
Oracle

Getting Started with
NoSQL Database Python Driver

12c Release 1
Library Version 12.1.3.3

Legal Notice

Copyright © 2011, 2012, 2013, 2014, 2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Published 9/30/2015

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page iii

Table of Contents
Preface .. vi

Conventions Used in This Book ... vi
1. Developing for Oracle NoSQL Database ... 1

Installing the Driver ... 2
Using the Proxy Server ... 2
The nosqldb Python Module ... 3
Connecting to the Store .. 3

Connecting to a Secure Store ... 4
Automatically Starting the Proxy Server .. 5
The StoreConfig Class .. 6
The ProxyConfig Class .. 7

Working with a Secured Store ... 7
Configuring SSL .. 8

Identifying the Trust Store .. 8
Setting the SSL Transport Property .. 8

Setting the Security Properties for a Proxy Server 8
2. Introduction to Oracle KVLite ... 10

Starting KVLite .. 10
Stopping and Restarting KVLite .. 11
Verifying the Installation .. 11
kvlite Utility Command Line Parameter Options .. 12

3. Introducing Oracle NoSQL Database Tables and Indexes .. 14
Defining Tables ... 14

Executing DDL Statements using the CLI .. 15
Supported Table Data Types ... 15
Record Fields ... 16
Defining Child Tables .. 17
Table Evolution ... 18

Creating Indexes .. 18
Indexable Field Types ... 19

4. Primary and Shard Key Design .. 21
Primary Keys .. 21

Data Type Limitations ... 22
Partial Primary Keys ... 22
Shard Keys .. 22

Row Data .. 23
5. Writing and Deleting Table Rows ... 26

Write Exceptions ... 26
Writing Rows to a Table in the Store ... 26

Writing Rows to a Child Table ... 27
Other put Operations ... 28

Deleting Rows from the Store .. 29
Using multi_delete() .. 29

6. Reading Table Rows ... 31
Read Exceptions .. 31
Retrieving a Single Row ... 32

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page iv

Retrieve a Child Table .. 33
Using multi_get() ... 34
Iterating over Table Rows ... 36
Specifying Field Ranges ... 38
Iterating with Nested Tables ... 40
Reading Indexes .. 43

7. Using Data Types .. 46
Using Arrays ... 46
Using Binary ... 47
Using Enums ... 48
Using Fixed Binary ... 49
Using Maps .. 50
Using Embedded Records ... 51

8. Indexing Non-Scalar Data Types ... 53
Indexing Arrays ... 53
Indexing Maps ... 54

Indexing by Map Keys ... 54
Indexing by Map Values ... 56
Indexing by a Specific Map Key Name ... 57
Indexing by Map Key and Value ... 59

Indexing Embedded Records .. 61
9. Using Row Versions .. 63
10. Consistency Guarantees ... 65

Specifying Consistency Policies .. 65
Using Simple Consistency ... 66
Using Time-Based Consistency ... 67
Using Version-Based Consistency ... 68

11. Durability Guarantees ... 72
Setting Acknowledgment-Based Durability Policies ... 72
Setting Synchronization-Based Durability Policies ... 73
Setting Durability Guarantees .. 74

12. Executing a Sequence of Operations ... 77
Sequence Errors .. 77
Creating a Sequence ... 77
Executing a Sequence ... 80

A. Table Data Definition Language Overview .. 82
Name Constraints .. 82
DDL Comments .. 83
CREATE TABLE ... 83

Field Definitions ... 84
Supported Data Types ... 84
Field Constraints ... 86

CHECK ... 86
COMMENT ... 86
DEFAULT ... 87
NOT NULL .. 87

Table Creation Examples ... 87
Modify Table Definitions .. 88

ALTER TABLE ADD field ... 88

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page v

ALTER TABLE DROP field .. 88
DROP TABLE ... 89
CREATE INDEX ... 89
DROP INDEX ... 90
DESCRIBE AS JSON TABLE ... 90
DESCRIBE AS JSON INDEX ... 91
SHOW TABLES ... 91
SHOW INDEXES .. 91

B. Proxy Server Reference .. 92
Securing Oracle NoSQL Database Proxy Server .. 93
Trouble Shooting the Proxy Server .. 96

C. Third Party Licenses .. 99

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page vi

Preface
There are two different APIs that can be used to write Oracle NoSQL Database (Oracle NoSQL
Database) applications: the original Key/Value API, and the Table API. In addition, the Key/
Value API is available in Java and C. The Table API is available in Java, C, node.js (Javascript),
and Python. This document describes how to write Oracle NoSQL Database applications using
the Table API in Python.

Note

Most application developers should use one of the Table drivers because the Table API
offers important features, including secondary indexes. Also, the Key/Value API will
eventually be deprecated.

This document provides the concepts surrounding Oracle NoSQL Database, data schema
considerations, as well as introductory programming examples.

This document is aimed at the software engineer responsible for writing an Oracle NoSQL
Database application.

Conventions Used in This Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

Note

Finally, notes of special interest are represented using a note block such as this.

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 1

Chapter 1. Developing for Oracle NoSQL Database
You access the data in the Oracle NoSQL Database KVStore using Python drivers that are
provided for the product. In addition to the Python drivers, several other drivers are also
available. They are:

1. Java Table Driver

2. Java Key/Value Driver

3. C Table Driver

4. C Key/Value Driver

5. node.js Table Driver

Note

New users should use one of the Table drivers unless they require a feature only
available in the Key/Value API. The Key/Value API will eventually be deprecated.

The Java and C Key/Value driver provides access to store data using key/value pairs. All other
drivers provide access using tables. In addition, the Java Key/Value driver provides Large
Object (LOB) support that as of this release does not appear in the other drivers. However,
users of the Java Tables driver can access the LOB API, even though the LOB API is accessed
using the Key/Value interface.

Users of any of the Table drivers are able to create and use secondary indexing. The Java and
C Key/Value drivers do not provide this support.

To work, the C Table, Python Table, and node.js Table drivers require use of a proxy server
which translates network activity between the driver and the Oracle NoSQL Database store.
The proxy is written in Java, and can run on any machine that is network accessible by both
your client code and the Oracle NoSQL Database store. However, for performance and security
reasons, Oracle recommends that you run the proxy on the same local host as your driver, and
that the proxy be used in a 1:1 configuration with your drivers (that is, each instance of the
proxy should be used with just a single driver instance).

Regardless of the driver you decide to use, the provided classes and methods allow you to
write data to the store, retrieve it, and delete it. You use these APIs to define consistency and
durability guarantees. It is also possible to execute a sequence of store operations atomically
so that all the operations succeed, or none of them do.

The rest of this book introduces the Python APIs that you use to access the store, and the
concepts that go along with them.

Note

Oracle NoSQL Database is tested with Java 7.

The nosqldb driver supports Python 2.6 and 2.7.

Library Version 12.1.3.3 Developing for Oracle NoSQL Database

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 2

Installing the Driver

To install the nosqldb driver, as well as the required Java proxy server, use pip:

pip install nosqldb

The full nosqldb package source with examples and tests can be found at https://
pypi.python.org/pypi/nosqldb.

The nosqldb driver depends on the Python Thrift package. Installation of the nosqldb driver
using pip should resolve that dependency, but if necessary you can install Python Thrift
yourself using:

pip install thrift

Using the Proxy Server

The proxy server is a Java application that accepts network traffic from the Python Table
driver, translates it into requests that the Oracle NoSQL Database store can understand,
and then forwards the translated request to the store. The proxy also provides the reverse
translation service by interpreting store responses and forwarding them to the client.

The proxy server can run on any network-accessible machine. It has minimal resource
requirements and, in many cases, can run on the same machine as the client code is running.

Before your Python client can access the store, the proxy server must be running. It requires
the following jar files to be in its class path, either by using the java -cp command line
option, or by using the CLASSPATH environment variable:

• kvclient.jar

• kvproxy.jar

Note

The proxy server, kvclient and their dependencies reside in the <python-site-
packages-directory>/nosqldb/kvproxy/lib directory.

The proxy server itself is started using the oracle.kv.proxy.KVProxy command. At a
minimum, the following information is required when you start the proxy server:

• -helper-hosts

A list of one or more host:port pairs representing Oracle NoSQL Database storage nodes that
the proxy server can use to connect to the store.

• -port

The port where your client code can connect to this instance of the proxy server.

• -store

The name of the store to which the proxy server is connecting.

https://pypi.python.org/pypi/nosqldb
https://pypi.python.org/pypi/nosqldb

Library Version 12.1.3.3 Developing for Oracle NoSQL Database

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 3

A range of other command line options are available. In particular, if you are using the proxy
server with a secure store, you must provide authentication information to the proxy server.
(Note that the proxy server itself connects to a single store using a single user credential. If
multiple stores or users are required, then multiple proxy servers must be used.) In addition,
you will probably have to identify a store name to the proxy server. For a complete description
of the proxy server and its command line options, see Proxy Server Reference (page 92).

The examples provided in this guide were written to work with a proxy server that is
connected to a kvlite instance which was started with default values. The command line call
used to start the proxy server was:

nohup java oracle.kv.proxy.KVProxy -port 7010 \
-helper-hosts localhost:5000 -store kvstore

Usage of kvlite is described in Introduction to Oracle KVLite (page 10).

The nosqldb Python Module

All of the classes and methods that you use to perform Oracle NoSQL Database store access
are contained in the nosqldb Python module.

The nosqldb module makes use of the standard Python logging facility. It uses the "nosqldb"
logger, not the root logger. The examples in this document take advantage of the logging
facility by issuing DEBUG and ERROR messages through it. Logging is also sent to stdout using
the following setup function:

import logging

...

set logging level to debug and log to stdout
def setup_logging():
 logger = logging.getLogger("nosqldb")
 logger.setLevel(logging.DEBUG)

 logger = logging.StreamHandler(sys.stdout)
 logger.setLevel(logging.DEBUG)
 formatter = logging.Formatter('\t%(levelname)s - %(message)s')
 logger.setFormatter(formatter)
 rootLogger.addHandler(logger)

You can also set logging levels using the StoreConfig.change_log() method. You can turn
off logging completely using StoreConfig.turn_off_log().

Connecting to the Store

To perform store operations, you must establish a network connection between your client
code and the store. There are three pieces of information that you must provide:

• The name of the store. The name provided here must be identical to the name used when
the store was installed.

Library Version 12.1.3.3 Developing for Oracle NoSQL Database

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 4

• The network contact information for one or more helper hosts. These are the network
name and port information for nodes currently running in the store. Multiple nodes can be
identified. You can use one or many. Many does not hurt. The downside of using one is that
the chosen host may be temporarily down, so it is a good idea to use more than one.

• Identify the host and port where the proxy is running. You also do this using the
configuration object.

If you are connecting to a secured store, you must also provide some authentication
information. This is described in Setting the Security Properties for a Proxy Server (page
8).

For example, suppose you have an Oracle NoSQL Database store named "kvstore" and it has a
node running on n1.example.org at port 5000. Further, suppose you are running your proxy on
the localhost using port 7010. Then you would open and close a connection to the store in the
following way:
from nosqldb import ConnectionException
from nosqldb import Factory
from nosqldb import StoreConfig

import logging
import sys

storehost = "n1.example.org:5000"
proxy = "localhost:7010"

configure and open the store
def open_store():
 try:
 kvstoreconfig = StoreConfig('kvstore', [storehost])
 return Factory.open(proxy, kvstoreconfig)
 except ConnectionException, ce:
 logging.error("Store connection failed.")
 logging.error(ce.message)
 sys.exit(-1)

Factory.open() returns a Store class object, which you use to perform most operations
against your store. When you are done with this handle, close it using the close() method:
store = open_store()

...
Do store operations here
...

store.close()

Connecting to a Secure Store

If you are using a secure store, then your proxy server must first be configured to authenticate
to the store. See Securing Oracle NoSQL Database Proxy Server (page 93) for details.

Library Version 12.1.3.3 Developing for Oracle NoSQL Database

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 5

Once your proxy server is capable of accessing the secure store, you must at a minimum
indicate which user your driver wants to authenticate as when it performs store access. To do
this, use the StoreConfig.set_user() method.

For more information on using secure stores, see Working with a Secured Store (page 7).

configure and open the store
def open_store():
 try:
 kvstoreconfig = StoreConfig('kvstore', [storehost])
 kvstoreconfig.set_user("pythonapp-user")
 return Factory.open(proxy, kvstoreconfig)
 except ConnectionException, ce:
 logging.error("Store connection failed.")
 logging.error(ce.message)
 sys.exit(-1)

Automatically Starting the Proxy Server

If it is not already running, your client code will automatically start the proxy server on
the local host when it opens the store so long as it can locate the kvclient.jar and
kvproxy.jar files. These are automatically installed when you install the nosqldb driver, so
you should not normally need to do anything extra in order to have the driver automatically
start the proxy server.

However, if you installed the nosqldb driver in a non-standard location, or if you want to
override the default jar files installed on your system, then you can explicitly tell the driver
where these jar files are located:

1. If they are specified as parameters to the ProxyConfig constructor, then that location is
used.

2. If that information is not specified to the constructor, then it is taken from the
KVSTORE_JAR and KVPROXY_JAR environment variables.

3. If neither of the above methods are used, then the driver uses the default jar files, which
are installed in <python-site-packages-dir>/nosqldb/kvproxy/lib

In the following example, two environment variables are defined like this:

export KVSTORE_JAR="/d1/nosqldb-x.y.z/kvproxy/lib/kvclient.jar"
export KVPROXY_JAR="/d1/nosqldb-x.y.z/kvproxy/lib/kvproxy.jar"

Because these environment variables are set, the ProxyConfig constructor will automatically
use them as the location for the jar files.

configure and open the store
def open_store():

 kvstoreconfig = StoreConfig('kvstore', [kvlite])
 kvproxyconfig = ProxyConfig()

Library Version 12.1.3.3 Developing for Oracle NoSQL Database

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 6

 return Factory.open(proxy, kvstoreconfig, kvproxyconfig)

Be aware that if your proxy is connecting to a secure store, you also must indicate which user
to authenticate as, and you must indicate where the security properties file is located on the
host where the proxy server is running.

configure and open the store
def open_store():

 kvstoreconfig = StoreConfig('kvstore', [kvlite])
 kvstoreconfig.set_user("pythonapp-user")
 kvproxyconfig = ProxyConfig()
 kvproxyconfig.set_security_properties_file("/etc/proxy/sec.props")

 return Factory.open(proxy, kvstoreconfig, kvproxyconfig)

For information on configuring your proxy server to connect to a secure store, see Securing
Oracle NoSQL Database Proxy Server (page 93).

The StoreConfig Class

The StoreConfig class is used to describe properties about a Store handle. Most of the
properties are optional; however, you must identify the store name and helper hosts.

The properties that you can provide using StoreConfig are:

• set_consistency()

Consistency is a property that describes how likely it is that a record read from a replica
node is identical to the same record stored on a master node. For more information, see
Consistency Guarantees (page 65).

• set_durability()

Durability is a property that describes how likely it is that a write operation performed on
the master node will not be lost if the master node is lost or is shut down abnormally. For
more information, see Durability Guarantees (page 72).

• set_max_results()

The number of rows buffered by iterators.

• set_read_zones()

An array of zone names to be used as read zones. For more information on read zones, see
the Oracle NoSQL Database Administrator's Guide.

• set_request_timeout()

Configures the amount of time the client will wait for an operation to complete before it
times out.

Library Version 12.1.3.3 Developing for Oracle NoSQL Database

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 7

• set_helper_hosts()

Helper hosts are hostname/port pairs that identify where nodes within the store can
be contacted. Multiple hosts can be identified using an array of strings. Typically an
application developer will obtain these hostname/port pairs from the store's deployer and/
or administrator. For example:

conf.set_helper_hosts(['n1.example.org:3333','n2.example.org:3333'])

• set_store_name()

Identifies the name of the store.

• set_user()

The name of the user you want to authenticate to the store as. This property should only be
used when your proxy server is configured to connect to a secure store.

The ProxyConfig Class

The ProxyConfig class is used to describe properties about the proxy server you are using to
connect to the store.

The number of properties you can specify using this class are too numerous to describe here
(see the Oracle NoSQL Python Driver for Tables API Reference for a complete listing), but the
most common properties you will set are:

• set_security_props_file()

The properties file containing the security information required to connect to a secure
store. For information on secure stores and security properties, see Setting the Security
Properties for a Proxy Server (page 8).

• set_kv_store_path_to_jar()

The path where the kvstore.jar file is located. This information is only required if you are
attempting to automatically start the proxy server.

• set_kv_proxy_path_to_jar()

The path where the kvproxy.jar file is located. This information is only required if you are
attempting to automatically start the proxy server.

Working with a Secured Store

Oracle NoSQL Database can be installed such that your client code does not have to
authenticate to the store. (For the sake of clarity, most of the examples in this book do not
perform authentication.) However, if you want your store to operate in a secure manner, you
can require authentication. Note that doing so will result in a performance cost due to the
overhead of using SSL and authentication. While best practice is for a production store to
require authentication over SSL, some sites that are performance sensitive may want to forgo
that level of security.

Library Version 12.1.3.3 Developing for Oracle NoSQL Database

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 8

Authentication involves sending username/password credentials to the store at the time the
proxy server connects to the store. The proxy server gets the username that it uses from the
client code connecting to it. The rest of the credential information is contained in a security
properties file that must be installed on the same local host as the proxy server. Be aware
that the connection from your driver code to the proxy server is not secure. It is therefore
recommended that you run your proxy server and your driver code on the same physical host.

