
Oracle Utilities Network Management
System
Adapters Guide

Release 2.3.0.2.0

E76915-03

April 2018

Oracle Utilities Network Management System Adapters Guide, Release 2.3.0.2.0

E76915-03

Copyright © 1991, 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
“commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/
or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

.

Contents
Preface.. 1-xi

Audience ... 1-xi
Related Documents... 1-xi
Conventions ... 1-xi

Chapter 1
Generic IVR Adapter ... 1-1

Introduction .. 1-1
Supported Application Data Flows ... 1-2

IVR Data Flows with Oracle Utilities Network Management System .. 1-2
CIS Data Flows with Oracle Utilities Network Management System ... 1-2
Callbacks Application Data Flows with Oracle Utilities Network Management System 1-2

Interaction Diagram... 1-3
Data Flow Details... 1-4

Overview ... 1-4
Trouble Calls... 1-4
Callback Requests .. 1-5
Callback Request Notes .. 1-6
Callback Responses.. 1-6

Adapter Installation.. 1-8
Ensure that the Generic IVR Adapter is installed. ... 1-8
Setup the Generic IVR Adapter System Variables ... 1-8
Configure Adapter to run as NMS System Service .. 1-8
IVRAdapter Command Line Options .. 1-9
Load the Generic IVR Adapter Database Tables and Stored Procedures.. 1-14

Software Configuration ... 1-15
Overview ... 1-15
Trouble Call Mapping Configuration.. 1-15
Mapping to Customer-Defined Fields in Oracle Utilities Network Management System's INCI-

DENTS table... 1-22
Trouble Callback Mapping Configuration.. 1-22
SRS Rules Configuration... 1-23

Map Customer-Defined Fields in the INCIDENTS Table .. 1-23
callbackInterfaceEnabled SRS Rule .. 1-24
useExternalCause SRS Rule ... 1-25
customerPhoneParentheses SRS Rule .. 1-25
defaultCallbackAgent SRS Rule ... 1-26
callbackFeederTimeout SRS Rule.. 1-26
streetXsectionOffset SRS Rule .. 1-27
Generic IVR Adapter Trouble Call Performance... 1-28
Generic IVR Adapter Troubleshooting ... 1-28

Database Schema.. 1-29
Overview ... 1-29
iii

iv
Database Table Schema .. 1-29
Stored Procedure Parameters... 1-41
SRSInput Testing Utility Command Line Options .. 1-61

Terminology .. 1-62

Chapter 2
SmallWorld GIS Adapter Template .. 2-1

Chapter 3
ESRI ArcGIS Adapter ... 3-1

Adapter Overview .. 3-1
Adapter Documentation.. 3-1

Chapter 4
Intergraph G/Electric Adapter... 4-1

Adapter Overview .. 4-1
Adapter Documentation.. 4-1

Chapter 5
Generic WebSphere MQ Mobile Adapter... 5-1

Introduction .. 5-1
Overview Description ... 5-1
Terminology.. 5-2

Functional Description.. 5-3
Functional Requirements .. 5-3
Hardware and Software Requirements ... 5-4
Required Installed Software ... 5-5

Adapter Installation.. 5-6
Overview ... 5-6
Configure Queues for Required Data Flows ... 5-11

Design Overview .. 5-12
Configuration Concepts.. 5-12
Integration with System Services... 5-13
Aggregation of Objects ... 5-14
Information Flows ... 5-14
Performance.. 5-15
High Level Messages ... 5-16
Information Models... 5-16

Configuration .. 5-17
DML Files ... 5-17
Configuration Tables ... 5-43
Run Time Errors .. 5-51
DML Examples .. 5-52

DML Reference .. 5-58
Lexical Conventions .. 5-58
Basic Concepts ... 5-60
Order of Document Processing and Other Considerations ... 5-69
Ordering of Incidents in the Incident Object ... 5-70
DML Function Calls.. 5-72
List of Functions .. 5-73

Event Object Fields ... 5-140
Incident Object Fields... 5-145
Permanent Order Object Fields .. 5-146
Permanent Relationship Object Fields ... 5-147

Chapter 6
SCADA Measurements ... 6-1

Introduction to scadapop.. 6-1
Configuration .. 6-1

RDBMS Configuration ... 6-1
Recaching Measurements .. 6-5
Information Model... 6-5

Database Schema ... 6-5

Chapter 7
Generic SCADA Adapter... 7-1

Introduction .. 7-1
Generic SCADA Adapter Configuration ... 7-2

RDBMS vs. File Mode .. 7-2
Configure Adapter to Run as an NMS System Service.. 7-2
SRS_RULES Configuration for Generic SCADA Adapter .. 7-3
Command Line Options for Generic SCADA Adapter.. 7-3
Scripts Used by the Generic SCADA Adapter.. 7-5
CES_PARAMETERS Configuration... 7-5

Measurement Configuration ... 7-6
Using SCADAPOP.. 7-6

RDBMS Configuration.. 7-10
Configuration/Execution Sequence .. 7-12

File-Based (RTAdapter) .. 7-12
SCADA Data - File Input... 7-14
RDBMS Table Polling (RTDBAdapter)... 7-16

Information Model... 7-17
Database Schema ... 7-17

MultiSpeak Integration ... 7-32
DataRaker Integration ... 7-32

Use Cases... 7-33

Chapter 8
ICCP Adapter.. 8-1

ICCP Adapter Overview ... 8-1
LiveData ICCP Adapter Configuration .. 8-3

Configuring the Adapter to Run as a System Service... 8-3
Populating the NMS Measurements Tables .. 8-11
Information Model - Database Schema ... 8-12

TMW ICCP Adapter Configuration.. 8-15
Configuring the Adapter to Run as a System Service... 8-15
Populating the NMS Measurements Tables .. 8-25
Information Model - Database Schema ... 8-26

Chapter 9
Specific SCADA Adapters ... 9-1

OSI SCADA Adapter .. 9-1
General Configuration Parameters.. 9-1
Point List Configuration ... 9-2
Real-Time States/Values... 9-3
Tags .. 9-4

Chapter 10
SCADA Calculation Engine... 10-1

 Introduction ... 10-1
SCADA Calculation Engine Database Configuration .. 10-1

Examples ... 10-2
SCADA Calculation Engine SRS Rules Configuration .. 10-2
v

vi
Chapter 11
MultiSpeak Adapter ... 11-1

Introduction .. 11-1
Installation ... 11-2

Installation Overview .. 11-2
Adapter Installation Instructions for Oracle WebLogic Server.. 11-3

Software Configuration ... 11-6
Support for Encrypted Configuration Parameters ... 11-6
AMR Configuration Parameters .. 11-6
Storing Meter Readings in AMR_RESPONSES Table ... 11-12
AVL Configuration Parameters ... 11-13
Credentials Files ... 11-14
Oracle Utilities Network Management System Configuration Rules... 11-14

Adapter Interface Communication Overview ... 11-17
Adapter Design ... 11-18

Supported Data Flows... 11-18
AMR Business Processes .. 11-19

Database Schema.. 11-26
AMR_REQUESTS.. 11-26
AMR_RESPONSES ... 11-27
AMR_CU_METERS .. 11-28
AMR_CU_METERS_HISTORY... 11-29
AMR_VOLTAGE_HISTORY... 11-29

SCADA Component.. 11-30
JMS Transport Mechanism... 11-30
Configuring JMS Support ... 11-31
Outgoing Data Flows .. 11-32

Supported Data Flows ... 11-33
NMS to SCADA .. 11-33
SCADA to NMS .. 11-41

Software Configuration ... 11-49
CES_PARAMETERS... 11-49

Plugin Support .. 11-60
Methods... 11-60
Building Custom SCADA Plug-ins ... 11-69

High-Level Messages ... 11-70
Troubleshooting ... 11-72

Chapter 12

Mobile Workforce Management Adapter
Introduction .. 12-1
Installation ... 12-2

Adapter Installation Instructions for Oracle WebLogic Server.. 12-2
Database Schema.. 12-5

OMS_MWM_EVENTS ... 12-5
OMS_MWM_ACTIVITIES .. 12-5
OMS_MWM_ALARMS ... 12-6
OMS_MWM_CREW_ACTIONS.. 12-7

Supported Data Flows ... 12-7
Outgoing Flows.. 12-7
Incoming Flows.. 12-8

Software Configuration ... 12-9
Support for Encrypted Configuration Parameters ... 12-9
Configuration Parameters ... 12-10

Oracle Utilities Network Management System Configuration Rules... 12-14
High-Level Messages ... 12-20
Troubleshooting ... 12-20

Chapter 13

SOAP Web Services
Authentication... 13-1
Trouble Management Web Service.. 13-2

Port TroubleServiceSOAP ... 13-2
Switching and Safety Web Service ... 13-5

Port SwmanServiceBeanPort .. 13-5
Damage Assessment Web Service ... 13-16

Port DamageServiceSOAP .. 13-16

Chapter 14
REST API .. 14-1

Authentication... 14-1
Resources ... 14-2

GET /dmg-rest/reports ... 14-3
POST /dmg-rest/reports ... 14-4
GET /dmg-rest/reports/:id... 14-5
POST /dmg-rest/reports/:id... 14-6
GET /dmg-rest/reports/:id/attachments/:att_id ... 14-7
PUT /dmg-rest/reports/:id/attachments/:att_id .. 14-8
DELETE /dmg-rest/reports/:id/attachments/:att_id... 14-9
GET /dmg-rest/reports/required-parts .. 14-9
GET /dmg-rest/reports/damage-types... 14-10
GET /mobile/control-zones... 14-10
GET /mobile/conditions... 14-11
GET /mobile/conditions/:class ... 14-12
POST /mobile/condition/:class ... 14-12
PUT /mobile/condition/:class/:id/status/:status ... 14-13
GET /mobile/crews/:id/availability.. 14-13
POST /mobile/crews/:id/availability .. 14-14
GET /mobile/crews/:id/status .. 14-14
POST /mobile/crews/:id/status .. 14-15
GET /mobile/get-permissions.. 14-16
GET /mobile/mobile-user-validation.. 14-16
GET /mobile/create-new-account... 14-17
GET /mobile/set-current-crew/:id.. 14-17
GET /mobile/damage-device-details... 14-18
GET /mobile/devices .. 14-18
GET /mobile/crew-types .. 14-19
GET /mobile/maps.. 14-19
GET /mobile/crews ... 14-20
GET /mobile/crews/:id... 14-20
GET /mobile/crews/:id/assignments ... 14-21
POST /mobile/crews/:id/assignments/:event-id/dispatch .. 14-21
POST /mobile/crews/:id/assignments/:event-id/onsite... 14-22
POST /mobile/crews/:id/assignments/:event-id/undispatch.. 14-22
POST /mobile/crews/:id/assignments/:event-id/unassign .. 14-23
POST /mobile/crews/:id/assignments/:event-id/undispatch-and-assign 14-24
POST /mobile/crews/:id/assignments/:event-id/undispatch-and-assign-and-dispatch/:new-event-

id .. 14-25
GET /trbl-rest/events/:id ... 14-26
vii

viii
POST /trbl-rest/events/:id.. 14-27
GET /trbl-rest/config/:cfg.. 14-28
GET / mobile/ version .. 14-28
GET / mobile/application-version/:name/:arch... 14-29
GET / mobile/application-versions/:name/:arch... 14-29
GET / mobile/application/:name/:arch ... 14-30
GET / mobile/application/:name/:arch/:version... 14-30
PUT / mobile/ user-profile/ :field-name / :value ... 14-31
GET / mobile/ device/ :id/ info ... 14-31
GET / mobile/ device/ :id/ operate/ :operation/ phases/ :phases / time/ :time 14-33
GET / mobile/ device/ :id/ lookahead/ :operation/ :phases.. 14-34
POST / mobile/device/statuses ... 14-35
GET / mobile/:id/customers ... 14-35
GET / mobile/ maps/ :mapname.. 14-36
POST / mobile/ crew... 14-36
GET / mobile/ condition/ :class/ :id.. 14-37
PUT / mobile/ condition/ :class/ :id/ text/ :text ... 14-38
DELETE / mobile/ condition/ :class/ :id ... 14-39
GET / mobile/ switch-sheets/ assignments/ :crew-key .. 14-39
POST / mobile/ switch-sheets/ :sheet-class/ :sheet-index/ steps/ :step-class/ :step-index........ 14-40
POST / mobile/ switch-sheets/ :sheet-class/ :sheet-index/ steps/ :step-class/ :step-index/ location .

14-41
GET / mobile/ switch-sheets/ :sheet-class/ :sheet-index / report .. 14-42
GET / mobile/ switch-sheets/ :sheet-class/ :sheet-index / document/ :document-id 14-43
PUT / mobile/ switch-sheets/ :sheet-class/ :sheet-index / document .. 14-44
PUT / trbl-rest/ event/ :id/ confirm-outage.. 14-45
POST / trbl-rest/ event/ :id/ log ... 14-46
POST / trbl-rest/ event/ :id/ log-once ... 14-47
POST / trbl-rest/ user-log ... 14-48
POST / trbl-rest/ user-log-once ... 14-49

Chapter 15
Weather Data Adapter.. 15-1

Adapter Overview .. 15-1
Data Import Formats... 15-2

Flat CSV Files ... 15-2
External Database Table.. 15-3
NOAA Weather Service ... 15-4

Running the Adapter.. 15-5
Command Line Options ... 15-5

Related Runtime and Configuration Tables ... 15-5

Chapter 16
DERMS Adapter .. 16-1

Overview.. 16-1
Configuration .. 16-1

PF_DERMS_ADAPTER_CONFIG... 16-2
Running the Adapter.. 16-3
Database Tables.. 16-4
Log Files... 16-5

Chapter 17
Profile Adapter ... 17-1

Adapter Overview .. 17-1
PV Profile Creation.. 17-1
Load Profile Creation .. 17-2

SRS Rule Configuration... 17-2
Command Line Options ... 17-3
Load Profile File Format... 17-4
Error Handling.. 17-6
ix

x

Preface

Please read through this guide thoroughly before beginning an installation or configuration of any
supported adapters for the Oracle Utilities Network Management System.

Audience
This document is intended for administrators and engineers responsible for installing and
configuring Oracle Utilities Network Management System adapters.

Related Documents
• Oracle Utilities Network Management System Installation Guide

• Oracle Utilities Network Management System License Information User’s Guide

• Oracle Utilities Network Management System Configuration Guide

• Oracle Utilities Network Management System Operations Mobile Application Installation and Deployment
Guide

• Oracle Utilities Network Management System User’s Guide

• Oracle Utilities Network Management System OMS for Water User’s Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with
an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.
xi

xii

Chapter 1
Generic IVR Adapter

This chapter includes the following topics:

• Introduction

• Supported Application Data Flows

• Interaction Diagram

• Data Flow Details

• Adapter Installation

• Software Configuration

• SRS Rules Configuration

• Database Schema

• Terminology

Introduction
This chapter is an administration guide for the Oracle Utilities Network Management System
Generic Interactive Voice Response (IVR) System Adapter. This chapter describes the processes
required to install and configure the adapter to run with various IVR applications. This adapter has
the following attributes:

• It is one of the adapters and tools that Oracle offers for integration with other product suites.
It is a Unix application that generally executes on the Oracle Utilities Network Management
System services server and is monitored through SMService.

• It has the ability to accept trouble calls from an external application and provide that external
application with updates about existing outages.

• It can submit callback requests to an external application and receive callback responses from
the external application.

• It can communicate with several external applications, such as Interactive Voice Response
(IVR) systems, Customer Information System (CIS) and Callback applications.
Generic IVR Adapter 1-1

Supported Application Data Flows
Supported Application Data Flows

IVR Data Flows with Oracle Utilities Network Management System
The following are the Data Flows between an IVR system and Oracle Utilities Network
Management System using the Generic IVR Adapter

• Creation of trouble calls from the IVR system to Oracle Utilities Network Management
System

• Callback request information from Oracle Utilities Network Management System to the IVR
system

• Callback response information from the IVR system to Oracle Utilities Network
Management System

CIS Data Flows with Oracle Utilities Network Management System
The following are the Data Flows between a CIS and Oracle Utilities Network Management
System using the Generic IVR Adapter

• Creation of trouble calls from the CIS application to Oracle Utilities Network Management
System

Callbacks Application Data Flows with Oracle Utilities Network Management
System

The following are the Data Flows between a Callback application and Oracle Utilities Network
Management System using the Generic IVR Adapter

• Callback request information from Oracle Utilities Network Management System to the
Callback application

• Callback response information from Callback application to Oracle Utilities Network
Management System
1-2 Oracle Utilities Network Management System Adapters Guide

Interaction Diagram
Interaction Diagram
Below is a diagram of the interaction between Oracle Utilities Network Management System and
various external applications via the Generic IVR Adapter.

Note: In this document, it is assumed that the Generic IVR Adapter's tables
and stored procedures would reside in the database used by Oracle Utilities
Network Management System.
Generic IVR Adapter 1-3

Data Flow Details
Data Flow Details

Overview
This section discusses in detail the data flows that are relevant to the Generic IVR Adapter. The
data flows generally involve bilateral database tables that are populated or polled by the adapter or
stored procedures that access internal NMS tables directly. The adapter data flows are turned on
through command line switches, but the actual data transfer may be affected through the use of
stored procedures.

Trouble Calls
New trouble calls need to be sent to Oracle Utilities Network Management System to apply the
outage analysis algorithm to predict the outage device. The Generic IVR Adapter provides the
submit_call stored procedure to pass trouble call information from the external application to
Oracle Utilities Network Management System.

There are two PL/SQL packages available for interacting with the Generic IVR Adapter. Package
pk_ivr_interface allows a full range of functionality provided by the adapter to be used. Package
pk_ccb, which supports integration of NMS to Customer Information System (CIS), provides
procedure for submitting trouble calls through Generic IVR Adapter.

Data Flow Characteristics

The following are characteristics of the Trouble Calls Data Flow

Data Flow Steps

1. The external application invokes the submit_call stored procedure to submit a trouble call.

2. The submit_call stored procedure inserts the trouble call in the TROUBLE_CALLS table.
Upon insertion, the TROUBLE_CALLS.CALL_STATUS field will be set to 'N' signifying a
new trouble call.

3. The Generic IVR Adapter polls a configurable number of new records from the
TROUBLE_CALLS table within a configurable poll period. The
TROUBLE_CALLS.CALL_STATUS field is updated to 'I' (in progress) signifying that the
trouble call is in the process of being submitted to the NMS Job Management Service
(JMService).

Characteristics Value

Table TROUBLE_CALLS. For schema information,
see TROUBLE_CALLS Table Schema on
page 1-29.

Stored Procedures pk_ivr_interface.pr_trouble_calls and
pk_ccb.submit_call
For stored procedure parameter information, see
pk_ccb.submit_call on page 1-41 and
pr_trouble_calls on page 1-53.

Direction external application to Oracle Utilities Network
Management System

Generic IVR Adapter Data Retrieval
Frequency to Oracle Utilities Network
Management System

Periodic (configurable)
1-4 Oracle Utilities Network Management System Adapters Guide

Data Flow Details
4. Once processed, the retrieved records are submitted to NMS' JMService so the outage
analysis algorithms could be used for the submitted trouble calls. The
TROUBLE_CALLS.CALL_STATUS field is updated to 'C' (complete) signifying the trouble
call has been successfully submitted from the external application to NMS.

Below is a summary of the information required to submit a trouble call via the
pk_ccb.submit_call stored procedure.

If no numeric trouble code is provided, the default trouble code, which is generally a 1 followed by
however many zeros are necessary to satisfy the project defined trouble code, will be used. The
length of the trouble code is defined by the number of distinct "group_order" entries in the
srs_trouble_codes table.

Note that the pr_trouble_calls stored procedure is also provided to accomplish essentially the
same goal - inserting a trouble call record into the trouble_calls table.

The pk_ccb.submit_call stored procedure is used to submit:

• Trouble calls for a particular customer (known premise/service point). This includes entering
the meeting time for job site appointments when there needs to be a planned outage to
perform non-utility work at a location, such as tree removal near a power line or house
painting.

• Fuzzy calls

When a fuzzy call is created at least one of the following call identifiers must be provided:

• The caller's name

• The caller's phone number

• The caller's ID (i.e., 911 reference ID provided by the caller (911)).

• Location must also be provided. A Location can be:

• a street intersection (provide two street names) or

• a street segment (provide a block number and a street name)

• City and State are optional

Callback Requests
A customer may request that he/she be called back as soon as the outage that he/she reported has
been restored. The Generic IVR Adapter provides the stored procedure
pr_trouble_callback_requests to be used by an external application that is managing the callback
process. This procedure returns a list of calls where the customer has requested a callback.
Generic IVR Adapter 1-5

Data Flow Details
Data Flow Characteristics

The following are characteristics for the Callback Request Data Flow:

Data Flow Steps

1. When an outage with a corresponding callback request is restored, Oracle Utilities Network
Management System builds a callback list.

2. From the list, callback requests could be assigned to callback agents or to the external
application, either in a manual (using Oracle Utilities Network Management System Web
Callbacks) or an automated manner (via SRS rules).

3. The Generic IVR Adapter retrieves all callback requests assigned to the external application
and inserts the callback requests to the TROUBLE_CALLBACKS table. The
PROCESS_STATUS field of the callback request in the table would be set to 'N' signifying
that the callback request is new. The CALLBACK_DONE field of the callback request in the
table would be set to 'N' signifying that the callback has not yet been done.

4. The Generic IVR Adapter provides the pr_trouble_callback_requests stored procedure,
which picks new callback requests from the TROUBLE_CALLBACKS table.

5. The external application could use the pr_trouble_callback_requests stored procedure to pick
new callback requests. Callback requests that were picked are marked with a
PROCESS_STATUS field equal to ‘I’ (callback response in progress) on the
TROUBLE_CALLBACKS table.

Callback Request Notes
Once an outage event or a non-outage event is restored, callbacks are generated if the call is
marked for a callback. All events have a restoration, either explicit or implicit, so any event can
generate a callback. Also, in the event that the customer called multiple times, the customer will
receive multiple callbacks if he requested a callback on each call. JMService gathers every call
associated with an event, without filtering duplicate callers. Every call that is marked for callback
will receive a callback.

Callback Responses
The external application calls the customer to confirm if power has been restored or not. The
result of this call is passed from the external application to Oracle Utilities Network Management
System via the pr_trouble_callback_responses stored procedure.

Characteristics Value

Table TROUBLE_CALLBACKS. For schema
information, see TROUBLE_CALLBACKS
Table Schema on page 1-36.

Stored Procedure pr_trouble_callback_requests. For stored
procedure parameter information, see
pr_trouble_callback_requests on page 1-56

Direction Oracle Utilities Network Management System to
external application

Generic IVR Adapter Data Retrieval
Frequency from Oracle Utilities
Network Management System

Periodic (configurable)
1-6 Oracle Utilities Network Management System Adapters Guide

Data Flow Details
Data Flow Characteristics

The following are characteristics of the Callback Responses Data Flow:

Data Flow Steps

1. The external application calls the customer to confirm if power has been restored. The result
of this call is passed back to Oracle Utilities Network Management System via the
pr_trouble_callback_responses stored procedure.

2. The stored procedure uses the incident number and premise ID combination (or the external
ID and premise ID combination if the first combination is not provided) to identify a
callback record in the TROUBLE_CALLBACKS table that would be receiving a response.

3. The stored procedure updates the identified callback in the TROUBLE_CALLBACKS table
by updating the following fields:

• The callback's CALLBACK_DONE field to 'Y' signifying that the callback was
already done.

• The callback's CALLBACK_TIME field. CALLBACK_TIME field defaults to the
system date if no value was provided.

• The callback's CALLBACK_STATUS field with the appropriate callback response
code.

4. The Oracle Utilities Network Management System Generic IVR Adapter queries the
TROUBLE_CALLBACKS table for new callback responses received and sends this
information to Oracle Utilities Network Management System.

5. In Oracle Utilities Network Management System, the callback could get completed or
cancelled or a new event (with the original call information) will be created, depending on the
callback response.

Callback Response Notes

When a callback is made and no response from customer is received, a callback time will still be
recorded. Any callback time that is submitted with a status is propagated, even if the status is no
reply from the customer. It is understood in this case to be the last attempted callback. Also, when
a nested outage is found, the new call and event are backdated to the original outage time.

Note: NMS does not track callback history.

Characteristics Value

Table TROUBLE_CALLBACKS. For schema information,
see TROUBLE_CALLBACKS Table Schema on
page 1-36.

Stored Procedure pr_trouble_callback_responses. For stored procedure
parameter information, see
pr_trouble_callback_requests on page 1-56.

Direction external application to Oracle Utilities Network
Management System

Generic IVR Adapter Data Update
Frequency to Oracle Utilities
Network Management System

Periodic (configurable)
Generic IVR Adapter 1-7

Adapter Installation
Adapter Installation
This section describes how to install the Oracle Utilities Network Management System Generic
IVR Adapter.

Ensure that the Generic IVR Adapter is installed.
• Verify that the following files are found in their respective folders

• $CES_HOME/lib/libIVRAdapter.so

• $CES_HOME/bin/IVRAdapter

• $CES_HOME/bin/ces_ivr_gateway.ces

• $CES_HOME/sql/product_retain_ivr_interface.sql

• $CES_HOME/sql/product_ivr_interface_head.sql

• $CES_HOME/sql/product_ivr_interface_body.plb

• $CES_HOME/bin/troubleCallCreate

• $CES_HOME/bin/ivrCallPerPoll.ces

• $CES_HOME/bin/ivrPollPeriod.ces

Setup the Generic IVR Adapter System Variables
Include the following variables in the system variables definition:

Note that this is setup in the .nmsrc file located in the $NMS_HOME (and configured by running
config_nmsrc.pl). After the setup of the system variables, make sure that the .nmsrc is rerun or a
new terminal is opened. The above setup assumes that the database where the Generic IVR
Adapter tables and stored procedures would reside would be the same database used by the Oracle
Utilities Network Management System environment.

Note also that the IVR RDBMS can be setup to be a completely separate RDBMS from the
production RDBMS instance (hence these environment variables). This option may be considered
if a project wants to maintain separation between the call taking process and the call processing
process. With a separate RDBMS instance trouble calls can still be captured even if the production
NMS RDBMS instance is down - for example. This is considered an advanced form of
configuration and generally requires certain tables be replicated between the two RDBMS
instances to guarantee calls can still be properly captured when the NMS RDBMS is down. Please
consult Oracle support or your project engineer for more information if this type of configuration
is desired.

Configure Adapter to run as NMS System Service
Configure the Generic IVR Adapter to run as an Oracle Utilities Network Management System
service by updating the $NMS_HOME/etc/system.dat file to include the Generic IVR Adapter as
a system service. There are 3 main sections where this service needs to be defined: the service,
program and instance sections. See the $CES_HOME/templates/system.dat.template file for
examples of how to configure the Generic IVR Adapter. Search for IVRAdapter in the file and
copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so

Variable Value

IVR_RDBMS_HOST same as $RDBMS_HOST defined in the system

IVR_ORACLE_SID same as $ORACLE_SID defined in the system
1-8 Oracle Utilities Network Management System Adapters Guide

Adapter Installation
that they are active. You must restart the system services in order for the Generic IVR Adapter to
be properly monitored by SMService. See the following section for details on command line
options for the Generic IVR Adapter.

IVRAdapter Command Line Options
The section below lists the possible command line options for the Generic IVR Adapter. This
section also introduces a tool that randomly creates trouble calls, along with its command line
options. Performance tuning and high-level diagnostic messages that could be used on the
Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and
configures Data Flow behavior. The following enumerates the command line options of the
Generic IVR Adapter.

IVRAdapter -help
 -troublecall
 -omscbreq
 -omscbresp
 -cleantable
 -debug [0-2]
 -callperpoll NUMBERCALLS
 -pollperiod SECONDS
 -docustquery
 -cbreqinterval SECONDS
 -cbrespinterval SECONDS
 -cleaninterval HOURS
 -keepdbinfo DAYS
 -cbagent AGENTNAME
 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the
Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any
Data Flow:

Option Usage Description

help IVRAdapter -help Displays the available command line
options

debug IVRAdapter -debug
LEVEL
(where LEVEL is 0, 1 or 2)

Runs gateway in debug mode. Associated
number represents the debug level range
from 0 to 2.
Generic IVR Adapter 1-9

Adapter Installation
Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble
Calls Data Flow. For more information, see Trouble Calls on page 1-4.

Option Usage Description
Depends
On

Default Value

troublecall IVRAdapter -
troublecall

Enables the Trouble Calls Data
Flow.
Note: This option must be enabled
for CC&B - NMS integration.

callperpoll IVRAdapter -
callperpoll
NUMBERCALLS
(where
NUMBERCALLS is an
integer)

Specifies the number of calls
processed in the
TROUBLE_CALLS table per poll
of information.

troublecall 100 calls per poll
of information

pollperiod IVRAdapter -
pollperiod SECONDS
(where SECONDS is
an integer)

Specifies the interval (in seconds)
between two successive polls or
queries from the
TROUBLE_CALLS table

troublecall a 6 second
interval between
two successive
polls

docustquery IVRAdapter -
docustquery

If this option is selected, not all
fields in the TROUBLE_CALLS
table are directly fed to JMService.
Instead, some of the fields would
come from the
CES_CUSTOMERS table.
Note: This option should not be
used in combination with the
CC&B - NMS integration.

troublecall
1-10 Oracle Utilities Network Management System Adapters Guide

Adapter Installation
Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback
Requests Data Flow. For more information, see Callback Requests on page 1-5.

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback
Responses Data Flow. For more information, see Callback Responses on page 1-6.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple
Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would

Option Usage Description
Depends
On

Default Value

omscbreq IVRAdapter -omscbreq Enables the Callback Requests
Data Flow

cbreqinterval IVRAdapter -
cbreqinterval
SECONDS
(where SECONDS is an
integer)

Specifies the interval (in seconds)
between two successive polls
from the list of callback requests

omscbreq a 5 second
interval between
two successive
polls.

cbAny IVRAdapter -cbAny Callback is submitted to IVR if
requested by the customer during
any call.

omscbreq

cbLast IVRAdapter -cbLast Callback is submitted to IVR if
requested by the customer during
the last call.

omscbreq

Option Usage Description
Depends
On

Default Value

omscbresp IVRAdapter -
omscbresp

Enables the Callback Responses
Data Flow

cbrespinterval IVRAdapter -
cbrespinterval
SECONDS
(where SECONDS is
an integer)

Specifies the interval (in seconds)
between two successive polls
from the
TROUBLE_CALLBACKS table
for received callback responses

omscbresp a 5 second
interval between
two successive
polls.
Generic IVR Adapter 1-11

Adapter Installation
pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and
‘omscbresp’.

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m.
would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3
hours from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the
troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS

Option Usage Description
Depends
On

Default Value

cleantable IVRAdapter -
cleantable

Could be used for any of the five
Data Flows.
A flag that allows the Generic
IVR Adapter to remove some
completed records from its tables.

any option
that
enables a
Data Flow

cleaninterval IVRAdapter -
cleaninterval HOURS
(where HOURS is an
integer)

Could be used for any of the five
Data Flows.
Specifies the interval (in HOURS)
between two successive attempts
to delete old (i.e., completed)
records from the Oracle Utilities
Network Management System
Generic IVR Adapter tables.

Cleantable
and any
option that
enables a
Data Flow

1 hour between
to successive
delete attempts

keepdbinfo IVRAdapter -
keepdbinfo DAYS
(where DAYS is an
integer)

Could be used for any of the five
Data Flows.
Completed records on the
Generic IVR Adapter tables older
than the specified number of days
will be deleted. Certain criteria
apply on which records of the
Oracle Utilities Network
Management System Generic IVR
Adapter tables are removed and
how the records are aged.

Cleantable
and any
option that
enables a
Data Flow

 3 days

cbagent IVRAdapter –cbagent
AGENTNAME
(where
AGENTNAME is a
string)

Could be used for the Callback
Requests and Callback Responses
Data Flows.
The agent name that the Generic
IVR Adapter uses in retrieving
calls from the callback list. Valid
agent names are located in
CES_USER and ENV_ACCESS
tables. The agent name used
should be an external agent, as
indicated in the CES_USER table.

omscbreq
or
omscbresp

IVR
1-12 Oracle Utilities Network Management System Adapters Guide

Adapter Installation
table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the
new records from this table and pass this information to Oracle Utilities Network Management
System, so Oracle Utilities Network Management System could apply the outage analysis
algorithm to predict the outage device.

Note: It is important for the Generic IVR Adapter System Variables to be
setup to run the troubleCallCreate tool. For more information, see Setup the
Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see Trouble Calls on page
1-4.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

• The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

• As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or
equal to the total number of new trouble calls in the TROUBLE_CALLS table,
as Oracle Utilities Network Management System outage analysis algorithms
allow grouping of calls based on various criteria.

Option Usage Description Default Value

help troubleCallCreate –help Displays the available command line
options

debug troubleCallCreate -debug Runs this tool in debug mode,
defaulting the debug level to 2.

Defaults to debug
level 2

totalcalls troubleCallCreate –totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

Specifies the number of trouble calls to
be created

troublecall troubleCallCreate –
troublecall

Creates one trouble call
Generic IVR Adapter 1-13

Adapter Installation
troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see Data Flow Details on page 1-4.

• For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

Load the Generic IVR Adapter Database Tables and Stored Procedures
• The ces_ivr_gateway.ces script is responsible for loading various SQL files responsible for

creating the Generic IVR Adapter tables and stored procedures. The ces_ivr_gateway.ces
script could call some or all of the following scripts depending on how it was invoked:

• product_retain_ivr_interface.sql - responsible for dropping and recreating the Generic
IVR Adapter tables.

• product_ivr_interface_head.sql - responsible for loading the Generic IVR Adapter
stored procedure head.

• product_ivr_interface_body.plb - responsible for loading the Generic IVR Adapter
stored procedure body.

• To create the Generic IVR Adapter tables and stored procedure, run the following command:

ces_ivr_gateway.ces –offline

Note: The command above recreates the Generic IVR Adapter table by
dropping and creating it, therefore wiping out the contents of the Generic IVR
Adapter tables.

• To create the Generic IVR Adapter stored procedure without dropping and recreating the
Generic IVR Adapter tables, run the following command:

ces_ivr_gateway.ces
1-14 Oracle Utilities Network Management System Adapters Guide

Software Configuration
Software Configuration
This section is intended to help the user configure the Generic IVR Adapter that was installed on
the previous section. This includes the default configuration used, and the modifications to the
base configurations that need to be done in order to customize the adapter's behavior.

Overview
This section will discuss how to map pieces of trouble call information sent by the external
application to specific database fields within Oracle Utilities Network Management System via the
Trouble Call Mapping Properties Configuration file. Moreover, this section will discuss various
SRS rules that could be used for the Generic IVR Adapter.

Trouble Call Mapping Configuration
The fields of the Generic IVR Adapter's TROUBLE_CALLS table could be mapped with the
fields of Oracle Utilities Network Management System' INCIDENTS and JOBS table. This is
done through column matching of TROUBLE_CALLS fields with JMS Input String (JMS.h),
which is the standard product column and user-defined configuration through SRS_RULES.

For more information about the Generic IVR Adapter's TROUBLE_CALLS table, see
TROUBLE_CALLS Table Schema on page 1-29.

Mapping to the Base Fields in Oracle Utilities Network Management System
Tables

The following table explains how the base fields of the INCIDENTS and the JOBS tables of
Oracle Utilities Network Management System are mapped with the fields of the
TROUBLE_CALLS table of the Generic IVR Adapter.

Below is a description of each column

• The JMS Input String (first column) is the standard product column found in JMS.h, which is
used to create calls with the JMS::sendJMSinput() API, within the Oracle Utilities Network
Management System.

• The ‘Description’ column (second column) describes the content of the field.

• The ‘Mapping to Oracle Utilities Network Management System Tables’ column (third
column) identifies to what fields of the INCIDENTS table or the JOBS table a given JMS
Input String is tied up to. In this column, INC.<database field name> indicates that the field
name is part of the INCIDENTS table; JOBS.<database field name> indicates that the field
name is part of the JOBS table.

• The ‘Mapping to TROUBLE_CALLS table’ column (fourth column) identifies the
TROUBLE_CALLS table column the JMS Input String is currently mapped to.

JMS Input String Description Mapping to System Tables
Mapping to
TROUBLE_CALLS
table

ADDR_BUILDING Customer building address.
The building number portion
of the street address of the
customer.

INC.ADDR_BUILDING ADDR_BUILDING

ADDR_CITY Customer city. The city or city/
state portion of the address of
the customer.

INC.ADDR_CITY ADDR_CITY
Generic IVR Adapter 1-15

Software Configuration
ADDR_CROSS_
STREET

Intersection cross street name.
Name of the second cross
street should be in
ADDR_STREET field.

INC.ADDR_CROSS_STREET ADDR_CROSS_
STREET

ADDR_STREET Customer street address. The
full street address of the
customer.

INC.ADDRESS
JOBS.ADDR_STREET

ADDR_STREET

ALTERNATE_PHONE Alternative contact number.
Alternate phone number for
contacting the customer.

INC.ALTERNATE_PHONE ALTERNATE_PHONE

APPT_RANGE Appointment Range. INC.APPT_RANGE APPT_RANGE

APPT_TIME Time of appointment. INC.APPT_TIME APPT_TIME

APPT_TYPE Type of appointment. INC.APPT_TYPE APPT_TYPE

CALL_TIME Input time of call. The input
time of the incident. If not
provided, the current time will
be used.

INC.INPUT_TIME CALL_TIME

CALL_TYPE Type of call. INC.TYPE CALL_TYPE

CALLBACK_LATE Callback late indicator.
Indicates that it is OK to call
back the customer beyond a
defined ‘late’ time. This
information is only stored in
Oracle Utilities Network
Management System. No other
action is taken by Oracle
Utilities Network Management
System.

INC.CALLBACK_LATE CALLBACK_LATE

CALLBACK_REQUEST Indicates either a callback is
requested or not.

INC.CALLBACK_REQUEST CALLBACK_REQUEST

CALLBACK_TIME Time callback requested. Time
for which callback or a follow-
up call was requested.

INC.CALLBACK_TIME CALLBACK_TIME

CHECK_CUTOFF Check cutoff customer
indicator. If set to Y, check if
the customer is disconnected,
using the
CES_DISCONNECTS table.
If the customer is
disconnected, the call will not
be saved, an error will be
returned and the
VERIFY_DISCONNECTS
table will be populated.

 CHECK_CUTOFF

JMS Input String Description Mapping to System Tables
Mapping to
TROUBLE_CALLS
table
1-16 Oracle Utilities Network Management System Adapters Guide

Software Configuration
CID_ALIAS Not used. CID_ALIAS

CLUE Indicates if call is clue if set to
Y.

INC.CLUE CLUE

COMBINE_PRI Total priority of call. COMBINE_PRI

COMMENT Call-taker Comments.
Comments provided by the
customer or call-taker about
the incident.

INC.OP_COMMENT CALL_COMMENT

CUST_CALL_CANCEL Call cancel indicator. INC.CALL_CANCEL CUST_CALL_CANCEL

CUST_CRITICAL Critical customer indicator.
This is added to the critical C
count of the outage.

INC.CRITICAL_CUST CUST_CRITICAL

CUST_DEVICE_ALIAS The name of the device to
which the customer is
connected. This must be the
alias of the device handle
provided with
CUST_DEVICE_CLS and
CUST_DEVICE_IDX. If not
provided, the service will query
ODService to get this
information, incurring a
performance penalty in call
processing.

INC.OBJECT CUST_DEVICE_ALIAS

CUST_DEVICE_CLS Customer device class. The
class part of the handle for the
device to which the customer is
connected. If CUST_ID is
provided, but the device is not,
JMService will look up the
customer device in the
CES_CUSTOMERS table. If
the provided device is a supply
node, it will be put in
SUPPLY_CLS &
SUPPLY_IDX and the first
stage device will be put in
H_CLS & H_IDX.

INC.H_CLS CUST_DEVICE_CLS

CUST_DEVICE_IDX Customer device index. The
index part of the handle for the
device to which the customer is
connected. See
CUST_DEVICE_CLS above.

INC.H_IDX CUST_DEVICE_IDX

CUST_DEVICE_NCG NCG of customer device. INC.NCG CUST_DEVICE_NCG

JMS Input String Description Mapping to System Tables
Mapping to
TROUBLE_CALLS
table
Generic IVR Adapter 1-17

Software Configuration
CUST_DEVICE_
PARTITION

Partition of customer device. INC.PARTITION CUST_DEVICE_PARTI
TION

CUST_FIRST_NAME Customer first name. The first
name of the customer. If
CUST_FIRST_NAME and
CUST_LAST_NAME are both
provided, they will be
appended together with a
space. The concatenated
customer first and last name
(with a space in the middle)
may not be larger than 75
characters. This may be used
for the full name of the
customer if
CUST_LAST_NAME is
omitted.

INC.CUSTOMER_NAME
JOBS.CUSTOMER_NAME

CUST_FIRST_NAME

CUST_ID Unique identifier of a customer
record in NMS. See
CUST_DEVICE_CLS above.

INC.CID CUST_ID

CUST_INTERSECT_
CLS

Intersecting device class. CUST_INTERSECT_
CLS

CUST_INTERSECT_
IDX

Intersecting device index. CUST_INTERSECT_
IDX

CUST_INTERSECT_
NCG

Intersecting NCG. CUST_INTERSECT_
NCG

CUST_INTR_X Intersecting X coordinate. X
coordinate used for
intersection grouping. See
streetXsectionOffset SRS
Rule for more information.

 CUST_INTR_X

CUST_INTR_Y Intersecting Y coordinate. Y
coordinate used for
intersection grouping. See
streetXsectionOffset SRS
Rule for more information.

 CUST_INTR_Y

CUST_KEY Customer account number. INC.ACCOUNT_NUM CUST_KEY

CUST_LAST_NAME The last name of the customer.
See CUST_FIRST_NAME
above.

INC.CUSTOMER_NAME
JOBS.CUSTOMER_NAME

 CUST_LAST_NAME

CUST_LIFE_SUPPORT Life support customer. If set to
‘Y’, indicates a life support
customer. This is added to the
critical K count of the outage.

INC.LIFE_SUPPORT CUST_LIFE_SUPPORT

JMS Input String Description Mapping to System Tables
Mapping to
TROUBLE_CALLS
table
1-18 Oracle Utilities Network Management System Adapters Guide

Software Configuration
CUST_ORDER_NUM Customer order number. Not
used in the Oracle Utilities
Network Management System.

INC.ORDER_NUMBER CUST_ORDER_NUM

CUST_PHONE Customer phone number. The
non-area code portion of the
customer phone number. If
both CUST_PHONE and
CUST_PHONE_AREA are
provided, they will be
appended according to the
customerPhoneParentheses
SRS rule. The concatenated
customer phone number and
area (including parentheses)
may not be larger than 32
characters. This field may be
used for the full customer
phone number if
CUST_PHONE_AREA is
omitted. See
customerPhoneParentheses
SRS Rule for more
information.

INC.CUSTOMER_PHONE
JOBS.CUSTOMER_PHONE

CUST_PHONE

CUST_PHONE_AREA Customer phone area code.
The area code portion of the
customer phone number. See
CUST_PHONE above.

INC.CUSTOMER_PHONE
JOBS.CUSTOMER_PHONE

 CUST_PHOHE_AREA

CUST_PHONE_
UPDATE

Whether to update customer
phone. If set to Y, the customer
phone number will be updated
in the
CUSTOMER_PHONE_OVE
RRIDE table.

 CUST_PHONE_
UPDATE

CUST_PRIORITY Customer priority. This string is
used to determine the critical
customer type and priority of
the customer.

INC.CUSTOMER_TYPE CUST_PRIORITY

CUST_STATUS Condition status of call. CUST_STATUS

CUST_TROUBLE_
CODE

Customer complaint. The
customer complaint (trouble
code). This is a required field
and must correspond with
values in the
SRS_TROUBLE_CODES
table.

INC.COMPLAINT CUST_TROUBLE_
CODE

CUST_TROUBLE_
QUEUE

Customer trouble queue. INC.TROUBLE_QUEUE
JOBS.TROUBLE_QUEUE

CUST_TROUBLE_
QUEUE

JMS Input String Description Mapping to System Tables
Mapping to
TROUBLE_CALLS
table
Generic IVR Adapter 1-19

Software Configuration
DRV_INST Driving instructions. INC.DRV_INSTR1 DRV_INST

EXTERNAL_ID Unique call identifier. The
unique identifier for the
incident.

INC.EXTERNAL_ID
JOBS.EXTERNAL_ID

EXTERNAL_ID

FUZZY_NCG_CLS Fuzzy control zone class. FUZZY_NCG_CLS

FUZZY_NCG_IDX Fuzzy control zone index. FUZZY_NCG_IDX

GENERAL_AREA General Area. Not Used in the
Oracle Utilities Network
Management System.

INC.GENERAL_AREA GENERAL_AREA

GROUP_BY_NAME Fuzzy control zone name. GROUP_BY_NAME

GROUPABLE If set to Y, the call is groupable. INC.GROUPABLE GROUPABLE

MEET_TIME Time of customer meet. If
provided, meet created will be a
future meet for the given time.
Otherwise, if a meet is created
it will be a critical meet.
MEET_TYPE must be
provided to create a meet.

INC.MEET_TIME MEET_TIME

MEET_TYPE Customer meet type. If set to 1,
a new meet will be created. If
set to 2, an existing meet will be
rescheduled. If set to 3, an
existing meet will be canceled.
If any other value is provided,
no meet will be created. May be
used in conjunction with
MEET_TIME.

INC.MEET_CODE MEET_TYPE

METER_ID Customer meter number. INC.METER_ID METER_ID

POWER_UP Power-up call. Used for power-
up messages from CellNet.
Used for AMR.

 POWER_UP

RELATED_EVT_APP Related event application. RELATED_EVT_APP

RELATED_EVT_CLS Related event class. INC. RELATED_CLS RELATED_EVT_CLS

RELATED_EVT_IDX Related event index. INC. RELATED_IDX RELATED_EVT_IDX

REPORTED_ERT Est rest time reported to caller. INC.
REPORTED_EST_REST_TIM
E

REPORTED_ERT

SHORT_DESC Short description of trouble. INC.SHORT_DESC SHORT_DESC

TROUBLE_LOC Incident's trouble location. INC.TROUBLE_LOC TROUBLE_LOC

JMS Input String Description Mapping to System Tables
Mapping to
TROUBLE_CALLS
table
1-20 Oracle Utilities Network Management System Adapters Guide

Software Configuration
During initialization of IVRAdapter, TROUBLE_CALLS column are matched with the standard
product column (JMS.h). If TROUBLE_CALLS field does not match, error will be logged and
IVRAdapter will exit.

The following are some exceptions when matching TROUBLE_CALLS columns with JMS Input
String:

• TROUBLE_CALLS.CALL_COMMENT – JMS Input String COMMENT

• TROUBLE_CALLS.CALL_STATUS – special column in TROUBLE_CALLS table that
indicates that the call is new (N) or already processed (C).

• TROUBLE_CALLS.SUPPLY_ID – if this column exists, it replaces the value of
TROUBLE_CALLS. CUST_DEVICE_IDX and TROUBLE_CALLS.
CUST_DEVICE_CLS is set to 994.

UPDATE_EXISTING_
INC

Whether to update an existing
incident. If set to 1, then
JMService will replace an
existing incident for the same
customer with the values
passed in this call.

 UPDATE_EXISTING_
INC

USER_NAME Call-taker user name. The name
of the call-taker or interface
that created the call.

INC.USER_NAME USER_NAME

X_REF Customer X coordinate. X
coordinate of customer or
customer device.

INC.X_COORD X_REF

Y_REF Customer Y coordinate. Y
coordinate of customer or
customer device.

INC.Y_COORD Y_REF

JMS Input String Description Mapping to System Tables
Mapping to
TROUBLE_CALLS
table
Generic IVR Adapter 1-21

Trouble Callback Mapping Configuration
Mapping to Customer-Defined Fields in Oracle Utilities Network Management
System's INCIDENTS table

A configurable TROUBLE_CALLS column can also be done through SRS_RULES.

The following are the steps to map a new field in the TROUBLE_CALLS table with a new field in
the INCIDENTS table:

1. Change the TROUBLE_CALLS table schema to include the customized field, for instance,
TC_FIELD_ONE.

2. Change the INCIDENTS table schema to include a new field that will be mapped to
TC_FIELD_ONE. For instance the new field on the INCIDENTS table would be
INC_FIELD_ONE.

3. Create a new SRS Rule that maps the ‘201’ (TROUBLE_CALLS reserve name) with the new
field in the INCIDENTS table, INC_FIELD_ONE. See the Map Customer-Defined
Fields in the INCIDENTS Table on page 1-23 SRS rule for more information.

4. Restart JMService and the Generic IVR Adapter.

Note: Before considering the option of introducing new fields in the
TROUBLE_CALLS table and the INCIDENTS table, it is advisable to discuss
such option with your Project Engineer.

Trouble Callback Mapping Configuration
IVR Adapter allows arbitrary information from the PICKLIST_INFO_UPD_TR table to be
included into callback request. Columns CB_DETAIL1, CB_DETAIL2, CB_DETAIL3 and
CB_DETAIL4 in the TROUBLE_CALLBACKS database table are used for this purpose.
Database table IVR_ADAPTER_CONFIG is used to define if/how these columns should be
populated.

Field Name Nullable Data Type Description

CONFIG_ITEM N VARCHAR2(32) Column name in the
TROUBLE_CALLBACKS
database table, which should be
populated from the
PICKLIST_INFO_UPD_TR
table. Valid values are

CONFIG_VALUE N VARCHAR2(32) Column name in the
PICKLIST_INFO_UPD_TR
table, which should be used as the
data source.
1-22 Oracle Utilities Network Management System Adapters Guide

SRS Rules Configuration
SRS Rules Configuration
The following are SRS rules that could be used with the Generic IVR Adapter. These SRS rules
can be included in the <project>_srs_rules.sql file.

Map Customer-Defined Fields in the INCIDENTS Table
Oracle Utilities Network Management System and the Generic IVR Adapter provides a
mechanism to receive additional trouble call information from the external application and have
this information stored in a new customer-defined field in the INCIDENTS table of Oracle
Utilities Network Management System.

The configurable TROUBLE_CALLS column name has special names ‘201’, ‘202’, up to ‘209’ to
serve this purpose. Normally, a regular column name in TROUBLE_CALLS like
CALL_COMMENT or COMMENT in JMS Input String is tied to a specific field of the
INCIDENTS table by default. For this case, it's the OP_COMMENT field. A special name like
‘201’ could be mapped to a new field in the INCIDENTS table by using an SRS rule. The table
below details how an SRS rule could be used to do this mapping. An SRS rule like this has to be
used for each mapping. See Map Customer-Defined Fields in the INCIDENTS Table on
page 1-23 for more information.

Field Name Value

SET_NAME ‘config_incident’

INCIDENT_TYPE ‘customer_defined’

RULE_NAME the name of the new column in the INCIDENTS table

RULE_VALUE_1 ‘str’, ‘date’, ‘int’, ‘float’
‘str’ is for strings, ‘date’ is for dates, ‘int’ is for integers,
and ‘float’ is for floats. This represents the data type of
the new column.

RULE_VALUE_2 An integer, representing the value of the SRS input
configuration item specifying this field -- must have a
value of 200 or greater

RULE_VALUE_INTEGER_1 0 (not used)

RULE_VALUE_INTEGER_2 0 (not used)

RULE_VALUE_INTEGER_3 0 (not used)

RULE_VALUE_INTEGER_4 0 (not used)

RULE_VALUE_INTEGER_5 0 (not used)
Generic IVR Adapter 1-23

SRS Rules Configuration
callbackInterfaceEnabled SRS Rule
If set to ‘yes’ then SRS APIs for manipulating callback information will become available. It has to
be set to ‘yes’ for Web Callback GUI to operate. This rule holds outage information in JMService
memory on a special data structure until this time expires OR all customer callbacks for the outage
are complete.

Field Name Value

SET_NAME ‘config’

INCIDENT_TYPE ‘any’

RULE_VALUE_1 ‘yes’ or ‘no’ (default: ‘no’)

RULE_VALUE_2 0 (not used)

RULE_VALUE_INTEGER_1 0 (not used)

RULE_VALUE_INTEGER_2 0 (not used)

RULE_VALUE_INTEGER_3 0 (not used)

RULE_VALUE_INTEGER_4 0 (not used)

RULE_VALUE_INTEGER_5 0 (not used)
1-24 Oracle Utilities Network Management System Adapters Guide

SRS Rules Configuration
useExternalCause SRS Rule
If set to ‘yes’ then the IVR Adapter’s callback requests data flow will include the cause code when
it populates the TROUBLE_CALLBACKS table. The cause code value will be taken from
JOBS.CAUSE.

customerPhoneParentheses SRS Rule
If rule_value_1 set to ‘yes’, parentheses will be added to customer call phone numbers in the
following format: (AREA)NUMBER. Otherwise, the number and area will be concatenated
together without parentheses.

Field Name Value

SET_NAME ‘config’

INCIDENT_TYPE ‘any’

RULE_VALUE_1 ‘yes’ or ‘no’ (default: ‘yes’)

RULE_VALUE_2 0 (not used)

RULE_VALUE_INTEGER_1 0 (not used)

RULE_VALUE_INTEGER_2 0 (not used)

RULE_VALUE_INTEGER_3 0 (not used)

RULE_VALUE_INTEGER_4 0 (not used)

RULE_VALUE_INTEGER_5 0 (not used)

Field Name Value

SET_NAME ‘config’

INCIDENT_TYPE ‘any’

RULE_VALUE_1 ‘yes’ or ‘no’ (Default: ‘yes’)

RULE_VALUE_2 0 (not used)

RULE_VALUE_INTEGER_1 0 (not used)

RULE_VALUE_INTEGER_2 0 (not used)

RULE_VALUE_INTEGER_3 0 (not used)

RULE_VALUE_INTEGER_4 0 (not used)

RULE_VALUE_INTEGER_5 0 (not used)
Generic IVR Adapter 1-25

SRS Rules Configuration
defaultCallbackAgent SRS Rule
Specifies username of the default callback agent. All new callbacks will be automatically assigned
to this agent. If this rule is not set then new callbacks will be left unassigned.

Note: This rule only takes effect if the rule callbackInterfaceEnabled set to
‘yes’. See callbackInterfaceEnabled SRS Rule on page 1-24 for more
information. The agent name used should be considered as an external agent in
the CES_USER and ENV_ACCESS tables. Also, it is recommended that ‘IVR’
be used as a value of RULE_VALUE_1, as this is the default callback agent
name that the Generic IVR Adapter uses when the adapter runs.

callbackFeederTimeout SRS Rule
The maximum time allowed (in minutes) between the current time and the restoration time of a
resolution in callback module before the resolution is deemed too old to remain or be loaded into
the callback module. This rule holds outage info in JMService memory in a special data structure
until this time expires OR all customer callbacks for the outage are complete.

If this rule is set to 0 then resolutions will be kept in JMService until all callbacks are completed.

Note: This rule must be used in conjunction with the
callbackInterfaceEnabled SRS Rule on page 1-24.

Field Name Value

SET_NAME ‘config’

INCIDENT_TYPE ‘any’

RULE_VALUE_1 callback agent username

RULE_VALUE_2 0 (not used)

RULE_VALUE_INTEGER_1 0 (not used)

RULE_VALUE_INTEGER_2 0 (not used)

RULE_VALUE_INTEGER_3 0 (not used)

RULE_VALUE_INTEGER_4 0 (not used)

RULE_VALUE_INTEGER_5 0 (not used)

Field Name Value

INCIDENT_TYPE ‘flowControlGeneral’

RULE_VALUE_1 "" (not used)

RULE_VALUE_2
An integer, representing a number of minutes
(Default: 2880 -- 48 hours)

RULE_VALUE_INTEGER_1 0 (not used)

RULE_VALUE_INTEGER_2 0 (not used)

RULE_VALUE_INTEGER_3 0 (not used)
1-26 Oracle Utilities Network Management System Adapters Guide

SRS Rules Configuration
streetXsectionOffset SRS Rule
Specifies the size of the maximum bounding rectangle to be used in grouping street intersection
fuzzy calls to supply nodes. The rectangle will be the area where:

 x E [xsection_x - THIS RULE VALUE, xsection_x + THIS RULE VALUE]
 and
 y E [xsection_y - THIS RULE VALUE, xsection_y + THIS RULE VALUE]

This is an integer. Check your world coordinate system for a reasonable integer value.

This rule is used once for each rectangle desired (i.e., multiple instances of this rule may exist in a
single rule set). For example, a larger rectangle size may be desired in a rural control zone and a
smaller rectangle in an urban control zone.

RULE_VALUE_INTEGER_4 0 (not used)

RULE_VALUE_INTEGER_5 0 (not used)

Field Name Value

Field Name Value

RULE_VALUE_1 ‘‘ (not used)

RULE_VALUE_2 integer (Default: none)

RULE_VALUE_INTEGER_1 0 (not used)

RULE_VALUE_INTEGER_2 0 (not used)

RULE_VALUE_INTEGER_3 0 (not used)

RULE_VALUE_INTEGER_4 0 (not used)

RULE_VALUE_INTEGER_5 0 (not used)

NCG_CLS
integer, representing ncg_cls of desired
applicable control zone level

NCG_IDX
integer, representing ncg_idx of desired
applicable control zone level
Generic IVR Adapter 1-27

SRS Rules Configuration
Generic IVR Adapter Trouble Call Performance
The maximum rate at which the Generic IVR Adapter injects trouble calls into the Oracle Utilities
Network Management System is initially determined using the –callperpoll and –pollperiod
command line parameters in the system.dat file. If these parameters are not set, the Generic IVR
Adapter will, by default, retrieve a maximum of 100 trouble calls from the TROUBLE_CALLS
table every six seconds and send these calls into the MMM via JMService. This corresponds to a
maximum hourly call rate of 60,000 calls per hour.

If it is necessary to change this call rate while the adapter is running, two scripts are provided:
ivrCallPerPoll.ces and ivrPollPeriod.ces. These scripts may be used to adjust the number of calls
retrieved during each poll cycle and the period between poll cycles while the adapter is running.

Note: If the adapter is restarted, these parameters (and the corresponding call
rate) will revert to the command line parameters specified in the system.dat file
(or the default values if no command line options are specified).

Generic IVR Adapter Troubleshooting

This section identifies high-level messages that could be sent to the Generic IVR Adapter using
the Action command for troubleshooting purposes.

Note: It is important that the Generic IVR Adapter is already included in the
System Data file to run high-level messages properly. For more information,
see Configure Adapter to run as NMS System Service on page 1-8.

Command Usage Description

ivrCallPerPoll.ces ivrCallPerPoll.ces
NUM_CALLS_PER_POLL

Changes the number of calls retrieved from the
TROUBLE_CALLS table during one poll cycle.

IvrPollPeriod.ces IvrPollPeriod.ces
NUM_SECONDS

Changes the period between poll cycles where
calls are retrieved from the TROUBLE_CALLS
table and submitted to JMService.

Command Usage Description

report Action –services
any.IVRGateway report

Reports back if the Generic IVR Adapter has
started.

stop Action –services
any.IVRGateway stop

Stops the Generic IVR Adapter

debug Action –services
any.IVRGateway debug
LEVEL

(where LEVEL is 0, 1 or 2)

Sets the Generic IVR Adapter’s debug level

cleantable Action –services
any.IVRGateway cleantable

Toggles the ‘cleantable’ command line option.
Instructs if the Generic IVR Adapter should
remove some records from its tables or not.
1-28 Oracle Utilities Network Management System Adapters Guide

Database Schema
Database Schema

Overview
The following section defines in detail the schema of each database tables used by the Generic
IVR Adapter. This section defines the parameters used by the Generic IVR Adapter’s stored
procedures.

Database Table Schema

TROUBLE_CALLS Table Schema

The TROUBLE_CALLS table stores the trouble calls that are submitted by the external
application. The Generic IVR Adapter polls this table and submits new trouble call records to
Oracle Utilities Network Management System, so Oracle Utilities Network Management System
could apply the outage analysis algorithm to predict the outage device. The external application
indirectly inserts records to the TROUBLE_CALLS table by invoking the pr_trouble_calls stored
procedure. See pr_trouble_calls on page 1-53 for more information.

Each field of the TROUBLE_CALLS table is matched with SRSinput field. The mapping is
configurable. A column names are directly tied up to a specific field of the INCIDENTS table or
the JOBS table of Oracle Utilities Network Management System.

In effect, each field in the TROUBLE_CALLS table is mapped (and the mapping is configurable)
to a particular field of the INCIDENTS table or the JOBS table of Oracle Utilities Network
Management System. For more information, see Trouble Call Mapping Configuration on page
1-15.

In the 'Description' column, take note that field names prefixed with 'INC.' would come from the
INCIDENTS table. Field names prefixed by 'JOBS.' would come from the JOBS table. Field
names prefixed by 'CC.' would come from the CES_CUSTOMERS table.

Field Name Nullable Data Type Description (JMS Input String Reference)

ADDR_BUILDING Y VARCHAR2(10) Customer building address. Refer to
ADDR_BUILDING for more information.

Map to INC.ADDR_BUILDING

ADDR_CITY Y VARCHAR2(45) Customer City/State. Refer to ADDR_CITY for
more information.

Maps to INC.ADDR_CITY

ADDR_CROSS_STREET Y VARCHAR2(255) Intersection cross street name.

Maps to INC.ADDR_CROSS_STREET.

ADDR_STREET Y VARCHAR2(255) Customer address. Refer to ADDR_STREET
for more information.

Maps to INC.ADDRESS and
JOBS.ADDR_STREET

ALTERNATE_PHONE Y VARCHAR2(32) Alternative contact number. Refer to
ALTERNATE_PHONE for more
information.

Maps to INC.ALTERNATE_PHONE
Generic IVR Adapter 1-29

Database Schema
APPT_RANGE Y NUMBER Appointment Range. Refer to APPT_RANGE
for more information.

Maps to INC.APPT_RANGE.

APPT_TIME Y DATE Time of appointment. Refer to APPT_TIME
for more information.

Maps to INC.APPT_TIME.

APPT_TYPE Y VARCHAR2(16) Type of appointment. Refer to APPT_TYPE for
more information.

Maps to INC.APPT_TYPE.

CALL_COMMENT Y VARCHAR2(255) Customer Comment. Refer to COMMENT
Property Name for more information.

Maps to INC.OP_COMMENT.

CALL_ID Y VARCHAR2(16) Not used.

CALL_STATUS Y VARCHAR2(1) Status of the trouble call in the
TROUBLE_CALLS table. The Generic IVR
Adapter uses this internally to identify the status
of this trouble call.

The possible values are as follows:

 ‘N’ - New trouble call

 ‘I’ - The Generic IVR Adapter is in the process
of submitting this trouble call to Oracle Utilities
Network Management System

 ‘C’ - Trouble call submission to Oracle Utilities
Network Management System is completed.

The Generic IVR Adapter uses this field as one
of the criteria in purging the TROUBLE_CALLS
table for 'old' records. Records with
CALL_STATUS field = 'C' will be purged.

CALL_TIME N DATE Input time of call. Refer to CALL_TIME for
more information.

Maps to INC.INPUT_TIME

The Generic IVR Adapter uses this field as one
of the criteria in purging the TROUBLE_CALLS
table for 'old' records. The TROUBLE_CALL
record is 'aged' based on the system date/time
and the CALL_TIME field. Any record older
than a predefined number of days will be
removed. See keepdbinfo for more information.

CALL_TYPE Y VARCHAR2(8) Type of call. Refer to CALL_TYPE for more
information.

Maps to INC.TYPE

Field Name Nullable Data Type Description (JMS Input String Reference)
1-30 Oracle Utilities Network Management System Adapters Guide

Database Schema
CALLBACK_LATE Y VARCHAR2(1) Callback late indicator. Refer to
CALLBACK_LATE for more information.

The possible values are as follows:

 ‘Y’ - It is OK to call back even when it is already
late.

 ‘N’ - It is not OK to call back when it is already
late.

If no value was supplied, this field will default to
'N'.

This information is only passed from the external
application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

CALLBACK_REQUEST Y NUMBER Callback request indicator. Refer to
CALLBACK_REQUEST for more
information.

The possible values are as follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Maps to INC.CALLBACK_REQUEST

CALLBACK_TIME Y DATE Callback Before Time. Refer to
CALLBACK_TIME for more information.

Maps to INC.CALLBACK_TIME

CHECK_CUTOFF Y VARCHAR2(1) Check cut-off customer indicator. Refer to
CHECK_CUTOFF for more information.

The possible values are as follows:

 ‘Y’ - check if the customer is disconnected

 ‘N’ - do not perform checking.

CLUE Y NUMBER Indicates if call is clue if set to Y. Refer to CLUE
on page 1-17 for more information.

Maps to INC.CLUE

COMBINE_PRI Y NUMBER Total priority of call. Refer to COMBINE_PRI
for more information.

CUST_CALL_CANCEL Y VARCHAR2(1) Call cancel indicator. Refer to
CUST_CALL_CANCEL for more information.

Maps to INC.CALL_CANCEL

Field Name Nullable Data Type Description (JMS Input String Reference)
Generic IVR Adapter 1-31

Database Schema
CUST_CRITICAL Y VARCHAR2(1) Critical customer indicator. This is added to the
critical C count of the outage. Refer to
CUST_CRITICAL for more information.

Maps to INC.CRITICAL_CUST

CUST_DEVICE_ALIAS Y VARCHAR2(32) Customer Device Alias. Refer to
CUST_DEVICE_ALIAS for more information.

Maps to INC.OBJECT

 CUST_DEVICE_CLS Y NUMBER Corresponding CC.H_CLS field for the given
CC.SERV_LOC_ID. This field does not have a
corresponding input parameter in the
pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to
CUST_DEVICE_CLS for more information.

Maps to INC.H_CLS

 CUST_DEVICE_IDX Y NUMBER Corresponding CC.H_IDX field for the given
CC.SERV_LOC_ID. This field does not have a
corresponding input parameter in the
pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to
CUST_DEVICE_IDX for more information.

Maps to INC.H_IDX

CUST_DEVICE_NCG Y NUMBER NCG of customer device. Refer to
CUST_DEVICE_NCG for more information.

Maps to INC.NCG

CUST_DEVICE_PARTITION Y NUMBER Partition of customer device. Refer to
CUST_DEVICE_ PARTITION for more
information.

Maps to INC.PARTITION

CUST_FIRST_NAME Y VARCHAR2(75) Customer Name. Refer to
CUST_FIRST_NAME for more information.

Maps to INC.CUSTOMER_NAME and

JOBS.CUSTOMER_NAME

CUST_ID Y VARCHAR2(64) Unique customer record identifier. Maps to
INC.CID.

