArgs: 
{key:value}, 
inputData: {key: 
value}}

Same as navigateToBOPage except that this can be 
used to load any non business object page UI html files. 
So no BO JS files are loaded.

showSection args = {id:<id of 
the div>, title: 
<string for title>, 
processAction: 
{icon:< data-icon 
attribute to be set>, 
handler:<method in 
current viewModel 
to be invoked>}}

This API doesn’t switch the currently loaded page 
however hides currently active section and displays the 
requested one. Left side icon will be a back button and 
right side icon will be set accordingly only if 
processAction is set. On click of right side icon handler 
will be invoked

goBack Use this API to back to either previous section or to a 
previous page. Whatever was displayed before this UI.

showError error – an instance 
of ouml.ClientError
sectionId – 
optional, div ID of a 
section that should 
be displayed to 
show this error on

Displays an inline error message in RED color at the 
top of either currently displayed section or displays the 
section with given ID first to show the error

setDefaultSection sectionId- div id of 
a section that is 
displayed by default 
when page loads

This API must be implemented in order for 
showSection to work. Default section is the Div that is 
displayed by default when page is loaded.

showDefaultSection Show the default section and cleans the page’s section 
history stack. So that using goBack on main page 
should not go back to previously displayed section of 
that page but previous page in history.

showProcedures Key – BO primary 
key
onComplete – 
success callback

showCommonAttac
hments

API Parameters Description
Oracle Utilities Mobile Library 3-19
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Business Objects
Buttons
The Page Buttons API automatically generates life cycle buttons for a BO User Interface. User can 
override this default behavior by overriding setPageButtons  API of the Base View Model present in 
Oracle Utilities Mobile Library.

For automatically generation of Life Cycle buttons for a Bo UI, page specific model needs to extends 
ouml.BaseViewModel.

For generation of buttons for a Non BO UI developer needs to override setPageButtons API and 
either call addButton function of base view model or directly push button JSON into pagebUttons 
observable array.

JSON for Buttons
{
      buttonLabel: “Button Label”, 
      buttonAction: function
}

 Menu API has been added as part of the Base View Model and will be available in child view model at 
different application layers if child view model extends base view model.

showAttachments

dialNumber

getFormattedDate date – date to be 
formatted

Converts a base date to device date and formats it to a 
user specific format. Useful for displaying business 
object data in the UI.

getFormattedTime dateTime – 
datetime to be 
formatted

Converts a base datetime to device datetime and 
formats it to a user specific format. Useful for 
displaying business object data in the UI.

getFormattedDateT
ime

dateTime – 
datetime to be 
formatted

Converts a base datetime to device date time and 
formats it to a user specific format. Useful for 
displaying business object data in the UI.

setPageMenuItems Implement and override this method to add page 
specific menu items. Oracle Utilities Mobile Library 
calls it at appropriate time to render the page menus. 
Please reference addMenuItem under Page View Model 
for more details.

addMenuItem menuItem – a menu 
item object
, 
ouml.MenuItem({in
dex:<index of 
item>,title: <label>, 
action:<callback 
function on 
viewModel>, 
active:<true|false>
});

setPageMenuItems method if overridden must add 
individual menu items using this API. A Menu item 
object should be passed to this method. Please 
reference the Menu section for more details.

setAppMenuItems an integer value Returns an ouml.MenuItem object. This API helps 
your implementation to write a custom API for menus.

API Parameters Description
Oracle Utilities Mobile Library 3-20
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Business Objects
1. setPageButton 

Description
Need to override in page specific view model to add page buttons.    

Specified by
setPageButton in  ouml. BaseViewMode()

Parameters 
none

Returns
none

Sample Uses
cmModel.prototype.setPageButtons = function(){
        var sample = {                    

buttonLabel: ‘Sample’, 
buttonAction: this.sampleAction
};
        
             this.addButton(sample);

    }
2. addButton (json)

Description
Returns a ouml.MenuItem object. This API will help developer/Cm to write there custom 
API for menu    

Specified by
addButton in  ouml. BaseViewMode()

Parameters 
json: plain json object

Returns
none

Sample Uses 
Var button = {
buttonLabel: ‘Sample’, 
buttonAction: this.sampleAction
}
            this.addButton(button); 

Page Level Buttons
To add page level Buttons for a non BO UI, override setPageButtons() API of ouml.BaseViewModel.

cmModel.prototype.setPageButtons = function(){
        
        var sample = {                    
buttonLabel: ‘Sample’, 
buttonAction: this.sampleAction
};
        
             this.addButton(sample);
Oracle Utilities Mobile Library 3-21
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Property Names 
    }
       

Properties
Properties are used to represent configurable values such as Date formats, Sync Interval, Log File Size. 
These properties are fetched via a REST call to the server every time in online mode. Some of these 
properties can be set and retrieved at execution time too. 

API - ouml.PropertyEntity

Public APIs
• getMDTProperty – Fetch the value against the key/name property. 

This is a synchronous call for all the properties except for “PurgeOnNextLogon”. This takes in 
an input of Property name and an optional callback function which is only used in the case of 
Property Name = ‘PurgeOnNextLogon’.

Method Signature - function getMDTProperty(key, callbackFunc) {}

• setMDTProperty – Set the value against the key/name property.
This is a synchronous call for all the properties except for “PurgeOnNextLogon”. The 
parameters callbackFunc, errorFunc, transaction are optional for properties that aren’t stored in 
the DB. 

Method Signature – function setMDTProperty(key, value , callbackFunc, errorFunc , 
transaction) {}

• removeMDTProperty – Delete a given property from the Property cache. This is a 
synchronous call for all the properties except for “PurgeOnNextLogon”. 

Method Signature - function removeMDTProperty(key , onSuccess ,onFailure ,transaction) {}

Property Names 

• ASYNC_INTERVAL – Defines the time interval (in seconds) between Device to Server data 
sync.

• ATTACHMENT_STORAGE_SIZE – Maximum (Sum of all the attachments) attachment 
storage size possible for the current MDT>

• BASE_TIMEZONE_OFFSET – Fetches the base time offset against GMT. 

• CURRENCY_CODE – Preferred currency code as fetched from the user’s ‘Display Profile’

• DATE_DISPLAY_FORMAT – Preferred date display format as fetched from the user’s 
‘Display Profile’

• DECIMAL_SEPARATOR -  Decimal separator as fetched from the user’s ‘Display Profile’ 
(Un-used right now)

• DISPLAY_OPTION – Display option set for the current MDT’s MDT Type. This is not 
used in this framework as the screens are built responsive to deal with both Mobile and 
Laptop. 

• GPS_LOG_INTERVAL – Time interval for capturing the device’s current location. 

• GPS_SUPPORTED – GPS Enabled or Disabled on the MDT Type. 

• GPS_SYNC_INTERVAL – Logged GPS records will be synced across to the server at this 
time interval (in mins). 
Oracle Utilities Mobile Library 3-22
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



UI Layout and Navigation
• INITIAL_SERVICE_SCRIPT – Not used right now but will have the initial script name to 
be executed. At the moment, the ouml.Config.getConfig(“initScript”) property. 

• IP_UPDATE_INTERVAL – IP Address update interval. This is not used in the 
implementation yet as there is no server to device push communication (Only Device to 
server pull calls are supported). 

• LOG_ARCHIVE_DAYS – Un-used – remove. 

• LOG_FILE_COUNT - Number of active log files to keep before archival.

• LOG_FILE_SIZE - The maximal size in kilobytes of a log file. After the log file reaches this 
size, it’s rolled over into a new file. 

• M1_CAPABILITY – Stores the JSON format of all the capabilities defined on the MDT 
Type. Value should first be JSON Parsed before use. For using Capabilities use - 
ouml.Capabilities

• MDT_ENCRYPTION_KEY – Data encryption key is used to encrypt any transactional 
data on the device. The Key itself is encrypted with the user entered - user name and 
password.

• MDT_LOG_LEVEL – MDT’s logging framework uses this Log level to conditionally log 
only selective log statements. 

• MDT_SESSION_ID – Counter incremented each time a device is registered. This will be 
used for BO primary generation to ensure unique keys.

• MONEY_DECIMAL_DIGITS – Number of allowed decimal digits for Money fields. (Un-
used right now)

• MONEY_FORMAT – Money format as fetched from the user’s display profile. (Un-used 
right now)

• NUMBER_FORMAT – Number format as fetched from the user’s display profile. 

• NUMBER_GROUP_SEPARATOR – Number group separator symbol. 

• TIME_FORMAT – Time format as defined in the user’s display profile. 

UI Layout and Navigation
The Oracle Utilities Mobile Library uses jQuery and Knockout APIs for UI Pages. Each UI page is 
either a single HTML file or a set of files (page fragments) combined together and displayed as one.  
Oracle Utilities Mobile Library uses jQuery ajax APIs to load HTML and JS content. Knockout is used 
to bind the JSON data to UI elements. All layout and navigation specific APIs are part of 
BaseViewModel class and are made available to a page specific ViewModel when it inherits the 
BaseViewModel. 

HTML Content
Each HTML file that can be navigated by a direct link on the menu, an href in html, or via the 
navigateToPage API should follow standard jQuery page structure:

<div data-role="page" id="M1-BreakTask" >
<div data-role="header">...</div>
<div role="main" class="ui-content">...</div>
<div data-role="footer">...</div>
</div>

• The ID of the page div should match to the business object name if it is a BO UI otherwise it 
should be same as the html filename excluding the file extension. 

• Each HTML file cannot have more than one div with data-role=page. 

• Oracle Utilities Mobile Library uses a single page template structure of jQuery.
Oracle Utilities Mobile Library 3-23
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



UI Layout and Navigation
Headers
Header elements are automatically injected from the generic header.html on each page load. This 
forms the content of the jQuery Mobile page header (data-role="header");

If  the SDK detects empty header DIVs with data-role=”header” and only injects the header.html 
content, otherwise individual pages can define their own header html that remains untouched by the 
SDK. 

It’s advised to use the system headers on most screens with the following APIs to selectively show/
hide them on specific screens. 

Contents 
The following buttons that appear on the header (from left to right):

• Back Button - Displays a back button

• Maps Button - Toggles between the Timeline view and the MapView

• Panic Alert - Triggers a Panic Alert from a new UI screen

• Indicator Bar - Please reference the Indicators section for more information

• Menu Bar - Please reference to the Menu section for more information

Public APIs (via ouml.BaseViewModel)
• showBackButton – This is a knockout observable object. The default value is set to True. 

The value changes when in different UI screens. 

Home Page (Shift Start/Task List)  Invisible

Task List Page  Shift Page  Visible

Task List Page (Invisible)  Assignment Main Page  (Visible) -> Assignment Details 
Section -(Visible)

Back button is visible when the Stack Size is > 2  (Current page occupies a place too)

This method should be called by over-riding determinePageHeaderButtons() in your UI’s 
ViewModel class. 

Example – model.showBackButton(false); // Would set it to false. 

• showPanicButton – Controls the visibility of the Panic button. Default value is true. This is 
a KO Observable object. This button would be displayed on all the UI screens except for the 
Login screen. 

Example – model.showPanicButton(false); // hides it. 

• howMapButton – Controls the visibility of the Map button. Default value is false. This 
button is only displayed on the Task List page in the application. Any UI requiring this 
method will have to toggle it ON in the determinePageHeaderButtons API. 

• determinePageHeaderButtons – API that can be used to control the visibility of the 
header buttons. This API gets called even when coming out of the section pages using the 
back button. This is different than the ouml.ViewModel.load() method that is used for the 
first time initialization. This API can be optionally over-ridden by the child ViewModel UI 
screens. 
Oracle Utilities Mobile Library 3-24
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



UI Layout and Navigation
Page Fragments
Page fragments are HTML files that cannot be directly navigated to but are combined with main 
HTML files and contain just individual divs but no complete page structures. Such divs are mostly 
hidden divs and referenced in showSection API or on default section of the page which has link to 
those sections embedded with showSection API. A page can override loadPageFragments method in 
it’s viewModel to include such fragments on page load. Each fragment if present in same folder as main 
file can be listed as is without any folder path. However if the fragment file is in a different folder then 
a complete path starting from app folder should be given (e.g. m1/ui/bo/<filename>). 

API
APIs are covered in the BaseViewModel API section.

Menu
One popup menu appears on each page. Each contains the following two types of menu items:

• Application Level Menu items 

• Page Level Menu item.

For menu item we have one observableArray pageMenuItems in BaseViewModel. By default it will be 
populated with Application Level menu items once View Model is loaded, and it can be extended or 
appended from child ViewModel with page specific menu items.

Application Level menu items are generated from configuration file of the application and page 
specific menu will be implemented by the developer in the page specific models.

 Menu Items (ouml.MenuItem)
This is menu item object. Create one object for each menu item.

Constructor
ouml.MenuItem({
    // Integer a unique id. It’s also determines position of menu 
item in menu.   
    It’s a required filed
    index; 
    
   // Label of menu that will appear for menu item on UI. It’s a 
required property
    title; 
    
    // Icon if we want an icon for menu item optional
    icon; 
    
    // java script method or a URL optional
    Action;          
    
    // Set active true or false if user you want to show hide the 
menu item ->   It’s     
    required
    Active;
})
Oracle Utilities Mobile Library 3-25
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



UI Layout and Navigation
Menu API
Menu API is part of the Base View Model and will be available in the child view model at different 
application layers if the child view model extends the base view model. 