A store that is configured to support authentication is automatically configured to
communicate with clients using SSL in order to ensure privacy of the authentication and other
sensitive information. When SSL is used, SSL certificates need to be installed on the machines
where your proxy server runs in order to validate that the store that is being accessed is
trustworthy.

Configuring a store for authentication is described in the Oracle NoSQL Database Security
Guide.

Configuring SSL

If you are using a secure store, then all communications between your proxy server and
the store is transported over SSL, including authentication credentials. You must therefore
configure your client code to use SSL. To do this, you identify where the SSL certificate data
is, and you also separately indicate that the SSL transport is to be used.

Identifying the Trust Store

When an Oracle NoSQL Database store is configured to use the SSL transport, a series of
security files are generated using a security configuration tool. One of these files is the
client.trust file, which must be copied to any machine running a proxy server.

For information on using the security configuration tool, see the Oracle NoSQL Database
Security Guide.

Your proxy server must be told where the client.trust file can be found because it contains
the certificates necessary to establish an SSL connection with the store. You indicate where
this file is physically located on your machine using the oracle.kv.ssl.trustStore
property.

Setting the SSL Transport Property

In addition to identifying the location of the client.trust file, you must also tell your proxy
server to use the SSL transport. You do this by setting the oracle.kv.transport property.

Setting the Security Properties for a Proxy Server

When an Oracle NoSQL Database secure store is installed, a file is generated called
client.security. This file contains security properties that are needed by your proxy server.
Copy this file to the machine that will run your proxy server, along with your client.trust
file and the login.passwd file. All of these files were created during the installation process.

You may need to edit your client.security file to adjust the location of files for the local
host. When you get done, client.security should look something like this:

Library Version 12.1.3.3 Developing for Oracle NoSQL Database

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 9

oracle.kv.auth.username=root
oracle.kv.auth.pwdfile.file=/security/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Once these files are in place and are edited correctly, when your client code creates a store
connection, it must identify both the location of the client.security file on the disk where
the proxy server is running, as well as the username the client wants to authenticate as. See
Connecting to the Store (page 3) for an example of how this is done.

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 10

Chapter 2. Introduction to Oracle KVLite
KVLite is a single-node, single shard store. It usually runs in a single process and is used
to develop and test client applications. KVLite is installed when you install Oracle NoSQL
Database.

Note

KVLite supports only non-authenticated access to the store. That is, you cannot
configure KVLite such that your code can authenticate, or log in, to it. If you are
developing code for a store that requires authentication, then you must install a test
store that is configured for authentication access in the same way as your production
store.

See Working with a Secured Store (page 7) for information on configuring your proxy
server to connect to a secure store. For information on configuring a store to require
authentication, see the Oracle NoSQL Database Security Guide.

Starting KVLite

You start KVLite by using the kvlite utility, which can be found in KVHOME/lib/kvstore.jar.
If you use this utility without any command line options, then KVLite will run with the
following default values:

• The store name is kvstore.

• The hostname is the local machine.

• The registry port is 5000.

• The directory where Oracle NoSQL Database data is placed (known as KVROOT) is ./kvroot.

• The administration process is turned on using port 5001.

This means that any processes that you want to communicate with KVLite can only connect to
it on the local host (127.0.0.1) using port 5000. If you want to communicate with KVLite from
some machine other than the local machine, then you must start it using non-default values.
The command line options are described later in this chapter.

For example:

> java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar kvlite

Note

To avoid using too much heap space, you should specify -Xmx and -Xms flags for Java
when running administrative and utility commands.

When KVLite has started successfully, it writes one of two statements to stdout, depending on
whether it created a new store or is opening an existing store:

Library Version 12.1.3.3 Introduction to Oracle KVLite

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 11

Created new kvlite store with args:
-root ./kvroot -store <kvstore name> -host <localhost> -port 5000
-admin 5001

or

Opened existing kvlite store with config:
-root ./kvroot -store <kvstore name> -host <localhost> -port 5000
-admin 5001

where <kvstore name> is the name of the store and <localhost> is the name of the local host.
It takes about 10 - 60 seconds before this message is issued, depending on the speed of your
machine.

Note that you will not get the command line prompt back until you stop KVLite.

Stopping and Restarting KVLite

To stop KVLite, use ^C from within the shell where KVLite is running.

To restart the process, simply run the kvlite utility without any command line options. Do
this even if you provided non-standard options when you first started KVLite. This is because
KVLite remembers information such as the port value and the store name in between run
times. You cannot change these values by using the command line options.

If you want to start over with different options than you initially specified, delete the KVROOT
directory (./kvroot, by default), and then re-run the kvlite utility with whatever options
you desire. Alternatively, specify the -root command line option, making sure to specify a
location other than your original KVROOT directory, as well as any other command line options
that you want to change.

Verifying the Installation

There are several things you can do to verify your installation, and ensure that KVLite is
running:

• Start another shell and run:

jps -m

The output should show KVLite (and possibly other things as well, depending on what you
have running on your machine).

• Run the kvclient test application:

1. cd KVHOME

2. java -Xmx256m -Xms256m -jar lib/kvclient.jar

This should write the release to stdout:

12cR1.M.N.O...

Library Version 12.1.3.3 Introduction to Oracle KVLite

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 12

• Compile and run the example program:

1. cd KVHOME

2. Compile the example:

javac -g -cp lib/kvclient.jar:examples examples/hello/*.java

3. Run the example using all default parameters:

java -Xmx256m -Xms256m \
-cp lib/kvclient.jar:examples hello.HelloBigDataWorld

Or run it using non-default parameters, if you started KVLite using non-default values:

java -Xmx256m -Xms256m \
-cp lib/kvclient.jar:examples hello.HelloBigDataWorld \
 -host <hostname> -port <hostport> -store <kvstore name>

kvlite Utility Command Line Parameter Options

This section describes the command line options that you can use with the kvlite utility.

Note that you can only specify these options the first time KVLite is started. Most of the
parameter values specified here are recorded in the KVHOME directory, and will be used when
you restart the KVLite process regardless of what you provide as command line options. If you
want to change your initial values, either delete your KVHOME directory before starting KVLite
again, or specify the -root option (with a different KVHOME location than you initially used)
when you provide the new values.

• -admin <port>

If this option is specified, the administration user interface is started. The port identified
here is the port you use to connect to the UI.

• -help

Print a brief usage message, and exit.

• -host <hostname>

Identifies the name of the host on which KVLite is running. Use this option ONLY if you are
creating a new store.

If you want to access this instance of KVLite from remote machines, supply the local host's
real hostname. Otherwise, specify localhost for this option.

• -logging

Turns on Java application logging. The log files are placed in the examples directory in your
Oracle NoSQL Database distribution.

• -port <port>

Library Version 12.1.3.3 Introduction to Oracle KVLite

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 13

Identifies the port on which KVLite is listening for client connections. Use this option ONLY if
you are creating a new store.

• -root <path>

Identifies the path to the Oracle NoSQL Database home directory. This is the location where
the store's database files are contained. The directory identified here must exist. If the
appropriate database files do not exist at the location identified by the option, they are
created for you.

• -store <storename>

Identifies the name of a new store. Use this option ONLY if you are creating a new store.

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 14

Chapter 3. Introducing Oracle NoSQL Database
Tables and Indexes

Using the Table API (in one of the supported languages) is the recommended method of coding
an Oracle NoSQL Database client application. They allow you to manipulate data using a tables
metaphor, in which data is organized in multiple columns of data. An unlimited number of
subtables are supported by this API. You can also create indexes to improve query speeds
against your tables.

Note

You should avoid any possibility of colliding keys if your store is accessed by a mix of
clients that use both the Table and the Key/Value APIs.

Defining Tables

Before an Oracle NoSQL Database client can read or write to a table in the store, the
table must be created. There are several ways to do this, but this manual focuses on
using Table DDL Statements. These statements can be submitted to the store using the
command line interface (CLI), but the recommended approach is to submit them to the store
programmatically. Both methods are described in this section.

The DDL language that you use to define tables is described in Table Data Definition Language
Overview (page 82) This section provides a brief overview of how to use that language.

As an introductory example, suppose you wanted to use a table named myTable with four
columns per row: item, description, count, and percentage. To create this table, you
would use the following statement:
CREATE TABLE myTable (
 item STRING,
 description STRING,
 count INTEGER,
 percentage DOUBLE,
 PRIMARY KEY (item) // Every table must have a primary key
)

Note

Primary keys are a concept that have not yet been introduced in this manual. See
Primary and Shard Key Design (page 21) for a complete explanation on what they
are and how you should use them.

To add the table definition to the store, you can add it programmatically using the
Store.execute() or Store.execute_sync() methods. (The latter method executes the
statement synchronously.) In order to use these methods, you must establish a connection to
the store. This is described in Connecting to the Store (page 3).

For example:
...

Library Version 12.1.3.3 Introducing Oracle NoSQL Database Tables and
Indexes

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 15

 ### Store handle configuration and open skipped for brevity
 ...

 try:
 ddl = """CREATE TABLE myTable (
 id STRING,
 description STRING,
 count INTEGER,
 percentage FLOAT,
 PRIMARY KEY (item)
)"""
 store.execute_sync(ddl)
 logging.debug("Table creation succeeded")
 except IllegalArgumentException, iae:
 logging.error("DDL failed.")
 logging.error(iae.message)

Executing DDL Statements using the CLI

You can execute DDL statements using the CLI's execute command. This executes DDL
statements synchronously. For example:
kv-> execute "CREATE TABLE myTable (
> item STRING,
> description STRING,
> count INTEGER,
> percentage DOUBLE,
> PRIMARY KEY (item))"
Statement completed successfully
kv->

Supported Table Data Types

You specify schema for each column in an Oracle NoSQL Database table. This schema can be a
primitive data type, or complex data types that are handled as objects.

Supported data types for Oracle NoSQL Database are:

• Array

An array of values, all of the same type.

• Binary

Implemented as a byte array with no predetermined fixed size.

• Boolean

• Double

• Enum

An enumeration, represented as an array of strings.

Library Version 12.1.3.3 Introducing Oracle NoSQL Database Tables and
Indexes

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 16

• Fixed Binary

A fixed-sized binary type (byte array) used to handle binary data where each record is the
same size. It uses less storage than an unrestricted binary field, which requires the length to
be stored with the data.

• Float

• Integer

• Long

• Map

An unordered map type where all entries are constrained by a single type.

• Records

See the following section.

• String

For the Python driver, these datatypes are handled in the following way:

Oracle NoSQL Database Datatype Python Datatype

Array Python array. See Using Arrays (page 46).

Binary Base64 encoded buffer. See Using
Binary (page 47).

Boolean Python boolean

Double Python long

Enum Python string. See Using Enums (page 48).

Fixed Binary Base64 encoded buffer. See Using Fixed
Binary (page 49).

Float Python float

Integer Python int

Long Python long

Map Python dictionary. See Using Maps (page
50).

Records Python dictionary. See Using Embedded
Records (page 51).

String Python string

Record Fields

As described in Defining Child Tables (page 17), you can create child tables to hold
subordinate information, such as addresses in a contacts database, or vendor contact

Library Version 12.1.3.3 Introducing Oracle NoSQL Database Tables and
Indexes

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 17

information for an inventory system. When you do this, you can create an unlimited number of
rows in the child table, and you can index the fields in the child table's rows.

However, child tables are not required in order to organize subordinate data. If you have
very simple requirements for subordinate data, you can use record fields instead of a child
tables. In general, you can use record fields instead of child tables if you only want a fixed,
small number of instances of the record for each parent table row. For anything beyond trivial
cases, you should use child tables. (Note that there is no downside to using child tables even
for trivial cases.)

The assumption when using record fields is that you have a fixed known number of records
that you will want to manage (unless you organize them as arrays). For example, for a
contacts database, child tables allow you to have an unlimited number of addresses associated
for each user. But by using records, you can associate a fixed number of addresses by creating
a record field for each supported address (home and work, for example).

For example:

CREATE TABLE myContactsTable (
 uid STRING,
 surname STRING,
 familiarName STRING,
 homePhone STRING,
 workPhone STRING,
 homeAddress RECORD (street STRING, city STRING, state STRING,
 zip INTEGER CHECK(zip >= 00000 and zip <= 99999)),
 workAddress RECORD (street STRING, city STRING, state STRING,
 zip INTEGER CHECK(zip >= 00000 and zip <= 99999)),
 PRIMARY KEY(uid))

Alternatively, you can create an array of record fields. This allows you to create an unlimited
number of address records per field. Note, however, that in general you should use child
tables in this case.

CREATE TABLE myContactsTable (
 uid STRING,
 surname STRING,
 familiarName STRING,
 homePhone STRING,
 workPhone STRING,
 addresses ARRAY(RECORD (street STRING, city STRING, state STRING,
 zip INTEGER CHECK(zip >= 00000 and zip <= 99999))),
 PRIMARY KEY(uid))

Defining Child Tables

Oracle NoSQL Database tables can be organized in a parent/child hierarchy. There is no limit
to how many child tables you can create, nor is there a limit to how deep the child table
nesting can go.

By default, child tables are not retrieved when you retrieve a parent table, nor is the parent
retrieved when you retrieve a child table.

Library Version 12.1.3.3 Introducing Oracle NoSQL Database Tables and
Indexes

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 18

To create a child table, you name the table using the format:
<parentTableName>.<childTableName>. For example, suppose you had the trivial table called
myInventory:

CREATE TABLE myInventory (
 itemCategory STRING,
 description STRING,
 PRIMARY KEY (itemCategory)
)

We can create a child table called itemDetails in the following way:

CREATE TABLE myInventory.itemDetails (
 itemSKU STRING,
 itemDescription STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

Note that when you do this, the child table inherits the parent table's primary key. In this
trivial case, the child table's primary key is actually two fields: itemCategory and itemSKU.
This has several ramifications, one of which is that the parent's primary key fields are
retrieved when you retrieve the child table. See Retrieve a Child Table (page 33) for more
information.

Table Evolution

In the event that you must update your application at some point after it goes into
production, there is a good chance that your tables will also have to be updated to either
use new fields or remove existing fields that are no longer in use. You do this through the use
of the ALTER TABLE statement. See Modify Table Definitions (page 88) for details on this
statement.

Note that you cannot remove a field if it is a primary key field. You also cannot add primary
key field during table evolution.

Tables can only be evolved if they have already been added to the store.

For example, the following statements evolve the table that was created in the previous
section. Note that these would be submitted to the store, one after another, using either the
API or the CLI.

ALTER TABLE myInventory.itemDetails (ADD salePrice FLOAT)

ALTER TABLE myInventory.itemDetails (DROP inventoryCount)

Creating Indexes

Indexes represent an alternative way of retrieving table rows. Normally you retrieve table
rows using the row's primary key. By creating an index, you can retrieve rows with dissimilar
primary key values, but which share some other characteristic.

Library Version 12.1.3.3 Introducing Oracle NoSQL Database Tables and
Indexes

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 19

Indexes can be created on any field which is an indexable datatype, including primary key
fields. See Indexable Field Types (page 19) for information on the types of fields that can be
indexed.

For example, if you had a table representing types of automobiles, the primary keys for each
row might be the automobile's manufacturer and model type. However, if you wanted to be
able to query for all automobiles that are painted red, regardless of the manufacturer or
model type, you could create an index on the table's field that contains color information.

Note

Indexes can take a long time to create because Oracle NoSQL Database must examine
all of the data contained in the relevant table in your store. The smaller the data
contained in the table, the faster your index creation will complete. Conversely, if a
table contains a lot of data, then it can take a long time to create indexes for it.

CREATE TABLE myInventory.itemDetails (
 itemSKU STRING,
 itemDescription STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

To create an index, use the CREATE INDEX statement. See CREATE INDEX (page 89) for
details. For example:
CREATE INDEX inventoryIdx on myInventory.itemDetails(inventoryCount)

Similarly, to remove an index, use the DROP INDEX statement. See DROP INDEX (page 90)
for details.
DROP INDEX inventoryIdx on myInventory.itemDetails

Be aware that adding and dropping indexes can take a long time. You might therefore want to
run these operations asynchronously using the Store.execute() method.
...
Store handle configuration and open skipped for brevity
...

 try:
 ddl = """CREATE INDEX inventoryIdx on
 myInventory.itemDetails(inventoryCount)"""
 store.execute_sync(ddl)
 logging.debug("Index creation succeeded")
 except IllegalArgumentException, iae:
 logging.error("DDL failed.")
 logging.error(iae.message)

Indexable Field Types

Fields can be indexed only if they are declared to be one of the following types. For all
complex types (arrays, maps, and records), the field can be indexed if the ultimate target of

Library Version 12.1.3.3 Introducing Oracle NoSQL Database Tables and
Indexes

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 20

the index is a scalar datatype. So a complex type that contains a nested complex type (such
as an array of records, for example) can be indexed if the index's target is a scalar datatype
contained by the embedded record.

• Integer

• Long

• Float

• Double

• String

• Enum

• Array

In the case of arrays, the field can be indexed only if the array contains values that are
of one of the other indexable scalar types. For example, you can create an index on an
array of Integers. You can also create an index on a specific record in an array of records.
Only one array can participate in an index, otherwise the size of the index can grow
exponentially because there is an index entry for each array entry.

• Maps

As is the case with Arrays, you can index a map if the map contains scalar types, or if the
map contains a record that contains scalar types.