CUST_INTERSECT_CLS Y NUMBER Intersecting device class. Refer to
CUST_INTERSECT_ CLS for more
information.

CUST_INTERSECT_IDX Y NUMBER Intersecting device index. Refer to
CUST_INTERSECT_ IDX for more
information.

Field Name Nullable Data Type Description (JMS Input String Reference)
1-32 Oracle Utilities Network Management System Adapters Guide

Database Schema
CUST_INTERSECT_NCG Y NUMBER Intersecting NCG. Refer to
CUST_INTERSECT_ NCG for more
information.

CUST_INTR_X Y NUMBER Intersecting X coordinate. X coordinate used for
intersection grouping.

CUST_INTR_Y Y NUMBER Intersecting Y coordinate.Y coordinate used for
intersection grouping.

CUST_KEY Y VARCHAR2(16) Corresponding CC.ACCOUNT_NUMBER field
for the given CC.SERV_LOC_ID. This field
does not have a corresponding input parameter in
the pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to
CUST_KEY for more information.

Maps to INC.ACCOUNT_NUM

CUST_LAST_NAME Y VARCHAR2(75) The last name of the customer. Refer to
CUST_LAST_NAME for more information.

Maps to INC.CUSTOMER_NAME and

JOBS.CUSTOMER_NAME

CUST_LIFE_SUPPORT Y VARCHAR2(1) Life support customer. Refer to
CUST_LIFE_SUPPORT for more
information.

Maps to INC.LIFE_SUPPORT

CUST_ORDER_NUM Y VARCHAR2(16) Customer order number. Refer to
CUST_ORDER_NUM for more information.

Maps to INC.ORDER_NUMBER

CUST_PHONE Y VARCHAR2(32) Customer phone number. Refer to
CUST_PHONE for more information.

Maps to INC.CUSTOMER_PHONE and
JOBS.CUSTOMER_PHONE

 CUST_PHONE_AREA Y VARCHAR2(8) Customer phone area code. Refer to
CUST_PHONE_AREA for more information.

Maps to INC.CUSTOMER_PHONE and

JOBS.CUSTOMER_PHONE

CUST_PHONE_UPDATE Y VARCHAR2(1) Whether to update customer phone. Refer to
CUST_PHONE_ UPDATE for more
information.

Field Name Nullable Data Type Description (JMS Input String Reference)
Generic IVR Adapter 1-33

Database Schema
CUST_PRIORITY Y VARCHAR2(4) Customer Priority. Refer to CUST_PRIORITY
for more information.

This is defined by customer and needs to be an
integer string.

Maps to INC.CUSTOMER_TYPE

CUST_STATUS Y NUMBER Condition status of call.

CUST_TROUBLE_CODE N VARCHAR2(10) Trouble code or customer complaint. Refer to
CUST_TROUBLE_ CODE for more
information.

This is the trouble or complaint that the customer
reports when making a call. The trouble code
determines the priority of the incident.

Trouble code mapping setup in Oracle Utilities
Network Management System should be
synchronized with the trouble code mapping
setup on the external application. This is to
ensure that the trouble code sent from the
external application is interpreted similarly when
the trouble code is received by Oracle Utilities
Network Management System.

Maps to INC.COMPLAINT

CUST_TROUBLE_QUEUE Y VARCHAR2(10) Customer trouble queue. Refer to
CUST_TROUBLE_ QUEUE for more
information.

This field contains the name of the work group
queue that the event has been referred to.

Maps to INC.TROUBLE_QUEUE and
JOBS.TROUBLE_QUEUE

 DRV_INST Y VARCHAR2(180) Driving instructions.

Maps to INC.DRV_INSTR1

EXTERNAL_ID N VARCHAR2(16) External ID. Refer to EXTERNAL_ID for
more information

If it is used, its value should be unique.

Maps to INC.EXTERNAL_ID and

JOBS.EXTERNAL_ID

FUZZY_NCG_CLS Y NUMBER Fuzzy control zone class.

FUZZY_NCG_IDX Y NUMBER Fuzzy control zone index.

GENERAL_AREA Y VARCHAR2(32) General Area. Not Used in the SPL OMS System.

Maps to INC.GENERAL_AREA

GROUP_BY_NAME Y VARCHAR2(127) Fuzzy control zone name.

Field Name Nullable Data Type Description (JMS Input String Reference)
1-34 Oracle Utilities Network Management System Adapters Guide

Database Schema
GROUPABLE Y NUMBER Indicates if call is groupable if set to 1.

Maps to INC.GROUPABLE

MEET_TIME Y DATE Time of customer meet. Refer to MEET_TIME
for more information.

Maps to INC.MEET_TIME

MEET_TYPE Y NUMBER Customer meet type. Refer to MEET_TYPE
for more information.

Maps to INC.MEET_CODE

METER_ID Y VARCHAR2(32) Customer meter number.

Maps to INC.METER_ID

RELATED_EVT_APP Y NUMBER Related event application.

RELATED_EVT_CLS Y NUMBER Related event class.

Maps to INC. RELATED_CLS

RELATED_EVT_IDX Y NUMBER Related event index.

Maps to INC. RELATED_IDX

REPORTED_ERT Y DATE Estimated restoration time reported to caller.

Maps to INC. REPORTED_EST_REST_TIME

SHORT_DESC Y VARCHAR2(128) Trouble short description.

Maps to INC.SHORT_DESC

TROUBLE_LOC Y VARCHAR2(255) Incident's trouble location.

Maps to INC.TROUBLE_LOC

UPDATE_EXISTING_INC Y NUMBER Whether to update an existing incident. Refer to
UPDATE_EXISTING_ INC for more
information.

USER_NAME Y VARCHAR2(32) Call-taker user name. Refer to USER_NAME
for more information.

Maps to INC.USER_NAME

 X_REF Y NUMBER Customer X coordinate. Refer to X_REF for
more information.

Maps to INC.X_COORD

 Y_REF Y NUMBER Customer Y coordinate. Refer to Y_REF for
more information.

Maps to INC.Y_COORD

Field Name Nullable Data Type Description (JMS Input String Reference)
Generic IVR Adapter 1-35

Database Schema
TROUBLE_CALLBACKS Table Schema

The TROUBLE_CALLBACKS table contains callback request information that has to be
reported to the external application. The table also stores the corresponding callback response
received from the external application. The Generic IVR Adapter directly inserts new callback
requests to the said table. It also directly picks up processed callbacks from the same table. The
external application is provided two stored procedures for indirectly reading and updating callback
information from the table.

From the table below, on the 'Description' column, take note that field names prefixed with 'INC.'
would come from the INCIDENTS table.

Column Name Nullable Data Type Description

EVENT_CLS Y NUMBER(38) Populated by the Callback Requests Data Flow
from INC.EVENT_CLS.

EVENT_IDX Y NUMBER(38) Populated by the Callback Requests Data Flow
from INC.EVENT_IDX.

INCIDENT_NUMB N NUMBER(38) Populated by the Callback Requests Data Flow
from INC.NUMB.

PREMISE_ID N VARCHAR2(64) Populated by the Callback Requests Data Flow
from INC.CID.

CUSTOMER_NAME Y VARCHAR2(75) Populated by the Callback Requests Data Flow
from INC.CUSTOMER_NAME.

CUSTOMER_PHONE Y VARCHAR2(38) Populated by the Callback Requests Data Flow
from INC.CUSTOMER_PHONE.

CUSTOMER_ADDRESS Y VARCHAR2(255) Populated by the Callback Requests Data Flow
by concatenating INC.ADDR_BUILDING,
INC.ADDRESS and INC.ADDR_CITY

ALTERNATE_PHONE Y VARCHAR2(38) Populated by the Callback Requests Data Flow
from INC.ALTERNATE_PHONE.

TROUBLE_CODE Y VARCHAR2(32) Populated by the Callback Requests Data Flow
from INC.COMPLAINT.

This is the trouble code (e.g., '10000000') of the
incident rather than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

SHORT_DESCRIPTION Y VARCHAR2(128) Populated by the Callback Requests Data Flow
from INC.SHORT_DESC

This is the clue (e.g., 'Out') of the incident rather
than the trouble code (e.g., '10000000'). 'Out' is
short for 'All Power Out'.

CUSTOMER_COMMENT Y VARCHAR2(255) Populated by the Callback Requests Data Flow
from INC.OP_COMMENT.
1-36 Oracle Utilities Network Management System Adapters Guide

Database Schema
INCIDENT_TIME Y DATE Populated by the Callback Requests Data Flow
from INC.INPUT_TIME.

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. The TROUBLE_CALLBACKS table
record is 'aged' based on the system date/time
and the INCIDENT_TIME field. Any record
older than a predefined number of days will be
removed. See keepdbinfo on page 1-12 for
more information.

EXTERNAL_ID Y VARCHAR2(16) Populated by the Callback Requests Data Flow
from INC.EXTERNAL_ID.

CALLBACK_STATUS Y VARCHAR2(10) Initially populated by the Callback Requests
Data Flow as NULL;

The field is repopulated by the external
application (using
pr_trouble_callback_responses stored
procedure). The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to get a response

The Callback Response Data Flow is
responsible for sending the updated value to
Oracle Utilities Network Management System.
A remapped value is placed in
INC.CALLBACK_STATUS.

CALLBACK_TIME Y DATE Initially populated by the Callback Requests
Data Flow as NULL;

The field could be repopulated by the external
application (using
pr_trouble_callback_responses stored
procedure). The stored procedure defaults this
field to the system date if no information was
supplied by the external application.

The Callback Response Data Flow is
responsible for sending the updated value to
Oracle Utilities Network Management System.
The value is placed in INC.CB_CALL_TIME.

CALL_TAKER_ID Y VARCHAR2(32) Populated by the Callback Requests Data Flow
from INC.USER_NAME.

Column Name Nullable Data Type Description
Generic IVR Adapter 1-37

Database Schema
CALLBACK_LATE Y VARCHAR2(1) Populated by the Callback Requests Data Flow
from INC.CALLBACK_LATE

The possible values are as follows:

 ‘Y’ - It is OK to call back even when it is
already late.

 ‘N’ - It is not OK to call back when it is already
late.

This information is only passed from the
external application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

CALLBACK_LATE_TIME Y DATE Populated by the Callback Requests Data Flow
from INC.CALLBACK_TIME.

This information is only passed from the
external application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

CALLBACK_REASON Y VARCHAR2(100) This is used by the Generic IVR Adapter to
indicate the source of the callback request. This
will default to 'OMS'.

Column Name Nullable Data Type Description
1-38 Oracle Utilities Network Management System Adapters Guide

Database Schema
PROCESS_STATUS Y VARCHAR2(1) Initially populated by the Callback Requests
Data Flow as 'N', signifying that the record is a
new callback

Once the record was fetched by the external
application (using pr_trouble_callback_requests
stored procedure), the field is automatically
updated by the stored procedure to 'I' signifying
that the external system is currently processing
the callback response.

As soon as the external application successfully
returns the callback response to the Generic
IVR Adapter (using
pr_trouble_callback_responses stored
procedure), the field is updated to 'C', signifying
that the external application has completed the
processing of the callback response.

This field is internally maintained by the Generic
IVR Adapter. Below is a list of valid values for
this field.

 'N' - New Callback

 'I' - In Processing Of Callback Response

 'C' - Completed The Processing Of Callback
Response

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. Records with PROCESS_STATUS
field = 'C' will be purged.

CALLBACK_DONE Y VARCHAR2(1) Initially populated by the Callback Requests
Data Flow as 'N', signifying that the callback is
not yet done.

As soon as the external application successfully
returns the callback response to the Generic
IVR Adapter (using
pr_trouble_callback_responses stored
procedure), the field is updated to 'Y', signifying
that the callback has been done.

Below is a list of valid values for this field.

 'N' - Callback Has Not Been Done

 'Y' - Callback Has Been Done

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. Records with CALLBACK_DONE
field = 'Y' will be purged.

Column Name Nullable Data Type Description
Generic IVR Adapter 1-39

Database Schema
CAUSE_CODE Y VARCHAR2(32) This is used to relay back to customers the cause
of an outage when a callback is performed.

Populated by the Callback Requests Data Flow
from JOBS.CAUSE when the useExternalCause
rule is set to ‘yes’ in the SRS_RULES.

OUTAGE_DURATION Y NUMBER Outage duration in seconds.

Populated by the Callback Requests Data with
the difference between
JOBS.RESTORE_TIME and
JOBS.BEGIN_TIME.

CUSTOMER_COUNT Y NUMBER Populated by the Callback Requests Data Flow
from INC.USER_NAME.

CB_DETAIL_1 Y VARCHAR2(80) Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

CB_DETAIL_2 Y VARCHAR2(80) Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

CB_DETAIL_3 Y VARCHAR2(80) Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

CB_DETAIL_4 Y VARCHAR2(80) Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

Column Name Nullable Data Type Description
1-40 Oracle Utilities Network Management System Adapters Guide

Database Schema
Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);
TYPE input_call_rec IS RECORD (
 call_source_id VARCHAR2(3),
 service_point_id trouble_calls.cust_id%TYPE,
 external_id trouble_calls.external_id%TYPE,
 account_number trouble_calls.cust_key%TYPE,
 trouble_code trouble_calls.cust_trouble_code%TYPE,
 first_name trouble_calls.cust_first_name%TYPE,
 last_name trouble_calls.cust_last_name%TYPE,
 phone trouble_calls.cust_phone%TYPE,
 phone_area trouble_calls.cust_phone_area%TYPE,
 alt_phone trouble_calls.alternate_phone%TYPE,
 priority trouble_calls.cust_priority%TYPE,
 critical_flag trouble_calls.cust_critical%TYPE,
 life_support_flag trouble_calls.cust_life_support%TYPE,
 call_id trouble_calls.general_area%TYPE,
 call_time trouble_calls.call_time%TYPE,
 call_comment trouble_calls.call_comment%TYPE,
 call_taker trouble_calls.usename%TYPE,
 call_type trouble_calls.call_type%TYPE,
 addr_building trouble_calls.addr_building%TYPE,
 addr_street trouble_calls.addr_street%TYPE,
 addr_cross_street trouble_calls.addr_street%TYPE,
 addr_city_state trouble_calls.addr_city%TYPE,
 drive_instr trouble_calls.drv_inst%TYPE,
 meet_time trouble_calls.meet_time%TYPE,
 meet_type trouble_calls.meet_type%TYPE,
 group_by_name trouble_calls.group_by_name%TYPE,
 device_id trouble_calls.cust_device_alias%TYPE,
 meter_id trouble_calls.meter_id%TYPE,
 trouble_queue trouble_calls.cust_trouble_queue%TYPE,
 trouble_location trouble_calls.trouble_loc%TYPE,
 x_coord trouble_calls.x_ref%TYPE,
 y_coord trouble_calls.y_ref%TYPE,
 appt_type trouble_calls.appt_type%TYPE,
 appt_time trouble_calls.appt_time%TYPE,
 appt_range trouble_calls.appt_range%TYPE,
 callback_flag trouble_calls.callback_request%TYPE,
 callback_before_time trouble_calls.callback_time%TYPE,
 callback_late_flag trouble_calls.callback_late%TYPE,
 intersection_cls trouble_calls.cust_device_cls%TYPE,
 intersection_idx trouble_calls.cust_device_idx%TYPE,
 cancel_flag trouble_calls.cust_call_cancel%TYPE,
 update_flag trouble_calls.update_existing_inc%TYPE,
 udf1 udf_field,
 udf2 udf_field,
 udf3 udf_field,
 udf4 udf_field,
 udf5 udf_field
);

-- new/updated trouble call
PROCEDURE submit_call (
 p_call IN input_call_rec,
 p_err_no OUT NUMBER,
Generic IVR Adapter 1-41

Database Schema
 p_err_msg OUT VARCHAR2
);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

Parameter Name Parameter Type Description

p_call.call_source_id VARCHAR2(2) Id unique to the call capture mechanism
(always set to 2 for CCB, 3 for IVR - for
example), Value will be prefixed to
p_call.external_id field in this stored
procedure. Used to allow NMS to maintain
unique call ids (incidents.external_id)
across multiple call taking systems
submitting independent (overlapping) sets
of external_ids. Generally an integer (to
better support Interactive Voice Response
systems) - but can be project specific.

p_call.service_point_id VARCHAR2(64) Service point id.

p_call.external_id VARCHAR2(16) Call external id unique ID from call capture
system (CCB). To ensure uniqueness a
given NMS implementation needs to agree
on a fixed length field (12 characters for
example).

p_call. account_number VARCHAR2(30) Customer account number.

p_call.trouble_code VARCHAR2(32) Call trouble code. Integer passed as a string
- each character (0-9) indicates a specific
selection (or 0 for non-selection) from each
of 1 to 32 different trouble call categories.
Project configurable.

p_call.first_name VARCHAR2(75) Customer first name or full name (if
customer name is passed in a single field).

p_call.last_name VARCHAR2(75) Customer last name.

p_call.phone VARCHAR2(32) Customer phone number.

p_call.phone_area VARCHAR2(8) Customer phone area code.

p_call.alt_phone VARCHAR2(32) Alternative/callback phone number.

p_call.priority VARCHAR2(4) The same value as ces_customers.priority
should be passed in. This is used to
determine critical customer type.

p_call.critical_flag VARCHAR2(1) Critical customer (Y/N)

p_call.life_support_flag VARCHAR2(1) Life support flag (Y/N).

p_call.call_id VARCHAR2(32) Call identifier (for example, 911 call id) -
mapped to general_area.

p_call.call_time DATE Call capture time from external call capture
system
1-42 Oracle Utilities Network Management System Adapters Guide

Database Schema
p_call.call_comment VARCHAR2(255) Comments

p_call.call_taker VARCHAR2(32) Call taker id.

p_call.call_type VARCHAR2(8) Call type.

CC&B should leave this
field empty.

p_call.addr_building VARCHAR2(10) Building/block number.

p_call.addr_street VARCHAR2(255) Street address or name of the first
intersection street.

p_call.addr_cross_street VARCHAR2(255) Name of the second intersection (cross)
street.

p_call.addr_city_state VARCHAR2(45) City and (optionally) state.

p_call.drive_instr VARCHAR2(180) Driving instructions.

p_call.meet_time DATE Meet time.

p_call.meet_type NUMBER Meet action code.
Possible values:
• 0 - for non-meet calls

• 1 - create new meet

• 2 - reschedule existing meet

• 3- cancel existing meet

p_call.group_by_name VARCHAR2(127) Optional control zone name for fuzzy calls.

p_call.device_id VARCHAR2(32) Device alias.

p_call.meter_id VARCHAR2(32) Meter number.

p_call.trouble_queue VARCHAR2(10) Trouble queue (Tree Trimming,
Underground, etc)

p_call.trouble_location VARCHAR2(255) Trouble location.

p_call.x_coord NUMBER X coordinate in the NMS electrical network
model coordinate system (generally NOT
lat/long). If not provided JMService will
default to the coordinates for the
supply_node from the point_coordinates
table.

p_call.y_coord NUMBER Y coordinate - match for X coordinate
above.

p_call.appt_type NUMBER Appointment type.

p_call.appt_time DATE Appointment time.

p_call.appt_range NUMBER Appointment time window in minutes.

Parameter Name Parameter Type Description
Generic IVR Adapter 1-43

Database Schema
p_call.callback_flag NUMBER Callback request flag.
• 0 - callback has not been requested

• 1 - callback has been requested.

p_call.callback_before_t
ime

DATE Callback requested before this time.

p_call.callback_late_flag VARCHAR2(1) Callback late ok flag (Y/N)

p_call.intersection_cls NUMBER If p_call.service_point_id is NOT null this
field is ignored. If not null and
p_call.service_point_d is null interpreted as
att_street_intersection.h_cls. Used to help
identify an intersection (when paired with
p_call.intersection_idx)

p_call.intersection_idx NUMBER If p_call.service_point_id is NOT null this
field is ignored. If not null and
p_call.service_point_id is null interpreted
as att_street_intersection.h_idx - to help
identify an intersection (when paired with
p_call.intersection_cls).

p_call.cancel_flag VARCHAR2(1) Call cancel flag (Y/N).

p_call.update_flag NUMBER If 0 then this is a new call, otherwise this is
an update to an existing call.

p_call.udf1 VARCHAR2(255) User-defined call field 1.

p_call.udf2 VARCHAR2(255) User-defined call field 1.

p_call.udf3 VARCHAR2(255) User-defined call field 1.

p_call.udf4 VARCHAR2(255) User-defined call field 1.

p_call.udf5 VARCHAR2(255) User-defined call field 1.

p_err_no NUMBER Error code.
In case of successful execution 0 is
returned.

p_err_msg VARCHAR2(200) Internal error message.

Parameter Name Parameter Type Description
1-44 Oracle Utilities Network Management System Adapters Guide

Database Schema
pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed
in search condition.

The following types of search conditions are supported:

• Search for specific customer by service point id, premise id or account number.

• Location-based search. Search for jobs at or nearby specified location. Location can be street
intersection or street segment (block).

• Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller
phone.

• Custom search. To use custom search the stored procedure has to be modified by the project.
Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (
 serv_point_id VARCHAR2(64),
 premise_id NUMBER,
 account_number VARCHAR2(30)
)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (
 city VARCHAR2(200),
 state VARCHAR2(30),
 street1 VARCHAR2(200),
 street2 VARCHAR2(200),
 block_number NUMBER
)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (
 external_id VARCHAR2(200),
 call_id VARCHAR2(200),
 caller_name VARCHAR2(200),
 caller_phone VARCHAR2(200)
)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (
 field1 VARCHAR2(200),
 field2 VARCHAR2(200),
 field3 VARCHAR2(200),
 field4 VARCHAR2(200),
 field5 VARCHAR2(200)
)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.
PROCEDURE job_history (
 p_cust IN customer_search_obj,
 p_loc IN location_search_obj,
 p_fuzzy IN fuzzy_search_obj,
 p_custom IN custom_search_obj,
 p_num_days IN NUMBER,
 p_jobs OUT nms_cursor,
 p_err_no OUT NUMBER,
 p_err_msg OUT VARCHAR2
);
Generic IVR Adapter 1-45

Database Schema
Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

For each returned job the following information is included.

TYPE job_rec IS RECORD (
 serv_point_id ces_customers.id%TYPE,
 serv_point_addr ces_customers.address%TYPE,
 event_idx jobs.event_idx%TYPE,
 begin_time jobs.begin_time%TYPE,
 est_rest_time jobs.est_rest_time%TYPE,
 est_rest_time_source jobs.est_source%TYPE,
 restore_time jobs.restore_time%TYPE,

Parameter Name Parameter Type Description

p_cust.serv_point_i
d

VARCHAR2(64) Service point id.

p_cust.premise_id NUMBER Service location (premise id).

p_cust.account_nu
mber

VARCHAR2(30) Customer account number.

p_loc.city VARCHAR2(200) City.

p_loc.state VARCHAR2(30) State.

p_loc.street1 VARCHAR2(200) Street name. This field is used in both street
intersection search and street segment
search.

p_loc.street2 VARCHAR2(200) Second street name for street intersection
search.

p_loc.block_numbe
r

NUMBER Block number for street segment search.

p_fuzzy.external_id VARCHAR2(200) Call external id.

p_fuzzy.call_id VARCHAR2(200) Call identifier (for example, id for 911
calls).

p_fuzzy.caller_nam
e

VARCHAR2(200) Caller name.

p_fuzzy.caller_phon
e

VARCHAR2(200) Caller phone number.

p_custom.xxx Implementation-defined search parameters.

p_cmp_days NUMBER If greater than 0 then switching plans
completed within specified number of days
in the past will be returned in addition to
current and future switching plans.

p_jobs nms_cursor Returned jobs information.

p_err_no NUMBER Error code.
In case of successful execution 0 is
returned.

p_err_msg VERCHAR2(200) Internal error message.
1-46 Oracle Utilities Network Management System Adapters Guide

Database Schema
 cust_out jobs.num_cust_out%TYPE,
 comments jobs.operator_comment%TYPE,
 alarm_state jobs.alarm_state%TYPE,
 alarm_state_desc te_valid_states.description%TYPE,
 trouble_location jobs.display_name%TYPE,
 status jobs.status%TYPE,
 device_class jobs.devcls_name%TYPE,
 trouble_code jobs.trouble_code%TYPE,
 feeder_name jobs.feeder_name%TYPE,
 cause jobs.cause%TYPE,
 description jobs.description%TYPE,
 referral_group jobs.referral_group%TYPE,
 last_update_time jobs.last_update_time%TYPE,
 udf1 udf_field,
 udf2 udf_field,
 udf3 udf_field,
 udf4 udf_field,
 udf5 udf_field
);

Field Name Field Type Description

serv_point_id VARCHAR2(64) Service point id.

serv_point_addr VARCHAR2(200) Service point address

event_idx NUMBER Event index.

begin_time DATE Outage begin time.

est_rest_time DATE Estimated restoration time (ERT).

est_rest_time_sour
ce

VARCHAR2(1) ERT source.
Possible values:
• N - no ERT

• I - Initial ERT

• C - manually entered ERT (from crew
or NMS operator)

• S - ERT calculated by Storm
Management

• O - ERT calculated by Storm
Management (crew on-site)

• P - Non-publisher ERT

• G - ERT override is in effect

• D - ERT delay is in effect

restore_time DATE Outage restoration time.

cust_out NUMBER Number of customers affected by the
outage.

comments VARCHAR2(255) Operator's comment. Note some
customers increase this to max allowed
(4k).

alarm_state VARCHAR2(32) Outage state.
Generic IVR Adapter 1-47

Database Schema
alarm_state_desc VARCHAR2(80) Description of the outage state.

trouble_location VARCHAR2(255)

status NUMBER Job type.
Possible values:
• 0 - Fuzzy outage.

• 1 - Probable/predicted service outage.

• 2 - Probable/predicted device outage.

• 3 - Real service outage.

• 4 - Real device outage.

• 7 - Non-outage.

• 8 - Critical meet.

• 9 - Future meet.

• 10 - Confirmed service outage.

• 11 - Confirmed secondary outage.

• 13 - Probable/predicted momentary
outage.

• 14 - Real momentary outage.

• 15 - Planned outage.

• 16 - Non-electric event.

• 17 - Master switching job.

• 18 - Fault current event.

device_class VARCHAR2(32) Outage device class name (e.g., fuse)

trouble_code VARCHAR2(128) Trouble code.

feeder_name VARCHAR2(32) Feeder name.

cause VARCHAR2(32) Outage cause.

description VARCHAR2(128) Job description.

referral_group VARCHAR2(32) Referral group.

last_update_time DATE Timestamp of the latest update to the
outage record.

udf1 VARCHAR2(255) Job user-defined field 1.

udf2 VARCHAR2(255) Job user-defined field 2.

udf3 VARCHAR2(255) Job user-defined field 3.

udf4 VARCHAR2(255) Job user-defined field 4.

udf5 VARCHAR2(255) Job user-defined field 5.

Field Name Field Type Description
1-48 Oracle Utilities Network Management System Adapters Guide

Database Schema
pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching
search condition.

Following types of search conditions will be supported:

• Search for calls for a specific customer by service point id, premise id or account number.

• Location-based search. Search for calls at or nearby specified location. Location can be street
intersection or street segment (block).

• Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller
phone.

Custom search. To use custom search the stored procedure has to be modified by the project.
Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (
 p_cust IN customer_search_obj,
 p_loc IN location_search_obj,
 p_fuzzy IN fuzzy_search_obj,
 p_custom IN custom_search_obj,
 p_num_days IN NUMBER,
 p_calls OUT nms_cursor,
 p_err_no OUT NUMBER,
 p_err_msg OUT VARCHAR2
);

For each returned call the following information is included.

-- call history record
TYPE call_rec IS RECORD (
 external_id incidents.external_id%TYPE,
 call_id incidents.general_area%TYPE,
 serv_point_id incidents.cid%TYPE,
 call_time incidents.input_time%TYPE,
 address incidents.address%TYPE,
 short_desc incidents.short_desc%TYPE,
 comments incidents.op_comment%TYPE,
 call_taker incidents.user_name%TYPE,
 cust_name incidents.customer_name%TYPE,
 status incidents.active%TYPE,
 udf1 udf_field,
 udf2 udf_field,
 udf3 udf_field,
 udf4 udf_field,
 udf5 udf_field
);

Field Name Field Type Description

external_id VARCHAR2(16) Call external id.

call_id VARCHAR2(32) Call identifier (for example, id for 911
calls).

serv_point_id VARCHAR2(64) Service point id.

call_time DATE Call time.

Address VARCHAR2(255) Address for the call.
Generic IVR Adapter 1-49

Database Schema
pk_ccb.switching_history

The stored procedure PK_CCB.SWITCHING_HISTORY allows a caller to retrieve a list of
current, future, and (optionally) past switching plans affecting a given customer.

.

PROCEDURE switching_history (
 p_cust IN customer_search_obj,
 p_custom IN custom_search_obj,
 p_num_days IN NUMBER,
 p_sw_plans OUT nms_cursor,
 p_err_no OUT NUMBER,
 p_err_msg OUT VARCHAR2
);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

short_desc VARCHAR2(256) Trouble code.

Comments VARCHAR2(255) Comments.

call_taker VARCHAR2(32) Call taker id.

cust_name VARCHAR2(75) Customer/caller name.

Status VARCHAR2(1) Call status. Possible values (other values can
exist in NMS but they would not be
returned by this procedure):"Y - active call
"N - inactive/restored call "C - canceled
call "E - call belongs to canceled job

udf1 VARCHAR2(255) Call user-defined field 1.

udf2 VARCHAR2(255) Call user-defined field 2.

udf3 VARCHAR2(255) Call user-defined field 3.

udf4 VARCHAR2(255) Call user-defined field 4.

udf5 VARCHAR2(255) Call user-defined field 5.

Field Name Field Type Description

Parameter Name Parameter Type Description

p_cust.serv_point_id VARCHAR2(64) Service point id.

p_cust.premise_id NUMBER Service location (premise id).

p_cust.account_number VARCHAR2(30) Customer account number.

p_custom Implementation-defined search
parameters.

p_sw_plans nms_cursor Returned switching plan information.

p_err_no NUMBER Error code
In case of successful execution 0 is
returned.
1-50 Oracle Utilities Network Management System Adapters Guide

Database Schema
For each returned switching plan following information is included.

-- switching plan record
TYPE switching_plan_rec IS RECORD (
 plan_class swman_sheet_cls.switch_sheet_type%TYPE,
 plan_number swman_sheet.switch_sheet_idx%TYPE,
 start_date swman_sheet.start_date%TYPE,
 end_date swman_sheet.finish_date%TYPE,
 device_alias swman_sheet.device_alias%TYPE,
 state te_valid_states.state_name%TYPE,
 work_district swman_sheet_extn.string_value%TYPE,
 work_location swman_sheet_extn.string_value%TYPE,
 work_description swman_sheet_extn.string_value%TYPE,
 serv_point_id ces_customers.id%TYPE,
 serv_point_addr ces_customers.address%TYPE,
 udf1 udf_field,
 udf2 udf_field,
 udf3 udf_field,
 udf4 udf_field,
 udf5 udf_field,
 udf6 udf_field,
 udf7 udf_field,
 udf8 udf_field,
 udf9 udf_field,
 udf10 udf_field
);

p_err_msg VARCHAR2(200) Error message.

Field Name Field Type Description

plan_class VARCHAR2(32) Switching plan type (planned, emergency,
….).

plan_number NUMBER Switching plan number.

start_date DATE Switching plan start date.

end_date DATE Switching plan end date.

State VARCHAR2(32) Switching plan state.

work_district VARCHAR2(500)

work_location VARCHAR2(500)

work_description VARCHAR2(500)

serv_point_id VARCHAR2(64) Service point id.

serv_point_addr VARCHAR2(200) Service point address

Parameter Name Parameter Type Description
Generic IVR Adapter 1-51

Database Schema
pk_ccb.trouble_code_config

Stored procedure PK_CCB.TROUBLE_CODE_CONFIG allows caller to retrieve list of trouble
codes configured in the Oracle Utilities Network Management System.

PROCEDURE trouble_code_config (
 p_trouble_codes OUT nms_cursor,
 p_err_no OUT NUMBER,
 p_err_msg OUT VARCHAR2
);

For each returned trouble code following information is included:

-- trouble code configuration record
TYPE trouble_code_rec IS RECORD (
 group_name srs_trouble_codes.group_name%TYPE,
 group_order srs_trouble_codes.group_order%TYPE,
 code_name srs_trouble_codes.code_name%TYPE,
 code_num srs_trouble_codes.code_num%TYPE,
 short_desc srs_trouble_codes.short_desc%TYPE,
 description srs_trouble_codes.description%TYPE
);

Field Name Field Type Description

p_trouble_codes nms_cursor Returned trouble code information.

p_err_no NUMBER Error code
In case of successful execution 0 is
returned.

p_err_msg VARCHAR2(200) Error message

Field Name Field Type Description

group_name VARCHAR2(20) Trouble code group name

group_order NUMBER Trouble code group order

code_name VARCHAR2(40) Trouble code name

code_num NUMBER Trouble code number within its group

short_desc VARCHAR2(25) Short description of the trouble code

description VARCHAR2(70) Long description of the trouble code
1-52 Oracle Utilities Network Management System Adapters Guide

Database Schema
pr_trouble_calls

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external
application to insert trouble calls in the TROUBLE_CALLS table. Refer to Trouble Calls on
page 1-4 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

• Upon invoking the stored procedure, the p_premise_id parameter is used to query the
CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the
ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these
fields is placed in the corresponding columns of the TROUBLE_CALLS table.

• Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

• Several TROUBLE_CALLS columns will have default value when no parameter value is
supplied.

• Should there be an error in the record insert, an Oracle error is returned.

Note: If the given premise id has multiple accounts associated with it, only one
account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the
field name column indicates the corresponding column that is populated in the
TROUBLE_CALLS table.

Parameters

Parameter Direction Data Type Field Name Comment

p_premise_id In VARCHAR2 PREMISE_ID The value is inserted as is.

p_trouble_code In VARCHAR2 TROUBLE_CODE Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

p_callback_ind In VARCHAR2 CALLBACK_INDICATOR The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

p_call_time In DATE CALL_TIME Defaults to the database system
date if no value is supplied

p_call_taker_id In VARCHAR2 CALL_TAKER_ID The value is inserted as is.

p_alternate_phone In VARCHAR2 ALTERNATE_PHONE The value is inserted as is.

p_customer_comment In VARCHAR2 CUSTOMER_COMMENT The value is inserted as is.
Generic IVR Adapter 1-53

Database Schema
p_customer_phone In VARCHAR2 CUSTOMER_PHONE The value is inserted as is.

p_customer_name In VARCHAR2 CUSTOMER_NAME The value is inserted as is.

p_customer_address In VARCHAR2 CUSTOMER_ADDRESS The value is inserted as is.

p_customer_city_state In VARCHAR2 CUSTOMER_CITY_STATE The value is inserted as is.

p_customer_priority In VARCHAR2 CUSTOMER_PRIORITY The value is inserted as is.

p_external_id In VARCHAR2 EXTERNAL_ID The value is inserted as is.

p_device_alias In VARCHAR2 DEVICE_ALIAS The value is inserted as is.

p_check_cutoff_ind In VARCHAR2 CHECK_CUTOFF_IND The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

p_callback_late_ind In VARCHAR2 CALLBACK_LATE_IND The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

p_callback_before_time In DATE CALLBACK_BEFORE_TIME The value is inserted as is.

p_trouble_queue In VARCHAR2 TROUBLE_QUEUE The value is inserted as is.

p_meter_id In VARCHAR2 METER_ID The value is inserted as is.

p_supply_id In NUMBER SUPPLY_ID The value is inserted as is.

p_cust_phone_area In VARCHAR2 CUST_PHONE_AREA The value is inserted as is.

p_cust_last_name In VARCHAR2 CUST_LAST_NAME The value is inserted as is.

p_general_area In VARCHAR2 GENERAL_AREA The value is inserted as is.

p_cust_order_num In VARCHAR2 CUST_ORDER_NUM The value is inserted as is.

p_drv_inst In VARCHAR2 DRV_INST The value is inserted as is.

p_cust_life_support In VARCHAR2 CUST_LIFE_SUPPORT The value is inserted as is.

p_cust_call_cancel In VARCHAR2 CUST_CALL_CANCEL The value is inserted as is.

p_short_desc In VARCHAR2 SHORT_DESC The value is inserted as is.

p_addr_building In VARCHAR2 ADDR_BUILDING The value is inserted as is.

Parameter Direction Data Type Field Name Comment
1-54 Oracle Utilities Network Management System Adapters Guide

Database Schema
p_meet_time In DATE MEET_TIME The value is inserted as is.

p_meet_type In NUMBER MEET_TYPE The value is inserted as is.

p_groupable In NUMBER GROUPABLE The value is inserted as is.

p_clue In NUMBER CLUE The value is inserted as is.

p_combine_pri In NUMBER COMBINE_PRI The value is inserted as is.

p_cust_status In NUMBER CUST_STATUS The value is inserted as is.

p_cust_intr_x In NUMBER CUST_INTR_X The value is inserted as is.

p_cust_intr_y In NUMBER CUST_INTR_Y The value is inserted as is.

p_cust_intersect_cls In NUMBER CUST_INTERSECT_CLS The value is inserted as is.

p_cust_intersect_idx In NUMBER CUST_INTERSECT_IDX The value is inserted as is.

p_cust_intersect_ncg In NUMBER CUST_INTERSECT_NCG The value is inserted as is.

p_update_existing_inc In NUMBER UPDATE_EXISTING_INC The value is inserted as is.

p_fuzzy_ncg_cls In NUMBER FUZZY_NCG_CLS The value is inserted as is.

p_fuzzy_ncg_idx In NUMBER FUZZY_NCG_IDX The value is inserted as is.

p_group_by_name In VARCHAR2 GROUP_BY_NAME The value is inserted as is.

p_cust_critical In VARCHAR2 CUST_CRITICAL The value is inserted as is.

p_related_evt_cls In NUMBER RELATED_EVT_CLS The value is inserted as is.

p_related_evt_idx In NUMBER RELATED_EVT_IDX The value is inserted as is.

p_related_evt_app In NUMBER RELATED_EVT_APP The value is inserted as is.

p_x_ref In NUMBER X_REF The value is inserted as is.

p_y_ref In NUMBER Y_REF The value is inserted as is.

p_call_type In VARCHAR2 CALL_TYPE The value is inserted as is.

p_cust_phone_update In VARCHAR2 CUST_PHONE_UPDATE The value is inserted as is.

p_trouble_loc In VARCHAR2 TROUBLE_LOC The value is inserted as is.

p_appt_type In VARCHAR2 APPT_TYPE The value is inserted as is.

p_appt_time In DATE APPT_TIME The value is inserted as is.

p_appt_range In NUMBER APPT_RANGE The value is inserted as is.

p_cust_device_ncg In NUMBER CUST_DEVICE_NCG The value is inserted as is.

p_cust_device_partition In NUMBER CUST_DEVICE_PARTITION The value is inserted as is.

p_err_premise_id Out VARCHAR2 VARCHAR2(80) The erroneous premise ID
input parameter

Parameter Direction Data Type Field Name Comment
Generic IVR Adapter 1-55

Database Schema
Note: The pr_trouble_calls stored procedure does not require a call status
parameter from the user to insert in the TROUBLE_CALLS stored procedure.
Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS
table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble
call.

pr_trouble_callback_requests

Below is a high level description of what is done inside the stored procedure

• From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These
are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New)
and CALLBACK_DONE field is ‘N’ (No).

• The list is captured within the stored procedure as a database cursor and returned to the
calling application.

• The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In
Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on
how the TROUBLE_CALLBACKS table is populated.

Parameter

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is
defined as a weakly typed cursor.

p_err_oracle_error Out VARCHAR2 VARCHAR2(80) Oracle’s error message.

Parameter Direction Data Type Field Name Comment

Parameter Direction Cursor

p_callback_requests In/Out CALLBACK_CURSOR

Field Name from the
Cursor

Data Type
Field Name from
TROUBLE_CALLBACKS

Comments

EVENT_CLS NUMBER(38) TCB.EVENT_CLS Event class

EVENT_IDX NUMBER(38) TCB.EVENT_IDX Event index

INCIDENT_NUMB NUMBER(38) TCB.INCIDENT_NUMB Incident number

PREMISE_ID VARCHAR2(50) TCB.PREMISE_ID Premise id

CUSTOMER_NAME VARCHAR2(75) TCB.CUSTOMER_NAME Customer name

CUSTOMER_PHONE VARCHAR2(38) TCB.CUSTOMER_PHONE Customer phone

CUSTOMER_ADDRESS VARCHAR2(255) TCB.CUSTOMER_ADDRESS Customer address
1-56 Oracle Utilities Network Management System Adapters Guide

Database Schema
pr_trouble_callback_responses
Below is a high level description of what is done inside the stored procedure

• Upon receiving the input parameter values, the stored procedure verifies if either the
p_incident_numb input parameter or the p_external_id input parameter was supplied. If both
were supplied, the p_incident_numb parameter takes precedence.

• The stored procedure validates if the p_callback_status input parameter has a valid value. The
valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

• The stored procedure verifies that there is a unique combination of p_incident_numb and
p_premise_id OR a unique combination of p_external_id and p_premise_id on the

ALTERNATE_PHONE VARCHAR2(38) TCB.ALTERNATE_PHONE Customer alternate phone number

TROUBLE_CODE VARCHAR2(32) TCB.TROUBLE_CODE This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

SHORT_DESCRIPTION VARCHAR2(128) TCB.SHORT_DESCRIPTION This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

CUSTOMER_COMMENT VARCHAR2(255) TCB.CUSTOMER_COMMENT Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

INCIDENT_TIME DATE TCB.INCIDENT_TIME Input time of call. The input time of
the incident.

EXTERNAL_ID VARCHAR2(16) TCB.EXTERNAL_ID Unique call identifier. The unique
identifier for the incident.

CALL_TAKER_ID VARCHAR2(32) TCB.CALL_TAKER_ID Call-taker user name. The name of
the call-taker or interface that
created the call.

CALLBACK_LATE VARCHAR2(1) TCB.CALLBACK_LATE The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

CALLBACK_LATE_TIME DATE TCB.CALLBACK_LATE_TIME

CALLBACK_REASON VARCHAR2(100) TCB.CALLBACK_REASON This will default to 'OMS'.

CAUSE_CODE VARCHAR2(32) TCB.CAUSE_CODE Cause code of the event related to
the callback.

Field Name from the
Cursor

Data Type
Field Name from
TROUBLE_CALLBACKS

Comments
Generic IVR Adapter 1-57

Database Schema
TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was
supplied.

• The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id
combination OR the p_external_id and p_premise_id combination. The following fields are
updated:

• The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already
done.

• The callback's CALLBACK_TIME field with provided p_callback_time stored
procedure parameter. CALLBACK_TIME field defaults to the system date if no value
was provided.

• The callback's CALLBACK_STATUS field with the appropriate callback response code.

• Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on
how the TROUBLE_CALLBACKS table is populated.

Parameters

Parameter Direction Data Type Field Name Comments

p_incident_numb In NUMBER INCIDENT_NUMB Incident Number. Either this or
the p_external_id parameter has
to be supplied

p_external_id In VARCHAR2 EXTERNAL_ID External Id. Either this or the
p_incident_numb parameter has
to be supplied

p_premise_id In VARCHAR2 PREMISE_ID Premise Id.

p_callback_status In VARCHAR2 CALLBACK_STATUS The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

p_callback_time In DATE CALLBACK_TIME Defaulted to the system date if
no value was supplied

p_err_incident_numb Out NUMBER The erroneous incident number
input parameter

p_err_external_id Out VARCHAR2 The erroneous external ID input
parameter

p_err_premise_id Out VARCHAR2 The erroneous premise ID input
parameter

p_err_oracle_error Out VARCHAR2 Oracle’s error message
1-58 Oracle Utilities Network Management System Adapters Guide

Database Schema
pr_customer_event_details

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives
the event details of an outage given the customer premise. Refer to the data flow detail for
Callback Requests on page 1-5.

Below is a high level description of what is done inside the stored procedure.

• The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id
input parameter).

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

Parameter Direction Data Type Comments

p_in_premise_id In VARCHAR2 Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

p_out_event_class Out NUMBER Event class output parameter

p_out_event_index Out NUMBER Event index output parameter

p_out_outage_status Out VARCHAR2 This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

p_ out_outage_start_time Out DATE The time of the lead call of the job.

p_ out_first_dispatch_time Out DATE The time the first crew was dispatched

p_ out_est_restore_time Out DATE The last estimate of restoration time.

p_ out_est_restore_time_src Out VARCHAR2 The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

p_ out_crew_arrival_time Out DATE The time when the crew arrived on location
Generic IVR Adapter 1-59

Database Schema
p_ out_completion_time Out DATE The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

p_ out_restoration_time Out DATE The time that power has been restored.

p_ out_case_note Out VARCHAR2 Comment

p_ out_status Out NUMBER Condition status

p_ out_active Out VARCHAR2 Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

p_out_alias Out VARCHAR2 The device alias.

P_out_event_type Out VARCHAR2 Possible values are as follows:
OUT
NON
MEET
PLAN
SWP

P_out_feeder_name Out VARCHAR2 The name of the feeder.

P_out_cause Out VARCHAR2 The cause of the outage if the SRS Rule
useExternalCause is on.

P_out_num_calls Out NUMBER The number of calls.

P_out_num_cust_out Out NUMBER The number of customers out.

P_err_premise_id Out VARCHAR2

P_err_oracle_error Out VARCHAR2

Parameter Direction Data Type Comments
1-60 Oracle Utilities Network Management System Adapters Guide

Database Schema
SRSInput Testing Utility Command Line Options
SRSInput adds raw file incidents into JMService.

Usage

SRSinput [-max number] [-ivr] [-time] [-blanksok] [-package number]

 [-interval seconds] [-divide number] [-tilde] [-debug]

 -input filename

Options/Arguments:

Note: If the -ivr option is not used, SRSinput sends calls to JMService via the
C++ API.

Option Description

-max number Maximum number of calls to enter.

-ivr Write calls to trouble_calls table for IVR adapter.

-time Add input_time with current time.

-blanksok Blank lines in call record are acceptable.

-package number Number of calls to send to JMS at a time. Default: 10.

-interval seconds Seconds to delay between calls.Defaults to 5. Also, it
can take floating point values such as 2.5 to sleep 2 and
a half seconds between call batches.

-divide number Number to divide <WAIT> times by.

-tilde Use the tilde in column 0 as a call separator.

-debug Enable runtime debugging.

-input filename Filename containing trouble call data. Required.
Generic IVR Adapter 1-61

Terminology
Terminology
The following terms and acronyms are relevant to this specification

OMS Outage Management System

NMS Network Management System

CIS Customer Information System

IVR Interactive Voice Response

Generic IVR Adapter A Unix application that generally executes on the OMS server
machine. It supports the Trouble Call, Callback Request, and
Callback Response Data Flows.

SMService System Monitor Service. SMService monitors the core processes in
the system, essentially the services and interfaces.

JMService Job Management Service. The Oracle Utilities Network Management
System call processing and outage prediction engine.

ODService Object Directory Service. ODService improves performance of the
Oracle Utilities Network Management System by caching large
amounts of device information that is likely to be requested by
applications. This caching allows the requests to be handled very
quickly without directly accessing the database.

Isis Clients access services and tools through a central concurrency
management and messaging system called Isis. Isis is a real-time
implementation of message oriented middleware and comprises the
backbone of the system, providing access to the server for each
client and the communication required between tools and services.
Isis delivers the organized information to the client applications.
1-62 Oracle Utilities Network Management System Adapters Guide

Chapter 2
SmallWorld GIS Adapter Template

The Oracle Smallworld data adapter template is a Smallworld Magik code template for an
extraction tool to produce .mp files from the Smallworld GIS. This unsupported template is
provided as an example for projects to use to facilitate the extraction from the Smallworld GIS to
the Oracle Utilities Network Management System (NMS). It is located on the installed Oracle
Utilities Network Management System in the $CES_HOME/sdk/gis directory as file
SW_EXTRACTOR_TEMPLATE.zip.
SmallWorld GIS Adapter Template 2-1

2-2 Oracle Utilities Network Management System Adapters Guide

Chapter 3
ESRI ArcGIS Adapter

Adapter Overview
Oracle Network Management System has adapters for various ESRI ArcGIS systems. Please refer
to http://support.oracle.com and search the Oracle Support Knowledge Base for “NMS ESRI
Extractor” for information on supported versions of the adapter and download links.

Adapter Documentation
Oracle Utilities Network Management System ArcGIS adapter documentation is included in the
ArcGIS adapter release package.
ESRI ArcGIS Adapter 3-1

Adapter Documentation
3-2 Oracle Utilities Network Management System Adapters Guide

Chapter 4
Intergraph G/Electric Adapter

Adapter Overview
Oracle Utilities Network Management System has adapters for various Intergraph G/Electric
systems. Please refer to http://support.oracle.com and search the Oracle Support Knowledge
Base for “NMS Intergraph Extractor” for information on supported versions of the adapter and
download links.

Adapter Documentation
Oracle Utilities Network Management System Intergraph G/Electric adapter documentation is
included in the Intergraph G/Electric adapter release package.
Intergraph G/Electric Adapter 4-1

Adapter Documentation
4-2 Oracle Utilities Network Management System Adapters Guide

Chapter 5
Generic WebSphere MQ Mobile Adapter

This chapter includes the following topics:

• Introduction

• Functional Description

• Adapter Installation

• Design Overview

• Configuration

• DML Reference

• Event Object Fields

Introduction
This document describes the Generic WebSphere MQ Mobile Adapter that can be used by Oracle
Utilities Network Management System customers to exchange data with external mobile data
systems using MQSeries messages formatted using XML. The reader is assumed to have a
working-level knowledge of Oracle Utilities Network Management System mobile data systems,
XML, and MQSeries technologies.

Overview Description
Integration of Oracle Utilities Network Management System to a mobile data system involves the
implementation of an adapter process, which exchanges messages with a mobile data system
(MDS). The contents of messages sent to the MDS are generated from data obtained from the
Oracle Utilities Network Management System services, transformed so that they are suitable for
the MDS, and formatted into XML. The contents of messages received from the MDS are
extracted from XML, transformed so that they are suitable for Oracle Utilities Network
Management System, and sent to the Oracle Utilities Network Management System services.

The current implementation of the adapter supports the exchange of the following types of
messages:

• Messages sent to the MDS

• MDS order creation, update and cancellation messages, triggered by Event updates from
Oracle Utilities Network Management System.

• Interface communication status verification messages, triggered on a periodic basis.
Generic WebSphere MQ Mobile Adapter 5-1

Introduction
• Messages received from the MDS

• MDS order update and completion messages, triggering updates to the corresponding
Oracle Utilities Network Management System events.

• Crew log on, update and log off messages, triggering Oracle Utilities Network
Management System crew creation, update and de-activation.

• Crew assignment creation, update and deletion messages, triggering status changes to the
corresponding Oracle Utilities Network Management System crews and events.

• Interface communication status verification messages, triggering changes to the interface
status.

Terminology
The following terms and acronyms are relevant to this specification

InterSys The middleware infrastructure which supports Oracle Utilities Network
Management System

MDS A Mobile Data System, which exchanges data with field crews’ mobile data
terminals.

MDS Order A document or unit of work on the MDS. Also known under different names,
for example Job

Event Oracle Utilities Network Management System outage and non-outage events
are generated by SRS based on customer calls and changes to the Oracle
Utilities Network Management System topology model.

SRS Service Reliability System, the service within InterSys which analyzes and
manages outages

MQSeries A queue-based messaging system developed by IBM.

XML Extensible Markup Language

DML Dynamic Message Language. This language is used to configure the adapter.
5-2 Oracle Utilities Network Management System Adapters Guide

Functional Description
Functional Description
The purpose of this section is to describe the basic functional capabilities of the Generic
WebSphere MQ Mobile Adapter, as applied to the integration of Oracle Utilities Network
Management System with mobile data systems (MDS). While a high-level graphical description is
provided here, detailed descriptions are provided in subsequent sections.

Functional Requirements
The key requirements for the current implementation of the Generic WebSphere MQ Mobile
Adapter are:

• Generation of MDS orders based on Oracle Utilities Network Management System events.

• Updates of MDS orders based on changes to Oracle Utilities Network Management System
events.

• Updates to Oracle Utilities Network Management System events based on updates to MDS
orders.

• Creation and update of crew information based on changes to crews on the MDS.

• The ability to map multiple events to a single MDS order, based on event relationships in
Oracle Utilities Network Management System. This allows groups of events to be viewed as
single units of work on the MDS. An example of this is multiple events involved in a set of
partial restoration steps.

• The capability to send individual field changes to an order when events change so that there is
a minimum usage of the limited bandwidth available to transmit data to and from field crews.
This requires storing the data last sent to the MDS so that change detection can be used. This
data is saved to the database, so that change detection can be used over an adapter shutdown
and restart.

• The ability of data from various Oracle Utilities Network Management System sources to be
transformed and combined for transmission to the MDS. The data sources include the Oracle
Utilities Network Management System services and the database. Data from the Oracle
Utilities Network Management System services will be obtained from both asynchronous
notification messages and the use of API calls.
Generic WebSphere MQ Mobile Adapter 5-3

Functional Description
• The ability of data from the MDS to be transformed and sent to various Oracle Utilities
Network Management System destinations, using database updates and API calls.

Hardware and Software Requirements
The purpose of this section is to describe the environment relevant to this interface.

Oracle Utilities Network Management System Environment
The Oracle Utilities Network Management System environment consists of a number of servers
that are interconnected using the InterSys messaging system.

Adapter Server
The Generic WebSphere MQ Adapter environment may be resident on the same servers as the
Oracle Utilities Network Management System services, or it may be implemented on a separate
server. Specifications for a stand-alone adapter server:

• All Oracle Utilities Network Management System Unix and Linux operating systems are
supported

• IBM WebSphere MQ messaging product

Notes:

• Queues may reside on a remote machine.

• See the Oracle Utilities Network Management System Quick Install Guide for IBM
WebSphere MQ version requirements.

• A LAN connection to the Oracle Utilities Network Management System server must be
available

• Isis must be installed and configured

Oracle Utilities Network Management System Server
The Oracle Utilities Network Management System server environment is typically deployed on
one or more Unix or Linux servers configured with the following:

• Unix/Linux operating system

• Oracle RDBMS with Oracle Utilities Network Management System model

• Oracle Utilities Network Management System service processes

• LAN connection to adapter server

• Message queues to be used by the MQ/XML Adapter appropriately declared in the defined
database configuration table.

• Isis

External System Environment
The external system is any system that can exchange information with Oracle Utilities Network
Management System through an adapter. The environment of the external system has the
following capabilities:

• Any operating system which supports IBM WebSphere MQ messaging

• IBM WebSphere MQ messaging product

• Applications that can request or publish information in a manner which is either directly or
indirectly (through a translator) compliant with the XML specifications contained within this
document via queues

• Queues must be pre-configured
5-4 Oracle Utilities Network Management System Adapters Guide

Functional Description
• IBM WebSphere MQ Integrator can be used as needed for routing and translation.

Required Installed Software
The following lists the required software that needs to be installed prior to any configuration of
the Oracle Utilities Network Management System Generic WebSphere MQ Adapter.

• IBM’s WebSphere MQ

• Isis (included in the base Oracle Utilities Network Management System installation)

Note: Isis is the messaging backbone for Oracle Utilities Network
Management System and will already be present on any Network Management
System servers. If the Generic WebSphere MQ Adapter is to be executed on a
separate server than the Network Management System, then that server must
also have Isis installed and running. Every server installation must be running
the same version of Isis. The CMM_CELL environment variable must be set
the same on any servers which are to communicate through Isis.
Generic WebSphere MQ Mobile Adapter 5-5

Adapter Installation
Adapter Installation

Overview
This section is used to guide the user in the installation of the Oracle Utilities Network
Management System Generic WebSphere MQ Adapter. The following are assumed to be true
before the adapter is installed:

1. Oracle Utilities Network Management System is installed and functional. This means that
database access has been confirmed, as well as Isis message bus communication.

2. WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network

Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed
Verify that the following files are found in their respective folders

• $CES_HOME/bin/mdsgateway

• $CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service
Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include
the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where
this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to
configure the Generic WebSphere MQ Adapter. Search for “mdsgateway” in the file and copy
those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so
that they are active.

See the command line options section below for more details on available options. You must
restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be
monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note
that the examples above were presented only for illustration purposes.
Parameters may differ on an actual project setting. Coordinate with your Project
Engineer in setting up your system configuration file. Also, take note that in the
example above, it is assumed that the Generic WebSphere MQ Mobile Adapter
will reside on the same machine where the Oracle Utilities Network
Management System environment resides.
5-6 Oracle Utilities Network Management System Adapters Guide

Adapter Installation
Generic WebSphere MQ Mobile Adapter Command Line Options
The command line for the Generic WebSphere MQ Mobile Adapter provides the following
options:

• -debug <level>: Output debug messages to the log from the adapter and all API toolkits.

• -dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that
this is the letter ‘l’).

• -d1: Output level one and lower debug messages from the adapter, only, to the log. (Note that
this is the number ‘1’).

• -d2: Output level two and lower debug messages from the adapter, only, to the log.

• -d3: Output level three and lower debug messages from the adapter, only, to the log.

• -relog <relog time in hours>: The relog period in hours. The log file continues to grow as
the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to
close the log file, save it in the logs directory and open a new log file. This can be achieved
using the “relog” high level message, and/or by specifying a relog time in this command line
option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

• -dbserver <database server name>: Specify the database server to use. The adapter can be
a heavy user the database. To prevent it from having an impact on other users and to prevent
other users from having an impact on it, it can be configured to use its own database server.
The default is to use the normal DBService. To configure the use of its own database server,
use this command line option, and make sure that an instance of DBService is running with
the database server name as its –service command line option.

• -waitfor <service name>: The name of a service to wait for before beginning initialization.
It is highly recommended that the adapter waits for the database server it uses. The default is
DBService. If the –dbserver option is used, this option should be set to the name that the
instance of DBService has been given in its process_name option. Specifying the empty string
as the name disables this feature

• -maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter
waits for before beginning initialization. If the service does not respond within this time, the
adapter exits with a fatal error message. The default is 120 (two minutes).

• -dmldir <directory path>: The path of the directory that contains the configuration files
(.dml files). The full path of the directory should be specified.

Any other command line arguments are assumed to be file names of configuration files to use.
They are processed in the order that they appear in the command line. If the adapter is being run
as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService
In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use
the TCDBService entries as examples of how to set this up.

Note: If using a separate DBService, you must start the Generic WebSphere
MQ Mobile Adapter with the “-custdbsname” command line parameter and
use the MQDBService name as the argument.
Generic WebSphere MQ Mobile Adapter 5-7

Adapter Installation
Configure the WebSphere MQ Server
References to Console Root throughout this section refer to the highest level in the tree displayed
by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

• Console Root, then WebSphere MQ, then Queue Managers, then New, and Queue
Manager.

• Queue Manager (name) = NMS_MGR.A

• Check Make this the default Queue Manager (indicating yes)

• Click Next – use default settings (circular logging)

• Click Next – use default settings (start queue manager)

• Click Next – unselect create listener configured for TCP/IP.

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

• Console Root, then WebSphere MQ, then Queue Managers, then NMS_MGR.A, then
Queues, then New, and Local Queue.

• Queue Name = NMS.A.FROMNMS

• Click OK – use all default settings

• Console Root, then WebSphere MQ, then Queue Managers, then NMS_MGR.A, then
Queues, then New, and Local Queue.

• Queue Name = NMS.A.TONMS

• Click OK – use all default settings

Note: At this point, the two new queues should be created. Check the status of
each queue or put a test message into each queue by doing the following:

• Console Root, then WebSphere MQ, then Queue Managers, then NMS_MGR.A, and
then Queues.

This should display a list of queues.

• Right click the desired queue to bring up a menu containing selections for Status and Put test
message.
5-8 Oracle Utilities Network Management System Adapters Guide

Adapter Installation
Create Server Connection Channel

From WebSphere MQ Explorer tree, select

• Console Root, then WebSphere MQ, then Queue Managers, then NMS_MGR.A, then
Advanced, then Channels, then New, and Server Connection Channel.

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL.

• In the General tab, the Channel Name is SCH1

• In the MCA tab, the MCA User ID is the local login userid

• Click OK – use all default settings

Note: At this point, the new server connection channel should be created.
Check the status of the new server connection channel by doing the following:

• Select Console Root, then WebSphere MQ, then Queue Managers, then NMS_MGR.A,
then Advanced, and then Channels.

This should display a list of connection channels.

• Right click the SCH1 channel to bring up a menu containing selections for Status, Start, and
Stop.

• Click Start. The new server connection channel should display the message:

The request to start the channel was accepted (amq4008).

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be
configured, but for simplicity, in this case, the original installation default listener for the default
queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the Original Default Queue Manager Listener
• Select Console Root, WebSphere MQ Services (local), and then the original

default queue manager name.

This will cause a list of services to be displayed, one of which is the listener service.

• Right click and select properties from the listener option. Stop the listener.

• Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager
• Select Console Root, then WebSphere MQ Services (local), then NMS_MGR.A, then

New, and Listener.

This will invoke a dialog to create a new listener service. This dialog will have three tabs: General,
Recovery, and Parameters.

• On the Parameters tab:

• The port number must be 1414.

• On the General tab:

• The startup type should be Automatic.

• Click Start.

• To check the status of the listener, select Console Root, then WebSphere MQ Services
(local), then NMS_MGR.A, then Listener, and Properties.
Generic WebSphere MQ Mobile Adapter 5-9

Adapter Installation
Configure the MQ Client

Set Environment Variables

• The environment configuration file (nms.rc), which is a data file listing Oracle Utilities
Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

• The environment configuration file must also have two variables set to locate the .TAB file
for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as
specified by these variables. Examples:

export MQCHLLIB=/users/proj/MQ
export MQCHLTAB=AMQCLCHL.TAB

• View this environment variable (to ensure that it’s correct) by typing in the following
command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

• On the Unix command line, type in the following command:

/usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

• -x is the IP address of the MQ Server host

• -c is the Server Connection Channel Name

• the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

• On the Unix command line, type in the following command:

/usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 start
target queue is NMS.A.FROMNMS

<MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

• The message should appear in the queue named NMS.A.FROMNMS which can be viewed
on the client using the MQ Explorer GUI at:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>
Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

• First “get” the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message
<<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0
end
5-10 Oracle Utilities Network Management System Adapters Guide

Adapter Installation
Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

• Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>
Queues ==> NMS.A.TONMS ==> Put Test Message

• Paste the following into “Message Data”:

• <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

• Click OK.

The following message should be displayed: “The test message was put successfully
(amq4016)”.

Test ‘Getting’ a Message on Server from Client (amqsgetc)
On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message
<<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample
AMQSGET0 end

Configure Queues for Required Data Flows
All incoming (with respect to NMS) data flows would go through the NMS.A.TONMS queue. All
outgoing messages would go through the NMS.A.FROMNMS queue. Additionally, an error queue
is intended for all adapter generated error messges.

These queues must be added to the DML configuration with the following parameters:

config_QueueManager_name
config_OutQueue_<id>_name
config_InQueue_<id>_name

where <id> is a unique identifier to differentiate between multiple output or input queues.
Generic WebSphere MQ Mobile Adapter 5-11

Design Overview
Design Overview
The adapter passes data between Oracle Utilities Network Management System and the MDS,
transforming the data based on the configuration files and tables. Messages sent and received
using MQSeries are formatted in XML. The types of messaging that are supported include the
following:

• Asynchronous publish from Oracle Utilities Network Management System to MDS (using
‘fire and forget’ pattern)

• Asynchronous publish from MDS to Oracle Utilities Network Management System (using
‘fire and forget’ pattern)

• Request/reply from Oracle Utilities Network Management System to MDS (the requestor
can process this either synchronously or asynchronously)

• Request/reply from MDS to Oracle Utilities Network Management System (the requestor
can process this either synchronously or asynchronously)

There are a number of mobile data systems produced by various vendors. These systems allow the
end customer to specify the contents of orders that are sent to the crews and the various ways that
the crews can report on their progress of their work in the field. In addition, crews can request
information from the dispatcher and from other systems in the customer’s organization. The
number of options and capabilities vary between the mobile data system vendors.

Oracle Utilities Network Management System allows the end customer a large number of options
in the kinds of data that are associated with different kinds of objects, including customers,
customer calls, outage and non-outage events, field crews, and devices in the network model.

This implies that an adapter that interfaces between Oracle Utilities Network Management System
and multiple mobile data systems and multiple implementations of Oracle Utilities Network
Management System and the various individual mobile data systems has to be highly configurable.

To meet this challenge, the Oracle Utilities Network Management System WebSphere MQ Mobile
Adapter can be configured to perform data manipulations and business logic, for flexibility, and
has functions commonly used interfacing between Oracle Utilities Network Management System
and mobile data systems hard coded for performance.

Configuration Concepts
The core of the configuration is one or more file(s) written in Dynamic Message Language (dml).
This language allows the adapter to dynamically generate XML messages from various data
sources, and to process XML messages to distribute the data contained in the message to various
data sinks.

DML allows data to be textually transformed and combined, has logic to allow XML elements to
be included or ignored, and different InterSys API calls to be made, all depending on the data
being processed.

The basic units in dml are known as documents. There are two main types of document:

• Output Documents: These instruct the adapter how to generate XML documents to be sent
to the MDS. For example, an Output Document is used to generate order create and update
messages.

• Input Documents: These instruct the adapter how to process the data received in XML
documents from the MDS. For example, an Input Document instructs the interface how to
process a crew creation message.

One or more dml files are read by the adapter during initialization. The contents of these files are
compiled into a hierarchical set of internal data structures. As the various documents are triggered,
the internal data structures are used to generate outgoing XML messages and process incoming
XML documents.
5-12 Oracle Utilities Network Management System Adapters Guide

Design Overview
The details of the syntax and capabilities of dml are described below in paragraph DML Files on
page 5-17 and in the Appendices.

Output Documents
An Output Document gathers data from various sources, performs all necessary data
transformations and logic, and formats the resulting data into XML elements whose tags are
specified in the Output Document. The main sources of data are asynchronous InterSys messages,
database selections, data cached in the adapter from previous XML documents, both input and
output, and InterSys API calls.

 In order to have the resulting XML document generated, the Output Document has to be
activated. This activation is known as “triggering” Output Documents. These triggers occur under
the following circumstances:

• The reception of an InterSys message. For example, an update to an event from SRS could
trigger an order update message.

• Periodically. For example, an interface status message that produces a reply from the MDS to
monitor the state of the connection between the two systems.

• By request in another document. For example, an assignment message is received from the
MDS, but Oracle Utilities Network Management System has no record of the specified crew.
In this case the Input Document processing the assignment message could trigger a query to
the MDS, asking it to return the data describing the crew.