Application/SDK level menu Items
To add application level menu item Developer/CM need to add ouml.MenuItem object in mainMenu 
Array List of config.js of the application.

var mainMenu = [
                    new ouml.MenuItem({ 
                         index:102, title: "Settings", 
                         action: "ouml/ui/settings.html", 
active:true}),                    
            ];

Page Level Menu Item
To add page level menu item Developer/CM need to override setPageMenuItems() API of 
ouml.BaseViewModel().

cmModel.prototype.setPageMenuItems = function(){

API Parameters Description

ouml. BaseViewModel.getMenuItem index: an Integer value Returns a ouml.MenuItem object. 

This API will help write there custom API for 
menus. 

Return an object of ouml.MenuItem or undefined
var menuItem =  this.getMenuItem(201);

ouml. BaseViewModel.addMenuItem menuItem : an object 
of ouml.MenuItms

Add menu item in the menu. 

This API checks for the menu item with the same 
index value. If menu Item exits its replace the menu 
items fields’ value with new one otherwise add it to 
the list.

ouml. BaseViewModel. updateMenuItem menuItem : an object 
of ouml.MenuItm

Update menu item values example: Label, action 
handler and visibility. 

This API checks for the menu item with the same 
index value. If menu Item exits its update the menu 
items fields’ value with new one. Print an error log 
input parameter is not a valid ouml.MenuItem 
object.

ouml. BaseViewModel. showMenuItem item : an object of 
ouml.MenuItem or 
index – index of menu 
item

Display a hidden menu item dynamically
e.g. this.showMenuItem(201);

ouml. BaseViewModel. hideMenuItem item : an object of 
ouml.MenuItem or 
index – index of menu 
item

Hide a visible menu item from menu dynamically.
e.g. this.hideMenuItem(201);
Oracle Utilities Mobile Library 3-26
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



UI Layout and Navigation
        
        var sample = new ouml.MenuItem({
                    index:201,
title: ‘Sample Menu Item’, 
action: this.sample, 
active:true
});
        
             this.addMenuItem(sample);

    }
       

Indicators
An indicator bar is displayed on the screen header as a popup. This bar displays various indicators to 
present device, server, network, user and activities states.

API (module - ouml.BaseViewModel)

Executing a single Javascript Asynchronous function is easy, however executing multiple asynchronous 
functions (one after another on success of previous one) requires a bit of extra code to manage the 
callbacks. The extra code is required to prevent recursive callbacks.

The AsyncWorker module can accept a list of functions to be executed.  It returns (invokes your 
callback function) when the last function in the list is executed successfully or any one function fails. To 
be able to execute any functions using this AsyncWorker module you must follow the pattern below 
when executing your asynchronous functions: 

API Parameters Description

ouml.Indicator.addIndicator  lookusValue|count: 
integer valueto 
represent counter if any

Add an indicator in the indicator list. 
Also sets a counter for this indicator.

ouml.Indicator.addIndicator(‘M1NCCON’);
ouml.Indicator.addIndicator(‘M1NR’ , 5);

ouml.Indicator.removeIndicator lookusValue. Removes an indicator from the indicator list.
ouml.Indicator.removeIndicator(‘M1NCCON’);

ouml.Indicator.addUpdateIndicator lookusValue
count: integer valueto 
represent counter if any

Description
Updates an indicator if it exists, 
otherwise adds an indicator in the same position.

ouml.Indicator.addUpdateIndicator(‘M1NCCON’);
ouml.Indicator.addUpdateIndicator(‘M1NR’ , 5);

ouml.Indicator.setCounter lookusValue
count: integer value to 
represent counter

Sets count value for  an Indicator in Indicator list.
Example: 
ouml.Indicator.setCounter(‘M1NR’ , 5);    

ouml.Indicator.getCounter lookusValue Returns count value for an Indicator in Indicator 
list. 
Example: 
var mailCount =  
ouml.Indicator.getCounter(‘M1NR’);
Oracle Utilities Mobile Library 3-27
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Asynchronous Functions Pattern
Asynchronous Functions Pattern
Any method that can do ASYNC work has to accept arguments as a single obj/args ({key: value,…}) 
instead of fixed arguments. Please reference addBO under Business Object JavaScript (BO JS) or 
loadRawData under BOHelper API.

• Rransaction, input, onSuccess and onFailure are required keys on this object and will be same 
for all ASYNC methods.

Real input required by business logic of the function will be part of “input” , each function 
can decide what should be in it.

• onSuccess will always be called with a single argument obj (again {key: value,…})

• transaction, output are required keys on this obj.

• output can contain the real response that caller is expecting in as JSON.

• onFailure will alwas be called with a single argument ouml.ClientError

• Each such ASYNC API should have its own set of onSuccess and onFailure 
implementation to intercept the async response of API called by it.

So that lower level API’s async response should be first intercepted by your API and 
formatted in a format that caller of your API can understand

• AsyncWorker can be used to execute N number of such methods in sequence.

• Each method will use transaction returned by (via onSucess callback) previous 
method

Methods that are guaranteed to be executed SYNChronously need not follow the above approach.
Oracle Utilities Mobile Library 3-28
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Asynchronous Functions Pattern
AsyncWorker API

BO Plugins

Plugins approach of the Oracle Utilities Mobile Library is just a convention that is recommended 
approach to write client side equivalent of server side Enter and PostProcessing plugin scripts.

Enter and PostProcessing algorithms on a BO are written in JavaScript for execution on client. Each 
plugin is written as a Javascript Class attached to ouml.plugins namespace.<script-code>.  This class 
should implement a process method. Structure of a plugin script:

ouml.plugins["M1-MCPTSUpd"] = (function (ouml){

var m1SendTaskUpdate = function () {

};
m1SendTaskUpdate.prototype.constructor =  m1SendTaskUpdate;
m1SendTaskUpdate.prototype.process = function(args) {
 }
 return m1SendTaskUpdate;
})(ouml);
Process method should accept an object as argument with following 
atributes:
transaction-  transaction to be used for any DB operations
onSuccess – callback for successful execution of plugin
onFailure – callback for failure in execution, any exception or 
error scenario

input – {bo: <BO instance reference>, action: <ADD/REPLACE>} 
onFailure callback should be called with ouml.ClientError instance

Each BO Js should have a state transition method per state, this method should create instances of 
appropriate plugin scripts and invoke the process method of each. All enter plugins should be invoked 

new Ouml.AsyncWorker Constructor to create an instance of 
AsyncWorker

addWork args = {obj: <a reference of 
object on which a method will be 
executed>, method: <method 
name>, args: <arguments to be 
passed when executing a method 
on obj instance>}

Use this API to queue an async 
function to be executed. Function 
will not be executed right away, this 
API just collects the data required 
to execute a function later.

execute args = {onSuccess:<Success 
callback >, onFailure:< failure 
callback >, transaction: 
<transaction to be used to execute 
all functions>}

This API must be called to start the 
execution of queued async 
functions. On successful execution 

of 1st function AsyncWorker will 

execute 2nd function and so on. On 
Failure of any function in queue the 
onFailure callback of this function 
(execute) will be invoked and error 
object returned by failing function 
will be passed as argument. On 
successful completion of all 
functions onSuccess callback of this 
function will be invoked.
Oracle Utilities Mobile Library 3-29
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Mobile Device APIs
first and then BO’s save method should be invoked which should decide whether to invoke bo.update 
or bo.add based on action on the business object (add or replace). The business object save method 
should execute all post processing plugins. This approach will ensure that whenever a state transition is 
done first Enter plugin scripts are executed and then Post processing scripts. As mentioned earlier, the 
Oracle Utilities Mobile Library does not enforce how a business object class should be implemented 
however if above approach is followed there are APIs that the Oracle Utilities Mobile Library provides 
which you can take advantage of and also be consistent with base product code. Please reference the 
AsyncWorker API section for more information.

Mobile Device APIs
The following sections describe APIs used to access various objects and modules of the mobile application.

Attachments
An attachment can be any file, such as a photo, a document with instructions or specifications, a 
spreadsheet, or any other supporting documentation. Mobile devices have the ability to upload 
attachments to the server application as well as receive attachments from the server. This processing 
uses restful web services.

API (module - ouml.BaseViewModel)

API Parameters Description

showAttachments Pk value associated with 
the attachments, item id 
associated (optional)

Fetches and renders a list of attachments 
in the attachments section. The primary 
key and item id (optional) are used to 
query and load the attachments from the 
Database. The file API is used to query 
the attachment folder on the device and 
see if the attachment exists. If the 
attachment exists then open option is 
displayed for that attachment in the list 
and if it does not exist then download 
option is displayed in the list. It also 
fetches the common attachments 
associated with the activity.

getServerAttachment PK value associated with 
the attachment, file path if 
file is already downloaded, 
attachment id , attachment 
filename

If the file path exists then it opens the 
local file on device. If filepath does not 
exist then a server call is made and the 
file is downloaded from server and 
stored on the device

deleteFileOnDevice Complete file path with the 
file name

The file specified in the file path is 
deleted from the device

onPhotoDataSuccess Image data as base64 
binary

From the UI if the device camera is used 
to take a picture or picture is selected 
from gallery then this function is invoked 
and it gets the image data in base64 
binary format as input. It in turn saves 
the file locally
Oracle Utilities Mobile Library 3-30
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Mobile Device APIs
File
The file object is a wrapper for the Apache Cordova File. This object is used for read/write access 
to files residing on the device. It also has some other helper functions for file access/read/write. 

API (module - ouml.File)

createAttachmentMessage Directory path, attachment 
file name, flag to indicate if 
its text or binary, persist 
flag (optional), file size

This function creates an attachment 
message and sends the data to the server 
for storage as part of the activities 
attachment list. If persist flag is set then 
it is an attachment uploaded from device 
to server so this function creates a record 
in the F1_BIZOBJ table for the 
attachment as well. 

createTaskDirectory Task ID Creates a directory with the task id as the 
name of the directory

API Parameters Description

openLocalFile url Opens the local file from the device 
file system in native device viewer. 
The url passed in as the parameter is 
the complete path of the file to be 
opened.

base64ToArrayBuffer base64String Creates bytes buffer for a given 
base64 String

getFilesFromDirectory Directory name, success callback 
and failure callback

Fetches list of files for a given 
directory and its sub directories on 
the device

createDirectoryStructure Directory path, success callback 
and failure callback

Creates the structure for given 
directory on the device. It creates all 
the directories passed as part of the 
directory path. 

writeFileData filename, directory path for the 
file, success callback, failure 
callback, original callback, file 
data, appendEOF flag

Writes data to a given file on the 
Device. A file is created on the 
device file system and the data 
passed is written to the file. If 
original callback is passed it will 
supersede the success callback. The 
file url is passed as a parameter to the 
callback function. If appendEOF 
flag is passed then the data is 
appended to the file if the file exists.  

deleteFile Filepath including file name, 
success callback and failure 
callback

Deletes given file on the device. The 
file path is used to locate the file and 
delete it

getFileSize Filepath including file name, 
success callback and failure 
callback

Returns the size of a given file on the 
device in the callback function. The 
file size is returned in bytes. 

API Parameters Description
Oracle Utilities Mobile Library 3-31
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Mobile Device APIs
Camera
The camera object is a wrapper for the Apache Cordova Camera plugin. This object is used for 
capturing a picture by opening the device picture gallery or by opening the device camera. 

API (module - ouml.Camera)

Maps
The Maps object is a wrapper for the Apache Cordova geolocation and also for the Javascript function 
to get the current device location. This object can be used to get the users current location and has 
helper method to get info window content. 

API (module - ouml.Maps)

readLogsFile filename, directory path for the 
file, success callback, failure 
callback

Reads log data from given file on the 
device

deleteFolder directory path with directory 
name, success callback, failure 
callback

Deletes given folder on the device

fileFailure error Default file failure callback. Used if 
no failure callback is passed as input 
to the other API functions

API Parameters Description

openPictureLibrary Callback function Opens the device picture gallery from the 
User interface. User can select a picture from 
the picture gallery and it will  be passed as 
a String containing the base64-encoded 
photo image in the callback function

openCamera Callback function Opens the device camera from the User 
interface. User can take a picture using the 
camera and it will  be passed as 
a String containing the base64-encoded 
photo image in the callback function

onFail Error message Function to show failure message on Camera 
API failure

API Parameters Description

API Parameters Description
Oracle Utilities Mobile Library 3-32
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Mobile Device APIs
Barcoding
The BaseBarCode object is a wrapper for the Apache Cordova Barcode scanner. This object can be 
used to get the barcode and barcode type for an item. 

API (module - ouml.BaseBarcode)

Barcode Support
The application supports the following barcode types on supported Android, iOS, and Windows* 
devices:

• QR-Code

• Code 128

• Data Matrix ECC200 (* Android and iOS only)

• ITF-14

• UPC-A 

• UPC-E

Note: All 12 numbers were returned in UPC-A testing on 
Android devices.

Signature
The signature object is a wrapper for the Signature plugin. This object is used for capturing a signature 
on the canvas and saving it as an image on the server. 

getCurrentLocation Callback function, refresh flag This returns the current location 
latitude and longitude in the callback 
function. The refresh flag is always 
false for now. If the users location 
cannot be determined then 0,0 is 
returned back. 

getInfoWindowContent Data area with activity data, 
callback function, latitude and 
longitude

This returns the info window 
content which needs to be displayed 
on click of the Activity marker on 
the map

API Parameters Description

scan Success callback, failure callback This returns the barcode result which has the 
barcode type and barcode in the success 
callback
Oracle Utilities Mobile Library 3-33
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Logging
API (module - ouml.Signature)

Procedures
Procedures can be associated with shifts or activities. Procedures are checks which need to be 
performed during the shift start and during activity completion. 