• Records

Like Arrays and Maps, you can index fields in an embedded record if the field contains scalar
data.

See Indexing Non-Scalar Data Types (page 53) for examples of how to index supported non-
scalar types.

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 21

Chapter 4. Primary and Shard Key Design
Primary keys and shard keys are important concepts for your table design. What you use for
primary and shard keys has implications in terms of your ability to read multiple rows at a
time. But beyond that, your key design has important performance implications.

Primary Keys

Every table must have one or more fields designated as the primary key. This designation
occurs at the time that the table is created, and cannot be changed after the fact. A table's
primary key uniquely identifies every row in the table. In the simplest case, it is used to
retrieve a specific row so that it can be examined and/or modified.

For example, a table might have five fields: productName, productType, color, size, and
inventoryCount. To retrieve individual rows from the table, it might be enough to just know
the product's name. In this case, you would set the primary key field as productName and then
retrieve rows based on the product name that you want to examine/manipulate.

In this case, the table statement you use to define this table is:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName)
)

However, you can use multiple fields for your primary keys. For example:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName, productType)
)

On a functional level, doing this allows you to delete multiple rows in your table in a single
atomic operation. In addition, multiple primary keys allows you to retrieve a subset of the
rows in your table in a single atomic operation.

We describe how to retrieve multiple rows from your table in Reading Table Rows (page 31).
We show how to delete multiple rows at a time in Using multi_delete() (page 29).

Library Version 12.1.3.3 Primary and Shard Key Design

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 22

Data Type Limitations

Fields can be designated as primary keys only if they are declared to be one of the following
types:

• Integer

• Long

• Float

• Double

• String

• Enum

Partial Primary Keys

Some of the methods you use to perform multi-row operations allow, or even require, a partial
primary key. A partial primary key is, simply, a key where only some of the fields comprising
the row's primary key are specified.

For example, the following example specifies three fields for the table's primary key:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 productClass STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName, productType, productClass)
)

In this case, a full primary key would be one where you provide value for all three primary key
fields: productName, productType, and productClass. A partial primary key would be one
where you provide values for only one or two of those fields.

Note that order matters when specifying a partial key. The partial key must be a subset of the
full key, starting with the first field specified and then adding fields in order. So the following
partial keys are valid:

productName
productName, productType

Shard Keys

Shard keys identify which primary key fields are meaningful in terms of shard storage. That is,
rows which contain the same values for all the shard key fields are guaranteed to be stored on

Library Version 12.1.3.3 Primary and Shard Key Design

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 23

the same shard. This matters for some operations that promise atomicity of the results. (See
Executing a Sequence of Operations (page 77) for more information.)

For example, suppose you set the following primary keys:

PRIMARY KEY (productType, productName, productClass)

You can guarantee that rows are placed on the same shard using the values set for the
productType and productName fields like this:

PRIMARY KEY (SHARD(productType, productName), productClass)

Note that order matters when it comes to shard keys. The keys must be specified in the order
that they are defined as primary keys, with no gaps in the key list. In other words, given the
above example, it is impossible to set productType and productClass as shard keys without
also specifying productName as a shard key.

Row Data

There are no restrictions on the size of your rows, or the amount of data that you store in
a field. However, you should consider your store's performance when deciding how large
you are willing to allow your individual tables and rows to become. As is the case with any
data storage scheme, the larger your rows, the longer it takes to read the information from
storage, and to write the information to storage.

On the other hand, every table row carries with it some amount of overhead. Also, as the
number of your rows grows very large, search times may be adversely affected. As a result,
choosing to use a large number of tables, each of which use rows with just a small handful of
fields, can also harm your store's performance.

Therefore, when designing your tables' content, you must find the appropriate balance
between a small number of tables, each of which uses very large rows; and a large number of
tables, each of which uses very small rows. You should also consider how frequently any given
piece of information will be accessed.

For example, suppose your table contains information about users, where each user is
identified by their first and last names (surname and familiar name). There is a set of
information that you want to maintain about each user. Some of this information is small in
size, and some of it is large. Some of it you expect will be frequently accessed, while other
information is infrequently accessed.

Small properties are:

• name

• gender

• address

• phone number

Large properties are:

Library Version 12.1.3.3 Primary and Shard Key Design

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 24

• image file

• public key 1

• public key 2

• recorded voice greeting

There are several possible ways you can organize this data. How you should do it depends on
your data access patterns.

For example, suppose your application requires you to read and write all of the properties
identified above every time you access a row. (This is unlikely, but it does represent the
simplest case.) In that event, you might create a single table with rows containing fields for
each of the properties you maintain for the users in your application.

However, the chances are good that your application will not require you to access all of
a user's properties every time you access his information. While it is possible that you will
always need to read all of the properties every time you perform a user look up, it is likely
that on updates you will operate only on some properties.

Given this, it is useful to consider how frequently data will be accessed, and its size. Large,
infrequently accessed properties should be placed in tables other than that used by the
frequently accessed properties.

For example, for the properties identified above, suppose the application requires:

• all of the small properties to always be used whenever the user's record is accessed.

• all of the large properties to be read for simple user look ups.

• on user information updates, the public keys are always updated (written) at the same
time.

• The image file and recorded voice greeting can be updated independently of everything
else.

In this case, you might store user properties using a table and a child table. The parent table
holds rows containing all the small properties, plus public keys. The child table contains the
image file and voice greeting.

CREATE TABLE userInfo (
 surname STRING,
 familiarName STRING,
 gender ENUM (male,female),
 street STRING,
 city STRING,
 state STRING,
 zipcode STRING,
 userPhone STRING,
 publickey1 BINARY,
 publickey2 BINARY,

Library Version 12.1.3.3 Primary and Shard Key Design

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 25

 PRIMARY KEY (SHARD(surname), familiarName)
)

CREATE TABLE userInfo.largeProps (
 propType STRING,
 voiceGreeting BINARY,
 imageFile BINARY,
 PRIMARY KEY (propType)
)

Because the parent table contains all the data that is accessed whenever user data is
accessed, you can update that data all at once using a single atomic operation. At the same
time, you avoid retrieving the big data values whenever you retrieve a row by splitting the
image data and voice greeting into a child table.

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 26

Chapter 5. Writing and Deleting Table Rows
This chapter discusses two different write operations: putting table rows into the store, and
then deleting them.

Write Exceptions

There are many errors that you should handle whenever you perform a write operation to the
store. Some of the more common errors are described here. For simple cases where you use
default policies or are not using a secure store, you can probably avoid explicitly handling
these. However, as your code complexity increases, so too will the desirability of explicitly
managing these errors.

The first of these is DurabilityException. This error indicates that the operation cannot be
completed because the durability policy cannot be met. For more information, see Durability
Guarantees (page 72).

The second is RequestTimeoutException. This simply means that the operation could not be
completed within the amount of time provided by the store's timeout property. This probably
indicates an overloaded system. Perhaps your network is experiencing a slowdown, or your
store's nodes are overloaded with too many operations (especially write operations) coming in
too short of a period of time.

To handle a RequestTimeoutException, you could simply log the error and move on, or you
could pause for a short period of time and then retry the operation. You could also retry the
operation, but use a longer timeout value.

You can also receive an IllegalArgumentException, which will be thrown if a Row that you
are writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general FaultException, which indicates that some error occurred
which is neither a problem with durability nor a problem with the request timeout. Your only
recourse here is to either log the error and move along, or retry the operation.

Writing Rows to a Table in the Store

Writing a new row to a table in the store, and updating an existing row are usually identical
operations (although methods exist that work only if the row is being updated, or only if it is
being created — these are described a little later in this section).

Remember that you can only write data to a table after it has been added to the store. See
Introducing Oracle NoSQL Database Tables and Indexes (page 14) for details.

To write a row to a table in the store:

1. Create a store handle and open it.

2. Use a dictionary to describe the row. Each key in the dictionary must correspond to a field
name that has been declared for the table to which you will write the row.

Library Version 12.1.3.3 Writing and Deleting Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 27

3. Use the Store.put() method to write the row to the store. This method has two
required arguments. The first identifies the table to which you want to write the row. The
second accepts the dictionary you constructed in the previous step.

For example:
from nosqldb import Factory
from nosqldb import IllegalArgumentException
from nosqldb import ProxyConfig
from nosqldb import StoreConfig

import logging
import os

locations where our store and proxy can be found
kvlite = 'localhost:5000'
proxy = 'localhost:7010'

kvstoreconfig = StoreConfig('kvstore', [kvlite])
store = Factory.open(proxy, kvstoreconfig)

row_d = { 'item' : 'bolts',
 'description' : "Hex head, stainless",
 'count' : 5,
 'percentage' : 0.2173913}
try:
 store.put("myTable", row_d)
 logging.debug("Store write succeeded.")
except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)

store.close()

Writing Rows to a Child Table

To write to a child table, first create the row in the parent table to which the child belongs.
You do this by populating the parent row with data. Then you write the child table's row(s).
When you do, you must specify the primary key used by the parent table, as well as the
primary key used by the child table's rows.

For example, in Defining Child Tables (page 17) we showed how to create a child table. To
write data to that table, do this:
from nosqldb import Factory
from nosqldb import IllegalArgumentException
from nosqldb import ProxyConfig
from nosqldb import StoreConfig

import logging
import os

Library Version 12.1.3.3 Writing and Deleting Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 28

locations where our store and proxy can be found
kvlite = 'localhost:5000'
proxy = 'localhost:7010'

kvstoreconfig = StoreConfig('kvstore', [kvlite])
store = Factory.open(proxy, kvstoreconfig)

parent_d = {'itemCategory' : 'Bolts',
 'description' : 'Metric & US sizes'}

try:
 store.put("myInventory", parent_d)
 logging.debug("Store write succeeded.")
except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)

child_d = {'itemCategory' : 'Bolts',
 'itemSKU' : '1392610',
 'itemDescription' : "1/4-20 x 1/2 Grade 8 Hex",
 'price' : 11.99,
 'inventoryCount' : 1457

child_row= Row(child_d)
try:
 store.put("myInventory.itemDetails", child_row)
 logging.debug("Store write succeeded.")
except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)

store.close()

Other put Operations

Beyond the very simple usage of the method illustrated above, there are three other put
operations that you can use:

• Store.put_if_absent()

This method will only put the row if the row's primary key value DOES NOT currently exist in
the table. That is, this method is successful only if it results in a create operation.

• Store.put_if_present()

This method will only put the row if the row's primary key value already exists in the table.
That is, this method is only successful if it results in an update operation.

• Store.put_if_version()

Library Version 12.1.3.3 Writing and Deleting Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 29

This method will put the row only if the value matches the supplied version information. For
more information, see Using Row Versions (page 63).

Deleting Rows from the Store

You delete a single row from the store using the Store.delete() method. Rows are deleted
based on a dictionary that defines the full primary key for the row that you want to delete.
You can also require a row to match a specified version before it will be deleted. To do
this, use the Store.delete_if_version() method. Versions are described in Using Row
Versions (page 63).

When you delete a row, you must handle the same errors as occur when you perform any write
operation on the store. See Write Exceptions (page 26) for a high-level description of these
errors.

try:
 # To delete a table row, just include a dictionary
 # that contains all the fields needed to create
 # the primary key.
 primary_key_d = {"item" : "bolts"}
 ret = store.delete("myTable", primary_key_d)
 if ret[0]:
 logging.debug("Row deletion succeeded")
 else:
 logging.debug("Row deletion failed.")
except IllegalArgumentException, iae:
 logging.error("Row deletion failed.")
 logging.error(iae.message)

Using multi_delete()

You can delete multiple rows at once in a single atomic operation, so long as they all share the
shard key values. Recall that shard keys are at least a subset of your primary keys. The result
is that you use a partial primary key (which happens to be a shard key) to perform a multi-
delete.

To delete multiple rows at once, use the Store.multi_delete() method.

For example, suppose you created a table like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)

Library Version 12.1.3.3 Writing and Deleting Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 30

)

With tables containing data like this:

• Row 1:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: small
price: 12.07
inventoryCount: 127

• Row 2:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: medium
price: 13.07
inventoryCount: 201

• Row 3:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: large
price: 14.07
inventoryCount: 39

Then in this case, you can delete all the rows sharing the partial primary key Hats, baseball,
longbill as follows:

try:
 primary_key_d = {'itemType' : 'Hats',
 'itemCategory' : 'baseball',
 'itemClass' : 'longbill'}

 ret = store.multi_delete("myTable", primary_key_d)
 if ret > 0:
 logging.debug("%s rows deleted" % ret)
 else:
 logging.debug("No rows deleted.")
except IllegalArgumentException, iae:
 logging.error("Row deletion failed.")
 logging.error(iae.message)

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 31

Chapter 6. Reading Table Rows
There are several ways to retrieve table rows from the store. You can:

1. Retrieve a single row at a time using the Store.get() method.

2. Retrieve rows associated with a shard key (which is based on at least part of your primary
keys) using the Store.multi_get() method.

3. Retrieve table rows that share a shard key, or an index key, using the
Store.table_iterator() method.

4. Retrieve and process records from each shard in parallel using a single key
as the retrieval criteria. Use one of the TableAPI.tableIterator() or
TableAPI.tableKeysIterator() methods that provide parallel scans.

5. Retrieve and process records from each shard in parallel using a sequence of
keys as the retrieval criteria. Use one of the TableAPI.tableIterator() or
TableAPI.tableKeysIterator() methods that provide bulk retrievals.

Each of these are described in the following sections.

Read Exceptions

Several errors can occur when you attempt a read operation in the store. The first of these
is ConsistencyException. This error indicates that the operation cannot be completed
because the consistency policy cannot be met. For more information, see Consistency
Guarantees (page 65).

The second error is RequestTimeoutException. This means that the operation could not be
completed within the amount of time provided by the store's timeout property. This probably
indicates a store that is attempting to service too many read requests all at once. Remember
that your data is partitioned across the shards in your store, with the partitioning occurring
based on your shard keys. If you designed your keys such that a large number of read requests
are occurring against a single key, you could see request timeouts even if some of the shards
in your store are idle.

A request timeout could also be indicative of a network problem that is causing the network
to be slow or even completely unresponsive.

To handle a RequestTimeoutException, you could simply log the error and move on, or you
could pause for a short period of time and then retry the operation. You could also retry the
operation, but use a longer timeout value.

You can also receive an IllegalArgumentException, which will be thrown if a Row that you
are writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general FaultException, which indicates that some error occurred
which is neither a problem with consistency nor a problem with the request timeout. Your only
recourse here is to either log the error and move along, or retry the operation.

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 32

You can also receive a MetadataNotFoundException, which indicates that a client's metadata
may be out of sync. It extends FaultException and can be caught by applications to trigger
the need for a refresh of their metadata, and in particular, Table handles obtained via
TableAPI.getTable().

Retrieving a Single Row

To retrieve a single row from the store:

1. Create a store handle and open it.

2. Construct a Python dictionary. primary key. Each name/value pair in the dictionary must
correspond to the primary key and value for the row that you want to retrieve. In this
case, the full primary key must be present in the dictionary.

3. Retrieve the row using Store.get(). This performs the store read operation.

4. The retrieved row is a Python dictionary. Individual items in the dictionary can be
retrieved as you would for any Python dictionary.

For example, in Writing Rows to a Table in the Store (page 26) we showed a trivial example of
storing a table row to the store. The following trivial example shows how to retrieve that row.

from nosqldb import Factory
from nosqldb import IllegalArgumentException
from nosqldb import ProxyConfig
from nosqldb import StoreConfig

import logging
import os
import sys

locations where our store and proxy can be found
kvlite = 'localhost:5000'
proxy = 'localhost:7010'

set logging level to debug and log to stdout
def setup_logging():
 rootLogger = logging.getLogger()
 rootLogger.setLevel(logging.DEBUG)

 logger = logging.StreamHandler(sys.stdout)
 logger.setLevel(logging.DEBUG)
 formatter = logging.Formatter('\t%(levelname)s - %(message)s')
 logger.setFormatter(formatter)
 rootLogger.addHandler(logger)

configure and open the store
def open_store():
 kvstoreconfig = StoreConfig('kvstore', [kvlite])
 return Factory.open(proxy, kvstoreconfig)

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 33

def display_row(row):
 try:
 print "Retrieved row:"
 print "\tItem: %s" % row['item']
 print "\tDescription: %s" % row['description']
 print "\tCount: %s" % row['count']
 print "\tPercentage: %s" % row['percentage']
 print "\n"
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

def do_store_ops(store):
 try:
 primary_key_d = {"item" : "bolts"}
 row = store.get("myTable", primary_key_d)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 display_row(row)
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

if __name__ == '__main__':

 setup_logging()
 store = open_store()
 do_store_ops(store)
 store.close()

Retrieve a Child Table

In Writing Rows to a Child Table (page 27) we showed how to populate a child table with data.
To retrieve that data, you must specify the primary key used for the parent table row, as well
as the primary key for the child table row. For example:

...

def do_store_ops(store):
 try:
 primary_key_c = {"item" : "bolts",
 "itemSKU" : "1392610"}

 row = store.get("myInventory.itemDetails", primary_key_c)
 if not row:

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 34

 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 print row
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

For information on how to iterate over nested tables, see Iterating with Nested Tables (page
40).

Using multi_get()

Store.multi_get() allows you to retrieve multiple rows at once, so long as they all share the
same shard keys. You must specify a full set of shard keys to this method.

Use Store.multi_get() only if your retrieval set will fit entirely in memory.