• When event relationships change. For example when a number of events are grouped
manually on the Work Agenda.

Input Documents
Input Documents process data from elements whose tags are specified in the Input Document.
Other elements are ignored. Once the data from all tags in the message that the Input Document
recognizes are gathered, all necessary data transformations are performed, possibly in conjunction
with data from other sources, and the results are passed to various data sinks. The main data sinks
are the database, InterSys API calls, and the adapter cache for use in later document processing.

In order for Input Documents to process the appropriate incoming XML documents, Input
Documents have selection criteria. These criteria specify one or more of the following conditions
that have to be met before the Input Document is used to process the data in the XML document:

• The tag and attributes of the XML document’s root element.

• One or more element tags that are required to be in the XML document to identify its usage.
Optional elements can be processed with the required elements. Facilities are available to set
optional elements to default values, or to alter the processing logic depending whether they
are present or not.

• The queue that the XML document was received on.

Integration with System Services
In order for the various dml documents to access Oracle Utilities Network Management System
service objects, a number of facilities are available. They include:

• Asynchronous notification messages. For example, SRSoutput messages that describe new or
modified events. DML documents can access the data supplied by these messages.

• Access to the database. DML documents can read data from the database using select
statements, and can write data using insert and update statements.

• Access to the service APIs. Service APIs relevant to objects used in interfacing to mobile data
systems are available to dml documents using function calls.
Generic WebSphere MQ Mobile Adapter 5-13

Design Overview
Aggregation of Objects
Oracle Utilities Network Management System and mobile data systems perform very distinct
functions and, therefore have distinct views of a utility. This leads to different object models. The
difference that has the major impact on the integration of the two is what appears to be the same
object on each side of the interface: events and orders.

Events are associated with particular devices in the electrical network, while orders describe work
to be done in the field. Normally, one event is associated with one order, for example when a
customer transformer needs to be replaced because of a fault. However, in more complex
situations, this one-to-one relationship no longer applies.

An example of this is the series of steps involved in a partial restoration. A typical scenario is
presented below:

1. A fault occurs in an underground loop, causing the fuse protecting the loop to blow.

2. This results in an outage event on the fuse.

3. This generates an order, which is sent to a crew in the field.

4. The crew arrives on site and discovers that an underground cable has been cut at the end of
the loop opposite from the fuse.

5. In order to restore power to as many customers as possible, the crew opens the switch closest
to the cut cable, and then replaces the fuse.

6. This creates a new outage event associated with the downstream switch.

7. The event associated with the fuse remains, but is now in a restored state.

If a one-to-one relationship were maintained between orders and events, there would now be a
new order associated with the downstream switch. However, this does not match the view of the
crew in the field. The new event is merely part of the work involved in servicing the original order.

To accommodate this, the adapter will aggregate partial restoration events, if the appropriate
configuration options are chosen, into what appears as a single event to the dml. The dml can then
process the aggregate event into a single order. Similarly, when the dml processes updates to an
order sent by the MDS, causing updates to the aggregate event, the adapter applies the updates to
all of the aggregated events in Oracle Utilities Network Management System.

Another example is when the Oracle Utilities Network Management System operator wants to
group related events, for example when multiple outages occur in an ice storm in a small area, and
assign them to a single crew. The adapter can be configured to treat this in the same way as a
partial restoration, but this is not necessarily the preference of the customer. Some mobile data
systems can group orders into a folder like object. The adapter can provide a trigger to the dml to
process the group of associated events appropriately.

Information Flows
The contents of the configuration files are driven by the information flows required for a
particular customer.
5-14 Oracle Utilities Network Management System Adapters Guide

Design Overview
Performance
This interface is intended to provide for high performance needed to process frequent message
exchange such as in the case of a high volume of events during a storm. In order to provide
optimum performance, there are aspects of both implementation and usage. Aspects of usage
include:

• Reducing the number of database accesses and API calls required to generate outgoing XML
documents and to process incoming XML documents.

• Reducing the number of elements that need to be sent and received.

• Keeping the number of critical elements that cause XML documents to be sent when they
change to as low a number as possible.

• Allowing events time to group for as long as possible, before they cause the creation of orders
and cancellation of orders for grouped calls. An example of this is to wait until an event is
acknowledged before creating the order, and implementing business practices that delays the
acknowledgement until the event is ready to be processed by the MDS.

• Sending multiple requests and updates from the MDS together in a single message.

Aspects of implementation which optimize performance include:

The assumption that incoming XML messages are well formed, bypassing the validation step. It is
assumed that the sender provided well-formed XML, which was transmitted using reliable
communication mechanisms. The actual validation test is whether or not the code that internally
parses a message can extract a sufficient set of parameters to process an Input Document. XML
that is not well formed will typically generate an error. It should also be noted that XML validation
does not necessarily guarantee valid information provided by an external system. If this generates
an error in the adapter, the error will be logged.
Generic WebSphere MQ Mobile Adapter 5-15

Design Overview
High Level Messages
High-level messages are typically used within Oracle Utilities Network Management System to
permit one process to control another process. There are no special high-level messages that
would be required for the Generic WebSphere MQ Mobile Adapter.

Note that doing an Action any.any stop will stop the adapter, which needs to be taken into
consideration for administering the adapter when starting and stopping it.

Supported high level messages include the following:

• debug <debug level>: set the global debug level to <debug level>. If no level is supplied,
toggle between 0 and 1.

• dl <arg>: modify the local mdsadapter debug level depending on arg

• (none): toggle between 0 and 1

• off: turn off debug (no messages)

• on: set to 0 (lowest level above off, least messages)

• (a number): set to number (the higher the more debug messages)

• dump: dump adapter data to the log

• isisdump: request an isis dump

• report

• stop

• relog: close the current log file, save it in the logs directory, and open a new log file

• trigger <document name> <trigger name> [<arg> …]: Trigger the specified OnRequest
trigger in the specified Output Document passing all the additional arguments to the
document. If the document name, trigger name, or the number of arguments is invalid, the
adapter exits due to a configuration error.

Information Models
The key objects supported by the adapter include:

• Incidents are typically related to a customer and are generated by trouble calls. The customer
in turn is related to a device. In the absence of a correlation to a device, a trouble call is
classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to
the electrical distribution network.

• Events are a consequence of the correlation of incidents. Outages are one form of an event
that is managed by JMService. Some events are non-outage events, such as power quality. The
type of call that is provided can identify such non-outage and outage events. Each call needs
to be identified with a trouble code, which will determine the type of call that JMService will
generate within Oracle Utilities Network Management System.

• Devices, which are part of the electrical distribution network. Customers, outages and
conditions may have relationships to devices. Typically customers are related to transformer
devices. Outages are typically related to switch, fuse or transformer devices.

• Crews, who work in the field that can be made up of one or more crew members, and one or
more vehicle.

• MDS orders, which contain data relevant to the work that the crews perform in the field.
5-16 Oracle Utilities Network Management System Adapters Guide

Configuration
Configuration
There are several mechanisms used to configure this interface:

• DML files

• Database tables

• Command line options

Once the dml files and configuration tables for a customer’s initial configuration have gone into
production, a knowledgeable user can make changes to the configuration, as business needs
change. For example:

• Change element tags and attribute names in input and output messages.

• Remove obsolete elements and attributes.

• Add new elements and attributes.

• Change the format and contents of elements and attributes in output messages.

• Change the transformation of data in input messages.

• Alter business logic.

• Change the contents of the tables that translate Oracle Utilities Network Management System
values to and from equivalent values in the messages to and from the MDS.

• Change the conditions that trigger the various messages sent to the MDS.

• Alter the names of the MQSeries queue manager and queues.

DML Files
DML files contain dml code that is compiled into internal data structures during initialization. Any
errors in the dml files are logged, with the file names and line numbers that the errors were
detected on. Any such errors cause initialization to fail. There is an off-line program that allows
dml files to be checked before use.

A narrative about the various facilities is provided here. The details of the syntax and capabilities
of dml are described below in the Appendices.

The main purpose of dml is to generate and process XML elements. The first few sections
describe the generation of XML from Output Documents, but most of the facilities described can
be used in Input Documents, which process XML. The discussion of Input Documents starts at
section Input Elements and Attributes on page 5-22.

Output Elements and Attributes
In the following dml statement:

&Hello = world;

• & identifies that the following string (Hello) is an element tag.

• = assigns the element data.

• world is a constant value.

• ; terminates the statement.

Resulting in the following element:

<Hello>world</Hello>
Generic WebSphere MQ Mobile Adapter 5-17

Configuration
Optionally, to include a namespace prefix, add the namespace and a separator (^) before the local
element tag. For example, adding the namespace prefix mds to the previous statement:

&mds^Hello = world;

generates the element

<mds:Hello>world</mds:Hello>

Similarly, the statement:

&Tag < attr1=1; attr2=two; > = "";

• < > enclose a list of attributes and their values.

• "" is an empty string.

generates the following empty element with two attributes:

<Tag attr1="1" attr2="two"/>

The statements:

&Tag < attr1=1; attr2=two; >
{

&SubTag1=SubData1;
&SubTag2=SubData2;

}

• {} enclose a list of sub-elements.

generates the following element having two attributes and two sub-elements:

<Tag attr1="1" attr2="two">
<SubTab1>SubData1</SubTab1>
<SubTab2>SubData2</SubTab2>

</Tag>

External Data
So far, the elements and attributes discussed have contained only constant data. An example
reading data from an event in an SRSoutput message is:

&EventDevice=$E.devAlias;

This assigns the alias (name) of the event’s interrupting device to the element tagged
‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object.
The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components
of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the
fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities
Network Management System SRSoutput class.

Data obtained this way can be combined with other data using dml operators. For example:

&ExternalId = "NMS:" + $E.outageHdl.idx;

concatenates the constant string ‘NMS:’ (contained within quotes because of the non-
alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number).
Assuming that the event’s index was 1234, the following element would be generated:

<ExternalId>NMS:1234</ExternalId>
5-18 Oracle Utilities Network Management System Adapters Guide

Configuration
Variables
Sometimes the same data is to be assigned to more than one element, or intermediate result is to
be used in more than one element. Variables are used to hold such intermediate results. For
example:

@eid = "NMS:" + $E.outageHdl.idx;
&ExternalId = @eid;
&code = @eid + "%" + $E.devAlias;

would generate, assuming the device name was XFM1234567,

<ExternalId>NMS:1234</ExternalId>
<code>NMS:1234%XFM1234567</code>

The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates
the string to the right with the string to the left.

SQL Select Statements
A SQL Select statement is used to read data from the database. For example, the statement:

sqlselect @type, @intDev | type_om, interrupt_dev_om |
 picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;

sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns
of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current
event’s index.

The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will
be set to the contents of the columns in the database, separated by commas, and terminated by a
vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective
variables, separated by commas, and terminated by a vertical bar. The number of column names
must match the number of variables. The column names are followed by the table or view name.
The rest of the statement builds the ‘where clause’, by concatenating the values of all the
remaining components. This syntax only supports a simple select syntax. More complicated select
statements are built as a view on database tables, which the dml then accesses using this simpler
syntax.

The table name can be a constant or the value of a variable, an external data field, a function call,
or the result of the data manipulations, as described below.

If the table name is a constant, the columns are checked for validity at initialization time. If any of
the columns specified are not in the table, an error message is output to the log, and initialization
fails.

If the table name is not a constant, the columns are checked for validity at run time. If the table
does not exist, all variables are set to their default values (described below), and, optionally, a
debug message is output to the log. If a column is missing, the variable for the column is set to its
default value, and, optionally, a debug message output to the log.

An important source of data relating to devices in the model is the facilities (or attribute) tables
associated with various device classes (types). The name of the table for a device class is supplied
by the ‘classTable’ function, which queries the Oracle Utilities Network Management System
services for the table’s name. Not all facilities tables have the same columns (for example fuses and
transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter
does not regard a missing column at run time as a fatal error.

Some tables, for example the facilities tables described above, contain data that does not change
very often, and can be regarded as remaining static. In this case, values only need to be read from
these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use
of the ‘static’ keyword. For example:
Generic WebSphere MQ Mobile Adapter 5-19

Configuration
sqlselect @devPhases, @fuseSize |
 phase_designation, fuse_size |
static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage.

If the select returns no rows, the variables are set to their default values. If the select statement
returns one or more rows of the table, the values are taken from the first row returned.
Subsequent rows are ignored in the initial implementation of the adapter.

Function Calls
Function calls have a number of uses, including:

• Making Oracle Utilities Network Management System API calls.

• Performing data manipulations not supported by the dml syntax.

• Accessing the adapter’s data.

• Accessing other configuration data.

A simple example of truncating external data to 100 characters to match the length of strings
expected by the MDS is:

&Address = substring($E.dispAddress, 0, 100);

the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting
at the beginning of the string (an offset of zero).

The various functions available are described in DML Function Calls on page 5-72.

Expressions
The values of the various data sources can be combined in expressions. Examples of the string
concatenation operator ‘+’ have been shown above. The other operators in the initial
implementation involve boolean or logical values.

Boolean values are either true or false. Any non-empty string is considered true, while the empty
string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when
false. The boolean operators are:

• The equality operator ‘==’: This compares two values for textual equality. For example abc
== ab has a value of "" (false).

• The inequality operator ‘!=‘: This compares two values for textual inequality. For example
abc != abc has a value of "" (false).

• The logical AND operator ‘&&’: This is the union of two values, and has a value of true if and
only if both values are true. For example, Y && Y has a value of Y (true).

• The logical inclusive OR operator ‘||’: This is the intersection of two values, and has a value
of true if either of the values is true. For example, @v1 || Y has a value of Y (true)
whatever the value of the variable v1.

• The logical NOT operator ‘!’: This inverts a single value, being true if the value is false, and
vice versa. For example !@v1 is exactly equivalent to @v1 == "".

Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator,
described here, or by if statements, described below.
5-20 Oracle Utilities Network Management System Adapters Guide

Configuration
The alternation operator returns the value of one of two expressions, depending on the value of a
boolean expression and takes the form:

@bool ? @vtrue : @vfalse

If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that
of ‘@vfalse’.

Operator Summary
In the table below, each operator is followed by its name and an example of its use.

The not operator is right associative, all the others are left associative. For example, !!@v means
!(!@v), and @v1 + @v2 + @v3 means (@v1 + @v2) + @v3, and @v1 == @v2 ==
@v3 means (@v1 == @v2) == @v3.

Each box holds operators with the same precedence. An operator has a higher precedence than
those in lower boxes. For example, @v1 == @v2 + @v3 means @v1 == (@v2 + @v3).

Parentheses can be used to change the precedence. For example, (@v1 == @v2) + abc
would result in "Yabc" if @v1 was the same as @v2, otherwise "abc", while @v1 == @v2 +
abc would result in "Y" or "" depending on whether the value of v1 is the same as the value of v2
concatenated with "abc".

Parentheses should be used whenever the precedence is in doubt, especially when a boolean
expression becomes more complex.

Operator Description Example

! Not !@bool

+ Concatenate "NMS:" + $E.outageHdl.idx

== Equal @v1 == @v2

!= Not equal @v4 != on

&& Logical AND @b1 && @b2

|| Logical inclusive
OR

@b3 || @b4

? : Alternation @bool ? @vtrue : @vfalse
Generic WebSphere MQ Mobile Adapter 5-21

Configuration
Input Elements and Attributes
The element statements described above in section 7.1 are used in Output Documents. Elements
in Input Documents do not have values assigned to them, as the element values are supplied by
the incoming XML. An example of an input element follows:

&JobNumber;

This defines an element whose tag is JobNumber. This element is optional (i.e., it does not have to
be present in the input XML for the enclosing Input Document to be processed). In addition, no
attributes were declared for the element; therefore, any attributes for the element in the input
XML will be ignored.

When parsing the input, XML namespace prefixes are ignored; only the local name of a tag in the
input XML is used to match the tag to an element in the enclosing Input Document.
Consequently, in order to match, elements in Input Documents should not specify namespace
prefixes.

If the element is not present in the input XML, its value is the element’s default. The specification
of default values is described below. In this example, the default is "", the empty string. If special
processing should take place when an element is present or not, the boolean function ‘isSet’ can be
used to alter the processing logic using, for example, an ‘if’ statement, described below.

The value of the element can be used in assignments, expressions, and in the various SQL
statements. For example:

@jobNo = &JobNumber;

assigns the element’s value to the variable ‘jobNo’.

To declare that an element is required for the Input Document to be processed, the required flag
‘R’ would be added to the declaration, as described below in section Flags on page 5-25.

An example of an element with four sub-elements is:

&CrewKey
{
&CrewName;
&AgencyCode;
&ShiftCode;
&ShiftDate;
}

The default way to obtain the value of a sub-element is to specify parent’s tag, followed by a
forward slash (‘/’), followed by the sub-elements tag. Deeper nesting of elements is similar. For
example:

@crewId = &CrewKey/CrewName + &CrewKey/AgencyCode + &CrewKey/ShiftCode
+ &CrewKey/ShiftDate;

If the nesting is very deep, it can become very tedious and error prone to have to type all the tags
leading to a particular element. This can be avoided by giving the element a name, as described in
section Alternate Names on page 5-26.

Input attributes are declared similarly to Output Document element attributes. For example:

&Elem < attr1; attr2; >;

declares an element with a tag of ‘Elem’, with two attributes ‘attr1’, and ‘attr2’.

The value of an attribute can be obtained as follows:

@val = &Elem<attr2>;

The attribute’s name is enclosed in angle brackets ‘<’ and ‘>’.
5-22 Oracle Utilities Network Management System Adapters Guide

Configuration
SQL Insert and Update Statements
SQL Insert and Update statements are used to save data to the database. For example, the
statement:

sqlinsert picklist_completion_log |
ref_id, who, reason_for_update, when |
$O.event.idx, @crewId, @reason_for_update, time();

inserts a row into the ‘picklist_completion_log’ table. The value of the ‘ref_id’ column is supplied
by the index of the Handle held in the ‘event’ field of the external object ‘O’ (Order), that is
associated with a particular MDS Order. The value of the ‘who’ and ‘reason_for_update’ columns
are supplied by the variables ‘crewId’ and ‘reason_for_update’. The ‘when’ column is supplied by
the ‘time’ function, which returns the current time in internal format.

The ‘sqlinsert’ introduces the SQL insert statement, and is followed by the table or view name,
followed by a vertical bar (|) as a separator. The list of column names follows, separated by
commas, and terminated by a vertical bar. The list of data sources follow, separated by commas,
and terminated by the statement terminator, ‘;’. The number of sources must match the number of
columns.

The table name or a data source can be a constant or the value of a variable, an element, an
external data field, a function call, or the result of an expression.

If the table name is constant, the columns are checked for validity at initialization time. If any of
the columns specified are not in the table, an error message is output to the log, and initialization
fails.

If the table name is not constant, the columns are checked for validity at run time. If the table does
not exist, nothing is sent to the database, and, optionally, a debug message is output to the log. If a
column is missing, the data for the column is not sent to the database, and, optionally, a debug
message output to the log.

The type and length of the columns are read from the database, the first time a table is accessed
(commonly at initialization time). Values for character columns (CHAR or VARCHAR2) are
truncated to the column length. Values for NUMBER and FLOAT columns are checked for
validity, and invalid numbers are set to NULL. Values for DATE columns are assumed to be in the
internal time format and are checked for validity and set to NULL if invalid. Invalid column values
are output to the log file.

The SQL Update statement is for use in tables with a set of key columns. If there is a row with the
keys set to the values used in the statement, that row is updated. If there is no row with the same
keys, the row is inserted. For example:

sqlupdate picklist_info_upd_tr |
system_om, type_om, crew_restore |
&System, &Type, @restoredTime |
ref_id | $O.event.idx;

ensures that there is a row in the ‘picklist_info_upd_tr’ table with a ‘ref_id’ column equal to the
outage’s event index, and sets the ‘system_om’, ‘type_om’, and ‘crew_restore’ columns to the
values in the ‘System’ element, ‘Type’ element, and ‘restoredTime’ variable, respectively.

The ‘sqlupdate’ introduces the SQL update statement, and is followed by the table or view name,
followed by a vertical bar (|) as a separator. The list of non-key column names follows, separated
by commas, and terminated by a vertical bar. The list of non-key data sources follow, separated by
commas, and terminated by a vertical bar. The number of non-key sources must match the
number of non-key columns. The list of key column names follows, separated by commas, and
terminated by a vertical bar. The list of key data sources follow, separated by commas, and
terminated by the statement terminator, ‘;’. The number of key sources must match the number of
key columns.

The set of rules for Update statements is the same as described above for Insert statements above,
except that nothing is written to the database if a key column is missing.
Generic WebSphere MQ Mobile Adapter 5-23

Configuration
If Statement
If statements are used to alter the flow of document processing, allowing elements to be generated
optionally in output XML, different tables to be updated depending on data in incoming XML,
etc. For example:

if (@doctype != create)
{

there is no job number until the reply to the create document is
received

&JobNumber = $O.externalId;
}

The statements between the brackets ‘{‘ and ‘}’ are only processed when the variable ‘doctype’
does not contain the string "create".

An if statement can also have an ‘else’ clause. For example:

if (@v1 == @v2)
{

logDebug(0, "v1 is " , @v1, " as is v2");
}
else
{

logDebug(0, "v1 is ", @v1, " and v2 is ", @v2);
}

Note: An if statement can have any number of ‘elseif’ clauses, optionally followed by an ‘else’
clause. For example:

if (@a == 1)
{

logDebug(0, "a is 1");
}
elseif (@a == 2)
{

logDebug(0, "a is 2");
}
else
{

logDebug(0, "a is ", @a, " neither 1 nor 2");
}

‘else if’ (two words) can be substituted for ‘elseif’.

‘if’ statements can contain nested ‘if’ statements, for example:

if (@a == 1)
{

if (@b == 1)
{
logDebug(0, "a is 1, b is 1");
}
else
{
logDebug(0, "a is 1, b is ", @b);
}

}
elseif (@a == 2)
{

if (@b == 1)
{
logDebug(0, "a is 2, b is 1");
}

5-24 Oracle Utilities Network Management System Adapters Guide

Configuration
else
{
logDebug(0, "a is 2, b is ", @b);
}

}
else
{
logDebug(0, "a is ", @a, ", b is ", @b);
}

 Flags
Flags are used to modify the behavior of elements, attributes and variables. Flags are set by adding
a flag specification to the entity’s definition. Individual flags have a flag character, used in flag
specifications.

The flags are:

• The ‘send on change’ flag ‘S’. This flag only applies to elements, attributes and triggers in
Output Documents. It is described below in sections Change Detection on page 5-27 and
Triggers on page 5-33.

• The ‘always include’ flag ‘I’. This flag only applies to elements and attributes in Output
Documents. It is described below in section Change Detection on page 5-27.

• The ‘don’t save’ flag ‘D’. This flag only applies to elements and attributes in Output
Documents. It is described below in section Change Detection on page 5-27.

• The ‘ignore attribute changes’ flag ‘A’. This flag only applies to elements in Output
Documents. It is described below in sections Change Detection on page 5-27.

• The ‘default to current’ flag ‘C’. This applies to elements, attributes and variables in Output
Documents. Normally when the source of an assignment fails (due to the unavailability of an
incident, for example) the element, attribute or variable is set to its default (described below).
If this flag is on, the previous value is used instead. This only has effect when change
detection (see below) is in effect.

• The ‘required’ flag ‘R’. This flag applies only to elements and attributes in Input Documents.
If this flag is set, the element or attribute must be present in the input XML for the Input
Document to process the XML. If an attribute is required, the element itself is implicitly
required.

Flags are set by adding a flag specification after the name in an element, attribute or variable
declaration. For example:

&Elem:CSI = $E.devAlias;

The flag specification is the ‘:’ followed by one or more flag characters.

All elements and attributes have definitions. However, variables do not have to be. They are
implicitly defined when they are assigned in an assignment statement and in a SQL select
statement. Such implicit definitions cannot have flag specifications. An example of a variable
definition with a flag specification is:

@var:C;
Generic WebSphere MQ Mobile Adapter 5-25

Configuration
 Defaults
There are cases when the values for an element, attribute or variable are not available. In this case
the values are set to the entity’s default.

Values are not available in the following cases:

• When an optional element is not present in input XML.

• When insufficient incidents are associated with an event.

• When a table name is dynamically set, for example a device’s facility table, and a column is
referenced that the table does not contain.

• When a sqlselect statement selects no rows.

• A function call cannot generate a value, perhaps because it needs to use an external object
that is not available. The specific situations are discussed in the function reference section of
DML Function Calls on page 5-72.

If no default is specified, and the ‘default to current’ flag is not set, the default value for an entity
is "", the empty string. The ‘default to current’ flag is discussed above in Flags on page 5-25.

A default is specified by adding a default specification to the entity’s definition, after its (possibly
empty) flag specification. For example:

&CallerName::None = $I.0.getCustomerName;

This normally sets the ‘CallerName’ element to the name of the first customer that called. If the
event has no incidents, the element’s value is set to ‘None’. In this case the flag specification ‘:’ is
empty, and is followed by the default specification ‘:None’. If a change to the element
‘CallerName’ causes an update, the ‘S’ flag is included in the flag specification:

&CallerName:S:None = $I.0.getCustomerName;

This time the flag specification is ‘:S’ and the default specification remains ‘:None’.

 Alternate Names
Alternate names can be given to elements, attributes, and variables. Their usage depends on the
type of Document the entities are in.

Input Documents
In Input Documents, only elements can have alternate names. They are used to give the elements
names, which are easier to use when the element is a deeply nested sub-element. For example:

&Grandparent
{

&Parent
{

&son:::Jim<jattr1;>;
&daughter;

}
}

Declares an element ‘Grandparent’ with one sub-element ‘Parent’, which has, in turn, two sub-
elements ‘son’ and ‘daughter’. ‘son’ has a name of ‘Jim’. The following example accesses the value
of ‘daughter’:

@dval = &Grandparent/Parent/daughter;

while accessing the value of ‘son’ uses the shorter and less error prone:
5-26 Oracle Utilities Network Management System Adapters Guide

Configuration
@sval = &Jim;

To obtain the value of the attribute of ‘son’:

@sattr = &Jim:<jattr1>;

When an element has a name, the long form cannot be used.

Output Documents
In Output Documents elements, attributes, and variables can have alternate names. They have two
usages:

• To allow other documents to set their values, for example using the function ‘setDocValue’,
which needs the alternate name.

An example of this is when an order contains the estimated time of restoration (ETR), which
is initially supplied by the Oracle Utilities Network Management System services.
Subsequently, the field crew, after assessing the situation in the field, decides that this time is
inappropriate and sends a message back. This message causes input XML to be sent to the
adapter, which will then be processed in an Input Document. The document contains an API
call to set the ETR in Oracle Utilities Network Management System to this value.

The ETR value in Oracle Utilities Network Management System now matches the ETR value
in the MDS. However, the Output Document holds the value of all elements of the order sent
to the MDS, to prevent unnecessary updates, and, in this example, will hold the ETR
previously sent to the MDS.

The consequence of this situation is that the next time the event associated with the order
changes, the Output Document will be triggered and a change to the ETR will be detected,
even if no other elements have changed. This will cause an unnecessary transmission of an
order update to the MDS.

The solution to this defeating of the change detection mechanism is to call ‘setDocValue’
with the new value, and the name of the element that contains the estimated time of
restoration. Similar situations can arise for attributes and variables.

• To uniquely name elements so that their values can be saved to the database so that change
detection can continue to be effective over a adapter shutdown/restart cycle. This is further
discussed in section MDS_ORDER_VALUE on page 5-44.

The name is specified in an alternate name specification following the (possibly empty) flag
specification, and (possibly empty) default specification. For example:

&ETR:S:"No ETR":etr = formatDateTime($E.estRestTime);

This defines an element with the ‘S’ flag set, with a default of ‘No ETR’, and an alternate
name of ‘etr’ which is set to the formatted value of the current event’s estimated time of
restoration.

 Change Detection
When MDS orders are updated due to changes in the event that is associated with the order, it is
important to send only the elements that have changed. This is because of the limited bandwidth
available to transmit data to and from field crews.

In addition, some elements that change may not be important enough to cause an update to occur,
for example, the number of customer calls that are associated with the event.

Some elements that do not change may have to be sent every time that an update message is to be
sent, for example the order identifier could be the key on the MDS.

Change detection only applies to Output Documents, and only to documents that update data
previously sent to the MDS. To indicate that change detection applies, change detection only
Generic WebSphere MQ Mobile Adapter 5-27

Configuration
occurs when the trigger invoking the Output Document has the ‘S’ (send on change) flag set. The
rest of this section assumes that change detection applies.

The default setting for an element is that it is only included in the output XML when it changes,
and that a change to the element is not important enough to cause an update to be in effect. For
example:

&NumCustCalls = $E.custCall;

An element that causes the update to be sent has the ‘S’ (send on change) flag set. For example:

&IntDev:S = $E.devAlias;

An element that is always sent when the update is to be sent has the ‘I’ (always include) flag set.
For example:

&Create:I < confirm="Always"; >;

The ‘S’ and ‘I’ flags can be combined. This means that the element is always sent on an update,
and that a change to it causes an update to be sent. For example:

&JobNumber:SI=$O.externalId;

Change detection applies to element attributes in the same way as elements.

If the element or any attributes is to be included in the output XML, the element and all of its
attributes (including those that have not changed) are included in the output XML.

When an object with an associated document is created, a copy is made of the document, with all
elements and attributes marked as changed, because they have not been sent to the MDS yet. If an
element is not included in the initial transmission of the document (due to an if statement), it, and
all its attributes, remains marked as changed. Normally, this is the correct behavior. However, if it
has constant attributes, and may is set externally by a call to setDocValue to suppress sending the
value, the element will no longer be marked as changed, but the attributes will remain marked as
changed. This means that the first time that the element is processed (due to the condition in the
if statement changing), it will be transmitted because the attributes are marked as changed, which
is likely not the intention.

Using the ‘ignore attribute changes’ flag ‘A’, defeats the behavior. It can be combined with the ‘S’
and ‘I’ flags, if appropriate. For example:

 if (($E.est_source == "O") || ($E.est_source == "C"))
{

WorkCodeUDF:SA::ert = formatDateTime($E.estRestTime);
}

If the element or any attributes is to be included in the output XML, the element and all of its
attributes (including those that have not changed) are included in the output XML.

The values of the elements and attributes are held in memory while the adapter is executing. In
order to preserve these values over a shutdown/restart cycle, they are stored in the database. By
default, the adapter saves all elements and attributes that do not have constant values. However,
some element and attribute values are always set during the execution of the Output Document,
for example:

if (@docType == "create”)
{

@conf = Always;
5-28 Oracle Utilities Network Management System Adapters Guide

Configuration
}
else
{

@conf = Never;
}
&Confirm:I = @conf;

In this example, there is no need to save the value of the ‘Confirm’ element. To prevent saving its
value, add the ‘don’t save’ flag ‘D’ to the element’s definition, for example:

&Confirm:ID = @conf;

The table used to save the values of the order document is described in section The Order Tables
on page 5-43.

 The External Objects
The external objects are:

• The Event object, identified by ‘E’, holds the data from the event’s latest ‘SRSoutput’ data.
The names of the fields are the relevant fields in the Oracle Utilities Network Management
System SRSoutput class. They are listed in DML Function Calls on page 5-72.

• The Incident object, identified by ‘I’, holds the data from the event’s customer calls. The
Incident object is not automatically populated. It can be populated by a call to the function
readIncidents(). If memory is at a premium, the Incident object can be unpopulated
by the function clearIncidents(). The names of the fields are the relevant fields in the
Oracle Utilities Network Management System Incident class. They are listed in DML
Function Calls on page 5-72. There can be any number of incidents associated to an event,
including zero. Therefore, the offset of the incident of interest has to be supplied when
accessing an incident field. Offsets start at zero. The offset is an integer, and is the second
component of the external data reference. For example, $I.1.getCustomerName
reads the name of the second customer in the incident array. A function,
sortIncidents(), is supplied to sort the incidents. Before sorting they are in the order
that the customers called. Any reference to an incident field can fail, because there may be no
incidents. Such a failure causes the value of the element, attribute or variable being assigned to
be set to its default.

• The Order object, identified by ‘O’, holds data relating to orders sent to the MDS. It holds
the order’s current event object (possibly aggregated to summarize a set of related events), the
Output Document that holds all the document data for the order for change detection, a
number of fields that are always available (section Permanent Order Object Fields on page
5-146, Permanent Order Object Fields on page 5-146 of DML Function Calls on page 5-
72), and other data fields as configured by the MDS_ORDER and MDS_ORDER_FIELD
tables. See MDS_ORDER on page 5-43 for a description of the order tables.

• The Relationship object, identified by ‘R’, holds data relating to event relationships processed
by the dml. It holds the type of relationship, the handles of all the related events, and a
number of fields that are always available (see section Permanent Relationship Object
Fields on page 5-147, Permanent Relationship Object Fields on page 5-147 of DML
Function Calls on page 5-72).

• The Global Data object, identified by ‘G’, which holds named values for use by any of the
documents. A field is created by assigning values to the field, e.g., $G.QueueManager =
OPS;. If a field that has not been created is read, the field is created with a value of "", the
empty string, and an warning is output to the log. The global data object usually holds
configuration data, and the fields are set in a Configuration Document.

• The Trigger Parameter object, identified by ‘T’, which holds the parameters sent to Output
Documents when they are triggered from another document using the function
‘triggerOutputDoc’. The first parameter to ‘triggerOutputDoc’ specifies the Output
Generic WebSphere MQ Mobile Adapter 5-29

Configuration
Document to trigger, the second parameter specifies the trigger to pull, and the rest of the
parameters values are available to the Output Document as fields ‘1’, ‘2’ … up to the number
of parameters supplied, less two (the document and trigger names). For example, @param1
= $T.1; sets the variable ‘param1’ to the value of the first parameter.

Input Element Arrays
The declaration of input elements discussed in section Input Elements and Attributes on page
5-22. can only handle elements whose tags are unique within the bounding parent element (which
may be the root element). If such an element appears in the input XML, its value (or those of its
own sub-elements) will override the values previously read. Input element arrays solve this
problem.

Generally there are two situations that repeated elements are required:

• When the elements contain the same type of data and each should be processed in a similar
fashion. For example, a crew logs on when the MDS had previously assigned multiple orders
to the crew. Each of these assignments should be made to the crew on Oracle Utilities
Network Management System.

• When the elements contain different types of data, and the individual elements are identified
by the value of a particular attribute, in effect giving the element a compound tag.

Using an element array with an unspecified index solves the first situation. For example:

&CrewAssignments
{
&CrewAssignment[]
{
&OrderId;
&AssignmentStatus;
}
}

This allows any number of elements with the tag ‘CrewAssignment’ to be processed. This can be
achieved using the ‘for’ statement described below.

Using an element array with a specified index attribute solves the second situation. For example:

&UDFS
{
&UDF[idx];
}

@etr = &UDFS/UDF[et];
@troubleType = &UDFS/UDF[tt];

which assigns the ‘UDF’ element whose ‘idx’ attribute is ‘et’ to the variable ‘etr’ and the ‘UDF’
element whose ‘idx’ attribute is ‘tt’ to the variable ‘troubleType’.

Array elements can be given alternate names in the same way as normal input elements, but they
cannot be given flags and defaults, as they have no meaning. Individual array indices can be
required to be present, using a required index specification. For example:

&UDFS
{
&UDF[idx] R(et, tt);
}

@etr = &UDFS/UDF[et];
@troubleType = &UDFS/UDF[tt];
5-30 Oracle Utilities Network Management System Adapters Guide

Configuration
Prevents the processing of the input XML when the input XML does not contain a ‘UDF’
element with an ‘idx’ attribute of ‘et’ and contain a ‘UDF’ element with an ‘idx’ attribute of ‘tt’.
The required index specification consists of an ‘R’ followed by a comma separated list of attribute
values in parentheses ‘(‘ ‘)’.

While sub-elements to array elements can be given names, their usage differs from normal sub-
elements because the appropriate index must be specified. This is done using a format similar to
the long form of referencing tags, using forward slashes ‘/’. For example:

&ancestor
{

&grandparent[idx]
{

&parent
{
&child;
}

}
}
@son = &ancestor/grandparent[smith]/parent/child;

uses the full long form.

&ancestor
{

&grandparent[idx]:::granny
{

&parent
{
&child;
}

}
}
@son = &granny[smith]/parent/child;

uses a name for the array element.

&ancestor
{

&grandparent[idx]:::granny
{

&parent
{
&child:::son;
}

}
}
@son = granny[smith]/son;

uses a name for both the array element and its sub-element.
Generic WebSphere MQ Mobile Adapter 5-31

Configuration
For Statement
The for statement, or for loop, is used to iterate through the contents of an array element.

The array element can either have a specified index attribute or an unspecified index. The usage is
similar.

For example:

&CrewId:R;

&CrewAssignments
{
&CrewAssignment[]:::asn
{
&OrderId;
&AssignmentStatus;
}
}
if (!findCrewById(&CrewId))
{

stop;
}

for (&asn[], @i)
{

if (isSet(&asn[@i]/OrderId) &&
 isSet(&asn[@i]/AssignmentStatus) &&
 findOrder(externalId, (&asn[@i]/OrderId))

{
if (&asn[@i]/AssignmentStatus == ASN)

{
assignCrew();

}
elseif (&asn[@i]/AssignmentStatus == DSP)
{
dispatchCrew();

}
}

}

The for statement executes all the statements between the matching brackets ‘{‘ and ‘}’, for each
of the elements in the tag array (‘&asn[]’ in this case), in the order that they appeared in the input
XML. During execution of the statements the ‘for’ variable (‘@i’ in this case) is set to the elements
index in the tag array. As this array did not have an index attribute specified, the variable has a
numeric value, starting at zero, and is incremented by one between loop executions. If the XML
does not contain the element, the loop is never executed.

If, instead, the array element had an index attribute, for example:

&CrewAssignments
{
&CrewAssignment[idx]:::asn
{
&OrderId;
&AssignmentStatus;
}
}

the loop variable would contain the values for the ‘idx’ attribute included in the input XML. Note,
however, that if the XML contained any ‘CrewAssignment’ elements, without an ‘idx’ attribute,
these elements would be ignored, and therefore not available for processing.
5-32 Oracle Utilities Network Management System Adapters Guide

Configuration
 Queue Specification
The queue specification is used to specify the queue that XML from Output Documents are sent
to, and the queue that input XML is received on to be processed by Input Documents. The queue
specification appears in the header portion of the document. For example:

queue = NMS.TO.MDS.REQUEST;

Which sets the queue name to a constant. Commonly, the queue is set to the value of a field in the
global object to facilitate the configuration of the queue names.

Output Documents can change the queue name by accessing the queue variable in the body of the
document. For example:

If (@use_alternate_queue)
{

@queue = $G.alternateQueue;
}

 Association of an Output Document to the Order Object
The order document must have an associated Output Document that generates the Order
creation (usually) and update (always) XML. It is used to cache all the element data that is used for
change detection. This association is achieved using the associate specification in the document
header which takes the form:

associate = O;

where the ‘associate’ is the associate keyword and the ‘O’ identifies the Order Object.

Triggers
Triggers specify when Output Documents are activated to generate XML to be sent to the MDS.
For example:

trigCreateOrder < SRSoutput; > =
($E.status == "ACK") && !findOrder(event, $E.outageHdl);

might be used to trigger the creation of an order.

The ‘trigCreateOrder’ is the trigger’s name. The value of a trigger is available to the body of the
document in a variable with this name.

The angle brackets, ‘<’ and ‘>’, contain the trigger specification(s), which define the circumstances
under which the trigger is to be tested. In this case the arrival of an asynchronous ‘SRSoutput’
message.

After the assignment is the expression which determines when the trigger is to be fired. The
expression is evaluated and if it is true, i.e. not the empty string, the trigger is fired. The result of
this evaluation is then assigned to the trigger variable. In the example, the trigger will fire if the
event is in the acknowledged state and no order has been created for the event.

If an expression is not supplied, the trigger always fires when the trigger specification is satisfied.
In this case, its value is set to ‘Y’.

Triggers can also have the ‘send on change’ ‘S’ flag set. If not set, all elements in the
document are sent in the resulting XML. If set, only those elements that have changed are set. For
example:

trigUpdateOrder:S < SRSoutput; > =
Generic WebSphere MQ Mobile Adapter 5-33

Configuration
(!isIn($E.status, "UNA", "CNL") && findOrder(event, $E.outageHdl);

There can be multiple triggers, only one of which is fired. The triggers are evaluated in order of
their definitions and the first to fire takes effect. The unfired triggers all have a value of false.

There are a number of types of trigger specifications. In some cases they need values. They are:

• The reception of a SRSoutput message. The trigger specification is ‘SRSoutput’, which has no
value. Examples of the SRSoutput trigger are shown above.

• When an event is deleted. This occurs when outages are merged, and when a previously
processed event is not returned by JMService at start up. The trigger specification is
‘EventNonexistent’, which has no value. Commonly, this triggers the same Output
Document that handles event cancellation. The event is supplied in trigger parameter 1. An
example of an event non-existent trigger is:

triggerEventNonexistent<EventNonexistent;>
 = findOrder(order, $T.1) && $O.externalId;

• Periodically. The trigger specification is ‘Periodic’, which needs a value that is the period at
which to fire the trigger, in seconds. An example of a periodic trigger that fires once a minute
is:

trig1min< Periodic=60; >;

• By request in another document, using the ‘triggerOutputDoc’ function. The trigger
specification is ‘OnRequest’, which needs a value that is the number of trigger parameters that
need to be passed by the requesting document. An example of a request trigger with two
parameters is:

trigOnRequest<OnRequest=2;>
 = findOrder(event, $T.1) &&
 isIn($E.status, "UNA", "CNL") &&
 $O.externalId;

• Creation of, changes to the number of events in, and deletion of an event relationship
processed by dml. The trigger specification is ‘RelationChanged’, which as no value. The
Output Document is activated once for each event in the relationship. The event is supplied
in trigger parameter 1. An example of an relationship change trigger is:

trigRelationChanged< RelationChanged; >
= findOrder(event, $T.1) &&
 isIn($E.status, "UNA", "CNL");

• Deletion of an event relation processed by dml. The trigger specification is ‘RelationDeleted’,
which as no value. The Output Document is activated once for the relationship. The relation
is supplied in trigger parameter 1. An example of an relationship deletion trigger is:

trigRelationDeleted< RelationDeleted; >
= findOrder(RELATED_OUTAGE, relation, $T.1) &&
 $R.externalId;

• A change to the number of events in an event relation that is aggregated by the adapter. The
trigger specification is ‘AggregateChanged’, which has no value. The Output Document is
activated once for the order in which the events are aggregated. The order is supplied in
trigger parameter 1. An example of an aggregate change trigger is:
5-34 Oracle Utilities Network Management System Adapters Guide

Configuration
trigAggregateChanged< AggregateChanged; >
= findOrder(order, $T.1) &&
 $O.externalId;

This trigger is often used to ensure that all events in the relation have data updates sent by the
MDS before new events are added to the relationship, for example the estimated time to
restore.

• An SRSoutput message arrives indicating number of events are merged. The trigger
specification is ‘EventMerged’. Its value specifies the name of an Output Document, known
as the Merge Priority Document, which is used to generate the priority of all of the orders
associated with the events involved in the merge, if any. The Merge Priority Document must
have a request trigger named ‘call’. The Output Document that contains the event merged
trigger is known as the Merge Document. There can be zero or one Merge Document in all
the dml files processed by the adapter. If no Merge Document is supplied, the SRSoutput
message is processed via SRSoutput triggers, and the merged events are processed via event
non-existent triggers. If a Merge Document is supplied, the adapter processes the SRSoutput
message as follows:

1. For each of the events involved in the merge, including the surviving event, the adapter
determines whether the event is associated with an order. If so it’s order becomes eligible
to be the surviving order, except for a non-surviving event’s order is in an aggregate
relationship. If there are no eligible orders, the SRSoutput message is processed via
SRSoutput triggers, and the merged events are processed via event non-existent triggers.
Neither the Merge Document nor the Merge Priority Document is processed.

2. When there are multiple eligible orders, the adapter must choose which one will become
the survivor. The Merge Priority Document provides a priority value to allow this choice
to be made. The adapter processes the Merge Priority Document via the ‘call’ trigger.
The Merge Priority Document has its order and event objects set. Note that if the event
is the surviving event, the previous version of the event object is set. This allows the
event object’s fields before the merge to be used to determine the priority.

3. The Merge Priority Document returns the priority in the trigger argument object. The
priority consists of a priority sort definition and one or more priority values. The priority
sort definition is returned in the ‘0’ (the character zero) field of the trigger argument
object ($T.0). If this value is the empty string, the order is no longer eligible to survive. If
not empty, it defines the number and sort order of the priority values. The priority values
are returned the ‘1’, ‘2’, … fields ($T.1, $T.2, …), up to the number of values. The
number of characters in the priority sort definition determines the number of values
expected by the adapter. Each character determines the sort order for the corresponding
value, ‘A’ or ‘a’ for ascending and ‘B’ or ‘b’ for descending, the first character applies to
$T.1, the second to $T.2, etc.

4. If there are multiple orders eligible, the one with the highest priority becomes the
survivor. Each priority value is sorted alphabetically in the order specified by its character
in the priority sort definition. The first value ($T.1) is examined first. If one order ranks
higher that all the other, it is chosen. Otherwise, any order with a lower priority is
discarded. Then the other values are examined in turn, until an order is chosen. If all the
priorities are the same, the order associated with the surviving event, if any, survives. If
the surviving event has no order, the order associated with the oldest event survives. For
example, the following dml fragment illustrates how to choose the order with the most
advanced crew assignment/dispatch status, and if they are equal the order with the oldest
event.

two priority values, the first descending, the second ascending
$T.0 = DA;

orderCrewStatus() returns ’A’ for Assigned, ‘D’ for dispatched,
 ‘O’ for on site, nothing for none
Generic WebSphere MQ Mobile Adapter 5-35

Configuration
@ocr = orderCrewStatus();
if (@ocr)
{
$T.1 = @ocr;
}
else
{
‘a’ precedes all of the valid values
$T.1 = a;
}

formatDateTime() returns the date and time in the format
YYYY-MM-DDTHH:MM:SS
$T.2 = formatDateTime($E.outageTime);

5. The Merge Priority Document can populate other fields in the trigger argument object,
to be used by the Merge Document when the order being processed becomes the
surviving order. Note that the Merge Priority Document is processed even if there is
only one eligible order so that these fields, if any, can be passed to the Merge Document.

6. If the surviving order is not associated with the surviving event, the surviving order is re-
associated to the surviving event. The order that was associated with the surviving event
is re-associated to the surviving order’s old event, so that it can be processed via an event
non-existent trigger, to allow normal order clean up.

7. The adapter processes the Merge Document with the surviving order object and
surviving event object set to the new version of the event, and the trigger argument
object fields set by the Merge Priority Document when processing the surviving order.

8. Finally, the SRSoutput message is processed via SRSoutput triggers, and the merged
events are processed via event non-existent triggers.

An example of an event merged trigger is:

TrigEventMerged <EventMerged="OrderMergePriority";>;

For this to be valid, there must be an Output Document named ‘OrderMergePriority’, with a
request trigger named ‘call’.

 The Root Element
The root element is the element that contains all of the other elements in an XML document. The
root element in dml serves a different purpose depending on whether it is part of an Output or
Input Document.

In an Output Document, it is used to generate the root element in the XML to be sent. In an
Input Document it is used to select the Input Document or Documents that the input XML can
be processed by, similar to a trigger for an Output Document. An example of a root element
follows:

&RootElement <environment = $G.environment; revision = "1.0.0";> =
CreateJob;

The root element has the same format for both Input and Output Documents.
5-36 Oracle Utilities Network Management System Adapters Guide

Configuration
The root element differs from other elements in that the element’s tag is defined by the value of
the element, ‘CreateJob’ in this example. The pseudo-tag ‘RootElement’ keyword identifies it to be
the root element.

In an Output Document, the example would generate the following start element tag:

<CreateJob environment="Test" revision="1.0.0">

assuming that the global field ‘environment’ held the value ‘Test’.

To select an Input Document, the input XML’s root element must have the same tag, and all the
attributes in the root element specification must be present and have exactly the same contents.
Extra attributes in the XML’s root element are ignored.

An Input Document with the same root element definition example above would be selected by
the root element in the example above.

The root element is defined in different areas, depending on the type of document.

In an Output Document the root element is in the body of the document, because it’s tag may
have to be determined during document processing. It is the only element in an Output
Document that is an exception to the rule that states that elements are generated in the order that
they appear in the Output Document.

In an Input Document the root element is the header of the document because it is used before
any processing is done in the document.

 The Base Path
The base path only applies to Input Documents, and is not necessary, but can make Input
Documents more compact. Consider the following XML:

<ConfirmJob>
 <ApplicationArea>
 </ApplicationArea>
 <DataArea>
 <Job>
 <OriginalApplicationArea>
 <BODId>OrigBODId</BODId>
 </OriginalApplicationArea>
 <CreateSuccess>
 <JobNumber>1234567890</JobNumber>
 </CreateSuccess>
 </Job>
 </DataArea>
</ConfirmJob>

The XML could contain many other elements, but the ‘BODId’ and ‘JobNumber’ are the only
elements to be processed. The elements in the Input Document would be:

&DataArea
{

&Job
{

&OriginalApplicationArea
{
&BODId;
}
&CreateSuccess
{
&JobNumber;
}

Generic WebSphere MQ Mobile Adapter 5-37

Configuration
}
}

Note that ‘BODId’ and ‘JobNumber’ have a common grandparent ‘Job’. By setting the base
element to the grandparent by adding:

BasePath = DataArea/Job;

to the document’s header, the elements would become:

&OriginalApplicationArea
{

&BODId;
}
&CreateSuccess
{

&JobNumber;
}

 Stop Statement
 The Stop statement causes the processing of the current document to stop. It takes the form:

stop;

It is usually contained in an ‘if’ statement. Any statements with side effects, for example a SQL
Insert, processed before the ‘stop’ do take effect.

A stop statement prevents an Output Document’s XML from being sent.

A stop statement in a Configuration Document, described below, causes initialization to fail.

 Include Statement
Sometimes it’s useful to have the same set of statements in two different places in a dml file. For
example all Output Documents may need the same header, or application area. This can be
achieved by placing the repeated statements in another file and then including the file more than
once in another file. The following is an ‘include’ statement:

include ohdr.dml

 This ‘include’ statement in effect replaces the text ‘include ohdr.dml’ with the contents of the file
‘ohdr.dml’. Files being included can also include other files, but the nesting level is limited to 10
deep so that infinite recursion can be prevented.

 Configuration Documents
Configuration Documents are used to set configuration data and load configuration tables from
the database at initialization time. They are similar to Input Documents, but have no elements.

They are processed at initialization time, and are then discarded. Any errors encountered when
processing a Configuration Document should be made fatal by executing a stop statement,
causing initialization to fail.

Common uses are to set fields in the global data object, including configuration fields, and to load
mapping tables, used by the ‘mapTableStr’ and ‘mapTableCode’ functions described in DML
Function Calls on page 5-72. For example:

ConfigDoc Configure
{
fields for other documents
$G.OutRequestQueue=NMS.MDS.REQUEST;
5-38 Oracle Utilities Network Management System Adapters Guide

Configuration
$G.OutErrorQueue=NMS.ERROR;
$G.InReplyQueue=MDS.NMS.REPLY;
$G.InRequestQueue=MDS.NMS.REQUEST;
$G.environment=Test;

configuration parameters
$G.config_QueueManager_name=OPS;
$G.config_OutQueue_req_name=$G.OutRequestQueue;
$G.config_OutQueue_err_name=$G.OutErrorQueue;
$G.config_OutQueue_numThread=5;
$G.config_InQueue_rep_name=$G_InReplyQueue;
$G.config_InQueue_rep_numThread=2;
$G.config_InQueue_req_name=$G.InRequestQueue;
$G.config_InQueue_req_numThread=4;
$G.config_ErrorQueue_name=$G.OutErrorQueue;
$G.config_ErrorDoc_name=Error;
$G.config_ErrorDoc_trigger=xmlErrorTrigger;

$G.config_Relation_Aggregate_AcknowledgeEvents = ack;
$G.config_Relation_Aggregate_type = PARTIAL_RESTORATION;
$G.config_Relation_Aggregate_ActiveEvents = Y;
$G.config_Relation_dml_type = RELATED_OUTAGE;

Load map tables
if (!loadMapConfigTable(mds_map_config) ||
 !loadMapTable(mds_cls_desc) ||
 !loadMapTable(mds_cls_type))
{

stop;
}
}

Configuration Fields

Configuration fields have names starting with ‘config_’. The available configuration fields are:

• config_QueueManager_name: The name of the queue manager to use. This field must be
specified, or the adapter will exit with a configuration error message.

• config_OutQueue_<id>_name: The name of an output queue to use. Each output queue
needs to have a unique id, which replaces the ‘<id>’. The unique id may not contain an
underscore (_).

• config_OutQueue_numThread: The number of threads to use to generate output
documents. If not specified, one thread is used to generate output documents.

• config_InQueue_<id>_name: The name of an input queue to use. Each input queue needs
to have a unique id, which replaces the ‘<id>’. The unique id may not contain an underscore
(_).

• config_InQueue_<id>_numThread: The number of threads to use to process input
documents arriving on the input queue with the same id. Each input queue needs to have a
unique id, which replaces the ‘<id>’. If not specified, one thread is used to process
documents on the queue.

• config_ErrorQueue_name: The name of the queue to send XML parse error and warning
reports to. This field must be specified, or the adapter will exit with a configuration error
message.

• config_ErrorDoc_name: Specify an output document to process error reports. If specified,
the config_ErrorDoc_trigger field must be specified. If not specified, the standard XML
error document, as specified in the MQ/XML adapter documentation, is used.
Generic WebSphere MQ Mobile Adapter 5-39

Configuration
• config_ErrorDoc_trigger: The trigger to pull in the error document when there is an error
or warning to report. Ignored is no error document is specified. If the specified trigger does
not exist in the error document, the adapter exits with a configuration error message. The
adapter supplies three trigger arguments to the error document. Argument one is the error or
warning message description, argument two is the priority level, one of ‘Warning’, ‘Error’, and
‘Fatal Error’, and argument three is the offending XML document.

• config_Relation_Aggregate_type: A comma separated list of relationship types to
aggregate. The relationship types are: NESTED_OUTAGE, MOMENTARY_OUTAGE,
PARTIAL_RESTORATION, and RELATED_OUTAGE. If a pseudo relationship of a type
that is aggregated by the adapter is created using createPseudoRelation(), the pseudo relation
is aggregated. If a relationship type is configured for both aggregation and dml processing,
the adapter exits with a configuration error.

• config_Relation_Aggregate_AcknowledgeEvents: Acknowledge all unacknowledged
events in aggregate relations. The value of this field is used in a call to
JMS::requestRowAction() as the button name. This field should be set if pseudo aggregate
relations are created on events that may not be acknowledged.

• config_Relation_Aggregate_ActiveEvents: If the field is not the empty string "", sum
count data for all active events in an aggregated relation. The count data event fields are:
customersOut, crit_k, crit_c, and crit_d.

• config_Relation_dml_type: A comma separated list of relationship types to be processed
by the dml, using the relationship object. The relationship types are: NESTED_OUTAGE,
MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. If a
pseudo relationship of a type that is processed by the dml is created using
createPseudoRelation(), the pseudo relation is processed by the dml. If a relationship type is
configured for both aggregation and dml processing, the adapter exits with a configuration
error.

• config_Relation_dml_AcknowledgeEvents: Acknowledge all unacknowledged events in
dml processed relations. The value of this field is used in a call to JMS::requestRowAction() as
the button name.

• config_MaxBackoutCount: The adapter uses the MQSeries syncpoint facilities to preserve
input messages when there is a failure. Using the MQSeries syncpoint facilities introduces the
possibility that a 'poison' message will be sent by the MDS. A 'poison' message is one that can
never be successfully processed, for example because an Oracle Utilities Network
Management System table has a constraint that the contents of the message violate. If the
'poison' message is never discarded, MDS will continually try to process the message, fail, and
then restart. This parameter sets a limit on the number of restarts that MDS will perform
before discarding a message. The default value is five. A value of zero disables this feature. If
a message is discarded, the error is logged to the log file, including the offending XML, and if
the error document is configured, and an error report is sent to the error queue.

• config_Event_QueueDelay: When event data is received in an SRSoutput message, from
JMService, they are held for this period before they are queued for processing. If another
message for the same event is received before the delay has expired, the older message is
discarded, and the new message is held for the delay period. This avoids unnecessary
processing and message transmission when event data is changing rapidly. Setting this delay
too short can cause extra messages, while setting it too long can cause poor response. The
value is in seconds. The default value is four seconds. A value of zero disables this feature.

• config_Event_ReprocessPeriod: In certain circumstances, for example when more that
one event is grouped, the adapter needs to request an event’s status from JMService. The
adapter periodically requests these events’ statuses in a single request, reducing the burden on
JMService. In addition, if an SRSoutput message for one of these events arrives before it is
time to do the request, the request does not have to be made. Setting this period too short can
cause extra messages, while setting it too long can cause poor response. The value is in
5-40 Oracle Utilities Network Management System Adapters Guide

Configuration
seconds. The default value is six seconds. The minimum value is two seconds. It must be at
least 2 seconds longer than config_Event_QueueDelay.

• config_Crew_AssignmentCheckPeriod: When the assignment of crews to events is the
responsibility of the adapter, as a proxy for the MDS, Oracle Utilities Network Management
System can be configured to reduce the possibility of an operator inadvertently assigning a
crew to an event. However, it must be possible to assign crews if Oracle Utilities Network
Management System cannot communicate with the MDS, hence mistakes can happen. The
adapter periodically checks all crew assignments. A sub-set of crew assignments is checked at
the end of each period, the events in ten orders, and ten crews for events not in an order
being checked each time. Setting the period too short causes unneeded processing, setting it
too long delays such mistakes being repaired. The value is in seconds. The default value is six
seconds. A value of zero disables this feature.

• config_Crew_MoveAssignmentCheckDelay: When crew assignments are being checked,
allowing the checking to occur during event grouping can, in some configurations, cause
unnecessary message traffic between the adapter and JMService. To prevent this, when a
grouping happens, crew assignment checking is delayed. The value is in seconds. The default
value is two seconds. A value of zero disables this feature.

• config_Relation_CheckPeriod: When event relationships are processed by the adapter, the
adapter loads the relationship database table each time a relationship is created, changed or
deleted. In addition, the adapter checks for changes to the table at this period. The value is in
seconds. The default value is 30 seconds. A value of zero disables this feature.

• config_IgnoreCondStatus: In most implementations of the adapter, additional alarms in
the Oracle Utilities Network Management System Work Agenda should not be processed.
The value of this configuration parameter is a list of condition statuses, separated by commas
(,), that are to be ignored by the adapter. To ignore additional alarms (often NFY events) set
this value to 12.

• config_CompleteStatus: In certain situations the adapter need to be able to determine if an
event is complete, for example to prevent the assignment of a crew to a completed event,
which is illegal. This can only be determined by examining the status string for the event,
which is configurable in Oracle Utilities Network Management System. The value of this
configuration parameter is a list of statuses, separated by commas (,), that indicate that an
event is complete. The default value of this parameter is CMP, CNL.

• config_EventUpdateTimeout: When device outages are confirmed and restored (using
confirmDeviceOutage() and restoreOutage()), the new state of the event(s) needs to be read
from JMService. Because device operations are initiated by a message to DDService, which
sends a notification to MTService to update the model, which subsequently notifies
JMService of the model change, the new state cannot be read immediately, because JMService
may not have received the notification. To avoid this, the adapter waits for an SRSoutput
message updating the event before reading the new state. To prevent the adapter from
hanging if an event update does not occur, a timeout is used to interrupt the wait. This value
is the timeout in seconds. The default value is 20 seconds. The minimum is two seconds.

• config_MaxThreadBusyUntilFatalError: The adapter monitors the input and output
threads to detect Mutex deadlocks, which would cause the adapter to hang. This value is the
maximum number of seconds that a thread can be responding to a single trigger or input
XML document. The default value is 300 seconds (5 minutes). The minimum is 60 seconds.

• config_StopServiceOnHighLevelStop: The adapter runs as a Windows Service, and it
usually set to restart after a period after it fails. (This period is often the minimum one
minute). If the adapter tells Windows that it has stopped normally, using a Service Stop
message, just before exiting Windows does not try to restart the adapter. If the adapter does
not send a Service Stop message, Windows will restart the adapter. When the adapter exits
due to Stop request from the Service Property dialog, it sends Windows a Service Stop
message, because the user is intending that the adapter stops and does not restart. When the
adapter exits abnormally, it does not send a Service Stop message so that Windows will restart
Generic WebSphere MQ Mobile Adapter 5-41

Configuration
the adapter. However, when the adapter is sent a high-level stop message from Oracle
Utilities Network Management System using the Action command, the user may or may not
want the adapter to restart. This value determines whether the adapter sends a Service Stop
message under these circumstances. A value of ‘Y’ causes the adapter to send a Service Stop
message, while a value of ‘N’ prevents the adapter from sending a Service Stop message. The
default value is ‘N’.

• config_AllowCloseOutEventCancel: When this parameter is set to 'Y,' the DML function
closeOutEvent will cancel the event instead of completing it, if the appliedRule value
OUTAGE_PND_COMPLETE (26) is passed to the function. When this parameter is set to
'N,' the DML function closeOutEvent will not cancel events. The default value is 'Y'.

• config_IgnoreStormmanUpdates: When this parameter is to set to 'Y' (default), the
adapter will not process TRBL_ERT_UPDATE messages generated when Storm
Management recalculates ERTs. When this parameter is to set to 'N' the adapter will process
such messages.

• config_AllowManualEntryForSCADA: When this parameter is to set to 'Y,' the adapter
will perform manual entry in order to operate SCADA device in the NMS model. When this
parameter is to set to 'N' (default), the adapter will not be able to operate SCADA devices.

• config_Username: Username under which the adapter will perform crew-related API calls
into NMS. Default value is 'MDS'.

• config_BlockingMqGetEnable: (boolean) If true, the blocking get() behavior will be
enabled. Default is false.

• config_BlockingMqGetWaitInterval: (integer) The number of milliseconds that the
adapter will wait for a message to appear on the queue before the MQGET call completes
with the MQRC_NO_MSG_AVAILABLE reason code. This option only takes effect if
config_BlockingMqGetEnable is “true”. Default is 2000 ms.

 Pseudo Relationships
Pseudo relationships can be created by the dml so that all the events on a single device can be
processed in the same way as an Oracle Utilities Network Management System created event
relationship. The processing of these relationships is configured in a configuration document.

For example, a probable device outage is created from multiple customer calls grouping to the
common transformer, but the crew discovers that there are multiple service problems only
affecting some of the customers (perhaps a tree limb took down two service wires). The crew will
fix all of the problems, so they do not need multiple MDS orders. When the individual service
status is set for the affected customers, all the events generated will be treated in the same way as a
partial restoration. (This example assumes that partial restorations are aggregated, and the dml
creates a pseudo partial relationship when this situation arises.)

When all of the events in a pseudo relation are completed, the relation itself is automatically
completed.
5-42 Oracle Utilities Network Management System Adapters Guide

Configuration
Configuration Tables
The following tables are used in conjunction with the dml files to configure the MDS adapter.
They are loaded at startup, or, in some cases, when a dml statement needs them.

The Order Tables
The order tables save order data and configure the fields that are available to the dml in the
external Order object, identified by ‘O’ in the dml.

MDS_ORDER

The MDS_ORDER table is used to save order data so that the adapter can continue to process
orders over a adapter shutdown restart cycle. While not strictly a configuration table, it is
described here to clarify the use of other configuration tables. The table has a fixed set of columns
that are always in the table, and columns to hold Order object field values, element values and
attribute values. The fixed set of columns is:

The ‘h_cls’ and ‘h_idx’ columns make up the order handle, which identifies the order internally
and are the key columns of the table. The order handle is available to the dml with a field name of
‘order’. The ‘event_cls’ and ‘event_idx’ columns make up the handle of the key event for the order.
If the event is not aggregated, this is the single event associated with the order. If the event is
aggregated, this is the key event of the relationship that makes up the aggregate. The event handle
is available to the dml with a field name of ‘event’. The ‘active’ flag indicates whether the order is
active, i.e. it has been created, but has neither been completed or cancelled. ‘when_created’ holds
the time and date the order was created. ‘when_completed’ holds the time and date the order was
completed or cancelled. comp_reason hold the text explaining why the order was completed or
cancelled. This text is supplied by the dml when it completes the order by calling the
‘orderComplete’ function.

The columns that hold the field, element and attribute values can have any name, but they must
match the contents of the MDS_ORDER_FIELD table and MDS_ORDER_VALUE table. Both
are described below. It is suggested that the columns be named similarly to the name of the entity,
allowing for the requirements of column names (case insensitivity, etc.). The column types should
be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.
The off-line program that allows dml files to be checked before use can generate suggested
contents for the MDS_ORDER, MDS_ORDER_FIELD, and MDS_ORDER_VALUE tables.

Column Type Description

h_cls NUMBER Order class

h_idx NUMBER Order Index

event_cls NUMBER Key event class

event_idx NUMBER Key event index

active_event_cls NUMBER Event class for last active event

active_event_idx NUMBER Event index for last active event

active CHAR(1) Active flag (Y = active, N = inactive)

when_xml_saved DATE When the xml data last sent to the MDS was
saved in the database.

when_created DATE When the order was created

when_completed DATE When the order was completed or cancelled

comp_reason VARCHAR2(64) Text explaining why the order was completed or
cancelled
Generic WebSphere MQ Mobile Adapter 5-43

Configuration
MDS_ORDER_FIELD

The MDS_ORDER_FIELD table maps the names of the fields in the Order object to the
columns used to save their values in the MDS_ORDER table. In addition, it defines the names of
all the fields that are available in the Order object. If the dml references a field that is not in this
table, the adapter will log an error and initialization fails. The columns in the table are:

MDS_ORDER_VALUE

The MDS_ORDER_VALUE table maps the names of the elements and attributes in the order
XML to the columns used to save their values in the MDS_ORDER table. All elements and
attributes except those with constant values, and those with the ‘don’t save’ flag set, must be
included in this map. The use of the ‘don’t save’ flag is described in section Change Detection on
page 5-27. The columns in the table are:

The recommended way of naming the elements and attributes is to use the alternate name
described in Alternate Names on page 5-26. If an alternate name is not specified, the adapter
generates element names by numbering all the elements in the order that they appear in the
Output Document and appending this number to the letter ‘e’, for example e1, e2. Note that all
elements to be saved from the document are counted, including those with an alternate name, so
that if a name is given to an unnamed element, all the other unnamed elements have the same
name. If an attribute has no alternate name, the adapter generates the name by appending the
underscore character ‘_’ and the attribute’s name to the attribute’s element name, for example
‘el_attr’ is the name of the ‘attr’ attribute of an element with the alternate name ‘el’.