API (module - ouml.BaseViewModel)

UI Theme
The UI Theme defines the color scheme used in the mobile application. Please reference Chapter 5: 
Customization and Extension Methodology for information on working with UI Themes and the 
JQuery Mobile Theme Editor.

Logging
The Oracle Utilities Mobile Library Logging module exposes the APIs required by your 
implementation to facilitate system logging. Any application module that requires logging uses this 
module with the single log instance maintained for the complete application. Logs get the appropriate 
instance from ouml.JSLogger and use the exposed API. 

API Description

init Initializes the signature widget and makes it ready for use on the UI

reset Clears the signature from the widget on the UI

getData Gets the data for the signature image in base64 encoded format

API Parameters Description

showProcedures Pk value associated with the
procedures, callback function

Fetches and renders a list of procedures 
in the procedure section. The pk value 
key is used to query and load the 
procedures from the Database. 

showProcedureDetails Procedure ID, 
callback function

On click of an item in the procedure list 
this function is invoked. It queries the 
procedure based on the procedure id 
passed and displays the details. 

onProcedureSave Procedure ID When the procedure is saved this 
function is invoked. This function 
validates the procedure based on the 
criteria set on the server in the 
procedure type and  moves it to the 
passed, failed or overridden procedure 
state. 

onProcedureCorrect Procedure ID Invoked when the user corrects and 
saves the procedure data. 

onProcedureAccept Procedure ID This updates the database with the 
updated procedure details. The 
procedure details are also sent to the 
server for update.
Oracle Utilities Mobile Library 3-34
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Error Handling
For example to log an info message your implementation would use: 

ouml.JSLogger.info('Your message '); 

Extra public APIs exposed by this object (not part of the Oracle Utilities Mobile Library or Parent 
business object).

• mdtdebug(message): The module that needs to log a framework level debug message 
calls this method. 
Passes the log message arguments to the methods. 

• debug(message): The module that needs to log a debug message calls this method. 
Passes the log message arguments to the methods. 

• info(message): The module that needs to log an info message calls this method. 
Passes the log message arguments to the methods. 

• warn(message): The module that needs to log a warn message calls this method. 
Passes the log message arguments to the methods. 

• error(message): The module that needs to log an error message calls this method. 
Passes the log message arguments to the methods. 

• perf(message): The module that needs to log a perf message calls this method. 
Passes the log message arguments to the methods 

• fatal(message): The module that needs to log a fatal message calls this method. 
Passes the log message arguments to the methods 

• setLevel(level): These methods set the logging level of the logger instance that the 
application has acquired initially. The level that is to be set should be within the set of levels 
supported by Logger. Else default logging level will be used 

• syncLogFile() : This method synchronizes the log files to the server. 

Error Handling
 All error messages that gets displayed to user on UI must be created as Message object on server side 
and downloaded to client as deployment. Any error situation that occurs on client has to create an 
instance of ouml.ClientError. Please reference the API description below for more information. 

All onFailure/error callbacks should return an instance of ouml.ClientError. The Oracle Utilities 
Mobile Library includes API to display an error on UI in two forms as described in API description 
below.

API Parameters Description

new ouml.ClientError args = {msgCat:<message 
category>, msgId:<message 
id>,params:<parameters to be set 
on message>}

Create a new instance by 
passing the message 
category, id and parameters

ouml.ViewModel.showError error – an instance of 
ouml.ClientError
sectionId – optional, div ID of a 
section that should be displayed to 
show this error on

Displays an inline error 
message in RED color at the 
top of either currently 
displayed section or displays 
the section with given ID 
first to show the error

ouml.Notification.showAlert ouml.ClientError – an instance of 
this class

Displays the closeable error 
on a popup at the top of 
current UI page. 
Oracle Utilities Mobile Library 3-35
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Error Handling
Oracle Utilities Mobile Library 3-36
 Oracle Real-Time Scheduler Mobile ApplicationImplementation and Development Guide



Chapter 4
Mobile Application APIs

The following sections describes APIs used to access various objects and modules of Oracle Real-Time 
Scheduler Mobile Application (M1).

Inbound Scripts
Once a message is downloaded and saved to intermediate table it is handed over to inbound processing 
script. Below is a list of processing scripts to handle various inbound requests.

Plugins
Appropriate “enter” or “post processing” scripts are called on save and enter state methods of business 
objects.

Plugin scripts are located in the m1/scripts/plugins/plugins.js file.

 Please reference Oracle Utilities Application Framework documentation and the Oracle Real-Time 
Scheduler Administration Guide for more information on business object lifecycles and lifecycle plugins.

Images
Images specific to M1 are located in the  m1/images and m1/themes/images folder.

Script Name Short Description

M1-MCPDpAsgn Handles the inbound requests of assignment data coming in.

M1-MCPDpTask Handles inbound requests for POU, Break, Depot Task, Depot Task Items, 
Non Productive Task

M1-MCPDspShf Handles inbound requests for updates made to the shift once the shift has 
started.

M1-MCPMalUpd Handles inbound requests for mail updates from the server. 

M1-MCPREntUp Handles inbound requests for updates to Related Entities including 
attachments.

M1-MDTSetCLL Handles requests to dynamically increase log level on the client side.

M1-MDTSndLog Handles requests from server to send log files of mobile device to a known 
location on server.

M1-MCPRclAsg Handles M1-Assignment recall.
Mobile Application APIs 4-1
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Task List
Task List
The task list provides a listing of the crew’s assigned work for the shift.

UI JavaScript

HTML Pages

API Short Description

setPageMenuItems Sets the Page Menu Items for a given BO page

load Invoked by SDK on page load. Loads the task list for the given shift id. Page 
Developer to read the inputArgs (or inputData) to load the offline data (or 
render the data passed in case of inputData)

getTaskList Fetch tasks from the database and update the model with the list of tasks. 
Depending on the tab selected, it displays either the Open tasks or the 
Completed tasks.

getMoreTaskList Handles the “Show More” button being clicked and fetches the next tasks 
set from the database and update the model. Again depending on the tab 
selected, it displays either the Open tasks or the Completed tasks.

endShift Handles the End of Shift being invoked and navigates to the End of Shift 
Page.

onInboundMessage This API is used to refresh the model once any task is received from the 
server

showMap This is the API triggered to showMap and is used to navigate to the 
appropriate map page passing in the boInstance data as input.

getDTO Returns the business object data mapped to offline columns. This is 
overwritten.

setStatus Change the status of the business object. This is overwritten.

Html Page Short Description

taskList.html This page handles the display of all the tasks available for a given Crew Shift. 
It displays the tasks in either the “Open” tab or the “Completed” tab 
depending on the State of the task.

For each task in the task list, it shows the task type Description, location 
associated with the task (if exists), state of the task and the Arrival date time 
for an Open Task and BO Status Date Time for a Completed task.
It also displays an icon, if there are attachments associated with a task.
The page is setup to show a pre-configured number of tasks by default. 
Clicking on “Show More” triggers the next set of tasks to be retrieved. 

endOfShift.html When User requests end of shift, this page has UI sections to display Vehicle 
information and enter the start and end odometer.  
It displays information showing that the activities that have not been 
marked to keep for a future shift will be rescheduled to any crew.
It also shows the Complete button to get confirmation from user to 
complete the shift.
Mobile Application APIs 4-2
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Panic Alert
Panic Alert
Panic Alerts are generated when a crew in distress presses the Panic button on their mobile device.

UI JavaScript

HTML Pages

mailInbox.html This page creates UI sections for mail inbox showing list of all received and 
sent mails. This UI has two tabs – a) Received: this shows list of all messages 
received by user. b) Sent: this shows list of all messages sent by user. User 
may navigate to detail view of received of sent messages from this screen. 
The list in this screen also supports pagination.

M1-OracleMap.html This html contains section to show map canvas and map directions

commonAttachments.
html

This page handles attachments and shows all the information associated 
with attachments.

This html contains UI sections to show attachments list, common 
attachments list, gallery to open picture library and camera to be able to take 
pictures.

API Short Description

setPageButtons Overrides the base API that controls the Page Buttons. It shows the Send and 
Back buttons.

load Invoked by SDK on page load. Starts and stop the counter and indicates to the 
user if the device is offline and cannot send the alert.

sendPanicAlert Handles the sending of the Panic Alert to the server.

showMap This is the API triggered to showMap and is used to navigate to the appropriate 
map page passing in the boInstance data as input.

Html Page Short Description

panicAlert.html This page handles the display of Panic Alert indicator.
It shows the countdown in seconds indicating when the Request for Help 
Will be Sent.
If the countdown reaches 0, the panic alert is automatically sent to server.
This page also shows the Send button and Back button.
The Send button is used to force Send the panic alert to Server at any time.

Html Page Short Description
Mobile Application APIs 4-3
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Assignments
Assignments
An assignment is a copy of an activity created by the system to track the assigned crew's progress in 
accomplishing the work.

Business Object: M1-Assignment 

Business Object JavaScript

Business Object UI JavaScript

API Short Description

getDTO Returns the business object data mapped to offline columns.

Save Handles all the post processing plugin scripts called after each state

enterState Changes the state of BO. Depending on the state of the BO, one of the 
enterState methods below are invoked.For example 
enterSateENROUTE is invoked when bo state of Enroute is entered

enterStateENROUTE Handles the enter state Enroute - invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateARRIVED Handles the enter state Arrived -invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateBREAK Handles the enter state Break - invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateONSITE Handles the enter state Start/On Site - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStateRETURNED Handles the enter state Returned- invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStatePOSTPONED Handles the enter state Postponed - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStateSUSPENDED Handles the enter state Suspended - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStateCOMPLETED Handles the enter state Completed - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStatePendingDispatch Handles the enter state Pending Dispatch- invokes the appropriate 
enter plugin scripts and at the end calls the save to invoke post-
processing scripts method.

API Short Description

setPageButtons Overrides the base API that controls the Page Buttons of various 
states of the BO Lifecycle.

setPageMenuItems Sets the Page Menu Items for a given BO page
Mobile Application APIs 4-4
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Assignments
loadPageFragments Loads a list of fragments that should be added on the UI of a given 
page in a specific sequence: commonAssignment.html, 
commonProcedures.html,commonAttachments.html

load Invoked by SDK on page load. Loads the task data depending on 
the input task id passed in. Page Developer to read the inputArgs (or 
inputData) to load the offline data (or render the data passed in case 
of inputData)

enterState Triggered by change of BO State on UI. Depending on the BO 
State clicked, one of the  methods below are invoked.For example 
ENROUTE is invoked when bo state of Enroute is clicked on.

ENROUTE Handles the Enroute button being clicked. It is invoked by the 
enterState of  BO UI JS method above. Appropriate validations of 
various UI fields if required are performed and at the end of it 
invoke the enterStateAPI of the BO JS passing in the input of state 
and action.

ARRIVED Handles the Arrived button being clicked. It is invoked by the 
enterState of  BO UI JS method above. Appropriate validations of 
various UI fields if required are performed and at the end of it 
invoke the enterStateAPI of the BO JS passing in the input of state 
and action.

ONSITE Handles the Start button  being clicked. It is invoked by the 
enterState of  BO UI JS method above. Appropriate validations of 
various UI fields if required are performed and at the end of it 
invoke the enterStateAPI of the BO JS passing in the input of state 
and action.

RETURNED Handles the Decline button being clicked. It is invoked by the 
enterState of  BO UI JS method above. Appropriate validations of 
various UI fields if required are performed and at the end of it 
invoke the enterStateAPI of the BO JS passing in the input of state 
and action.

POSTPONED Handles the Decline button being clicked. It is invoked by the 
enterState of  BO UI JS method above. Appropriate validations of 
various UI fields if required are performed and at the end of it 
invoke the enterStateAPI of the BO JS passing in the input of state 
and action.

SUSPENDED Handles the Suspend button being clicked. It is invoked by the 
enterState of  BO UI JS method above. Appropriate validations of 
various UI fields if required are performed and at the end of it 
invoke the enterStateAPI of the BO JS passing in the input of state 
and action.

COMPLETED Handles the Complete button being clicked. It is invoked by the 
enterState of  BO UI JS method above. Appropriate validations of 
various UI fields if required are performed and at the end of it 
invoke the enterStateAPI of the BO JS passing in the input of state 
and action.

API Short Description
Mobile Application APIs 4-5
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Assignments
HTML Pages

Page Menu Items
• Attachments – Only on Device

• Procedures

• Maps

SENDNOW Handles the Send Now  button being clicked. It is invoked by the 
enterState of  BO UI JS method above. Appropriate validations of 
various UI fields if required are performed and at the end of it 
invoke the enterStateAPI of the BO JS passing in the input of state 
and action.

getStatusReasons Get the status reasons available for the BO

showAddRemarkTypeSection API triggered when user shows selected remark types

setSelectedRemarkType API triggered when user needs to add selected remark types

deleteSelectedRemarkType API triggered when user needs to delete selected remark types

saveStateFields This API is triggered when user tries to save the UI fields populated 
for the RETURNED, ARRIVED, SUSPENDED, POSTPONED 
states

saveCompCompl This API is triggered when user tries to save the UI fields populated 
for Common Completion Information section

showMap This is the API triggered to showMap and is used to navigate to the 
appropriate map page passing in the boInstance data as input.