For example, suppose you have a table that stores information about products, which is
designed like this:
CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: small
price: 12.07
inventoryCount: 127

• Row 2:

itemType: Hats
itemCategory: baseball

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 35

itemClass: longbill
itemColor: red
itemSize: medium
price: 13.07
inventoryCount: 201

• Row 3:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: large
price: 14.07
inventoryCount: 39

In this case, you can retrieve all of the rows with their itemType field set to Hats and their
itemCategory field set to baseball. Notice that this represents a partial primary key,
because itemClass, itemColor and itemSize are not used for this query.

...

def display_row(row):
 try:
 print "Retrieved row:"
 print "\tItem Type: %s" % row['itemType']
 print "\tCategory: %s" % row['itemCategory']
 print "\tClass: %s" % row['itemClass']
 print "\tSize: %s" % row['itemSize']
 print "\tColor: %s" % row['itemColor']
 print "\tPrice: %s" % row['price']
 print "\tInventory Count: %s" % row['inventoryCount']
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

def do_store_ops(store):
 try:
 shard_key_d = {"itemType" : "Hats",
 "itemCategory" : "baseball",
 "itemClass" : "longbill"}

 row_list =
 store.multi_get("myTable", # table name
 False, # Retrieve only keys?
 shard_key_d) # partial primary key
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 36

 display_row(r)
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

Notice in the previous example that Store.multi_get() returns the table rows in a simple
Python list. To display the rows, you simply iterate over the list in the same way you would
any Python list.

Iterating over Table Rows

Store.table_iterator() provides non-atomic table iteration.

Store.table_iterator() does not return the entire set of rows all at once. Instead, it
batches the fetching of rows in the iterator, to minimize the number of network round trips,
while not monopolizing the available bandwidth. Also, the rows returned by this method are in
unsorted order.

Note that this method does not result in a single atomic operation. Because the retrieval is
batched, the return set can change over the course of the entire retrieval operation. As a
result, you lose the atomicity of the operation when you use this method.

This method provides for an unsorted traversal of rows in your table. If you do not provide a
key, then this method will iterate over all of the table's rows.

When using this method, you can optionally specify:

• A MultiRowOptions object that lets you specify:

• A FieldRange object, which defines a range of values to be retrieved for the specified
key.

• A list of parent and ancestor tables to include in the iteration.

• A TableIteratorOptions object, which allows you to specify an iteration direction, the
maximum number of results to return for each retrieval batch, and a ReadOptions class.
This class allows you specify a consistency policy for the operation, as well as an upper
bound on the amount of time that the operation is allowed to take. Consistency policies are
described in Consistency Guarantees (page 65).

For example, suppose you have a table that stores information about products, which is
designed like this:
CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 37

 itemSize)
)

With tables containing data like this:

• Row 1:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: small
price: 12.07
inventoryCount: 127

• Row 2:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: medium
price: 13.07
inventoryCount: 201

• Row 3:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: large
price: 14.07
inventoryCount: 39

• Row n:

itemType: Coats
itemCategory: Casual
itemClass: Winter
itemColor: red
itemSize: large
price: 247.99
inventoryCount: 9

Then in the simplest case, you can retrieve all of the rows related to 'Hats' using
Store.table_iterator() as follows. Note that this simple example can also be accomplished
using the Store.multi_get() method. If you have a complete shard key, and if the
entire results set will fit in memory, then multi_get() will perform much better than
table_iterator(). However, if the results set cannot fit entirely in memory, or if you do
not have a complete shard key, then table_iterator() is the better choice. Note that reads

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 38

performed using table_iterator() are non-atomic, which may have ramifications if you are
performing a long-running iteration over records that are being updated.
def display_row(row):
 try:
 print "Retrieved row:"
 print "\tType: %s" % row['itemType']
 print "\tCategory: %s" % row['itemCategory']
 print "\tClass: %s" % row['itemClass']
 print "\tColor: %s" % row['itemColor']
 print "\tSize: %s" % row['itemSize']
 print "\tPrice: %s" % row['price']
 print "\tInventory Count: %s" % row['inventoryCount']
 print "\n"
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

def do_store_ops(store):

 key_d = {'itemType' : 'Hats'}

 try:
 row_list = store.table_iterator("myTable", key_d, False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 display_row(r)
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

Specifying Field Ranges

When performing multi-key operations in the store, you can specify a range of rows to operate
upon. You do this using the FieldRange class, which is accepted by any of the methods which
perform bulk reads. This class is used to restrict the selected rows to those matching a range
of field values.

For example, suppose you defined a table like this:
CREATE TABLE myTable (
 surname STRING,
 familiarName STRING,
 userID STRING,
 phonenumber STRING,
 address STRING,
 email STRING,
 dateOfBirth STRING,

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 39

 PRIMARY KEY (SHARD(surname, familiarName), userID)
)

The surname contains a person's family name, such as Smith. The familiarName contains
their common name, such as Bob, Patricia, Robert, and so forth.

Given this, you could perform operations for all the rows related to users with a surname
of Smith, but we can limit the result set to just those users with familiar names that fall
alphabetically between Bob and Patricia by specifying a field range.

A FieldRange is created using the FieldRange class, which you provide to the method you
are using to perform the multi-read operation using the MultiRowOptions class. This class
requires the name of the primary key field for which you want to set the range, as well the
range values, including whether they are inclusive.

In this case, we will define the start of the key range using the string "Bob" and the end of the
key range to be "Patricia". Both ends of the key range will be inclusive.

In this example, we use TableIterator, but we could just as easily use this range on any
multi-row read operation, such as the Store.multi_get() method.
def display_row(row):
 try:
 print "Retrieved row:"
 print "\tSurname: %s" % row['surname']
 print "\tFamiliar Name: %s" % row['familiarName']
 print "\tUser ID: %s" % row['userID']
 print "\tPhone: %s" % row['phonenumber']
 print "\tAddress: %s" % row['address']
 print "\tEmail: %s" % row['email']
 print "\tDate of Birth: %s" % row['dateOfBirth']
 print "\n"
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

def do_store_ops(store):

 key_d = {'surname' : 'Smith'}

 field_range = FieldRange({
 ONDB_FIELD : "familiarName",
 ONDB_START_VALUE : "Bob",
 ONDB_END_VALUE : "Patricia",
 # These next two are the default values,
 # so are not really needed.
 ONDB_START_INCLUSIVE : True,
 ONDB_END_INCLUSIVE : True
 })

 mro = MultiRowOptions({ONDB_FIELD_RANGE : field_range})

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 40

 try:
 row_list = store.table_iterator("myTable", key_d, False, mro)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 display_row(r)
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

Iterating with Nested Tables

When you are iterating over a table, or performing a multi-get operation, by default
only rows are retrieved from the table on which you are operating. However, you can use
MultiRowOptions to specify that parent and child tables are to be retrieved as well.

When you do this, parent tables are retrieved first, then the table you are operating on, then
child tables. In other words, the tables' hierarchical order is observed.

The parent and child tables retrieved are identified using a list of table names, which is then
provided to the MultiRowOpetions object's ONDB_INCLUDED_TABLES property.

When operating on rows retrieved from multiple tables, it is your responsibility to determine
which table the row belongs to.

For example, suppose you create a table with a child and grandchild table like this:
CREATE TABLE prodTable (
 prodType STRING,
 typeDescription STRING,
 PRIMARY KEY (prodType)
)
CREATE TABLE prodTable.prodCategory (
 categoryName STRING,
 categoryDescription STRING,
 PRIMARY KEY (categoryName)
)
CREATE TABLE prodTable.prodCategory.item (
 itemSKU STRING,
 itemDescription STRING,
 itemPrice FLOAT,
 vendorUID STRING,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

With tables containing data like this:

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 41

• Row 1:

prodType: Hardware
typeDescription: Equipment, tools and parts

• Row 1.1:

categoryName: Bolts
categoryDescription: Metric & US Sizes

• Row 1.1.1:

itemSKU: 1392610
itemDescription: 1/4-20 x 1/2 Grade 8 Hex
itemPrice: 11.99
vendorUID: A8LN99
inventoryCount: 1457

• Row 2:

prodType: Tools
typeDescription: Hand and power tools

• Row 2.1:

categoryName: Handtools
categoryDescription: Hammers, screwdrivers, saws

• Row 2.1.1:

itemSKU: 1582178
itemDescription: Acme 20 ounce claw hammer
itemPrice: 24.98
vendorUID: D6BQ27
inventoryCount: 249

from nosqldb import Factory
from nosqldb import IllegalArgumentException
from nosqldb import ProxyConfig
from nosqldb import StoreConfig
from nosqldb import ONDB_INCLUDED_TABLES

import logging
import os
import sys

locations where our store and proxy can be found
kvlite = 'localhost:5000'
proxy = 'localhost:7010'

set logging level to debug and log to stdout

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 42

def setup_logging():
 rootLogger = logging.getLogger()
 rootLogger.setLevel(logging.DEBUG)

 logger = logging.StreamHandler(sys.stdout)
 logger.setLevel(logging.DEBUG)
 formatter = logging.Formatter('\t%(levelname)s - %(message)s')
 logger.setFormatter(formatter)
 rootLogger.addHandler(logger)

configure and open the store
def open_store():
 kvstoreconfig = StoreConfig('kvstore', [kvlite])
 return Factory.open(proxy, kvstoreconfig)

def display_row(row):
 try:
 ## Our code must track which table we are displaying.
 ## Use get_table_name() for this purpose.

 if row.get_table_name() == 'prodTable':
 print "\nType: %s" % row['prodType']
 print "Description: %s" % row['typeDescription']
 elif row.get_table_name() == 'prodTable.prodCategory':
 print "\tCategory: %s" % row['categoryName']
 print "\tDescription: %s" % row['categoryDescription']
 else:
 print "\t\tSKU: %s" % row['itemSKU']
 print "\t\tDescription: %s" % row['itemDescription']
 print "\t\tPrice: %s" % row['itemPrice']
 print "\t\tVendor UID: %s" % row['vendorUID']
 print "\t\tInventory Count: %s" % row['inventoryCount']
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

def do_store_ops(store):
 try:
 key_d = {}

 ## Identify the child tables to include in the retrieval.
 incTables = ["prodTable.prodCategory",
 "prodTable.prodCategory.item"]

 mro = {ONDB_INCLUDED_TABLES : incTables}

 row_list = store.table_iterator("prodTable", key_d, False,
 mro)
 if not row_list:
 logging.debug("Table retrieval failed")

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 43

 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 display_row(r)
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

if __name__ == '__main__':

 setup_logging()
 store = open_store()
 do_store_ops(store)
 store.close()

Reading Indexes

You use Store.index_iterator() to retrieve table rows using a table's indexes. Just as when
you use table_terator to read table rows using a table's primary key(s), when reading using
indexes you can set options such as field ranges, traversal direction, and so forth. By default,
index scans return entries in forward order.

For example, suppose you defined a table like this:

CREATE TABLE myTable (
 surname STRING,
 familiarName STRING,
 userID STRING,
 phonenumber STRING,
 address STRING,
 email STRING,
 dateOfBirth STRING,
 PRIMARY KEY (SHARD(surname, familiarName), userID)
)

CREATE INDEX DoB ON myTable (dateOfBirth)

This creates an index named DoB for table myTable based on the value of the dateOfBirth
field. To scan through that index, do the following:

def display_row(row):
 try:
 print "Retrieved row:"
 print "\tSurname: %s" % row['surname']
 print "\tFamiliar Name: %s" % row['familiarName']
 print "\tUser ID: %s" % row['userID']
 print "\tPhone: %s" % row['phonenumber']
 print "\tAddress: %s" % row['address']

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 44

 print "\tEmail: %s" % row['email']
 print "\tDate of Birth: %s" % row['dateOfBirth']
 print "\n"
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

def do_store_ops(store):

 key_d = {}

 try:
 row_list = store.index_iterator("myTable", "DoB",
 key_d, False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 display_row(r)
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

In the previous example, the code examines every row indexed by the DoB index. A more
likely, and useful, example in this case would be to limit the rows returned through the use of
a field range. You do that by constructing a FieldRange object. When you do this, you must
specify the field to base the range on. Recall that an index can be based on more than one
table field, so the field name you give the object must be one of the indexed fields.

For example, if the rows hold dates in the form of yyyy-mm-dd, you could retrieve all the
people born in the month of May, 1994 in the following way. This index only examines one
field, dateOfBirth, so we give that field name to the FieldRange object:

def display_row(row):
 try:
 print "Retrieved row:"
 print "\tSurname: %s" % row['surname']
 print "\tFamiliar Name: %s" % row['familiarName']
 print "\tUser ID: %s" % row['userID']
 print "\tPhone: %s" % row['phonenumber']
 print "\tAddress: %s" % row['address']
 print "\tEmail: %s" % row['email']
 print "\tDate of Birth: %s" % row['dateOfBirth']
 print "\n"
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

def do_store_ops(store):

Library Version 12.1.3.3 Reading Table Rows

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 45

 key_d = {}

 field_range = FieldRange({
 ONDB_FIELD : "dateOfBirth",
 ONDB_START_VALUE : "1994-05-01",
 ONDB_END_VALUE : "1994-05-30",
 # These next two are the default values,
 # so are not really needed.
 ONDB_START_INCLUSIVE : True,
 ONDB_END_INCLUSIVE : True
 })

 mro = MultiRowOptions({ONDB_FIELD_RANGE : field_range})

 try:
 row_list = store.index_iterator("myTable", "DoB",
 key_d, False, mro)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 display_row(r)
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 46

Chapter 7. Using Data Types
Many of the types that Oracle NoSQL Database offers are easy to use (such as integers and
strings). Examples of their usage has been scattered throughout this manual. However, some
types are a little more complicated, and so their usage may not be obvious. This chapter
briefly shows how to use Arrays, Maps, Records, Enums and Binary data types.

Using Arrays

Arrays are a sequence of values all of the same type.

When you declare a table field as an array, you use the ARRAY() statement.

To define a simple two-field table where the primary key is a UID and the second field
contains array of strings, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myArray ARRAY(STRING),
 PRIMARY KEY(uid)
)

CHECK constraints are supported for array values. See CHECK (page 86) for more details.

DEFAULT and NOT NULL constraints are not supported for arrays.

To write the array:

 row_d = {'uid' : 0,
 'myArray' : ["One", "Two", "Three"]
 }
 try:
 store.put("myTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

To retrieve and use the array:

 try:
 primary_key_d = {"uid" : 0}
 row = store.get("myTable", primary_key_d)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 myArray = row['myArray']
 for m in myArray:
 print m
 except IllegalArgumentException, iae:

Library Version 12.1.3.3 Using Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 47

 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

Using Binary

You can declare a field as binary using the BINARY statement. You then read and write the
field value as a base64 encoded buffer.

If you want to store a large binary object, then you should use the LOB APIs rather than a
binary field, which are only available using the Java Key/Value API. For information on using
the LOB APIs, see the Oracle NoSQL API Large Object API introduction.

Note that fixed binary should be used over the binary datatype any time you know that all
the field values will be of the same size. Fixed binary is a more compact storage format
because it does not need to store the size of the array. See Using Fixed Binary (page 49) for
information on the fixed binary datatype.

To define a simple two-field table where the primary key is a UID and the second field
contains a binary field, you use the following statement:

CREATE TABLE myTable (
 uid INTEGER,
 myByteArray BINARY,
 PRIMARY KEY(uid)
)

CHECK, DEFAULT and NOT NULL constraints are not supported for binary values.

To write the binary field, use the Store.encode_base_64() method to encode the data
before writing it to the store.

 iFile = open("image.jpg")
 image = store.encode_base_64(iFile.read())
 iFile.close()

 row_d = {'uid' : 0,
 'myByteArray' : image
 }
 try:
 store.put("myTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

To read the binary field, retrieve it as you would any data field. Use
Store.decode_base_64() to decode the data before writing it to disk.

http://docs.oracle.com/cd/NOSQL/html//booklets/lobs/index.html

Library Version 12.1.3.3 Using Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 48

For example:

 try:
 primary_key_d = {"uid" : 0}
 row = store.get("myTable", primary_key_d)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 image = store.decode_base_64(row['myByteArray'])
 iFile = open("out.jpg", 'w')
 iFile.write(image)
 iFile.close()
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

Using Enums

Enumerated types are declared using the ENUM() statement. You must declare the acceptable
enumeration values when you use this statement.

To define a simple two-field table where the primary key is a UID and the second field
contains an enum, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myEnum ENUM (Apple,Pears,Oranges),
 PRIMARY KEY (uid)
)

CHECK constraints are not supported for enumerated fields.

DEFAULT and NOT NULL constraints are supported for enumerated fields. See DEFAULT (page
87) for more information.

Enum values are handled as strings.

To write the enum:

 row_d = {'uid' : 0,
 'myEnum' : 'Pears'
 }
 try:
 store.put("myTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")

Library Version 12.1.3.3 Using Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 49

 logging.error(iae.message)
 sys.exit(-1)

To read the enum:

 try:
 primary_key_d = {"uid" : 0}
 row = store.get("myTable", primary_key_d)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 myEnum = row['myEnum']
 print "myEnum: %s" % myEnum
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

Using Fixed Binary

You can declare a fixed binary field using the BINARY() statement. When you do this, you
must also specify the field's size in bytes. You then read and write the field value using
a base64 encoded buffer. However, if the buffer does not equal the specified size, then
IllegalArgumentException is thrown when you attempt to write the field.