An Example

To illustrate the configuration of the order tables and example tables are shown below, based on
the contents of the Output Document in DML Examples on page 5-52.

The MDS_ORDER table schema:

Column Type Description

name VARCHAR2(32) The field’s name.

col VARCHAR2(32) The column in the MDS_ORDER table that holds
the field’s value.

Column Type Description

name VARCHAR2(32) The element’s or attribute’s name.

col VARCHAR2(32) The column in the MDS_ORDER table that holds the
element’s or attribute’s value.

Column Type

h_cls NUMBER

h_idx NUMBER

event_cls NUMBER

event_idx NUMBER

active CHAR(1)

when_xml_saved DATE
5-44 Oracle Utilities Network Management System Adapters Guide

Configuration
The contents of the MDS_ORDER_FIELD table:

when_created DATE

when_completed DATE

comp_reason VARCHAR2(64)

BODID VARCHAR2(128)

E1 VARCHAR2(64)

E2 VARCHAR2(64)

E3 VARCHAR2(64)

E4 VARCHAR2(64)

E5 VARCHAR2(64)

E6 VARCHAR2(64)

E7 VARCHAR2(64)

E8 VARCHAR2(64)

E9 VARCHAR2(100)

E10 VARCHAR2(64)

E11 VARCHAR2(64)

E12 VARCHAR2(64)

E13 VARCHAR2(64)

E14 VARCHAR2(64)

E15 VARCHAR2(64)

E16 VARCHAR2(100)

E17 VARCHAR2(64)

E18 VARCHAR2(32)

E19 VARCHAR2(32)

col name

BODID BODId

Column Type
Generic WebSphere MQ Mobile Adapter 5-45

Configuration
The contents of the MDS_ORDER_VALUE table (the element tag is not in the table, it is
included here to illustrate the numbering of the elements):

col name Element tag

E1 e1 Component

E2 e2 Confirmation

E3 e3 AuthorizationId

E4 e4 CreationDateTime

E5 e5 BODId

E6 e6 ExternalNumber

E7 e7 CreationDateTime

E8 e8 Device

E9 e9 Address

E10 e10 DevPhases

E11 e11 FuseSize

E12 e12 WinterLoad

E13 e13 SummerLoad

E14 e14 NumCustOut

E15 e15 CallerName

E16 e16 CallerAddr

E17 e17 CallerPhone

E18 e18 CallerClues

E19 e19 CallerDevice
5-46 Oracle Utilities Network Management System Adapters Guide

Configuration
The Relationship Tables
The relationship tables save event relationship data and configure the fields that are available to
the dml in the external Relationship object, identified by ‘R’ in the dml.

MDS_RELATION

The MDS_RELATION table is used to save relationship data so that the adapter can continue to
process event relationships, and to detect changes in these relationships over a adapter shutdown
restart cycle. While not strictly a configuration table, it is described here to clarify the use of other
configuration tables. The table has a fixed set of columns that are always in the table, and columns
to hold Relationship object field values. The fixed set of columns is:

The columns that hold the field values can have any name, but they must match the contents of
the MDS_RELATION_FIELD table, which is described below. It is suggested that the columns
be named similarly to the name of the entity, allowing for the requirements of column names (case
insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough
to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested
contents for the MDS_RELATION and MDS_RELATION_FIELD tables.

Column Type Description

h_cls NUMBER Relation class

h_idx NUMBER Relation Index

key_event_cls NUMBER Class of key event

key_event_idx NUMBER Index of key event

pseudo_dev_cls NUMBER Class of pseudo device

pseudo_dev_idx NUMBER Index of pseudo device

type NUMBER The type of relationship one of:
NESTED_OUTAGE(1)
MOMENTARY_OUTAGE(2)
PARTIAL_RESTORATION(4)
RELATED_OUTAGE(8)
Pseudo relationships have the same number as
their type, with the sign bit (bit 31) set.

active CHAR(1) Active flag (Y = active, N = inactive)

when_created DATE When the relationship was created

when_completed DATE When the relationship was completed or
cancelled
Generic WebSphere MQ Mobile Adapter 5-47

Configuration
MDS_RELATION_EVENT

The MDS_RELATION_EVENT table holds the events that are related to the key events in the
MDS_RELATION table. It is not a configuration table. Its columns are:

MDS_ RELATION_FIELD

The MDS_RELATION_FIELD table maps the names of the fields in the Relationship object to
the columns used to save their values in the MDS_RELATION table. In addition, it defines the
names of all the fields that are available in the Relationship object. If the dml references a field that
is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

Column Type Description

key_event_cls NUMBER Class of key event

key_event_idx NUMBER Index of key event

event_cls NUMBER Class of related event

event_idx NUMBER Index of related event

active CHAR(1) Active flag (Y = active, N = inactive)

Column Type Description

name VARCHAR2(32) The field’s name.

col VARCHAR2(32) The column in the MDS_RELATION table that
holds the field’s value.
5-48 Oracle Utilities Network Management System Adapters Guide

Configuration
The Code Mapping Tables
The code mapping tables and views are used to translate values in Oracle Utilities Network
Management System to and from the equivalent values in the messages to and from the MDS.
Typical usages include converting Oracle Utilities Network Management System control zones
into dispatch areas on the MDS, and encoding long values in Oracle Utilities Network
Management System to shorted encoded values. The dml uses these tables by calling
‘mapTableStr’ to convert from the MDS value to the Oracle Utilities Network Management
System value, and ‘mapTableCode’ to convert from the Oracle Utilities Network Management
System value to the MDS value. A table can be loaded using the function ‘loadMapTable’. All
these functions take the name of the table as a parameter.

The tables and views have the following columns:

The width of the columns can be any appropriate value.

There are three types of mapping table:

• Those that map from string to code. In these cases the strings must be unique in the table.

• Those that map from code to string. In these cases the code must be unique in the table.

• Those that map both ways. In these cases the strings and codes must be unique.

This can be configured in a map configuration table, described below. If these is no configuration
for the table, and informational message is output to the log, and the table is assumed to map both
ways.

It is sometimes convenient to add a code column to other Oracle Utilities Network Management
System tables to avoid redundant data. Data from these tables can be accessed by use of a view
that maps the appropriate column names to ‘string’ and ‘code’.

If a value to be translated is not present in the table, a default value is used. If the default is not
specified, the empty string is used.

The types of the tables and their defaults are specified in a map configuration table, which has the
following columns:

The width of the columns can be any appropriate value. A map configuration table is loaded using
a function call similar to ‘loadMapConfigTable(mds_map_config)’. The configuration document is
a convenient place to do this. There can be multiple map configuration tables loaded.

Column Type Description

string VARCHAR2 The value in Oracle Utilities Network
Management System.

code VARCHAR2 The equivalent value in message.

Column Type Description

tablename VARCHAR2 The name of the table the default applies to.

type CHAR(1) The type of the table. ‘C’ maps from string to code, ‘S’
maps from code to string, and ‘B’ maps both ways.

string VARCHAR2 The default Oracle Utilities Network Management
System value.

code VARCHAR2 The default message value.
Generic WebSphere MQ Mobile Adapter 5-49

Configuration
The SRS Message Type Table
The SRS Message Type Table, MDS_SRS_MSG_TYPE, configures the processing of SRSoutput
InterSys messages. It has the following columns:

The message_type column values are the SRSoutput message types listed in SRSoutput.h.

The action column must be one of these values:

• ‘I’: completely ignore this message type. Any message type not included in the table is
ignored.

• ‘D’: do not process the message, but apply the proc_relation and special flags if they are set.

• ‘P’: process the message as is, after applying the flags.

• ‘R’: reprocess the message’s event after applying the flags. Some SRSoutput messages do not
hold all of the event’s data (e.g., DAMAGE_RPT_UPDATE), and some are used to update
the viewer when conditions are to be hidden and may or may not indicate that an event has
changed state (e.g., TRBL_REMOVE_ALL). As a consequence, these messages do not hold
all the data required to process them. In these cases, the adapter requests JMService to send
all the current data for the message’s event.

When set to a value of ‘Y’, the proc_relation flag instructs the adapter to apply special relation
processing to the message. This processing is activated when the appliedRule field of the
SRSoutput message contains one of the following values: OUTAGE_PART_REST,
OUTAGE_RELATED or OUTAGE_UNRELATED. These indicate that the event is part of a
relationship that has been created, deleted or modified. In these cases, the adapter loads the
current state of all relationships, reacts to the changes, and reprocesses the message’s event after a
delay to allow any upcoming changes to the event to arrive before rereading the event’s data.

When set to a value of ‘Y’, the special flag instructs the adapter to apply special, message type
specific, processing to the message. The following message types have special processing available:

• TRBL_CLEAR: If the applied rule is not OUTAGE_MERGED, the event is processed by all
Output Documents with a ‘EventNonexistent trigger.

In addition to the processing of the special flag described above, the following message types are
processed differently from normal SRSoutput messages because they are not formatted in the
normal manner:

• TRBL_ERT_UPDATE: This message contains a list of estimated time of restoration
updates. If this message type is not completely ignored, all the events in the message are
reprocessed. As this message contains the events’ indexes, but not the events’ classes, the
potential classes need to be supplied in the event_cls1 and event_cls2 columns. One or both
of the classes (normal and momentary event classes) can be configured. If one is zero, it is
ignored.

Column Type Description

message_type NUMBER The SRSoutput message type that this row configures

action CHAR(1) How to process it. ‘I’, ‘D’, ‘P’ or ‘R’.

proc_relation CHAR(1) Should special relationship processing be applied to it? ‘Y’
or ‘N’.

special CHAR(1) Should special processing be applied to it? ‘Y’ or ‘N’.

event_cls1 NUMBER Event class for TRBL_ERT_UPDATE

event_cls2 NUMBER Event class for TRBL_ERT_UPDATE
5-50 Oracle Utilities Network Management System Adapters Guide

Configuration
• TRBL_WCB_UPDATE: This message type is not implemented in the adapter. If this
message is not configured to be completely ignored, the adapter issues a warning to the log
each time this message type is received.

The High Priority Category Table
The High Priority Category Table, MDS_HIGH_PRI_CAT, configures the priorities used by the
functions ‘highPriTCCategoriesFromClues’. It has the following columns:

This table assigns the priority of each trouble code within each trouble code category.

Run Time Errors
There are many configuration errors that can be detected at initialization time, causing the adapter
to exit. However, some configuration and other errors can only be detected at run-time.

All errors and diagnostic messages are output to the adapter’s log file. Important messages are
output to the Windows Application Event log. Important errors can be output in XML formatted
to an error queue, if an Error Output Document is configured in a Configuration Document.
Note that, under some circumstances, it may be impossible to output errors to one or more of
these destinations.

The types of run-time errors, and the adapter’s reaction to them are:

• Data errors: These errors occur when badly formatted data is received. The input message is
discarded.

• Errors detected by the dml: The dml performs appropriate logic. Errors can be logged using
the logging functions. Error XML can be sent by triggering the appropriate Output
Document.

• dml function call errors: These errors occur when a dml function is called and the
prerequisites of the function are not met. The prerequisites of the functions are documented
in DML Function Calls on page 5-72. This is regarded as a configuration error, causing the
adapter to exit.

• Mapping table errors: These errors occur when a map table function is called and the table
name supplied by the dml does not exist in the database. This is regarded as a configuration
error, causing the adapter to exit.

• Errors when writing to the database: These are initially assumed to be transient, as some
tables have constraints that contain time stamps. The adapter pauses for 1 second and re-tries.
The adapter will retry 3 times. If all 3 re-tries fail, the adapter exits, on the assumption that
there is a severe system problem. If the error occurred while an input message was being
processed, and syncpoint is active (configured using the config_MaxBackoutCount field), the
message will be re-processed after the adapter restarts. If this cycle is repeated too many
times, the message is discarded.

• API call failure: These are treated in the same way as errors writing to the database.

Column Type Description

group_order NUMBER A numeric representation of the trouble code categories

code VARCHAR2(32) The trouble codes for each trouble code category

priority NUMBER The priority of the trouble codes.

Note: The smaller the number the higher the priority.
The higher the number the lower the priority
Generic WebSphere MQ Mobile Adapter 5-51

Configuration
DML Examples

An Output Document
The following is an example of an Output Document that generates a create request document for
a small MDS order. Various lines are numbered to allow reference to them in the explanation
below. The numbers are not part of the syntax.

1 OutputDoc Job
2 queue=$G.OutRequestQueue; associate=O; persist="Y";
3 triggerCreate< SRSoutput; > = isIn($E.status, "ACK", "ASN", "ENR", "RST") &&

 ($E.outageHdl.cls != $G.momentary) &&
!findOrder(event, $E.outageHdl);

4 triggerUpdate:S < SRSoutput; > = findOrder(event, $E.outageHdl) &&
 (!isIn($E.status, "UNA", "CNL"));

5 {
6 @docType = ChangeJob;
7 if (triggerCreate)
8 {
9 @docType = CreateJob;
10 createOrder();
11 }
12 &RootElement<environment = $G.environment; revision = "1.0.0";> = @docType;
13 &ApplicationArea
14 {
15 &Sender
16 {
17 &Component = NMS;
18 &Confirmation = "Always";
19 &AuthorizationId = "NMS Interface";
20 }
21 &CreationDateTime = formatDTNow();
22 @BODId = getGuid();
23 &BODId = @BODId;
24 }
25 &DataArea
26 {
27 &ExternalNumber = "NMS:"+ $E.outageHdl.idx;
28 # CreationDateTime is outageTime which is
29 # either when the first customer called
30 # or when the device was opened in the model
31 &CreationDateTime=formatDateTime($E.outageTime);
32 &Device:S = $E.devAlias;
33 &Address:S = substring($E.dispAddress, 0, 100);
34 sqlselect @devPhases, @fuseSize, @winter_load, @summer_load |

phase_designation, fuse_size, kva_lod_win, kva_lod_sumr |
classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

35 &DevPhases = @devPhases;
36 &FuseSize = @fuseSize;
37 &WinterLoad = @winter_load;
38 &SummerLoad = @summer_load;
39 &NumCustOut:S = $E.customersOut;
40 &CallerName = $I.0.getCustomerName;
41 &CallerAddr = $I.0.getAddrStreet + “ “ + $I.0.getAddrCity;
42 &CallerPhone = $I.0.getCustomerPhone;
43 &CallerClues = $I.0.getShortDesc;
44 &CallerDevice = $I.0.getDeviceAlias;
45 }
46 $O.BODId = @BODId;
47 }
5-52 Oracle Utilities Network Management System Adapters Guide

Configuration
Line 1 declares the document to be an output document named ‘Job’. The name is used in
diagnostics, and when a document is invoked in a ‘triggerOutputDoc’ function call (see below).

Line 2 contains three specifications, and illustrates that more than one specification can be placed
on one line.

• The first specifies the message queue that the document will be sent out on. The specification
assigns the queue to be the value of the external data field named ‘OutRequestQueue’ in the
global configuration object. The queue name is available to the rest of the document in the
variable ‘@queue’, and could be changed, if required.

• The second associates the document with the order object. Therefore this document will be
used to hold the values of all the elements to be used for change detection when the event is
updated with an SRSoutput message.

• The third specifies that the message should be marked as persistent when placed on the
queue. Not yet delivered messages are lost when the MQ server stops, if they are not marked
as persistent.

Line 3 specifies a trigger, named ‘triggerCreate’ for the document, which causes an order to be
created. It does not have the ‘send on change’ flag, so change detection is not in effect when this
trigger is fired. The trigger specification, between ‘<’ and ‘>’ indicates when the trigger should be
evaluated to determine whether it should be fired. In this case the arrival of an asynchronous
SRSoutput message causes the trigger to be evaluated. The expression following the ‘=’ is a
boolean expression that fires the trigger when it evaluates to true. There may be more than one
trigger for an output document. The values of the triggers are available to the rest of the
document in variables with the same names as the triggers.

Line 3 also illustrates that a specification can span multiple lines.

Line 4 specifies a trigger, named ‘triggerUpdate’ for the document, which causes an order to be
updated after it has been created. It has the ‘send on change’ flag, so change detection is in effect
when this trigger is fired. The trigger specification, between ‘<’ and ‘>’ indicates when the trigger
should be evaluated to determine whether it should be fired. In this case the arrival of an
asynchronous SRSoutput message causes the trigger to be evaluated. The expression following the
‘=’ is a boolean expression that fires the trigger when it evaluates to true. There may be more than
one trigger for an output document. The values of the triggers are available to the rest of the
document in variables with the same names as the triggers.

The ‘{‘ on line 5 and the ‘}’ on line 47 enclose the body of the document.

Line 6 sets a default value for the variable @docType, which will be used later to set the root
element tag.

Line 7 controls whether lines 9 and 10 are evaluated, depending on which trigger fired. If the
triggerCreate trigger fired, 9 and 10 will be evaluated.

Line 9 changes the value of the @docType variable to reflect that the order is new.

Line 10 creates a new order object to save the values of the element’s data for change detection.

Line 12 contains the root element tag and attributes. The root element differs from other elements
in that the element’s tag is specified by the value of the expression to the right hand side of the ‘=’,
in this case the value of the variable @docType. The reason for this is so that the same output
document can be used for multiple message types, for example to create an order and to update
the order. In this example, the ‘environment’ attribute is set to the value of the external data field
named ‘environment’ in the global configuration object. The root element statement can be
anywhere in the output document. All other elements appear in the generated XML in the order
that they are within the output document.

Lines 13 to 24 define the ‘ApplicationArea’ element, with 3 sub-elements, one of which has 3 sub-
elements.
Generic WebSphere MQ Mobile Adapter 5-53

Configuration
The elements on lines 17 to 19 show how constants can be declared. On line 17 the ‘NMS’ is not
surrounded by double quotes ("), because it only contains alphanumeric characters. On line 18 the
‘Always’ is surrounded by quotes, this acceptable, but not necessary because it only contains
alphanumeric characters. On line 19 the ‘NMS Interface’ must be surrounded by quotes, because it
contains a space.

The value of the element on line 21 is supplied by the ‘formatDTNow’ function that formats the
current data and time BOD format CCYY-MM-DDThh:mm:ss.

Line 22 assigns a globally unique id to the variable ‘BODId’ for use on lines 23 and 46.

Lines 25 to 45 define the ‘DataArea’ element, with 15 sub-elements.

Line 27 assigns the concatenation of a constant (in quotes) with the event’s index.

Lines 28 to 30 are comments and are ignored. Everything between a ‘#’ and the end of a line,
inclusive, is a comment and is ignored.

Line 31’s element is assigned the time the outage began in the format CCYY-MM-DDThh:mm:ss.

Line 32’s element is assigned the alias (name) of the event’s interrupting device. Because the ‘send
on change’ flag (S) is present, a change to this element’s data will cause the XML to be sent to the
MDS.

Line 33’s element is assigned the address of the event, truncated to 100 characters. Because the
‘send on change’ flag (S) is present, a change to this element’s data will cause the XML to be sent
to the MDS.

Line 34 reads four columns of the interrupting device’s facilities (attribute) table. The function
‘classTable’ supplies the name of the table.

Lines 35 to 38 assigns the values read from the database in line 33 to the appropriate elements.

Line 39’s element is set to the number of customers affected by the outage. Because the ‘send on
change’ flag (S) is present, a change to this element’s data will cause the XML to be sent to the
MDS.

Lines 40 to 44 use the external object ‘Incidents’ to access customer call data. As there are
potentially many incidents associated with an event, the dml has to specify which incident to use.
The second component of the name, between the first and second period (.) is the offset into the
array of incidents, in this case zero. The last component of the name is the name of the data access
method in the Incident class. These examples access the first customer’s name, street address, city,
phone number, clues, and transformer name. The incidents are normally ordered by the time that
they called to report a problem, with the oldest first. If another ordering is required, by total
priority for example, the sortIncidents() function can be used to change the order.

Line 46 saves the document’s globally unique id in the external object for use later in another
document.

The XML generated by this output document would look similar to the following:

<CreateJob environment="Test" revision="1.0.0">
 <ApplicationArea>
 <Sender>
 <Component>NMS</Component>
 <Confirmation>Always</Confirmation>
 <AuthorizationId>NMS Interface</AuthorizationId>
 </Sender>
 <CreationDateTime>2003-05-01T13:36:13-05:00</CreationDateTime>
 <BODId>guid</BODId>
 </ApplicationArea>
 <DataArea>
 <ExternalNumber>NMS2010</ExternalNumber>
 <CreationDateTime>2003-05-01T13:26:13-05:00</CreationDateTime>
5-54 Oracle Utilities Network Management System Adapters Guide

Configuration
 <Device>XFM12345678</Device>
 <Address>5800 Yonge St. North York</Address>
 <DevPhases>A</DevPhases>
 <FuseSize>100</FuseSize>
 <WinterLoad>40</WinterLoad>
 <SummerLoad>45</SummerLoad>
 <NumCustOut>4</NumCustOut>
 <CallerName>M.J. McLaughlin</CallerName>
 <CallerAddr>5802 Yonge St. North York</CallerAddr>
 <CallerPhone>416 555-1212</CallerPhone>
 <CallerClues>NC</CallerClues>
 <CallerDevice>XFM12345678</CallerDevice>
 </DataArea>
</CreateJob>

An Input Document
The following is an example of an Input Document that processes a document containing
completion data for an order. Various lines are numbered to allow reference to them in the
explanation below. The numbers are not part of the syntax.

1 InputDoc CompletionData
2 queue=$G.InRequestQueue;
3 &RootElement<environment=$G.environment; revision="1.0.0";> =
4 FieldReportSave;
5 BasePath=DataArea;
6 {
7 &JobNumber:R;
8 &Crew
9 {
10 &CrewKey
11 {
12 &CrewName::"MDS";
13 }
14 }
15 &CompletionData
16 {
17 &System:R;
18 &Type:R;
19 &Failure:R;
20 &Cause:R;
21 &InterruptDev:R;
22 &Action:R;
23 &OtherAction::Other;
24 &RestoredTime;
25 &CustomerCaseNotes:::CCN;
26 }
27
28 if (!findOrder(externalId, &JobNumber))
29 {
30 stop;
31 }
32
33 @action=(&CompletionData/Action == "Other")

? &CompletionData/OtherAction
: &CompletionData/Action;

34 @restoredTime = decodeDateTime(&CompletionData/RestoredTime);
35 sqlupdate picklist_info_upd_tr |

system_om, type_om,
failure_om, cause_om,
interrupt_dev_om, action_text,
Generic WebSphere MQ Mobile Adapter 5-55

Configuration
crew_restore |
&CompletionData/System, &CompletionData/Type,
&CompletionData/Failure, &CompletionData/Cause,
&CompletionData/InterruptDev, @action,
@restoredTime |
ref_id | $O.event.idx;

36 # call JMS::setCaseNoteInfo if appropriate
37 if (isSet(&CCN))
38 {
39 setCaseNoteInfo(getCaseNotesForEvent($O.event) + " " +
&CCN);
40 }
41 # set no dtr flag if appropriate
42 if (isIn(&CompletionData/Type, "Customer Trouble",
43 "Other Utilities",
44 "Scheduled/Customer Notified"))
45 {
46 sqlupdate picklist_info_upd_tr | no_dtr_flag | Y |

ref_id | $O.event.idx;
47 }

log change to event
48 @reason_for_update="Completion Information for Job " +

&JobNumber + " from MDS";
49 sqlinsert picklist_completion_log |

ref_id, who,
reason_for_update, when |

$O.event.idx, &Crew/CrewKey/CrewName,
@reason_for_update, time();
50
51 }

Line 1 declares the document to be an input document named ‘CompletionData’.

Line 2 specifies the message queue that the document will be received on. The statement assigns
the queue to be the value of the external data field named ‘InRequestQueue’ in the global
configuration object.

Line 3 contains the root element tag and attributes. The root element differs from other elements
in that the element’s tag is specified by the value of the expression to the right hand side of the ‘=’,
in this case ‘FieldReportSave’. The ‘environment’ attribute is set to the value of the external data
field named ‘environment’ in the global configuration object. In contrast with output documents,
the root element statement is in the header of the input document.

A message arriving on the message queue with the name specified on line 2, and with a root
element tag and attributes as specified on line 3, triggers the processing of the message by the
input document.

Line 5 specifies the base element’s tag. The base element specifies the sub-element of the root
element at which to start processing the elements specified in the body of the input document.
The base element is optional, but is convenient in that it reduces the element nesting level in the
body of the input document.

The ‘{‘ on line 6 and the ‘}’ on line 51 enclose the body of the document.

Lines 7 to 26 define the tags for the elements that will be processed by the input document.

Line 7 defines a required element ‘JobNumber’. The ‘R’ in the flags field of the element definition
indicates that the element must be present in the input XML for the document to be processed.
All required elements must be present, otherwise the XML will be ignored.
5-56 Oracle Utilities Network Management System Adapters Guide

Configuration
Line 12 defines an optional element ‘CrewName’, a sub-element of ‘CrewKey’, which is in turn a
sub-element of ‘Crew’. The element has a default value of ‘MDS’, which is the value used by
references to the element in the rest of the document, when the element is not present. If a default
value is not present, missing elements have a value of the empty string.

Lines 15 to 26 define the ‘CompletionData’ element, which has 9 sub-elements, some of which are
required.

If all the required elements are present, the data can be processed.

Line 28 calls the ‘findOrder’ function that finds the order object with an ‘externalId’ field equal to
the JobNumber supplied in the XML. This function returns a boolean indicating whether such an
order object was found, or not. This result is inverted by the ‘!’ so that line 30 is executed if
‘findOrder’ fails. Line 30 is a stop statement, which causes the processing of the document to
terminate.

Line 33 sets the variable ‘action’ to either the contents of the ‘OtherAction’ element or the ‘Action’
element, depending on whether ‘Action’ has a value of ‘Other’ or not. Both these elements are
sub-elements of the ‘CompletionData’ element. A reference to a sub-element takes the form
‘&grandparent/parent/subelement’.

Alternatively, an element can be named to make the references more succinct. The element
definition of ‘CustomerCareNotes’ with a name of ‘CCN” on line 25, and the references to it on
lines 37 and 39 are an example of this.

Line 34 converts the time in the element ‘RestoredTime’ into a format suitable to be passed to the
database, and saves it in the variable ‘restoredTime’.

Line 35 saves the values of 5 elements and 2 variables in the ‘picklist_info_upd_tr’ table in the
database using a sqlupdate statement. This table has a key column ‘ref_id’ that is set to the order’s
event’s index number. If aggregate processing has been configured, and the intention is to save the
data in the database for all events in the aggregation, the function ‘picklistInfoUpdTr’ would be
more appropriate.

Line 37 tests whether the element named ‘CCN’ (the ‘CustomerCaseNotes’ element in
‘CompletionData’), was present in the input XML, using the function ‘isSet’. If the element was
set line 39 is executed . The function call to ‘getCaseNotesForEvent’ in the parameter list of the
call to ‘setCaseNoteInfo’, calls an Oracle Utilities Network Management System API to read the
current value of the order’s event case notes. The value returned is concatenated with a space and
the value of the CCN element. The resulting value is saved to the event’s case notes using the
function ‘setCaseNoteInfo’.

Lines 42 to 47 set the ‘no_dtr_flag’ column in the ‘picklist_info_upd_tr’ table to ‘Y’, if the
‘CompletionData/Type’ element indicates that the trouble was not with the utility’s equipment.
The function ‘isIn’ returns true if its first parameter matches any one of the rest of its parameters,
false otherwise

Lines 48 and 49 logs the change to the event by inserting a row into the picklist_completion_log
table. If aggregate processing has been configured, and the intention is to save the data in the
database for all events in the aggregation, the function ‘picklistCompLog’ would be more
appropriate.

The following XML would be processed by the example input document

<FieldReportSave environment="Test" revision="1.0.0">
 <ApplicationArea>
 <Sender>
 <Component>MDS</Component>
 <Confirmation>Never</Confirmation>
 <AuthorizationId>MDS Interface</AuthorizationId>
 </Sender>
 <CreationDateTime>2003-05-01T14:30:17-05:00</CreationDateTime>
 <BODId>guid</BODId>
Generic WebSphere MQ Mobile Adapter 5-57

DML Reference
 </ApplicationArea>
 <DataArea>
 <JobNumber>MDS7704</JobNumber>
 <CompletionData>
 <System>4KV</System>
 <Type>Lateral</Type>
 <Failure>Fuse</Failure>
 <Cause>Animal</Cause>
 <InterruptDev>XFM12345678</InterruptDev>
 <Action>Fuse replaced</Action>
 <CustomerCaseNotes>Temporary Repair: Scheduled for Tuesday</
CustomerCaseNotes>
 </CompletionData>
 </DataArea>
</FieldReportSave>

DML Reference
This section contains a full reference for the dynamic message language used in the Generic
WebSphere MQ Mobile Adapter configuration dml files.

Lexical Conventions
A dml configuration consists of one or more files. Each file is processed in turn to generate a
sequence of tokens, which are further processed into internal data structures used at run time to
generate XML documents and process XML documents.

Syntax notation
In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and
literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it
in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be
optionally repeated an arbitrary number of times.

Tokens
There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other
separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored
except as they serve to separate tokens. Some white space is required to separate otherwise
adjacent tokens.

Comments
The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive
The include directive can appear anywhere in an input file and takes the form:

include file name

The contents of the file name are processed as if they replaced the include directive itself.
5-58 Oracle Utilities Network Management System Adapters Guide

DML Reference
Keywords
The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if
include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert
sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , “ ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names
A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The
underscore _ counts as a letter. Upper and lower case letters are different. All characters are
significant.

Strings
A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter.
Upper and lower case letters are different. All characters are significant.

Quoted Strings
A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To
represent the double quote character in a quoted string, use two double quotes "".

Constants
A constant is one of:

• name

• string

• quoted string

Version Directive
The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear
outside any document definitions. When this directive is encountered, the current file name and
the supplied version string are output to the log.
Generic WebSphere MQ Mobile Adapter 5-59

DML Reference
Basic Concepts

Type(s)
DML is a typeless language, or perhaps more accurately, a singly typed language. All values consist
of character strings. DML has no concept of numbers. To illustrate this, strings can be used to pass
positive integers to functions. For example:

@truncatedString = substring(@address, 0, 100);

However, quoted strings must be used to pass negative integers. For example:

@lastCharacter = substring(@characters, "-1", 1);

It should be emphasized that it is the function, not the dml that is interpreting the character string as
an integer.

In certain contexts, a value is used as a boolean, or logical, value. Any non-empty string is
considered true, and the empty string (written as "") is considered false. A boolean expression or
function returns "Y" when true and "" when false.

Definitions and References
There are a number of value bearing entities in dml. Apart from one exception (variables), they must
be defined before they are referenced. The definition introduces the entity, and defines certain
modifiers to the entity. An entity is referenced when its value is used in an expression or when it is
assigned to in an assignment statement. When a variable uses the default set of modifiers, it can be
implicitly defined when first assigned.

Entities

The entities in a document carry values and have modifiers that change their behavior.

Variables

A variable is used to save intermediate results in a document. A variable definition takes the form:

@name:modifiers

The name must be unique amongst the variables within the document. Other entities can have the
same name. The :modifiers is optional.

If the :modifiers are not required, variables can be implicitly defined when they are assigned to.

A variable reference takes the form:

@name

Variables can be set and referenced in all document types.

Elements
An element generates an XML element in Output Documents, and supplies an input XML element
value or sub-elements in Input Documents. There are to kinds of element definitions: plain elements
and array elements.

plain element definitions and an array element definitions are known collectively as element definitions.
5-60 Oracle Utilities Network Management System Adapters Guide

DML Reference
Plain Element Definitions

Plain elements are referred to as elements in the rest of this section.

An element definition takes the form:

&name:modifiers < attribute definitions >

The name of an element is its XML tag, and must be unique amongst the elements within its
immediately enclosing element or document. Other entities can have the same name. The :modifiers
and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes on page 5-62. Elements must either have values but no sub-elements or must have sub-
elements but no value. (This may be changed in a future version of the adapter).

Array Element Definitions

Array elements can only appear in Input Documents, and are used when more that one element
with the same tag can be sub-elements of the same element in the input XML. An array element
definition takes one of two forms: with an unspecified index, and with a specified index attribute.

The unspecified index form is:

&name[]:modifiers < attribute definitions >

The specified index form is:

&name[name]:modifiers < attribute definitions > R(constant list)

where the name in square brackets is the name of the index attribute, and R(constant list) is the
required index list, which is optional. The required index list defines the values of the index
attribute that must be in the input XML before the enclosing Input Document will be used to
process the input XML.

Array element modifiers can only contain an alternate name for the array element.

The name of an array element is its XML tag, and must be unique amongst the elements within its
immediately enclosing element or document. Other entities can have the same name. The :modifiers
and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes on page 5-62. Array Elements must either have values but no sub-elements or must have
sub-elements but no value.

Element References

The values of plain elements with values in Input Documents can be obtained using a plain element
reference taking the form:

&element identifier

The element identifier has two forms:

The full element path, which is either the name of the element, if it is not a sub-element of another
element, or the full element path of the sub-element’s enclosing element, followed by a slash (/)
followed by the element’s name.

The element’s alternate name, which is defined in the element’s modifiers.

If the element has an alternate name, the full element path cannot be used.

The values of individual elements in an array element with values can be obtained using an array
element reference taking the form:
Generic WebSphere MQ Mobile Adapter 5-61

DML Reference
&element identifier[index value]

The index value is either the value of the index attribute, in the case of a specified index, or a
number in the case of an unspecified index, the elements being numbered in the order that the
elements were in the input XML, starting at zero.

plain element references and an array element references are known collectively as element references.

Elements can only be referenced in Input Documents.

Attributes

An attribute generates an XML element attribute in Output Documents, and supplies an input
XML element attribute value in Input Documents. An attribute definition is part of an element’s
attribute definitions and takes the form:

name:modifiers

The name of an attribute is its XML attribute, and must be unique amongst the attributes within its
immediately enclosing element or document. Other entities can have the same name. The :modifiers
are optional.

In Output Documents attributes must have their values assigned to them where they are defined in
the form:

NAME:modifiers = expression;

The definition of an attribute in an Input Document takes the form:

NAME:modifiers;

Attributes are defined as part of the attribute definitions of their element as described above in section
These attribute definitions are one or more attribute definitions.

The values of an attribute can be obtained using an attribute reference taking the form:

element reference<name>

Attributes can only be referenced in Input Documents.

Entity Modifiers

There are three entity modifiers:

• The flags which modify the behavior of the entity. See section Flags on page 5-25 in the main
document for the uses of flags.

• The default value, which is used when entity is referenced but has no value. See section
Defaults on page 5-26 in the main document for the circumstances that the default is used.

• The alternate name, which is used to give the entity an alternate name. See section Alternate
Names on page 5-26 in the main document for the circumstances that the alternate name is
used.

The modifiers are defined in the order flags, default value, alternate name and take the form:

:constant:constant:name

If a modifier at the end of the modifiers is empty the colon (:) must not be present. As a consequence,
if all modifiers are empty, the modifiers are not present
5-62 Oracle Utilities Network Management System Adapters Guide

DML Reference
External Data
External data is available from the various external data objects, described above in section The
External Objects on page 5-29. All fields in the objects can be read, but some objects or
individual fields are read-only, i.e. they cannot be written.

A reference to an external object field takes the form:

$external data object identifier.field name

where the external data object identifier is the letter associated with the object and the field name is the
name of the field (note that they are separated by a period (.)). Some fields (for example Handles)
have sub-fields. A reference to a sub-field takes the form:

$external data object identifier.field name.sub-field name

Most external objects have one instance at a time, but the Incident Object can have zero, one or
more, depending on the number of incidents that have grouped to the current event. To reference
an individual incident field, an offset to the incident into the array of incidents is required. This
offset starts at zero, and is a constant which must only contain digits, known as an offset. The normal
order of incidents is the order that they were received by Oracle Utilities Network Management
System. This order can be altered by use of the sortIncidents function. A reference to an incident
field takes the form:

$I.offset.field name

Incident references can contain sub-fields.
These are known as external field references.

Note that some external object fields are read-only, i.e., they cannot be set by the dml. The read-
only status of each external object is listed below:

• The Order Object (‘O’): All the fields listed in section Permanent Order Object Fields on
page 5-146, Permanent Order Object Fields on page 5-146 of DML Function Calls on
page 5-72 are read-only. All other fields are read/write.

• The Relationship Object (‘R’): All the fields listed in section Permanent Relationship
Object Fields on page 5-147, Permanent Relationship Object Fields on page 5-147 of
DML Function Calls on page 5-72 are read-only. All other fields are read/write.

• The Event Object (‘E’): All fields are read-only.

• The Incident Object(‘I’): All fields are read-only.

• The Global Data Object (‘G’): All fields are read/write.

• The Trigger Parameter Object (‘T’): All fields are read/write.

Functions
A function is called using the following form:

name([parameter1] [, parameter2] …)

Where name is the name of the function and parameter2, parameter2, … are expressions. All
functions return a value, but in some cases the value is always the empty string, implying that they
are only called for their side effects. The functions available and their parameters are described in
DML Function Calls on page 5-72.
Generic WebSphere MQ Mobile Adapter 5-63

DML Reference
Expressions
An expression is a combination of dml components that yield a value. Expressions are combined
using operators. The following table shows the expressions and the operators:

Note: The logical alternation, AND, and OR expressions are evaluated left to
right and expressions that do not need to be evaluated are not evaluated, and
any side effects (e.g., due to a function call) do not occur. Specifically:

Alternation: expression1 is evaluated. If it is true only expression2 is evaluated, otherwise only
expression3 is evaluated.

AND: expression1 is evaluated. If it is false, expression2 is not evaluated.

OR: expression1 is evaluated. If it is true, expression2 is not evaluated.

Expression Value Notes

constant The constant

variable reference The variable’s current value

element reference The element’s current value

attribute reference The attribute’s current value

external field reference The field’s current value

function The function’s return value

expression1 + expression2 The concatenation of the two
expressions

(expression) The expression’s value Used to alter the
precedence of operators.

expression1 ? expression2 :
expression3

If expression1 is true, expression2.
If expression1 is false, expression3.

Logical alternation. See
note below.

!expression If expression is true, false.
If expression is false, true.

Logical NOT.

expression1 && expression2 true if both expression1 and
expression2 are true, false otherwise

Logical AND. See note
below.

expression1 || expression2 true if either expression1 or expression2
is true, false otherwise

Logical OR. See note
below.

expression1 == expression2 true if expression1 is an exact
duplicate of expression2 is true, false
otherwise

expression1 != expression2 true if expression1 is not an exact
duplicate of expression2 is true, false
otherwise
5-64 Oracle Utilities Network Management System Adapters Guide

DML Reference
Lists

Name List

A name list is one or more names separated by commas (,). For example:

h_cls, h_idx

Constant List

A constant list is one or more constants, separated by commas (,). For example:

None, "$%I99", 13, "-3", "This is a ""quoted"" string"

Variable Reference Lists

A variable reference list is one or more variable references, separated by commas (,). For example:

@devPhases, @pole_number, @winter_load, @summer_load

Expression List

A expression list is one or more expressions, separated by commas (,). For example:

@a + @b, formatDateTime(@time), $E.outageHdl.idx, none

Statements
Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a
statement block, which takes the form:

{
statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference = expression;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub-
elements (compound elements). They also differ between those in Output Documents (output
elements) and those in Input Documents (input elements). The four flavors are described in the
following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element definition = expression;
Generic WebSphere MQ Mobile Adapter 5-65

DML Reference
Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element definition
statement block

The statement block must contain at least one output element definition statement, but can also
contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and
takes the form:

element definition;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming
XML documents and takes the form:

element definition
statement block

The statement block can only contain input element definition statements and must contain at
least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference = expression;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty
string or can be ignored. It takes the form:

function expression;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect variable reference list | name list | [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert expression | name list | expression list ;
5-66 Oracle Utilities Network Management System Adapters Guide

DML Reference
SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate expression | name list | expression list | name list |
expression list ;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection,
based on the value of an expression. It takes the form:

if (expression)
statement block 1

else if (expression)
statement block 2

else
statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is
evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an
Input Document. It takes the form:

for (&element identifier[], variable reference)
statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output
Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input
Document or Documents that the input XML can be processed by. In an Output Document it is
located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [< attribute definitions >] = expression ;
Generic WebSphere MQ Mobile Adapter 5-67

DML Reference
Documents

Output Document Header

The output document header consists of the following specifications, in any order.

Queue Specification

This specification specifies the queue to which the Output Document’s XML is directed to, and
takes the form:

queue = expression ;

The queue is available to the Output Document’s statement block as a variable named queue, and
can be assigned to in the following manner:

@queue = expression ;

The queue specification is optional, and defaults to the empty string. If the queue specification is
defaulted, it must be set in the Output Document’s statement block. There may only be a
maximum of one queue specification in the header of each Output Document.

Trigger Specification

An Output Document must have at least one trigger specification, and can have an arbitrary
number greater than one.

Association Specification

This specification associates the Output Document with an external object, and takes the form:

associate = external data object identifier ;

The only external data object identifier currently supported is O, the Order Object. One and only one
Output Document must be associated with the Order Object.

Persistence Specification

This specification allows you to set the persistence flag for outgoing messages, and takes the form:

persist = "Y" or "N";

If this specification is omitted, the message will have the default persistence setting configured for
the queue it is being placed on.

Output Document
This document is used to generate XML and send it to the MDS. It takes the form:

OutputDoc name
output document header
statement block

Input Document Header
The input document header consists of one and only one root element statement and the following
specifications, in any order.
5-68 Oracle Utilities Network Management System Adapters Guide

DML Reference
Queue Specification

This specification specifies the queue on which the Input Document’s XML is received from, and
takes the form:

queue = expression ;

The queue is available to the Input Document’s statement block as a variable named queue.

There must be one and only one queue specification in the header of each Input Document.

Base Path Specification

The specification specifies the sub-element of the root element of the XML document which
contains all elements that will be processed by the Input Document. It takes the form:

BasePath = full element path;

Input Document

This document is used to process input XML from the MDS. It takes the form:

InputDoc name
input document header
statement block

Configuration Document
This document is used to set configuration data and load configuration tables from the database at
initialization time. It takes the form:

ConfigDoc name
statement block

Order of Document Processing and Other Considerations
The dml is read during adapter initialization in the order that the files are specified in the
command line. Files from the command line must contain only complete documents, but files
read using the include directive can contain any valid dml fragment, dependent on the context of
the directive.

The processing of statements within a document is strictly from top to bottom in the order the
statements were read during initialization, except when altered by a control flow statement (e.g., if
and for statements). Statements in a document are processed until one of the following situations
occur:

The last statement in the document is reached. If the document is an Output Document, the
resulting XML is delivered to the queue specified in the document’s queue specification.

A stop statement is processed. If the document is a Configuration Document, the adapter sends
an error message to the log and then exits.

A run time configuration error occurs. In all cases, the adapter sends an error message to the log
and then exits.

An unrecoverable run time error occurs (e.g., DBService is not available to read or write a
database table). In all cases, the adapter sends an error message to the log and then exits.

The processing of specifications in a document header is not necessarily in top to bottom order.
Each document is described below.
Generic WebSphere MQ Mobile Adapter 5-69

DML Reference
Output Documents
Output Document specifications are processed in the following order:

The association specification is processed once during initialization.

The queue specification is evaluated just before the first statement of the document is processed.

When a trigger event occurs, all Output Documents are examined in top to bottom order to
determine whether the event should trigger each document.

 If the trigger event’s type matches at least one trigger specification in the document, the triggers
of that type are processed in top to bottom order, until one evaluates to true. In this case, all other
triggers have their value set to false, even if they have not been processed. If all triggers evaluate to
false the document is not processed due to the trigger event.

If the Output Document is triggered, it is fully processed before the next Output Document is
examined in order to determine whether the event should trigger the next document.

Input Documents
All Input Document header specifications are evaluated at initialization, in the order base path
specification, queue specification, and then root element specification.

When an input XML document arrives, each Input Document is examined in top to bottom order
to determine whether the XML satisfies the root element specification. If no document matches
the incoming XML, the XML is discarded. If at least one Input Document is eligible, the elements
in the XML are delivered to the documents in the order they appear in the XML document. Once
all elements have been delivered, each document is examined in top to bottom order to determine
whether all required elements are present, and are processed in top to bottom order if the
elements are present. Once all Input Documents have been processed, the XML is discarded.

Configuration Documents
Configuration Documents have no header specifications. All Configuration Documents are
processed in top to bottom order. Once they all have been processed successfully, they are
discarded.

Ordering of Incidents in the Incident Object
When processing starts for a document, the incidents in the Incident Object are in their normal
order, i.e. the order that they were received by Oracle Utilities Network Management System. This
order can be changed during the processing of the document by calling the sortIncidents function.
The ordering remains the same during the processing, unless sortIncidents is called again. The
order is set back to normal when the document processing finishes.

Interactions between Threads
The adapter is a multi-threaded process. Therefore more than one document can be processed at
the same time, increasing performance. There is at least one thread for Output Document
processing, and at least one thread for each Input Document queue. More threads can be
configured using a Configuration Document. The adapter uses a number of other threads for
internal processing.

This has a number of implications.

While trigger events are queued internally in the order that they occur, and are extracted from this
queue in the order that they were queued, there is no guarantee that the Output Documents
triggered by these events will complete their processing in the order the events were queued. This
means the XML messages may be delivered to the MQSeries queue in an unexpected order. If this
behavior is inappropriate, it can be eliminated at the expense of performance by using only one
output thread, and by setting the config_Event_QueueDelay configuration parameter to zero.

A similar situation exists with input XML documents. They also cannot be guaranteed to update
Oracle Utilities Network Management System in the order that they arrive. This situation can be
5-70 Oracle Utilities Network Management System Adapters Guide

DML Reference
improved at the expense of performance by limiting each input queue to one thread. It may be
possible to eliminate it completely if the interface can be configured to use only one input queue.

Note that trigger events and input XML that affect particular Oracle Utilities Network
Management System events, Order Objects, and Relationship Objects are processed in the order
that they are queued. These situations are discussed below.

Note, however, that there is an inherent race condition in loosely coupled interfaces (the type
implemented by the adapter) that use messages to communicate. Events can occur in Oracle
Utilities Network Management System and the MDS that alter the state of Oracle Utilities
Network Management System events and MDS orders almost simultaneously and it cannot be
predicted whether the change on one system affects the other system first, or vice versa.
Paradoxically, this situation can be improved by increasing the rate at which messages are
processed, i.e. by increasing the number of threads.

The input, output, and internal threads need to coordinate access to various shared resources.
Most of this coordination is invisible on the dml level, but a number of aspects of the coordination
are worth consideration when writing dml.

One specific means of coordination is known as a mutex (for mutual exclusion). To access a
shared resource that is protected by a mutex, the thread requests the mutex. If the mutex is free,
the thread acquires the mutex. If another thread requests the mutex, it blocks (is suspended) until
it is free. When the original thread has finished accessing the shared resource, it releases the mutex,
making it free. The release unblocks one thread waiting for the mutex. When there is the potential
for more than one mutex to be in use, there is a danger of a deadlock if one thread enters the
mutexes in a different order from another thread. One a deadlock occurs, neither thread will ever
run again.

Each thread runs in a separate environment, with a copy of each relevant document, but needs to
share a number of resources. The access to these objects must be properly coordinated to prevent
inconsistent access due to multiple threads updating the resource at the same time. These
resources and the mechanisms used to prevent inconsistent access are:

• The Global Data Object: The update of a single field is atomic (the update will be complete
before any other thread can attempt to read or update the field). There is no coordination of
updates to multiple fields. To avoid this problem, use a single field.

• The Order Object: There is one Order Object for each order that has been created. Access to
an individual Order Object is coordinated so that only one document can access the Order
Object at one time. When a document in a thread needs to access an Order Object it calls
findOrder. When successful, findOrder acquires the order’s mutex, preventing any other
thread from accessing the Order Object. The order’s mutex is automatically acquired when
the order is created by calling createOrder. The order’s mutex is automatically released in the
following cases: when the document processing is terminated, and when findOrder or
createOrder is called. This is to prevent deadlocks. A consequence of this is that if a trigger
event triggers two Output Documents needing the same order, or two Input Documents are
triggered by one input XML message, the state of the order when the second document starts
processing is not guaranteed to be the same, because another thread may have altered its state.

• The Relationship Object: There is one Relationship Object for each relationship that has
been created. Access to an individual Relationship Object is coordinated so that only one
document can access the Relationship Object at one time. When a document in a thread
needs to access a Relationship Object it calls findRelation. When successful, findRelation
acquires the relationship’s mutex, preventing any other thread from accessing the
Relationship Object. The relationship’s mutex is automatically acquired when the relationship
is created by calling createRelation. The relationship’s mutex is automatically released in the
following cases: when the document processing is terminated, and when findRelation or
createRelation is called. This is to prevent deadlocks. A consequence of this is that if a trigger
event triggers two Output Documents using needing the same relationship, or two Input
Documents are triggered by one input XML message, the state of the relationship when the
second document starts processing is not guaranteed to be the same, because another thread
Generic WebSphere MQ Mobile Adapter 5-71

DML Reference
may have altered its state. In addition, when findOrder or createOrder is called, the mutex for
the order’s relationship is automatically acquired. This has the consequence that calling
findOrder or createOrder after calling findRelation causes a configuration error if the order is
not in the relationship. Similarly, calling findRelation after calling findOrder or createOrder
causes a configuration error if the order is not in the relationship. This behavior is necessary
to prevent deadlocks.

• The current event: SRSoutput message for the same event must be processed in the order
that they were sent by JMService, otherwise the MDS will not receive up to date data. This
prevented by a mutex that is acquired before the SRSoutput message is processed, and
released automatically when it has been processed.

DML Function Calls
The importance of meeting the prerequisite specifications for all functions cannot be emphasized
too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the
prerequisites are written is short form because they are so common. An explanation of how to
meet these prerequisites follows:

• The current crew is set: The current crew is set by a successful call to the createCrew
function, and by any of the findCrew… functions.

• The current order is set: the current order is set by the createOrder and findOrder functions.

• The current event is set: the current event is set when the current order is set, when an
OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call
to findEventObject is successful.

• The current damage report is set: the current damage report is set by a call to createDamage,
findDamage, findDamageByExternalId, or findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work
if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail,
meaning no data can be read or written. Their prerequisites are:

• E: the current event is set.

• I: the current event is set (and it has incidents)

• O: the current order is set.

• R: the current relation is set by a call to findRelation.
5-72 Oracle Utilities Network Management System Adapters Guide

DML Reference
List of Functions

Crew Functions
These functions create and update crews.

createCrew

NAME:
createCrew Create a new crew.

SYNOPSIS:
createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:
crew IDThe crew ID

crew fieldThe crew field to update.

crewType calls Crew::crewType() API

zoneName calls Crew::zoneName() API

crewSize calls Crew::crewSize() API

contact calls Crew::contact() API

crewId calls Crew::crewId() API

mobileNum calls Crew::mobileNum() API

pagerNum calls Crew::pagerNum() API

zoneHdl calls Crew::zoneHdl() API

crewCategory calls Crew::crewCategory() API

crewCenter calls Crew::crewCenter() API

crewGroup calls Crew::crewGroup() API

crewSupervisor calls Crew::crewSupervisor() API

externalKey calls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter,
crewSupervisor, are included otherwise the new crew will not appear in the
Window.

PREREQUISITE:
The crew field parameters are valid.

DESCRIPTION:
Create a new crew with the specified information using the Crew::createCrew API. If successful,
set the current crew to the new crew.

RETURN VALUE:
True when successful.

False when unsuccessful.

A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

The Crew::createCrew() API call fails.
Generic WebSphere MQ Mobile Adapter 5-73

DML Reference
Note that the current crew is not set if the call fails.

DIAGNOSTICS:
Error messages are output to the error log.

deleteCrew

NAME:
deleteCrew Deletes the crew with the specified crew ID

SYNOPSIS:
deleteCrew(crewID)

PARAMETERS:
crewID The crew ID.

PREREQUISITE:
None.

DESCRIPTION:
Deletes the crew with the specified crew ID.

RETURN VALUE:
True when successful.

False when unsuccessful.

DIAGNOSTICS:
None.

findCrewById

NAME:
findCrewById Find an active or inactive crew based on its crew ID

SYNOPSIS:
findCrewById(crew ID)

PARAMETERS:
crew ID The crew ID.

PREREQUISITE:
None.

DESCRIPTION:
Find the crew with the specified crew ID.

RETURN VALUE:
True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:
None.
5-74 Oracle Utilities Network Management System Adapters Guide

DML Reference
findCrewByExternalKey

NAME:
 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:
 findCrewByExternalKey(externalKey)

PARAMETERS:
 externalKey The external key.

PREREQUISITE:
None.

DESCRIPTION:
Find the crew with the specified external key.

RETURN VALUE:
True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

findCrewByIdSubStr

NAME:
findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:
findCrewByIdSubStr(string)

PARAMETERS:
string A string.

PREREQUISITE:
None.

DESCRIPTION:
Find a crew whose crew ID contains the string.

RETURN VALUE:
True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:
None.
Generic WebSphere MQ Mobile Adapter 5-75

DML Reference
findCrewByExtKeySubStr

NAME:
findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:
findCrewByExternalKey(string)

PARAMETERS:
string A string.

PREREQUISITE:
None.

DESCRIPTION:
Find a crew whose external key contains the string.

RETURN VALUE:
True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

findCrewByEventIdx

NAME:
findCrewByEventIdx Find a crew which is associated with the given event.

SYNOPSIS:
findCrewByEventIdx(eventIdx)

PARAMETERS:
eventIdx Event index.

PREREQUISITE:
None.

DESCRIPTION:
Find a crew which is assigned (including suspended), en-route or onsite for the event with the
given event index.

The first crew found is returned. Assigned/suspended crews are searched first.

RETURN VALUE:
True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:
None.
5-76 Oracle Utilities Network Management System Adapters Guide

DML Reference
returnCrewKeyById

NAME:
returnCrewKeyById Return crew key for the given crew id.

SYNOPSIS:
returnCrewKeyById(crewID)

PARAMETERS:
crewID Crew ID.

PREREQUISITE:
None.

DESCRIPTION:
Searches active and inactive crews for a crew with the given crew id. Returns the key of the found
crew.

RETURN VALUE:
Found crew key of an empty string if nothing was found.

DIAGNOSTICS:
None.

updateCrew

NAME:
updateCrew Update the current crew’s information.

SYNOPSIS:
updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:
crew field The crew’s field to update.

crewType calls Crew::crewType() API

zoneName calls Crew::zoneName() API

crewSize calls Crew::crewSize() API

contact calls Crew::contact() API

crewId calls Crew::crewId() API

mobileNum calls Crew::mobileNum() API

pagerNum calls Crew::pagerNum() API

zoneHdl calls Crew::zoneHdl() API

crewCategory calls Crew::crewCategory() API

crewCenter calls Crew::crewCenter() API

crewGroup calls Crew::crewGroup() API

crewSupervisor calls Crew::crewSupervisor() API

externalKey calls Crew::externalKey() API

data The data written to the crew field
Generic WebSphere MQ Mobile Adapter 5-77

DML Reference
PREREQUISITE:
The current crew is set.

The crew field parameters are valid.

DESCRIPTION:
Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the
changes.

RETURN VALUE:
True when successful.

False when unsuccessful.

The Crew::commit() API call fails.

DIAGNOSTICS:
Error messages are output to the error log.

dispatchCrew

NAME:
dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:
dispatchCrew()

PARAMETERS:
None.

PREREQUISITE:
The current crew is set.

The current order is set.

DESCRIPTION:
If the crew is already dispatched to another event, the previous dispatch is changed to an
assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the
crew to the other events.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

arriveCrew

NAME:
arriveCrew Update the current crew’s information to reflect that the crew has

arrived on site for an order.

SYNOPSIS:
arriveCrew()

arriveCrew(time)

PARAMETERS:
time The time the crew arrived in internal format. If this parameter is not

supplied, the current time is used.
5-78 Oracle Utilities Network Management System Adapters Guide

DML Reference
PREREQUISITE:
The current crew is set.

The current order is set.

DESCRIPTION:
If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic
described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

assignCrew

NAME:
assignCrew Assign the current crew to the current order

SYNOPSIS:
assignCrew()

PARAMETERS:
None.

PREREQUISITE:
The current crew is set.

The current order is set.

DESCRIPTION:
If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:
 The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

assignCrewsToAllRelatedEvents

NAME:
assignCrewsToAllRelatedEvents

SYNOPSIS:
assignCrewsToAllRelatedEvents()

PARAMETERS:
None.

PREREQUISITE:
The current relation is set.
Generic WebSphere MQ Mobile Adapter 5-79

DML Reference
DESCRIPTION:
This function makes sure that if a crew is assigned to one of the related events then it is also
assigned to all of the event which are part of the same relation.

RETURN VALUE:
'Y' on success, the empty string in current relation is not set.

DIAGNOSTICS:
Error messages are output to the error log.

unassignCrew

NAME:
unassignCrew Unassign the current crew from the current order

SYNOPSIS:
unassignCrew()

PARAMETERS:
None.

PREREQUISITE:
The current crew is set.

The current order is set.

DESCRIPTION:
If the crew is assigned or dispatched to any events associated with the order, invoke the
Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

unassignCrewByKey

NAME:
unassignCrewByKey Unassign the crew with the given crew key from the current order

SYNOPSIS:
unassignCrewByKey(crewKey)

PARAMETERS:
crewKey crew key

PREREQUISITE:
The current order is set.

DESCRIPTION:
Unassign the crew with the given crew key from any events associated with the current order.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
5-80 Oracle Utilities Network Management System Adapters Guide

DML Reference
suspendCrew

NAME:
suspendCrew Suspends the current crew from the current order

SYNOPSIS:
suspendCrew()

PARAMETERS:
None.

PRE-REQUISITE:
The current crew is set.

The current order is set.

DESCRIPTION:
Suspends the current crew from the current order.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

activateCrew

NAME:
activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:
activateCrew(state)

PARAMETERS:
state The state of the crew.

• Y: Activate the current crew.

• N: Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Invoke Crew::setActivation() API.

RETURN VALUE:
True when successful.

False when unsuccessful.

The assignments and jobs cannot be removed from the current crew

The Crew::setActivation() API call fails.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-81

DML Reference
availableCrew

NAME:
availableCrew Change the availability of the current crew.

SYNOPSIS:
availableCrew(state)

PARAMETERS:
state The availability of the crew

• Y: Make the current crew available.

• N: Make the current crew unavailable; remove all crew assignments and jobs.

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Invoke Crew::setAvailability() API.

RETURN VALUE:
True when successful.

False when unsuccessful.

The assignments and jobs cannot be removed from the current crew

The Crew::setAvailability() API call fails.

DIAGNOSTICS:
Error messages are output to the error log.

setCrewAvailability

NAME:
setCrewAvailability Change the availability of the current crew.

SYNOPSIS:
setCrewAvailability(state, when, reason)

PARAMETERS:
state The availability of the crew

• Y: Make the current crew available.

• N: Make the current crew unavailable.

when The time when crew availability change.

reason The reason why the crew is unavailable. Only used when state is 'N'.

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Changes availability of the current crew.

RETURN VALUE:
True.

DIAGNOSTICS:
Error messages are output to the error log.
5-82 Oracle Utilities Network Management System Adapters Guide

DML Reference
releaseCrews

NAME:
releaseCrews Release all crews from the current order.

SYNOPSIS:
releaseCrews

PARAMETERS:
None.

PREREQUISITE:
Current order is set.

DESCRIPTION:
Undispatch and unassign all crews related to the current order.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

 crewActive

NAME:
crewActive Determine if the current crew is active.

SYNOPSIS:
crewActive()

PARAMETERS:
None

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Invoke Crew::isActive() API.

RETURN VALUE:
True, when the current crew is active.

False, when current crew is not active.

DIAGNOSTICS:
Error messages are output to the error log.

setCrewOnShift

NAME:
setCrewOnShift Change the state of the current crew to on shfit or off shift.

SYNOPSIS:
setCrewOnShift(onShift, time)

PARAMETERS:
onShift The state of the crew

• Y: Set the current crew to on-shift. This will also activate the crew if it is currently
inactive.
Generic WebSphere MQ Mobile Adapter 5-83

DML Reference
• N: Set the current crew to off-shift and suspend any jobs.

time The time the crew shift change occurred. If this parameter is not supplied,
the current time is used.

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Invoke Crew::setOnShift() API.

RETURN VALUE:
True when successful.

False when unsuccessful.

The Crew::setOnShift() API call fails.

DIAGNOSTICS:
Error messages are output to the error log.

crewOnShift

NAME:
crewOnShift Determine if the current crew is on shift.

SYNOPSIS:
crewOnShift()

PARAMETERS:
None

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Invoke Crew::isOnShift() API.

RETURN VALUE:
True, when the current crew is on shift.

False, when current crew is not on shift.

DIAGNOSTICS:
Error messages are output to the error log.

crewOutOfRange

NAME:
crewOutOfRange Change the out-of-range status state of the current crew.

SYNOPSIS:
crewOutOfRange(outOfRange)

PARAMETERS:
outOfRange The out-of-range status of the crew

• Y: Set the current crew to be out of range.

• N: Set the current crew to be in range.

PRE-REQUISITE:
The current crew is set.
5-84 Oracle Utilities Network Management System Adapters Guide

DML Reference
DESCRIPTION:
Sets out-of-range status of the current crew.

RETURN VALUE:
True when successful.

False when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

crewIsMobile

NAME:
crewIsMobile Determine if the current crew is mobile.

SYNOPSIS:
crewIsMobile()

PARAMETERS:
None

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Checks that mobile flag of the current crew is not equal to N.

RETURN VALUE:
True, when the current crew is mobile.

False, when current crew is not mobile.

DIAGNOSTICS:
Error messages are output to the error log.

crewIsCurrentlyMobile

NAME:
crewIsCurrentlyMobile Determine if the current crew is mobile at this time.

SYNOPSIS:
crewIsCurrentlyMobile()

PARAMETERS:
None

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Checks that mobile flag of the current crew is set to Y. This excludes crews which are normally
mobile but are currently overridden to allow dispatching from NMS.

RETURN VALUE:
True, when the current crew is currently mobile.

False, when current crew is currently not mobile.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-85

DML Reference
setVehicleId

NAME:
 setVehicleId Update the current crew's vehicle information.

SYNOPSIS:
setVehicleId(unused, vehicleNumber, vehicleType)

PARAMETERS:
unusedThis parameter is not used.

vehicleNumber The vehicle number.

vehicleType The vehicle type name.

PREREQUISITE:
The current crew is set.

The crew field parameters are valid.

DESCRIPTION:
Update the current crew`s vehicle information. If crew with given vehicle number exists then it
will be used. If existing vehicle is inactive it will be activated. If crew with given vehicle number
does not exist then new vehicle record will be created.

RETURN VALUE:
True, when successful.

False, when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

updateCrewCoordinates

NAME:
updateCrewCoordinates Update the current crew's coordinates as well as its speed and heading.

SYNOPSIS:
updateCrewCoordinates(x, y, speed, heading)

PARAMETERS:
x The X coordinate of the current crew.

y The Y coordinate of the current crew.

speed The speed of the current crew.

heading The heading of the current crew (0 to 359, where 0 is North, 90 is East, 180 is South, 270
is West).

PREREQUISITE:
The current crew is set.

DESCRIPTION:
Updates the current crew's coordinates as well as its speed and heading.

Coordinate values must be in the coordinate system used within NMS. This function does not
perform conversion between different coordinate systems.

RETURN VALUE:
True when successful.

False when unsuccessful.
5-86 Oracle Utilities Network Management System Adapters Guide

DML Reference
DIAGNOSTICS:
Error messages are output to the error log.

orderCrewStatus

NAME:
orderCrewStatus Returns the highest crew status for the current order.

SYNOPSIS:
orderCrewStatus()

PARAMETERS:
None.

PREREQUISITE:

The current order is set.
DESCRIPTION:

Returns the highest crew status for the current order. Crew status priority (highest to lowest):

 * onsite

 * en-route

 * assigned

RETURN VALUE:
'O' if a crew is onsite, 'D' if a crew is en-route, 'A' if a crew is assigned, otherwise empty string.

DIAGNOSTICS:
Error messages are output to the error log.

getOrderCrews

NAME:
getOrderCrews Returns comma-separated list of crew ids assigned to the specified order

SYNOPSIS:
getOrderCrews(orderNumber)

PARAMETERS:
orderNumber The order number.

PREREQUISITE:
The current order is set.

DESCRIPTION:
Returns comma-separated list of crew ids assigned to the specified order.

RETURN VALUE:
Comma-separated list of crew ids.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-87

DML Reference
Code Mapping Tables
The code mapping tables and views are used to translate values in Oracle Utilities Network
Management System to and from the equivalent values in the messages to and from the MDS.
These tables are cached to improve performance.

loadMapConfigTable

NAME:
loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:
loadMapConfigTable(table)

PARAMETERS:
table A table name.

PREREQUISITE:
None.

DESCRIPTION:
Read and cache table.

RETURN VALUE:
True, when successful.

False, otherwise.

DIAGNOSTICS:
Error messages are output to the error log.

loadMapTable

NAME:
loadMapTable Cache the contents of a mapping table.

SYNOPSIS:
loadMapTable(name)

PARAMETERS:
name The name of the mapping table.

PREREQUISITE:
The table, name, exists in the database.

DESCRIPTION:
Read the contents of name and cache its values.

RETURN VALUE:
True, when successful.

False, otherwise.

DIAGNOSTICS:
Error messages are output to the error log.
5-88 Oracle Utilities Network Management System Adapters Guide

DML Reference
mapTableStr

NAME:
mapTableStr Return a string given its reference code

SYNOPSIS:
mapTableStr(name, code)

PARAMETERS:
name A mapping table name

code A reference code to a string.

PREREQUISITE:
The table, name, exists in the database.

DESCRIPTION:
Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a
default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:
The string when successful.

The empty string when code is not found.

DIAGNOSTICS:
Error messages are output to the error log.

mapTableCode

NAME:
mapTableCode Return a code given its reference string

SYNOPSIS:
mapTableCode(name, string)

PARAMETERS:
name A mapping table name

string A string

PREREQUISITE:
The table (name) exists in the database.

DESCRIPTION:
Check if the table name exists in memory; if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a
default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:
The code when successful.

The empty string when string is not found.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-89

DML Reference
Damage Assessment Functions
These functions creates and updates damage reports.

createDamage

NAME:
createDamage Create an empty damage report instance.

SYNOPSIS:
createDamage()

PARAMETERS:
None.

PREREQUISITE:
None.

DESCRIPTION:
Creates an empty damage report instance. This function does not create a new damage report in
NMS but rather creates damage report object in DML, which can then be populated and saved to
actually create new or update existing damage report.