Html Page Short Description

M1-Assignment.html This page handles the display of all the Assignment information. 
This includes showing the buttons associated with the lifecycle of 
the BO.
Upon completion of Assignment, user is navigated to the 
taskList.html page.

commonAssignment.html This html contains UI sections to display the Account 
Information, Customer Information, Scheduling Information 
and Common Completion Information, section to handle 
specific states such as declined, Postponed, Suspended and 
Arrived.

commonProcedures.html This html contains 2 UI sections to display:  procedure list and 
procedure details once a particular procedure is selected from the 
list.

commonAttachments.html This html contains UI sections to show attachments list, 
common attachments list, Gallery to open picture library and 
camera to be able t take pictures. 

M1-OracleMap.html This html contains section to show map canvas and map 
directions

API Short Description
Mobile Application APIs 4-6
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Related Assignment
Depot Related Assignment
Depot related assignments provide a copy of an activity created by the system to track the assigned 
crew's progress in accomplishing work specifically related to picking up and dropping off goods.

• Business Object: M1-DepotRelatedAssignment 

• Parent Business Object: M1-Assignment

Business Object JavaScript

Business Object UI JavaScript

API Short Description

getDTO Returns the business object data mapped to offline columns.

API Short Description

setPageMenuItems Sets the Page Menu Items for a given BO page

load Invoked by SDK on page load. Page Developer to read the 
inputArgs (or inputData) to load the offline data (or render the 
passed data in case of inputData)

showItemAssignment Handles the click of a specific item from a list of items for a given 
assignment. If the item is a package item then it shows the lists of 
items under it. If the item is a single item, then it shows the item 
details.

showPackageItemAssignment Handles the click of a specific item from a list of items within a 
given package. When the item is clicked it shows the item details.

showItems Handles the population of all items that are available for a given 
assignment

getItemsList This API takes the input of  “DELIVERED” or 
“NOTDELIVERED” and populates the tab of Delivered /Not 
Delivered items for a given assignment

showPackageItems Handles the population of all items that are available for a given 
package item within the list of items in an assignment

getPackageItemsList This API takes the input of  “DELIVERED” or 
“NOTDELIVERED” and populates the tab of Delivered /Not 
Delivered items for a given package item within the list of items in 
an assignment

scanAnyItem This API is used to handle the Scan Any feature available on the 
Item list page as well as from the page menu. The Scan Any 
button/menu item only shows up if there are any items within the 
item list with a barcode and it is a device and the device has the 
scanning capability.

scanNext Handles the Scan Next button once the first item has been 
scanned. This feature is only available when there are more items in 
the item list with a barcode and it is a device and the device has the 
scanning capability.
Mobile Application APIs 4-7
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Related Assignment
scanItemDetail This API is used to handle the scanning of item once a specific 
item has been selected. The API is invoked when the Scan Button 
is clicked from the Item Details page.  The Scan button shows up 
only if the item has a barcode and it is a device and the device has 
the scanning capability.

scanPackageItemDetail This API is used to handle the scanning of item once a specific 
item has been selected within a package. The API is invoked when 
the Scan Button is clicked from the Item Details page within a 
package item list.  The Scan button shows up only if the item has a 
barcode and it is a device and the device has the scanning capability.

scanItemInAnchor This API is used to handle the scanning of item once a specific 
item has been selected. The API is invoked when the scan icon is 
clicked on  a particular item on the item list page.  The icon shows 
up only if the item has a barcode and it is a device and the device 
has the scanning capability.

scanPackageItemInAnchor This API is used to handle the scanning of item once a specific 
item within a package has been selected. The API is invoked when 
the scan icon is clicked on  a particular item on the item list page 
within the package.  The icon shows up only if the item has a 
barcode and it is a device and the device has the scanning capability.

saveCustAcceptance This API is used to save the Customer Acceptance when the check 
icon is clicked. This includes the receipt option and signature 
acceptance.

saveItemCompl This API  is used to save the Item Completion Details once the 
save/check icon is clicked.

savePackageItemCompl This API  is used to save  item Completion Details within a 
Package once the save/check icon is clicked.

markAllItems This API takes “DELIVERED” or “DECLINED” as possible 
inputs and marks all the items that have not yet been delivered/
declined with the input.

updateDeliveryStatus Handles the checkbox of each item in the item list page, if 
checkbox is checked then the item is marked as delivered.

updatePackageDeliveryStatus Handles the checkbox of each package item in the package item list 
page, if checkbox is checked then the item in the package item list is 
marked as delivered.

showItemLevelAttachments Handles the attachments at item level. It passes in the task id and 
item id as inputs to the showAttachments API

ENROUTE Overrides the parent M1-Assignment BO UI JS. It invokes the 
parent BO’s ENROUTE BO UI JS to change state and then show/
hide  item/signature specific menu items.

ARRIVED Overrides the parent M1-Assignment BO UI JS. It invokes the 
parent BO’s ENROUTE BO UI JS to change state and then show/
hide  item/signature specific menu items.

ONSITE Overrides the parent M1-Assignment BO UI JS. It invokes the 
parent BO’s ENROUTE BO UI JS to change state and then show/
hide  item/signature specific menu items.

API Short Description
Mobile Application APIs 4-8
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Related Assignment
HTML Pages

Page Menu Items
• Attachments – Only on Device

• Procedures

• Maps

POSTPONED Overrides the parent M1-Assignment BO UI JS. It invokes the 
parent BO’s ENROUTE BO UI JS to change state and then show/
hide  item/signature specific menu items.

SUSPENDED Overrides the parent M1-Assignment BO UI JS. It invokes the 
parent BO’s ENROUTE BO UI JS to change state and then show/
hide  item/signature specific menu items.

COMPLETED Overrides the parent M1-Assignment BO UI JS. It does item 
specific/customer acceptance validations and then invokes the 
parent BO’s COMPLETED BO UI JS to change.

showMoreItems By default the number of items displayed in the Item Information 
section is restricted to the page size configuration parameter. 
Handles showing of additional items if present when Show More is 
clicked.

showMap This is the API triggered to showMap and is used to navigate to the 
appropriate map page passing in the boInstance data as input.

Html Page Short Description

M1-DepotRelatedAssignment.html This page handles the display of all the Depot Related 
Assignment information. Since the parent BO of M1-
DepotRelatedAssignment is M1-Assignment, it inherits the 
html pages in M1-Assignment including 
commonAssignment.html, commonProcedures.html, 
commonAttachments.html.
 
This html shows Activity Information, Customer 
Information, Scheduling Information, Item Information, 
Common Completion Information, and Customer 
Acceptance Information.

In addition it has UI sections to display Item List, Item 
Details, Package Items list and Package Item details, 
Customer Acceptance and Scan Section.

When displaying the Item List or Package Item List, the user 
can choose between showing “All”, “Delivered” and “Not 
Delivered” tabs.

Upon completion of Assignment, user is navigated to the 
taskList.html page.

M1-OracleMap.html This html contains section to show map canvas and map 
directions.

API Short Description
Mobile Application APIs 4-9
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Task
• Customer Acceptance – Only on Device

• Deliver All Items – Appears only after assignment status is OnSite

• Deliver All Items – Appears only after assignment status is OnSite

• Scan Any – Appears only if it is a device and bar coding capability is enabled and there are 
items in the assignment with a barcode.

Depot Task
Depot tasks represent a scheduled visit to a depot, with a task duration for loading or off-loading the 
goods. 

Note: A UI HTML Pages is not supported for M1-DepotTask. The below mentioned Business Object 
JavaScript and Business Object UI JavaScript are specified as they may be inherited/used by child BO 
M1-DepotTaskItems.

Business Object: : M1-DepotTask

Business Object JavaScript

Business Object UI JavaScript

API Short Description

getDTO Returns the business object data mapped to offline columns.

save Handles all the post processing plugin scripts called after each state

enterState Change the state of BO. Depending on the state of the BO, one of the 
enterState methods below are invoked.For example 
enterSateENROUTE is invoked when bo state of Enroute is entered

enterStateENROUTE Handles the enter state Enroute - invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateARRIVED Handles the enter state Arrived -invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateONSITE Handles the enter state Start/On Site - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStateCANCELED Handles the enter state Canceled- invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateCOMPLETED Handles the enter state Completed - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStatePendingDispatch Handles the enter state Pending Dispatch- invokes the appropriate 
enter plugin scripts and at the end calls the save to invoke post-
processing scripts method.

API Short Description
Mobile Application APIs 4-10
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Task Items
Depot Task Items
• Business Object: M1-DepotTaskItems

• Parent Business Object: M1-DepotTask

Parent Business Object JavaScript

Business Object UI JavaScript

load Invoked by SDK on page load. Page Developer to read the inputArgs (or inputData) 
to load the offline data (or render the passed data in case of inputData)

enterState Triggered by change of BO State on UI. It invokes the enterStateAPI of the BO JS 
passing in the input of state and action.

API Short Description

enterStateCOMPLETED Handles the enter state Completed - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts. Override this state transition from parent BO as 
there is a need to execute additional plugin.

API Short Description

load Invoked by SDK on page load. Page Developer to read the inputArgs 
(or inputData) to load the offline data (or render the passed data in case 
of inputData)

getTaskList This API is used to populate the task list (Depot Related Assignments)  
within the depot task. Depending on the input tab selected, it shows the 
“All” (default),”Loaded” and “Not Loaded” tasks. 

getMoreTaskList By default,  only specific number of tasks(configurable) in the task list 
are shown. If there are more than the configured number of tasks then 
the “Show More” button is shown and Handles it.

setPageMenuItems Sets the Page Menu Items for a given BO page

ENROUTE Handles the Enroute button  being clicked. Saves the old BO data 
before the state change and invokes the enterStateAPI of the BO JS 
passing in the input of state and action

ARRIVED Handles the Arrive button  being clicked. Saves the old BO data before 
the state change and invokes the enterStateAPI of the BO JS passing in 
the input of state and action

ONSITE Handles the Start button  being clicked. Saves the old BO data before 
the state change and invokes the enterStateAPI of the BO JS passing in 
the input of state and action

CANCELED Handles the Cancel button  being clicked. Saves the old BO data before 
the state change and invokes the enterStateAPI of the BO JS passing in 
the input of state and action

COMPLETED Handles the Complete button  being clicked. Saves the old BO data 
before the state change and invokes the enterStateAPI of the BO JS 
passing in the input of state and action

showMap This is the API triggered to showMap and is used to navigate to the 
appropriate map page passing in the boInstance data as input.
Mobile Application APIs 4-11
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Task Assignments
HTML Pages

Page Menu Items
• Attachments – Only on Device

• Procedures

Depot Task Assignments
Business Object: M1-DepotTaskAssignment

Business Object Java Script

Html Page Short Description

M1-DepotTaskItems.html This page handles the display of information associated with the 
depot task items such as Depot Information, Scheduling 
Information, Activities for the given Depot including Tabs to 
display “All”, “Loaded”, “Not Loaded” activities. The “Show 
More” button is shown to display more than the pre-configured 
number of activities if they exist for a given depot task. The Status 
Reason section is shown when status of Arrive is chosen.  This 
page also includes showing the buttons associated with the 
lifecycle of the BO. 

Upon completion/return of Depot Task, user is navigated to the 
taskList.html page.

M1-OracleMap.html This html contains section to show map canvas and map 
directions

API Short Description

getDTO Returns the business object data mapped to offline columns.

Save Handles all the post processing plugin scripts called after each state

enterState Change the state of BO. Depending on the state of the BO, one of the 
enterState methods below are invoked.For example 
enterSateCOMPLETE is invoked when bo state of Complete  is 
entered

enterStatePENDING Handles the enter state Pending - invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateRETURNED Handles the enter state Returned- invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateCOMPLETE Handles the enter state Complete - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStatePendingDispatch Handles the enter state Pending Dispatch - invokes the appropriate 
enter plugin scripts and at the end calls the save to invoke post-
processing scripts method.
Mobile Application APIs 4-12
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Task Assignments
Business Object UI JavaScript

API Short Description

setPageMenuItems Sets the Page Menu Items for a given BO page

load Invoked by SDK on page load. Page Developer to read the inputArgs 
(or inputData) to load the offline data (or render the passed data in case 
of inputData)

getStatusReasons Get the status reasons available for the BO

getTaskTypeDesc Gets the task type description of Depot Related Assignment and 
appends label "AT DEPOT" to it

showLoadingAssignment Handles the click of a specific item from a list of items for a given 
loading assignment. This method loads "itemDetailsSection" section to 
show the item details.

saveCompl This function is invoked on save of the Item details section. 
This function updates the load status,decline status, decline reason and 
comments to the database through the updateLoadStatus function

updateLoadStatus This function updates the load status,decline status, decline reason and 
comments to the database

selectAllItems This function is called on "Mark All as Loaded" menu item. This 
updates the load status of all unloaded items. Declined items are not 
modified.

getTaskList This function is called on "LOADED" and "NOT LOADED" to load 
items belonging to that particular tab.

showActivities This function is called on "ALL" tab

saveStatusReason This function is called when saving Status Reason

PENDING Resets the status Reason. Invokes the BO's enterState method with 
"PENDING" status

RETURNED Checks if Status Reason is entered. If status reason is not entered, it 
redirects to Status Reason page. If Status Reason is populated, then 
invokes the BO's enterState method with "RETURNED" status. On 
success Control returns back to Depot Task Items screen.