If you want to store a large binary object, then you should use the LOB APIs rather than a
binary field. For information on using the LOB APIs, see Oracle NoSQL API Large Object API.

Fixed binary should be used over the binary datatype any time you know that all the field
values will be of the same size. Fixed binary is a more compact storage format because it does
not need to store the size of the array. See Using Binary (page 47) for information on the
binary datatype.

To define a simple two-field table where the primary key is a UID and the second field
contains a fixed binary field, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myFixedByteArray BINARY(10),
 PRIMARY KEY (uid)
)

CHECK, DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array:

 b64buffer = store.encode_base_64('1234567890')

index.html#introduction

Library Version 12.1.3.3 Using Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 50

 row_d = {'uid' : 0,
 'myFixedByteArray' : b64buffer
 }
 try:
 store.put("myTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

To read the fixed binary field, use Store.decode_base_64():

 try:
 primary_key_d = {"uid" : 0}
 row = store.get("myTable", primary_key_d)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 b64buffer = row['myFixedByteArray']
 print store.decode_base_64(b64buffer)
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

Using Maps

All map entries must be of the same type. Regardless of the type of the map's values, its keys
are always strings.

The string "[]" is reserved and must not be used for key names.

When you declare a table field as a map, you use the MAP() statement. You must also declare
the map element's data types.

To define a simple two-field table where the primary key is a UID and the second field
contains a map of integers, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myMap MAP(INTEGER),
 PRIMARY KEY (uid)
)

CHECK constraints are supported for map fields. See CHECK (page 86) for more information.

DEFAULT and NOT NULL constraints are not supported for map fields.

Library Version 12.1.3.3 Using Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 51

To write the map:

 mmap = {"field1" : 1,
 "field2" : 2,
 "field3" : 3}

 row_d = {'uid' : 0,
 'myMap' : mmap
 }
 try:
 store.put("myTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

To read map field2:

 try:
 primary_key_d = {"uid" : 0}
 row = store.get("myTable", primary_key_d)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 ## prints '2'
 print row['myMap']['field2']
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

Using Embedded Records

A record entry can contain fields of differing types. However, embedded records should be
used only when the data is relatively static. In general, child tables provide a better solution
over embedded records, especially if the child dataset is large or is likely to change in size.

Use the RECORD() statement to declare a table field as a record.

To define a simple two-field table where the primary key is a UID and the second field
contains a record, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myRecord RECORD(firstField STRING, secondField INTEGER),
 PRIMARY KEY (uid)
)

Library Version 12.1.3.3 Using Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 52

CHECK, DEFAULT and NOT NULL constraints are not supported for embedded record fields.
However, these constraints can be applied to the individual fields in an embedded record. See
Field Constraints (page 86) for more information.

To write the embedded record, define it as a Python map:

 mrec = {"firstField" : "An embedded record",
 "secondField" : 3388}

 row_d = {'uid' : 0,
 'myRecord' : mrec
 }
 try:
 store.put("myTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

Then, you can read the field in the usual way:

 try:
 primary_key_d = {"uid" : 0}
 row = store.get("myTable", primary_key_d)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 print "firstField: %s" % row['myRecord']['firstField']
 print "secondField: %s" % row['myRecord']['secondField']
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 53

Chapter 8. Indexing Non-Scalar Data Types
We describe how to index scalar data types in Creating Indexes (page 18), and we show how to
read using indexes in Reading Indexes (page 43). However, non-scalar data types (Arrays, Maps
and Records) require more explanation, which we give here.

Index creation is accomplished using the CREATE INDEX statement. See CREATE INDEX (page
89) for details on this statement.

Indexing Arrays

You can create an index on an array field so long as the array contains scalar data, or contains
a record with scalar fields.

Note

You cannot index a map or array that is nested beneath another map or array. This is
not allowed because of the potential for an excessively large number of index entries.

Be aware that indexing an array potentially results in multiple index entries for each row,
which can lead to very large indexes.

To create the index, first create the table:

CREATE TABLE myArrayTable (
 uid INTEGER,
 testArray ARRAY(STRING),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index:

CREATE INDEX arrayFieldIndex on myArrayTable (testArray)

In the case of arrays, the field can be indexed only if the array contains values that are of one
of the other indexable types. For example, you can create an index on an array of Integers.
You can also create an index on a specific record in an array of records. Only one array should
participate in an index, otherwise the size of the index can grow exponentially because there
is an index entry for each array entry.

To retrieve data using an index of arrays, create a key that identifies the array field and value
that you want to retrieve.

When you perform the index lookup, the only records that will be returned will be those which
have an array with at least one item matching the value set for the key object. For example,
if you have individual records that contain arrays like this:

Record 1: ["One," "Two", "Three"]
Record 2: ["Two", "Three", "One"]
Record 3: ["One", "Three", "One"]
Record 4: ["Two", "Three", "Four"]

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 54

and you then perform an array lookup on the array value "One", then Records 1 - 3 will be
returned, but not 4.

For example:

 try:
 key_d = {"testArray" : ["One"]}
 row_list = store.index_iterator("myArrayTable",
 "arrayFieldIndex",
 key_d,
 False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 print r
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

Indexing Maps

You can create an index on a map field so long as the map contains scalar data, or contains a
record with scalar fields.

Note

You cannot index a map or array that is nested beneath another map or array. This is
not allowed because of the potential for an excessively large number of index entries.

To create the index, define the map as normal. Once the map is defined for the table, there
are several different ways to index it:

• Based on the map's keys without regard to the actual key values.

• Based on the map's values, without regard to the actual key used.

• By a specific map key. To do this, you specify the name of the map field and the name of a
map key using dot notation. If the map key is ever created using your client code, then it
will be indexed.

• Based on the map's key and value without identifying a specific value (such as is required by
the previous option in this list).

Indexing by Map Keys

You can create indexes based on a map's keys without regard to the corresponding values.

Be aware that creating an index like this can potentially result in multiple index entries for
each row, which can lead to very large indexes. In addition, the same row can appear in a
result set, so the duplicate entries must be handled by your application.

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 55

First create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index using the KEYOF statement:

CREATE INDEX mapKeyIndex on myMapTable (KEYOF(testMap))

Data is retrieved if the table row contains the identified map with the identified key. So, for
example, if you create a series of table rows like this:

...

def writeStore(store, row_d):

 try:
 store.put("myMapTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

...

def populateTable(store):

 row_d = {'uid' : 12345,
 'testMap' : {'field1' : 1, 'field2' : 2, 'field3' : 3}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 12,
 'testMap' : {'field1' : 1, 'field2' : 2}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 666,
 'testMap' : {'field1' : 1, 'field3' : 4}
 }
 writeStore(store, row_d)

then you can retrieve any table rows that contain the map with any key currently in use by
the map. For example, "field3".

Note that we use a simple Python dictionary to represent the map. Because the index we are
using is based on the map's key, we can just use None for the map's value.

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 56

def readStore(store):
 try:
 key_d = {"testMap" : {'field3' : None}}
 row_list = store.index_iterator("myMapTable",
 "mapKeyIndex",
 key_d,
 False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 print r
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

Indexing by Map Values

You can create indexes based on the values contained in a map without regard to the keys in
use.

Be aware that creating an index like this can potentially result in multiple index entries for
each row, which can lead to very large indexes. In addition, the same row can appear in a
result set, so the duplicate entries must be handled by your application.

First create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index using the ELEMENTOF statement:

CREATE INDEX mapElementIndex on myMapTable (ELEMENTOF(testMap))

Data is retrieved if the table row contains the identified map with the identified value. So, for
example, if you create a series of table rows like this:

...

def writeStore(store, row_d):

 try:
 store.put("myMapTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 57

 logging.error(iae.message)
 sys.exit(-1)

...

def populateTable(store):

 row_d = {'uid' : 12345,
 'testMap' : {'field1' : 1, 'field2' : 2, 'field3' : 3}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 12,
 'testMap' : {'field1' : 1, 'field2' : 2}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 666,
 'testMap' : {'field1' : 1, 'field3' : 4}
 }
 writeStore(store, row_d)

then you can retrieve any table rows that contain the map with any value currently in use by
the map. For example, a value of "2".

Notice in the following example that we use the special string "[]" for the index key's field
value. The field name must be that string or we will not access the proper index.

def readStore(store):
 try:
 key_d = {"testMap" : {"[]" : 2}}
 row_list = store.index_iterator("myMapTable",
 "mapElementIndex",
 key_d,
 False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 print r
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

Indexing by a Specific Map Key Name

You can create an index based on a specified map key name. Any map entries containing the
specified key name are indexed. This can create a small and very efficient index because

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 58

the index does not contain every key/value pair contained by the map fields. Instead, it just
contains those map entries using the identified key, which results in at most a single index
entry per row.

To create the index, first create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index by specifying the key name you
want indexed using dot notation. In this example, we will index the key name of "field3":

CREATE INDEX mapField3Index on myMapTable (testMap.field3)

Data is retrieved if the table row contains the identified map with the indexed key and a
specified value. So, for example, if you create a series of table rows like this:

...

def writeStore(store, row_d):

 try:
 store.put("myMapTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

...

def populateTable(store):

 row_d = {'uid' : 12345,
 'testMap' : {'field1' : 1, 'field2' : 2, 'field3' : 3}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 12,
 'testMap' : {'field1' : 1, 'field2' : 2}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 666,
 'testMap' : {'field1' : 1, 'field3' : 4}
 }
 writeStore(store, row_d)

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 59

then you can retrieve any table rows that contain the map with key "field3" (because that is
what you indexed) when "field3" maps to a specified value — such as "3". If you try to do an
index lookup on, for example, "field2" then that will fail because you did not index "field2".

def readStore(store):
 try:
 key_d = {"testMap" : {"field3" : 3}}
 row_list = store.index_iterator("myMapTable",
 "mapField3Index",
 key_d,
 False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 print r
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

Indexing by Map Key and Value

In the previous section, we showed how to create a map index by specifying a pre-determined
key name. This allows you to perform map index look ups by providing both key and value, but
the index lookup will only be successful if the specified key is the key that you indexed.

You can do the same thing in a generic way by indexing every key/value pair in your map.
The result is a more flexible index, but also an index that is potentially much larger than the
previously described method. It is likely to result in multiple index entries per row.

To create an index based on every key/value pair used by the map field, first create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index by using both the KEYOF and
ELEMENTOF keywords:

CREATE INDEX mapKeyValueIndex on myMapTable \
(KEYOF(testMap),ELEMENTOF(testmap))

Data is retrieved if the table row contains the identified map with the identified key and the
identified value. So, for example, if you create a series of table rows like this:

...

def writeStore(store, row_d):

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 60

 try:
 store.put("myMapTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

...

def populateTable(store):

 row_d = {'uid' : 12345,
 'testMap' : {'field1' : 1, 'field2' : 2, 'field3' : 3}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 12,
 'testMap' : {'field1' : 1, 'field2' : 2}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 666,
 'testMap' : {'field1' : 1, 'field3' : 4}
 }
 writeStore(store, row_d)

then you can retrieve any table rows that contain the map with specified key/value pairs —
for example, key "field3" and value "3".

To retrieve based on this kind of an index, you must provide:

• the special string '[]' with the desired map value; and

• the field name with None for a map value.

You do this in Python in the following way:

def readStore(store):
 try:
 key_d = {"testMap" : {"[]" : 3, "field3" : None}}
 row_list = store.index_iterator("myMapTable",
 "mapKeyValueIndex",
 key_d,
 False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 print r

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 61

 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

Indexing Embedded Records

You can create an index on an embedded record field so long as the record field contains
scalar data. To create the index, define the record as normal. To index the field, you specify
the name of the embedded record and the name of the field using dot notation.

To create the index, first create the table:

CREATE Table myRecordTable (
 uid INTEGER,
 myRecord RECORD (firstField STRING, secondField INTEGER),
 PRIMARY KEY (uid)
)

Once the table has been added to the store, create the index:

CREATE INDEX recordFieldIndex on myRecordTable (myRecord.secondField)

Data is retrieved if the table row contains the identified record field with the specified value.
So, for example, if you create a series of table rows like this:

def writeStore(store, row_d):

 try:
 store.put("myRecordTable", row_d)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

def populateTable(store):
 row_d = {'uid' : 12345,
 'myRecord' : {'firstField' : 'String field for 12345',
 'secondField' : 3388}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 345,
 'myRecord' : {'firstField' : 'String field for 345',
 'secondField' : 3388}
 }
 writeStore(store, row_d)

 row_d = {'uid' : 111,
 'myRecord' : {'firstField' : 'String field for 111',
 'secondField' : 12}

Library Version 12.1.3.3 Indexing Non-Scalar Data Types

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 62

 }
 writeStore(store, row_d)

then you can retrieve any table rows that contain the embedded record where "secondField"
is set to a specified value. (The embedded record index that we specified, above, indexed
myRecord.secondField.)

You retrieve the matching table rows, and iterate over them in the same way you would any
other index type. For example:

def readStore(store):
 try:
 key_d = {"myRecord" : {'secondField' : 3388}}
 row_list = store.index_iterator("myRecordTable",
 "recordFieldIndex",
 key_d,
 False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 print r
 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 63

Chapter 9. Using Row Versions
When a row is initially inserted in the store, and each time it is updated, it is assigned a
unique version token. The version is always returned by the method that wrote to the store
(for example, Store.put()). The version information is also returned by methods that
retrieve rows from the store.

There are two reasons why versions might be important.

1. When an update or delete is to be performed, it may be important to only perform
the operation if the row's value has not changed. This is particularly interesting in an
application where there can be multiple threads or processes simultaneously operating
on the row. In this case, read the row, examining its version when you do so. You can
then perform a put operation, but only allow the put to proceed if the version has not
changed (this is often referred to as a Compare and Set (CAS) or Read, Modify, Write
(RMW) operation). You use Store.put_if_version() or Store.delete_if_version()
to guarantee this.

2. When a client reads data that was previously written, it may be important to ensure that
the Oracle NoSQL Database node servicing the read operation has been updated with
the information previously written. This can be accomplished by passing the version of
the previously written data as a consistency parameter to the read operation. For more
information on using consistency, see Consistency Guarantees (page 65).

Versions are handled as Python byte arrays. There is no class or other data type
used to manage them. In some cases they are accessed by special methods, such as
Row.get_version().

The following code fragment retrieves a row, and then writes that row back to the store only
if the version has not changed:

def do_store_ops(store):

 key_d = {}

 try:
 row_list = store.index_iterator("myTable", "DoB", key_d,
 False)
 if not row_list:
 logging.debug("Table retrieval failed")
 else:
 logging.debug("Table retrieval succeeded.")
 for r in row_list:
 version = r.get_version()

 ###
 ### do work on the row here
 ###

 store.put_if_version("myTable", r, version)

Library Version 12.1.3.3 Using Row Versions

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 64

 except IllegalArgumentException, iae:
 logging.error("Table retrieval failed.")
 logging.error(iae.message)

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 65

Chapter 10. Consistency Guarantees
The KV store is built from some number of computers (generically referred to as nodes) that
are working together using a network. All data in your store is first written to a master node.
The master node then copies that data to other nodes in the store. Nodes which are not
master nodes are referred to as replicas.

Because of the relatively slow performance of distributed systems, there can be a possibility
that, at any given moment, a write operation that was performed on the master node will not
yet have been performed on some other node in the store.

Consistency, then, is the policy describing whether it is possible for a row on Node A to be
different from the same row on Node B.

When there is a high likelihood that a row stored on one node is identical to the same row
stored on another node, we say that we have a high consistency guarantee. Likewise, a low
consistency guarantee means that there is a good possibility that a row on one node differs in
some way from the same row stored on another node.

You can control how high you want your consistency guarantee to be. Note that the trade-off
in setting a high consistency guarantee is that your store's read performance might not be as
high as if you use a low consistency guarantee.

There are several different forms of consistency guarantees that you can use. They are
described in the following sections.

Note that by default, Oracle NoSQL Database uses the lowest possible consistency possible.

Specifying Consistency Policies
To specify a consistency policy, use one of:

• SimpleConsistency

• TimeConsistency

• VersionConsistency

Each of these are described in the following sections.

Once you have selected a consistency policy, you can put it to use in one of
two ways. First, you can use it to define a default consistency policy using the
StoreConfig.set_consistency() method. Specifying a consistency policy in this way means
that all store operations will use that policy, unless they are overridden on an operation by
operation basis.

The second way to use a consistency policy is to override the default policy using a
ReadOptions class instance you provide to the Store method that you are using to perform
the store read operation.

The following example shows how to set a default consistency policy for the store. We will
show the per-operation method of specifying consistency policies in the following sections.
from nosqldb import Factory

Library Version 12.1.3.3 Consistency Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 66

from nosqldb import StoreConfig

available consistency constants
from nosqldb import ABSOLUTE
from nosqldb import NONE_REQUIRED
from nosqldb import NONE_REQUIRED_NO_MASTER

...

locations where our store and proxy can be found
kvlite = 'localhost:5000'
proxy = 'localhost:7010'

...

configure and open the store
def open_store():
 kvstoreconfig = StoreConfig('kvstore', [kvlite])
 kvstoreconfig.set_consistency(NONE_REQUIRED)

 return Factory.open(proxy, kvstoreconfig)

...

Using Simple Consistency

You can use pre-defined consistency constants to specify certain rigid consistency guarantees.
There are three such instances that you can use:

1. ABSOLUTE

Requires that the operation be serviced at the master node. In this way, the row(s) will
always be consistent with the master.