RETURN VALUE:
None.

DIAGNOSTICS:
None.

findDamage

NAME:
findDamage Load an existing damage report by id.

SYNOPSIS:
findDamage(reportId)

PARAMETERS:
reportId unique damage report identifier (stored in the

DAMAGE_REPORT.REPORT_ID database column)

PREREQUISITE:
None.

DESCRIPTION:
Loads damage report for the given identifier. If no damage report with such identifier exists then
empty damage report instance is created.

RETURN VALUE:
True, if existing damage report was found and loaded.

False, if existing damage report was not found and empty one was created.

DIAGNOSTICS:
Error messages are output to the error log.
5-90 Oracle Utilities Network Management System Adapters Guide

DML Reference
findDamageByExternalId

NAME:
findDamageByExternalId Load an existing damage report by external identifier.

SYNOPSIS:
findDamageExternalId(externalId)

PARAMETERS:
externalId external damage report identifier

PREREQUISITE:
None.

DESCRIPTION:
Loads damage report for the given external identifier. If no damage report with such identifier
exists then empty damage report instance is created.

RETURN VALUE:
True, if existing damage report was found and loaded.

False, if existing damage report was not found and empty one was created.

DIAGNOSTICS:
Error messages are output to the error log.

findOrCreateDamage

NAME:
findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:
findOrCreateDamage(event)

PARAMETERS:
event An event handle.

PREREQUISITE:
None.

DESCRIPTION:
Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:
True, if the damage report was created.

False, if the damage report existed before the call.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetCrewId

NAME:
damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:
damageSetCrewId(crewId)

PARAMETERS:
crewId A crew ID.
Generic WebSphere MQ Mobile Adapter 5-91

DML Reference
PREREQUISITE:
The current damage report is set.

DESCRIPTION:
The crew ID field in the damage report is updated with crewId.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetRadioNum

NAME:
damageSetRadioNum Update the damage report with a crew mobile ID (radio number)

SYNOPSIS:
damageSetRadioNum(mobileId)

PARAMETERS:
mobileId A crew mobile ID (radio number).

PREREQUISITE:
The current damage report is set.

DESCRIPTION:
The Mobile # field in the damage report is updated with mobileId.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetReportTime

NAME:
damageSetReportTime Update the damage report with a time

SYNOPSIS:
damageSetReportTime(time)

PARAMETERS:
time A time.

PREREQUISITE:

The current damage report is set

DESCRIPTION:
The reported time field in the damage report is updated with time.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
5-92 Oracle Utilities Network Management System Adapters Guide

DML Reference
damageSetEvent

NAME:
damageSetEvent Set event handle in newly created damage report

SYNOPSIS:
damageSetEvent(event)

PARAMETERS:
event An event handle.

PREREQUISITE:

The current damage report is set.

DESCRIPTION:
Sets event handle in newly created damage report. This would cause this damage report to be
associated with the specified event. It is an error to call this function for an existing damage
report.

RETURN VALUE:
None.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetExternalId

NAME:
damageSetExternalId Set external id in newly created damage report

SYNOPSIS:
damageSetEvent(externalId)

PARAMETERS:
externalId An external identifier for this damage report.

PREREQUISITE:
The current damage report is set.

DESCRIPTION:
Sets external identifier in newly created damage report. If provided the external identifier should
be unique. It is an error to call this function for an existing damage report.

RETURN VALUE:
None.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetDevice

NAME:
damageSetDevice Set device alias in damage report

SYNOPSIS:
damageSetDevice(deviceAlias)

PARAMETERS:
deviceAlias A device alias.
Generic WebSphere MQ Mobile Adapter 5-93

DML Reference
PREREQUISITE:
The current damage report is set.

DESCRIPTION:
Sets device alias in damage report. For newly created damage report this would cause it to be
placed on the specified device unless event handle is also set in which case damage report is placed
on the outage device. Setting device alias for an existing damage report would cause it to be moved
to the new device.

RETURN VALUE:
None.

DIAGNOSTICS:
None.

damageSetAddress

NAME:
damageSetAddress Update the damage report with an Address

SYNOPSIS:
damageSetAddress(Address)

PARAMETERS:
Address An Address.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The Address field in the damage report is updated with Address.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetFeederName

NAME:
damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:
damageSetFeederName(feeder name)

PARAMETERS:
feeder name A feeder name.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
5-94 Oracle Utilities Network Management System Adapters Guide

DML Reference
damageSetNcg

NAME:
damageSetNcg Update the damage report with an ncg

SYNOPSIS:
damageSetNcg(ncg)

PARAMETERS:
ncg An ncg.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The ncg field in the damage report is updated with ncg.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetRepairMinutes

NAME:
damageSetRepairMinutes sets repair minutes for a damage report.

SYNOPSIS:
damageSetRepairMinutes(number of minutes)

PARAMETERS:
minutes The number of minutes.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
Sets repair minutes for a damage report. Setting to negative values causes repair minutes to be
recalculated from the entered damage type information

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetZoneName

NAME:
damageSetZoneName Update the damage report with a zone name

SYNOPSIS:
damageSetZoneName(zone name)

PARAMETERS:
zone name A zone name.

PREREQUISITE:
The current damage report is set
Generic WebSphere MQ Mobile Adapter 5-95

DML Reference
DESCRIPTION:
The zone name field in the damage report is updated with zone name.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetGrid

NAME:
damageSetGrid Update the damage report with a grid number

SYNOPSIS:
damageSetGrid(grid)

PARAMETERS:
grid A grid number.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The grid field in the damage report is updated with grid.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetCity

NAME:
damageSetCity Update the damage report with a city name

SYNOPSIS:
damageSetCity(city)

PARAMETERS:
city A city name.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The city field in the damage report is updated with city.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
5-96 Oracle Utilities Network Management System Adapters Guide

DML Reference
damageSetSection

NAME:
damageSetSection Update the damage report with the section affected.

SYNOPSIS:
damageSetSection(section)

PARAMETERS:
section The section affected.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The section field in the damage report is updated with section.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetLocation

NAME:
damageSetLocation Update the damage report with the affected location

SYNOPSIS:
damageSetLocation(location)

PARAMETERS:
location The affected location.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The location field in the damage report is updated with location.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetPhase

NAME:
damageSetPhase Update the damage report with the phases affected

SYNOPSIS:
damageSetPhase(phase)

PARAMETERS:
phase The affected phases.

PREREQUISITE:
The current damage report is set
Generic WebSphere MQ Mobile Adapter 5-97

DML Reference
DESCRIPTION:
The phase field in the damage report is updated with phase.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetLoadAffected

NAME:
damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:
damageSetLoadAffected(loadAffected)

PARAMETERS:
loadAffected The load affected.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetText1 - damageSetText5

NAME:
damageSetTextN Update misc_textN in the damage report, where N is a number from 1 to
5.

SYNOPSIS:
damageSetTextN(text)

PARAMETERS:
text A value.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The misc_textN field in the damage report is updated with text.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
5-98 Oracle Utilities Network Management System Adapters Guide

DML Reference
 damageSetOption1 - damageSetOption5

NAME:
damageSetOptionN Update misc_optionN field in the damage report, where N is number
from 1 to 5.

SYNOPSIS:
damageSetOptionN(text)

PARAMETERS:
text A value.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The misc_optionN field in the damage report is updated with text.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetComment1

NAME:
damageSetComment1 Update the damage report with a comment

SYNOPSIS:
damageSetComment1(text)

PARAMETERS:
text A text.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The comment1 field in the damage report is updated with text.

RETURN VALUE:
 The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetComment2

NAME:
damageSetComment2 Update the damage report with a comment

SYNOPSIS:
damageSetComment2(text)

PARAMETERS:
text A text.

PREREQUISITE:
The current damage report is set
Generic WebSphere MQ Mobile Adapter 5-99

DML Reference
DESCRIPTION:
The comment2 field in the damage report is updated with text.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

damageSetType

NAME:
damageSetType Update the damage report with the number of affected items

SYNOPSIS:
damageSetType(item, number, accessible)

PARAMETERS:
item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
The field containing the number of affected items in the damage report is updated with number
and the corresponding accessibility field is updated with accessible

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

 saveDamageDetails

NAME:
saveDamageDetails Save the damage report

SYNOPSIS:
saveDamageDetails()

PARAMETERS:
None.

PREREQUISITE:
The current damage report is set

DESCRIPTION:
Save the current damage report.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
5-100 Oracle Utilities Network Management System Adapters Guide

DML Reference
Logging

logLocalError

NAME:
logLocalError Log an error message to the local log file

SYNOPSIS:
logLocalError(text [, text] …)

PARAMETERS:
text Text to include in the error message. Any number of parameters can be

supplied.

PREREQUISITE:
None

DESCRIPTION:
Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

EXAMPLE:
logLocalError(“This is an “, @example, “ of an “, &error, “ message”);

logFatalError

NAME:
logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:
logFatalError(text [, text] …)

PARAMETERS:
text Text to include in the error message. Any number of parameters can be

supplied.

PREREQUISITE:
None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

EXAMPLE:
logFatalError(“This is an “, @example, “ of a fatal “, &error, “ message”);
Generic WebSphere MQ Mobile Adapter 5-101

DML Reference
logDebug

NAME:
logDebug Log a debug message

SYNOPSIS:
logDebug(level, text)

PARAMETERS:
levelThe minimum debug level at which to log the message. Zero means always.

The debug level of the adapter can be changed by sending it a debug high level
message.

text Text to include in the debug message. Any number of parameters can be
supplied

PREREQUISITE:
None

DESCRIPTION:
Invoke the debug API.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

EXAMPLE:
logDebug(0, “This is an “, @example, “ of a “, &debug, “ message”);

Event Manipulation
These functions read and modify events.

readIncidents

NAME:
readIncidents Populate the Incident Object for the current event

SYNOPSIS:
readIncidents()

PARAMETERS:
None.

PREREQUISITE:
The current event is set.

DESCRIPTION:
If the Incident Object for the current event has not been populated previously, and the current
event has at least one incident associated with it, invoke the JMS::getCalls API for the current
event.

RETURN VALUE:
The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

API call fails.
5-102 Oracle Utilities Network Management System Adapters Guide

DML Reference
DIAGNOSTICS:
Error messages are output to the error log.

clearIncidents

NAME:
clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:
clearIncidents()

PARAMETERS:
None.

PREREQUISITE:
The current event is set.

DESCRIPTION:
If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

setCaseNoteInfo

NAME:
setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:
setCaseNoteInfo(note)

PARAMETERS:
note Text to be entered in the Case Notes.

PREREQUISITE:
The current order is set.

DESCRIPTION:
Invoke the JMS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:
True, when successful.

False, when unsuccessful.

API call fails.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-103

DML Reference
setOperatorComment

NAME:
setOperatorComment Set the operator comment for the current order

SYNOPSIS:
setOperatorComment(comment, append)

PARAMETERS:
comment Comment text.

append

• 0 - replace current comment

• 1 - append to the current comment

PREREQUISITE:
The current order is set.

DESCRIPTION:
Invokes the JMS::setOperatorComment API for all the events associated with the order.

RETURN VALUE:
True, when successful.

False, when unsuccessful.

API call fails.

DIAGNOSTICS:
Error messages are output to the error log.

getCaseNotesForEvent

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:
getCaseNotesForEvent(event)

PARAMETERS:
event An event handle.

PREREQUISITE:
None.

DESCRIPTION:
Invoke the JMS::getCaseNotesForEvent API.

RETURN VALUE:
The case notes for the event when successful.

The empty string when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.
5-104 Oracle Utilities Network Management System Adapters Guide

DML Reference
setEventInfo

setEventInfo Set event information for an order.

SYNOPSIS:
setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:
outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PREREQUISITE:
The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid
outage fields that can be used in outagefield.

DESCRIPTION:
Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates
are supported. The JMS::setEventInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:
True, when successful.

False when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

setEventInfoAPI

setEventInfoAPI Set event information for arbitrary event.

SYNOPSIS:
setEventInfoAPI(event, outagefield, value, user)

PARAMETERS:
event An event handle.

outagefield The outage field to update/set.

value The value to set.

user The username.

PREREQUISITE:
The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid

outage fields that can be used in outagefield.

DESCRIPTION:
Update outagefield with value for the event. The JMS::setEventInfo(..) API is invoked for the
event with the specified event handle.

RETURN VALUE:
True, when successful.

False when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-105

DML Reference
completeEvent

NAME:
completeEvent Complete all events associated with the current order

SYNOPSIS:
completeEvent()

PARAMETERS:
None.

PREREQUISITE:
The current order is set.

DESCRIPTION:
Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event
Object is automatically reloaded after the call. This means that the Incident Object will not be
populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:
True, when successful.

False, when unsuccessful.

Could not restore event.

DIAGNOSTICS:
Error messages are output to the error log.

closeOutEvent

NAME:
closeOutEvent Close out all events associated with the current order using specified applied rule

SYNOPSIS:
closeOutEvent(user, reason, appliedRule, restoreTime)

PARAMETERS:
user username

reason reason for closing the event

appliedRule applied rule value to use

restoreTime event restoration time

PREREQUISITE:
The current order is set.

DESCRIPTION:
Close out the event(s) associated with the current order using specified applied rule value.

If applied rule value is 26 (OUTAGE_PND_COMPLETE) and configuration parameter
$G.config_AllowCloseOutEventCancel is set 'Y' then the event(s) will be canceled.

Because the state of the event changes when the API’s used by this function are called, the Event
Object is automatically reloaded after the call. This means that the Incident Object will not be
populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:
True, when successful.
5-106 Oracle Utilities Network Management System Adapters Guide

DML Reference
False, when unsuccessful. Could not close event.

DIAGNOSTICS:
Error messages are output to the error log.

setGenericField

NAME:
setGenericField Update event information for the current order

SYNOPSIS:
setGenericField(field, value, user)

PARAMETERS:
field A field to update.

value A value.

user Who initiated the update.

PREREQUISITE:
The current order is set.

DESCRIPTION:
For all events associated with the current order, update field with value, indicating that user
initiated the update.

The JMS API ‘setGenericField()’ is invoked.

RETURN VALUE:
True, when successful.

False, when the API call fails.

DIAGNOSTICS:
Error messages are output to the error log.

readGenericField

NAME:
readGenericField Read information for the current event

SYNOPSIS:
readGenericField(field)

PARAMETERS:
field A field to read.

PREREQUISITE:
The current event is set. The value of field is a valid generic field name.

DESCRIPTION:
Read the value of field for the current event.

The JMS API ‘getGenericField()’ is invoked.

RETURN VALUE:
The value of field.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-107

DML Reference
ert

NAME:
ert Set the estimated restoration time for the current order

SYNOPSIS:
ert(time, ert_source, crew_name)

PARAMETERS:
time The estimated restoration time in internal format.

est_source The source code for the estimated restoration time. Allowed values: C, U,
 ‘a’ through ‘z’ with the exception of ‘m.’ This parameter is optional. If not
 provided value 'C' is used.

crew_name The name of the crew which is updating the estimated restoration time.
 This parameter is optional. If not provided the value specified in the
 “$G.config_Username” configuration parameter is used.

PREREQUISITE:
The current order is set.

DESCRIPTION:
Call the JMS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:
True, when successful.

False, when the API call fails.

DIAGNOSTICS:
Error messages are output to the error log.

requestRowAction

NAME:
requestRowAction Press a button for the current event

SYNOPSIS:
requestRowAction(table, button)

PARAMETERS:
table The name of the table (work_agenda is most common).

button The name of the button to press.

PREREQUISITE:
The current event is set.

DESCRIPTION:
Call the JMS::requestRowAction API for the current event.

RETURN VALUE:
True, when the API call succeeds.

False, when the API call fails.

DIAGNOSTICS:
Error messages are output to the error log.
5-108 Oracle Utilities Network Management System Adapters Guide

DML Reference
requestRowActionAll

NAME:
requestRowActionAll Press a button for the current order

SYNOPSIS:
requestRowActionAll(table, button)

PARAMETERS:
table The name of the table (work_agenda is most common).

button The name of the button to press.

PREREQUISITE:
The current order is set.

DESCRIPTION:
Call the JMS::requestRowAction API for all events associated with the current order.

RETURN VALUE:
True, when the API call succeeds.

False, when the API call fails.

DIAGNOSTICS:
Error messages are output to the error log.

eventIsActive

NAME:
eventIsActive Check that the current order has at least one active event

SYNOPSIS:
eventIsActive()

PARAMETERS:
None.

PREREQUISITE:
The current order is set.

DESCRIPTION:
Determine if the order has at least one active event.

RETURN VALUE:
True, when active.

False, otherwise.

DIAGNOSTICS:
Error messages are output to the error log.

confirmDeviceOutage

NAME:
confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:
confirmDeviceOutage(phases)

PARAMETERS:
phases The phases that are out
Generic WebSphere MQ Mobile Adapter 5-109

DML Reference
PREREQUISITE:
The current order is set.

DESCRIPTION:
For all events associated with the current order, confirm that it is a real device outage by opening
the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is
automatically reloaded after the call. This means that the Incident Object will not be populated. If
the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:
True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

DIAGNOSTICS:
Error messages are output to the error log.

 confirmServiceOutage

NAME:
confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:
confirmServiceOutage()

PARAMETERS:
None.

PREREQUISITE:
The current order is set.

DESCRIPTION:
For all events associated with the current order, confirm that the customers described in the
incidents read for the event, are individually out using the JMS::processIndivServUpdate() API.
Note that no outages are created for customers who are not attached to the device (for example a
fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically
reloaded after the call. This means that the Incident Object will not be populated. If the Incident
Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events
should not have orders created for them. If a pseudo relationship is to be created from the
resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it
does not require the use of lockForEventCreation().

SEE ALSO:
createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage on page 5-114, and
lockForEventCreation() section lockForEventCreation on page 5-111.

RETURN VALUE:
The number of customers confirmed, when confirmation is successful.

False, otherwise.

DIAGNOSTICS:
Error messages are output to the error log.
5-110 Oracle Utilities Network Management System Adapters Guide

DML Reference
lockForEventCreation

NAME:
lockForEventCreation Prevent the processing of new events until the current document is fully
processed.

SYNOPSIS:
lockForEventCreation()

PARAMETERS:
None.

PREREQUISITE:
None.

DESCRIPTION:
Prevent new events from being processed until the current document finishes processing. This is
required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be
processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents
other threads from processing any changes to events.

SEE ALSO:
confirmServiceOutage(), section confirmServiceOutage on page 5-110, and
createPseudoRelation(), section createPseudoRelation on page 5-114.

RETURN VALUE:
The empty string.

False, otherwise.

DIAGNOSTICS:
None.

 restoreOutage

NAME:
restoreOutage Restore all events for the current order

SYNOPSIS:
restoreOutage()

PARAMETERS:
None.

PREREQUISITE:
The current order is set.

DESCRIPTION:
For all events associated with the current order restore the event. If the event is a device outage
restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a
service outage, restore it using the JMS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is
automatically reloaded after the call. This means that the Incident Object will not be populated. If
the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:
True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing
the device. This may occur in a service outage if the event has not been acknowledged.
Generic WebSphere MQ Mobile Adapter 5-111

DML Reference
DIAGNOSTICS:
Error messages are output to the error log.

setRestoredTime

NAME:
setRestoredTime Updates restoration time for the current order

SYNOPSIS:
setRestoredTime(restoreTime)

PARAMETERS:
restoreTime Event restoration time.

PREREQUISITE:
The current order is set.

DESCRIPTION:
Updates restoration time for all event associated with the current order. The events must already
be restored.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

 picklistCompLog

NAME:
picklistCompLog Update the database table picklist_completion_log for all the events associated
with the current order.

SYNOPSIS:
picklistCompLog(who, reason)

PARAMETERS:
who Who performed the action.

reason What occurred

PREREQUISITE:
Current order is set.

DESCRIPTION:
For all events associated with the current order, create an entry in the database table
‘picklist_completion_log’ containing who and reason.

RETURN VALUE:
True, when successful.

False, otherwise.

DIAGNOSTICS:
Error messages are output to the error log.
5-112 Oracle Utilities Network Management System Adapters Guide

DML Reference
 picklistInfoUpdTr

NAME:
picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:
picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:
field[1,2,..] Fields to update

value[1,2,..] Assignment Values

PREREQUISITE:
Current order is set.

DESCRIPTION:
For all events associated with the current order, update the fields with values in the database table
‘picklist_info_upd_tr’.

RETURN VALUE:
True, when successful.

False, otherwise.

DIAGNOSTICS:
Error messages are output to the error log.

Relation Functions
These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE,
MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE.
(PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION,
and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation

NAME:
findRelation Find a dml relation by matching the contents of an relation object field. If

found, set the current relation object to the relation found.

SYNOPSIS:
findRelation(type, fieldname, value)

PARAMETERS:
type A relationship type.

fieldname A field name

value A value

PREREQUISITE:
The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not
calling findOrder, or by finding the relation by order’s key event using findRelation(event,
$O.event).)

DESCRIPTION:
Find the relation with a type of type whose fieldname has a value of value.
Generic WebSphere MQ Mobile Adapter 5-113

DML Reference
RETURN VALUE:
True, when successful.

False, otherwise.

DIAGNOSTICS:
Error messages are output to the error log.

createPseudoRelation

NAME:
createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System)
relationship.

SYNOPSIS:
createPseudoRelation(type)

PARAMETERS:
type A relationship type.

PREREQUISITE:
The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in
a future release).

DESCRIPTION:
Create a pseudo relationship of type among all outage events whose device is that of the current
order’s active event.

RETURN VALUE:
True, when successful.

False, when unsuccessful.

No events exist on device.

The order’s event is already in another relation.

All the other events on the device are in another relation.

DIAGNOSTICS:
Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:
createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities
Network Management System) relationship from the results of the confirmation of a service
outage.

SYNOPSIS:
createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:
type A relationship type.

PREREQUISITE:
See confirmServiceOutage, section confirmServiceOutage on page 5-110 and
createPseudoRelation, section createPseudoRelation on page 5-114.
5-114 Oracle Utilities Network Management System Adapters Guide

DML Reference
DESCRIPTION:
Confirm a service outage as described in confirmServiceOutage, section confirmServiceOutage
on page 5-110.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation on page 5-114.

This combined function is recommended rather than calling confirmServiceOutage and then
calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter
restarts.

RETURN VALUE:
The number of customers confirmed, when successful.

False, when unsuccessful.

No events exist on device.

The order’s event is already in another relation.

All the other events on the device are in another relation.

DIAGNOSTICS:
Error messages are output to the error log.

triggerRelationChanged

NAME:
triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:
triggerRelationChanged(relation)

PARAMETERS:
relation The relation’s handle. (If the relation has been found, $R.relation gives this

value).

PREREQUISITE:
There is at least one output document with a RelationChanged trigger.

DESCRIPTION:
For all events in the relation, trigger all output documents with a RelationChanged trigger, with
the event’s handle as the trigger argument.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-115

DML Reference
deleteRelation

NAME:
deleteRelation Delete the current relation.

SYNOPSIS:
deleteRelation()

PARAMETERS:
None.

PREREQUISITE:
The current relation is set.

DESCRIPTION:
Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:
classTable Return the class table for a class.

SYNOPSIS:
classTable(class)

PARAMETERS:
class The class number

PREREQUISITE:
The class parameter must be an integer.

DESCRIPTION:
Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:
The table name, when successful.

The empty string when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

getClassDesc

NAME:
getClassDesc Returns a textual description of the Class.

SYNOPSIS:
getClasDesc(class)

PARAMETERS:
classThe class number
5-116 Oracle Utilities Network Management System Adapters Guide

DML Reference
PREREQUISITE
The class parameter must be an integer.

DESCRIPTION:
Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:
The textual description, when successful.

The empty string when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log

isCls

NAME:
isCls Check if a class is one of classes in a list.

SYNOPSIS:
isCls(class, className1, className2, …)

PARAMETERS:
class A class number.

className1, className2, …A list of class names.

PREREQUISITE:
None

DESCRIPTION:
Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex
API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:
True, when class is in the list.

False, when class is not in the list.

DIAGNOSTICS:
Error messages are output to the error log.

setAlarm

NAME:
setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:
setAlarm(deviceHandle, alarmMsg)

PARAMETERS:
deviceHandle A device handle.

alarmMsg A alarm message.

PREREQUISITE:
None

DESCRIPTION:
Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.
Generic WebSphere MQ Mobile Adapter 5-117

DML Reference
RETURN VALUE:
None.

DIAGNOSTICS:
Error messages are output to the error log.

getGuid

NAME:
getGuid Return a globally unique id.

SYNOPSIS:
getGuid()

PARAMETERS:
None

PREREQUISITE:
None

DESCRIPTION:
Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:
The GUID, when successful.

The empty string when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

interfaceUp

NAME:
interfaceUp Register the state of the interface

SYNOPSIS:
interfaceUp()

PARAMETERS:
None.

PREREQUISITE:
None

DESCRIPTION:
Register that the interface is currently up. Invoke SMS::registerCallback(), and
SMS::registerInterfaceFailed() API.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.
5-118 Oracle Utilities Network Management System Adapters Guide

DML Reference
interfaceDown

NAME:
interfaceDown Register the state of the interface

SYNOPSIS:
interfaceDown()

PARAMETERS:
None.

PREREQUISITE:
None

DESCRIPTION:
Register that the interface is currently down. Invoke SMS::registerCallback(), and
SMS::registerInterfaceFailed() API.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

interfaceUpMessage

NAME:
interfaceUpMessage Register the state of the interface

SYNOPSIS:
interfaceUpMessage(message)

PARAMETERS:
message message to appear in the System Alarms list

PREREQUISITE:
None

DESCRIPTION:
Register that the interface is currently up. Provided message with appear in the System Alarms list.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

interfaceDownMessage

NAME:
interfaceDownMessage Register the state of the interface

SYNOPSIS:
interfaceDownMessage(message)

PARAMETERS:
message message to appear in the System Alarms list

PREREQUISITE:
None
Generic WebSphere MQ Mobile Adapter 5-119

DML Reference
DESCRIPTION:
Register that the interface is currently down. Provided message with appear in the System Alarms
list.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

sql

NAME:
sql Execute a non-select SQL statement

SYNOPSIS:
sql(sqlStatement)

PARAMETERS:
sqlStatement A non-select SQL statement.

PREREQUISITE:
None

DESCRIPTION:
Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:
True, when successful.

False, when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

EXAMPLE:
sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +
 " and event_idx=" + $E.outageHdl.idx);

query

NAME:
query Execute SQL query

SYNOPSIS:
query(sqlStatement)

PARAMETERS:
sqlStatement A select SQL statement.

PREREQUISITE:
None

DESCRIPTION:
Execute sqlStatement using the DBS::query() API and return first column of the first returned
row.

RETURN VALUE:
Value of the first column of the first returned row.
5-120 Oracle Utilities Network Management System Adapters Guide

DML Reference
DIAGNOSTICS:
Error messages are output to the error log.

EXAMPLE:
query("SELECT SYSDATE FROM dual");

Non API Functions
This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:
isSet Check if a parameter has been set.

SYNOPSIS:
isSet(param)

PARAMETERS:
param The parameter to check.

PREREQUISITE:
None

DESCRIPTION:
Check if the param has been set.

RETURN VALUE:
True, if param has been set.

False, if not.

DIAGNOSTICS:
None.

length

NAME:
length Return the number of characters in a string.

SYNOPSIS:
length(string)

PARAMETERS:
string A string value

PREREQUISITE:
None

DESCRIPTION:
Determine the length of string.

RETURN VALUE:
The length of string.

DIAGNOSTICS:
None.
Generic WebSphere MQ Mobile Adapter 5-121

DML Reference
substring

NAME:
substring Return a sub-string of a value

SYNOPSIS:
substring(string, start, length)

PARAMETERS:
string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PREREQUISITE:
None

DESCRIPTION:
Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string
starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:
The sub-string

DIAGNOSTICS:
None.

stringbefore

NAME:
stringbefore Return a sub-string of a string value

SYNOPSIS:
stringbefore(string, stop)

PARAMETERS:
string A string value

stop A string to stop at.

PREREQUISITE:
None

DESCRIPTION:
Search string for stop and return all characters before stop. If stop does not exist within string
return string

RETURN VALUE:
The sub-string.

DIAGNOSTICS:
None.
5-122 Oracle Utilities Network Management System Adapters Guide

DML Reference
stringafter

NAME:
stringafter Return a sub-string of a string value

SYNOPSIS:
stringafter(string, start)

PARAMETERS:
string A string value

start Characters to start after.

PRE-REQUISITE:
None

DESCRIPTION:
Search string for any character in start and return all characters after that point. If start does not
exist within string return string.

RETURN VALUE:
The sub-string.

DIAGNOSTICS:
None.

isDigits

NAME:
isDigits Check if the string is made up of digits only

SYNOPSIS:
isDigits(string)

PARAMETERS:
string A string value

PREREQUISITE:
None

DESCRIPTION:
Check if string is made up of purely numeric values (e.g., 0 to 9)

RETURN VALUE:
True, if string is all digits.

False, otherwise.

DIAGNOSTICS:
Error messages are output to the error log.

stringInString

NAME:
stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:
stringInString(string1, string2)

PARAMETERS:
string1 A string value
Generic WebSphere MQ Mobile Adapter 5-123

DML Reference
string2 A string value

PREREQUISITE:
None

DESCRIPTION:
Search string2 for string1.

RETURN VALUE:
True, if string1 is found

False, otherwise.

DIAGNOSTICS:
None.

trim

NAME:
trim Removes leading and trailing whitespace characters

SYNOPSIS:
trim(string)

PARAMETERS:
string A string value

PREREQUISITE:
None

DESCRIPTION:
Removes leading and trailing whitespace characters from string.

RETURN VALUE:
String with leading and trailing whitespace characters removed.

DIAGNOSTICS:
None.

trimLeft

NAME:
trimLeft Removes leading whitespace characters

SYNOPSIS:
trimLeft(string)

PARAMETERS:
string A string value

PREREQUISITE:
None

DESCRIPTION:
Removes leading whitespace characters from string.

RETURN VALUE:
String with leading whitespace characters removed.

DIAGNOSTICS:
None.
5-124 Oracle Utilities Network Management System Adapters Guide

DML Reference
trimRight

NAME:
trimRight Removes trailing whitespace characters

SYNOPSIS:
trimRight(string)

PARAMETERS:
string A string value

PREREQUISITE:
None

DESCRIPTION:
Removes trailing whitespace characters from string.

RETURN VALUE:
String with trailing whitespace characters removed.

DIAGNOSTICS:
None.

removeDelim

NAME:
removeDelim Return a substring without the contents contained within the
delimiters, including the delimiters.

SYNOPSIS:
removeDelim(string, start, end)

PARAMETERS:
string A string value

start A starting delimiter

end A end delimiter

PREREQUISITE:
None

DESCRIPTION:
Search string for start, remove all characters found between and including start and end. If start is
not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:
The sub-string value.

DIAGNOSTICS:
Error messages are output to the error log.

diffs

NAME:
diffs Returns string containing tokens present in string1 but not in string2.

SYNOPSIS:
diffs(string1, string2, delim)
Generic WebSphere MQ Mobile Adapter 5-125

DML Reference
PARAMETERS:
string1 A string of tokens

string2 A string of tokens

delim A delimiter

PREREQUISITE:
None

DESCRIPTION:
Splits both strings into lists of token using the delimiter. Build a new string containing only the
token from string1 which are not present in string2.

RETURN VALUE:
String containing tokens present in string1 but not in string2. Tokens are separated by the
delimiter.

DIAGNOSTICS:
None.

decodeDateTime

NAME:
decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:
decodeDateTime(time)

PARAMETERS:
time A time in the format yyyy-mm-ddThh:mm:ss

PREREQUISITE:
None

DESCRIPTION:
Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:
The time in internal format, when successful.

False, when unsuccessful.

Format of time is invalid

DIAGNOSTICS:
Error messages are output to the error log.

formatDateTime

NAME:
formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:
formatDateTime(time)

PARAMETERS:
time A time in internal format.

PREREQUISITE:
None
5-126 Oracle Utilities Network Management System Adapters Guide

DML Reference
DESCRIPTION:
Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:
The formatted time, when successful.

False., when unsuccessful

Invalid time supplied.

DIAGNOSTICS:
Error messages are output to the error log.

reformatDateTime

NAME:
reformatDateTime Translate year, month, day, and time into a formatted time string.

SYNOPSIS:
reformatDateTime(year, month, day, time)

PARAMETERS:
year Year in yyyy format.

month Month in mm format.

day Day in dd format.

time Time in hh:mm format

PREREQUISITE:
None

DESCRIPTION:
Format time to yyyy-mm-ddThh:mm:00.

RETURN VALUE:
The formatted time.

DIAGNOSTICS:
None.

 formatDTNow

NAME:
formatDTNow Format the current system time

SYNOPSIS:
formatDTNow()

PARAMETERS:
None.

PREREQUISITE:
None

DESCRIPTION:
Return the results of formatDateTime(time()).

RETURN VALUE:
The formatted time.
Generic WebSphere MQ Mobile Adapter 5-127

DML Reference
DIAGNOSTICS:
None.

 time

NAME:
time Return the current system time

SYNOPSIS:
time()

PARAMETERS:
None

PREREQUISITE:
None

DESCRIPTION:
Return the current system time

RETURN VALUE:
The current time, in internal format.

DIAGNOSTICS:
None.

addMinutesToTime

NAME:
addMinutesToTime Return the current system time with specified number of minutes

added to it

SYNOPSIS:
addMinutesToTime(minutes)

PARAMETERS:
minutes The number of minutes to add to the current time. This parameter

can be negative.

PREREQUISITE:
None

DESCRIPTION:
Returns the current system time with specified number of minutes added to it.

RETURN VALUE:
The resulted time, in internal format.

DIAGNOSTICS:
None.
5-128 Oracle Utilities Network Management System Adapters Guide

DML Reference
pause

NAME:
pause Pause evaluation for a period of time

SYNOPSIS:
pause(seconds)

PARAMETERS:
seconds The number of seconds to pause

PREREQUISITE:
None

DESCRIPTION:
Pause for seconds.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

dmlWait

NAME:
dmlWait Pause evaluation for a period of time

SYNOPSIS:
dmlWait(seconds)

PARAMETERS:
seconds The number of seconds to pause

PREREQUISITE:
None

DESCRIPTION:
Execute Isis-aware pause for the specified number of seconds.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

 isIn

NAME:
isIn Check if a value exists in a list

SYNOPSIS:
isIn(value, item1, item2, item3, …)

PARAMETERS:
value A value

item1, item2, item3, …A list of values.

PREREQUISITE:
None
Generic WebSphere MQ Mobile Adapter 5-129

DML Reference
DESCRIPTION:
Check item1, item2, item3, … for value.

RETURN VALUE:
True, when value is found.

False, when not found.

DIAGNOSTICS:
None.

 selectValue

NAME:
selectValue Select a value based on a input string.

SYNOPSIS:
selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:
string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PREREQUISITES:
None

DESCRIPTION:
Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

NOTES:
For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:
@exp = selectValue(3, None, 1, “hello”, 2, “goodbye”, 3, “later”)

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:
triggerOutputDoc Trigger an output document

SYNOPSIS:
triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:
doc An output document

trig The name of the trigger to fire.
5-130 Oracle Utilities Network Management System Adapters Guide

DML Reference
argument Argument required to triggered the output document.

PREREQUISITE:
A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

 sortIncidents

NAME:
sortIncidents Sort the incidents in the current event

SYNOPSIS:
sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:
field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending
(this parameter is not case sensitive).

PREREQUISITE:
The current event is set.

The fields parameters must be valid incident fields See Incident Object Fields on page 5-145,
below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:
Sort the incidents in the current event. When two incidents are compared, the specified fields are
compared in the order they appear in the parameter list. If they differ, the incident with the lower
value comes first in the list if it has an ascending order, otherwise the incident with the higher
value comes first. If the two fields are equal, the sort order depends on the next field in the
parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a
consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always
differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results.
Character data is sorted in lexical order, the case being significant.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-131

DML Reference
highPriTCCategoriesFromClues

NAME:
highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of
the supplied clues.

SYNOPSIS:
highPriTCCategoriesFromClues(clues)

PARAMETERS:
clues The clues to decode

PREREQUISITE:
The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:
If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table
supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite
trouble code.

RETURN VALUE:
The composite trouble code.

DIAGNOSTICS:
Error messages are output to the error log.

 loadTroubleCodes

NAME:
loadTroubleCodes Cache the trouble codes and their equivalent textual
descriptions.

SYNOPSIS:
loadTroubleCodes()

PARAMETERS:
None.

PREREQUISITE:
The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:
The trouble codes are cached in-groups using the ‘group_order’ column. For each group the
‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the
trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.
5-132 Oracle Utilities Network Management System Adapters Guide

DML Reference
 formatClues

NAME:
formatClues Convert a trouble code into a textual description

SYNOPSIS:
formatClues(trCode)

PARAMETERS:
trCode A trouble code

PREREQUISITE:
The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:
If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling
loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:
The textual description.

DIAGNOSTICS:
None.

 phaseStr

NAME:
phaseStr Convert a set of phases in internal bitmap format to a textual
representation.

SYNOPSIS:
phaseStr(phases)

PARAMETERS:
phases The phases in internal bitmap format.

PREREQUISITE:
None

DESCRIPTION:
Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:
The textual representation.

DIAGNOSTICS:
None.

 phaseInt

NAME:
phaseIntConvert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:
phaseInt(phases)

PARAMETERS:
phases A textual representation of the phases.
Generic WebSphere MQ Mobile Adapter 5-133

DML Reference
PREREQUISITE:
None

DESCRIPTION:
Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:
The internal bitmap format.

DIAGNOSTICS:
None.

 setTimeout

NAME:
setTimeout Set a time out to call a function

SYNOPSIS:
setTimeout(name, wait, function)

PARAMETERS:
name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PREREQUISITE:
The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:
If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

cancelTimeout

NAME:
cancelTimeout Cancel a timeout.

SYNOPSIS:
cancelTimeout(name)

PARAMETERS:
name The name of the timeout to cancel.

PREREQUISITE:
None
5-134 Oracle Utilities Network Management System Adapters Guide

DML Reference
DESCRIPTION:
If there is a timeout with the specified name, cancel it, preventing the timeout’s function from
being called, otherwise, do nothing.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.

createOrder

NAME:
createOrder Create an order.

SYNOPSIS:
createOrder()

PARAMETERS:
None.

PREREQUISITE:
The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to
findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by
not calling findRelation, or by finding the relation by relation’s key event using findRelation(event,
$E.outageHdl.)

DESCRIPTION:
Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:
True if successful.

False if unsuccessful (current event already associated with another order).

DIAGNOSTICS:
Error messages are output to the error log.

 findOrder

NAME:
findOrder Find an order by matching the contents of an order object field. If found,
set the current order object to the order found.

SYNOPSIS:
findOrder(field, value)

PARAMETERS:
field An order object field name.

value The value to match

PREREQUISITE:
The field parameter must be a valid order field name.
Generic WebSphere MQ Mobile Adapter 5-135

DML Reference
If the current relation is set, the order must be in the relation. (This can be guaranteed by not
calling findRelation, or by finding the order from the relation’s key event, using findOrder(event,
$R.event).)

DESCRIPTION:
Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:
haveOrder Determine if there is an order matching the contents of an order object
field, without entering any mutexes.

SYNOPSIS:
haveOrder(field, value)

PARAMETERS:
field An order object field name.

value The value to match

PREREQUISITE:
The field parameter must be a valid order field name.

DESCRIPTION:
Search for an order with a field whose value is value.

RETURN VALUE:
True, when successful.

False, when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.

 completeOrder

NAME:
completeOrder Complete the current order, making it no longer active.

SYNOPSIS:
completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order
could

have been cancelled or completed by the crew.

PREREQUISITE:

The current order is set.

DESCRIPTION:
Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the
current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data
structures relating to the order.
5-136 Oracle Utilities Network Management System Adapters Guide

DML Reference
RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

haveEventOrder

NAME:
haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:
haveEventOrder(event)

PARAMETERS:
event The event’s handle.

PREREQUISITE:
None.

DESCRIPTION:
Determine whether there is an order for the event handle is event.

RETURN VALUE:
True, if the event has an order.

False, if the event does not have an order.

DIAGNOSTICS:
None.

findEventObject

NAME:
findEventObject Find the External Event Object for an event.

SYNOPSIS:
findEventObject(event)

PARAMETERS:
event The event’s handle.

PREREQUISITE:
None.

DESCRIPTION:
Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:
True, when successful.

False, when unsuccessful.

DIAGNOSTICS:
Error messages are output to the error log.
Generic WebSphere MQ Mobile Adapter 5-137

DML Reference
 setDocValue

NAME:
setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:
setDocValue(object, doc, name, value)

PARAMETERS:
object The object identifier character for the object that holds the active
document.

Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PREREQUISITE:
object must be a valid object identifier, and it must be a current object (for example, use
findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:
Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
Error messages are output to the error log.

 printEvntCrew

NAME:
printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:
printEvntCrew()

PARAMETERS:
None.

PREREQUISITE:
None.

DESCRIPTION:
Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:
The empty string.

DIAGNOSTICS:
None.
5-138 Oracle Utilities Network Management System Adapters Guide

DML Reference
xml

NAME:
xml Return the current input xml document, if any.

SYNOPSIS:
xml()

PARAMETERS:
None.

PREREQUISITE:
None.

DESCRIPTION:
Return the current input document, or the empty string, if none.

RETURN VALUE:
The current input xml document, if any.

The empty string, when an input xml document in not being processed.

DIAGNOSTICS:
None.

intendedForMobile

NAME:
intendedForMobile Checks if SRSoutput message is intended for mobile system.

SYNOPSIS:
intendedForMobile(typeMask)

PARAMETERS:
typeMask Value of the typeMask field from SRSoutput message.

PREREQUISITES:
None

DESCRIPTION:
Checks if SRSO_SEND_TO_MOBILE bit is set in typeMask.

RETURN VALUE:
"true" is the message is intended for mobile system, otherwise empty string.

DIAGNOSTICS:
Error messages are output to the error log.

EXAMPLE:
intendedForMobile($E.typeMask);

getPhasesDesc

NAME:
getPhasesDesc Convert bitmask representing phases into string.

SYNOPSIS:
getPhasesDesc(phases)

PARAMETERS:
phases Phases bitmask.
Generic WebSphere MQ Mobile Adapter 5-139

Event Object Fields
PREREQUISITES:
None

DESCRIPTION:
Converts phases bitmask into a string using letters A, B, C, and N to designate different phases
and the neutral.

RETURN VALUE:
String containing names of the phases present in the bitmask.

DIAGNOSTICS:
None.

sqlQuoted

NAME:
sqlQuoted Converts string into SQL text literal.

SYNOPSIS:
sqlQuoted(str)

PARAMETERS:
str text string.

PREREQUISITES:
None

DESCRIPTION:
Wraps string in single quotes and escapes single quotes in the string by replacing them with double
single quotes.

RETURN VALUE:
SQL text literal representation of the passed string.

DIAGNOSTICS:
None.

Event Object Fields
These are the fields available in the external event object ‘E’. For each field the equivalent
SRSoutput data field is listed.

Field Name SRSoutput Data Fields

alarmHdl SRSoutput::alarmHdl

devHdl SRSoutput::devHdl

feederHdl SRSoutput::feederHdl

outageHdl SRSoutput::outageHdl

oldEvent SRSoutput::oldEvent

condHdl SRSoutput::condHdl

extraDevHdl SRSoutput::extraDevHdl

devClsName SRSoutput::devClsName
5-140 Oracle Utilities Network Management System Adapters Guide

Event Object Fields
incidentType SRSoutput::incidentType

description SRSoutput::description

cause SRSoutput::cause

preferredAlias SRSoutput::perferredAlias

troubleCode SRSoutput::troubleCode

troubleQueue SRSoutput::troubleQueue

office SRSoutput::office

circuit SRSoutput::circuit

district SRSoutput::district

dispAddress SRSoutput::dispAddress

addrBuilding SRSoutput::addrBuilding

addrStreet SRSoutput::addrStreet

addrCity SRSoutput::addrCity

city SRSoutput::city

status SRSoutput::status

feeder SRSoutput::feeder

tags SRSoutput::tags

est_source SRSoutput::est_source

comment SRSoutput::comment

devCode SRSoutput::devCode

externId SRSoutput::externId

crewId SRSoutput::crewId

supplyNodeDevice SRSoutput::supplyNodeDevice

supplyNodeIndexes SRSoutput::supplyNodeIndexes

leafNcgs SRSoutput::leafNcgs

numLeafNcgs SRSoutput::numLeafNcgs

actionIDs SRSoutput::actionIDs

numActionsIDs SRSoutput::numActionsIDs

outageTime SRSoutput::outageTime

firstIncTime SRSoutput::firstIncTime

firstIncTimeStr SRSoutput::firstIncTimeStr

estRestTime SRSoutput::estRestTime

estRestTimeStr SRSoutput::estRestTimeStr

Field Name SRSoutput Data Fields
Generic WebSphere MQ Mobile Adapter 5-141

Event Object Fields
estAssessTime SRSoutput::estAssessTime

complete_time SRSoutput::complete_time

job_complete_time SRSoutput::job_complete_time

msgType SRSoutput::msgType

validStateKey SRSoutput::validStateKey

prevStateKey SRSoutput::prevStateKey

stateValue SRSoutput::stateValue

condStatus SRSoutput::condStatus

condPhases SRSoutput::condPhases

customersOut SRSoutput::customersOut

typeMask SRSoutput::typeMask

partition SRSoutput::partition

ncg SRSoutput::ncg

appliedRule SRSoutput::appliedRule

priority SRSoutput::priority

custCall SRSoutput::custCall

pri_w SRSoutput::pri_w

pri_sw SRSoutput::pri_sw

pri_p SRSoutput::pri_p

pri_e SRSoutput::pri_e

custCrit SRSoutput::custCrit

crit_1 SRSoutput::crit_1

crit_2 SRSoutput::crit_2

crit_3 SRSoutput::crit_3

crit_tot SRSoutput::crit_tot

revenue SRSoutput::revenue

numSndDev SRSoutput:: numSndDev

numSupplied SRSoutput::numSupplied

outageRef SRSoutput::outageRef

oldCondID SRSoutput::oldCondID

sort_col_1 SRSoutput::sort_col_1

sort_col_2 SRSoutput::sort_col_2

sort_col_3 SRSoutput::sort_col_3

Field Name SRSoutput Data Fields
5-142 Oracle Utilities Network Management System Adapters Guide

Event Object Fields
sort_col_4 SRSoutput::sort_col_4

sort_col_5 SRSoutput::sort_col_5

sort_col_6 SRSoutput::sort_col_6

sort_col_7 SRSoutput::sort_col_7

sort_col_8 SRSoutput::sort_col_8

sort_col_9 SRSoutput::sort_col_9

life_support SRSoutput::life_support

outage_type SRSoutput::outage_type

old_outage_type SRSoutput::old_outage_type

group_type SRSoutput::group_type

messages SRSoutput::messages

customer_phone SRSoutput::customer_phone

numb SRSoutput::numb

inc_outage SRSoutput::inc_outage

devAlias SRSoutput::devAlias

customerName SRSoutput::customerName

rule_set SRSoutput::rule_set

crit_k SRSoutput::crit_k

crit_c SRSoutput::crit_c

crit_d SRSoutput::crit_d

from_str SRSoutput::from_str

mergedEvents SRSoutput::mergedEvent

numMerged SRSoutput::numMerged

hasClue SRSoutput::hasClue

ctrlZoneHdl1 SRSoutput::ctrlZoneHdl1

ctrlZoneHdl2 SRSoutput::ctrlZoneHdl2

ctrlZoneHdl3 SRSoutput::ctrlZoneHdl3

ctrlZoneHdl4 SRSoutput::ctrlZoneHdl4

ctrlZoneHdl5 SRSoutput::ctrlZoneHdl5

ctrlZoneHdl6 SRSoutput::ctrlZoneHdl6

ctrlZoneName1 SRSoutput::ctrlZoneName1

ctrlZoneName2 SRSoutput::ctrlZoneName2

ctrlZoneName3 SRSoutput::ctrlZoneName3

Field Name SRSoutput Data Fields
Generic WebSphere MQ Mobile Adapter 5-143

Event Object Fields
ctrlZoneName4 SRSoutput::ctrlZoneName4

ctrlZoneName5 SRSoutput::ctrlZoneName5

ctrlZoneName6 SRSoutput::ctrlZoneName6

who_responsible SRSoutput::who_responsible

who_completed SRSoutput::who_completed

resp_modify_time SRSoutput:: resp_modify_time

xRef SRSoutput::xRef

yRef SRSoutput::yRef

highestIncPri SRSoutput::highestIncPri

referralGroup SRSoutput::referralGroup

who SRSoutput::who

firstCrewTime SRSoutput::firstCrewTime

additionalDevHdls SRSoutput::additionalDevHdls

additionalCondHdls SRSoutput::additionalCondHdls

relatedEvents SRSoutput::relatedEvents

additionalCondStatuses SRSoutput::additionalCondStatuses

numAdditional SRSoutput::numAdditional

numRelated SRSoutput::numRelated

maxNum SRSoutput::maxNum

maxNumRelated SRSoutput::maxNumRelated

routeId SRSoutput::routeId

repair_minutes SRSoutput::repair_minutes

crew_eta SRSoutput::crew_eta

sheetNums SRSoutput::sheetNums

generic_col_1 SRSoutput::generic_col_1

related_event SRSoutput::related_event

related_type SRSoutput::related_type

Field Name SRSoutput Data Fields
5-144 Oracle Utilities Network Management System Adapters Guide

Event Object Fields
Incident Object Fields
These are the fields available in the external incident object ‘I’ and for sorting incidents. For each
field the equivalent Incident data access function is listed.

Incident Field Name Function Call

getGroupingFlag Incident::getGroupingFlag()

getMessages Incident::getMessages()

getClosestMeshNode Incident::getClosestMeshNode()

getHdl Incident::getHdl()

getSnd Incident::getSnd()

getCondHdl Incident::getCondHdl()

getPartition Incident::getPartition()

getPhases Incident::getPhases()

getCondStatus Incident::getCondStatus()

getEvent Incident::getEvent()

getPriority Incident::getPriority()

getType Incident::getType()

getClue Incident::getClue()

getBitmask Incident::getBitmask()

getTotalPriority Incident::TotalPriority()

getLifeSupportCode Incident::getLifeSupportCode()

getCriticalCustomer Incident::getCriticalCustomer()

getCallCancelInd Incident::getCallCancelInd()

getCallbackLateInd Incident::getCallbackLateInd()

getTcode Incident::getTcode()
(This maps to INCIDENTS.COMPLAINT.)

getTroubleQueue Incident::getTroubleQueue()

getShortDesc Incident::getShortDesc()

getDrvInst Incident::getDrvInst()

getCID Incident::getCID()

getCustomerName Incident::getCustomerName()

getCtype Incident::getCtype()
(This maps to INCIDENTS.CUSTOMER_TYPE.)

getAddrBuilding Incident::getAddrBuilding()

getAddrStreet Incident::getAddrStreet()
Generic WebSphere MQ Mobile Adapter 5-145

Event Object Fields
Permanent Order Object Fields
These are the fields that are always available in the external order object ‘O’. These fields are read-
only. The contents of each field are listed.

getAddrCity Incident::getAddrCity()

getOrderNumber Incident::getOrderNumber()

getGenernalArea Incident::getGeneralArea()

getMeterId Incident::getMeterId()

getDeviceAlias Incident::getDeviceAlias()

getNcg Incident::getNcg()

getExternalId Incident::getExternalId()

getInputTime Incident::getInputTime()

getCallbackRequest Incident::getCallbackRequest()

getCallbackDataTime Incident::getCallbackDataTime()

getOpComment Incident::getOpComment()

getCustomerPhone Incident::getCustomerPhone()

alternatePhone Incident::alternatePhone()

userName Incident::userName()

getXRef Incident::getXRef()

getYRef Incident::getYRef()

getExternallySent Incident::getExternallySent()

getAONFlag Incident::getAONFlag()

getROCFlag Incident::getROCFlag()

active Incident::active()

Incident Field Name Function Call

Incident Field Name Contents

order The order’s Handle

event The order’s key event Handle

eventless A boolean indicating that the order has lost all it’s events. This
is true for a period between the time the key event became non-
existent and the time the order is completed, often as a result of
an EventNonexistent trigger triggering an Output Document
that completes the order.
5-146 Oracle Utilities Network Management System Adapters Guide

Event Object Fields
Permanent Relationship Object Fields
These are the fields that are always available in the external relationship object ‘O’. These fields are
read-only. The contents of each field are listed.

Incident Field Name Contents

relation The relationship’s Handle

event The relationship’s key (parent) event Handle

type The relationship’s type

Active A boolean indicating that the relationship is active. This is false
for a period between the time the relationship was deleted in
Oracle Utilities Network Management System and the time the
relation is deleted, often as a result of a RelationDeleted trigger
triggering an Output Document that deletes the relation.
Generic WebSphere MQ Mobile Adapter 5-147

Event Object Fields
5-148 Oracle Utilities Network Management System Adapters Guide

Chapter 6
SCADA Measurements

This chapter includes the following topics:

• Introduction to scadapop

• Configuration

• Recaching Measurements

• Information Model

Introduction to scadapop
The Oracle Utilities Network Management System (NMS) can accept updates from a variety of
external (outside) Supervisory Control And Data Acquisition (SCADA) systems. Multiple external
SCADA systems can be connected to a single NMS instance. If necessary a different adapter can
be used for each external SCADA a utility wishes to connect to. For example one SCADA system
might use the ICCPAdapter, one the generic NMS SCADA adapter (RTAdapter) another might
use a project specific or custom SCADA adapter. In all cases the NMS objects and attributes that
can be updated from each external SCADA adapter must be defined before NMS can accept input
from these SCADA systems. This section describes one mechanism for populating the necessary
configuration tables with objects and attribute information so the SCADA adapter can pass
information into NMS.

Configuration

RDBMS Configuration
Tables involved:

• scada_measurements_st: standard SCADA measurements configuration table. This is a
staging table used by DDService for populating the production SCADA measurement tables.

• digital_measurements: production SCADA measurements table for digital measurements.
Only DDService should write to this table.

• analog_measurements: production SCADA measurements table for analog measurements.
Only DDService should write to this table.

• scada_ids: RTAdapter SCADA definition table.

• scada_points: optional model build attribute table that is used by the scadapop executable -
to help populate the scada_measurements_st staging table. If you want to use scadapop – you
need to populate the scada_points table.
SCADA Measurements 6-1

Configuration
Note: The scada_points table only needs to be populated if using scadapop. It
is normally populated via device class driven attribute population during the
model build process.

To configure the standard SCADA input RDBMS staging table (scada_measurements_st) using
scadapop follow the following steps:

Specify which model devices have SCADA (via scada_points table. The scada_points table is
generally populated via attribute population during model build construction/update but can be
populated after the fact by a custom (project specific) process. A generalization is made that each
defined “SCADA” provides a consistent set of attributes for a given NMS object. For example
SCADA_A might be defined to always provide a digital “status” and 3 analog values –
A_Phase_Amps, B_Phase_Amps and C_Phase_Amps. SCADA_B might be defined to always
provide digital “status” and 6 analog values. This generalization is made to simplify configuration.
It is generally acceptable if the external SCADA system does not actually provide all SCADA
measurements for all configured points – within reason – to simplify configuration.

There are generally two options for populating the scada_points table:

1. Populate scada_points RDBMS table via model build device attribute configuration.

This option involves populating two attributes in the scada_points table:

• scada_name: the name of the SCADA, as defined in scada_ids.scada_name (for
example, RTAdapter).

• rtu_alias: SCADA unique identifier for reporting field device.

The rtu_alias must only be unique within a particular SCADA (scada_name). An
individual rtu_alias may well report multiple analog values (AMP, VOLT, KVAR, etc.) as
well as digital and/or status values.

To set up the scada_points table as a standard Network Management System attribute table
generally involves the following RDBMS tables:

• device_attributes: generic model build attribute configuration table.

• scada_points: SCADA project specific attribute table.

2. Populate the scada_points RDBMS table via a project specific (post model build) process.
This might involve selecting all the devices of a specific class from the alias_mapping table –
for example.

Once the scada_points table is populated, the scadapop program can be used to expand the
information in the scada_points table to fully populate the more generic
scada_measurements_st staging table (see notes below for how to use scadapop).

Note: A given “field device” corresponds to a given scada_points.rtu_alias and
would typically be a breaker of some kind (often reporting both device status
and multiple analog values). It could also be a transformer reporting analog
values with or without status or some other class of device with SCADA data.

Below are two example device_attributes table entries to support population of the scada_points
table via standard model build attribute population (option 1 above). For more information on
this process, please consult the Network Management System Model Build process
documentation. These are examples only.

INSERT INTO device_attributes (
DEVICE_CLS,
ATTR_NAME,
TABLE_NAME,
COLUMN_NAME,
ATTR_TYPE,
LENGTH,
6-2 Oracle Utilities Network Management System Adapters Guide

Configuration
REQUIRED,
MAINTENANCE
) VALUES (
143, 'Rtu_Id', 'scada_points', 'rtu_alias', 3,
 32, 'N', 'Y');
COMMIT WORK;

INSERT INTO device_attributes (
DEVICE_CLS,
ATTR_NAME,
TABLE_NAME,
COLUMN_NAME,
ATTR_TYPE,
LENGTH,
REQUIRED,
MAINTENANCE
) VALUES (
143, 'Rtu_Desc', 'scada_points', 'scada_name', 3,
32, 'N', 'Y');
COMMIT WORK;

Example data field explanation:

143 Class of device which may report SCADA data. + project specific

scada_points Attribute table to populate.

Rtu_Id Attribute id as appears in *.mb file for device.

 + project specific - SCADA device id (rtu_alias).

rtu_alias scada_points column to populate with Rtu_Id value.

Rtu_Desc Attribute id as appears in *.mb file for device.

+ project specific - SCADA system name (scada_name).

scada_name scada_points column to populate with Rtu_Desc value.

3 Data type of string (ASCII field); always set to 3 for a string

32 Maximum length of this attribute string (bytes)

+ project specific per scada_id len for SCADA.

'N' Required attribute

+ project specific – generally (N)o.

 'Y' Set to Y for model builder maintenance. Set this to “Y” if you
want the Model Builder to maintain this table via the incremental
model build process.

Once the scada_points table is populated the scadapop program can be used to expand this
information to fully populate the more generic (required) scada_measurements_st staging table.

Run scadapop -h to get command line options. In general:

• scadapop [-debug [n]] -partition <n> -initFile <file>

• debug <n> - Turns debug on <to level n>

• partition n - Populate partition n (0 = all partitions)

• initFile - file - rti.dat initialization file (see below)
SCADA Measurements 6-3

Configuration
The rti.dat file is the configuration file used by the scadapop program. Based on data in this file,
and entries in the scada_points table, scadapop populates the standard SCADA configuration
(RDBMS) staging table:

• scada_measurements_st

The scada_points table contains a record (row) for each device in the Network Management
System model that has SCADA information associated with it. Each record has a “scada_name”
column which, in order to populate one of the measurements tables, must match a
“SCADA_Name” keyword in this configuration file. Where there is a match a row is populated in
the scada_measurements_st staging table for each defined attribute.

• Each defined Digital attribute for a given SCADA_Name has a measurement_type of “D” in
the scada_measurements_st table.

• Each defined Analog attribute for a given SCADA_Name has a measurement_type of “A” in
the scada_measurements_st table.

The syntax rules for the rti.dat file are:

• Lines with a leading # are treated as comments (ignored).

• Leading blank space is ignored.

• Only the first two non-blank tokens on a line are recognized.

• The remaining tokens are treated as comments (ignored).

• Blank lines ok. (ignored)

• Attributes are associated to last defined SCADA_Name.

The following keywords exist - they must match EXACTLY:

• SCADA_Name:

• Analog:

• Digital:

Note: The colon “:” character is a keyword delimiter. The colon must appear as
the first character after the keyword in order for the keyword to be recognized.

Example rti.dat file:

SCADA_Name: USA
Digital: status (Switch Position or “Status”)
Analog: Amps_A
Analog: Amps_B
Analog: Amps_C
Analog: Volts_A
Analog: Volts_B
Analog: Volts_C

Example scadapop commands:

scadapop -partition 0 -initFile ${CES_DATA_FILES}/OPAL_rti.dat
scadapop -partition 3111 -initFile rti.dat -debug
6-4 Oracle Utilities Network Management System Adapters Guide

Information Model
Recaching Measurements
To load the SCADA measurements staging table into the production (run-time) SCADA
measurements tables, the following command must be run:

UpdateDDS -recacheMeasurements

When this command is invoked, DDService will merge the scada_measurements_st table into the
analog_measurements and digital_measurements tables (adding and removing rows as necessary)
and load the updated analog_measurements and digital_measurements tables into memory.

When new measurements are added, all fields in the production measurements table are populated
from the staging table.

When existing measurements are updated, all fields are copied from the staging table except the
following columns because these columns can contain operator entered data (operator override
values for example) - and should not be overwritten. Indeed this is the primary reason for using
the staging table - to avoid overwriting these run-time columns:

• QUALITY

• VALUE

• ACTIVE

Information Model

Database Schema

SCADA_IDS Database Table

The schema for this table is defined in ces_schema_scada.sql file.

The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A
source is any SCADA system that can provide information to the adapter. There could be one
SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide
their territory into multiple regions, with each region acting as a separate SCADA source. Each
SCADA source must have a name as well as a unique integer ID.

SCADA_IDS

Column Data Type Description

ID NUMBER Numeric identifier for each “SCADA
source” that we want RTI to process.

SCADA_NAME VARCHAR2(32) Name for the SCADA source

ADAPTER_TYPE VARCHAR2(32) Adapter type for this SCADA source.

ACTIVE VARCHAR2(1) Is the adapter active (Y/N)
SCADA Measurements 6-5

Information Model
SCADA_POINTS Database Table

The SCADA_POINTS table contains a row for each device in the Oracle Utilities Network
Management System operations database that has SCADA information associated with it. Each
record has a “scada_name” column which, in order to populate one of the measurements tables,
must match a “SCADA_Name:” keyword in the rti.dat configuration file (see notes above for
example rti.dat population). Where there is a match, a row is populated in the appropriate (digital
or analog) measurements table for each defined attribute.

The SCADA_POINTS table is normally populated via device driven attribute population during
the model build process. It is a staging table for the RTI population process. It is not accessed
during adapter execution.

The schema for this table can be found in the file ces_retain_scada.sql

SCADA_POINTS

SCADA_MEASUREMENTS_ST Database Table

The scada_measurements_st table is a staging table used to help populate the
analog_measurements and digital_measurements (production) tables. The schema for this table
can be found in the file ces_retain_scada.sql.

SCADA_MEASUREMENTS_ST

Column Data Type Description

H_CLS SMALLINT Object handle class

H_IDX INTEGER Object handle index

SCADA_NAME VARCHAR2(32) SCADA system name (Rtu_Desc)

RTU_ALIAS VARCHAR2(32) SCADA point name (Rtu_Id)

PARTITION INTEGER Partition of this object

BIRTH DATE Date object activated into the model

BIRTH_PATCH INTEGER Patch which activated this object

DEATH DATE Date object de-activated into the model

DEATH_PATCH INTEGER Patch which de-activated this object

ACTIVE VARCHAR2(1) Active flag (Y/N)

Column Data Type Description

H_CLS SMALLINT Object handle class

H_IDX INTEGER Object handle index

PARTITION INTEGER Object partition

ATTRIBUTE SMALLINT Data attribute index (from ATTRIBUTES
table)

TTL SMALLINT Time-To-Live Value

LIMIT_GROUP_ID INTEGER Object limit group
6-6 Oracle Utilities Network Management System Adapters Guide

Information Model
RTI_ALIAS VARCHAR2(128) RTI device measurement name

RTI_ALIAS_A VARCHAR2(128) RTI device measurement name for phase A.
Only applies for digital measurements and
only used by the MultiSpeak SCADA
adapter.

RTI_ALIAS_B VARCHAR2(128) RTI device measurement name for phase B.
Only applies for digital measurements and
only used by the MultiSpeak SCADA
adapter.

RTI_ALIAS_C VARCHAR2(128) RTI device measurement name for phase C.
Only applies for digital measurements and
only used by the MultiSpeak SCADA
adapter.

SCADA_ID INTEGER SCADA source identifier - matches
scada_ids.id

RTU_ID VARCHAR2(32) RTU ID - unique name within SCADA
system.

QUALITY INTEGER Quality code

VALUE FLOAT Manual Replace Value

UPDATE_FLAG INTEGER Manual Replace Flag

ICCP_OBJECT VARCHAR2(32) ICCP mms object name

DISPLAY_ID VARCHAR2(64) ID for display call up

CONTROLLABLE VARCHAR2(1) Is this row controllable

ACTIVE VARCHAR2(1) Is this row active

SOURCE VARCHAR2(33) Source of measurements

COMMENTS VARCHAR2(512) Comment associated with

OFF_NOMINAL_TIM
E

DATE Time quality went off-nominal

NORMAL_STATE INTEGER Normal state for measure. Only used for
digital measurements.

MEASUREMENT_TY
PE

VARCHAR2(1) Measurement Type:
A -- Analog measurement

D -- Digital measurement

Column Data Type Description
SCADA Measurements 6-7

Information Model
6-8 Oracle Utilities Network Management System Adapters Guide

Chapter 7
Generic SCADA Adapter

This chapter includes the following topics:

• Introduction

• Generic SCADA Adapter Configuration

• Measurement Configuration

• RDBMS Configuration

• Configuration/Execution Sequence

• Information Model

• MultiSpeak Integration

• DataRaker Integration

Introduction
The Generic SCADA Adapter (executable name: RTAdapter) is an Oracle Utilities Network Man-
agement System adapter that can process incoming analogs, digitals and conditions from an exter-
nal SCADA system. The RTAdapter can also send field device control requests and condition
updates from the Network Management System to an external SCADA system.

This section is used to guide the user in the configuration of the Oracle Utilities Network Manage-
ment System Generic SCADA Adapter. It is assumed that the Oracle Utilities Network Manage-
ment System is installed and functional.
Generic SCADA Adapter 7-1

Generic SCADA Adapter Configuration
Generic SCADA Adapter Configuration

RDBMS vs. File Mode

Each Generic SCADA Adapter instance can process input from either Network Management Sys-
tem RDBMS queuing tables (preferred) or from flat files, but not both. A Network Management
System can support multiple file-based RTAdapter instances, but only one RTDBAdapter (config-
ured for RDBMS input).

RDBMS mode: The external SCADA system writes SCADA updates to a set of RDBMS queu-
ing tables. Updates are processed by RTAdapter on a first-in-first-out basis.