COMPLETE Checks if all the items are loaded. Partial loading is not supported. If not 
loaded, then a message is shown. If all the items are loaded then it 
invokes the BO's enterState method with "COMPLETE" status. On 
success control returns back to Depot Task Items screen.

declineActivity This function is called when "RETURNED" button is clicked from the 
screen or "Decline Activity" menu item is selected. This function calls 
the RETURNED method.

completeActivity This function is called when "COMPLETE" button is clicked from the 
screen or "Complete Activity" menu item is selected. This function calls 
the COMPLETE method

scanAnyItem Handles the Scan Any button. This function in turn invokes 
ouml.Capabilities.executeCapability('M1CAPBARCODE') passing in the 
success method to process the barcode returned. The success method 
iterates over the list of items , loads the detail screen of the item whose 
barcode is matched and marks the load status of  item found as loaded.
Mobile Application APIs 4-13
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Task Assignments
HTML Pages

Page Menu Items

scanNext On successful match of the item found when scanAnyItem method was 
invoked, if there are any unloaded items, then "Scan Next" button is 
displayed on the screen to scan any unloaded items. On clicking the 
button, scanNext function is invoked, which in turn invokes 
scanAnyItem.

scanItemInDetail This API is used to handle the scanning of the selected item in the detail 
screen. The API is invoked when the Scan Button is clicked from the 
Item Details page.  If the barcode returned matches the barcode of the 
selected item, the item's load status is set to loaded.

scanItemInAnchor This API is used to handle the scanning of a particular item. The API is 
invoked when the scan icon next to a item is clicked on the item list 
screen.  If the barcode returned matches the barcode of the selected 
item, the item's load status is set to loaded.

showMoreItems By default the number of items displayed in the Item Information 
section is restricted to the page size configuration parameter. Handles 
showing of additional items if present when Show More button is 
clicked

Html Page Short Description

M1-DepotTaslAssignment.html This page handles the display of all the Depot Task 
Assignment information once an activity is clicked on from 
the Depot Task.
This page has UI sections to display Item List and Item 
Details, Decline Section and Scan Section.

When displaying the Item List, the user can choose between 
showing “All”, “Loaded” and “Not Loaded” tabs.

This also includes showing the buttons associated with the 
lifecycle of the BO.

Mark All as Loaded Appears only after assignment status is Pending.

Scan Any Appears only if it is a device and bar coding capability is enabled and there are 
items in the assignment with a barcode.

Complete Activity Appears only after assignment status is Pending

Decline Activity Appears only after assignment status is Pending

API Short Description
Mobile Application APIs 4-14
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Break Task
Break Task
Break tasks provide information about tasks designated for the crew taking a break. 

Business Object: M1-BreakTask

Business Object JavaScript

Business Object UI JavaScript

API Short Description

getDTO Returns the business object data mapped to offline columns.

Save Handles all the post processing plugin scripts called after each state

enterState Change the state of BO. Depending on the state of the BO, one of the 
enterState methods below are invoked.For example 
enterStateCANCELED is invoked when bo state of Canceled  is 
entered

enterStateSTARTED Handles the enter state Started - invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateCANCELED Handles the enter state Canceled- invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateCOMPLETED Handles the enter state Completed - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStatePendingDispatch Handles the enter state QD-DISPATCH- invokes the appropriate enter 
plugin scripts and at the end calls the save to invoke post-processing 
scripts method.

API Short Description

setPageMenuItems Sets the Page Menu Items for a given BO page.

load Invoked by SDK on page load. Page Developer to read the inputArgs 
(or inputData) to load the offline data (or render the passed data in case 
of inputData)

STARTED Handles the Start button  being clicked. Saves the old BO data before 
the state change and invokes the enterStateAPI of the BO JS passing in 
the input of state and action.

COMPLETED Handles the Complete button  being clicked. Saves the old BO data 
before the state change and invokes the enterStateAPI of the BO JS 
passing in the input of state and action.

CANCELED Handles the Cancel button being clicked. Saves the old BO data before 
the state change and invokes the enterStateAPI of the BO JS passing in 
the input of state and action.
Mobile Application APIs 4-15
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Non Productive Tasks
HTML Pages

Non Productive Tasks
Non productive tasks (NPTs) indicate a window of time as well as location where the crew must attend 
to some task unrelated to shift work.

Business Object: M1-NonPrdTask

Business Object JavaScript

Business Object UI JavaScript

Html Page Short Description

M1-BreakTask.html This page handles the display of Break Task information.
This html shows Arrival Date Time, Break Duration and BO Status.
This includes showing the buttons associated with the lifecycle of the 
BO.

API Short Description

getDTO Returns the business object data mapped to offline columns

save Handles all the post processing plugin scripts called after each state

enterState Change the state of BO. Depending on the state of the BO, one of 
the enterState methods below are invoked.For example 
enterStateCANCELED is invoked when bo state of Canceled  is 
entered

enterStateENROUTE Handles the enter state Enroute - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStateONSITE Handles the enter state Start - invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-
processing scripts

enterStateCANCELED Handles the enter state Canceled- invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStateCOMPLETED Handles the enter state Completed - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStatePendingDispatch Handles the enter state QD-DISPATCH- invokes the appropriate 
enter plugin scripts and at the end calls the save to invoke post-
processing scripts method.

API Short Description

setPageMenuItems Sets the Page Menu Items for a given BO page

load Invoked by SDK on page load. Page Developer to read the inputArgs (or 
inputData) to load the offline data (or render the passed data in case of 
inputData)

ENROUTE Handles the Enroute button  being clicked. Saves the old BO data before the 
state change and invokes the enterStateAPI of the BO JS passing in the input 
of state and action.
Mobile Application APIs 4-16
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Period of Unavailability Task
HTML Pages

Page Menu Items
• Maps

Period of Unavailability Task
Period of unavailability tasks define a specific period where the crew is unavailable for shift work.

Business Object: M1-POUTask

Business Object JavaScript

ONSITE Handles the Start button  being clicked. Saves the old BO data before the state 
change and invokes the enterStateAPI of the BO JS passing in the input of 
state and action.

COMPLETED Handles the Complete button  being clicked. Saves the old BO data before the 
state change and invokes the enterStateAPI of the BO JS passing in the input 
of state and action.

CANCELED Handles the Cancel button  being clicked. Saves the old BO data before the 
state change and invokes the enterStateAPI of the BO JS passing in the input 
of state and action.

showMap This is the API triggered to showMap and is used to navigate to the 
appropriate map page passing in the boInstance data as input.

Html Page Short Description

M1-NonPrdTask.html This page handles the display of Non Productive Task information.
This html shows Location, Arrival Date Time, Break Duration and BO 
Status.
This includes showing the buttons associated with the lifecycle of the BO.

M1-OracleMap.html This html contains section to show map canvas and map directions

API Short Description

getDTO Returns the business object data mapped to offline columns

save Handles all the post processing plugin scripts called after each state

enterState Change the state of BO. Depending on the state of the BO, one of the 
enterState methods below are invoked.For example 
enterStateCANCELED is invoked when bo state of Canceled is 
entered

enterStateENROUTE Handles the enter state Enroute - invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateONSITE Handles the enter state Start - invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

API Short Description
Mobile Application APIs 4-17
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Period of Unavailability Task
Business Object UI JavaScript

HTML Pages

Page Menu Items
• Maps

enterStateCANCELED Handles the enter state Canceled- invokes the appropriate enter plugin 
scripts and at the end calls the save method to invoke post-processing 
scripts

enterStateCOMPLETED Handles the enter state Completed - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke post-
processing scripts

enterStatePendingDispatch Handles the enter state QD-DISPATCH- invokes the appropriate enter 
plugin scripts and at the end calls the save to invoke post-processing 
scripts method.

API Short Description

setPageMenuItems Sets the Page Menu Items for a given BO page

load Invoked by SDK on page load. Page Developer to read the inputArgs (or 
inputData) to load the offline data (or render the passed data in case of 
inputData)

ENROUTE Handles the Enroute button  being clicked. Saves the old BO data before the 
state change and invokes the enterStateAPI of the BO JS passing in the input 
of state and action.

ONSITE Handles the Start button  being clicked. Saves the old BO data before the state 
change and invokes the enterStateAPI of the BO JS passing in the input of 
state and action.

COMPLETED Handles the Complete button  being clicked. Saves the old BO data before the 
state change and invokes the enterStateAPI of the BO JS passing in the input 
of state and action.

CANCELED Handles the Cancel button  being clicked. Saves the old BO data before the 
state change and invokes the enterStateAPI of the BO JS passing in the input 
of state and action.

showMap This is the API triggered to showMap and is used to navigate to the 
appropriate map page passing in the boInstance data as input.

Html Page Short Description

M1-POUTask.html This page handles the display of all the Period Of Unavailability information. 

This html shows Location, Arrival Date Time, Start Date Time, Completion 
Date Time, Calculated Travel Time, Calculated Travel Distance and BO 
Status.

This includes showing the buttons associated with the lifecycle of the BO.

M1-OracleMap.html This html contains section to show map canvas and map directions

API Short Description
Mobile Application APIs 4-18
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Mail
Mail
Mail is defined as messages that can be sent to or sent from the crew from within the mobile 
application. 

Business Object: M1-MainMail

Business Object JavaScript

Business Object UI JavaScript

HTML Pages

API Short Description

getDTO Returns the BO data mapped to offline columns.

save Handles all the post processing plugin scripts called after each state

enterState Change the state of BO. Depending on the state of the BO, one of the 
enterState methods below are invoked.For example enterSateSENT is 
invoked when bo state of Sent  is entered

enterStateSENT Handles the enter state Sent - invokes the appropriate enter plugin scripts and 
at the end calls the save method to invoke post-processing scripts

enterStateERROR Handles the enter state Error- invokes the appropriate enter plugin scripts and 
at the end calls the save method to invoke post-processing scripts

API Short Description

setPageMenuItems Sets the Page Menu Items for a given BO page

setPageButtons Overrides the base API that controls the Page Buttons of various states 
of the BO Lifecycle.

load Invoked by SDK on page load. Page Developer to read the inputArgs 
(or inputData) to load the offline data (or render the passed data in case 
of inputData)

Html Page Short Description

M1-MainMail.html This page handles the display of all the Sent Mail information. 

The page contains action button to ‘Resend’ the same mail. User may 
choose to alter subject, message and priority queue while resending the 
same message. User may resend to the same user or group as in the 
original mail.
Mobile Application APIs 4-19
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Recipient Mail
Page Menu Items
• Compose Mail

• End Shift

Recipient Mail
Mail messages that are received by mobile application users.

Business Object: M1-RecipientMail

Business Object JavaScript

Business Object UI JavaScript

mailInbox.html This page creates UI sections for mail inbox showing list of all received 
and sent mails. This UI has two tabs – a) Received: this shows list of all 
messages received by user. b) Sent: this shows list of all messages sent by 
user. User may navigate to detail view of received of sent messages from 
this screen. The list in this screen also supports pagination.

This page also has a link to taskList.html in case user wants to switch to 
task list page.

mailComposePage.html This page creates UI sections for drafting and sending a new mail. User 
may enter recipient user and group, subject, message and mention 
priority queue. This screen contains ‘Send Mail’ button which will send 
the mail to intended recipients.

API Short Description

getDTO Returns the business object data mapped to offline columns.

save Handles all the post processing plugin scripts called after each 
state

enterState Change the state of BO. Depending on the state of the BO, one 
of the enterState methods below are invoked.For example 
enterStateSENT is invoked when bo state of Sent is entered

enterStateSENT Handles the enter state Sent - invokes the appropriate enter 
plugin scripts and at the end calls the save method to invoke 
post-processing scripts

enterStateACKNOWLEDGED Handles the enter state Acknowledged - invokes the appropriate 
enter plugin scripts and at the end calls the save method to 
invoke post-processing scripts

API Short Description

setPageButtons Overrides the base API that controls the Page Buttons of various states of 
the BO Lifecycle.

Html Page Short Description
Mobile Application APIs 4-20
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Crew Shift
HTML Pages

Page Menu Items
• Compose Mail

• End Shift

Crew Shift
A crew shift is a planned period of time in which a crew (one or more mobile workers and vehicles) is 
scheduled to perform work. 

Business Object: M1-CrewShift

Business Object JavaScript

setPageMenuItems Sets the Page Menu Items for a given BO page

load Invoked by SDK on page load. Page Developer to read the inputArgs (or 
inputData) to load the offline data (or render the passed data in case of 
inputData)

Html Page Short Description

M1-RecipientMail.html This page handles the display of Received mail. This UI contains action 
buttons to ‘Reply’, 'Delete' and ‘Acknowledge’ the mail. ‘Acknowledge’ 
button will appear only if the mail is marked for acknowledgement 
required.

mailInbox.html This page creates UI sections for mail inbox showing list of all received 
and sent mails. This UI has two tabs – a) Received: this shows list of all 
messages received by user. b) Sent: this shows list of all messages sent by 
user. User may navigate to detail view of received of sent messages from 
this screen. The list in this screen also supports pagination.

mailComposePage.html This page creates UI sections for drafting and sending a new mail. User 
may enter recipient user and group, subject, message and mention priority 
queue. This screen contains ‘Send Mail’ button which will send the mail to 
intended recipients.

mailReplyPage.html This page creates UI sections for replying to a received mail. This page 
contains action button for ‘Send Mail’ which will send the mail in reply to 
the received mail. The field for ‘Send To’ is pre-populated with the 
senders ID, other fields are editable that user can alter before sending the 
reply.