This is the strongest possible consistency guarantee that you can require, but it comes at
the cost of servicing all read and write requests at the master node. If you direct all your
traffic to the master node (which is just one machine for each partition), then you will
not be distributing your read operations across your replicas. You also will slow your write
operations because your master will be busy servicing read requests. For this reason, you
should use this consistency guarantee sparingly.

2. NONE_REQUIRED

Allows the store operation to proceed regardless of the state of the replica relative to the
master. This is the most relaxed consistency guarantee that you can require. It allows for
the maximum possible store performance, but at the high possibility that your application
will be operating on stale or out-of-date information.

3. NONE_REQUIRED_NO_MASTER

Library Version 12.1.3.3 Consistency Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 67

Requires read operations to be serviced on a replica; never the Master. When this policy is
used, the read operation will not be performed if the only node available is the Master.

Where possible, this consistency policy should be avoided in favor of the secondary zones
feature.

For example, suppose you are performing a critical read operation that you know must
absolutely have the most up-to-date data. Then do this:

...
Store handle configuration and open skipped for brevity

def do_store_ops(store):
 ## Create the simple consistency guarantee to use for this
 ## store read.
 ro = ReadOptions({ONDB_CONSISTENCY : ABSOLUTE,
 ONDB_TIMEOUT : 600})
 try:
 primary_key_d = {"item" : "bolts"}
 row = store.get("myTable", primary_key_d, ro)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 display_row(row)
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except ConsistencyException, ce:
 logging.error("Row retrieval failed due to Consistency.")
 logging.error(ce.message)
 except RequestTimeoutException, rte:
 logging.error("Row retrieval failed, exceeded timeout value.")
 logging.error(rte.message)

Using Time-Based Consistency

A time-based consistency policy describes the amount of time that a replica node is allowed
to lag behind the master node. If the replica's data is more than the specified amount of time
out-of-date relative to the master, then a ConsistencyException is thrown. In that event,
you can either abandon the operation, retry it immediately, or pause and then retry it.

In order for this type of a consistency policy to be effective, the clocks on all the nodes in the
store must be synchronized using a protocol such as NTP.

In order to specify a time-based consistency policy, you use the TimeConsistency class. This
class requires the following information:

• ONDB_PERMISSIBLE_LAG

Library Version 12.1.3.3 Consistency Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 68

The number of milliseconds the replica is allowed to lag behind the master.

• ONDB_TIMEOUT

The number of milliseconds that describes how long the replica is permitted to wait in an
attempt to meet the permissible lag limit. That is, if the replica cannot immediately meet
the permissible lag requirement, then it will wait this amount of time to see if it is updated
with the required data from the master. If the replica cannot meet the permissible lag
requirement within the timeout period, a ConsistencyException is thrown.

The following sets a default time-based consistency policy of 2 seconds. The timeout is 4
seconds.

from nosqldb import Factory
from nosqldb import StoreConfig
from nosqldb import TimeConsistency

Required for TimeConsistency
from nosqldb import ONDB_PERMISSIBLE_LAG
from nosqldb import ONDB_TIMEOUT

...

locations where our store and proxy can be found
kvlite = 'localhost:5000'
proxy = 'localhost:7010'

...

configure and open the store
def open_store():
 tc = TimeConsistency({ONDB_PERMISSIBLE_LAG : 2000,
 ONDB_TIMEOUT : 4000})

 kvstoreconfig = StoreConfig('kvstore', [kvlite])
 kvstoreconfig.set_consistency(tc)

 return Factory.open(proxy, kvstoreconfig)

...

Using Version-Based Consistency

Version-based consistency is used on a per-operation basis. It ensures that a read performed
on a replica is at least as current as some previous write performed on the master.

An example of how this might be used is a web application that collects some information
from a customer (such as her name). It then customizes all subsequent pages presented to
the customer with her name. The storage of the customer's name is a write operation that

Library Version 12.1.3.3 Consistency Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 69

can only be performed by the master node, while subsequent page creation is performed as a
read-only operation that can occur at any node in the store.

Use of this consistency policy might require that version information be transferred between
processes in your application.

To create a version-based consistency policy, use the VersionConsistency class. When you
do this, you must provide the following information:

• ONDB_VERSION

The Version that the read must match.

• ONDB_TIMEOUT

The number of milliseconds that describes how long the replica is permitted to wait in an
attempt to meet the version requirement. That is, if the replica cannot immediately meet
the version requirement, then it will wait this amount of time to see if it is updated with
the required data from the master. If the replica cannot meet the requirement within the
timeout period, a ConsistencyException is thrown.

For example, the following code performs a store write, collects the version information, then
uses it to construct a version-based consistency policy.

from nosqldb import Consistency

from nosqldb import DurabilityException
from nosqldb import Factory
from nosqldb import IllegalArgumentException
from nosqldb import ProxyConfig

from nosqldb import ReadOptions
constant needed for ReadOptions
from nosqldb import ONDB_CONSISTENCY
from nosqldb import ONDB_VERSION_CONSISTENCY
from nosqldb import ONDB_TIMEOUT

from nosqldb import RequestTimeoutException
from nosqldb import Row
from nosqldb import StoreConfig
from nosqldb import WriteOptions
Constants needed for the write options
from nosqldb import ONDB_RETURN_CHOICE

from nosqldb import VersionConsistency
Constants needed for the VersionConsistency
from nosqldb import ONDB_TIMEOUT
from nosqldb import ONDB_VERSION

import logging

Library Version 12.1.3.3 Consistency Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 70

import os
import sys

locations where our store and proxy can be found
kvlite = 'localhost:5000'
proxy = 'localhost:7010'

set logging level to debug and log to stdout
def setup_logging():
 rootLogger = logging.getLogger()
 rootLogger.setLevel(logging.DEBUG)

 logger = logging.StreamHandler(sys.stdout)
 logger.setLevel(logging.DEBUG)
 formatter = logging.Formatter('\t%(levelname)s - %(message)s')
 logger.setFormatter(formatter)
 rootLogger.addHandler(logger)

configure and open the store
def open_store():
 kvstoreconfig = StoreConfig('kvstore', [kvlite])
 return Factory.open(proxy, kvstoreconfig)

def write_row(store):
 row_d = { 'item' : 'bolts',
 'description' : "Hex head, stainless",
 'count' : 5,
 'percentage' : 0.2173913}
 row = Row(row_d)

 ## Create the write options
 wo = WriteOptions({ONDB_RETURN_CHOICE : 'VERSION'})
 try:
 matchVersion = store.put("myTable", row, wo)
 ## matchVersion is actually a tuple, the second element of
 ## which identifies the table that the row was written to.
 return matchVersion[0]
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 except DurabilityException, de:
 logging.error("Could not write table. Durability failure.")
 logging.error(de.message)
 except RequestTimeoutException, rte:
 logging.error("Could not write table. Exceeded timeout.")
 logging.error(rte.message)

At some other point in this application's code, or perhaps in another application entirely, we
use the matchVersion captured above to create a version-based consistency policy.

Library Version 12.1.3.3 Consistency Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 71

def display_row(row):
 try:
 print "Retrieved row:"
 print "\tItem: %s" % row['item']
 print "\tDescription: %s" % row['description']
 print "\tCount: %s" % row['count']
 print "\tPercentage: %s" % row['percentage']
 print "\n"
 except KeyError, ke:
 logging.error("Row display failed. Bad key: %s" % ke.message)

def read_row(store, matchVersion):
 vc = VersionConsistency({ONDB_VERSION : matchVersion,
 ONDB_TIMEOUT : 1000})

 consistency = Consistency({ONDB_VERSION_CONSISTENCY: vc})

 ro = ReadOptions({ONDB_CONSISTENCY : consistency,
 ONDB_TIMEOUT : 1000})

 try:
 primary_key_d = {"item" : "bolts"}
 row = store.get("myTable", primary_key_d, ro)
 if not row:
 logging.debug("Row retrieval failed")
 else:
 logging.debug("Row retrieval succeeded.")
 display_row(row)
 except IllegalArgumentException, iae:
 logging.error("Row retrieval failed.")
 logging.error(iae.message)
 return
 except ConsistencyException, ce:
 logging.error("Row retrieval failed due to Consistency.")
 logging.error(ce.message)
 except RequestTimeoutException, rte:
 logging.error("Row retrieval failed, exceeded timeout value.")
 logging.error(rte.message)

if __name__ == '__main__':

 setup_logging()
 store = open_store()
 matchVersion = write_row(store)
 read_row(store, matchVersion)
 store.close()

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 72

Chapter 11. Durability Guarantees
Writes are performed in the Oracle NoSQL Database store by performing the write operation
(be it a creation, update, or delete operation) on a master node. As a part of performing the
write operation, the master node will usually make sure that the operation has made it to
stable storage before considering the operation complete.

The master node will also transmit the write operation to the replica nodes in its shard.
It is possible to ask the master node to wait for acknowledgments from its replicas before
considering the operation complete.

Note

If your store is configured such that secondary zones are in use, then write
acknowledgements are never required for the replicas in the secondary zones. That
is, write acknowledgements are only returned by replicas in primary zones. See the
Oracle NoSQL Database Administrator's Guide for more information on zones.

The replicas, in turn, will not acknowledge the write operation until they have applied the
operation to their own database.

A durability guarantee, then, is a policy which describes how strongly persistent your data is
in the event of some kind of catastrophic failure within the store. (Examples of a catastrophic
failure are power outages, disk crashes, physical memory corruption, or even fatal application
programming errors.)

A high durability guarantee means that there is a very high probability that the write
operation will be retained in the event of a catastrophic failure. A low durability guarantee
means that the write is very unlikely to be retained in the event of a catastrophic failure.

The higher your durability guarantee, the slower your write-throughput will be in the store.
This is because a high durability guarantee requires a great deal of disk and network activity.

Usually you want some kind of a durability guarantee, although if you have highly transient
data that changes from run-time to run-time, you might want the lowest possible durability
guarantee for that data.

Durability guarantees include two types of information: acknowledgment guarantees and
synchronization guarantees. These two types of guarantees are described in the next sections.
We then show how to set a durability guarantee.

Note that by default, Oracle NoSQL Database uses a low durability guarantee.

Setting Acknowledgment-Based Durability Policies

Whenever a master node performs a write operation (create, update or delete), it must
send that operation to its various replica nodes. The replica nodes then apply the write
operation(s) to their local databases so that the replicas are consistent relative to the master
node.

Library Version 12.1.3.3 Durability Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 73

Upon successfully applying write operations to their local databases, replicas in primary zones
send an acknowledgment message back to the master node. This message simply says that the
write operation was received and successfully applied to the replica's local database. Replicas
in secondary zones do not send these acknowledgement messages.

Note

The exception to this are replicas in secondary zones, which will never acknowledge
write operations. See the Oracle NoSQL Database Administrator's Guide for more
information on zones.

An acknowledgment-based durability policy describes whether the master node will
wait for these acknowledgments before considering the write operation to have
completed successfully. You can require the master node to wait for no acknowledgments,
acknowledgments from a simple majority of replica nodes in primary zones, or
acknowledgments from all replica nodes in primary zones.

The more acknowledgments the master requires, the slower its write performance will be.
Waiting for acknowledgments means waiting for a write message to travel from the master
to the replicas, then for the write operation to be performed at the replica (this may mean
disk I/O), then for an acknowledgment message to travel from the replica back to the master.
From a computer application's point of view, this can all take a long time.

When setting an acknowledgment-based durability policy, you can require acknowledgment
from:

• All replicas. That is, all of the replica nodes in the shard that reside in a primary zone.
Remember that your store has more than one shard, so the master node is not waiting for
acknowledgments from every machine in the store.

• No replicas. In this case, the master returns with normal status from the write operation
as soon as it has met its synchronization-based durability policy. These are described in the
next section.

• A simple majority of replicas in primary zones. That is, if the shard has 5 replica nodes
residing in primary zones, then the master will wait for acknowledgments from 3 nodes.

Setting Synchronization-Based Durability Policies

Whenever a node performs a write operation, the node must know whether it should wait for
the data to be written to stable storage before successfully returning from the operation.

As a part of performing a write operation, the data modification is first made to an in-memory
cache. It is then written to the filesystem's data buffers. And, finally, the contents of the data
buffers are synchronized to stable storage (typically, a hard drive).

You can control how much of this process the master node will wait to complete before it
returns from the write operation with a normal status. There are three different levels of
synchronization durability that you can require:

• NO_SYNC

Library Version 12.1.3.3 Durability Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 74

The data is written to the host's in-memory cache, but the master node does not wait for
the data to be written to the file system's data buffers, or for the data to be physically
transferred to stable storage. This is the fastest, but least durable, synchronization policy.

• WRITE_NO_SYNC

The data is written to the in-memory cache, and then written to the file system's data
buffers, but the data is not necessarily transferred to stable storage before the operation
completes normally.

• SYNC

The data is written to the in-memory cache, then transferred to the file system's data
buffers, and then synchronized to stable storage before the write operation completes
normally. This is the slowest, but most durable, synchronization policy.

Notice that in all cases, the data is eventually written to stable storage (assuming some
failure does not occur to prevent it). The only question is, how much of this process will be
completed before the write operation returns and your application can proceed to its next
operation.

Setting Durability Guarantees

To set a durability guarantee, use the Durability class. When you do this, you must provide
three pieces of information:

• The acknowledgment policy.

• A synchronization policy at the master node.

• A synchronization policy at the replica nodes.

The combination of policies that you use is driven by how sensitive your application might be
to potential data loss, and by your write performance requirements.

For example, the fastest possible write performance can be achieved through a durability
policy that requires:

• No acknowledgments.

• NO_SYNC at the master.

• NO_SYNC at the replicas.

However, this durability policy also leaves your data with the greatest risk of loss due to
application or machine failure between the time the operation returns and the time when the
data is written to stable storage.

On the other hand, if you want the highest possible durability guarantee, you can use:

• All replicas must acknowledge the write operation.

Library Version 12.1.3.3 Durability Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 75

• SYNC at the master.

• SYNC at the replicas.

Of course, this also results in the slowest possible write performance.

Most commonly, durability policies attempt to strike a balance between write performance
and data durability guarantees. For example:

• Simple majority of replicas must acknowledge the write.

• SYNC at the master.

• NO_SYNC at the replicas.

Note that you can set a default durability policy for your Store handle, but you can also
override the policy on a per-operation basis for those situations where some of your data need
not be as durable (or needs to be MORE durable) than the default.

For example, suppose you want an intermediate durability policy for most of your data, but
sometimes you have transient or easily re-created data whose durability really is not very
important. Then you would do something like this:

First, set the default durability policy for the Store handle:

from nosqldb import Durability
Constants needed for Durability
from nosqldb import ONDB_AP_NONE
from nosqldb import ONDB_AP_SIMPLE_MAJORITY
from nosqldb import ONDB_MASTER_SYNC
from nosqldb import ONDB_REPLICA_SYNC
from nosqldb import ONDB_REPLICA_ACK
from nosqldb import ONDB_SP_SYNC
from nosqldb import ONDB_SP_NO_SYNC
For Durability, could use one of
COMMIT_SYNC, COMMIT_NO_SYNC, or
COMMIT_WRITE_NO_SYNC

from nosqldb import DurabilityException
from nosqldb import Factory
from nosqldb import IllegalArgumentException
from nosqldb import ProxyConfig
from nosqldb import RequestTimeoutException
from nosqldb import Row
from nosqldb import StoreConfig
from nosqldb import WriteOptions
Constants needed for the write options
from nosqldb import ONDB_DURABILITY
from nosqldb import ONDB_TIMEOUT

...

Library Version 12.1.3.3 Durability Guarantees

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 76

locations where our store and proxy can be found
kvlite = 'localhost:5000'
proxy = 'localhost:7010'

...

configure and open the store
def open_store():
 dg = Durability({ONDB_MASTER_SYNC : ONDB_SP_SYNC,
 ONDB_REPLICA_SYNC : ONDB_SP_NO_SYNC,
 ONDB_REPLICA_ACK : ONDB_AP_SIMPLE_MAJORITY})

 kvstoreconfig = StoreConfig('kvstore', [kvlite])
 kvstoreconfig.set_durability(dg)
 return Factory.open(proxy, kvstoreconfig)

In another part of your code, for some unusual write operations, you might then want to relax
the durability guarantee so as to speed up the write performance for those specific write
operations:

def do_store_ops(store):
 row_d = { 'item' : 'bolts',
 'description' : "Hex head, stainless",
 'count' : 5,
 'percentage' : 0.2173913}
 row = Row(row_d)

 ## Create the write options

 dur = Durability({ONDB_MASTER_SYNC : ONDB_SP_NO_SYNC,
 ONDB_REPLICA_SYNC : ONDB_SP_NO_SYNC,
 ONDB_REPLICA_ACK : ONDB_AP_NONE})

 wo = WriteOptions({ONDB_DURABILITY : dur,
 ONDB_TIMEOUT : 600})
 try:
 store.put("myTable", row, wo)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 except DurabilityException, de:
 logging.error("Could not write table. Durability failure.")
 logging.error(de.message)
 except RequestTimeoutException, rte:
 logging.error("Could not write table. Exceeded timeout.")
 logging.error(rte.message)

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 77

Chapter 12. Executing a Sequence of Operations
You can execute a sequence of write operations as a single atomic unit so long as all the rows
that you are operating upon share the same shard key. By atomic unit, we mean all of the
operations will execute successfully, or none of them will.