File mode: Each external SCADA system writes SCADA “scan files” to a dedicated directory
that an appropriately configured RTAdapter can access in read/write mode. Incoming “scan files”
are processed on a first-in-first-out basis.

Configure Adapter to Run as an NMS System Service

Configure the Generic SCADA Adapter to run as an Oracle Utilities Network Management Sys-
tem service by updating the $NMS_HOME/etc/system.dat file to include the Generic SCADA
Adapter as a system service. There are three main sections of the system.dat file where a service
needs to be defined: the service, program, and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to
configure the Generic SCADA Adapter. Search for RTAdapter in the file and copy those lines to
$NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so SMService will find
them as active. You must either restart SMService or start SMService with a “-f ~/etc/
system.dat” command line option to pick up changes to the $NMS_HOME/etc/system.dat
configuration file.

Notes: The adapter process is often given a configuration name adapted from
the SCADA system from which it is receiving data. Reference the
RTDBAdapter configuration option in the $CES_HOME/templates/
system.dat.template for an example of this type of configuration. The
first parameter after the keyword program must match the -process_name
parameter. The -scada option specifies the name of the SCADA for this
instance of the RTAdapter (from the SCADA_IDS table) and often matches
the -process_name option (though this is not required).
7-2 Oracle Utilities Network Management System Adapters Guide

Generic SCADA Adapter Configuration
SRS_RULES Configuration for Generic SCADA Adapter

The Generic SCADA Adapter currently supports a few options that can only be configured via
the Network Management System SRS_RULES mechanism. The Configuration Assistant tool
provides rule specific details on what impact these SRS_RULES have on how the Generic
SCADA Adapter responds to various forms of input.

Note: Only the rule names are listed here; use the Oracle Utilities Network
Management System Configuration Assistant’s Event Management Rules tab
for details and to update the rules, if necessary.

• RT_PLANNED_OUTAGE_QUALITY

• RT_STALE_PROCESSING_CYCLE

• RT_CALCULATED_POINTS

• RT_CALCULATED_POINT

• RT_CONDITIONS_IN

• RT_CONDITIONS_OUT

Command Line Options for Generic SCADA Adapter

The command line for the Generic SCADA Adapter provides the following options:

Command Line Option What it does

-cert_file <full path to
certificate>

The private certificate used for incoming device/screen
navigation messages from the SCADA system. This is the
server's private key concatenated with its certificate, as used
by GSOAP.

-client_cert Whether to require public certificates for incoming screen
navigation messages from the SCADA system. This is the
client key concatenated with the certificate.

-controls <script name> Tells RTAdapter to call this project/SCADA specific script
when an NMS outbound control requests (digital open/close
or analog set point control) are made. This script is typically
customized to trigger a SCADA specific action on the
external system.
Note: this option MUST be set for RTAdapter to do any
processing of outbound control requests.

-debug Enable debugging. Other common facility specific debug
options are also possible. Common options include:
-debug RT_NFY 1 # debug for notify messages
-debug RT_CALC 1 # debug for calculated points
-debug RT_CTRL 1 # debug for control msg processing
-debug RT_PROC 1 # debug for outage processing
-debug RT_WATCH 1 # debug to track high-level activity
-debug RT_COND # debug for condition processing
-debug RT_STALE 1 # debug for stale processing
Generic SCADA Adapter 7-3

Generic SCADA Adapter Configuration
-delimiter <char> Allows a project to override the default input delimiter
character (|) with the specified character.Used for file based
input and, potentially, for setting multiple external quality
code strings, which must be mapped back to integers
internally, via RDBMS-based input.

-dir <directory> For file based input this is the directory containing scada data
export scan files.
For RDBMS based input this must be set to ‘RDBMS’.
(Required)

-idle <cycles> Number of processing cycles to wait without processing any
data before sending an alarm.

-interval <interval> Seconds between processing (polling) cycles.
(Required)

-lock Use file locking to prevent file overwrite during file read (if
scan file names are not unique). File based input only.

-no_analogs Do not scan the scada_analog_in table or process analogs.

-offline For testing purposes - when a control request is received -
simulate the external SCADA system and operate the device.

-offlineDelay <seconds> Seconds between receiving a CONTROL request (in offline
mode) and responding. Used to help simulate an actual
SCADA system.

-operate Operate (change status of) model devices, otherwise
generates pseudo alarms only.

-process_name <name> Network Management System message bus process name for
this process. If the first parameter after the keyword program
in the first column of the system.dat file is something other
than the second parameter - then you must set the -
process_name option to the same string as the first
parameter. This is only necessary if you need to run more
than one instance of RTAdapter or you want RTAdapter to
be known as some other name within the Network
Management System messaging bus. Network Management
Process message bus process names must be unique.

-retain For RDBMS input only. Retain data in the scada_digital_in
and scada_condition_in tables after data is processed.
Generally for validation/debug - not general purpose
production use or long term logging.

-scada <scada> External SCADA name. (Required). Must match an active
SCADA entry in the scada_ids table (scada_ids.scada_name).

-watch <level> Show data being processed, minimal info. <level> is an
integer that maps to the RT_WATCH debug facility.

Command Line Option What it does
7-4 Oracle Utilities Network Management System Adapters Guide

Generic SCADA Adapter Configuration
Scripts Used by the Generic SCADA Adapter

The Generic SCADA Adapter calls various scripts to communicate and coordinate with an exter-
nal SCADA system. Example scripts are provided. The example scripts use curl and expect the
external SCADA systems will support some form of RESTful Web Service integration. You can
create project-specific versions/variations of these scripts that are appropriate for a specific
SCADA system.

CES_PARAMETERS Configuration

Script Description

rti_notify_start.ces Notifies the SCADA system that the Generic SCADA
Adapter has restarted. Call from RTAdapter on restart.

rti_operate.ces Example script for use with the RTAdapter controls
option (e.g., -controls rti_operate.ces). This script can either
forward to SCADA or simulate a SCADA positive response
when device control requests are sent from NMS.

scada_reload.ces Notifies the SCADA system that the set of measurements
has changed due to an NMS model build.

rti_operate_curl.ces Another example script for use with the RTAdapter
controls option. Sends the control request to the SCADA
system as a RESTful web-service request via curl.

Parameter Description

SCADA_URL Used to identify the external SCADA. RTAdapter will send
navigation and SCADA controls to the SCADA system via
this URL. The SCADA_URL should be the root URL. The
scripts will add instruct, reload, navigate, etc. to the URL as
needed.

SCADA_CERT The certificate to connect to the SCADA system. This is the
client piece of a certificate generated by the SCADA system.
Generic SCADA Adapter 7-5

Measurement Configuration
Measurement Configuration
The Generic SCADA Adapter comes with a configuration support tool (scadapop) that can be
used to help populate the standard SCADA configuration (scada_measurements_st) table used for
incoming SCADA data and the outbound SCADA controls (scada_controls) table.

Using SCADAPOP
The scadapop executable uses the <project>_rti.dat parameter file to help define what
SCADA measurements and controls are desired for each class of object in the NMS model. The
scadapop process reads the scada_points table to determine which instance of each class of data
SCADA configuration is desired for. The scadapop process merges the instance information in
the scada_points table with the class definition information in the <project>_rti.dat
configuration file to perform the desired SCADA configuration.

The scadapop mechanism makes the assumption that each instance of a given device class in the
NMS contains the same set of NMS SCADA measurement types. These SCADA measurements
defined in NMS are not required to have corresponding SCADA points, to allow for the case that
certain instances of a device class are missing certain measurements in the SCADA system.

Below is the syntax for the <project>_rti.dat file content:

Primary (initial) keyword tokens:

CONTROL:

CLASS:

Secondary keyword tokens (dependent on a primary keyword):

NMS_ACTION: dependent on previous CONTROL:

Analog: dependent on previous CLASS:

Digital: dependent on previous CLASS:

Keyword parameters:

• CONTROL: <unique string>

• unique name for a set of SCADA controls – starts with alpha character.

• CLASS: <NMS class name>

• can be an abstract class – for use with inheritance

• Analog: <NMS analog attribute name> [CTRL_tag]

• NMS analog attribute name must be a valid NMS analog attribute name

• CTRL_tag must match a previous CONTROL: definition

• Only valid below a CLASS: definition
7-6 Oracle Utilities Network Management System Adapters Guide

Measurement Configuration
• Digital: <NMS digital attribute name> [CTRL_tag] [Nominal]

• NMS digital attribute name must be a valid NMS digital attribute name

• CTRL_tag must match a previous CONTROL: definition

• Nominal, if specified, should be 1 as default is 0 and only 0/1 allowed.

• Only valid below a CLASS: definition

The following three keywords are in reference to a single valid scada_control entry and are
comma (,) separated on the same line. They are cumulatively associated with the previous
“CONTROL:” block.

NMS_ACTION: <integer> - NMS integer for this action
EXT_ACTION: <integer> - external (SCADA) integer for this action
TIMEOUT: <integer> - number of seconds to wait for feedback.

Notes on keywords/values:

• The nominal value for the special NMS digital “Status(0)” attribute is maintained via the
NMS model build process in network_components.nominal_status field and cannot be
specified via this mechanism – as Status is a 3-phase digital representation with values from 0-
>7.

• If the scada_points.h_cls field matches or inherits from the specified CLASS: then the
associated, Analog:, Digital: and (optionally) CONTROL: configuration will be applied. This
is inheritance based processing.

• The colon (:) character is a keyword delimiter. The colon must appear as the first character
after the keyword in order for the keyword to be recognized.

• Keywords must match exactly.

• Lines with a leading # are treated as comments (ignored).

• Leading blank space is ignored.

• Blank lines are ignored.

• Attributes are associated to last defined CLASS: statement.

Example <project>_rti.dat Configuration

CONTROL: CTRL_setpoint
 NMS_ACTION:100,EXT_ACTION:10,TIMEOUT:40

CONTROL: CTRL_switch
 NMS_ACTION:1,EXT_ACTION:0,TIMEOUT:40
 NMS_ACTION:2,EXT_ACTION:1,TIMEOUT:40

CLASS: _scada_switch
 Digital: Status CTRL_switch
 Digital: AutoReclose CTRL_switch 1
 Digital: door 1
 Analog: Amps_A
 Analog: Amps_B
 Analog: Amps_C

CLASS: _voltage_reg
 Analog: reg_setpoint CTRL_setpoint
Generic SCADA Adapter 7-7

Measurement Configuration
To configure the standard SCADA measurement staging table (scada_measurements_st) using
scadapop, follow steps similar to the following:

Specify which devices have SCADA (via scada_points table and using the scadapop
executable):

1. The scada_points table can be populated via standard attribute population during
model build construction/update or it can be populated after the model is built/updated by a
custom (project specific) process.

2. Populate scada_points RDBMS table via model build device attribute configuration.

To set up the scada_points table as a standard Network Management System attribute
table generally involves the following RDBMS tables:

• device_attributes: standard model build attribute configuration.

• scada_points: SCADA specific attribute table.

This option involves populating four attributes in the scada_points attribute table:

1. scada_name: Name of SCADA, as defined in scada_ids.scada_name (for example,
RTAdapter)

2. rtu_alias: Unique identifier for reporting field device (not attribute) for this SCADA.

3. substation: Nominal substation for the device (optional).

4. feeder: Nominal feeder for the device (optional).

Once the scada_points table is populated, the scadapop program can be used to expand the
information in the scada_points attribute table to fully populate the more generic
scada_measurements_st staging table.

Note: A given field device corresponds to a given scada_points.rtu_alias and
would typically be a switch of some kind often reporting both digital status and
multiple analog values, for example. It could also be a transformer reporting
analog values with or without status.

Review the example Network Management System OPAL device_attributes
configuration file as an example of how to configure the NMS model build process to
populate the scada_points table for use with scadapop. For more information on the
model build process, see the Network Management System Model Build process
documentation.

Once the scada_points table is populated, the scadapop program can be used to expand
this information to fully populate the scada_measurements_st staging tables and
(optionally) the scada_controls table.

Run scadapop -h to get command line options. In general:

scadapop [-debug [n]] -partition <n> -initFile <file>
 [-nonUniq||-attrName] –scada <scada> [-controls] [-separator
<c>]
7-8 Oracle Utilities Network Management System Adapters Guide

Measurement Configuration
-debug <n> Turns debug on <to level n>

-partition <n> Populate partition n (0 = all partitions)

-initFile <file> Initialization file (<project>_rti.dat)

-scada <scada> Specific SCADA to process (scada_ids.scada_name)

-nonUniq Do not append attribute to rti_alias (legacy support)

-attrName Append attribute name (rather than attribute number)
 for unique measurements.

-controls Populate scada_controls table

-separator <c> Use <c> as the character between the device name and
 attribute

The rti.dat file is the configuration file used by the scadapop program. Based on data in
this file, model information (gang operable or not) and entries in the scada_points
table, scadapop populates the scada_measurements_st staging table and (optionally)
the scada_controls table.

The scada_points table should contain a single record (row) for each device in the
Network Management System model that has SCADA measurements (attributes)
associated with it. Each record has a “scada_name” column which, in order to populate
the scada_measurements_st staging table, must match the scadapop -scada <scada>
value.

By default scadapop will append a dash “-” followed by the NMS attribute number to
each rti_alias - other than for attribute=0 (status) where nothing will be appended. The -
attrName option will similarly append the dash and the NMS attribute name to each
rti_alias - except where attribute=0. If the “-separator <c>” option is used, the specified
<c> character will be used instead of the default dash separator for the same purpose.

Examples of scadapop command line execution:

1. scadapop -partition 0 -initFile ${CES_DATA_FILES}/OPAL_rti.dat
-scada <mySCADA> -separator ^ -attrName

This example will populate the scada_measurements_st for all partitions for the SCADA
named mySCADA in scada_ids.scada_name. It will use the caret symbol (^) separator and will
append attribute names (not numbers) to each device to construct unique measurement
names.

2. scadapop -partition 3111 -initFile rti.dat -scada <mySCADA>
-attrName

This example will populate the scada_measurements_st for partition 3111 for the SCADA
named mySCADA. It will also append a dash (-) and the name of each NMS attribute to the
base scada_points.rtu_name.
Generic SCADA Adapter 7-9

RDBMS Configuration
RDBMS Configuration
The Network Management System Generic SCADA Adapter (RTAdapter) utilizes several
RDBMS tables for both configuration and run-time operation.

Configuration tables include:

The tables below are configuration tables that generally need to be populated via project specific
sql scripts. Example configuration for these tables is provided for the Oracle (OPAL) model in
$NMS_HOME/sql/OPAL_scada.sql.

• SCADA_MEASUREMENTS_ST: SCADA point configuration staging table used to
populate the ANALOG_MEASUREMENTS and DIGITAL_MEASURMENTS run-time
SCADA measurement tables - required.

• The SCADA_MEASUREMENTS_ST staging table can be populated via the scadapop
process or by a project specific mechanism.

• The SCADA_MEASUREMENTS_ST table can be truncated and repopulated at will
while DDService is active (running). Once SCADA_MEASUREMENTS_ST is
populated as desired the UpdateDDS -recacheMeasures command will send a
message to DDService to merge updates from the SCADA_MEASUREMENTS_ST
staging table into the ANALOG_MEASUREMENTS and/or
DIGITAL_MEASURMENTS runtime SCADA tables - preserving any existing run-
time quality codes and/or stored SCADA data values.

• SCADA_IDS: SCADA Adapter configuration table - required for both RTAdapter and
optional scadapop processes.

• Maps name of each SCADA adapter to a unique integer used to specify SCADA specific
configuration in related SCADA configuration tables.

• SCADA_STATES: SCADA Adapter configuration table – maps strings to integers -
optional.

• SCADA_SYNONYMS: SCADA Adapter configuration table – maps SCADA input to
NMS attributes and/or conditions - required.

• SCADA_POINTS: staging table used by the scadapop process to help populate
SCADA_MEASUREMENTS_ST and SCADA_CONTROLS –optional.

Note: The RTAdapter process does not require population of the
SCADA_POINTS table. The use of SCADA_POINTS as a staging table is merely
one optional solution for the ultimate goal of configuring the required SCADA
measurements staging table (SCADA_MEASUREMENTS_ST) and optionally the
SCADA_CONTROLS table. If the SCADA_POINTS table is used it can be popu-
lated via the standard Network Management System Model Build process or via a
project specific mechanism.

• SRS_RULES: see SRS_RULES Configuration for Generic SCADA Adapter on page 7-3
for information about RTAdapter-specific SRS_RULES.
7-10 Oracle Utilities Network Management System Adapters Guide

RDBMS Configuration
Runtime Tables Used by RTAdapter Regardless of Polling Mode

• ANALOG_MEASUREMENTS: Standard NMS table defining analog measurements from
an external SCADA.

• DIGITAL_MEASUREMENTS: Standard NMS table defining digital measurements from
an external SCADA.

• SCADA_CONTROLS: SCADA run-time control table - defines which NMS outbound
control actions are valid for each NMS device and attribute – required to support NMS
outbound SCADA controls.

• The SCADA_CONTROLS table can be populated via the scadapop process or by a
project specific mechanism.

• The SCADA_CONTROLS table is loaded by the DDService process on startup and can
be reloaded by a running DDService by issuing the UpdateDDS recachMeasures
request.

Runtime Tables Used by RTAdapter in RDBMS Polling (Preferred) Mode

• SCADA_ANALOG_IN: RTAdapter polling table used to queue incoming analog SCADA
updates.

• SCADA_DIGITAL_IN: RTAdapter polling table used to queue incoming digital SCADA
updates.

• SCADA_CONDITION_IN: RTAdapter polling table used to queue incoming condition
(note, tag, etc) SCADA updates.
Generic SCADA Adapter 7-11

Configuration/Execution Sequence
Configuration/Execution Sequence

File-Based (RTAdapter)

To get RTAdapter up and running.

1. Login to Network Management System admin account with standard OPAL model
configured and running.

2. Create RTAdapter specific RDBMS tables:

ISQL.ces ces_schema_scada.sql

• creates scada_ids table

• creates scada_states table

• creates scada_synonyms table

ISQL.ces ces_retain_scada.sql

• creates scada_points table

• creates scada_analog_in table (only used with “-dir RDBMS” option)

• creates scada_digital_in table (only used with “-dir RDBMS” option)

• creates scada_condition_in table (only used with “-dir RDBMS option)

• creates scada_controls table

3. The OPAL_scada.sql file contains sample population data for the scada_ids, scada_points,
scada_synonyms, and scada_controls table for the OPAL model. You must modify and
rename this file for your project. The example below is for the OPAL model using file based
updates (not RDBMS polling).

ISQL.ces OPAL_scada.sql

6. Run “scadapop -partition 0 -initFile $CES_DATA_FILES/OPAL_rti.dat -
scada RTAdapter”

7. This should populate scada_measurements_st staging table - confirm that you have entries
in this table before moving to the next step.

8. Validate the RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions
above).

9. Recommend using -watch and possibly the -debug option to start; helps to identify
configuration issues.

10. If the system.dat file is using the $NMS_SCADA_SCAN_FILE_DIR environment variable to
specify the SCADA scan file directory, make sure this environment variable points to a
directory that the RTAdapter process can both read and write. Generally, this means a
directory owned by the id that is executing RTAdapter. For example, mkdir ~/scada. At
the same time, suggest creating a test data holding directory (for example, mkdir ~/scada/
tst).

11. Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

12. Make sure RTAdapter is running.

13. The $NMS_HOME/templates/rtiadapter.dat.template file contains sample
RTAdapter incoming data blocks. You can use the example data blocks in this file to validate
basic RTAdapter functionality.
7-12 Oracle Utilities Network Management System Adapters Guide

Configuration/Execution Sequence
Example

Copy example data blocks from the rtiadapter.dat.template to individual test files under the
RTAdapter scan file directory (normally ${NMS_SCADA_SCAN_FILE_DIR} – often
${NMS_ROOT}/scada. Copy files to ~/scada/tst (using the example configuration
above). Cut example text out of rtiadapter.dat.template SCADA data file to “live” RTAdapter
scan file directory to test.

1. Copy the following lines into a file - say BR2413_open

DATA

OBJECT|BR2414

BREAKER_POS|OPEN

END_DATA

Copy the following lines into a file - say BR2413_close

DATA

OBJECT|BR2414

BREAKER_POS|CLOSED

END_DATA

2. Copy BR2413_open and BR2413_close to ~/scada/tst (following example above).

3. cd ~/scada/tst

4. cp BR2413_open ..

This should cause the BR2413 file to be read and processed by RTAdapter - you should
see the BR2413 device open in the standard OPAL model.

5. cp BR2413_close ..

6. This should cause the BR2413 file to be read and processed by RTAdapter - you should
see the BR2413 device close in the standard OPAL model.

7. Follow other examples for conditions and quality codes.

8. Turn debug on RTAdapter to see what is going on. You should be able to send
RTAdapter debug messages on the fly:

Action any.RTAdapter debug on

9. Validate that devices are changing state in the Network Management System viewer as
you execute steps 5 and 6 above (“cp BR2413_open ..” followed by “cp
BR2413_close ..”) sequence over and over.
Generic SCADA Adapter 7-13

Configuration/Execution Sequence
SCADA Data - File Input
When RTAdapter is configured to poll and process files, the SCADA system sends fixed format
files. The following format rules generally apply:

1. Actual SCADA data appears between ^DATA (the string DATA at the start of a line) and
^END_DATA.

2. Records between DATA and END_DATA are identified by OBJECT which must match a
unique analog_measurements.rti_alias or digital_measurements.rti_alias entry.

3. SYNCHRONIZE|TRUE is a special case used to synchronize conditions and is outside the
standard DATA/END_DATA block. If set the line following SYNCHRONIZE|TRUE
should be something like TYPE|note - to indicate the data that follows is to be used to
synchronize “note” class conditions. For SYNCHRONIZE scan files the condition action
code should be “syn” - not “add” or “rem”.

4. All other fields are generally ignored.

5. For digital_measurements: device status: open or closed, battery low, etc. Example:

DATA

OBJECT|BR2414

BREAKER_POS|OPEN

END_DATA

6. For analog measurements: In this example, Amps_A=attribute 1501, Amps_B=attribute
1502, Amps_C=attribute 1503:

DATA

OBJECT|BR2414-1501

AMPS_A|2.1|4096

OBJECT|BR2414-1502

AMPS_B|2.2

OBJECT|BR2414-1503

AMPS_C|2.3|SUSPECT

END_DATA

Both digital and analog measurements can include quality codes for each attribute. Quality
codes are part of the standard Oracle Utilities Network Management System attribute defini-
tion and are contained within a 32-bit integer field. Bits 0->11 are reserved for Oracle Utilities
Network Management System purposes. Bits 12->31 are available for project specific config-
uration. Quality codes are generally defined in the quality_codes configuration table. In the
analog example above (AMPS_C|2.3|SUSPECT) the SUSPECT string must be defined in the
scada_states table and map to a valid quality code integer. Integers can also be used directly to
provide quality codes (AMPS_A|2.1|4096).

7. Generic SCADA conditions (generally notes or tags - could be any condition) are also
supported. To send a condition something like the following would be required:

DATA

OBJECT|BR2414

NOTE_0|add|WHO=system|TIM=2009-02-27T16:22:17|TXT=NOTE_0
txt|EXT=BR2414-note_0

END_DATA
7-14 Oracle Utilities Network Management System Adapters Guide

Configuration/Execution Sequence
The above text would “add” a note condition to the model on the device mapped to BR2414.
The following keyword phrases can be used to specify common condition fields:

8. WHO= who should be recorded as the creator of the condition - must be a valid NMS user
name, the “system” (NMS Admin user name), or the name of the SCADA system that sent
the update.

9. PHS= What phase to declare a condition for. This is a bitmask field representing affected
phases. 1=A phase, 2=B phase, 4=C phase. 7=ABC phase, etc. If specified, it must be >= 1
and <= 7.

10. TIM= ISO timestamp for when the condition was added. Timestamp format must be defined
in your $DATEMSK file.

11. TXT= Text string for the condition.text field (notes.text. tags.text, etc). Condition text string
cannot contain newlines or the separator character - whatever it is configured to be. Text will
truncate at the first newline or separator character.

12. EXT= SCADA unique identifier for the created condition. This field is necessary to allow the
external system to later remove the condition.

13. To remove the SCADA condition above:

DATA

OBJECT|BR2414

NOTE_0|rem|WHO=system|TIM=2009-10-27T16:22:17|EXT=BR2414-note_0

END_DATA
Generic SCADA Adapter 7-15

Configuration/Execution Sequence
RDBMS Table Polling (RTDBAdapter)

To get RTAdapter to use the RDBMS queue table mechanism (rather than file-based polling),
follow steps similar to the following:

1. Follow steps (1-5) as noted above for the file based polling example above.

2. In the ~/etc/system.dat configuration file verify the RTAdapter option -dir RDBMS.

3. If the -dir option is set anything other than keyword RDBMS, RDBMS polling will NOT be
enabled

4. Recommend using -watch and, possibly, the -debug options to help identify configuration
issues.

5. Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

6. Make sure RTDBAdapter is running.

7. Insert row into SCADA_DIGITAL_IN table either using alias or h_cls and h_idx with status
= ‘N’.

8. The primary key on the scada_digital_in table is the id column – which is generally populated
by a trigger on the scada_digital_in table that fires on insert and populates the id column with
the next value in a sequence. Other example RDBMS input examples can be found in the
$NMS_ROOT/templates/rtadapter.dat.template file.

Example sql statement:

INSERT into scada_digital_in (
alias,
phases
operation,
operation_date,
quality
source,
status
) VALUES (
 ‘BR2414', /* Unique measurement name */
 '7', /* Phase bitmask - 7=ABC, 1=A, 2=B, 4=C, etc */
 '0', /* Defined in scada_synonyms - 0=open, 1=close */
 SYSDATE,
 '0', /* Quality bitmask - value >2047 and <2^32 */
 'SCADA',
 'N'
);
COMMIT WORK;
7-16 Oracle Utilities Network Management System Adapters Guide

Information Model
Information Model

Database Schema

SCADA_POINTS Database Table

The SCADA_POINTS table is an optional table that can either be populated via the model build
process or via a project specific mechanism. It can be used to populate the
scada_measurements_st staging table via the scadapop executable.

The schema for this table is defined in the file ces_retain_scada.sql.

Column Data Type Description

H_CLS NUMBER Handle instance class.

H_IDX INTEGER Handle instance index.

SCADA_NAME VARCHAR(32) SCADA system name.

RTU_ALIAS VARCHAR(32) SCADA point name.

PARTITION INTEGER Model partition for this object.

BIRTH DATE Date object activated into the model.

BIRTH_PATCH INTEGER
Model patch which activated with this
object.

DEATH DATE Date object de-activated from the model.

DEATH_PATCH INTEGER Model patch which de-activated this object.

ACTIVE VARCHAR2(1) Active flag (Y/N).

SUBSTATION VARCHAR2(100) Nominal substation for this device.

FEEDER VARCHAR2(100) Nominal feeder for this device.
Generic SCADA Adapter 7-17

Information Model
SCADA_IDS Database Table

The SCADA_IDS table identifies a specific SCADA name with a numeric ID that is used for
RTAdapter (and other) SCADA adapter configuration.

The script, OPAL_scada.sql, populates generic SCADA sources for the OPAL model. A source is
any SCADA system that can provide information to the adapter. There could be one SCADA
source defined for each of multiple SCADA vendors, or a utility may choose to divide their
territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA
source must have a name as well as a unique integer ID. There can only be one instance of the
database polling RTAdapter (RTDBAdapter) running for a given instance of NMS.

SCADA_SYNONYMS Database Table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g.,
KV_3, AMP_A, and CLOSE) used by RTAdapter in processing SCADA data input.

Column Data Type Description

ID NUMBER
Numeric identifier for each “scada source”
that we want RTI to process.

SCADA_NAME VARCHAR(32) Name for the scada source

ADAPTER_TYPE VARCHAR(32)

Adapter type associated with this SCADA.

Valid values are ICCP, MULTISPEAK,

and RTADAPTER.

ACTIVE VARCHAR(1) ‘Y’/‘N’ - adapter is active or not.

Column Data Type Description

Id INTEGER Unique integer - primary key.

scada_id
INTEGER

NOT NULL
Matches scada_ids.id

keyword
VARCHAR2(32)

NOT NULL

SCADA unique attribute keyword string from SCADA
system. Generally maps to an NMS attribute name but
this is not required unless the scada_syn-
onyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank
than the scada_synonyms.keyword field must map to a
valid attribute name - from attributes.name (table.col-
umn).

For conditions this is unique name used by external
SCADA to identify the condition class and condition
status (NOTE, TAG_RED, TAG_BLUE, etc). NMS
condition class must be defined in scada_syn-
onyms.attribute_alias.
7-18 Oracle Utilities Network Management System Adapters Guide

Information Model
value VARCHAR2(32)

For digitals: Customer value associated with keyword
that indicates digital state (OPEN, CLOSED, 0, 1).

For analogs: This field can be null.

For conditions: Must be “add”, “rem”, “syn” or “end”.
The “syn” and “end” values are used for synchroniza-
tion requests.

process_type VARCHAR2(5)

For digitals: 'D'

For analogs: 'A' - If the corresponding scada_syn-
onyms.int_value is >0, then that value will be used as an
absolute value to filter incoming analogs.

For analog: 'A_PCT' indicates the corresponding
scada_synoynms.int_value should be interpreted as a
“percentage change” filter for incoming analogs. For a
1% filter int_value=0.01, for a 0.5% filter
int_value=0.005, etc.

For conditions: ‘C’

attribute_alias VARCHAR2(20)

Attribute name from attributes table.

For digitals: The only way to get a model object to
change status is to set this value to 'Status'. All other val-
ues are for digital attributes.

For analogs: This field is optional and can be set to ‘’
(empty string). If this value is ‘’ (blank), the scada_syn-
onyms.keyword is used as the attribute name.

For conditions: This field is the condition class name
(tag, note, etc).

status_value VARCHAR2(20)

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to
DEVICE_CLOSE, DEVICE_OPEN (defined in
scada_states table), 0 (open), 1 (close).

For analogs: This field is NULL.

For conditions: This field is either a numeric condition
status or a string that maps to a numeric condition status
via the scada_states table. If it is a string it MUST start
with an alpha (non-numeric) character.

Column Data Type Description
Generic SCADA Adapter 7-19

Information Model
For each implementation, define the customer specific <project>_scada.sql file to specify the
required synonyms.

SCADA_STATES Database Table

This table exists to allow for entering a character string in place of a more obscure integer. For
example 'DEVICE_CLOSE' instead of 2, ABC instead of 7 for phases, etc.

product_scada.sql includes examples of commonly-used entries.

int_value NUMBER

For digitals: not used.

For analogs: If process_type is 'A', then int_value is used
as an absolute value to filter incoming analogs. If pro-
cess_type is 'A_PCT', then int_value is used as a “per-
centage” filter value. An int_value=0.01 would filter
incoming A_PCT analog measurements by 1%.

For conditions: not used.

stale CLOB For Digitals: not used.
For Analogs: stale is a JSON value that specifies optional
stale processing values on a per attribute and, optionally,
per device class basis.
Example JSON stale configuration:

'{"default" : "30",
 "breaker" : "45"}'

The example configuration (for a given attribute) sets
default stale processing at 30 seconds. If a
corresponding analog measurement comes in on a
“breaker” class device, it will use 45 seconds for a stale
processing threshold; otherwise (for any other class of
device), it will default to 30 seconds. As many classes as
desired can be added in this manner.
Example stale configuration can be found in the
$CES_SQL_FILES/OPAL_scada.sql file and/or the
$CES_HOME/templates/rtadapter.dat.template file.

Column Data Type Description

Column Data Type Description

SCADA_NAME
VARCHAR2(
32)

Name of scada from scada_ids.scada_name

ALIAS
VARCHAR2(
32)

Alias to map to integer

VALUE INTEGER Integer value to map to
7-20 Oracle Utilities Network Management System Adapters Guide

Information Model
SCADA_DIGITAL_IN Database Table

The SCADA_DIGITAL_IN table can be used by RTAdapter to queue incoming digital SCADA
updates. RTAdapter, if configured to do so, will periodically poll this table and check for unpro-
cessed rows (status='N'). If unprocessed rows are found, RTAdapter will attempt to update the
model according to data provided. Note that the database sequence scada_digital_in_sequence
must be set up properly to create the primary key (SCADA_DIGITAL_IN.ID) value on insert.

If the -retain option is not used, records are always deleted after they are processed and the
only record of any failure is in the RTAdapter log itself. It is generally recommended that produc-
tion systems run this way (i.e., without the -retain option).

If the -retain option is used all rows are retained in the SCADA_DIGITAL_IN table. Pro-
cessed records have SCADA_DIGITAL_IN.STATUS column set to “S” after they are processed.
If an error occurs the SCADA_DIGITAL_IN.STATUS column will be set to “E,” and the
SCADA_DIGITAL_IN.ERROR_CODE and SCADA_DIGITAL_IN.ERROR_DESCRIP-
TION columns should be populated with some indication of the problem.

Note that use of the -retain option is not generally intended as a production option; rather it is
a temporary mechanism to help validate and test the interface. With the -retain option, a busy
(noisy) SCADA system can cause the SCADA_DIGITAL_IN table to grow without bound. In
this case, the size of the SCADA_DIGITAL_IN table must in turn be managed by the customer,
which creates a maintenance issue.

If SCADA_DIGITAL_IN.ATTRIBUTE is a numeric, it must match a valid NMS attribute num-
ber (for example, 0 is topology status). If non-numeric, both the SCADA_DIGITAL_IN.ATTRI-
BUTE and SCADA_DIGITAL_IN.OPERATION values must be properly defined in the
SCADA_SYNONYMS and SCADA_STATES tables.

One of two methods can be used to identify a specific NMS attribute measurement.

1. The rti_alias values in the DIGITAL_MEASUREMENTS table must uniquely identify each
measurement, you do not need to specify an attribute on input. This is the preferred way to
operate.

2. A valid NMS handle AND attribute number - in this case the alias can be left blank. This is
not often used as it requires the external system to know NMS handles and attribute numbers.

Column Data Type Description

ID VARCHAR2(32) scada_digital_in sequence generated pk

H_CLS NUMBER(38,0)
NMS class of device – can be null if alias is
not null.

H_IDX NUMBER(38,0)
NMS index of device – can be null if alias is
not null.

ALIAS VARCHAR2(128)

SCADA point alias - can be null if h_cls
and h_idx are NOT null. If not null it is
suggested this value (alone) uniquely iden-
tify a measurement.
Generic SCADA Adapter 7-21

Information Model
ATTRIBUTE VARCHAR(32)

SCADA attribute. If numeric, it must
match a valid NMS attribute number. If it
is a string, it must map to a valid NMS attri-
bute number via the scada_synonyms table.

 If the ALIAS above is unique it is NOT
necessary to include an attribute value on
input.

PHASES VARCHAR(4)

Intended phases for operation. If numeric
must be between 1 and 7 – where 1 is A
and 7 is ABC. If a string must map to a
valid numeric via the scada_states table.

OPERATION VARCHAR(32)

Operation. If numeric and used for attri-
bute 0 (topology status) it must be 0(open)
or 1(close) and the phase attribute must be
set to indicate which phases are intended to
operate. If a string it must map to a valid
code for the attribute involved via a combi-
nation of the scada_synonyms table and/or
the scada_states table.

OPERATION_DATE DATE
Time the operation occurred in the field. If
left blank will default to SYSDATE.

OPERATION_COUNT NUMBER(10)
How many operations have occurred since
the last scan – for momentaries.

CAPTURE_DATE DATE
When operation captured by NMS - gener-
ally set to SYSDATE.

QUALITY VARCHAR2(32)

Quality code for attribute – can be numeric
or a string. Either way it must be properly
configured in NMS and must ultimately
translate to be greater than 0x7FF (2047)
and less than or equal to 0xFFFF. All qual-
ity codes below 0x7FF are reserved for
NMS.

SOURCE VARCHAR(32) Data source/user name

STATUS VARCHAR2(1)

Status of request:

N = New

E = Error

S = Success

Column Data Type Description
7-22 Oracle Utilities Network Management System Adapters Guide

Information Model
SCADA_ANALOG_IN Database Table

The SCADA_ANALOG_IN table can be used by RTAdapter to queue incoming analog SCADA
updates. RTAdapter, if configured to do so, should periodically poll this table and check for data
that has changed since the last update of the SCADA_ANALOG_IN.CAPTURE_DATE
column. If potential updates are found RTAdapter will attempt to update the model according to
the data provided. If an error occurs an error is written to the RTAdapter log file. If the update is
successful no changes are made to the SCADA_ANALOG_IN table. This is to support the idea
of continuous update of the SCADA_ANALOG_IN table from an external entity. The
SCADA_ANALOG_IN table can be updated many times between RTAdapter scans. RTAdapter
will “harvest” whatever appears to have changed since the last scan. It is expected that some form
of merge statement would be used to update the SCADA_ANALOG_IN table – inserting if a
record does not exist and updating otherwise – which triggers an update on the capture_date
column.

One of two methods can be used to identify a specific NMS attribute measurement.

1. The rti_alias values in the ANALOG_MEASUREMENTS table must uniquely identify
each measurement, you do not need to specify an attribute on input. This is the preferred way
to operate.

2. A valid NMS handle AND attribute number - in this case the alias can be left blank. This is
not often used as it requires the external system to know NMS handles and attributes.

ERROR_CODE NUMBER(38,0) Error code

ERROR_DESCRIPTION VARCHAR(256) Error code description.

Column Data Type Description

Column Data Type Description

H_CLS NUMBER(38,0) NMS class of device

H_IDX NUMBER(38,0) NMS index of device

ALIAS VARCHAR2(128)
SCADA point alias - can be null if h_cls
and h_idx are NOT 0.

ATTRIBUTE VARCHAR(16)

SCADA attribute. If it is numeric it must
match a valid NMS attribute. If it is a
string it must be defined in scada_syn-
onyms and map to a valid NMS attribute.
If it is NOT provided the provided
ALIAS must be provided and MUST
uniquely identify a measurement.
Generic SCADA Adapter 7-23

Information Model
SCADA_CONDITION_IN Database Table

The SCADA_CONDITION_IN table can be used by RTAdapter to queue incoming analog
SCADA condition updates. Records with ‘add’ actions add conditions to the NMS model, and
‘rem’ records remove the condition.

Records with ‘syn’ actions indicate the start of a full synchronization. All subsequent ‘syn’ records
will be added to the NMS if not already active. The ‘end’ action indicates the end of the synchroni-
zation sequence. Any NMS conditions of that condition class without corresponding ‘syn’ records
are then removed from the NMS (via ‘end’ processing).

MEASUREMENT NUMBER Analog update value.

MEASUREMENT_DATE DATE
When operation occurred in field – not
presently used.

CAPTURE_DATE DATE

When measurement captured – could be
updated by trigger on table update. This is
the how RTAdapter determines what to
examine during periodic polls.

QUALITY VARCHAR2(32)

Quality code for attribute – can be
numeric or a string. Either way it must be
properly configured in NMS and must
ultimately translate to be greater than
0x7FF (2047) and less than or equal to
0xFFFF. All quality codes below 0x7FF
are reserved for NMS.

SOURCE VARCHAR(32) source/user name

Column Data Type Description

Column Data Type Description

ID NUMBER(38,0) Unique identifier for the row. Generated
by the scada_in_sequence.

H_CLS NUMBER(38,0) NMS class of device

H_IDX NUMBER(38,0) NMS index of device

ALIAS VARCHAR2(128) Alias of the NMS device

COND_KEY VARCHAR2(32) SCADA_SYNONYM.KEYWORD for
the condition type.
7-24 Oracle Utilities Network Management System Adapters Guide

Information Model
SCADA_MEASUREMENTS_ST Database Table

SCADA_MEASUREMENTS_ST is a staging table used to capture relevant information for each
measurement attribute. It can be populated via the scadapop executable or via project-specific
means. It can be completely rebuilt at will as it is NOT a run-time table. The “updateDDS -
recacheMeasures” utility sends a message to DDService to merge measurements defined in
this table with the run-time analog_measurements and digital_measurements tables.

EXTERNAL_ID VARCHAR(64) External identifier for this condition.

STATUS VARCHAR2(1) Process status (‘N’=New, ‘E’=Error,
‘S’=Success)

ACTION_DATE DATE When operation occurred in field.

CAPTURE_DATE DATE When the condition was captured. This is
the how RTAdapter determines what to
examine during periodic polls.

ACTION VARCHAR2(3) Action (‘add’ - Add, ‘rem’ - Remove, ‘syn’
– Synchronize, ‘end’ – End the
synchronization)

SOURCE VARCHAR(32) source/user name

PHASES NUMBER(38,0) The bitwise integer phases for the
condition.

TEXT VARCHAR(128) The text for the condition.

Column Data Type Description

Column Data Type Description

H_CLS NUMBER Object handle

H_IDX NUMBER Object index

PARTITION NUMBER Object partition handle

ATTRIBUTE NUMBER
Data attribute index (from ATTRI-
BUTES table)

TTL NUMBER
Time-To-Live Value. If set to 0 value
will NOT be broadcast dynamically.

LIMIT_GROUP_ID INTEGER Object limit group
Generic SCADA Adapter 7-25

Information Model
RTI_ALIAS VARCHAR2(128) RTI device measurement name

RTI_ALIAS_A VARCHAR2(128)
RTI device measurement name for
phase A - MultiSpeak status updates.

RTI_ALIAS_B VARCHAR2(128)
RTI device measurement name for
phase B - MultiSpeak status updates.

RTI_ALIAS_C VARCHAR2(128)
RTI device measurement name for
phase C - MultiSpeak status updates.

SCADA_ID INTEGER
SCADA source identifier - matches
scada_ids.id

RTU_ID VARCHAR2(32)
RTU ID - unique name within
SCADA system. Not generally used.

QUALITY INTEGER Quality code

VALUE FLOAT
Current value – from Manual Replace
or from SCADA if configured for per-
sistence.

UPDATE_FLAG INTEGER Update flag

ICCP_OBJECT VARCHAR2(32) ICCP mms object name

DISPLAY_ID VARCHAR2(64)
ID for display call up – if different
than rti_alias.

CONTROLLABLE VARCHAR2(1) Is this row controllable

ACTIVE VARCHAR2(1) Is this row active

SOURCE VARCHAR2(33) Source of measurements

COMMENTS VARCHAR2(512) Comment

NORMAL_STATE INTEGER
Nominal state – only used for Digital
measurements.

OFF_NOMINAL_TIME DATE Time quality went off-nominal

MEASUREMENT_TYPE VARCHAR2(1) ‘A’ for Analog or ‘D’ for Digital.

FEEDER VARCHAR2(100) Nominal feeder

SUBSTATION VARCHAR2(100) Nominal substation

GANG VARCHAR2(1)
Y/N is this a gang measurement or
not - for topology status.

ICCP_DATA_SET VARCHAR2(64) ICCP Data Set

Column Data Type Description
7-26 Oracle Utilities Network Management System Adapters Guide

Information Model
ANALOG_MEASUREMENTS Database Table

The ANALOG_MEASUREMENTS table is a run-time table generally maintained by DDService.

Column Data Type Description

H_CLS SMALLINT Object handle

H_IDX INTEGER Object index

PARTITION INTEGER Object partition handle

ATTRIBUTE SMALLINT Data attribute index (from
ATTRIBUTES table)

TTL SMALLINT Time-To-Live Value

LIMIT_GROUP_ID INTEGER Object limit group

RTI_ALIAS VARCHAR2(128) RTI device measurement name

SCADA_ID INTEGER SCADA source identifier - matches
scada_ids.id

RTU_ID VARCHAR2(32) RTU IDID - unique name within
SCADA system.

QUALITY INTEGER Quality code

VALUE FLOAT Manual Replace Value

UPDATE_FLAG INTEGER Manual Replace Flag

ICCP_OBJECT VARCHAR2(32) ICCP mms object name

DISPLAY_ID VARCHAR2(64) ID for display call up

CONTROLLABLE VARCHAR2(1) Is this row controllable

ACTIVE VARCHAR2(1) Is this row active

SOURCE VARCHAR2(33) Source of measurements

COMMENTS VARCHAR2(512) Comment associated with

OFF_NOMINAL_TIME DATE Time quality went off-nominal
Generic SCADA Adapter 7-27

Information Model
DIGITAL_MEASUREMENTS Database Table

The DIGITAL_MEASUREMENTS table is a run-time table generally maintained by DDService.

Column Data Type Description

H_CLS SMALLINT Object handle

H_IDX INTEGER Object index

PARTITION INTEGER Object partition handle

ATTRIBUTE SMALLINT Data attribute index (from
ATTRIBUTES table)

TTL SMALLINT Time-To-Live Value

LIMIT_GROUP_ID INTEGER Object limit group

RTI_ALIAS VARCHAR2(128) RTI device measurement name

SCADA_ID INTEGER SCADA source identifier

RTU_ID VARCHAR2(32) RTU ID

QUALITY INTEGER Quality code

VALUE FLOAT Manual Replace Value

UPDATE_FLAG INTEGER Manual Replace Flag

ICCP_OBJECT VARCHAR2(32) ICCP mms object name

DISPLAY_ID VARCHAR2(64) ID for display call up

NORMAL_STATE INTEGER Normal state for measure

CONTROLLABLE VARCHAR2(1) Is this row controllable

ACTIVE VARCHAR2(1) Is this row active

SOURCE VARCHAR2(33) Source of measurements

COMMENTS VARCHAR2(512) Comment associated with

OFF_NOMINAL_TIME DATE Time quality went off-nominal
7-28 Oracle Utilities Network Management System Adapters Guide

Information Model
SCADA_ANALOG_HISTORY Database Table

SCADA_ANALOG_HISTORY is a run-time table that can be used to capture analog updates
sent to NMS from an external (SCADA or similar) system.

To capture analog updates into the SCADA_ANALOG_HISTORY table, the NMS “trending”
option must be active in the <project>_licensed_products.dat file (i.e., not commented out).

The SCADA_ANALOG_HISTORY table is typically populated via Oracle RDBMS trigger after
every update to the ANALOG_MEASUREMENTS.SCADA_TIME column. By default, an
insert into the SCADA_ANALOG_HISTORY table is triggered after any
ANALOG_MEASUREMENTS.SCADA_TIME update. The $CES_SQL_FILES/
ces_retain_scada.sql file contains the default trigger for the ANALOG_MEASUREMENTS table
that can be used to populate the SCADA_ANALOG_HISTORY table.

If a project wishes to capture a subset of analog updates (for example, you want to capture updates
for a subset of measurement attributes), the scada_analog_update trigger would need to be
modified or replaced with a more restrictive trigger that reflects which analog updates you would
like to capture. You can use Oracle SQL Developer (or similar) tool to ensure an appropriate
trigger is active for the ANALOG_MEASUREMENTS table.

Note: If this SCADA analog trend capture feature is used aggressively (for
more than a million entries in the SCADA_ANALOG_HISTORY table, for
example), it is strongly recommended that Oracle RDBMS partitioning
also be used. Oracle partitioning is a separately licensed Oracle RDBMS
Enterprise Edition option. If you are licensed for Oracle RDBMS partitioning,
then you must also indicate you want to use partitioning in Oracle NMS by
ensuring the “partitioning” option is active in the Oracle NMS
<project>_licensed_products.dat file (i.e., not commented out).

The default NMS partitioning scheme stores data in the SCADA_ANALOG_HISTORY table in
7 day partitions. With adequate partitioning, performance should not be significantly impacted
unless you attempt to load data across many partitions. The assumption is that it would be most
common for operators to request analog trend data for the last one to four weeks; thus pulling
data from one to five partitions (allowing for boundary conditions across partitions). If your needs
are different, the partitioning scheme can be changed by the project. In the end, using Oracle
RDBMS partitioning reduces the need to aggressively prune the SCADA_ANALOG_HISTORY
table and makes pruning more of an “available data space” issue and less of a “necessity to
maintain for performance” issue.

If you do not use partitioning, you will likely need to implement a more aggressive pruning
process to prevent the SCADA_ANALOG_HISTORY table from growing without bound,
becoming difficult to manage, and (potentially) impacting performance. A project that implements
SCADA_ANALOG_HISTORY trending and does not use partitioning will be vulnerable to
performance degradation over time - especially when they eventually do decide to purge. Oracle
RDBMS partitions (in particular) greatly simplify and optimize the process of capturing, using,
and maintaining a limited window of historical data (purging a partition has minimal impact on
RDBMS). Without partitioning, the most practical options for improved performance are more

Column Data Type Description

H_CLS NUMBER(38) Device class associated measurement

H_IDX NUMBER(38) Device index associated measurement

ATTRIBUTE NUMBER(38) Attribute number of measurement

VALUE NUMBER Captured value of measurement

SCADA_TIME DATE Time value was captured
Generic SCADA Adapter 7-29

Information Model
aggressive pruning of the SCADA_ANALOG_HISTORY table and/or Oracle RDBMS hardware
upgrades.

Any time a change is made to <project>_licensed_products.dat, the ces_setup.ces script must
be executed to capture the desired licensed product changes and build the desired configuration.
For NMS tables to be built as partitioned tables by the ces_setup.ces script, the NMS partitioning
option must be active on a clean (initial) NMS model setup (ces_setup.ces -clean). The
ces_setup.ces script will not convert existing non-partitioned tables to partitioned tables.

Note: If you have an existing (non-partitioned) NMS data model, are licensed
to use partitioning, and you want to partition the
SCADA_ANALOG_HISTORY table (without destroying your current data
model), it is possible, but requires project specific effort beyond the scope of
this document.

To help manage the pruning process for RDBMS history tables, NMS includes a pruning
procedure called PURGE_HISTORY_TABLES, which is defined in the $CES_SQL_FILES/
product_flm.sql file. The procedure can be configured to retain a defined number of weeks of
history via the CES_PARAMETERS table (as specified in the
attrib='RETAIN_HISTORY_RECORDS' record).

Note: See $CES_SQL_FILES/ /product_parameters.sql for example
configuration of the RETAIN_HISTORY_RECORDS parameter.

Once captured, the NMS client has configuration options to visualize trends for selected time
slices of analog values in the SCADA_ANALOG_HISTORY table.
7-30 Oracle Utilities Network Management System Adapters Guide

Information Model
External Access Schema

To support external SCADA or ‘SCADA-like’ integration, NMS includes an optional limited NMS
access RDBMS schema. This alternate schema is a set of RDBMS views, synonyms, and grants to
access specific primary NMS RDBMS user tables (for the purpose of restricting access to only
tables/views that an external SCADA type system needs to interact with NMS). This optional
schema uses the NMS primary NMS RDBMS access username to help create the external SCADA
access schema name. For example, if the primary NMS RDBMS user name is “nms,” then the
external SCADA access schema would be “nms_scada.” The “nms_scada” schema name allows
access to a subset of NMS RDBMS tables/views. The default tables/views/synonyms are defined
by the SCADA_GRANTS_AND_SYNONYMS procedure in the $CES_SQL_FILES/
ces_schema_readonly.sql file.

The following tables are granted access by the SCADA_GRANTS_AND_SYNONYMS
procedure:

• SCADA_VIEW: View of NMS measurements and current status

• SCADA_TAG_VIEW: View of active project specific tags to export to SCADA

• SCADA_IDS: Valid SCADA systems NMS can interact with

• SCADA_EMULATOR_ANALOG_OUT: Output from PFEmulator (for use with the
Oracle Utilities Network Management System Training Simulator)

• SCADA_EMULATOR_DIGITAL_OUT: Output from PFEmulator (for use with the
Oracle Utilities Network Management System Training Simulator)

• SCADA_ANALOG_IN: Access to SCADA_ANALOG_IN – for incoming analogs

• SCADA_DIGITAL_IN: Access to SCADA_DIGITAL_IN – for incoming digitals

• SCADA_CONDITION_IN: Access to SCADA_CONDITION_IN – for incoming tags

In particular, SCADA_VIEW is an RDBMS view that can be used by an external SCADA system
to see what measurements NMS is currently configured for as well as the last known qualities and
values NMS has recorded for those measurements. The intent of this view is that it can be used by
the external SCADA system to not only know what measurements NMS is configured for, but
also to use the corresponding last reported qualities and values to optimize re-sync (integrity
check) processing. Presumably, an external SCADA could access this view and only send NMS
updates for measures and qualities that do not sufficiently match what NMS has already recorded.
Generic SCADA Adapter 7-31

DataRaker Integration
MultiSpeak Integration
If desired, the generic SCADA adapter can be used in conjunction with the NMS MultiSpeak
(Java-based) SCADA adapter. The intent is to use the RTAdapter to provide a buffering
mechanism for “noisy” SCADA systems that could potentially generate many periodic analog (or
digital) updates. Using RTAdapter to capture and bundle incoming changes reduces the impact on
the NMS CORBA Gateway and NMS CORBA publisher. Using RTAdapter with the “-dir
RDBMS” option allows changes to be captured and sent in bulk to internal NMS Services.

If configured to do so, the NMS Web Gateway APIs used by the MultiSpeak SCADA interface will
write to the SCADA_DIGITAL_IN and SCADA_ANALOG_IN tables when processing updates
from an external SCADA, rather than submitting them directly to DDService. This behavior is
controlled by three configuration properties, which can be added to the
CentricityServer.properties file.

1. intersys.use_db_for_scada_statuses

If set to 'true' than device status updates received from SCADA system will be written to the
SCADA_DIGITAL_IN database table.

2. intersys.use_db_for_scada_digitals

If set to 'true' than updates to digital values received from SCADA system will be written to
the SCADA_DIGITAL_IN database table.

3. intersys.use_db_for_scada_analogs

If set to 'true' than updates to analog values received from SCADA system will be written to
the SCADA_ANALOG_IN database table

By default all the above properties are set to 'false', which means that SCADA measurements will
be sent directly to the internal DDService process.

DataRaker Integration
The NMS RTAdapter can be configured to support integration with the Oracle DataRaker
application. DataRaker captures large quantities of periodic Advanced Metering Infrastructure
(AMI) data – typically once a day. AMI data typically includes usage information like meter load
(kWH) and voltage for each interval – where intervals are typically hourly or every 15 minutes. By
analyzing months (or more) of AMI usage data, DataRaker can detect a broad range of usage
anomalies. A few examples include transformer overloads (by aggregating loads from all meters
below the load transformer), voltage sags, voltage swells, and abnormal usage patterns.

If DataRaker analysis is routinely executed (for example, daily to pick up yesterday’s AMI data), it
can be beneficial to make at least a subset of the DataRaker discovered anomalies clearly visible to
NMS operators. RTAdapter can be configured to “import” a set of DataRaker discovered
anomalies as NMS conditions (symbols that show in the NMS Viewer or simply records in the
NMS Condition Summary tool). These DataRaker anomalies are captured as NMS conditions in
the data_raker RDBMS table via the RTAdapter. Once captured, these NMS conditions allow
navigation back into DataRaker from NMS.

DataRaker provides raw data files (in DataRaker export file format) that must be mapped/
translated to the RTAdapter formats noted below. Typically DataRaker would generate raw
DataRaker export files containing the desired data on a relatively routine (daily or weekly) basis.
The raw DataRaker files must be transformed (via project specific adapters) into the specified
RTAdapter format files for subsequent consumption. A project specific adapter (likely a perl or
python script) must be used to translate the DataRaker export format file into the RTAdapter
import format data file. This allows a project to determine what DataRaker data they want to
include/exclude and how they want to categorize the input data for their NMS operators.
7-32 Oracle Utilities Network Management System Adapters Guide

DataRaker Integration
The following three use cases describe how the DataRaker to NMS data integration can be
managed by a project using the RTAdapter. The first use case is expected to be the most common
– the others are options for NMS administrators to consider as necessary.

Use Cases

Use Case 1 – DataRaker Master (Minimal NMS Involvement)

For this use case, DataRaker is the master of all DataRaker discovered anomalies. This means the
anomalies generated by a new DataRaker analysis execution completely replace whatever DataR-
aker anomalies (NMS conditions) that were previously reported to (or captured by) NMS. This has
the advantage of not requiring any periodic updates from NMS operators. NMS operators can
view the DataRaker conditions if they choose, act on them if they have time, etc., but they can also
ignore the DataRaker conditions and be confident they will not accumulate in NMS over time.

To accomplish this, RTAdapter must be configured to scan files (not the RDBMS) for this
instance of the adapter. Below is an example RTAdapter record from the system.dat file that could
be applicable for this case:

program DataRaker RTAdapter -scada dataraker -interval 60 -dir ~/
dataraker

This means this RTAdapter instance will be known as DataRaker internal to NMS (on the mes-
sage bus) and will look for configuration records that match scada_ids.id where
scada_ids.scada_name=‘dataraker’ in the SCADA_IDS RDBMS table. This id will then need to be
matched by appropriate configuration in the SCADA_SYNONYMS and SCADA_STATES
tables for this DataRaker instance of the RTAdapter. Note there is no required SCADA_STATES
table configuration so it will not be further discussed in this section.

Example configuration:

• Records in the RTAdapter SCADA_SYNONYMS configuration table for DataRaker
configuration use SCADA_IDS.ID=100 where SCADA_IDS.SCADA_NAME=’dataraker’
(to match example system.dat configuration noted above).

• The SCADA_SYNONYMS table configuration records noted below will allow the
RTAdapter to process add, rem(ove) and syn(chronize) directive records from an RTAdapter
input file for a single type of DataRaker condition (where NMS data_raker condition
status=10). See the example OPAL_scada.sql file for more examples of DataRaker
conditions. By default the NMS OPAL model is configured to handle 3 different DataRaker
condition class statuses (Info=10, Warn=20, Alarm=30). To utilize OPAL type configuration
the DataRaker Info, Warn and Alarm conditions must have the specified condition status
values of 10, 20 and 30 respectively. These values are somewhat arbitrary and can be changed
if necessary – but will require more project specific configuration. Entries for “DR_E2” are
similar – just change status_value=‘20’. Entries for “DR_E3” are also similar – just change
status_value=‘30’.

INSERT into scada_synonyms (id, scada_id, keyword, value,
process_type, attribute_alias, status_value)
 VALUES (tmp_seq.nextval, 100, 'DR_E1', 'add', 'C',
 'data_raker', '10');

INSERT into scada_synonyms (id, scada_id, keyword, value,
process_type, attribute_alias, status_value)
 VALUES (tmp_seq.nextval, 100, 'DR_E1', 'rem', 'C',
 'data_raker', '10');

INSERT into scada_synonyms (id, scada_id, keyword, value,
Generic SCADA Adapter 7-33

DataRaker Integration
process_type, attribute_alias, status_value)
 VALUES (tmp_seq.nextval, 100, 'DR_E1', 'syn', 'C',
 'data_raker', '10');

Technically only the “syn” entry above is required for the first use case option (use RTAdapter to
periodically synchronize DataRaker conditions). The “add” and “rem” options are configured just
in case a project wants RTAdapter to also process individual add/rem directives in the RTAdapter
input file. They are not required, but are used for Use Case 2 and Use Case 3.

Below is an example (translated) DataRaker export file suitable for RTAdapter consumption. You
can give the file any valid file name, but it must ultimately be placed in the directory specified via
“RTAdapter –dir <directory>” before it will be processed. The RTAdapter data files in the
specified directory are processed in a first in, first out basis. The “OBJECT” keyword specifies an
NMS object that must match an RTAdapter configured rti_alias (from
scada_measurements_st.rti_alias) or an alias entry in the alias_mapping table where
db_type='OPS' (default alias).

Any data_raker records in NMS that are NOT found in a RTAdapter synchronization input file
will be deleted (based on the value of the external id provided by the EXT= keyword). NMS
should only be left with conditions that are specified in the RTAdapter synchronization file when
processing is completed. The pipe symbol “|” is a delimiter and can be changed via the
RTAdapter –delimter <n> command line option. Replace “|” with your project specified
delimiter in the examples below, if necessary:

SYNCHRONIZE|TRUE
TYPE|data_raker
DATA
OBJECT|xfmr_1
 DR_E1|syn|WHO=dataraker|TIM=2009-02-27T16:22:17|TXT=Over voltage
 detected|EXT=DR_E1-1
 DR_E1|syn|WHO=dataraker|TIM=2009-02-27T17:22:17|TXT=Xfmr within 50%
 of capacity|EXT=DR_E1-2
 DR_E2|syn|WHO=dataraker|TIM=2009-02-27T18:22:17|TXT=Xfmr within 75%
 of capacity |EXT=DR_E2-1
OBJECT|xmfr_2
 DR_E3|syn|WHO=dataraker|TIM=2009-02-27T16:22:17|TXT=Xfmr within 100%
 of capacity|EXT=DR_E3-1
 DR_E3|syn|WHO=dataraker|TIM=2009-02-27T19:22:17|TXT=Xfmr 120% of
 capacity|EXT=DR_E3-2
END_DATA

Detailed field descriptions of RTAdapter keywords:

• SYNCHRONIZE|TRUE is a keyword sequence that says this entire file is a synchronization file.
Always specify exactly as noted for a synchronization file request. Must start in column 1.

• TYPE is a keyword that specifies what condition class the synchronization will focus on for all
subsequent entries (data_raker in the above example). All entries in a given RTAdapter
synchronization file must be of the same class. Must start in column 1.

• OBJECT is a keyword that precedes the common object id between NMS and DataRaker – as
this is the link between the two systems. Normally this is a transformer alias.

• Project configured keywords – defined in scada_synonyms table

• DR_E1 indicates we are dealing with a DataRaker “Info condition”.

• DR_E2 indicates we are dealing with a DataRaker “Warn condition”.

• DR_E3 indicates we are dealing with a DataRaker “Alarm condition”.
7-34 Oracle Utilities Network Management System Adapters Guide

DataRaker Integration
• syn is a directive keyword that indicates we want to make sure this condition exists in NMS.
It will update an existing condition or (if there is no current matching condition based on the
EXT id) it will insert a new one.

• WHO= is a keyword that indicates what external system to indicate as the source of the
condition directive. Normally this would be “dataraker” (or similar) for DataRaker
integration.

• TIM= is a keyword that specifies a timestamp to go with the directive. Generally from the
external system and must be specified in ISO format (the format you see above YYYY-MM-
DDTHH:MM:SS – where hours are 00->24 and local time zone is assumed).

• TXT= is a keyword that specifies a brief summation of the condition detected. Can be up to
512 characters, but less is generally more. Suggest this be just enough to convey the type of
issue detected – at least on first 30 characters of the text or so.

• EXT= is a keyword that specifies the unique external id for this condition. This should be the
primary key for this condition. It could be generated by DataRaker or it could be generated by
the NMS translation process. Ultimately it should be unique for at least every transformer and
data_raker condition status combination in play (project specific).

Notes on the NMS unique key (EXT=) field. If DataRaker reports an anomaly for NMS trans-
former “xfmr_1” that maps to an NMS data_raker alarm (status=10) today – we could set the
EXT= value to “xfmr_1-10” – indicating there is a data_raker alarm (status=10) on xfmr_1. This
way if tomorrow DataRaker reports the same (or essentially the same) condition we would again
translate to “xfmr_1-10” – and nothing would change on the NMS side for this condition. This
scheme minimizes processing in NMS and allows “old” NMS data_raker conditions to “age”
within NMS. This should provide some indication of how long DataRaker has been reporting sim-
ilar issues for this transformer, which may be useful to NMS operators. Otherwise the conditions
will be reported as new every day.

Use Case 2 – DataRaker Only Inputs New Conditions – NMS Deletes

Use Case 2 can use the same configuration as Use Case 1 other than the format of the input file to
RTAdapter. Here DataRaker only inputs new conditions into NMS and NMS operators have the
option to view/add/delete DataRaker conditions as necessary. If/when subsequent DataRaker
input is processed, it will be captured “in addition to” whatever DataRaker conditions were already
present within NMS. Ideally, for this use case, NMS operators would delete all (old) DataRaker
conditions before processing a new batch of DataRaker conditions. If the operators do not delete
the old DataRaker conditions they will tend to accumulate.

This option may be useful if it becomes necessary to leave some DataRaker conditions on the
system for a substantial period of time before they are acted on and you do not want to
automatically remove previously imported DataRaker conditions during every import (like the
“SYNCHRONIZE” option does in Use Case 1). Maybe one execution of DataRaker finds
conditions of one type and the next iteration finds conditions of another and you do not want to
delete the records from the first pass before applying the second (or similar). The format for the
input file would be similar to what follows. The primary differences are that there is no
SYNCHRONIZE or TYPE keywords and (instead of the directive “syn”) we use the “add” action
directive.

DATA
OBJECT|xfmr_1
 DR_E1|add|WHO=dataraker|TIM=2009-02-27T16:22:17|TXT=Over voltage
 detected|EXT=DR_E1-1
 DR_E1|add|WHO=dataraker|TIM=2009-02-27T17:22:17|TXT=Xfmr within 50%
 of capacity|EXT=DR_E1-2
 DR_E2|add|WHO=dataraker|TIM=2009-02-27T18:22:17|TXT=Xfmr within 75%
 of capacity |EXT=DR_E2-1
OBJECT|xmfr_2
Generic SCADA Adapter 7-35

DataRaker Integration
 DR_E3|add|WHO=dataraker|TIM=2009-02-27T16:22:17|TXT=Xfmr within 100%
 of capacity|EXT=DR_E3-1
 DR_E3|add|WHO=dataraker|TIM=2009-02-27T19:22:17|TXT=Xfmr 120% of
 capacity|EXT=DR_E3-2
END_DATA

Use Case 3 – Bulk Delete for NMS Conditions

Use Case 3 can use the same configuration as Use Case 1 other than the format of the input file
processed by RTAdapter. In this use case, the RTAdapter input file specifies what conditions to
delete from NMS. The creation of this form of input file would need to be done by the NMS
project implementers. This option may be useful if an NMS administrator wants to automatically
delete some subset of previously applied DataRaker conditions (for whatever reason). The format
of the input file is similar to Use Case 2 except that no “TXT=” data is processed. All other fields
are processed and can be captured in the NMS data_raker condition table. Note that “add” and
“rem” records can also be combined in the same file, but must be specified in proper order (“del”
must follow an “add” for same condition, for example).

DATA
OBJECT|xfmr_1
 DR_E1|rem|WHO=dataraker|TIM=2009-02-27T16:22:17|EXT=DR_E1-1
 DR_E1|rem|WHO=dataraker|TIM=2009-02-27T17:22:17|EXT=DR_E1-2
 DR_E2|rem|WHO=dataraker|TIM=2009-02-27T18:22:17|EXT=DR_E2-1
OBJECT|xmfr_2
 DR_E3|rem|WHO=dataraker|TIM=2009-02-27T16:22:17|EXT=DR_E3-1
 DR_E3|rem|WHO=dataraker|TIM=2009-02-27T19:22:17|EXT=DR_E3-2
END_DATA
7-36 Oracle Utilities Network Management System Adapters Guide

Chapter 8
ICCP Adapter

This chapter includes the following topics:

• ICCP Adapter Overview

• LiveData ICCP Adapter Configuration

• TMW ICCP Adapter Configuration

ICCP Adapter Overview
The Oracle Utilities Network Management System ICCP Adapter integrates the Oracle Utilities
Network Management System with a remote SCADA system through the Inter-control Center
Communications Protocol (ICCP). Oracle offers two versions of an ICCP adapter. One Oracle
ICCP adapter (TMW ICCP Adapter) uses ICCP libraries from Triangle MicroWorks (TMW) and
can interface directly to a 3rd-party SCADA system that supports the ICCP protocol. The other
Oracle ICCP adapter (LiveData ICCP Adapter) does not directly speak ICCP, but instead
interfaces to a LiveData 3rd-party ICCP server using LiveData proprietary APIs, which then
interfaces to the SCADA system that supports the ICCP protocol.