API Short Description

getDTO Returns the business object data mapped to offline columns

startShift Before initiating the Starting the Shift checkin process, this function will check and 
delete if any preview tasks downloaded to MDT.  

previewShift Get the preview shift details from server.
Mobile Application APIs 4-21
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Crew Shift
Business Object UI JavaScript

API Short Description

setPageButtons Overrides the base API that controls the Page Buttons of various 
states of the BO Lifecycle.

setPageMenuItems Sets the Page Menu Items for a given BO page

load Invoked by SDK on page load. Page Developer to read the 
inputArgs (or inputData) to load the offline data (or render the data 
passed in case of inputData)

loadPrimaryFunctions This API forms the list of Service Classes to be displayed under the 
Primary Function section

showWorkerSection This API sets selectedWorker value with current row data and make 
shiftWorkerSection visible

showAddEditWorkerSection This API resets the selectedWorker and make 
addEditWorkerSection visible.

addWorker This API first deletes the selectedWorker from 
resourceAllocationList if it already exists and then adds the updated 
selectedWorker

editWorkerDetails This API is used to edit worker details once a specific worker has 
been selected from the resourceAllocationList. 

editWorker This API is the handler for showWorkerSection. It displays 
addEditWorkerSection with current selected data populated on UI.

removeWorker Handles the deletion of currently selected worker from the 
resourceAllocationList

showVehicleSection This API sets selectedVehicle value with current row data and make 
shiftVehicleSection visible

showAddEditVehicleSection This API resets the selectedVehicle and make 
addEditVehicleSection visible.

addVehicle This API first deletes the selectedVehicle from 
resourceAllocationList if it exists and then adds the updated 
selectedVehicle

editVehicleDetails This method first deletes the selectedVehicle from 
resourceAllocationList if exist and then adds the updated 
information of selectedVehicle

removeVehicle This API deletes the currently selected Vehicle from the 
resourceAllocationList

editVehicle This API is the handler for showVehicleSection. It displays 
addEditVehicleSection with currently selected data populated on UI.

start This API starts the Shift

logoff This API does logoff of the Shift

setSelectedShiftFunction This API sets the service class/Primary function of the shift.

preview Handles the preview mode of Shift.

endShift Handles the end of shift.

loadPageFragments

showShiftProcedures Handles the showing of Procedures that exist for a given shift.
Mobile Application APIs 4-22
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Crew Shift
HTML Pages

showServiceState This API shows the service status possible if the current shift status 
is “In Service” or “Out of Service”

setServiceStatus This API sets the service status to “In Service” if it is currently “Out 
of Service” and vice versa.

setShiftStatus This API sets the shift status to whatever is passed in as input.

setStatusReasonFunction This API is used to set the input status reason code and description.

Html Page Short Description

M1-CrewShift.html This page handles the crew shift page and shows all the information associated 
with the Crew Shift.

This html shows Crew Name, Shift Planned Date Time, Shift Planned End 
Date Time,  Primary Function  Section, Worker Section,  Vehicle Section.

User has the ability to change primary function.
User has the ability to add, edit and remove worker or vehicle information 
from the crew shift.
User has the ability to go out of service on the shift by entering the Status 
Reason and Estimated duration.

 In addition it has UI sections to display and complete Procedures associated 
with the Crew Shift.
This also includes showing the buttons associated with the lifecycle of the BO.

Upon start of Shift, user is automatically navigated to the taskList.html page.

taskList.html Once the shift is successfully Started, the task list page is invoked. This page 
handles the display of all the tasks available for a given Crew Shift. It displays 
the tasks in either the “Open” tab or the “Completed” tab depending on the 
State of the task.

For each task in the task list, it shows the task type Description, location 
associated with the task (if exists), state of the task and the Arrival date time 
for an Open Task and BO Status Date Time for a Completed task.
It also displays an icon, if there are attachments associated with a task.

The page is setup to show a pre-configured number of tasks by default. 
Clicking on “Show More” triggers the next set of tasks to be retrieved. 

endOfShift.html When User requests end of shift, this page has UI sections to display Vehicle 
information and enter the start and end odometer.  
It displays information showing that the activities that have not been marked 
to keep for a future shift will be rescheduled to any crew.
It also shows the Complete button to get confirmation from user to complete 
the shift.

API Short Description
Mobile Application APIs 4-23
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Depot Related Shift
Page Menu Items

Depot Related Shift
A depot related shift is a planned period of time in which a crew (one or more mobile workers and 
vehicles) is scheduled to perform work specifically related to the pick up or drop off of goods. 

• Business Object: M1-DepotRelatedShift

• Parent Business Object JavaScript – M1-CrewShift

Business Object UI JavaScript

HTML Pages

Start Shift Shown only when Shift is in Planned State

Preview Shift Shown only when Shift is in Planned status and “advancedDispatchTasks” 
is set on model.

End Shift Shown after Shift is started

Procedures

Change Service State Shown after Shift is started

API Short Description

loadPageFragments This API return a list of fragments that should be added in same 
sequence – commonShift.html

Html Page Short Description

commonShift.html This page handles the crew shift page and shows all the information associated 
with the Depot Related Crew Shift.

This html shows Crew Name, Shift Planned Date Time, Shift Planned End 
Date Time,  Primary Function  Section, Worker Section,  Vehicle Section.

User has the ability to change primary function.
User has the ability to add, edit and remove worker or vehicle information 
from the crew shift.

User has the ability to go out of service on the shift by entering the Status 
Reason and Estimated duration.

 In addition it has UI sections to display and complete Procedures associated 
with the Crew Shift.

This also includes showing the buttons associated with the lifecycle of the BO.
Mobile Application APIs 4-24
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Oracle Map
Simple Procedure
Procedures represent steps or tasks that crews may need to complete prior to starting a business 
activity such as starting their shift, using a vehicle or starting work on an activity.

Business Object: M1-SimpleProcedure

Business Object JavaScript

HTML Pages

Procedure Type
Procedure types define procedures of a certain type.

Business Object: M1-ProcedureType

Business Object

Oracle Map
The Oracle Fusion Middleware MapViewer is used to render maps. The out of box solution uses 
Oracle MapViewer Javascript V2 HTML5 API. 

UI JavaScript

API Short Description

getDTO Returns the BO data mapped to offline columns

setStatus Change the status of the business object.

Html Page Short Description

commonProcedures.html This page handles the Procedures and shows all the information 
associated with Procedures both at the activity left as well as the shift 
level.

This has UI sections to display the Procedure List and Procedure Details.

The procedure details UI section gets the details of the procedures by 
invoking the procedure template specified in index.html

API Overridden Short Description

getDTO Yes Returns the business object data mapped to offline columns

setStatus No Change the status of the business object.

API Short Description

load The first function which gets called on the Map page. This checks 
if it is an Activity specific map or for all the activities in the task 
list.

loadLocationData Loads the Locations which are configured in the system. These 
locations are used to get location of activities without any site 
address like NPT and POU
Mobile Application APIs 4-25
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Attachments
HTML Pages

Attachments
An attachment can be any file, such as a photo, a document with instructions or specifications, a 
spreadsheet, or any other supporting documentation. Mobile devices have the ability to upload 
attachments to the server application as well as receive attachments from the server.

Business Object: M1-Attachment

Business Object JavaScript

loadMapConfiguration This function loads the Map configuration which is defined as a 
Feature Configuration on the server. The properties in the Map 
configuration provide things like the Oracle Mapviewer URL, 
default latitude and longitude etc

populateTaskTypeMap This method loads the Task Type descriptions

renderMap Set the map height and calls the initOracleMap function

initOracleMap This method initializes the Oracle Mapviewer map and sets the 
properties like URL, Datasource and tile layers. This also plot the 
Crew location and the activities as markers on the maps and add 
information windows for these markers

getDirectionsFromServer This function gets the directions from the server from the crew 
location to the activity(ies). 

renderOracleMapv2 This function plots the route based on those directions returned 
by the server on the map.

featureClick This function shows an information window with the Activity 
details when activity marker is clicked on the Map.

showDirections This functions renders the directions coming from the server in 
the Directions panel.

setMapHeight Sets the height of the map

openNativeMaps This function makes a javascript call when the Native maps button 
on an activity info windows is clicked. This calls the native map 
application on the device and passes the activity co-ordinates as 
parameters. 

getLegend This function creates the legend table displayed on the map. 

Html Page Short Description

M1-OracleMap.html This html contains section to show map canvas and map directions

API Overridden Short Description

getDTO Yes Returns the business object data mapped to offline columns.

setStatus No Change the status of the business object.

API Short Description
Mobile Application APIs 4-26
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Attachments
HTML Pages

The following table provides a list of the various supported attachments and the associated business 
object. All of these business objects have the parent business object: M1-Attachment.

Html Page Short Description

commonAttachments.html This page handles the Attachments and shows all the information 
associated with Attachments.

This html contains UI sections to show attachments list, common 
Attachments list, Gallery to open picture library and camera to be able 
to take pictures.

Type of Attachment Business Object

Captured Picture Attachment M1-CapturedPicture

Excel Attachment M1-Excel

PDF Attachment M1-PDF

Text File Attachment M1-TXT

Word File Attachment M1-Word

Captured Sound Attachment M1-CapturedSound

MP3 Audio Attachment M1-Mp3Audio

MPEG Video Attachment M1-MPEGVideo

Microsoft Video Attachment M1-MicrosoftVideo
Mobile Application APIs 4-27
 Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide



Chapter 5
Customization and Extension Methodology

This chapter provides information on extending the Oracle Real-Time Scheduler Mobile Application.

Ensure that the cm folder is created  under www  before you begin customization. Please reference the 
Oracle Real-Time Scheduler Mobile Application Installation and Deployment Guide in the chapter regarding 
building the mobile application for information on the required files that are needed under cm. 

Reference the configurable properties defined in the OUML.config.js API for the properties that can 
be overridden in config.js. This is described in Chapter 3: Oracle Utilities Mobile Library.

We suggest that the cm directory mirrors the directory structure of the M1 directory with specific js in 
each folder.

Directory Description

www/cm/scripts Device plugins

www/cm/config.js Custom config.js to define configurable properties

www/cm/themes Custom css, theme css files
The following are files required under cm/themes: 

• cm.jquery.theme.css: custom themes

• cm.styles.css: custom styles

• jquery.mobile.icons.min.css: Icon definitions 
defined for custom theme. This also gets 
downloaded as part of downloading custom theme 
from JQuery Mobile Theme Roller
Customization and Extension Methodology 5-1
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Themes and Images
Themes and Images
The following sections describe how to change custom themes and images. 

Setting Custom Themes
You can create your own custom theme using JQuery Mobile Theme Roller (http://
themeroller.jquerymobile.com/). 

• Oracle theme is set in www/ ouml/themes/theme-sample.css file. 

• You can either import theme-sample.css file in JQuery Mobile Theme Roller and modify it or 
create your own. 

• Make sure the custom theme downloaded from JQuery Mobile Theme Roller is named as 
cm.jquery.theme.css and is placed under www/cm/themes along with 
jquery.mobile.icons.min.css which is part of the download. 

• The corresponding images are placed under www/cm/themes/images.

• The new theme should be mapped to the uiTheme property in www/cm/config.js
Example : uiTheme: "f"

Changing Images on Index.html
The images on the index.html are defined as a css property  as shown below.

/* DeskTop version */
#bannerImage {
   content:url('images/OracleBanner.png');
} 

/* Mobile version */
@media all and (max-width:500px) {

    #bannerImage {
        content:url('images/OracleBanner_mobile.png');
    }
}

The bannerImage property can be overridden in www/cm/themes/cm.styles.css to reference custom 
images.

www/cm/themes/images Custom images

www/cm/ui/bo UI related javascript, html files for a specific BO, and 
html files loaded as page fragments as part of the main BO 
html

www/cm/ui Html and Javascript files not related to a BO. Custom 
common.js files to specify custom scripts and custom logic

www/cm/scripts/bo Custom business object related java script files to handle 
lifecycle logic

www/cm/scripts/inbound Custom inbound processing scripts

www/cm/scripts/plugins Javascript files to specify custom plugin scripts

Directory Description
Customization and Extension Methodology 5-2
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Extending Navigation
Changing Images of Icons on Maps
Map icons are defined as part of a configurable property called oracleMapProperties in the config.js 
file. This property can be overridden in custom config.js to define custom properties for Oracle Map 
including images.

Overriding Icons
You can override icon properties in www/cm/themes/cm.styles.css.

For example:
To specify custom image to paperclip icon used in Item level Attachment in Depot Related Assignment 
screen.

 .ui-icon-paperclip{
background-image: url("images/icons-png/delete-black.png");
}

Extending Navigation

Application Level Menu Items
Application level menu items which is shown in all the screens are defined through the mainMenu 
property in config.js.

Default value:

var mainMenu = [
                    new ouml.MenuItem({ index:102, title: "Settings", 
action: "ouml/ui/settings.html", active:true}),
                    new ouml.MenuItem({ index:101, title: 'Logoff', 
action: function(){ouml.Utilities.logout();}, active:true}) 
            ];

This property can be extended in www/cm/config.js  to add new application level menu items.

var mainMenu = [
                   new ouml.MenuItem({ index:104, title: 'Contact 
Us', action: "CM/ui/ContactUs.html", active:true})
                   ];

Application level menu items can be removed from individual pages by overriding setPageMenuItems 
in each page JS. Please reference the example in the next section for more information.