Also, the sequence is performed in isolation. This means that if you have a thread running
a particularly long sequence, then another thread cannot intrude on the data in use by the
sequence. The second thread will not be able to see any of the modifications made by the
long-running sequence until the sequence is complete. The second thread also will not be able
to modify any of the data in use by the long-running sequence.

Be aware that sequences only support write operations. You can perform puts and deletes, but
you cannot retrieve data when using sequences.

When using a sequence of operations:

• All of the keys in use by the sequence must share the same shard key.

• Operations are placed into a list, but the operations are not necessarily executed in the
order that they appear in the list. Instead, they are executed in an internally defined
sequence that prevents deadlocks.

The rest of this chapter shows how to use the Operation class and
Store.execute_updates() to create and run a sequence of operations.

Sequence Errors

If any operation within the sequence experiences an error, then the entire operation is
aborted. In this case, your data is left in the same state it would have been in if the sequence
had never been run at all — no matter how much of the sequence was run before the error
occurred.

Fundamentally, there are two reasons why a sequence might abort:

1. An internal operation results in an error that is considered a fault. For example, the
operation throws a DurabilityException. Also, if there is an internal failure due to
message delivery or a networking error.

2. An individual operation returns normally but is unsuccessful as defined by the particular
operation. (For example, you attempt to delete a row that does not exist). If this occurs
AND you specified true for ONDB_ABORT_IF_UNSUCCESSFUL for the Operation object
then an OperationExecutionException is thrown. This error contains information about
the failed operation.

Creating a Sequence

You create a sequence by constructing an array of Operation objects. For each object, you
specify the necessary operation information using an OperationType object provided to the

Library Version 12.1.3.3 Executing a Sequence of Operations

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 78

object's ONDB_OPERATION key. Each element in the array represents exactly one operation in
the store.

For example, suppose you are using a table defined like this:
CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: small
price: 12.07
inventoryCount: 127

• Row 2:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: medium
price: 13.07
inventoryCount: 201

• Row 3:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: large
price: 14.07
inventoryCount: 39

And further suppose that this table has rows that require an update (such as a price and
inventory refresh), and you want the update to occur in such a fashion as to ensure it is
performed consistently for all the rows.

Library Version 12.1.3.3 Executing a Sequence of Operations

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 79

Then you can create a sequence in the following way:
from nosqldb import Factory
from nosqldb import IllegalArgumentException
from nosqldb import Operation
from nosqldb import OperationType
from nosqldb import ProxyConfig
from nosqldb import Row
from nosqldb import StoreConfig

import logging
import os
import sys

Constants needed for operations
from nosqldb import ONDB_OPERATION
from nosqldb import ONDB_OPERATION_TYPE
from nosqldb import ONDB_TABLE_NAME
from nosqldb import ONDB_ROW
from nosqldb import ONDB_ABORT_IF_UNSUCCESSFUL

op_array = []

...
Skipped setup and logging functions for brevity
...

def add_op(op_t, table_name, if_unsuccess,
 item_type, item_cat, item_class,
 item_color, item_size, price, inv_count):

 global op_array

 row_d = { 'itemType' : item_type,
 'itemCategory' : item_cat,
 'itemClass' : item_class,
 'itemColor' : item_color,
 'itemSize' : item_size,
 'price' : price,
 'inventoryCount' : inv_count
 }
 op_row = Row(row_d)

 op_type = OperationType({ONDB_OPERATION_TYPE : op_t})
 op = Operation({
 ONDB_OPERATION : op_type,
 ONDB_TABLE_NAME : table_name,
 ONDB_ROW : op_row,
 ONDB_ABORT_IF_UNSUCCESSFUL : True
 })

Library Version 12.1.3.3 Executing a Sequence of Operations

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 80

 op_array.append(op)

...

if __name__ == '__main__':

 ...

 add_op('PUT', 'myTable', True,
 "Hats", "baseball", "longbill",
 "red", "small", 13.07, 107)
 add_op('PUT', 'myTable', True,
 "Hats", "baseball", "longbill",
 "red", "medium", 14.07, 198)
 add_op('PUT', 'myTable', True,
 "Hats", "baseball", "longbill",
 "red", "large", 15.07, 140)

...

Note in the above example that we update only those rows that share the same shard key. In
this case, the shard key includes the itemType, itemCategory, and itemClass fields. If the
value for any of those fields is different from the others, we could not successfully execute
the sequence.

Executing a Sequence

To execute the sequence we created in the previous section, use the
Store.execute_updates() method:

...

def do_store_ops(store):

 try:
 store.execute_updates(op_array)
 logging.debug("Store write succeeded.")
 except IllegalArgumentException, iae:
 logging.error("Could not write table.")
 logging.error(iae.message)
 sys.exit(-1)

if __name__ == '__main__':

 ...

 add_op('PUT', 'myTable', True,
 "Hats", "baseball", "longbill",
 "red", "small", 13.07, 107)
 add_op('PUT', 'myTable', True,

Library Version 12.1.3.3 Executing a Sequence of Operations

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 81

 "Hats", "baseball", "longbill",
 "red", "medium", 14.07, 198)
 add_op('PUT', 'myTable', True,
 "Hats", "baseball", "longbill",
 "red", "large", 15.07, 140)

 do_store_ops(store)

Note that if any of the above errors are thrown, then the entire sequence is aborted, and your
data will be in the state it would have been in if you had never executed the sequence at all.

Store.execute_updates() can optionally take a WriteOptions object. This object allows
you to specify:

• The durability guarantee that you want to use for this sequence. If you want to use the
default durability guarantee, do not set this key, or set it to None.

• A timeout value that identifies the upper bound on the time interval allowed for processing
the entire sequence. If you provide 0, the default request timeout value is used.

• A ONDB_RETURN_CHOICE value that indicates whether you want to return the value resulting
from the operation, the row's version, both of these things, or nothing.

For an example of using WriteOptions, see Durability Guarantees (page 72).

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 82

Appendix A. Table Data Definition
Language Overview

Before you can write data to tables in the store, you must provide a definition of the tables
you want to use. This definition includes information such as the table's name, the name of
its various rows and the data type contained in those rows, identification of the primary and
(optional) shard keys, and so forth. To perform these definitions, Oracle NoSQL Database
provides a Data Definition Language (DDL) that you use to form table and index statements.
These statements can be used to:

• Define tables and sub-tables.

• Modify table definitions.

• Delete table definitions.

• Define indexes.

• Delete index definitions.

Table and index statements take the form of ordinary strings, which are then transmitted to
the Oracle NoSQL Database store using the appropriate method or function. For example, to
define a simple user table, the table statement might look like this:

CREATE TABLE Users (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 PRIMARY KEY (id)
)

For information on how to transmit these statements to the store, see Introducing Oracle
NoSQL Database Tables and Indexes (page 14).

For overview information on primary and shard keys, see Primary and Shard Key Design (page
21).

For overview information on indexes, see Creating Indexes (page 18).

The remainder of this appendix describes in detail the DDL statements that you use to
manipulate table and index definitions in the store.

Name Constraints

The following sections use all uppercase to identify DDL keywords (such as STRING, CHECK,
CREATE TABLE, and so on). However, these keywords are actually case-insensitive and can be
entered as lower-case.

The DDL keywords shown here are reserved and cannot be used as table, index or field names.

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 83

Table, index and field names are case-preserving, but case-insensitive. So you can, for
example, create a field named MY_NAME, and later reference it as my_name without error.
However, whenever the field name is displayed, it will display as MY_NAME.

Table and index names are limited to 32 characters. Field names can be 64 characters. All
table, index and field names are restricted to alphanumeric characters, plus underscore ("_").
All names must start with a letter.

DDL Comments

You can include comments in your DDL statements using one of the following constructs:

id INTEGER, /* this is a comment */
firstName STRING, // this is a comment
lastName STRING, # this is a comment

CREATE TABLE

To create a table definition, use a CREATE TABLE statement. Its form is:

CREATE TABLE [IF NOT EXISTS] table-name (
 field-definition, field-definition-2 ...,
 PRIMARY KEY (field-name, field-name-2...),
 [COMMENT "comment string"]
)

where:

• IF NOT EXISTS is optional, and it causes table creation to be silently skipped if a table of
the given name already exists in the store, and the table's definition exactly matches the
provided definition. No error is returned as a result of the statement execution.

If this statement phrase is not specified, then an attempt to duplicate a table name in the
store results in a failed table creation.

• table-name is the name of the table. This field is required. If you are creating a sub-table,
then use dot notation. For example, a table might be named Users. You might then define a
sub-table named Users.MailingAddress.

• field-definition is a comma-separated list of fields. There are one or more field definitions
for every table. Field definitions are described next in this section.

• PRIMARY KEY identifies at least one field in the table as the primary key. A primary
key definition is required for every table. For information on primary keys, see Primary
Keys (page 21).

To define a shard key (optional), use the SHARD keyword in the primary key statement. For
information on shard keys, see Shard Keys (page 22).

For example:

PRIMARY KEY (SHARD(id), lastName)

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 84

• COMMENT is optional. You can use this to provide a brief description of the table. The
comment will not be interpreted but it is included in the table's metadata.

Field Definitions

When defining a table, field definitions take the form:

field-name type [constraints] [COMMENT "comment-string"]

where:

• field-name is the name of the field. For example: id or familiarName. Every field must
have a name.

• type describes the field's data type. This can be a simple type such as INTEGER or STRING,
or it can be a complex type such a RECORD. The list of allowable types is described in the
next section.

• constraints describes any limits placed on the data contained in the field. That is, minimum
or maximum values, allowable ranges, or default values. This information is optional. See
Field Constraints (page 86) for more information.

• COMMENT is optional. You can use this to provide a brief description of the field. The
comment will not be interpreted but it is included in the table's metadata.

Supported Data Types

The following data types are supported for table fields:

• ARRAY

An array of data. All elements of the array must be of the same data type, and this type
must be declared when you define the array field. For example, to define an array of
strings:

myArray ARRAY(STRING)

Note that field constraints can be applied to array value. For example:

myArray ARRAY(INTEGER CHECK(ELEMENTOF(myArray) > 0 and \
ELEMENTOF(myArray) < 100))

See CHECK (page 86) for a description of the CHECK statement.

• BINARY

Binary data.

• BINARY(length)

Fixed-length binary field of size length (in bytes).

• BOOLEAN

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 85

A boolean data type.

• DOUBLE

A double.

• ENUM

An enumerated list. The field definition must provide the list of allowable enumerated
values. For example:
fruitName ENUM(apple,pear,orange)

• FLOAT

A float.

• INTEGER

An integer.

• LONG

A long.

• MAP

A data map. All map keys are strings, but when defining these fields you must define the
data type of the data portion of the map. For example, if your keys map to integer values,
then you define the field like this:
myMap MAP(INTEGER)

Note that field constraints can be applied to mapped value. For example:
myMap MAP(INTEGER CHECK(ELEMENTOF(myMap) > 0 and \
ELEMENTOF(myMap) < 13))

See CHECK (page 86) for a description of the CHECK statement.

• RECORD

An embedded record. This field definition must define all the fields contained in the
embedded record. All of the same syntax rules apply as are used for defining an ordinary
table field. For example, a simple embedded record might be defined as:
myEmbeddedRecord RECORD(firstField STRING, secondField INTEGER)

Data constraints, default values, and so forth can also be used with the embedded record's
field definitions.

• STRING

A string.

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 86

Field Constraints

Field constraints are used to define information about the field, such as the allowable range
of values and default values. For example:

day_of_month CHECK (day_of_month >= 1 AND day_of_month <= 31)

Not all data type support constraints, and individual data types do not support all possible
constraints.

CHECK

Use CHECK to specify an allowable range of values. The symbols AND, <, <=, >, and >= are all
supported. <= and >= specifying inclusive ranges, and < and > specify exclusive ranges. For
example:

myInt INTEGER CHECK(myInt > 10 and myInt < 20)

For simple data types, (INTEGER, LONG, FLOAT, DOUBLE, STRING), use the field's name to
specify the range, as shown in the previous example.

For STRING datatypes, the range specifies the string's value range based on a lexicographical
comparison of the Unicode value of each character in the string. For example:

 myString STRING CHECK(myString > "aaa" and myString < "zzz")

causes the string ccc to be within the valid range, but CCC or cccc would not be. If you
specify numbers for the range, then the number is interpreted as a string range. In this case:

 myString STRING CHECK(myString > 10 and myString < 20)

means that 11 is allowable, but 21 or aaa would not be.

For MAP and ARRAY datatypes, CHECK can be used to constraint the range of allowable values.
Use ELEMENTOF() to refer to the MAP's or ARRAY's value. For example:

myMap MAP(INTEGER CHECK(ELEMENTOF(myMap) > 10))

or:

myArray ARRAY(INTEGER CHECK(ELEMENTOF(myArray) > 100 AND \
ELEMENTOF(myArray) < 1000))

CHECK is not supported for BINARY, BOOLEAN, ENUM, or RECORD datatypes, although CHECK is
supported for the individual fields defined by RECORD:

myRec RECORD(a STRING, b INTEGER CHECK(b >= 0 AND b <= 10))

COMMENT

All data types can accept a COMMENT as part of their constraint. COMMENT strings are not
parsed, but do become part of the table's metadata. For example:

myRec RECORD(a STRING, b INTEGER) COMMENT "Comment string"

or

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 87

myInt INTEGER CHECK(myInt > 10 and myInt < 20) COMMENT "Comment string"

DEFAULT

All fields can accept a DEFAULT constraint, except for ARRAY, BINARY, MAP, and RECORD. The
value specified by DEFAULT is used in the event that the field data is not specified when the
table is written to the store.

For example:

id INTEGER DEFAULT -1,
description STRING DEFAULT "NONE",
size ENUM(small,medium,large) DEFAULT medium,
inStock BOOLEAN DEFAULT FALSE

NOT NULL

NOT NULL indicates that the field cannot be NULL. This constraint requires that you also
specify a DEFAULT value. Order is unimportant for these constraints. For example:

id INTEGER NOT NULL DEFAULT -1,
description STRING DEFAULT "NONE" NOT NULL

Table Creation Examples

The following are provided to illustrate the concepts described above.

CREATE TABLE users (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 age INTEGER,
 PRIMARY KEY (id),
 COMMENT "This comment applies to the table itself"
)

CREATE TABLE usersNoId (
 firstName STRING,
 lastName STRING COMMENT "This comment applies to this field only",
 age INTEGER CHECK (age > 0 AND age < 150),
 ssn STRING NOT NULL DEFAULT "xxx-yy-zzzz",
 PRIMARY KEY (SHARD(lastName), firstName)
)

CREATE TABLE users.address (
 streetNumber INTEGER,
 streetName STRING, // this comment is ignored by the DDL parser
 city STRING,
 /* this comment is ignored */
 zip INTEGER CHECK(zip > 11111 AND zip < 99999),
 addrType ENUM (home, work, other),
 PRIMARY KEY (addrType)
)

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 88

CREATE TABLE complex (
 COMMENT "this comment goes into the table metadata"
 id INTEGER,
 PRIMARY KEY (id), # this comment is just syntax
 nestedMap MAP(RECORD(m MAP(FLOAT), a ARRAY(RECORD(age INTEGER)))),
 address RECORD (street INTEGER, streetName STRING, city STRING, \
 zip INTEGER COMMENT "zip comment"),
 friends MAP (STRING),
 floatArray ARRAY (FLOAT),
 aFixedBinary BINARY(5),
 days ENUM(mon, tue, wed, thur, fri, sat, sun) NOT NULL DEFAULT tue
)

Modify Table Definitions

Use ALTER TABLE statements to either add new fields to a table definition, or delete a
currently existing field definition.

You cannot modify an existing field directly. Instead, you must delete the field, then add the
field back using the new definition. Note that this will cause all existing data associated with
the current field to be deleted.

ALTER TABLE ADD field

To add a field to an existing table, use the ADD statement:

ALTER TABLE table-name (ADD field-definition)

See Field Definitions (page 84) for a description of what should appear in field-definitions,
above. For example:

ALTER TABLE Users (ADD age INTEGER)

You can also add fields to nested records. For example, if you have the following table
definition:

CREATE TABLE u (id INTEGER,
 info record(firstName String)),
 PRIMARY KEY(id))

then you can add a field to the nested record by using dot notation to identify the nested
table, like this:

ALTER TABLE u(ADD info.lastName STRING)

ALTER TABLE DROP field

To delete a field from an existing table, use the DROP statement:

ALTER TABLE table-name (DROP field-name)

For example, to drop the age field from the Users table:

ALTER TABLE Users (DROP age)

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 89

Note that you cannot drop a field if it is the primary key.

DROP TABLE

To delete a table definition, use a DROP TABLE statement. Its form is:

DROP TABLE [IF EXISTS] table-name

where:

• IF EXISTS is optional, and it causes the drop statement to be ignored if a table with the
specified name does not exist in the store. If this phrase is not specified, and the table does
not currently exist, then the DROP statement will fail with an error.

• table-name is the name of the table you want to drop.

Note that dropping a table is a lengthy operation because all table data currently existing in
the store is deleted as a part of the drop operation.

If child tables are defined for the table that you are dropping, then they must be dropped
first. For example, if you have tables:

myTable
myTable.childTable1
myTable.childTable2

then myTable.childTable1 and myTable.childTable2 must be dropped before you can drop
myTable.