Note: TMW ICCP Adapter includes the TWM libraries bundled in. The
LiveData ICCP Adapter requires the use of a LiveData Server that must be
separately licensed from LiveData, Inc. For additional details on the LiveData
Server, please refer to LiveData documentation.

ICCP is a standard interface protocol that can be used with Oracle Utilities Network Management
System to provide data exchange with remote and local SCADA systems. ICCP is also an
international standard: International Electrotechnical Commission (IEC) Telecontrol Application
Service Element 2 (TASE.2).

ICCP allows the exchange of real-time and historical power system monitoring and control data,
including measured values, scheduling data, energy accounting data, and operator messages. Data
exchange can occur between:

• Multiple control center Energy Management System (EMS) systems

• EMS and power plant DCS systems

• EMS and distribution SCADA systems

• EMS and other utility systems

• EMS/SCADA and substations
ICCP Adapter 8-1

ICCP Adapter Overview
The ICCP standard consists of the following blocks:

Block Description Notes

Block 1 Basic Services Available via both the Oracle TMW
ICCP Adapter and the Oracle
LiveData ICCP Adapter.

Block 2 Extended Data Set Condition Monitoring Available via both the Oracle TMW
ICCP Adapter and the Oracle
LiveData ICCP Adapter.

Block 3 Blocked Transfers

Block 4 Operator Stations

Block 5 Device Control Currently only available via the
Oracle LiveData ICCP Adapter.

Block 6 Programs

Block 7 Events

Block 8 Accounts

Block 9 Time Series
8-2 Oracle Utilities Network Management System Adapters Guide

LiveData ICCP Adapter Configuration
LiveData ICCP Adapter Configuration
This section guides the user through configuration of the Oracle Utilities Network Management
System LiveData ICCP Adapter. The following are assumed to be true before the adapter is
installed:

• Oracle database access has been confirmed.

• Isis messaging bus has been installed and verified.

• Oracle Utilities Network Management System is installed and functional.

• LiveData Server is installed, functional, and licensed.

Configuring the ICCP Adapter requires:

• Configuring the Adapter to Run as a System Service

• Populating the NMS Measurements Tables

Configuring the Adapter to Run as a System Service
Configure the ICCP Adapter by updating the $NMS_HOME/etc/system.dat file to include the
ICCP Adapter as a system service. There are three main sections where this service needs to be
defined: the service, program and instance sections. See the $CES_HOME/templates/
system.dat.template file for examples of how to configure the ICCP Adapter. Search for
IccpAdapter and make sure those lines are uncommented. You must restart the system services in
order for the ICCP Adapter to be properly monitored by SMService.

Below is an example of the program section in the system.dat file:

program IccpAdapter IccpAdapter -prm_path /users/nms1/etc/

Note: It is assumed that the ICCP Adapter will reside on the same Unix or
Linux server where the Oracle Utilities Network Management System services
environment resides.

Command Line Options for ICCP Adapter

The command line for the ICCP Adapter provides the following options:

Command Line Option What it does

-debug <level> Sets the level of debug messages generated by the adapter.
<level> is a positive number, or zero. The higher the number,
the more information is displayed. If <level> is omitted, it
defaults to a value of 0. Debug facilities can also be specified on
the command line; for example:

-debug IA_RTP 3

could be used to specifiy level 3 debug for the IA_RTP debug
facility.

-prm_path
<IccpAdapter.prm path>

Sets the path of the IccpAdapter.prm parameter file location.
This file is used to configure the operation of the ICCP adapter.

-help Returns the available IccpAdapter startup parameters and
definitions, then terminates.

-nodaemon Runs in the foreground, used when running by hand.
ICCP Adapter 8-3

LiveData ICCP Adapter Configuration
IccpAdapter.prm

The IccpAdapter.prm file is used to configure the operation of the Oracle Utilities Network
Management System ICCP Adapter. The default location for this file is the same as where the
IccpAdapter binary is located (i.e., $CES_HOME/bin) but it is generally configured to be in a
different location by using the –prm_path <IccpAdapter.prm path> command line
option. Lines in this file beginning with a “;” (semi-colon) are comments. Lines beginning with a
“[” (left bracket) are block identifiers (markers). Fields marked as <Required> must be configured
for proper operation and are generally site specific. See the IccpAdapter.prm.template file in the
standard $CES_HOME/templates directory for an example IccpAdapter configuration file.

Fields in the IccpAdapter.prm File

Field name Type Default Valid Values Description

[IccpAdapter] Marker Used for generic configuration of program.

ServerHostname IP
address
List –
blank
separated

<Required> 128.168.148.43
etc

The IP address(es) of the LiveData Server
hostname(s) to connect to. It could be a blank
separated list of IP address of several
LiveData Servers. In case a failure of
connection was detected by the ICCP Adapter
with the current LiveData Server, it will
traverse the ServerHostname list for the next
LiveData Server to connect to.

Port Integer <Required> [1..MAX_INT] Blank separated list of TCP/IP port numbers
that the ICCP Adapter will use for a
connection attempt to a LiveData Server.
Parallel to the ServerHostname, it could be a
list of port numbers to use to connect to the
corresponding LiveData server in
ServerHostname. In case there was a failure of
connection with the current LiveData Server,
it would proceed to the next entry - in parallel
with the next ServerHostname entry. 5002 is
typical.

Period Integer 10 [1..MAX_INT] Time in seconds between periodic transfers of
non-time critical data.

StatusUpdates Integer 25 [1..MAX_INT] The maximum number of status updates to be
sent to DDService at one time.

ScadaId Integer 1 [1..MAX_INT] Identification number assigned to the SCADA
in Oracle Utilities Network Management
System with which the ICCP Adapter is
communicating.

AnalogTolerance Double 0.0F [0.01..0.99] Dead band for analog value updates. It is the
required percent change from the last
reported value to trigger an update.

Analogs Boolean F [T, F] Boolean value indicating use of the
ANALOG_MEASUREMENTS table.

Digitals Boolean T [T, F] Boolean value indicating use of the
DIGITAL_MEASUREMENTS table.
8-4 Oracle Utilities Network Management System Adapters Guide

LiveData ICCP Adapter Configuration
ReconnectPeriod Integer 60 [0..MAX_INT] Configurable duration of delay to wait after
the LiveData Server instances failed in
succession.

Controls Boolean F [T, F] Boolean value indicating use of the controls
table for Block 5 functionality.

QualityCodeUseOn
AssociationTimeOut

Integer 0 [0..MAX_INT] Quality code that will be sent to DDService
when the communication with LD server is
lost. A valid QualityCode must be specified if
this option is used.

DisableStop Boolean F [T, F] Normally the adapter will accept and process
a stop high level message. This option disables
this feature. When this feature is enabled, the
adapter will disregard a stop high level
message.

DisableCOV Boolean F [T, F] Normally the adapter will process a COV
update (one or more open and close
sequences within a scan cycle – normally
indicating one or more momentaries) and
send it to DDService. This option disables
this feature.

Vccs Integer <Required> [1..MAX_INT] The number of VCCs (Virtual Control
Centers) that are configured in the LiveData
Server.

IgnoreCritInterSysServFail Boolean F [T, F] Normally the adapter will stop if SMSserivce
reports a critical service failure and not restart
until services are recovered. This option
disables this feature.

NoSwitchOpQualityMask Integer No Mask [0..MAX_INT] This parameter sets the quality codes that
prevent switches from being operated. There
is no effect on non-switch statuses.

PhaseEncodeSwitch Boolean F [T, F] If set to true, this will enable Iccp Adapter to
interpret data discrete values as three-bit
phase encoded statuses. [e.g., A = ‘001’, B =
‘010’, C = ‘100’, etc.]

PseudoAlarms Boolean F [T, F] If set to 1, then this will set the pseudo flag
for the switch entry to be sent to DDService.
Generates pseudo (advisory) alarms for ICCP
reported device ops rather than actually
operating the switches in the Oracle Utilities
Network Management System model.

SendTimeout Integer 10 [0..MAX_INT] Number of seconds to wait when attempting
to connect ICCP Adapter to the LiveData
server. If no connection is received, it will
move to the next available LiveData server (if
configured). Generally leave as the default.

Field name Type Default Valid Values Description
ICCP Adapter 8-5

LiveData ICCP Adapter Configuration
DetachRead Boolean T [T,F] Detach the IccpAdapter internal thread that is
reading the incoming RTP data stream from
Isis. Generally leave as the default.

DetachWrite Boolean F [T,F] Detach the IccpAdapter internal thread that is
writing the outgoing RTP data stream from
Isis. Generally leave as the default

DetachHeartbeat Boolean F [T,F] Detach the IccpAdapter internal thread that is
sending outgoing RTP data stream heartbeat
requests from Isis. Generally leave as the
default

[VCC#] Marker E.g., [VCC1]. Provides additional information
for each VCC (Virtual Control Center).

AssociationAddress Integer <Required> [1..MAX_INT] RTP address in LiveData Server for watching
and controlling this VCCs association status

TransferSetAddress Integer <Required> [1..MAX_INT] RTP address in LiveData Server for
controlling the use of configured ICCP
transfer sets

NumTransferSets Integer <Required> [1..MAX_INT] The total number of transfer sets that are
available for use in the VCC. Number must be
a multiple of 16.

AssociationName String Vcc Label [a..z, A..Z, 0..9] The name of the ICCP Association.

AssociationRestartTime Integer 30 [1..MAX_INT] Seconds allowed for restart before the
association is considered failed.

TransferSetRestartPeriod Integer 30 [1..MAX_INT] Seconds allowed to restart transferset before
the restart is considered failed and no
additional restart attempts will be made.

TransferSetFailCountReset Integer 60 [1..MAX_INT] The number of fail count to be exhausted
before marking the transfer set as not alive.

MaxTransferSetRestarts Integer 10 [1..MAX_INT] Maximum number of restart for transfer set.

TransferSetControlMask String <Required> [T, F] Transfer set control mask for the transfer set
to be sent to LiveData Server. One T/F flag
for each TransferSet. String length must be a
multiple of 16.
Example with one TransferSet enabled:
"FTTTTTTTTTTTTTTT"

Field name Type Default Valid Values Description
8-6 Oracle Utilities Network Management System Adapters Guide

LiveData ICCP Adapter Configuration
[ValidityQuality] Marker Assign an Oracle Utilities Network
Management System quality to ICCP Validity
Quality values

Valid Integer 0 2**n (n=11->31) The value is valid. This is the default (normal)
value should virtually always be 0.

Held Integer 0 2**n (n=11->31) Previous data value has been held over.
Interpretation is local.

Suspect Integer 0 2**n (n=11->31) Data value is questionable. Interpretation is
local.

Notvalid Integer 0 2**n (n=11->31) The value is not valid.

[CurrentSourceQuality] Marker Assign an Oracle Utilities Network
Management System quality to ICCP Current
Source Quality values.

Telemetered Integer 0 2**n (n=11->31) Value was received from a telemetered site.
This is the default (normal) value should
virtually always be 0.

Calculated Integer 0 2**n (n=11->31) Value was calculated based on other data.

Entered Integer 0 2**n (n=11->31) Value was entered manually.

Estimated Integer 0 2**n (n=11->31) Value was estimated (State Estimator, etc.).

[NormalValueQuality] Marker Assign an Oracle Utilities Network
Management System quality to ICCP Normal
Value Quality values.

Normal Integer 0 2**n (n=11->31) The point value is that which has been
configured as normal for the point. This is the
default (normal) value should virtually always
be 0.

Abnormal Integer 0 2**n (n=11->31) The point value is not that which has been
configured as normal for the point.

[TimeStampQuality] Marker Assign an Oracle Utilities Network
Management System quality to ICCP
Timestamp Quality values

Valid Integer 0 2**n (n=11->31) Current value of the TimeStamp attribute
contains the time stamp of when the value
was last changed. This is the default (normal)
value should virtually always be 0.

Invalid Integer 0 2**n (n=1->31) Current value of the TimeStamp attribute
contains the time stamp other than when the
value was last changed.

[SwitchStatusQuality] Marker Assign an Oracle Utilties Network
Management System quality to the non-open/
close statuses that can be returned in the two-
bit ICCP status field. ICCP “open” is
generally (1) and “closed” is (2).

Field name Type Default Valid Values Description
ICCP Adapter 8-7

LiveData ICCP Adapter Configuration
Sample IccpAdapter.prm Configuration File
[IccpAdapter]
Period=5
ScadaId=1
Analogs=0
AnalogTolerance=.0001
Digitals=1
Controls=0
Port=5002
QualityCodeUseOnAssociationTimeOut=16384
Vccs=1
DisableCOV=0
[VCC1]
AssociationAddress=10
TransferSetAddress=20
NumTransferSets=16
[ValidityQuality]
Valid=
Held=
Suspect=
Notvalid=1048576
[CurrentSourceQuality]
Telemetered=
Calculated=
Entered=
Estimated=2097152
[NormalValueQuality]
Normal=
Abnormal=
[TimeStampQuality]
Valid=
Invalid=

Between Integer 262144 2**n (n=11->31) Quality code to set if the two bit ICCP switch
status is reported as “between” (0).

Invalid Integer 524288 2**n (n=11->31) Quality code to set if the two bit ICCP switch
status is reported as “invalid” (3).

Field name Type Default Valid Values Description
8-8 Oracle Utilities Network Management System Adapters Guide

LiveData ICCP Adapter Configuration
Quality Codes

The IccpAdapter.prm file enables ICCP quality codes to be translated into Oracle Utilities
Network Management System quality codes. In the simplest (and default) configuration, all of the
ICCP quality codes (except the Between and Invalid SwitchStatusQuality codes, which
need to be defined to ensure proper operation) are assigned to the 'normal' Oracle Utilities
Network Management System quality code (0).

Note: Oracle Utilities Network Management System quality codes are always
single bit values. Therefore, the only valid value for configuration is 0 or a
proper value of 2^nth power where n=0->31. The Quality Rules Table on
page 8-26 table lists all the valid user-defined quality codes in Oracle Utilities
Network Management System.

If none of the predefined quality codes are applicable, then a new code must be created. The
following steps accomplish this:

• Choose an ICCP quality listed in the IccpAdapter.prm.

• Check the Quality Rules Table to see which values have already been assigned to qualities.

• Assign one of the values listed below to the ICCP quality and enter it in the Quality Rules
Table.

• Locate the quality in the IccpAdapter.prm file and enter the assigned value for it.

The assigned value must be the decimal representation of 32 bits, where no more than one bit has
a value of 1. For example, if the bit position is 11, use the number 2048. The following list
contains the decimal values that may be assigned to new qualities: 2048, 4096, 8192, 16384, 32768,
65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432,
67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648.

Values of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 may not be assigned as codes for new
qualities because they are already defined and used within Oracle Utilities Network Management
System. The ‘normal’ Oracle Utilities Network Management System quality code is 0.

The adapter reads the IccpAdapter.prm file only during startup. If the quality code is added when
the adapter is running, you must restart the adapter in order for it to recognize the new quality
code.
ICCP Adapter 8-9

LiveData ICCP Adapter Configuration
High Level Messages

The ICCP Adapter can be dynamically controlled from Oracle Utilities Network Management
System by using high-level messages. They can be used any time while running the Oracle Utilities
Network Management System ICCP Adapter. The following high-level messages can be used:

• stop

Disconnect from the LiveData Server and stop the Oracle Utilities Network Management
System ICCP Adapter.

• report

Empty message to determine how many Oracle Utilities Network Management System ICCP
Adapters are running.

• debug [on | off | #]

Turn on/off debug, or set it to a specific level. On is equivalent to 1, off is 0. Level can be any
integer value no less than 0.

• debug <facility> #

Turn facility specific debug on/off. For example, to turn IA_RTP debug on to level 3:

 Action any.IccpAdapter debug IA_RTP 3

To turn off:

 Action any.IccpAdapter debug IA_RTP 0

Check ICCP Adapter specific log file for other facilities specific to this adapter process.

• demote

Causes the Oracle Utilities Network Management System ICCP Adapter currently in control
to relinquish control.

Use IccpAdapterService with high-level messages for the Oracle Utilities Network Management
System ICCP Adapter. For example:

 Action any.IccpAdapter report
8-10 Oracle Utilities Network Management System Adapters Guide

LiveData ICCP Adapter Configuration
Populating the NMS Measurements Tables
ICCP points must first be mapped to devices in the Oracle Utilities Network Management System
model before sending SCADA updates to Oracle Utilities Network Management System. These
ICCP points are placed in SCADA Measurements table of the Oracle Utilities Network
Management System database. A process needs to be formalized to create and maintain this data.
This process often depends on customer specific mechanisms used to maintain the SCADA side
of the ICCP interface. As a result this process generally needs to be formalized by LiveData and
the customer - potentially with help from NMS consulting.

Required NMS Data from LiveData

The following data items are required to be populated in the NMS measurements tables:

• ICCP Name

• ICCP Type

• Attribute

• NMSDeviceID

ICCP Name
• ICCP Name has to be unique.

• It is recommended for the name to be composed of alpha-numeric characters and underscore

• It is recommended for the first character of the ICCP Name to be a letter

• There should be no space, no periods and no dashes in the ICCP name.

ICCP Type
Below is a list of supported ICCP Types. Please take note of the underscore.

• Data_State

• Data_StateQ

• Data_StateQTimeTag

• Data_StateExtended

• Data_Real

• Data_RealQ

• Data_RealQTimeTag

• Data_RealExtended

• Data_Discrete

• Data_DiscreteQTimeTag

• Data_DiscreteExtended

Attribute
• The attribute should have a corresponding entry in the ATTRIBUTES table, specifically, in

the NAME field in the Oracle Utilities Network Management System database. Take note
that entries under the attributes column of the flat file needs to exactly match the entries in
the NAME field of the ATTRIBUTES table, taking into consideration case sensitivity,
underscores, etc.
ICCP Adapter 8-11

LiveData ICCP Adapter Configuration
NMSDeviceID
• This is the ID of the SCADA device. This ID should match a unique attribute or device name

in NMS that will allow the measurement table population process to grab the appropriate
NMS device handle (h_cls and h_idx) of the SCADA device. Tables that could be used in
NMS to reference SCADA devices handles could be SCADA_POINTS, ALIAS_MAPPING,
or a model managed device attribute table such as ATT_SWITCH.

Information Model - Database Schema

Quality Rules Table

This database table will define the quality codes that may be used for analog and digital values.
This table defines the meaning of each bit in the quality codes for SCADA measurements.

Note: If multiple bits in the quality code are set, then the color of the
measurement text in the Viewer is determined by the color of the lowest order
bit that is set in the quality code.

Column Name Data Type Size Description Values

PRIORITY NUMBER Ranking priority of the quality code Priority code, specifies relative
importance of this quality bit
over other quality bits

VALUE NUMBER Bit value used for the quality code
change.

For Phase 1:
2048=No Data
4096=Old Data

STRING VARCHAR2 3 Description of the quality code, which
is displayed next to the value of the
measurement when a quality exists for
a measurement change.

The actual character string
displayed next to the device
when viewed via the Viewer

DESCRIPTION VARCHAR2 128 Descriptive string Any text string-usually the
action taken from the SCADA
Summary

COLOR NUMBER Designates which color is used in the
Viewer to display the measurement
when a particular quality bit is set.
Integer value for the color associated
to the quality code change to be
displayed

The integers are mapped to
the pre-allocated colors
documented in separate
application file.

LOCATION NUMBER Location of symbol in relation to the
device associated with the value.
only used if a symbol is defined for
the quality code as opposed to just a
color for a quality change

1-9; 5 overrides the device
symbol

SYMBOL NUMBER The symbol used to display the value.
only used if a symbol is defined for
the quality code as opposed to just a
color for a quality change

Valid Symbol Identification
Number defined in
<project>_SYMBOLS.sym. 0
if defining a text symbol.

OFF_NOMINAL VARCHAR2 1 Whether or not the value is off-
nominal

Y or N
8-12 Oracle Utilities Network Management System Adapters Guide

LiveData ICCP Adapter Configuration
SCADA Measurements Table

The SCADA_MEASUREMENTS_ST table defines digital and analog measurements as used by
Oracle Utilities Network Management System. It is a staging table used by DDService for
populating the production SCADA measurements tables (ANALOG_MEASUREMENTS and
DIGITAL_MEASUREMENTS).

The Oracle Utilities Network Management System ICCP Adapter communicates dynamic
information to the Oracle Utilities Network Management System services. The services will cache
measurements defined by this table. Population is dependent upon customer-supplied
information.

Column Name Data Type Size Description Values

MEASUREMENT_T
YPE

VARCHAR2 1 Measurement type code. A (analog)
D (digital)

H_CLS NUMBER Class component of handle Valid object class

H_IDX NUMBER Index component of handle >0

PARTITION NUMBER Partition number, index
component of partition handle

Valid partition or 0 for multi-
partition objects

ATTRIBUTE NUMBER Attribute number which
identifies measurement type

Valid attribute number

TTL NUMBER Setting for displaying
measurement value in the
Viewer or not.

1 or 0. 1=yes

LIMIT_GROUP_ID NUMBER Limit group ID Customer defined

RTI_ALIAS VARCHAR2 128 Alias to be used in
communications between the
Oracle Utilities Network
Management System ICCP
Adapter and LiveData Server

Alphanumeric

SCADA_ID NUMBER SCADA host ID 0 (not a SCADA device), 1
(SCADA 1), 2 (SCADA 2)...

RTU_ID VARCHAR2 32 SCADA RTU ID String (optional)

QUALITY NUMBER Measurement quality code Bit mask of quality codes

VALUE NUMBER Measurement/entered value Entered value

UPDATE_FLAG NUMBER Manual replace flag 1=true, 0=false

ICCP_OBJECT VARCHAR2 32 ICCP Object type of the
telemetered value

Alphanumeric

DISPLAY_ID VARCHAR2 64

NORMAL_STATE NUMBER

CONTROLLABLE VARCHAR2 1
ICCP Adapter 8-13

LiveData ICCP Adapter Configuration
SCADA Controls Table

The SCADA_CONTROLS table defines control actions as used by Oracle Utilities Network
Management System. Population is dependent upon customer-supplied information. The
information to be contained in this table is generated by the Auto Configuration Program.

ACTIVE VARCHAR2 1 Active flag for patch
management, indicates whether
the row is active within the
model

Y(yes=active),
N(no=inactive),
 A(local
add=active),
D(local delete=inactive),
R(locally removed,
dependent=inactive)

SOURCE VARCHAR2 33 Source of the measurement. any character string.

OFF_NOMINAL_TI
ME

DATE

Column Name Data Type Size Description Values

Column Name Data Type Size Description Values

H_CLS NUMBER Class component of device handle. Valid object class

H_IDX NUMBER Index component of device
handle.

>0

NMS_ACTION NUMBER The Control Action ID number
associated to the action.

Valid control action ID.
1 (OPEN),
2 (CLOSE)…

EXT_ACTION NUMBER Part of unique key to identify each
external control action for a single
device.

0..N, based on the number
of control actions defined
for the device.

ATTRIBUTE NUMBER If non-zero, attribute number
which identifies measurement type.

0 (Ignore) or
Valid attribute number

RTI_ALIAS VARCHAR2 128 Alias to be used in
communications between the
Oracle Utilities Network
Management System ICCP
Adapter and LiveData Server.

Alphanumeric

TIMEOUT NUMBER SCADA timeout for this device. 0 = No Timeout,
>0 = timeout is seconds.

SCADA_ID NUMBER SCADA server ID. 0 (not a SCADA device),
1 (SCADA 1),
2 (SCADA 2)...

RTU_ID VARCHAR2 64 SCADA RTU ID. String (optional)
8-14 Oracle Utilities Network Management System Adapters Guide

TMW ICCP Adapter Configuration
TMW ICCP Adapter Configuration
This section guides the user through configuration of the Oracle Utilities Network Management
System TMW ICCP Adapter. The following are assumed to be true before the adapter is installed:

• Oracle database access has been confirmed.

• Isis messaging bus has been installed and verified.

• Oracle Utilities Network Management System is installed and functional.

Configuring the TMW ICCP Adapter requires:

• Configuring the Adapter to Run as a System Service

• Populating the NMS Measurements Tables

Configuring the Adapter to Run as a System Service
Configure the TMW ICCP Adapter by updating the $NMS_HOME/etc/system.dat file to
include the TMW ICCP Adapter as a system service. There are three main sections where this
service needs to be defined: the service, program and instance sections. See the $CES_HOME/
templates/system.dat.template file for examples of how to configure the TMW ICCP
Adapter. Search for Tase2Adapter and make sure those lines are uncommented. You must
restart the system services in order for the TMW ICCP Adapter to be properly monitored by
SMService.

Below is an example of the program section in the system.dat file:

program Tase2Adapter Tase2Adapter -prm_file /users/nms1/etc/
Tase2Adapter.prm

Note: It is assumed that the ICCP Adapter will reside on the same Unix or
Linux server where the Oracle Utilities Network Management System services
environment resides.

ACTIVE VARCHAR2 1 Active flag for patch management;
indicates whether the row is active
within the model.

Y (yes=active),
N (no=inactive),
A (local add=active),
D (local delete=inactive),
R (locally removed,
 dependent=inactive)

Column Name Data Type Size Description Values
ICCP Adapter 8-15

TMW ICCP Adapter Configuration
Command Line Options for TMW ICCP Adapter

The command line for the TMW ICCP Adapter provides the following options:

Tase2Adapter.prm

The Tase2Adapter.prm file is used to configure the operation of the Oracle Utilities Network
Management System TMW ICCP Adapter. The default location for this file is the same as where
the Tase2Adapter binary is located (i.e., $CES_HOME/bin) but it is generally configured to be in a
different location by using the –prm_file <Tase2Adapter.prm path> command line
option.

Lines in this file beginning with a “;” (semi-colon) are comments. Lines beginning with a “[” (left
bracket) are block identifiers (markers). Fields marked as <Required> must be configured for
proper operation and are generally site specific. See the Tase2Adapter.prm.template file in the
standard $CES_HOME/templates directory for an example Tase2Adapter configuration file.

Fields in the Tase2Adapter.prm File

Command Line Option What it does

-debug <level> Sets the level of debug messages generated by the adapter.
<level> is a positive number, or zero. The higher the number,
the more information is displayed. If <level> is omitted, it
defaults to a value of 0. Debug facilities can also be specified on
the command line; for example:

-debug IA_ICCP 3

could be used to specify level 3 debug for the IA_ICCP debug
facility.

-prm_file <full path to
configuration file>

Sets the path to the file used to configure the operation of the
TMW ICCP Adapter.

Field name Type Default Valid Values Description

[Tase2Adapter] Marker Used for generic configuration of program.

ServerHostname IP
address
List –
blank
separated

<Required> 128.168.148.43
etc

The IP address(es) of the TMW ICCP server
to connect to. It could be a blank separated
list of IP address of several ICCP servers. In
case a failure of connection was detected by
the TMW ICCP Adapter with the current
ICCP server, it will traverse the
ServerHostname list for the next ICCP server
to connect to.

Period Integer 10 [1..MAX_INT] Time in seconds between periodic transfers of
non-time critical data.

StatusUpdates Integer 25 [1..MAX_INT] The maximum number of status updates to be
sent to DDService at one time.

ScadaId Integer 1 [1..MAX_INT] Identification number assigned to the SCADA
in Oracle Utilities Network Management
System with which the TMW ICCP Adapter is
communicating. It should match an existing
record in SCADA_IDS database table.
8-16 Oracle Utilities Network Management System Adapters Guide

TMW ICCP Adapter Configuration
AnalogTolerance Double 0.0F [0.01..0.99] Dead band for analog value updates. It is the
required percent change from the last
reported value to trigger an update.

Analogs Boolean F [T, F] Boolean value indicating use of the
ANALOG_MEASUREMENTS table.

Digitals Boolean T [T, F] Boolean value indicating use of the
DIGITAL_MEASUREMENTS table.

ReconnectPeriod Integer 60 [0..MAX_INT] Configurable duration of delay to wait after
the ICCP server instances failed in succession.

Controls Boolean F [T, F] Boolean value indicating use of the controls
table for Block 5 functionality.

QualityCodeUseOn
AssociationTimeOut

Integer 0 [0..MAX_INT] Quality code that will be sent to DDService
when the communication with ICCP server is
lost. A valid QualityCode must be specified if
this option is used.

DisableStop Boolean F [T, F] Normally the adapter will accept and process
a stop high level message. This option disables
this feature. When this feature is enabled, the
adapter will disregard a stop high level
message.

DisableCOV Boolean F [T, F] Normally the adapter will process a COV
update (one or more open and close
sequences within a scan cycle – normally
indicating one or more momentaries) and
send it to DDService. This option disables
this feature.

IgnoreCritInterSysServFail Boolean F [T, F] Normally the adapter will stop if SMSserivce
reports a critical service failure and not restart
until services are recovered. This option
disables this feature.

NoSwitchOpQualityMask Integer No Mask [0..MAX_INT] This parameter sets the quality codes that
prevent switches from being operated. There
is no effect on non-switch statuses.

PhaseEncodeSwitch Boolean F [T, F] If set to true, this will enable Iccp Adapter to
interpret data discrete values as three-bit
phase encoded statuses. [e.g., A = ‘001’, B =
‘010’, C = ‘100’, etc.]

PseudoAlarms Boolean F [T, F] If set to 1, then this will set the pseudo flag
for the switch entry to be sent to DDService.
Generates pseudo (advisory) alarms for ICCP
reported device ops rather than actually
operating the switches in the Oracle Utilities
Network Management System model.

Field name Type Default Valid Values Description
ICCP Adapter 8-17

TMW ICCP Adapter Configuration
SendTimeout Integer 10 [0..MAX_INT] Timeout setting for the connection to the
ICCP server.

[VCC] Marker ICCP Domain (VCC) Configuration.

Server TSEL String <Required> OSI Transport Service Access Point (TSAP)
Selector of the ICCP server.

ServerSSEL String <Required> OSI Session Service Access Point (SSAP)
Selector of the ICCP server.

ServerPSEL String <Required> OSI Presentation Service Access Point
(PSAP) Selector of the ICCP server.

ServerAP Title String <Required> Application Process Title of the ICCP server.

ServerAEQual Integer 12 Server-side Application Entity Qualifier.

DomainName String <Required> ICCP Domain Name

TransferSets String Comma-separated list of ICCP Data Transfer
Sets. Only required when using server-
configured data sets.

ClientTSEL String <Required> OSI Transport Service Access Point (TSAP)
Selector of the TMW ICCP Adapter.

ClientSSEL String <Required> OSI Session Service Access Point (SSAP)
Selector of the TMW ICCP Adapter.

ClientPSEL String <Required> OSI Presentation Service Access Point
(PSAP) Selector of the TMW ICCP Adapter.

ClientAPTitle String <Required> Application Process Title of the TMW ICCP
Adapter.

ClientAEQual Integer 12 Client-side Application Entity Qualifier.

BilateralTableId String <Required> Bilateral Table Id.

Tase2Version String '2000.8' '1996.8' and
'2000.8'

TASE.2 protocol version.

[ValidityQuality] Marker Assign an Oracle Utilities Network
Management System quality to ICCP Validity
Quality values

Valid Integer 0 2**n (n=11->31) The value is valid. This is the default (normal)
value should virtually always be 0.

Held Integer 0 2**n (n=11->31) Previous data value has been held over.
Interpretation is local.

Suspect Integer 0 2**n (n=11->31) Data value is questionable. Interpretation is
local.

Field name Type Default Valid Values Description
8-18 Oracle Utilities Network Management System Adapters Guide

TMW ICCP Adapter Configuration
Notvalid Integer 0 2**n (n=11->31) The value is not valid.

[CurrentSourceQuality] Marker Assign an Oracle Utilities Network
Management System quality to ICCP Current
Source Quality values.

Telemetered Integer 0 2**n (n=11->31) Value was received from a telemetered site.
This is the default (normal) value should
virtually always be 0.

Calculated Integer 0 2**n (n=11->31) Value was calculated based on other data.

Entered Integer 0 2**n (n=11->31) Value was entered manually.

Estimated Integer 0 2**n (n=11->31) Value was estimated (State Estimator, etc.).

[NormalValueQuality] Marker Assign an Oracle Utilities Network
Management System quality to ICCP Normal
Value Quality values.

Normal Integer 0 2**n (n=11->31) The point value is that which has been
configured as normal for the point. This is the
default (normal) value should virtually always
be 0.

Abnormal Integer 0 2**n (n=11->31) The point value is not that which has been
configured as normal for the point.

[TimeStampQuality] Marker Assign an Oracle Utilities Network
Management System quality to ICCP
Timestamp Quality values

Valid Integer 0 2**n (n=11->31) Current value of the TimeStamp attribute
contains the time stamp of when the value
was last changed. This is the default (normal)
value should virtually always be 0.

Invalid Integer 0 2**n (n=1->31) Current value of the TimeStamp attribute
contains the time stamp other than when the
value was last changed.

[SwitchStatusQuality] Marker Assign an Oracle Utilities Network
Management System quality to the non-open/
close statuses that can be returned in the two-
bit ICCP status field. ICCP “open” is
generally (1) and “closed” is (2).

Between Integer 262144 2**n (n=11->31) Quality code to set if the two bit ICCP switch
status is reported as “between” (0).

Invalid Integer 524288 2**n (n=11->31) Quality code to set if the two bit ICCP switch
status is reported as “invalid” (3).

Field name Type Default Valid Values Description
ICCP Adapter 8-19

TMW ICCP Adapter Configuration
 Configuring Data Sets in Tase2Adapter.

In order for the ICCP server to be able to transfer data to NMS through the Tase2Adapter, ICCP
points need to be organized into data sets. There are a few steps to achieve that:

1. Assign SCADA points to a data sets by populating the ICCP_DATA_SET column in the
SCADA_MEASUREMENTS_ST table with the name of the data set.

2. Run command 'UpdateDDS -recacheMeasures' to propagate changes to the
ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS tables.

3. For each data set, add section to the Tase2Adapter configuration file. The name of the section
should match the name of the data set. This section contains configuration parameters for the
data set.

Data Set Configuration Parameters
• Enabled

A boolean flag that enables/disables the data set.

Default: F (disabled)

• ServerConfigured

A boolean flag which indicates that this data set is configured

by the server. All configuration parameters other than Enabled are ignored for server-
configured data sets.

Default: F (client-configured data set)

Tase2Adapter supports two methods of configuring transfer set parameters for data sets: client-
side and server-side.

With the client-side approach, the Tase2Adapter will create data sets and configure associated data
set transfer sets during the process of connecting to the ICCP server according to the
configuration parameters specified in the data set section of the configuration file.

Transfer Set Configuration Parameters
• Interval

Time interval (in seconds) between TASE.2 server reports.

• TLE

Time Limit for Execution (in seconds). It is the time interval during which the TASE.2 server
has to send the Data Set Transfer Report to the TASE.2 client.

• BufferTime

Time interval (in seconds) for buffering the ObjectChange condition before reporting to the
TASE.2 client. The Buffer Time starts when the first ObjectChange condition occurs.

• IntegrityCheck

Time value (in seconds) for integrity check when IntegrityTimeOut condition is used.

• Critical

A boolean flag controlling type of Transfer Report acknowledgment. True means that the
Transfer Report is critical and an acknowledgment from the TASE.2 client back to the
TASE.2 server is expected.
8-20 Oracle Utilities Network Management System Adapters Guide

TMW ICCP Adapter Configuration
• RBE

A boolean flag controlling Report By Exception mechanism. True implies that the changed
objects are reported.

• AllChangesReported

A boolean flag indicating the number of changes of a given Data Value that may be reported
in a single Transfer Report when RBE is true and Buffer Time is non-zero. True means all
value changes within the stated buffer period are reported. False means only the last change
(assuming there is more than one change of value in the buffer period) is reported in the
Transfer Set.

• DSConditionsRequested

Comma-separated list of conditions to be reported by TASE.2 server.

Conditions:

IntervalTimeOut - Send a report when the Interval time arrives.

IntegrityTimeOut - Send a report of the entire data set when the Integrity Check time
interval expires. This only applies when RBE is true; when RBE is false, the
IntervalTimeOut can be used to send periodic reports.

ObjectChange - Send a report when any object in the data set changes.

OperatorRequest - Send a report when an operator at the TASE.2 server control center
requests it.

By default all boolean flags are set to false and all integer values are set to 0.

For detailed information about TASE.2 DS Transfer Set configuration parameters, see
international standard IEC 60870-6-503.

Example, data set 'ds1' is configured to report changes by exception.

[ds1]
TLE=10
RBE=T
DSConditionsRequested=ObjectChange
Enabled=T

With the server-side approach, the Tase2Adapter will assume that data sets and associated transfer
sets are created and configured by the ICCP server. To indicate that a data set is configured by the
server, the line 'ServerConfigured=T' needs to be added to the corresponding section of the
Tase2Adapter configuration file. The 'TransferSets' parameter in the [VCC] section of the
configuration file needs to contain comma-separated list of the transfer sets names, which should
be enabled by Tase2Adapter.

Example, data set 'ds2' and associated transfer set 'ts_ds2' are configured by the server.

[VCC]
...
TransferSets=ts_ds2

[ds2]
ServerConfigured=T
Enabled=T
ICCP Adapter 8-21

TMW ICCP Adapter Configuration
Sample Tase2Adapter.prm Configuration File
[Tase2Adapter]
ServerHostname=128.168.148.43
Period=10
ScadaId=300
StatusUpdates=25
Analogs=T
AnalogTolerance=.001
Digitals=T
ReconnectPeriod=60
QualityCodeUseOnAssociationTimeOut=16384
DisableCOV=F
PhaseEncodeSwitch=T
SendTimeout=30
[VCC]
ServerTSEL=00 23
ServerSSEL=00 23
ServerPSET=00 23
ServerAPTitle=1,1,999,1
ServerAEQual=34
DomainName=NMS
ServerTSEL=00 24
ServerSSEL=00 24
ServerPSET=00 24
ServerAPTitle=1,1,999,2
ServerAEQual=45
BilateralTableId=NMS
Tase2Version=2000.8
 [ValidityQuality]
Valid=
Held=
Suspect=
Notvalid=1048576
[CurrentSourceQuality]
Telemetered=
Calculated=
Entered=
Estimated=2097152
[NormalValueQuality]
Normal=
Abnormal=
[TimeStampQuality]
Valid=
Invalid=
[a1]
Interval=0
TLE=0
BufferTime=0
IntegrityCheck=60
Critical=F
RBE=T
AllChangesReported=F
DSConditionsRequested=ObjectChange,IntegrityTimeOut
Enabled=T
8-22 Oracle Utilities Network Management System Adapters Guide

TMW ICCP Adapter Configuration
Quality Codes

The Tase2Adapter.prm file enables ICCP quality codes to be translated into Oracle Utilities
Network Management System quality codes. In the simplest (and default) configuration, all of the
ICCP quality codes (except the Between and Invalid SwitchStatusQuality codes, which
need to be defined to ensure proper operation) are assigned to the 'normal' Oracle Utilities
Network Management System quality code (0).

Note: Oracle Utilities Network Management System quality codes are always
single bit values. Therefore, the only valid value for configuration is 0 or a
proper value of 2^nth power where n=0->31. The Quality Rules Table on
page 8-26 table lists all the valid user-defined quality codes in Oracle Utilities
Network Management System.

If none of the predefined quality codes are applicable, then a new code must be created. The
following steps accomplish this:

• Choose an ICCP quality listed in the Tase2Adapter.prm.

• Check the Quality Rules Table to see which values have already been assigned to qualities.

• Assign one of the values listed below to the ICCP quality and enter it in the Quality Rules
Table.

• Locate the quality in the Tase2Adapter.prm file and enter the assigned value for it.

The assigned value must be the decimal representation of 32 bits, where no more than one bit has
a value of 1. For example, if the bit position is 11, use the number 2048. The following list
contains the decimal values that may be assigned to new qualities: 2048, 4096, 8192, 16384, 32768,
65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432,
67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648.

Values of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 may not be assigned as codes for new
qualities because they are already defined and used within Oracle Utilities Network Management
System. The ‘normal’ Oracle Utilities Network Management System quality code is 0.

The adapter reads the Tase2Adapter.prm file only during startup. If the quality code is added
when the adapter is running, you must restart the adapter in order for it to recognize the new
quality code.
ICCP Adapter 8-23

TMW ICCP Adapter Configuration
High Level Messages

The TMW ICCP Adapter can be dynamically controlled from Oracle Utilities Network
Management System by using high-level messages. They can be used any time while running the
Oracle Utilities Network Management System TMW ICCP Adapter. The following high-level
messages can be used:

• stop

Disconnect from the ICCP server and stop the Oracle Utilities Network Management System
TMW ICCP Adapter.

• report

Empty message to determine how many Oracle Utilities Network Management System TMW
ICCP Adapters are running.

• debug [on | off | #]

Turn on/off debug, or set it to a specific level. On is equivalent to 1, off is 0. Level can be any
integer value no less than 0.

• debug <facility> #

Turn facility specific debug on/off. For example, to turn IA_ICCP debug on to level 3:

 Action any.Tase2Adapter debug IA_ICCP 3

To turn off:

 Action any.Tase2Adapter debug IA_ICCP 0

Check TMW ICCP Adapter specific log file for other facilities specific to this adapter process.

• sync

Initiates synchronization sequence. The TMW ICCP Adapter will read the latest value of each
SCADA measurement from the ICCP server.
8-24 Oracle Utilities Network Management System Adapters Guide

TMW ICCP Adapter Configuration
Populating the NMS Measurements Tables
ICCP points must first be mapped to devices in the Oracle Utilities Network Management System
model before sending SCADA updates to Oracle Utilities Network Management System. These
ICCP points are placed in SCADA_MEASUREMENTS_ST table of the Oracle Utilities
Network Management System database. A process needs to be formalized to create and maintain
this data. This process often depends on customer specific mechanisms used to maintain the
SCADA side of the ICCP interface.

Required NMS Data

The following data items are required to be populated in the NMS measurements tables:

• ICCP Point Name

• Attribute

• SCADA ID

• NMS Device Handle

• Measurement Type

• ICCP Data Set

• ICCP Data Type

ICCP Point Name
• ICCP Point Name has to be unique.

• It is recommended for the name to be composed of alpha-numeric characters and underscore

• It is recommended for the first character of the ICCP Name to be a letter

• There should be no space, no periods and no dashes in the ICCP name.

Attribute
• The attribute value connects a SCADA measurement to a specific device attribute in NMS.

The attribute should have a corresponding entry in the ATTRIBUTES table.

SCADA ID
• SCADA system identifier. There should be a corresponding entry in the SCADA_IDS table.

NMS Device Handle
• The NMS Device Handle is the handle of the device in the NMS model associated with a

particular ICCP Point. A single NMS device can have multiple ICCP points associated with it
for different measurements that the SCADA system provides for the given device.

Measurement Type
• Each ICCP point represents either digital (including device status) or analog measurement.

ICCP Data Set
• The name of the data set this point is assigned to. Points assigned to the same data set share

the same data transfer configuration (report by exception, integrity check, etc). There can be a
limit on how many points can be assigned to a single data set. Consult your ICCP server
documentation.

ICCP Data Type
• Each ICCP point has an associated data type. If data type is not specified for a point then the

following defaults are used:
ICCP Adapter 8-25

TMW ICCP Adapter Configuration
Device status - Data_StateExtended

Digital value - Data_DiscreteQ

Analog value - Data_RealQ

Information Model - Database Schema

Quality Rules Table

This database table will define the quality codes that may be used for analog and digital values.
This table defines the meaning of each bit in the quality codes for SCADA measurements.

Note: If multiple bits in the quality code are set, then the color of the
measurement text in the Viewer is determined by the color of the lowest order
bit that is set in the quality code.

Column Name Data Type Size Description Values

PRIORITY NUMBER Ranking priority of the quality code Priority code, specifies relative
importance of this quality bit
over other quality bits

VALUE NUMBER Bit value used for the quality code
change.

For Phase 1:
2048=No Data
4096=Old Data

STRING VARCHAR2 3 Description of the quality code, which
is displayed next to the value of the
measurement when a quality exists for
a measurement change.

The actual character string
displayed next to the device
when viewed via the Viewer

DESCRIPTION VARCHAR2 128 Descriptive string Any text string-usually the
action taken from the SCADA
Summary

COLOR NUMBER Designates which color is used in the
Viewer to display the measurement
when a particular quality bit is set.
Integer value for the color associated
to the quality code change to be
displayed

The integers are mapped to
the pre-allocated colors
documented in separate
application file.

LOCATION NUMBER Location of symbol in relation to the
device associated with the value.
only used if a symbol is defined for
the quality code as opposed to just a
color for a quality change

1-9; 5 overrides the device
symbol

SYMBOL NUMBER The symbol used to display the value.
only used if a symbol is defined for
the quality code as opposed to just a
color for a quality change

Valid Symbol Identification
Number defined in
<project>_SYMBOLS.sym. 0
if defining a text symbol.

OFF_NOMINAL VARCHAR2 1 Whether or not the value is off-
nominal

Y or N
8-26 Oracle Utilities Network Management System Adapters Guide

TMW ICCP Adapter Configuration
SCADA Measurements Table

The SCADA_MEASUREMENTS_ST table defines digital and analog measurements as used by
Oracle Utilities Network Management System. It is a staging table used by DDService for
populating the production SCADA measurements tables (ANALOG_MEASUREMENTS and
DIGITAL_MEASUREMENTS).

The Oracle Utilities Network Management System ICCP Adapter communicates dynamic
information to the Oracle Utilities Network Management System services. The services will cache
measurements defined by this table. Population is dependent upon customer-supplied
information.

Column Name Data Type Size Description Values

MEASUREMENT_T
YPE

VARCHAR2 1 Measurement type code. A (analog)
D (digital)

H_CLS NUMBER Class component of handle Valid object class

H_IDX NUMBER Index component of handle >0

PARTITION NUMBER Partition number, index
component of partition handle

Valid partition or 0 for multi-
partition objects

ATTRIBUTE NUMBER Attribute number which
identifies measurement type

Valid attribute number

TTL NUMBER Setting for displaying
measurement value in the
Viewer or not.

1 or 0. 1=yes

LIMIT_GROUP_ID NUMBER Limit group ID Customer defined

RTI_ALIAS VARCHAR2 128 ICCP Point Name Alphanumeric

SCADA_ID NUMBER SCADA host ID Foreign key into
SCADA_IDS database table.

RTU_ID VARCHAR2 32 SCADA RTU ID String (optional)

QUALITY NUMBER Measurement quality code Bit mask of quality codes

VALUE NUMBER Measurement/entered value Entered value

UPDATE_FLAG NUMBER Manual replace flag 1=true, 0=false
ICCP Adapter 8-27

TMW ICCP Adapter Configuration
ICCP_OBJECT VARCHAR2 32 ICCP data type for this
measurement

List of the supported ICCP
data types:

Data_Discrete

Data_DiscreteQ

Data_DiscreteQTimeTag

Data_DiscreteExtended

Data_Real

Data_RealQ

Data_RealQTimeTag

Data_RealExtended

Data_StateQ

Data_StateQTimeTag

Data_StateExtended

ICCP_DATA_SET VARCHAR2 64 Name of the ICCP data set this
measurement is assigned to.

String

DISPLAY_ID VARCHAR2 64

NORMAL_STATE NUMBER

CONTROLLABLE VARCHAR2 1

ACTIVE VARCHAR2 1 Active flag for patch
management, indicates whether
the row is active within the
model

Y(yes=active),
N(no=inactive),
 A(local
add=active),
D(local delete=inactive),
R(locally removed,
dependent=inactive)

SOURCE VARCHAR2 33 Source of the measurement. any character string.

OFF_NOMINAL_TI
ME

DATE

Column Name Data Type Size Description Values
8-28 Oracle Utilities Network Management System Adapters Guide

TMW ICCP Adapter Configuration
SCADA_IDS

SCADA_IDS contains information about known SCADA systems that NMS is connected to. The
TMW ICCP Adapter needs to have an entry in this table.

Column Name Data Type Size Description Values

ID NUMBER SCADA system id

SCADA_NAME VARCHAR2 32 SCADA system name

ADAPTER_TYPE VARCHAR2 32 Adapter used to
communicate with the
SCADA system

MULTISPEAK (MultiSpeak SCADA
Adapter)
RTADAPTER (Generic SCADA Adapter)
ICCP (ICCP Adapter)

ACTIVE VARCHAR2 1 Active flag Y - active
N - inactive
ICCP Adapter 8-29

TMW ICCP Adapter Configuration
8-30 Oracle Utilities Network Management System Adapters Guide

Chapter 9
Specific SCADA Adapters

This chapter includes the following topics:

• OSI SCADA Adapter

OSI SCADA Adapter
The OSI SCADA Adapter requires the scada_osi license in your
<project>_licensed_products.dat file. Example configuration for the OSI SCADA
Adapter is found in the multispeak_scada_config.sql template file. It includes the following
concepts:

• General Configuration Parameters

• Point List Configuration

• Real-Time States/Values

• Tags

General Configuration Parameters
The SCADA_LINKS table requires that the MultiSpeak SCADA Server URL be configured. For
example:

INSERT INTO scada_links (id, scada_id, ws_url, priority, active)
VALUES (1, 200, 'http://osi-scada-server:8080/axis2/services/
MultiSpeak_v41_SCADA_Server', 1, 'Y');

The CES_PARAMETERS SoapUI.plugin_class should be the OSI MultiSpeak plug-in class. For
example:

INSERT INTO ces_parameters (app, attrib, value)
VALUES ('SCADAInterface', 'SoapUI.plugin_class',
'com.splwg.oms.interfaces.scada.plugins.OsiScada');
Specific SCADA Adapters 9-1

OSI SCADA Adapter
Point List Configuration
Oracle NMS defines a set of measurement points (status and analog) that NMS is interested in
“sharing” with OSI. When a point is shared between the two systems, the following functionality
is automatically enabled:

The naming of these points is based upon a mutually agreed upon convention. This convention
aligns how measurement points are defined in NMS with how those same points are defined in the
OSI D-SCADA. The point ID is referred to as the common “Point ID,” and is the basis for all
data exchange between the two systems. Note the only lack of point ID symmetry involves non-
gang 3-phase devices. In the NMS model all devices can be one, two or three phase and whether a
device is gang or non-gang operated is a device attribute. NMS “Status” is represented by a 3-bit
integer (0 - 7), as follows:

• 0 = phase ABC open

• 1 = phase A closed

• 2 = phase B closed

• 4 = phase C closed

• 3 = phase AB closed

• 5 = phase AC closed

• 6 = phase BC closed

• 7 = phase ABC closed

In OSI D-SCADA, all “Status” points are binary, so this adapter must map a single (3-phase) NMS
Status to three different OSI “Status” measurements. The following is an overview of the
proposed naming convention for these points:

Data Flow
Real Time
Values/
Qualities

Controls Tags
Quality
Codes

UI
Navigation

NMS—OSI N/A Status
(Open/
Close)

Yes - Status No Yes

OSI—NMS Status/
Analog/
Digital

N/A Yes - Status Yes Yes

NMS Point
Type

NMS Point ID
OSI Point
Type

OSI Point ID
NMS Device
Name

Measurement
Description

Status BR2412 Status BR2412 BR2412 3-phase ganged
breaker state.

Status S1234 Status S1234^^A
S1234^^B
S1234^^C

S1234 3-phase non-
ganged switch state.

Digital BR2412^Auto Status BR2412^Auto BR2412 Auto Reclose status
for BR2412.
9-2 Oracle Utilities Network Management System Adapters Guide

OSI SCADA Adapter
There is some flexibility regarding how this common Point ID is defined in the D-SCADA
system. For example, the OSI SCADA point “Name” field could be used to store the common ID
used by Oracle NMS, or a combination of OSI SCADA fields could also be used. This allows for
an “automatic” mapping to telemetry in the OSI system without the user having to maintain a
separate mapping table.

The OSI D-SCADA system can be configured to periodically perform this synchronization with
Oracle NMS.

Real-Time States/Values
OSI provides a one-way notification of changes to subscribed status and analog points, as defined
by the Oracle NMS shared point list. Attributes included in this payload include state/value,
quality, trip count (for status), and time stamp. In the case of quality, a set of quality types has been
agreed upon for the lexicon used between the Oracle NMS and OSI systems (see table below),
with each system mapping their internal quality types to these intermediate qualities. The lexicon
used is limited to the qualities supported in the MultiSpeak v4.1 standard, which includes
Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

A change in any of the attributes that make up the point will trigger an immediate notification to
the NMS with all of the current attributes for that point within 5 seconds from when the change
occurred.

In addition to the change-based notification, NMS will retrieve all of the status and analog point
data from OSI when it first initializes or when NMS has detected that the OSI system has
recovered from an event that could have caused change-based notifications to be missed (for
example, system failover, database build, and so forth).

Analog BR2412^Amps_A
BR2412^Amps_B
BR2412^Amps_C

Analog BR2412^Amps_A
BR2412^Amps_B
BR2412^Amps_C

BR2412 3-phase ganged
breaker current
measurement (in
Amps).

Analog S3113^fault_kv_a
S3113^fault_kv_b
S3113^fault_kv_c

Analog S3113^fault_kv_a
S3113^fault_kv_b
S3113^fault_kv_c

S3113 3-phase non-
ganged switch fault
voltage (in kV).

NMS Point
Type

NMS Point ID
OSI Point
Type

OSI Point ID
NMS Device
Name

Measurement
Description

MultiSpeak Quality Description

Measured Default quality for any OSI D-SCADA telemetered points.

Calculated Default quality for any calculated (i.e., OSI “C_*”) D-SCADA
points.

Last Indicates presence of a Scan Inhibit tag on the OSI D-SCADA
point.

Failed Indicates non-update quality on the OSI D-SCADA point.
Specific SCADA Adapters 9-3

OSI SCADA Adapter
Tags
OSI D-SCADA and Oracle NMS bi-directionally exchange tags for NMS Status points included in
the shared common Point ID list (tags are not exchanged for NMS Digital or NMS Analog
measurement points). To avoid conflicts, tags created in the NMS can only be edited/deleted in
the NMS system while tags created in the OSI D-SCADA system can only be edited/deleted in
the SCADA system. Note that a user in either system can temporarily edit/delete a “foreign” tag
originating from the other system, but it will be overwritten when a periodic “integrity” sync
occurs. Similar to qualities, a lexicon of tag types has been established (see table below) that maps
any vendor-specific tags on either side to one of the common tag types. The base tags supported
by the adapter are listed in the table below; other tags can be added via project-specific
configuration.

Similar to the point state/value exchange, this interface will be change-based with an integrity poll
service available on the OSI side for NMS to retrieve OSI tags for all shared status points and vice
versa for OSI to retrieve from NMS. A CRUD-style interface (Create/Read/Update/Delete) will
be provided by each side. Only tags on common Point IDs in the shared list will be included in
this interface.

OSI Tag NMS Tag OSI—NMS Tag Type NMS—OSI Tag Type

Information
(F)

Information SCADA_info NMS_info

Control Inhibit
(C)

Tag SCADA_inhibit NMS_inhibit

Close Inhibit
(!)

Hold SCADA_close_inhibit NMS_close_inhibit
9-4 Oracle Utilities Network Management System Adapters Guide

Chapter 10
SCADA Calculation Engine

This chapter includes the following topics:

• Introduction

• SCADA Calculation Engine Database Configuration

• SCADA Calculation Engine SRS Rules Configuration

 Introduction

The Oracle Utilities Network Management System SCADA Calculation Engine generates
calculated point values based on measurements received from any supported SCADA Adapter.
These measurement values, which are fully configurable using SQL procedures, are fed into the
system using the RTDBAdapter (RTAdapter with the -dir RDBMS option).

The executable program (CalcAdapter) can be configured in the system.dat file.

SCADA Calculation Engine Database Configuration
The SCADA_CALC_FUNC table holds the calculation engine configuration mapping. Insert into
this table the specific rti_alias point names and functions to call for each mapping needed.
Alternately, if your rti_alias point names follow the standard <device_alias>-<attribute name>
convention, you can use [ALL], which creates this mapping for every device that has these
measurements.

Column Description

seq_id The generated primary key from the scada_calc_seq sequence.

rti_alias The point name to update.

unc_name The function to call. NMS provides many examples in the
scadacalc package.

func_args The arguments to the function. Put single quotes around
strings, like point names.
SCADA Calculation Engine 10-1

SCADA Calculation Engine SRS Rules Configuration
Examples
1. This multiplies the BR2411-kv_A by 1000 and puts it in the BR2411-v_A point, using the

provided multiply_value() function:

INSERT INTO scada_calc_func (seq_id, rti_alias, func_name,
func_args)

VALUES(scada_calc_seq.nextval, 'BR2411-v_A',
'scadacalc.multiply_value','''BR2411-kv_A'', 1000');

2. This averages the by-phase BR2411-Amps_A, BR2411-Amps_B, and BR2411-Amps_C
measurements and puts the result in the BR2411-Amps point, using the provided avg_3()
function:

INSERT INTO scada_calc_func (seq_id, rti_alias, func_name,
func_args)

VALUES(scada_calc_seq.nextval, 'BR2411-Amps', 'scadacalc.avg_3',
'''BR2411-Amps_A'',''BR2411-Amps_B'',''BR2411-Amps_C''');

3. This sums all Amps_A + Amps_B + Amps_C to the Amps_Sum measurement for every
device that contains those measurements. All measurement rti_aliases must have the same
prefix (usually the alias), and the suffixes must match the attribute names. This uses the
provided sum_3() function:

INSERT INTO scada_calc_func (seq_id, rti_alias, func_name,
func_args)

VALUES(scada_calc_seq.nextval, '[ALL]-Amps_Sum',
'scadacalc.sum_3', '''[ALL]-Amps_A'',''[ALL]-Amps_B'',''[ALL]-
Amps_C''');

A large set of functions are already available in the scadacalc package, but others can be defined by
the project team, if needed.

Notes on adding new procedures:

• Follow the convention that the first parameter is the resulting rti_alias name.

• Be sure method names are unique. Add the number of arguments, analog or digital, etc. to
make the names unique.

• Use the existing scadacalc procedures as a guide and reuse the get_analog(),
get_digital(), insert_analog(), insert_digital() functions.

SCADA Calculation Engine SRS Rules Configuration
The interval used by the calculation engine is configurable in the scadaCalcInterval SRS
Rule. This interval defaults to 5 seconds and controls how many seconds the SCADA calculation
engine wait to buffer reading before triggering the configured procedures.
10-2 Oracle Utilities Network Management System Adapters Guide

Chapter 11
MultiSpeak Adapter

This chapter includes the following topics:

• Introduction

• Installation

• Software Configuration

• Adapter Interface Communication Overview

• Adapter Design

• Database Schema

• SCADA Component

• Supported Data Flows

• Software Configuration

• Plugin Support

• High-Level Messages

• Troubleshooting

Introduction
The Oracle Utilities Network Management System MultiSpeak Adapter provides the ability to
request and receive meter status information from an Automated Meter Reading (AMR) system,
to receive crew location information from an Automated Vehicle Location (AVL) system, and to
communicate with SCADA systems. The interface uses communication protocols as defined in
MultiSpeak Version 4.1 Web Services specification. (SOAP protocol version 1.1 is used unless
otherwise noted.) HTTP/HTTPS protocol is used as transport mechanism. It allows Oracle
Utilities Network Management System to communicate securely with any MultiSpeak-compliant
AMR, AVL, or SCADA system. In addition to HTTP/HTTPS, communication with SCADA
systems can be done over JMS.

The Oracle Utilities Network Management System MultiSpeak Adapter is implemented as a Java
application, running on the Oracle WebLogic Server platform. The URL for accessing web
services deployed by the Oracle Utilities Network Management System MultiSpeak Adapter
differs depending on the SOAP version that is used by the client.
MultiSpeak Adapter 11-1

Installation
Please read through this chapter thoroughly before beginning your product installation.

Installation
• Installation Overview

• Adapter Installation Instructions for Oracle WebLogic Server

Note: The installation instructions that follow assume that the Oracle Utilities
Network Management System Web Gateway component has been installed.
Refer to the Oracle Utilities Network Management System Installation Guide for
complete instructions.

Installation Overview
The Oracle Utilities Network Management System MultiSpeak Adapter is delivered as five files:

• $CES_HOME/dist/install/nms-multispeak.ear.base: NMS Multispeak adapter
application.

• $CES_HOME/sdk/java/lib/multispeak-4.1.0.jar: Java classes generated from
MultiSpeak 4.1.0 WSDLs.

• $CES_HOME/sdk/java/lib/nms-multispeak-sdk-1.12.0.1.0.jar: Java classes
needed to build custom plugins.

• $CES_HOME/sdk/java/docs/nms-multispeak-docs.zip: Documentation (javadoc)
for classes included into multispeak-4.1.0.jar and nms-multispeak-sdk-1.12.0.1.0.jar archives.

• $CES_HOME/sdk/java/samples/nms-multispeak-plugins.zip: Java project,
which can be used as a starting point for building custom plugins for SCADA components of
the NMS MultiSpeak adapter.

The nms-install-config script is used to apply adapter configuration changes and create the
nms-multispeak.ear file, which can be deployed to the Oracle WebLogic Server (see Software
Configuration on page 11-6 for configuration instructions).

Deploying the nms-multspeak.ear file on the same server as the cesejb.ear file is not supported;
however, both managed servers do need to be in the same Oracle WebLogic Server domain.

SOAP Version URL

1.1 https://<host name>:<port>/nms-ms/oa

1.2 https://<host name>:<port>/nms-ms/oa12
11-2 Oracle Utilities Network Management System Adapters Guide

Installation
Adapter Installation Instructions for Oracle WebLogic Server
Topics

• Create a Managed Server (Optional)

• Create a Foreign JNDI Provider

Note: Creating a foreign JNDI provider is required when the
nms-multispeak.ear is on a different managed server than the cesejb.ear; if they
are deployed on the same server, skip this step.

• Configure Data Source for the Adapters Managed Server

• Deploy the Adapter

Create a Managed Server (Optional)
To simplify creation of a new managed server, you may clone an existing Oracle Utilities Network
Management System managed server.

1. Log in to the WebLogic Server Administration Console.

Note: The URL for WebLogic will be http://hostname:port/console where
hostname represents the DNS name or IP address of the Administration Server,
and port represents the number of the port on which the Administration Server
is listening for requests (port 7001 by default).

2. Click Lock & Edit.

3. In the Domain Structure tree, expand Environment, then select Servers to open the
Summary of Servers page.

4. Select an Oracle Utilities Network Management System server in the Servers table and click
Clone.

5. Click the link to the cloned server, select the General tab, change the Listen Port and SSL
Listen Port to unique values.

Create a Foreign JNDI Provider
In order for the Oracle Utilities Network Management System MultiSpeak Adapter, deployed on
its own managed server, to communicate with the Oracle Utilities Network Management System
(cesejb.ear), a foreign JNDI provider must be configured.

Note: Creating the foreign JNDI provider makes the cesejb.ear Enterprise
JavaBeans (EJBs) appear local to the Oracle Utilities Network Management
System MultiSpeak adapter.

1. Log in to the WebLogic Server Administration Console.

2. Click Lock & Edit.

3. In the Domain Structure tree, expand Services, then select Foreign JNDI Providers to
open the Summary of Foreign JNDI Providers page.

4. On the Summary of Foreign JNDI Providers page, click New.

5. Enter a name for the new Foreign JNDI Provider.

6. Click Finish.

Configure Foreign JNDI Provider
1. In the Foreign JNDI Provider table, click the new foreign JNDI provider name link.

2. In the Settings for Foreign_JNDI_Provider_Name General tab, enter the following information:

Initial Context Factory: weblogic.jndi.WLInitialContextFactory
MultiSpeak Adapter 11-3

Installation
Provider URL: JNDI provider URL for the NMS (cesejb.ear)

Note: the value can be found in the About dialog, which may be opened from
the Help menu of any NMS application (e.g., Web Workspace). It is labeled
‘Web Gateway JNDI URL.’

User: valid NMS user who has the ‘NmsService’ role in WebLogic Server

Password: NMS user password

Confirm Password: enter the same NMS user password to confirm

3. Click Save.

4. Select the Links tab.

5. Create the following foreign JNDI links

6. Select the Targets tab.

7. Select the managed server where the Oracle Utilities Network Management System
MultiSpeak adapter will be deployed and click Save.

Configure Data Source for the Adapters Managed Server
You may configure a new JDBC data source or add the adapter managed server as a target to an
existing Oracle Utilities Network Management System read/write data source.

Note: See “Configure Database Connectivity” in the Oracle Utilities Network
Management System Installation Guide for information on creating JDBC data
sources.

1. In the Domain Structure tree, expand Services, then select Data Sources.

2. In the Data Sources table, click the data source name (either a new data source or an
existing read/write NMS data source) to open the Settings for JDBC_Data_Source_Name page.

3. Select the Targets tab.

4. Add the adapter managed server to the list of targets.

5. Click Save.

Link Name Local JNDI Name Remote JNDI Name

Session cesejb/Session/remote cesejb/Session/remote

MessageBean cesejb/MessageBean/remote cesejb/MessageBean/remote

PublisherBean cesejb/PublisherBean/remote cesejb/PublisherBean/remote

ViewerBean cesejb/ViewerBean/remote cesejb/ViewerBean/remote

CrewOperations cesejb/CrewOperations/
remote

cesejb/CrewOperations/
remote

ConnectionFactory ConnectionFactory ConnectionFactory

MsgBean topic/MsgBean topic/MsgBean

MsgRegister topic/MsgRegister topic/MsgRegister
11-4 Oracle Utilities Network Management System Adapters Guide

Installation
Enabling Support for Plain HTTP
By default the adapter is configured to only accept incoming requests over HTTPS. To enable
support for plain HTTP, add or uncomment the line in $NMS_CONFIG/jconfig/
build.properties file:

option.no_multispeak_force_https

Then build new nms-multispeak.ear by running:

nms-install-config --java

Authentication Methods
By default the adapter is configured to use Basic HTTP Authentication for incoming web service
requests. If credentials from the MultiSpeak message header should be used instead, add or
uncomment the line in $NMS_CONFIG/jconfig/build.properties file:

option.no_multispeak_http_auth

Then build new nms-multispeak.ear by running:

nms-install-config --java

Notes:

• This parameter has no effect on JMS transport mechanism available in the SCADA
component of this adapter. It cannot use Basic HTTP Authentication mechanism.