Page Level Menu Items
Menu items for a particular screen are set in the UI javascript by overriding setPageMenuItems 
function.

In this example we will hide the “Decline Activity” menu option and introduce a new menu item called 
“New Function” in  the M1-DepotTaskAssignment screen.

1. Create a js file under www/cm/ui/bo/M1-DepotTaskAssignment.js.

ouml.ViewModel["M1-DepotTaskAssignment"].CM = (function(ouml) {
var model = undefined;

 function cmDepotTaskAssignment() {
 model = this;
 ouml.ViewModel["M1-DepotTaskAssignment"].call(this);
   };
    
    //set the prototype to parent BO, so we extend the parent's 
functions.
Customization and Extension Methodology 5-3
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Extending Existing Screens and Functions 
    
    cmDepotTaskAssignment.prototype = 
Object.create(ouml.ViewModel["M1-
DepotTaskAssignment"].prototype);;
    

    

    cmDepotTaskAssignment.prototype.constructor =  
cmDepotTaskAssignment;
    cmDepotTaskAssignment.prototype.newFunc = function()
    {
    //Custom code for the new function
    ouml.Utilities.log("New Function");
    
    }
    
    cmDepotTaskAssignment.prototype.setPageMenuItems = function(){
    
    ouml.ViewModel["M1-
DepotTaskAssignment"].prototype.setPageMenuItems.call(this);
           // To hide menu item
    model.hideMenuItem(203);
          // To add new menu item
      var newDTMenuItem = new ouml.MenuItem({index:201,title: 'New 
Function', action:model.newFunc,active:true}); 
      model.addMenuItem(newDTMenuItem);
           
     }

 return cmDepotTaskAssignment;

})(ouml);

2. Create a mapping for this js in www/cm/config.js mapping pageId to the js file through the 
pageFiles property.

var pageFiles = {
 "M1-DepotTaskAssignment": ["cm/ui/bo/M1-DepotTaskAssignment.js"]
    }

Extending Existing Screens and Functions 

Hiding Menu Items And Overriding Functionality
Depot Related Assignments have attachments which are shown at page level on the menu and at item 
level within the item section. Attachments are shown based on a positive check for Cordova. 

In this example we will add a capability check. The showAttachments functionality is also overriden.

1. Extend M1 DepotRelatedAssignment.js by creating it under cm/ui/bo/M1-
DepotRelatedAssignment.js.

ouml.ViewModel["M1-DepotRelatedAssignment"].CM = (function(ouml) {
var model = undefined;

 function cmDepotRelatedAssignment() {
 model = this;

    ouml.ViewModel["M1-DepotRelatedAssignment"].call(this);
    if(enableAttachmentSupport())
      model.showAttachmentIcon(true);
Customization and Extension Methodology 5-4
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Extending Existing Screens and Functions 
    else
      model.showAttachmentIcon(false);
        
    };
    
    function enableAttachmentSupport()
    {
    if(ouml.Capabilities.isCapabilitySupported('M1ATTJPEG') && 
ouml.Device.isCordova())
    return true;
    else
    return false;
    }
    cmDepotRelatedAssignment.prototype = 
Object.create(ouml.ViewModel["M1-
DepotRelatedAssignment"].prototype);;

    cmDepotRelatedAssignment.prototype.constructor =  
cmDepotRelatedAssignment;
   
    cmDepotRelatedAssignment.prototype.setPageMenuItems = 
function(){
    ouml.ViewModel["M1-
DepotRelatedAssignment"].prototype.setPageMenuItems.call(this);
    model.hideMenuItem(301);
    var input =  {pkValue : 
ouml.App.getPageContext().inputArgs['taskId']};
    var attachmentsMenuItem = new ouml.MenuItem({index:301,title: 
model.LABELS.M1_ATTACHMENT, 
action:model.showAttachments.bind(this,input), active:true});
    
        if(enableAttachmentSupport())
          model.addMenuItem(attachmentsMenuItem);
          
     };
     
     cmDepotRelatedAssignment.prototype.showAttachments = function 
(keys) { 
    
    // Custom Attachment logic goes here.
    };

 return cmDepotRelatedAssignment;

})(ouml);

2. Create a mapping for this js in www/cm/config.js mapping pageId to the js file through the   
pageFiles property.

    var pageFiles = {
"M1-DepotRelatedAssignment": ["cm/ui/bo/M1-
DepotRelatedAssignment.js"]
   }
Customization and Extension Methodology 5-5
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Extending Existing Screens and Functions 
Extending BO Files
 In this example, we will extend M1-Assignment BO js file.

1. Create M1-Assignment.js file under www/cm/scripts/bo/M1-Assignment.js. 
www/cm/scripts/bo/M1-Assignment.js.

      ouml.BusinessObject["M1-Assignment"].CM = (function (ouml){
    
    //define private variables and functions here (vars and 
functions that should not be accessible from anywhere else except 
this module)

    
        var m1CMAssign = function(data){

     this.bo = "M1-Assignment";
        //Invoke the parent BO, if any or generic BO, and pass the 
"this" reference. So that parent can use same "this" reference.  
        ouml.BusinessObject["M1-Assignment"].call(this, data);
    };
    
    //set the prototype to parent BO, so we extend the parent's 
functions. 
    m1CMAssign.prototype = Object.create(ouml.BusinessObject["M1-
Assignment"].prototype);
    
    //point the constructor property to this key (in case we need to 
make use of it later)
    m1CMAssign.prototype.constructor =  m1CMAssign;
    
    
    m1CMAssign.prototype.enterStateENROUTE = function(args) {
            ouml.BusinessObject["M1-
Assignment"].prototype.enterStateENROUTE.call(this, args);
    // Custom logic goes here
    
    };
    
    //return the reference to a BO class(function here). When you do 
"new ouml.BusinessObject["M1-Assignment"]()" it would mean new 
m1Assignment(), which is what we want.

    return m1CMAssign;    
})(ouml);

2. Map cm M1-Assignment.js to the boFiles property in www/cm/config.js. 

   var boFiles = {
           "M1-Assignment": ["M1-Assignment.js”]
   };   
Customization and Extension Methodology 5-6
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Extending Existing Screens and Functions 
Extending HTML Pages
You can hide or show html elements using jquery API’s

In this example we will customize the scheduling information section in M1-Assignment and hide the 
completion information section.

1. Create a custom M1-Assignment.js under cm/ui/bo/M1-Assignment.

2. Create a mapping in www/cm/config.js to map the custom M1-Assignment.js to M1-
Assignment pageid.

var pageFiles = {
 "M1-Assignment": ["cm/ui/bo/M1-Assignment.js"]
                }

3. Create a html fragment www/cm/ui/bo/cmshiftimpl.html with the div element which has 
the same div ID as M1 Scheduling information div (section) ID=schinfo.  Add custom html 
elements required with in this div.

4. Override the loadFragment method to include cmshiftimpl.html.

5. Rename the Scheduling information div section ID, "schinfo", to a different ID so that the 
custom div with ID schinfo takes effect.

www/cm/ui/bo/M1-Assignment.js
ouml.ViewModel["M1-Assignment"].CM = (function(ouml) {

var m1CMAssignmentViewModel = function(){
        ouml.ViewModel["M1-Assignment"].call(this);
    };

    m1CMAssignmentViewModel.prototype = 
Object.create(ouml.ViewModel["M1-Assignment"].prototype);
    m1CMAssignmentViewModel.prototype.constructor = 
m1CMAssignmentViewModel;

    m1CMAssignmentViewModel.prototype.load = function(args) {
    args.onSuccess = onLoadSuccess.bind(this, args.onSuccess);
    ouml.ViewModel["M1-Assignment"].prototype.load.call(this, 
args);
    };
    
    m1CMAssignmentViewModel.prototype.loadPageFragments = 
function() {
        //return a list of fragments that should be added in same 
sequence
       //default path is the same dir which hosts the main page HTML 
file
          return ["commonAssignment.html", "cm/ui/bo/
cmshifttmpl.html"];
    };
        
    function onLoadSuccess(onSuccess) {
    //Hide Common Completion section.  
    $.mobile.activePage.find("#saveCompCompl-
href").parent("LI").hide();
    //Rename the Scheduling infromation section Id of schinfo to a 
different ID, so that we can use custom section with same ID
    $.mobile.activePage.find("#schinfo").attr("id","schinfo-m1");
    onSuccess();
    } 
      return m1CMAssignmentViewModel;

})(ouml);
Customization and Extension Methodology 5-7
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Custom Screens and Functions 
Overriding M1 Plugins and Creating Custom Plugins
You can override plugins defined in www/m1/plugins/plugins.js or create custom plugins by defining 
custom plugin scripts in www/cm/plugins/plugins.js

In this example we will override logic in the M1-MCPSTCom script in www/cm/plugins/plugins.js.

1. In plugin.js define:

ouml.plugins["M1-MCPSTCom"] = (function(ouml) {
var m1SendTaskComplCall = function() {
};
m1SendTaskComplCall.prototype.constructor = m1SendTaskComplCall;

m1SendTaskComplCall.prototype.process = function(args) {
              //Custom logic goes here
};
return m1SendTaskComplCall;
})(ouml);

2. Define the mapping in custom config.js in the commonJSFiles property.

var commonJSFiles = ["cm/scripts/plugins/plugins.js"];

Custom Screens and Functions 

Creating a Custom Page Not Related To a Business Object 
Create the custom page not related to a BO and using Oracle Utilities Mobile Library APIs

1. Create your html and the corresponding js file under www/cm/ui/.

2. Define the mapping of the page ID and the corresponding js file in www/cm/config.js.

Example: About.html

<html>
<head>
<title></title>
<meta name="viewport" content="user-scalable=no, width=device-
width">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" 
/>
</head>
<body>
<div data-role="page" ID="About">
<script src="About.js"></script>
<div data-role="header" data-position="fixed"> </div>
<div>
About Home Delivery Product
</div>
</body>
</html>

Example: About.js

ouml.ViewModel["About"] = (function(ouml) {
    var model = undefined;

function aboutUs() {
 model = this;
Customization and Extension Methodology 5-8
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Custom Screens and Functions 
  ouml.ViewModel["M1-Common"].call(this);
  
    };
    
    aboutUs.prototype = Object.create(ouml.ViewModel["M1-
Common"].prototype);
    
    aboutUs.prototype.constructor =  aboutUs;
    
    aboutUs.prototype.load = function (args) {
    var callbackFunc = args["onSuccess"];
        callbackFunc();
        model.pageTitle("About Us");
        
    };
 return aboutUs;

})(ouml);

Configuration Property

 set in www/cm/config.js

var pageFiles = {
"About":["cm/ui/About.js"]
}

Creating Custom Screens for a Child BO 
In this scenario we will create a child BO, cm-break (which has a new field), for the parent Break BO.

1. Create a child BO on the server side with the required changes and the corresponding 
changes in the deployment necessary to receive the BO on the client side.

2. Create the html page and the corresponding UI js file under www/cm/ui/bo with the same 
name as the child BO.

3. Create a mapping in www/cm/config.js for variable boFiles:

   var boFiles = {
   "cm-break":["cm-break.js"]
         };

4. Create www/cm/ui/bo/cm-break.html and cm/ui/bo/cm-break.js.

cm-break.html to show the new field

<html>
<head>
<title></title>
<meta name="viewport" content="user-scalable=no, width=device-
width">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" 
/>
</head>
<body>
<div data-role="page" id="cm-break">
<div data-role="header" data-position="fixed"></div>

<div data-role="content">
Customization and Extension Methodology 5-9
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Custom Screens and Functions 
<ul data-role="listview" data-inset="false" data-filter="false">
<li data-icon="false"><a>
<h2>
<span data-bind="text:LABELS.M1_ARR_TM" id="m1Arr-label">
</h2>
<aside class="ui-li-aside">
<spandata-
bind="text:getFormattedTime(scheduleDetails.arrivalDateTime)"
id="arrivalDateTime"></span>
</aside>
</a></li>
<li data-icon="false"><a>
<h2>
<span data-bind="text:LABELS.M1_DURATION_LBL"
id="m1Duration-label">
  </h2>
<aside class="ui-li-aside">
<span id="breakDuration" data-
bind="text:getFormattedTimeFromSecs(breakDuration)">
   </span>
</aside>
</a></li>
<li data-icon="false"><a>
<h2>
<span data-bind="text: LABELS.M1_TASK_STATUS_FLG"
id="m1TaskStatus-label">
</h2>
<aside class="ui-li-aside">
<span id="boStatus" data-bind="text: getBOStatusDescr(boStatus)">

</span>

</aside>
</a></li>
<li data-icon="false"><a>
 <h2>CM Field</h2>
<aside class="ui-li-aside">
<input id="boStatus2" data-bind="value: sample"></input>
</aside>
</a></li>

 </ul>
 </br>

 <div data-bind="template: {name: 'buttonTemplate'}, refresh: true"
class="ui-grid-a" id="breakTaskButtonTemplate"></div>
</div>

</div>
</body>
</html>

cm-break.js

ouml.ViewModel["cm-break"] = (function(ouml) {

var model = undefined;
var boInstance = undefined;
 var app = ouml.App;

 function cmBreak() {
 model = this;
Customization and Extension Methodology 5-10
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Custom Screens and Functions 
 ouml.ViewModel["M1-BreakTask"].call(this);
    
        
    };
    
    //set the prototype to parent BO, so we extend the parent's 
functions.
    
    cmBreak.prototype = Object.create(ouml.ViewModel["M1-
BreakTask"].prototype);;
    
    cmBreak.prototype.constructor =  cmBreak;

return cmBreak;

})(ouml);

The js can be extended to handle any writable fields by overriding STARTED,COMPLETED and 
CANCELED methods and making required changes in cm/bo/cm-break.js if necessary based on the 
algorithms defined.