CREATE INDEX

To add an index definition to the store, use a CREATE INDEX statement. Its form is:

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (field-name)

When indexing a map field, the previous syntax is acceptible, as are any of the following:

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (KEYOF(field-name))

or

CREATE INDEX [IF NOT EXISTS] index-name ON table-name \
(ELEMENTOF(field-name))

or

CREATE INDEX [IF NOT EXISTS] index-name ON table-name \
(KEYOF(field-name),ELEMENTOF(field-name))

where:

• IF NOT EXISTS is optional, and it causes the CREATE INDEX statement to be ignored if an
index by that name currently exists. If this phrase is not specified, and an index using the

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 90

specified name does currently exist, then the CREATE INDEX statement will fail with an
error.

• index-name is the name of the index you want to create.

• table-name is the name of the table that you want to index.

• field-name is the name of the field that you want to index.

• KEYOF is a keyword that causes index entries to be created based on keys contained in a
map.

• ELEMENTOF is a keyword that causes index entries to be created based on the values
contained in a map.

For example, if table Users has a field called lastName, then you can index that field with
the following statement:

CREATE INDEX surnameIndex ON Users (lastName)

Note that depending on the amount of data in your store, creating indexes can take a long
time. This is because index creation requires Oracle NoSQL Database to examine all the data
in the store.

For a description of using indexes with non-scalar data types, see Indexing Non-Scalar Data
Types (page 53).

DROP INDEX

To delete an index definition from the store, use a DROP INDEX statement. Its form when
deleting an index is:

DROP INDEX [IF EXISTS] index-name ON table-name

where:

• IF EXISTS is optional, and it causes the DROP INDEX statement to be ignored if an index
by that name does not exist. If this phrase is not specified, and an index using the specified
name does not exist, then the DROP INDEX statement will fail with an error.

• index-name is the name of the index you want to drop.

• table-name is the name of the table containing the index you want to delete.

For example, if table Users has an index called surnameIndex, then you can delete it using
the following statement:

DROP INDEX IF EXISTS surnameIndex ON Users

DESCRIBE AS JSON TABLE

You can retrieve a JSON representation of a table by using the DESCRIBE AS JSON TABLE
statement:

Library Version 12.1.3.3 Table Data Definition Language Overview

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 91

DESCRIBE AS JSON TABLE table_name [(field-name, field-name2, ...)]

or

DESC AS JSON TABLE table_name [(field-name, field-name2, ...)]

where:

• table_name is the name of the table you want to describe.

• field-name is 0 or more fields defined for the table that you want described. If specified,
the output is limited to just the fields listed here.

Map and Array fields support the use of ELEMENTOF() to restrict the JSON representation to
just the map or array element.

DESCRIBE AS JSON INDEX

You can retrieve a JSON representation of an index by using the DESCRIBE AS JSON INDEX
statement:

DESCRIBE AS JSON INDEX index_name ON table_name

where:

• index_name is the name of the index you want to describe.

• table_name is the name of the table to which the index is applied.

SHOW TABLES

You can retrieve a list of all tables currently defined in the store using the SHOW TABLES
statement:

SHOW [AS JSON] TABLES

where AS JSON is optional and causes the resulting output to be JSON-formatted.

SHOW INDEXES

You can retrieve a list of all indexes currently defined for a table using the SHOW INDEXES
statement:

SHOW [AS JSON] INDEXES ON table_name

where:

• AS JSON is optional and causes the resulting output to be JSON-formatted.

• table_name is the name of the table for which you want to list all the indexes.

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 92

Appendix B. Proxy Server Reference
The proxy server command line options are:

nohup java -cp KVHOME/lib/kvclient.jar:kvproxy/lib/kvproxy.jar
oracle.kv.proxy.KVProxy -help
 -port <port-number> Port number of the proxy server. Default: 5010
 -store <store-name> Required KVStore name. No default.
 -helper-hosts <host:port,host:port,...> Required list of KVStore
 hosts and ports (comma separated).
 -security <security-file-path> Identifies the security file used
 to specify properties for login. Required for connecting to
 a secure store.
 -username <user> Identifies the name of the user to login to the
 secured store. Required for connecting to a secure store.
 -read-zones <zone,zone,...> List of read zone names.
 -max-active-requests <int> Maximum number of active requests towards
 the store.
 -node-limit-percent <int> Limit on the number of requests, as a
 percentage of the requested maximum active requests.
 -request-threshold-percent <int> Threshold for activating request
 limiting, as a percentage of the requested maximum active
 requests.
 -request-timeout <long> Configures the default request timeout in
 milliseconds.
 -socket-open-timeout <long> Configures the open timeout in
 milliseconds used when establishing sockets to the store.
 -socket-read-timeout <long> Configures the read timeout in
 milliseconds associated with the underlying sockets to the
 store.
 -max-iterator-results <long> A long representing the maximum
 number of results returned in one single iterator call.
 Default: 100
 -iterator-expiration <long> Iterator expiration interval in
 milliseconds.
 -max-open-iterators <int> Maximum concurrent opened iterators.
 Default: 10000
 -num-pool-threads <int> Number of proxy threads. Default: 20
 -max-concurrent-requests <int> The maximum number of
 concurrent requests per iterator. Default: <num_cpus * 2>
 -max-results-batches <int> The maximum number of results
 batches that can be held in the proxy per iterator.
 Default: 0
 -help Usage instructions.
 -version Print KVProxy server version number.
 -verbose Turn verbose flag on.

Always start the Oracle NoSQL Database store before starting the proxy server.

Library Version 12.1.3.3 Proxy Server Reference

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 93

When connecting to a non-secured store, the following parameters are required:

• -helper-hosts

• -port

• -store

When connecting to a secured store, the following parameters are also required:

• -security

• -username

Note

Drivers are able to start and stop the proxy server on the local host if properly
configured. See Automatically Starting the Proxy Server (page 5) for details.

Securing Oracle NoSQL Database Proxy Server

If configured properly, the proxy can access a secure installation of Oracle NoSQL Database. To
do this, the -username and -security proxy options must be specified.

The following example describes how to add security to an Oracle NoSQL Database single
node deployment. The example also shows how to initiate a connection to the Oracle NoSQL
Database replication nodes.

To install Oracle NoSQL Database securely:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-admin 5001 -host node01 -harange 5890,5900 \
-store-security configure -pwdmgr pwdfile -capacity 1

1. Run the makebootconfig utility with the required -store-security option to set up the
basic store configuration with security:

2. In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password
to use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. In this case, the
password file is used, and the securityconfig tool will automatically generate the
following security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/client.trust

Library Version 12.1.3.3 Proxy Server Reference

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 94

security/client.security
security/store.keys
security/store.trust
security/store.passwd
security/security.xml

Note

In a multi-host store environment, the security directory and all files contained
in it should be copied to each server that will host a Storage Node. For more
information on multiple node deployments see the Oracle NoSQL Database
Security Guide.

4. Start the Storage Node Agent (SNA):

nohup java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are no user
definitions available against which to authenticate access. To reduce risk of unauthorized
access, an admin will only allow you to connect to it from the host on which it is running.
This security measure is not a complete safeguard against unauthorized access. It is
important that you do not provide local access to machines running KVStore. In addition,
you should perform steps 5, 6 and 7 soon after this step to minimize the time period in
which the admin might be accessible without full authentication. For more information on
maintaining a secure store see the Oracle NoSQL Database Security Guide.

5. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

6. Use the configure -name command to specify the name of the KVStore that you want to
configure:

kv-> configure -name mystore
Store configured: mystore

7. Configure the KVStore by deploying a Zone, a Storage Node, and an Admin Node. Then,
create a Storage Node Pool. Finally, create and deploy a topology.

kv-> plan deploy-zone -name mydc -rf 1 -wait
Executed plan 2, waiting for completion...
Plan 2 ended successfully
kv-> plan deploy-sn -zn zn1 -port 5000 -host node01 -wait
Executed plan 3, waiting for completion...
Plan 3 ended successfully
kv-> plan deploy-admin -sn sn1 -port 5001 -wait

Library Version 12.1.3.3 Proxy Server Reference

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 95

Executed plan 4, waiting for completion...
Plan 4 ended successfully
kv-> pool create -name mypool
kv-> pool join -name mypool -sn sn1
Added Storage Node(s) [sn1] to pool mypool
kv-> topology create -name mytopo -pool mypool -partitions 30
Created: mytopo
kv-> plan deploy-topology -name mytopo -wait
Executed plan 5, waiting for completion...
Plan 5 ended successfully

8. Create an admin user. In this case, user root is defined:

kv-> plan create-user -name root -admin -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 6, waiting for completion...
Plan 6 ended successfully

9. Create a new password file to store the credentials needed to allow clients to login as the
admin user (root):

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig \
pwdfile create -file KVROOT/security/login.passwd
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig pwdfile secret \
-file KVROOT/security/login.passwd -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created
OK

Note

The password must match the one set for the admin in the previous step.

10. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (mylogin.txt) is used. To login, use the following
command:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security mylogin
Logged in admin as root

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

Library Version 12.1.3.3 Proxy Server Reference

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 96

oracle.kv.auth.username=root
oracle.kv.auth.pwdfile.file=KVROOT/security/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Then, to run KVProxy and access the secure Oracle NoSQL Database deployment:

java -cp KVHOME/lib/kvclient.jar:KVPROXY/lib/kvproxy.jar
oracle.kv.proxy.KVProxy -helper-hosts node01:5000 -port 5010
-store mystore -username root -security mylogin
Nov 21, 2014 12:59:12 AM oracle.kv.proxy.KVProxy <init>
INFO: PS: Starting KVProxy server
Nov 21, 2014 12:59:12 AM oracle.kv.proxy.KVProxy <init>
INFO: PS: Connect to Oracle NoSQL Database mystore nodes : localhost:5000
Nov 21, 2014 12:59:13 AM oracle.kv.proxy.KVProxy <init>
INFO: PS: ... connected successfully
Nov 21, 2014 12:59:13 AM oracle.kv.proxy.KVProxy startServer
INFO: PS: Starting listener (Half-Sync/Half-Async server - 20
no of threads on port 5010)

Note

Because this proxy server is being used with a secure store, you should limit the proxy
server's listening port (port 5010 in the previous example) to only those hosts running
authorized clients.

Trouble Shooting the Proxy Server

If your client is having trouble connecting to the store, then the problem can possibly be with
your client code, with the proxy and its configuration, or with the store. To help determine
what might be going wrong, it is useful to have a high level understanding of what happens
when your client code is connecting to a store.

1. First, your client code tries to connect to the ip:port pair given for the proxy.

2. If the connection attempt is not successful, and your client code indicates that the proxy
should be automatically started, then:

a. The client driver will prepare a command line that starts the proxy on the local host.
This command line includes the path to the java command, the classpath to the two
jar files required to start the proxy, and the parameters required to start the proxy
and connect to the store (these include the local port for the proxy to listen on, and
the store's connection information).

b. The driver executes the command line. If there is a problem, the driver might be
able to provide some relevant error information, depending on the exact nature of
the problem.

Library Version 12.1.3.3 Proxy Server Reference

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 97

c. Upon command execution, the driver waits for a few seconds for the connection to
complete. During this time, the proxy will attempt to start. At this point it might
indicate a problem with the classpath.

Next, it will check the version of kvclient.jar and indicate if it is not suited.

After that, it will check the connection parameters, and indicate problems with
those, if any.

Then the proxy will actually connect to the store, using the helper-hosts
parameter. At this time, it could report connection errors such as the store is not
available, security credentials are not available, or security credentials are incorrect.

Finally, the proxy tries to listen to the indicated port. If there's an error listening
to the port (it is already in use by another process, for example), the proxy reports
that.

d. If any errors occur in the previous step, the driver will automatically repeat the
entire process again. It will continue to repeat this process until it either successfully
obtains a connection, or it runs out of retry attempts.

Ultimately, if the driver cannot successfully create a connection, the driver will
return with an error.

3. If the driver successfully connects to the proxy, it sends a verify message to the proxy.
This verify message includes the helper-host list, the store name, the username (if using a
secure store), and the readzones if they are being used in the store.

If there is anything wrong with the information in the verify message, the proxy will
return an error message. This causes the proxy to check the verify parameters so as to
ensure that the driver is connected to the right store.

4. If there are no errors seen in the verify message, then the connection is established and
store operations can be performed.

To obtain the best error information possible when attempting to troubleshoot a connection
problem, start the proxy with the -verbose command line option. Also, you can enable
assertions in the proxy Java code by using the java -ea command line option.

Between these two mechanisms, the proxy will provide a great deal of information. To help
you analyze it, you can enable logging to a file. To do this:

Start the proxy with the following parameter:

java -cp KVHOME/lib/kvclient.jar:KVPROXY/lib/kvproxy.jar
-Djava.util.logging.config.file=logger.properties
oracle.kv.proxy.KVProxy -helper-hosts node01:5000 -port 5010
-store mystore -verbose

The file logger.properties would then contain content like this:

Log to file and console

Library Version 12.1.3.3 Proxy Server Reference

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 98

handlers = java.util.logging.FileHandler, java.util.logging.ConsoleHandler
ConsoleHandler
java.util.logging.ConsoleHandler.level = FINE
java.util.logging.ConsoleHandler.formatter =
 java.util.logging.SimpleFormatter
FileHandler
java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter
Limit the size of the file to x bytes
java.util.logging.FileHandler.limit = 100000
Number of log files to rotate
java.util.logging.FileHandler.count = 1
Location and log file name
%g is the generation number to distinguish rotated logs
java.util.logging.FileHandler.pattern = ./kvproxy.%g.log

Configuration parameters control the size and number of rotating log files used (similar
to java logging, see java.util.logging.FileHandler). For a rotating set of files, as each file
reaches a given size limit, it is closed, rotated out, and a new file is opened. Successively
older files are named by adding "0", "1", "2", etc. into the file name.

http://docs.oracle.com/javase/7/docs/api/java/util/logging/FileHandler.html

9/30/2015
Getting Started with Oracle

NoSQL Database Python Driver Page 99

Appendix C. Third Party Licenses
All of the third party licenses used by the Oracle NoSQL Database Python driver are described
in the LICENSE file, which you can find in the nosqldb directory, which exists where you
install your Python modules.

	Getting Started with the Oracle NoSQL Database Python Driver
	Table of Contents
	Preface
	Conventions Used in This Book

	Chapter 1. Developing for Oracle NoSQL Database
	Installing the Driver
	Using the Proxy Server
	The nosqldb Python Module
	Connecting to the Store
	Connecting to a Secure Store
	Automatically Starting the Proxy Server
	The StoreConfig Class
	The ProxyConfig Class

	Working with a Secured Store
	Configuring SSL
	Identifying the Trust Store
	Setting the SSL Transport Property

	Setting the Security Properties for a Proxy Server

	Chapter 2. Introduction to Oracle KVLite
	Starting KVLite
	Stopping and Restarting KVLite
	Verifying the Installation
	kvlite Utility Command Line Parameter Options

	Chapter 3. Introducing Oracle NoSQL Database Tables and Indexes
	Defining Tables
	Executing DDL Statements using the CLI
	Supported Table Data Types
	Record Fields
	Defining Child Tables
	Table Evolution

	Creating Indexes
	Indexable Field Types

	Chapter 4. Primary and Shard Key Design
	Primary Keys
	Data Type Limitations
	Partial Primary Keys
	Shard Keys

	Row Data

	Chapter 5. Writing and Deleting Table Rows
	Write Exceptions
	Writing Rows to a Table in the Store
	Writing Rows to a Child Table
	Other put Operations

	Deleting Rows from the Store
	Using multi_delete()

	Chapter 6. Reading Table Rows
	Read Exceptions
	Retrieving a Single Row
	Retrieve a Child Table

	Using multi_get()
	Iterating over Table Rows
	Specifying Field Ranges
	Iterating with Nested Tables
	Reading Indexes

	Chapter 7. Using Data Types
	Using Arrays
	Using Binary
	Using Enums
	Using Fixed Binary
	Using Maps
	Using Embedded Records

	Chapter 8. Indexing Non-Scalar Data Types
	Indexing Arrays
	Indexing Maps
	Indexing by Map Keys
	Indexing by Map Values
	Indexing by a Specific Map Key Name
	Indexing by Map Key and Value

	Indexing Embedded Records

	Chapter 9. Using Row Versions
	Chapter 10. Consistency Guarantees
	Specifying Consistency Policies
	Using Simple Consistency
	Using Time-Based Consistency
	Using Version-Based Consistency

	Chapter 11. Durability Guarantees
	Setting Acknowledgment-Based Durability Policies
	Setting Synchronization-Based Durability Policies
	Setting Durability Guarantees

	Chapter 12. Executing a Sequence of Operations
	Sequence Errors
	Creating a Sequence
	Executing a Sequence

	Appendix A. Table Data Definition Language Overview
	Name Constraints
	DDL Comments
	CREATE TABLE
	Field Definitions
	Supported Data Types
	Field Constraints
	CHECK
	COMMENT
	DEFAULT
	NOT NULL

	Table Creation Examples

	Modify Table Definitions
	ALTER TABLE ADD field
	ALTER TABLE DROP field

	DROP TABLE
	CREATE INDEX
	DROP INDEX
	DESCRIBE AS JSON TABLE
	DESCRIBE AS JSON INDEX
	SHOW TABLES
	SHOW INDEXES

	Appendix B. Proxy Server Reference
	Securing Oracle NoSQL Database Proxy Server
	Trouble Shooting the Proxy Server

	Appendix C. Third Party Licenses