Creating Custom Screens for a New Business Object
Create BO javascript and html files for a new BO, CM-NewBO.

1. Create the html page and the corresponding UI js file under cm/ui/bo with the same name as 
the new BO.

2. Create a mapping in cm/config.js to map the BO name and the corresponding  name of the 
BO js file. This mapping is defined in the boFiles variable.

The file content should have the structure as below for the BO: 

www/cm/scripts/bo/CM-NewBO.js

ouml.BusinessObject["CM-NewBO"] = (function (ouml){
    var cmNewBO = function(data){
        this.bo = "CM-NewBO";
        ouml.GenericBusinessObject.call(this, data);
    };

      cmNewBO.prototype = 
Object.create(ouml.GenericBusinessObject.prototype);

     cmNewBO.prototype.constructor =  cmNewBO;    return 
cmBreakTask;
     cmNewBO.prototype.getDTO = function() {
// Refer to the getDTO API method for the description

    };
// Logic to process the lifecycle methods go here

})(ouml);

www/cm/bo/ui/CM-NewBO.js

ouml.ViewModel["CM-NewBO"] = (function() {
    
    function cmNewBO() {
        ouml.BaseViewModel.call(this);
        
Customization and Extension Methodology 5-11
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Device Plugins
        model = this;
               
    };
    
    //set the prototype to parent BO, so we extend the parent's 
functions.
    cmNewBO.prototype = Object.create(ouml.ViewModel["M1-
Common"].prototype);

    cmNewBO.prototype.constructor =  cmNewBO;

  }

www/cm/bo/ui/CM-NewBO.html

<html>
<head>
<title></title>
<meta name="viewport" content="user-scalable=no, width=device-
width">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" 
/>
</head>
<body>
    <div data-role="page" id="CM-NewBO">
<!—UI elements 
</body>
</html>    

Device Plugins
Device plugins can be overridden by specifying custom plugins under www/cm/scripts and map the 
new plugin file names in www/cm/config.js.

Barcode Plugin
In this example we will override the barcode plugin with the custom Barcode plugin, CMBarcoding.js.

www/cm/scripts/CMBarcoding.js

ouml.BaseBarcode = (function(ouml) 

    // module dependency
    var util = ouml.Utilities;
    
    var model = function() {
};
    
  // Define custom plugin specific methods    
    return model;

})(ouml);

ouml.BarcodeObjectFactory  = (function(ouml) {

    var apps = ouml.Config.apps;
    
    function getBarcodeObject(){
        var barcodeObject = new ouml.BaseBarcode();
        return barcodeObject;
    }
Customization and Extension Methodology 5-12
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Device Plugins
    return {
    getBarcodeObject : getBarcodeObject
    };
})(ouml);

File Plugin
In this example we will override the File plugin with a custom File plugin, CMFile.js

www/cm/scripts/CMFile.js

ouml.File = (function(ouml) {

var util = ouml.Utilities;
var device = ouml.Device;

var model = function() {};
    
// Method relate to custom file plugin goes here

ouml.FileObjectFactory  = (function(ouml) {

    var apps = ouml.Config.apps;
    
    function getFileObject(){
    
        var fileObject = new ouml.File();
        return fileObject;
    }

    // Return public method(s)
    return {
    getFileObject : getFileObject
    };
})(ouml);

www/cm/config.js

var commonJSFiles =["cm/scripts/cmBarcoding.js","cm/scripts/
cmFile.js"];

Custom Script for Barcode
In this example we will override the custom script for Barcode.

The barcode plugin is invoked through a script defined in www/cm/ui/common.js. This script is 
mapped in cm config.js through a capabilitiesMapping property:

var capabilitiesMapping = {
      "M1CAPBARCODE" : "CM-MCPBarCodeScan"  
    };
var commonJSFiles = ["cm/ui/common.js"]
 
www/cm/ui/common.js

ouml.ServiceScripts["CM-MCPBarCodeScan"] = (function (ouml){
    var m1BarCode = function () {
        
    };
    
    m1BarCode.prototype.constructor =  m1BarCode;
    
    m1BarCode.prototype.process = function(args) {
Customization and Extension Methodology 5-13
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Customizable Indicators
    
    // Custom logic to invoke methods of Barcode plugin goes here
     
    }
    
    return m1BarCode;
})(ouml);

Testing to Determine If the /cm Layer is Delivered

Important: The URL field in this procedure is intended for 
testing only in Chrome (in No Security Mode). It should be used 
for development and testing purposes only and should not used 
for production purposes or for Windows 10 runtimes (these are 
built on-premise by the customers). If you don’t wish to use 
either of the two runtimes/modes – then these fields are not 
required in cm/config.js. You can instead define an empty cm/
config.js without any of these properties and continue to extend 
the product/screens etc. 

In cases in which it has been determined that the product does not deliver the cm layer (nothing in cm/
* is delivered), the default MDT URL and capabilities can be tested by changing the cm/config.js file as 
follows:

1. Enable Refresh Deployment to get the latest deployment data to the device (even though 
there is transaction data in the application) or Refresh Application (to get the latest 
application bundle to the device).

2. Edit cm/config.js as follows (using the appropriate server and port values in place of 
serverURL and newPortNumber):

ouml.Config.CM = (function(ouml) {
  var DEFAULT_MDT_URL = "http://<serverURL>:<newPortNumber>/ouaf/
mobility";
  var capabilitiesMapping = {
      "M1REFDEP" :{scriptName:"M1-MCPRefDep",boName:""},
      "M1REFAPP":{scriptName:"M1-MCPRefApp",boName:""}
    }
  return {
    DEFAULT_MDT_URL: DEFAULT_MDT_URL,
    capabilitiesMapping: capabilitiesMapping
  };
})(ouml);

Customizable Indicators
We can add a new indicator and show that inside indicator bar visible at header section of the page. List 
of indicators shown inside indicator bar is maintained as Extendable Lookup in Oracle Utilities 
Application Framework. Please follow the steps below to add/hide an indicator in indicator bar.

The following examples are for demonstration purpose only and applicable for manipulation of 
indicators in indicator bar during state transition. These changes will not be persisted. Customization 
approach may differ based on actual requirement, even though the API for handling indicators in 
indicator bar will remain the same.
Customization and Extension Methodology 5-14
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Customizable Indicators
Adding a Custom Indicator
1. Login to Oracle Utilities Application Framework with a CM system user ID and navigate to 

list of Extendable Lookups following the path: 

Menu -> Admin Menu -> E -> Extendable Lookup

2. Search for the business object M1-MCPIndicator. 

3. Select the extendable lookup from search result.
This lookup contains indicator information for those which need to be added to indicator 
bar.

4. Add new indicators that you want to show in indicator bar. 
For example: 

a. Click the Add link on the Extendable Lookup Value List section.

b. Add an indicator for showing Crew Onsite.

The indicator code must start with ‘CM’, which designates these indicators as custom.

c. Add a second (similar) indicator for showing Crew Enroute.

5. Add the new indicator icons in the path  <base _dir>\m1Mobile\www\cm\images.    
The position of the indicator (with respect to the other indicators) depends on the value of: M1-
MCPIndicator -> businessObjectDataArea -> position.

6. Call the API to add the indicator in the indicator list:

ouml.Indicator.addUpdateIndicator(extendable_lookup_value); 
//e.g. ouml.Indicator.addUpdateIndicator("CMCRENR"); 

The code for indicator bar customization should be added within the CM layer. 

For example, you may want to show the ‘Crew Enroute’  indicator when crew is working in an 
Customization and Extension Methodology 5-15
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Customizable Indicators
Assignment and is in Enroute state. To implement that, you must first  create custom BO M1-
Assignment within CM layer, followed by overriding the method ‘ENROUTE’.

Within the overridden ENROUTE function, invoke the API to add this indicator in indicator 
bar.

 m1CMAssignmentViewModel.prototype.ENROUTE = function () {
ouml.Indicator.addUpdateIndicator("CMCRENR"); 
ouml.ViewModel["M1-Assignment"].prototype.ENROUTE.call(this); 
}

Now the indicator is added to the indicator bar. 

Switching Between Indicators
We can switch between indicators based on specific condition. We need to add the indicators first as 
specified in the section above before we can perform switch. Please note that all the indicator should 
have same ‘position’ value to enable them to switch between themselves.

In this example, we will extend the previous example to switch between the indicators for ‘Crew 
Onsite’ and ‘Crew Enroute’.

To show the indicator for ‘Crew Onsite’, we need to override ONSITE state transition in the custom 
BO for M1-Assignment in the same way as we had overriden ENROUTE method in the previous 
section. 

1. Within the overridden ONSITE function, add the API to add indicator for ‘Crew Onsite’.

m1CMAssignmentViewModel.prototype.ONSITE = function () {
        ouml.Indicator.addUpdateIndicator("CMCRONS");
    ouml.ViewModel["M1-Assignment"].prototype.ONSITE.call(this);
    }

2. Since both ‘Crew Enroute’ and ‘Crew Onsite’ share same value in ‘position’, they will replace 
each other based on the state of the assignment.

            Removing an Indicator
You also have the option to remove an indicator. For example, you can hide the ‘Network connected / 
disconnected’ indicator. 

• To remove an indicator, call the API to remove an indicator from indicator bar: 

 ouml.Indicator.removeIndicator("extendable_lookup_value ")

• To remove the network indicator while the crew is enroute, override the ENROUTE state 
transition method in custom BO of M1-Assignment in CM layer.

m1CMAssignmentViewModel.prototype.ENROUTE = function () {
       ouml.Indicator.addUpdateIndicator("CMCRENR");
Customization and Extension Methodology 5-16
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide



Customizable Indicators
        ouml.Indicator.removeIndicator("M1NCCON");
        ouml.Indicator.removeIndicator("M1NCDSCN");
        ouml.ViewModel["M1-
Assignment"].prototype.ENROUTE.call(this);
       }

• Indicators can also be removed from indicator bar by changing the ‘Usage Flag’ of this 
extendable lookup to ‘Inactive’.
Customization and Extension Methodology 5-17
 Oracle Real-Time Scheduler Mobile Application Mobile Application Implementation and Development Guide


	Oracle Real-Time Scheduler Hybrid Mobile Application Implementation and Development Guide
	Preface
	Audience
	Documentation Accessibility
	Related Documents

	Chapter 1
	Overview
	Architecture
	Oracle Utilities Mobile Library (OUML)
	Deployment Models
	Inbound and Outbound Communication


	Chapter 2
	Development Environment Setup
	Installing Prerequisite Software
	Source Code
	Apache Cordova Project
	Plugin Installation
	Device Plugins
	Encryption

	Local Testing
	Building and Deploying the Mobile Application
	iOS Deployment
	Android Deployment


	Chapter 3
	Oracle Utilities Mobile Library
	Device Communication
	Device Inbound Messages
	Device Outbound Messages

	Server Communication
	Server Outbound Messages
	Server Inbound Messages

	Logging
	Offline Database
	Database Schema

	Config
	API -ouml.Config

	Encryption APIs
	Cordova Encryption Plugin APIs
	Deployment
	Properties
	Business Objects
	Business Object JavaScript (BO JS)
	Business Object Factory API
	Business Object Entity API
	Business Object UI (HTML and Javascript)

	Properties
	API - ouml.PropertyEntity

	Property Names
	UI Layout and Navigation
	HTML Content
	Headers
	Page Fragments
	API
	Menu
	Indicators

	Asynchronous Functions Pattern
	AsyncWorker API

	Mobile Device APIs
	Attachments
	File
	Camera
	Maps
	Barcoding
	Signature

	Procedures
	UI Theme
	Logging
	Error Handling

	Chapter 4
	Mobile Application APIs
	Inbound Scripts
	Plugins
	Images
	Task List
	Panic Alert
	Assignments
	Depot Related Assignment
	Depot Task
	Depot Task Items
	Depot Task Assignments
	Break Task
	Non Productive Tasks
	Period of Unavailability Task
	Mail
	Recipient Mail
	Crew Shift
	Depot Related Shift
	Simple Procedure
	Procedure Type
	Oracle Map
	Attachments

	Chapter 5
	Customization and Extension Methodology
	Themes and Images
	Setting Custom Themes
	Changing Images on Index.html
	Changing Images of Icons on Maps
	Overriding Icons

	Extending Navigation
	Application Level Menu Items
	Page Level Menu Items

	Extending Existing Screens and Functions
	Hiding Menu Items And Overriding Functionality
	Extending BO Files
	Extending HTML Pages
	Overriding M1 Plugins and Creating Custom Plugins

	Custom Screens and Functions
	Creating a Custom Page Not Related To a Business Object
	Creating Custom Screens for a Child BO
	Creating Custom Screens for a New Business Object

	Device Plugins
	Customizable Indicators
	Adding a Custom Indicator
	Switching Between Indicators
	Removing an Indicator