• When Basic HTTP Authentication is not used, the configuration parameter
“config.message_credentials_required” allows skipping authentication
when credentials are not present in the message.

The adapter authorizes incoming web service requests by checking that caller that has the
‘NmsWrite’ role in WebLogic Server..

Deploy the Adapter
1. In the left pane of the Administration Console, select Deployments.

2. In the right pane, click Install.

3. In the Install Application Assistant, locate the nms-multispeak.ear file.

4. Click Next.

5. Select Install this deployment as an application.

6. Click Next.

7. Select the servers and/or clusters to which you want to deploy the application.

Note: If you have not created additional Managed Servers or clusters, you will
not see this assistant page.

8. Click Next.

9. Set the deployed name of the application to: nms-multispeak.

10. Click Next.

11. Review the configuration settings you have specified.

12. Click Finish to complete the installation.
MultiSpeak Adapter 11-5

Software Configuration
Software Configuration
Configuration for the AMR and AVL components of the Oracle Utilities Network Management
System MultiSpeak Adapter comes from the following sources:

• CES_PARAMETERS database table

• Oracle Utilities Network Management System Configuration Rules

Support for Encrypted Configuration Parameters
Some configuration parameters that are stored in the CES_PARAMETERS database table contain
sensitive information, such as authentication credentials, which should be protected. To protect
this data, the VALUES column can be encrypted using Oracle WebLogic Server encrypt utility.
This utility encrypts cleartext strings for use with Oracle WebLogic Server. Its output can then be
used to populate values in CES_PARAMETERS database table.

For detailed information see “encrypt” in the Oracle WebLogic Server Command Reference.

AMR Configuration Parameters
Entries in the CES_PARAMETERS database table for the AMR component of the Oracle
Utilities Network Management System MultiSpeak Adapter should have value 'AMRInterface' in
the APP column. Column ATTRIB should contain name of the configuration parameter and
column VALUE its value.

The following table describes the general configuration parameters.

Parameter Description

config.credentials Absolute path to the file containing user credentials the
adapter will use to communicate with Oracle Utilities
Network Management System.
Either this parameter or both config.username and
config.password parameters should be provided. If all are
present, then the config.username/config.password pair
is used.

config.username Valid NMS username, which has the ‘NmsService’ role in
WebLogic Server.

config.password NMS user password. Value of this parameter should be
encrypted.

config.message_credentials_requi
red

If this parameter is set to false then credentials for
authenticating with NMS are taken from the MultiSpeak
header of the incoming message. If this parameter is set
to false and credentials are not present in the MultiSpeak
header of the incoming message then username and
password configured in the adapter is used to
authenticate with NMS.
Valid values: true/false. Default value: true

config.amr_vendor AMR vendor.
Supported AMR vendors:
• multispeak - MultiSpeak-compliant AMR system

This parameter is required.

Default: multispeak
11-6 Oracle Utilities Network Management System Adapters Guide

Software Configuration
config.ping_request_interval Time interval in seconds between subsequent meter ping
requests to the AMR system.
Default:60 seconds

config.enabled Enables AMR processing.
Default: false

config.unsolicited_message_dead
band

Deadband value in seconds for unsolicited messages
reporting same status for a meter. If several unsolicited
messages of the same type are received within the
deadband then only one of them will be processed.
Default: 60 seconds

config.max_meter_status_age Period of time in seconds after which meter status
information received from AMR system is considered
stale and has to be obtained from the AMR system again.
Default: 300 seconds

config.max_ping_request_age If difference between the current time and ping request
time is greater than value of this parameter then the
request is too old to be sent to the AMR system. Such
requests are marked as completed in the
AMR_RESPONSES table. The value is defined in
seconds.
Default: 3600 seconds

config.max_ping_response_age If the difference between current time and the unsolicited
ping response time is greater than value of this property,
then the response is too old to be sent to the NMS. Such
responses are removed from the AMR_RESPONSES
table.
Default: 3600 seconds

config.max_responses_per_msg Maximum number of meter ping responses to be sent to
NMS in a single message. The allowed range for this
parameter is [100..10000].
Default: 1000

config.ws_request_timeout Timeout (in seconds) for web service requests to the
AMR system. Request will fails if AMR system does not
respond
before the timeout expires.
Default: 30 seconds

config.max_pings_per_cycle Maximum number of meter ping requests to be
processed in one cycle (cycle duration is defined by the
config.ping_request_interval parameter).
Default: 10000

config.bellwether_read_interval Reading interval for bellwether meters in seconds.
Default: 900 seconds

Parameter Description
MultiSpeak Adapter 11-7

Software Configuration
config.bellwether_query_type Query type for periodic read of bellwether meters.
The query type defines the list of values to be read from
meters (see the multispeak.query_type parameter on
page 11-11 for details).
Supported query types:
* voltage - query voltage at the meter

config.bellwether_scada_name Name of the entry in the SCADA_IDS table to be used
to report measurements read from bellwether meters.
The measurements are reported through the SCADA
component of this adapter thus the entry in the
SCADA_IDS table must gave ADAPTER_TYPE
"MULTISPEAK".
Default: AMR

config.use_voltage_ping Use meter voltage read instead of meter ping to
determine meter status.
Received voltage is compared against configured low
voltage threshold value. Voltage value lower than the
threshold is interpreted as meter not having power. For
multi-phase meter voltage on any phase being below
threshold means that the meter has no power.

Supported options:
• always - always use voltage read

• multiphase - only use voltage read for multiphase
meters

• never - never use voltage read

Default: never.

config.voltage_query_type Query type for generic (single phase) meter voltage read.
When using voltage read to determine meter status, this
query type is used for single phase meters. The query type
defines the list of values to be read from meters see the
multispeak.query_type parameter on page 11-11 for
details).

config.phase_voltage_query_type Query type for reading voltage value of the individual
meter phases.
When using voltage read to determine meter status this
query type is used for multiphase meters. The query type
defines the list of values to be read from meters see the
multispeak.query_type parameter on page 11-11 for
details).

config.multiphase_meter Comma-separated list of possible values of the
AMR_CU_METERS.METER_PHASES column which
indicate a multiphase meter.

Parameter Description
11-8 Oracle Utilities Network Management System Adapters Guide

Software Configuration
The following table describes configuration parameters specific to a particular AMR vendor. This
could be any MultiSpeak-compliant AMR system.

config.allow_update_non_amr Allows meter updates to be processed for meters that are
not marked as AMR-enabled. This is only applicable to
the incoming MeterChangedNotification messages.

Default: false

Parameter Description

multispeak.meter_status.<exter
nal status>

This parameter configures mapping between external
(MultiSpeak) and internal meter status values. Valid values
are:

ON - meter is energized
OFF - meter is deenergized
UNKNOWN - external meter status has no configured
mapping,

Examples:
multispeak.meter_status.Outage=OFF
multispeak.meter_status.PowerOff=OFF
multispeak.meter_status.PowerOn=ON
multispeak.meter_status.Restoration=ON
multispeak.meter_status.Instantaneous=UNKNOWN
multispeak.meter_status.NoResponse=UNKNOWN
multispeak.meter_status.Inferred=UNKNOWN

multispeak.od_oa.url This parameter configures the URL of the AMR system web
service.
Default: https://localhost/multispeak

multispeak.od_oa.username Username to use when connecting to the AMR system web
service.
Default: empty string

multispeak.od_oa.password Password to use when connecting to the AMR system web
service.
Default: empty string

multispeak.od_oa.header.<attr
ibute>

Used to set the values for MultiSpeak header attributes. For
example, the following would set the MultiSpeak header
attribute “Company” to the value “Oracle”:

multispeak.od_oa.header.Company=Oracle

multispeak.od_oa.soap12 Indicates the SOAP protocol version to use for
communicating with the AMR/AMI system. If true, version
1.2 will be used. Otherwise, version 1.1 will be used.
Default: false (SOAP version 1.1 is used)

Parameter Description
MultiSpeak Adapter 11-9

Software Configuration
multispeak.max_ping_attempt
s

Maximum number of attempts to ping a meter.
Default: 3

multispeak.ping_attempt_inter
val

Amount of time in seconds to wait for reply from the AMR
system before resending meter ping request.
Default: 60 seconds

multispeak.send_meter_numb
er_field

This parameter designates which field in the
InitiateOutageDetectionEventRequest message should be
used to submit meter numbers to the AMR system.
Valid values:
• meterID - meterID element should be used

• objectID - objected attribute should be used

• meterNo - meterNo attribute should be used

Default: meterID

multispeak.unsolicited_meter_
statuses

Comma-separated list of meter statuses for unsolicited
"power up" and "last gasp" messages.

Example:
multispeak.unsolicited_meter_statuses=Outage,Restoration

multispeak.max_update_attem
pts

Maximum number of retries for a request enable/disable
meters (MeterChangedNotification request). This is only
supported when Oracle Utilities Network Management
System is integrated with Oracle Utilities Smart Grid
Gateway.
Default: 3

multispeak.update_attempt_in
terval

Amount of time in seconds the adapter will wait after failure
before retrying request to enable/disable meters
(MeterChangedNotification request). This is only supported
when Oracle Utilities Network Management System is
integrated with Oracle Utilities Smart Grid Gateway.
Default: 60 seconds

multispeak.max_ping_batch_si
ze

Maximum number of meter numbers to be included into a
single ping request to the AMR/AMI system. If number of
pending meter pings exceeds this value then multiple
requests will be sent.
Default: 10000

multispeak.max_read_batch_si
ze

Maximum number of meter numbers to be included into a
single read request to AMR/AMI system. If number of
pending meter read requests exceeds this value then multiple
requests will be sent.
Default: 1000

Parameter Description
11-10 Oracle Utilities Network Management System Adapters Guide

Software Configuration
multispeak.query_type.<query
type>

Mapping between meter read query type requested by NMS
and set of AMR/AMI meter field names to be read.
<query type> is the NMS query type (either name of the
query type or numeric code).
Supported query types: voltage. Value of this parameter is a
comma-separated list of MultiSpeak meter read field names.

multispeak.field.<known
field>

Several values in the incoming messages containing meter
readings have well-defined meaning. This parameter is used
to map such value to MultiSpeak meter read field names.
Recognized <known field>values: METER_NUMBER -
meter identifier; READ_TIME - meter reading timestamp.
Value of this parameter is a comma-separated list of
MultiSpeak meter read field names, which contain the
<known field> value. If more than one the listed fields is
present in the message at the same time then the list order
defines field precedence (fields at the front of the list have
higher precedence).

Parameter Description
MultiSpeak Adapter 11-11

Software Configuration
Storing Meter Readings in AMR_RESPONSES Table
If the adapter is used to request meter readings from the AMR/AMI system the received values
are stored in the AMR_RESPONSES database table. Product configuration provides single
column (VOLTAGE) for storing meter readings. If additional values need to be stored then
desired number of columns should be added to the AMR_RESPONSES table and project-specific
version of the eclipselink-orm.xml configuration file need to be created. The columns should have
type VARCHAR2. The below set of directions should be used to define your project version of
this file.

1. In your <project>/jconfig directory, create a subdirectory structure as follows:

<project>/jconfig/override/nms-multispeak-ejb.jar/META-INF/

2. Copy the Product version of the eclipselink-orm.xml file used by MultiSpeak adapter.

Note: This file can be found in the product/jconfig/override/nms-multispeak-
ejb.jar/META-INF/ directory.

3. Save the file to the META-INF directory that you created in step 1.

4. In the file you should find the following entry (enclosing entity-mapping tag is omitted) for
mapping meter read field "Voltage" to the column VOLTAGE in the AMR_RESPONSES table.

 <entity class="com.splwg.oms.interfaces.amr.model.MeterStatus">
 <attributes>
 <basic name="Voltage" access="VIRTUAL" attribute-type="String">
 <column name="VOLTAGE"/>
 </basic>
 </attributes>
 </entity>

5. Add additional <basic> elements for the columns added to the AMR_RESPONSES table.
Attribute 'name' defines the name of the meter read field coming from the AMR/AMI
system. Attribute 'access' should have value 'VIRTUAL'. Attribute 'attribute-type' should have
value 'String'. Nested element <column> defines the database column name.

6. Execute 'nms-install-config --java' to generate new nms-multispeak.ear binary.
11-12 Oracle Utilities Network Management System Adapters Guide

Software Configuration
AVL Configuration Parameters
Entries in the CES_PARAMETERS database table for the AVL component of the Oracle Utilities
Network Management System MultiSpeak Adapter should have value 'AVLInterface' in the APP
column. Column ATTRIB should contain the name of the configuration parameter and the
column VALUE should contain its value.

The AVL component requires configuration for converting crew location information received
from the AVL system into the Oracle Utilities Network Management System coordinate system.
Coordinate conversion is done using reference point coordinates that are known for both systems.
At least two reference points are required for coordinate conversion to work.

The AVL configuration parameters are described in the following table:

Parameter Description

config.credentials Absolute path to the file containing user credentials the
adapter will use to communicate with Oracle Utilities
Network Management System during initialization
process. Either this parameter or both config.username
and config.password parameters should be provided. If
all are present then config.username/config.password
pair is used.

config.username Valid NMS username, which has the ‘NmsService’ role
in WebLogic Server.

config.password NMS user password. Value of this parameter should be
encrypted.

config.message_credentials_require
d

If this parameter is set to false then credentials for
authenticating with NMS are taken from the MultiSpeak
header of the incoming message. If this parameter is set
to false and credentials are not present in the MultiSpeak
header of the incoming message then username and
password configured in the adapter is used to
authenticate with NMS.
Valid values: true/false. Default value: true

avl.num_reference_points Number of configured reference points

avl.reference_point<N>.x X coordinate of the reference point N in the Oracle
Utilities Network Management System coordinate
system

avl.reference_point<N>.y Y coordinate of the reference point N in the Oracle
Utilities Network Management System coordinate
system

avl.reference_point<N>.longitude Geographic longitude of the reference point N

avl.reference_point<N>.latitude Geographic latitude of the reference point N

avl.xy_scale Number of decimal points to use when rounding X/Y
coordinates

avl.lat_long_scale Number of decimal points for rounding longitude/
latitude coordinates

config.enabled Enables AVL processing
Default: false
MultiSpeak Adapter 11-13

Software Configuration
Credentials Files
Credentials files may be used to configure usernames and passwords to be used by the parts of the
adapter that communicate with the Oracle Utilities Network Management System.

Credentials files should only be readably by the operating system account under which application
server is running.

The format of a credentials file is described in the following table:

The following illustration shows a sample credentials file.

#
nms.username=amr
nms.password=amr-user-password

Oracle Utilities Network Management System Configuration Rules
Below is the list of configuration rules in the Oracle Utilities Network Management System, which
control AMR-related functionality. These rules are not directly used by the Oracle Utilities
Network Management System MultiSpeak Adapter.

amrInterfacesEnabled
This rule enables AMR processing in JMService. Its value indicates the AMR processing types that
are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

• 1 - Outage detection

• 2 - PSO verification

• 4 - PDO verification

• 8 - Restoration verification

• 16 - Manual AMR processing

• 32 - Unsolicited power-up processing

The rule value is a bitmask, which allows any combination of AMR processing types to be
enabled. For example, if you want to enable outage detection (1) and restoration verification (8)
processing, you would set the rule to 9.

meterOffThreshold
Maximum probability of meter having power when meter is still assumed to be "off". Default
value is 0.

meterOffTroubleCode
Trouble code to be used when a call should be created because of information received from
AMR system.

Property Description

nms.username Valid NMS username, which has the NmsService role
in WebLogic Server.

nms.password NMS user password
11-14 Oracle Utilities Network Management System Adapters Guide

Software Configuration
meterOnThreshold
Minimum probability of meter having power when meter is still assumed to be "on". Default value
is 100.

meterQueryThreshold
This parameter is used to determine if a meter can be queried when an active request exists. When
a new request is made, existing requests will be evaluated to see if any contain meter(s) from the
new request. If a match is found, and the difference between the time the request was received and
current time is less than value of this rule in seconds, that meter will be rejected from the new
request. If set to -1 (default value), this rule will not be enforced.

meterPingPercentage
This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it
will ping all AMR meters downstream from the outage device. When set to -1, it will ping one
AMR meter on each SND. When set to any other number between 1 and 99, JMService will
attempt to ping the specified percentage of meters for each transformer affected by the outage
(the resulting number of meters is rounded up so that at least one meter per transformer is
pinged). It is possible to configure this rule differently for different device classes. Default value of
this rule is 100.

useMeterTimeForDetection
This configuration rule determines if meter read time reported by AMR system should be used as
call time for incidents created by outage detection functionality.

Valid values:

• no - Meter read time will not be used, instead current system time will be used (this is the
default behavior)

• yes - Meter read time will be used

If the rule_value_2 is greater than 0, and the difference between the current time and the meter
read time is greater than the number of seconds specified by rule_value_2, then the meter read is
too old for outage detection. The default value is 3600 seconds (1 hour).

useMeterTimeForRestoration
This configuration rule determines if meter read time reported by AMR system should be used to
adjust outage restoration time as part of outage restoration verification functionality. Outage
restoration time is only updated if restoration time calculated from AMR data is earlier then the
current restoration time.

Valid values:

• no - outage restoration time will not be modified

• latest - outage restoration time will be updated with the latest meter read time amongst the
meters which reported power on for the restored outage (this is the default behavior)

• earliest - outage restoration time will be updated with the earliest meter read time amongst the
meters which reported power on for the restored outage

• percentile - outage restoration time will be updated with the earliest meter read time which
covers the desired percentile of meters which have reported power on. Percentile value is
specified using rule_value_2 field. It should be in the range from 1 to 99 (inclusive).

Meter read times preceding outage start time or past current time are ignored.

Example of ‘percentile’ setting.

 rule_value_1 = 'percentile'
 rule_value_2 = 50
MultiSpeak Adapter 11-15

Software Configuration
This configuration corresponding to using median value from the all meter read times for meters,
which reported power on. Given following four meter read times

00:00:10
00:00:11
00:00:20
00:00:30
the median value would be 00:00:11 (second value out of four).

meterRequestSendDelay
This configuration rule is used to control how long the outage prediction engine should wait
before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for
PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL
This configuration rule is used to control the “time-to-live” (TTL) for meter ping requests. This is
the period of time NMS will wait for a responses from AMR system. Automated meter ping
requests (PSO Verification, PDO Verification, and Restoration Verification) are considered
completed when TTL expires. Manual meter ping requests, which were not explicitly completed or
cancelled by the user, are automatically cancelled when TTL expires.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO
Verification request can remain active for 15 minutes) or it can be calculated based on the number
of meters in the request combined with minimum and maximum values. If TTL is set to 0, then
automated meter ping requests remain active until the first response is received. Manual meter
ping requests in this case remain active until explicitly completed or cancelled by the user.

meterPingSuppress
This configuration rule can be used to suppress sending meter ping requests to the AMR system
based on the request type.
11-16 Oracle Utilities Network Management System Adapters Guide

Adapter Interface Communication Overview
Adapter Interface Communication Overview
The Oracle Utilities Network Management System MultiSpeak Adapter provides a reliable and
configurable way of connecting MultiSpeak-compliant AMR, AVL, and SCADA systems to the
Oracle Utilities Network Management System. The interface connects to the AMR systems by use
of MultiSpeak-compliant SOAP/XML calls over the HTTPS protocol. For SCADA integration,
JMS queues can also be used as the transport mechanism. The interface connects to the Oracle
Utilities Network Management System through direct database access using JDBC and by use of a
CORBA connection through the Oracle Utilities Network Management System Web Gateway.
MultiSpeak Adapter 11-17

Adapter Design
Adapter Design

Supported Data Flows
Oracle Utilities Network Management System MultiSpeak Adapter supports following data flows
described in the MultiSpeak Web Services Version 4.1 specification.

Oracle Utilities Network Management System to an AMR system:

• InitiateOutageDetectionEventRequest

Oracle Utilities Network Management System requests meter status information from the
AMR system.

• InitiateMeterReadingsByFieldName

Oracle Utilities Network Management System requests specified meter readings for the listed
set of meters from the AMR system.

An AMR system to Oracle Utilities Network Management System:

• ODEventNotification

AMR system reports meter status information to the Oracle Utilities Network Management
System.

• FormattedBlockNotification

AMR system reports meter readings to Oracle Utilities Network Management system. This
message is sent in response to the InitiateMeterReadingsByFieldName request.

An AVL system to Oracle Utilities Network Management System:

• AVLChangedNotification

AVL system reports crew location information to the Oracle Utilities Network Management
System.

Incoming requests (ODEventNotification, FormattedBlockNotification, and
AVLChangedNotification) are authenticated against list of valid Oracle Utilities Network
Management System users.
11-18 Oracle Utilities Network Management System Adapters Guide

Adapter Design
AMR Business Processes
This section describes the utility business processes related to AMR that can be supported
through the Oracle Utilities Network Management System MultiSpeak Adapter.

Outage Detection
The vendor AMR system detects no power for a meter, either because of a “last gasp” meter
message or from scheduled meter polling. A “power out” call is submitted to Oracle Utilities
Network Management System, which generates a probable outage event.
MultiSpeak Adapter 11-19

Adapter Design
PSO Verification
One customer call is received, generating a probable service outage in Oracle Utilities Network
Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is
notified of the new probable outage, and the customer meter is pinged to verify power status.

If the meter reports that the power is still on, then we have conflicting information from the
customer and the meter, so the outage predication engine will set the status of this event to Verify.
At this point, we believe that there is no outage, but that the customer has a problem, such as a
blown fuse, within his home. This event must be resolved by a customer service representative
contacting the caller to explain the situation to them.
11-20 Oracle Utilities Network Management System Adapters Guide

Adapter Design
PDO Verification
Several customer calls are received, which are submitted into the Oracle Utilities Network
Management System. The resulting probably outage rolls up to a device. The list of affected AMR
customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter
by the Oracle Utilities Network Management System outage prediction engine. The interface
submits meter status requests to the AMR for any of the affected meters from which it has not
already received a last gasp message. The received meter statuses are sent back to the prediction
engine and the predicted outage device may change by moving downstream.
MultiSpeak Adapter 11-21

Adapter Design
Restoration Verification
An outage event is restored in Oracle Utilities Network Management System, and a list of affected
meters is provided by the outage prediction engine to the Oracle Utilities Network Management
System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of
the affected meters from which it has not received a “power up” message. The results are passed
back to the Oracle Utilities Network Management System and the periodic cycle for getting outage
events continues. The received meter statuses are sent back to the prediction engine. A power out
status will result in another outage call and a nested outage that still needs restoration.
11-22 Oracle Utilities Network Management System Adapters Guide

Adapter Design
Unsolicited Power Ups
The AMR system can send unsolicited power up message when it detects that meter power has
been restored. The adapter delivers such messages to the outage prediction engine, which uses
them as part of Restoration Verification processing.

Manual Ping
In the diagram below, please note that the number indicates the sequence of actions:

1. The operator or system has chosen a device to “Ping”.

2. Information about the new ping request is stored in the database.

3. The AMR application notes the new ping request and verifies the device.

4. A response is received from the meter.

5. The database is updated with some information about the request response. Oracle Utilities
Network Management System is aware of the response data in the database and displays
relevant information.
MultiSpeak Adapter 11-23

Adapter Design
Urgent Ping
The adapter supports the ability to immediately ping a single meter. Such ping requests are
initiated by sending PING high-level message containing single meter id to the adapter. Requests
received via high-level message are processed right away without being subject to batching. They
do not persist in database. Cache is not used to satisfy such requests so the AMR system is always
contacted.

Business Scenario:
1. The operator or system has chosen a device to “Ping.”

2. PING high-level message containing meter id is sent to the adapter.

3. The adapter sends ping request to the AMR system.

4. A response is received from the AMR system.

5. The adapter sends PING_RESPONSE high-level message containing received meter status
back to the client.

Reading Meter Values
In addition to requesting meter status information (pinging meters) the adapter can request meter
readings of such values as voltage, current, etc. (depending of meter capabilities) from the AMR/
AMI system.

Bellwether meters are a special case of requesting meter readings. For meters configured as
bellwether the adapter would periodically issue meter read request to the AMR/AMI system and
then publish received values as SCADA measurements.

Using Meter Voltages to Determine Power Status
Some utilities have multi-phase meters, especially in downtown mesh networks. Conventional
meter power status pings only indicate that the meter has power, but not whether some phases do
not have power. The adapter can use meter voltage information to form a more accurate picture
of meters where one or two phases/legs may not have power. When using voltage to determine
meter power status the adapter will consider meter as de-energized if any of the reported meter
voltage values are below the low voltage threshold configured for the meter. The meter is
considered energized if all the reported meter voltage values are at or above the low voltage
threshold.

The following configuration tasks need to be performed to enable this functionality in the adapter:

1. Define low voltage threshold.

The MultiSpeak adapter uses the value from the VOLTAGE_THRESHOLD column in the
AMR_CU_METERS table as low voltage threshold for a meter. This column needs to be
populated in order for the adapter to use voltage read to determine meter power status.

The voltage threshold value needs to be put into the VOLTAGE_THRESHOLD column in
the CU_METERS_CIS table. When the product_update_customers.ces script is executed,
this value will be propagated to the CU_METERS and AMR_CU_METERS tables.

2. Configure the adapter to use voltage read to determine meter power status.

The config.use_voltage_ping parameter needs to be set the value 'multiphase' or
'always'.

Example,

INSERT INTO ces_parameters (app, attrib, value)
VALUES ('AMRInterface', 'config.use_voltage_ping', 'multiphase');
11-24 Oracle Utilities Network Management System Adapters Guide

Adapter Design
3. Provide phasing information for meters.

If the config.use_voltage_ping configuration parameter is set to ‘multiphase,’ then the
adapter needs a way to distinguish multiphase meters. This is done by checking the value in
the AMR_CU_METERS.METER_PHASES column against the list of values specified in the
configuration parameter. The AMR_CU_METERS.METER_PHASES column is populated
from the CU_METERS_CIS.METER_PHASES column when
product_update_customers.ces script is executed.

For example:

INSERT INTO ces_parameters (app, attrib, value)
VALUES ('AMRInterface', 'config.multiphase_meter', '3,5,6,7');

4. Define query types for requesting meter voltage information from the AMI system.

The config.voltage_query_type and config.phase_voltage_query_type
configuration parameters need to specify query type names used to requests voltages from
AMI system. config.voltage_query_type is used for single phase meter, and
config.phase_voltage_query_type is used for multiphase meters. For each query
type, a multispeak.query_type.<query type name> configuration parameter needs
to specify the list of fields to be read from the AMI system (this configuration depends on
AMI vendor).

For example:

INSERT INTO ces_parameters (app, attrib, value)
VALUES ('AMRInterface', 'config.voltage_query_type', 'voltage');
INSERT INTO ces_parameters (app, attrib, value)
VALUES ('AMRInterface', 'config.phase_voltage_query_type',

 'phase_voltage');
INSERT INTO ces_parameters (app, attrib, value)
VALUES ('AMRInterface', 'multispeak.query_type.voltage',

 'Voltage');
INSERT INTO ces_parameters (app, attrib, value)
VALUES ('AMRInterface', 'multispeak.query_type.phase_voltage',
 'VoltageA,VoltageB,VoltageC');
MultiSpeak Adapter 11-25

Database Schema
Database Schema
Oracle Utilities Network Management System MultiSpeak Adapter uses several databases tables to
store meter status information received from the AMR system and pending meter ping requests.

AMR_REQUESTS
AMR_REQUESTS is populated by the outage prediction engine when a request for meter
information is submitted. There is one row per request, and each request can involve multiple
meters.

Field DataType Nullable Comments

REQUEST_IDX NUMBER No AMR request id.
PRIMARY KEY

EVENT_CLS NUMBER No The class part of the handle of the
event for which the AMR request was
made.

EVENT_IDX NUMBER No The index part of the handle of the
event for which the AMR request was
made.

REQUEST_TIME DATE No The timestamp when the AMR
request was created.

WHO_REQUESTED VARCHA
R2(32)

Yes User name of the operator who
created the AMR request.

AMR_COMPLETE_T
IME

DATE Yes The timestamp when the AMR
request was completed or cancelled.

WHO_COMPLETED VARCHA
R2(32)

Yes User name of the operator who
completed or cancelled the AMR
request.

REQUEST_TYPE NUMBER Yes Request type.
Possible values:
• 1 - PSO Verification

• 2 - PDO Verification

• 3 - Restoration Verification

• 4 - Manual
11-26 Oracle Utilities Network Management System Adapters Guide

Database Schema
AMR_RESPONSES
The AMR_RESPONSES table is used to transfer meter status information between the outage
prediction engine and the MultiSpeak adapter. The outage prediction engine inserts rows into this
table when a request for meter information is submitted. Every request in AMR_RESPONSES is
represented by one row for each meter requested. The MultiSpeak adapter updates this table as
requested meter status information becomes available.

QUERY_TYPE NUMBER Yes Query type.
Possible values:
• 0 - simple meter status query

• 1 - complex meter information
query

• 100 - voltage query

• 101 - phase voltage query

Note: Query types with values below
100 are meter status (ping) queries.
Query types with values 100 and
above are meter read queries.

STATUS NUMBER Yes Status of the AMR request.
Possible values:
1- active
2 - explicitly completed
3 -cancelled

DEVICE_CLS NUMBER Yes The class part of the handle of the
device for which the AMR request
was made.

DEVICE_IDX NUMBER Yes The index part of the handle of the
device for which the AMR request
was made.

NCG NUMBER Yes NCG of the device for which the
AMR request was made.

TTL NUMBER
(9)

Yes The Time-To-Live of the request in
seconds.

Field DataType Nullable Comments

Field DataType Nullable Comments

ID Number No Unique record identifier.
PRIMARY KEY

REQUEST_IDX NUMBER Yes AMR request id.

REQUEST_TIME DATE Yes Request timestamp.

METER_NO VARCHAR2(256) Yes Meter number as known to the
AMR system

METER_ID NUMBER No NMS meter identifier.
MultiSpeak Adapter 11-27

Database Schema
AMR_CU_METERS
Table AMR_CU_METERS contains information about all meters known to the Oracle Utilities
Network Management System. This table is also used to cache the latest known meter status
information to reduce the number of requests to the AMR system.

REQUEST_STATUS VARCHAR2(1) Yes Request status.
Possible values:
• N - new request (not yet sent

to AMR)

• P - pending request (waiting
for AMR response)

• S - suppressed request

• R - AMR response received

• C - completed request

STATUS VARCHAR2(256) Yes Meter status received from AMR.
Possible values:
• ON - meter has power

• OFF - meter does not have
power

AMR_ERROR VARCHAR2(256) Yes Error message received from the
AMR system.

RECEIVED_TIME DATE Yes Timestamp when the response
was received from the AMR
system.

RESULT_TIME DATE Yes Timestamp returned by the AMR
system for the meter status.

PROBABILITY NUMBER Yes The probability of the meter
having power (0 - no power; 100 -
meter has power.)

STATUS NUMBER(3) Yes Response status string.

VOLTAGE VARCHAR2(16) Yes Meter voltage reading.

VOLTAGE_A VARCHAR2(16) Yes Meter phase A voltage reading.

VOLTAGE_B VARCHAR2(16) Yes Meter phase B voltage reading.

VOLTAGE_C VARCHAR2(16) Yes Meter phase C voltage reading.

Field DataType Nullable Comments

Field DataType Nullable Comments

METER_ID VARCHAR2(14) No Meter identifier in Oracle Utilities
Network Management System.

METER_NO VARCHAR2(20) Yes Meter identifier used by the AMR
system.
11-28 Oracle Utilities Network Management System Adapters Guide

Database Schema
AMR_CU_METERS_HISTORY
The AMR_CU_METERS_HISTORY table is used to store all meter status updates received from
the AMR system. This table has the same columns as the AMR_CU_METERS table with the
exception of the BELLWETHER column.

AMR_VOLTAGE_HISTORY
The AMR_VOLTAGE_HISTORY table is used to store meter voltage readings received from the
AMR system.

RESULT_TIME DATE Yes Timestamp of the latest meter
status update.

POWER_UP_TIME DATE Yes Timestamp of the latest power-up
message.

LAST_GASP_TIME DATE Yes Timestamp of the latest “last
gasp” message.

ALT_METER_NO VARCHAR2(256) Yes Alternative meter number.

AMR_ENABLED VARCHAR2(1) Yes Indicator that meter is AMR-
enabled.

STATUS VARCHAR2(256) Yes Latest known meter status.
Possible values:
• ON - meter has power

• OFF - meter does not have
power

REQUEST_IDX NUMBER Yes AMR request id for the latest
received meter status.

PROBABILITY NUMBER Yes Latest known probability of the
meter having power (0 – no
power; 100 – meter has power).

BELLWETHER VARCHAR2(1) Yes Bellwether meter flag (Y/N)

METER_PHASES VARCHAR2(1) Yes Meter phase/multiphase meter
flag.

VOLTAGE_
THRESHOLD

NUMBER Yes Meter low voltage threshold.

Field DataType Nullable Comments

Field DataType Nullable Comments

METER_HIST_ID NUMBER No Primary key (sequence generated).

METER_ID NUMBER Yes NMS meter identifier.

METER_NO VARCHAR2(256) Yes Meter number specific to the
AMR system.

RESULT_TIME DATE Yes Meter read time.

VOLTAGE NUMBER Yes Meter voltage.
MultiSpeak Adapter 11-29

SCADA Component
SCADA Component
The Oracle Utilities Network Management System MultiSpeak Adapter’s SCADA component has
the capability of interacting with SCADA systems having a MultiSpeak-compatible interface.

The following functionality is available:

• Receiving device status updates from SCADA system

• Receiving analog and digital measurement updates from SCADA system

• Mapping of SCADA quality codes (applies to status and measurement updates)

• Receiving tag information from SCADA system

• Receiving alarm information from SCADA system

• Sending control request to SCADA system to operate devices and place/remove tags

• Sending device status information to SCADA system

• Sending NMS tags and other conditions to SCADA system

• Dynamic configuration of the mapping between SCADA points and NMS device/attribute
pairs

• Display integration between NMS and SCADA system

A single instance of the adapter is capable of communicating with multiple SCADA systems.
Several communication links can be configured for each SCADA system. If the currently active
link fails, the adapter will automatically switch to the next link.

JMS Transport Mechanism
• The JMS transport mechanism is based on the SOAP over JMS specification.

• Two JMS queues are used per communication channel (one for requests and another for
responses) to simulate synchronous communication.

• Each individual request is synchronous. The system places the message on the request queue
and waits for a reply to arrive on the response queue.

• TextMessage or BytesMessage JMS message classes can be used. In both cases message must
be a valid MultiSpeak message.

• Requests and responses are connected through JMSCorrelationID JMS header.

• In the request message, the JMS header JMSReplyTo must contain the queue where response
message should be sent.

• SOAP protocol versions 1.1 and 1.2 are supported.

• There is no support for accessing a WSDL over JMS.

VOLTAGE_A NUMBER Yes Phase A meter voltage.

VOLTAGE_B NUMBER Yes Phase B meter voltage.

VOLTAGE_C NUMBER Yes Phase C meter voltage.

Field DataType Nullable Comments
11-30 Oracle Utilities Network Management System Adapters Guide

SCADA Component
The following table describes how JMS message properties, specific to SOAP over JMS, are being
used:

Configuring JMS Support

Incoming Data Flows
Support for accepting incoming requests over JMS in NMS MultiSpeak adapter is controlled by
changing value of the config.multispeak_jms property in $NMS_CONFIG/jconfig/
build.properties file.

Possible values:

• none: JMS support is disabled

• single: single JMS queue for all incoming data flows

• multiple: separate JMS queue for each incoming data flow

By default JMS support is disabled.

After modifying the $NMS_CONFIG/jconfig/build.properties file, regenerate the nms-
multispeak.ear with the new configuration by executing:

nms-install-config -–java

JNDI names of JMS connection factory and queue(s) used for incoming data flows are fixed.

Connection Factory
nms-amr/ConnectionFactory

Queues
Single Queue Mode - In single queue mode, all incoming requests are sent to the same JMS
queue: nms-amr/queue/OA.

JMS Message Property Value

SOAPJMS_bindingVersion “1.0”

SOAPJMS_targetServer “SCADA_Server” or “OA_Server”
depending on the target system

SOAPJMS_soapAction SOAP action

SOAPJMS_contentType "text/xml; charset="utf-8""

SOAPJMS_isFault “true” for SOAP fault messages
MultiSpeak Adapter 11-31

SCADA Component
Multiple Queues Mode
When multiple incoming queues are used each incoming MultiSpeak data flow uses its own JMS
queue.

List of JMS queues and associated MultiSpeak operations:

• nms-amr/queue/OAPingURL
PingURL

• nms-amr/queue/OAGetMethods
GetMethods

• nms-amr/queue/OAStatusChangedNotificationByPointID
SCADAStatusChangedNotification
SCADAStatusChangedNotificationByPointID

• nms-amr/queue/OAStatusChangedNotificationByPointIDSync
StatusChangedNotificationByPointID

• nms-amr/queue/OAAnalogChangedNotificationByPointID
SCADAAnalogChangedNotification
SCADAAnalogChangedNotificationByPointID

• nms-amr/queue/OAAnalogChangedNotificationByPointIDSync
AnalogChangedNotificationByPointID

• nms-amr/queue/OATagChangedNotificationByPointID
SCADATagChangedNotification
SCADATagChangedNotificationByPointID

• nms-amr/queue/OATagChangedNotificationByPointIDSync
TagChangedNotificationByPointID

• nms-amr/queue/OAInitiateStatusReadByPointID
InitiateStatusReadByPointID

• nms-amr/queue/OAHighlightObjectInDisplay
HighlightObjectInDisplay

• nms-amr/queue/OAInitiateTagReadByPointID
InitiateTagReadByPointID

Outgoing Data Flows
The JMS connection factory for outgoing data flows is in defined in the CES_PARAMETERS
database table.

The JMS queues used for outgoing messages are configured via SCADA_LINKS and
SCADA_LINK_OPS database tables.
11-32 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
Supported Data Flows

NMS to SCADA

Heartbeat

PingURL
The adapter periodically sends PingURL message to the each configured SCADA system. Failure
to send the message or error response from SCADA system (reply contains errorObject element)
triggers switch to alternate link (if available). Upon restoration of communication with the
SCADA system (PingURL has been sent successfully) synchronization sequence is executed.

PingURL request example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/
 Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink"
 xmlns:ns2="gml" xmlns="cpsm" />
 </S:Header>
 <S:Body>
 <ns4:PingURL xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"
 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />
 </S:Body>
</S:Envelope>

Synchronization/Integrity Check
The purpose of the synchronization sequence is to bring the state of devices in the NMS model
up-to-date with the SCADA system. NMS supports two synchronization methods for device
statuses, digital and analog measurements. At the beginning of the synchronization sequence,
NMS will make GetMethods call to determine the list of operations supported by the SCADA
system. Synchronization method selection is based on configured preferred method and available
SCADA operations.

The synchronization sequence is executed automatically after the connection to a SCADA system
is established. It also can be triggered manually using following command

Action -java multispeak.SCADA resync

GetMethods
GetMethods retrieves lists of operations the SCADA system implements. It is used to determine
available modes of syn-chronization. It is also used to determine if control requests can be send to
SCADA.

GetMethods Request and Response Example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/
 Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink"
 xmlns:ns2="gml" xmlns="cpsm" />
 </S:Header>
 <S:Body>
 <ns4:GetMethods xmlns:ns4="http://www.multispeak.org/
Version_4.1_Release"
 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml"
xmlns="cpsm" />
 </S:Body>
</S:Envelope>
MultiSpeak Adapter 11-33

Supported Data Flows
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:GetMethodsResponse>
 <ver:GetMethodsResult>
 <ver:string>PingURL</ver:string>
 <ver:string>GetMethods</ver:string>
 <ver:string>InitiateStatusReadByPointID</ver:string>
 <ver:string>InitiateAnalogReadByPointID</ver:string>
 <ver:string>InitiateControl</ver:string>
 <ver:string>GetAllSCADAStatus</ver:string>
 <ver:string>GetAllSCADAAnalogs</ver:string>
 <ver:string>GetAllSCADATags</ver:string>
 </ver:GetMethodsResult>
 </ver:GetMethodsResponse>
 </soapenv:Body>
</soapenv:Envelope>

GetAllSCADAStatus, GetAllSCADAAnalogs
The first synchronization method involves NMS invoking GetAllSCADAStatus and
GetAllSCADAAnalogs operations to request the latest device statuses, digital and analog
measurements from the SCADA. SCADA provides the requested information synchronously in
the response message.

The MultiSpeak specification allows data to be returned in chunks by the SCADA system. In this
case, NMS would have to make multiple GetAllSCADAXXX calls. The element lastReceived is
included so that large sets of data can be returned in manageable blocks. lastReceived will carry
an empty string the first time in a session that this method is invoked. When multiple calls to this
method are required to obtain all of the data, the lastReceived should carry the objectID of the
last data instance received in subsequent calls. If the ObjectsRemaining field is present in the
MultiSpeak reply message’s message header, it will be used to determine when all of the data has
been received. If the ObjectsRemaining field is not present, the empty result set will signal the
end of the data.

GetAllSCADAStatus Request and Response Example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/
 Version_4.1_Release"
 xmlns:ns3="cpsm"
 xmlns:ns2="http://www.w3.org/1999/xlink"
 xmlns:ns1="gml"
 Pwd="test" UserID="nms" />
 </S:Header>
 <S:Body>
 <ns4:GetAllSCADAStatus xmlns:ns4="http://www.multispeak.org/
 Version_4.1_Release"
 xmlns:ns3="cpsm"
 xmlns:ns2="http://www.w3.org/1999/xlink"
 xmlns:ns1="gml">
 <ns4:lastReceived></ns4:lastReceived>
 </ns4:GetAllSCADAStatus>
 </S:Body>
</S:Envelope>
11-34 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test"
 ObjectsRemaining="0"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:GetAllSCADAStatusResponse>
 <ver:GetAllSCADAStatusResult>
 <ver:scadaStatus>
 <ver:objectName>BR_R-2241</ver:objectName>
 <ver:quality>Initial</ver:quality>
 <ver:status>Open</ver:status>
 <ver:changeCounter>0</ver:changeCounter>
 <ver:timeStamp>2011-03-01T11:11:11</ver:timeStamp>
 </ver:scadaStatus>
 </ver:GetAllSCADAStatusResult>
 </ver:GetAllSCADAStatusResponse>
 </soapenv:Body>
</soapenv:Envelope>

GetAllSCADAAnalogs Request and Response Example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/
 Version_4.1_Release"
 xmlns:ns3="cpsm"
 xmlns:ns2="http://www.w3.org/1999/xlink"
 xmlns:ns1="gml"
 Pwd="test" UserID="nms" />
 </S:Header>
 <S:Body>
 <ns4:GetAllSCADAAnalogs xmlns:ns4="http://www.multispeak.org/
 Version_4.1_Release"
 xmlns:ns3="cpsm"
 xmlns:ns2="http://www.w3.org/1999/xlink"
 xmlns:ns1="gml">
 <ns4:lastReceived></ns4:lastReceived>
 </ns4:GetAllSCADAAnalogs>
 </S:Body>
</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test"
 ObjectsRemaining="0" />
 </soapenv:Header>
 <soapenv:Body>
 <ver:GetAllSCADAAnalogsResponse>
 <ver:GetAllSCADAAnalogsResult>
 <ver:scadaAnalog>
 <ver:objectName>BR_R-2241</ver:objectName>
 <ver:value units="Amps">260.78</ver:value>
 <ver:quality>Measured</ver:quality>
 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>
 <ver:measurementTypeID>Amps</ver:measurementTypeID>
 </ver:scadaAnalog>
 <ver:scadaAnalog>
 <ver:objectName>BR_R-2241</ver:objectName>
 <ver:value>0</ver:value>
 <ver:quality>Default</ver:quality>
 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>
 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>
MultiSpeak Adapter 11-35

Supported Data Flows
 </ver:scadaAnalog>
 </ver:GetAllSCADAAnalogsResult>
 </ver:GetAllSCADAAnalogsResponse>
 </soapenv:Body>
</soapenv:Envelope>

GetAllSCADAAnalogs is used for both digital and analog measurements.

InitiateStatusReadByPointID, InitiateAnalogReadByPointID, InitiateTagReadyByPointID
The second synchronization method uses InitiateXXXReadByPointID operations to request
latest device statuses, tags, digital and analog measurements from the SCADA. SCADA provides
requested information asynchronously by sending XXXChangedNotificationByPointID
messages to NMS. To avoid having to send all SCADA points known to NMS an empty list of
SCADA points can be used to indicate desire to initiate read for all SCADA points. Operation
InitiateTagReadByPointID is not part of MultiSpeak 4.1 specification.

InitiateStatusReadByPointID and InitiateAnalogReadByPointID request exam-
ples

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/
Version_4.1_Release"
 xmlns:ns3="cpsm"
 xmlns:ns2="http://www.w3.org/1999/xlink"
 xmlns:ns1="gml"
 Pwd="test" UserID="nms" />
 </S:Header>
 <S:Body>
 <ns4:InitiateStatusReadByPointID
 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"
 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/xlink"
 xmlns:ns1="gml">
 <ns4:pointIDs />
 <ns4:responseURL>https://nms-server:7002/nms-ms/oa</ns4:responseURL>
 <ns4:transactionID>1300163600187</ns4:transactionID>
 <ns4:expTime units="Hours">1.0</ns4:expTime>
 </ns4:InitiateStatusReadByPointID>
 </S:Body>
</S:Envelope>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/
Version_4.1_Release"
 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/
xlink"
 xmlns:ns1="gml"
 Pwd="test" UserID="nms" />
 </S:Header>
 <S:Body>
 <ns4:InitiateAnalogReadByPointID
 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"
xmlns:ns3="cpsm"
 xmlns:ns2="http://www.w3.org/1999/xlink" xmlns:ns1="gml">
 <ns4:pointIDs />
 <ns4:responseURL>https://nms-server:7002/nms-ms/oa</ns4:responseURL>
 <ns4:transactionID>1300163600203</ns4:transactionID>
 <ns4:expTime units="Hours">1.0</ns4:expTime>
 </ns4:InitiateAnalogReadByPointID>
 </S:Body>
</S:Envelope>
11-36 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
GetAllSCADATags
Synchronization of tag information is done using GetAllSCADATags operation (not part of
MultiSpeak 4.1). The expectation is that SCADA systems would return information about all
currently applied tags. NMS compares information received from SCADA against tags currently
present in the model and make necessary adjustments (adding or removing tags).

GetAllSCADATags request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/
Version_4.1_Release"
 xmlns:ns3="cpsm"
 xmlns:ns2="http://www.w3.org/1999/xlink"
 xmlns:ns1="gml"
 Pwd="test" UserID="nms" />
 </S:Header>
 <S:Body>
 <ns4:GetAllSCADATags xmlns:ns4="http://www.multispeak.org/
Version_4.1_Release"
 xmlns:ns3="cpsm"
 xmlns:ns2="http://www.w3.org/1999/xlink"
 xmlns:ns1="gml">
 <ns4:lastReceived></ns4:lastReceived>
 </ns4:GetAllSCADATags>
 </S:Body>
</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test"
 ObjectsRemaining="0"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:GetAllSCADATagsResponse>
 <ver:GetAllSCADATagsResult>
 <ver:scadaTag objectID="scada-tag-1" verb="Change">
 <ver:tagType>Hold</ver:tagType>
 <ver:scadaPointID>BR2422</ver:scadaPointID>
 <ver:username>scada</ver:username>
 <ver:comment>test tag</ver:comment>
 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>
 </ver:scadaTag>
 </ver:GetAllSCADATagsResult>
 </ver:GetAllSCADATagsResponse>
 </soapenv:Body>
</soapenv:Envelope>

Controls
NMS can use the same operation (InitiateControl) to request device operation and to request
placement or removal of a tag. The InitiateControl message consists of a single controlAction
object.

The following InitiateControl fields are used:

• controlAction/scadaPointID – SCADA point ID;

• controlAction/controlKey – SCADA-specific value indicating requested operation (open/
close device, place/remove tag);

• controlAction/desiredValue – the desired value of the SCADA point being controlled (for
example, transformer tap setting);
MultiSpeak Adapter 11-37

Supported Data Flows
• transactionID – unique value associated with the control request;

• responseURL – URL of NMS web service, which should be used to report outcome of the
requested control action.

Notes:

• Field function is required, but NMS does not use it. It is always populated with
the value Direct operate.

• Field relayType is required, but NMS does not use it. It is always populated with
the value Normal.

• NMS will not issue separate select and operate commands.

• The desiredValue field is not part of the MultiSpeak 4.1 specification. The
SCADA system needs to be aware of this Oracle-specific extension.

InitiateControl request example

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" TimeStamp="2011-03-
19T20:04:37"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:InitiateControl>
 <ver:controlAction>
 <ver:scadaPointID>BR_R-2241</ver:scadaPointID>
 <ver:controlKey>open</ver:controlKey>
 <ver:function>Direct operate</ver:function>
 <ver:relayType>Normal</ver:relayType>
 </ver:controlAction>
 <ver:responseURL>https://nms-server:7002/nms-ms/oa</ver:responseURL>
 <ver:transactionID>12345</ver:transactionID>
 </ver:InitiateControl>
 </soapenv:Body>
</soapenv:Envelope>

Operating a SCADA-controlled device
1. NMS user instructs open of a SCADA-controlled device.

2. Instructed flag is placed on the device in NMS. The device remains closed in NMS model.

3. NMS sends InitiateControl message to the SCADA system.

4. If requested control action has been successfully executed then:

a. SCADA sends SCADAStatusChangedNotification with the new status of the
operated device

b. NMS updates device status in the model and removes Instructed flag

3. Regardless of the outcome of the requested control action

a. SCADA sends ControlActionCompleted message to indicate whether requested
control action was successful or not

b. In case of negative outcome NMS removes Instructed flag. Device status remains
unchanged.

Note: When SCADA sends ControlActionCompleted message to NMS in
case of success NMS will not update device status in its model until
SCADAStatusChangedNotification message has been received.
11-38 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
Placing or Removing a Tag on a SCADA-Controlled Device
1. NMS user instructs placement of a HOLD tag on a SCADA-controlled device.

2. Instructed flag is placed on the device in NMS. The device remains closed in the NMS model.

3. NMS sends InitiateControl message to the SCADA system.

4. If requested control action has been successfully executed then:

a. SCADA sends SCADATagChangedNotification with the new status of the operated
device.

b. NMS updates device status in the model and removes Instructed flag.

3. If requested control action has NOT been successfully executed then:

a. SCADA sends ControlActionCompleted message to indicate that requested control
action has not been executed.

b. NMS removes Instructed flag, device status remains unchanged.

Note: SCADA can send ControlActionCompleted message to NMS in case
of success, but NMS will not update tag information in its model until
SCADATagChangedNotification message has been received.

Outgoing Device Statuses
If SCADA system has knowledge of the NMS electrical model, then the adapter can be configured
to send device status information for devices in the NMS model to the SCADA system.

The SCADA system plugin method buildScadaPointId is used to construct SCADA point id for
NMS devices. The version of the buildScadaPointId method accepting the scadaPointId
parameter is used here.

SCADAStatusChangedNotification
Sends NMS device status changes to SCADA system.

If support for pending construction devices is enabled then boolean extension item named
'PENDING_CONSTRUCTION' is used to indicate pending construction status of the NMS
device.

Example of a message to SCADA system when a device in NMS has been commissioned (this
means that the device is no longer pending construction therefore the value of the extension item
is false).

<ns4:SCADAStatusChangedNotification xmlns:ns4="http://
www.multispeak.org/Version_4.1_Release">
 <ns4:scadaStatuses>
 <ns4:scadaStatus objectID="148.1345#C">
 <ns4:extensionsList>
 <ns4:extensionsItem>
 <ns4:extName>PENDING_CONSTRUCTION</ns4:extName>
 <ns4:extValue>false</ns4:extValue>
 <ns4:extType>boolean</ns4:extType>
 </ns4:extensionsItem>
 </ns4:extensionsList>
 <ns4:status>Open</ns4:status>
 <ns4:changeCounter>0</ns4:changeCounter>
 </ns4:scadaStatus>
 </ns4:scadaStatuses>
</ns4:SCADAStatusChangedNotification>
MultiSpeak Adapter 11-39

Supported Data Flows
StatusChangedNotificationByPointID
Sends NMS device status information to SCADA system in response to
InitiateStatusReadByPointID request. NMS only returns information for devices which are not
in the nominal state to reduce volume of data.

Outgoing Tags and Other Conditions
If SCADA system has knowledge of the NMS electrical model, then the adapter can be configured
to send information about tags and other conditions (for example, notes) in the NMS model to
the SCADA system.

The SCADA system plugin method buildScadaPointId is used to construct SCADA point id
associated with NMS tag/condition. The version of the buildScadaPointId method accepting the
scadaPointId parameter is used here.

The SCADA system plugin methods setTagHandle, setTagId, setTagType, setUserName,
setScadaPointId, setAction, and setTagData are used to populate the outgoing tag update
messages.

SCADATagChangedNotification
Sends changes to NMS tags and other conditions to SCADA system.

This operation is vendor extension to the MultiSpeak 4.1 specification.

TagChangedNotificationByPointID
Sends information about NMS tags and other conditions to SCADA system in response to
InitiateTagReadByPointID request.

This operation is vendor extension to the MultiSpeak 4.1 specification.

Both SCADATagChangedNotification and TagChangedNotificationByPointID messages contain
sequence of ScadaTag objects. The following ScadaTag fields are used by the default SCADA
system plugin implementation:

• @objectID - NMS condition handle

• tagID - NMS condition external id

• scadaPointID - SCADA point id

• @verb = action (New - condition placed; Change - condition update; Delete - condition
removed)

• tagType - SCADA tag type

• username - NMS operator username

• tagReason - condition text

• tagInsertionTime - condition creation timestamp

Display Integration

HighlightObjectInDisplay
This message causes SCADA system to focus display on a particular SCADA point.
11-40 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
SCADA to NMS

Supported Operations

PingURL
SCADA system can use PingURL operation to verify that NMS is operational.

GetMethods
SCADA system can use GetMethods operation to determine operations supported by NMS.

SCADAAnalogChangedNotification
SCADA system can use this operation to report that analog or digital measurement(s) has
changed. The message consists of an array of scadaAnalog objects.

The following scadaAnalog fields should be used (XPath notation is used):

• @objectID or objectName - SCADA point ID;

• measurementTypeID - measurement type (used to determine NMS attribute);

• value - measurement value and units;

• quality - quality code associated with the measurement;

• timeStamp - measurement timestamp.

Note: If SCADA point ID uniquely identifies the measurement then the
measurementTypeID field can be omitted.

Possible error conditions:

• Unknown SCADA system;

• Unknown SCADA point id;

• Unable to map measurement to NMS attribute;

• Empty measurement value.

SCADAAnalogChangedNotification Example

• Sets Amps attribute to 260.78 and turns off faultIndicator for device BR_R-2241.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:SCADAAnalogChangedNotification>
 <ver:scadaAnalogs>
 <ver:scadaAnalog>
 <ver:objectName>BR_R-2241</ver:objectName>
 <ver:value units="Amps">260.78</ver:value>
 <ver:quality>Measured</ver:quality>
 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>
 <ver:measurementTypeID>Amps</ver:measurementTypeID>
 </ver:scadaAnalog>
 <ver:scadaAnalog>
 <ver:objectName>BR_R-2241</ver:objectName>
 <ver:value>0</ver:value>
 <ver:quality>Measured</ver:quality>
 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>
 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>
 </ver:scadaAnalog>
MultiSpeak Adapter 11-41

Supported Data Flows
 </ver:scadaAnalogs>
 </ver:SCADAAnalogChangedNotification>
 </soapenv:Body>
</soapenv:Envelope>

SCADAAnalogChangedNotificationByPointID
The SCADA system can use this operation to report that an analog or digital measurement has
changed. The message consists of a single scadaAnalog object.

The following scadaAnalog fields should be used:

• @objectID or objectName - SCADA point ID;

• measurementTypeID - measurement type (used to determine NMS attribute);

• value - measurement value and units;

• quality - quality code associated with the measurement;

• timeStamp - measurement timestamp.

Possible error conditions:

• Unknown SCADA system;

• Unknown SCADA point id;

• Unable to map measurement to NMS attribute;

• Empty measurement value.

AnalogChangedNotificationByPointID
This operation is used by SCADA system to respond to the InitiateAnalogReadByPointID request
made by NMS.

• The message format is the same as SCADAAnalogChangedNotification with one
additional field 'transactionID'.

• Its value has to match the value of the 'transactionID' field in the
InitiateAnalogReadByPointID message the SCADA system is responding to.

SCADAStatusChangedNotification
The SCADA system will use this operation to report that one or more devices have changed
status. The message consists of an array of scadaStatus objects.

The following scadaStatus fields should be used:

• @objectID or objectName - SCADA point ID;

• status - SCADA device status (Open/Closed);

• quality - quality code associated with the status update;

• changeCounter - number of device status changes since the last report;

• timeStamp - device operation timestamp.

Possible error conditions:

• Unknown SCADA system;

• Unknown SCADA point id;

• Invalid status value.
11-42 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
SCADAStatusChangedNotification examples

1. Opens device BR_R-2241

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:SCADAStatusChangedNotification>
 <ver:scadaStatuses>
 <ver:scadaStatus>
 <ver:objectName>BR_R-2241</ver:objectName>
 <ver:quality>Measured</ver:quality>
 <ver:status>Open</ver:status>
 <ver:changeCounter>1</ver:changeCounter>
 <ver:timeStamp>2011-03-04T11:44:10</ver:timeStamp>
 </ver:scadaStatus>
 </ver:scadaStatuses>
 </ver:SCADAStatusChangedNotification>
 </soapenv:Body>
</soapenv:Envelope>

2. Closes device BR_R-2241

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:SCADAStatusChangedNotification>
 <ver:scadaStatuses>
 <ver:scadaStatus>
 <ver:objectName>BR_R-2241</ver:objectName>
 <ver:quality>Measured</ver:quality>
 <ver:status>Closed</ver:status>
 <ver:changeCounter>1</ver:changeCounter>
 <ver:timeStamp>2011-03-04T11:44:10</ver:timeStamp>
 </ver:scadaStatus>
 </ver:scadaStatuses>
 </ver:SCADAStatusChangedNotification>
 </soapenv:Body>
</soapenv:Envelope>
MultiSpeak Adapter 11-43

Supported Data Flows
SCADAStatusChangedNotificationByPointID
The SCADA system can use this operation to report that the status of a device has changed. The
message consists of a single scadaStatus object.

The following scadaStatus fields should be used:

• @objectID or objectName - SCADA point ID;

• status - SCADA device status (Open/Closed);

• quality - quality code associated with the status update;

• changeCounter - number of device status changes since the last report;

• timeStamp - device operation timestamp.

Possible error conditions:

• Unknown SCADA system;

• Unknown SCADA point id;

• Invalid status value.

StatusChangedNotificationByPointID
This operation is used by the SCADA system to respond to the InitiateStatusReadByPointID
request made by NMS.

• Message format is the same as SCADAStatusChangedNotification with one additional
field 'transactionID'.

• Its value has to match value of the 'transactionID' field in the
InitiateStatusReadByPointID message the SCADA system is responding to.

SCADATagChangedNotification
The SCADA system can use this operation to report that there has been a change in tag(s) placed
on devices in the SCADA system. The message consists of an array of scadaTag objects.

The following scadaTag fields should be used:

• @objectID - SCADA tag identifier;

• scadaPointID - SCADA point id;

• @verb - action (New/Change/Delete);

• tagType - SCADA tag type;

• username - SCADA operator's user name;

• comment - tag comments, notes;

• timeStamp - tag operation timestamp.

Possible error conditions:

• Unknown SCADA system;

• Unknown SCADA point id;

• Invalid tag type;

• Unsupported action.

This operation is vendor extension to the MultiSpeak 4.1 specification.
11-44 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
SCADATagChangedNotification examples

1. Place HOLD tag on device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:SCADATagChangedNotification>
 <ver:scadaTags>
 <ver:scadaTag objectID="scada-tag-1" verb="New">
 <ver:tagType>Hold</ver:tagType>
 <ver:scadaPointID>BR2422</ver:scadaPointID>
 <ver:username>scada</ver:username>
 <ver:comment>test tag</ver:comment>
 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>
 </ver:scadaTag>
 </ver:scadaTags>
 </ver:SCADATagChangedNotification>
 </soapenv:Body>
</soapenv:Envelope>

2. Update HOLD tag on device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:SCADATagChangedNotification>
 <ver:scadaTags>
 <ver:scadaTag objectID="scada-tag-1" verb="Change">
 <ver:tagType>Hold</ver:tagType>
 <ver:scadaPointID>BR2422</ver:scadaPointID>
 <ver:username>scada2</ver:username>
 <ver:comment>updated test tag</ver:comment>
 <ver:timeStamp>2011-07-19T14:13:31.859-05:00</ver:timeStamp>
 </ver:scadaTag>
 </ver:scadaTags>
 </ver:SCADATagChangedNotification>
 </soapenv:Body>
</soapenv:Envelope>
MultiSpeak Adapter 11-45

Supported Data Flows
3. Remove HOLD tag from device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"
 xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:SCADATagChangedNotification>
 <ver:scadaTags>
 <ver:scadaTag objectID="scada-tag-1" verb="Delete">
 <ver:tagType>Hold</ver:tagType>
 <ver:scadaPointID>BR2422</ver:scadaPointID>
 <ver:username>scada</ver:username>
 <ver:comment>updated test tag</ver:comment>
 <ver:timeStamp>2011-07-19T14:14:31.859-05:00</ver:timeStamp>
 </ver:scadaTag>
 </ver:scadaTags>
 </ver:SCADATagChangedNotification>
 </soapenv:Body>
</soapenv:Envelope>

TagChangedNotificationByPointID
This operation is used by the SCADA system to respond to the InitiateTagReadByPointID
request made by NMS.

• The message format is the same as SCADATagChangedNotification with one additional
field 'transactionID'.

• Its value has to match value of the 'transactionID' field in the InitiateTagReadByPointID
message SCADA system is responding to.

• This operation is vendor extension to the MultiSpeak 4.1 specification.

ControlActionCompleted
The SCADA system can use this operation to report to NMS the outcome of a control action
requested by the InitiateControl operation. The message consists of a single of scadaControl
object. In case of successful control action field, the controlStatus should contain value “Control
accepted.” Any other value is interpreted as control failure.

ControlActionCompleted example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ver="http://www.multispeak.org/Version_4.1_Release">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:ControlActionCompleted>
 <ver:controlAction>
 <ver:scadaPointID>BR2422</ver:scadaPointID>
 <ver:function>Direct operate</ver:function>
 <ver:relayType>Normal</ver:relayType>
 <ver:controlStatus>Control accepted</ver:controlStatus>
 </ver:controlAction>
 <ver:transactionID>12345</ver:transactionID>
 </ver:ControlActionCompleted>
 </soapenv:Body>
</soapenv:Envelope>
11-46 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
VoltageAlarmNotification
The SCADA system can use this operation to report alarms to NMS. The message consists of an
array of voltageAlarm objects.

The following voltageAlarm fields should be used:

• @objectID - SCADA alarm identifier;

• sourceIdentifier - SCADA point id;

• sourceIdentifier/@name - attribute name;

• @verb - action (only New is allowed);

• @errorString - alarm description;

• comments - alarm description;

• eventTime - SCADA alarm timestamp;

• voltageAlarmList/voltageAlarmItem[1]/voltageValue - SCADA measurement value, which
caused the alarm;

• voltageAlarmList/voltageAlarmItem[1]/quality - SCADA quality code;

• voltageAlarmList/voltageAlarmItem[1]/analogCondition - SCADA limit violation;

• voltageAlarmList/voltageAlarmItem[1]/phaseCode - SCADA alarm phases.

For alarms SCADA quality code is passed “as-is.” Configured quality code mapping rules are not
applied in this case.

Possible error conditions:

• Unknown SCADA system;

• Unknown SCADA point id;

• Unsupported action.

VoltageAlarmNotification example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">
 <soapenv:Header>
 <ver:MultiSpeakMsgHeader UserID="nms1" Pwd="systems"/>
 </soapenv:Header>
 <soapenv:Body>
 <ver:VoltageAlarmNotification>
 <ver:alarms>
 <ver:voltageAlarm objectID="alarm-1" verb="New"
 errorString="alarm test">
 <ver:comments>comment</ver:comments>
 <ver:sourceIdentifier name="Volts">BR2422</ver:sourceIdentifier>
 <ver:eventTime>2011-05-11T10:05:25.484-05:00</ver:eventTime>
 <ver:voltageAlarmList>
 <ver:voltageAlarmItem>
 <ver:voltageValue units="V">100</ver:voltageValue>
 <ver:quality>Measured</ver:quality>
 <ver:analogCondition>H1</ver:analogCondition>
 <ver:phaseCode>BC</ver:phaseCode>
 </ver:voltageAlarmItem>
 </ver:voltageAlarmList>
 </ver:voltageAlarm>
 </ver:alarms>
 </ver:VoltageAlarmNotification>
 </soapenv:Body>
</soapenv:Envelope>
MultiSpeak Adapter 11-47

Supported Data Flows
InitiateStatusReadByPointID
Initiates process of sending device status information from NMS to SCADA as series of
StatusChangedNotificationByPointID messages.

InitiateTagReadByPointID
Initiates process of sending tag/condition information from NMS to SCADA as series of
TagChangedNotificationByPointID messages.

The following message fields should be used:

• responseURL - web service URL where NMS should send
TagChangedNotificationByPointID messages with response data (not used in case of JMS
transport)

• transactionID - request transaction ID (all TagChangedNotificationByPointID messages sent
in response to this request will contain the specified transaction ID)

HighlightObjectInDisplay
Causes NMS viewer to focus on given SCADA point. Viewer window has to be open (this
message does not open viewer window).

GetAllSCADAPoints
SCADA system can retrieve list of SCADA points configured in NMS for that particular SCADA
system using the GetAllSCADAPoints MultiSpeak operation. The information is returned
synchronously.

The MultiSpeak specification allows data to be returned in chunks to the SCADA system. In this
case, SCADA would have to make multiple GetAllSCADAPoints calls. The element
lastReceived is included so that large sets of data can be returned in manageable blocks.
lastReceived must carry an empty string the first time in a sequence of calls. When multiple calls
to this method are required to obtain all of the data, the lastReceived should carry the objectID
of the last data instance received by previous call. The ObjectsRemaining field in the MultiSpeak
header of the reply message is set to 0 in the last response; otherwise, it is set to the number of
remaining SCADA points. The LastSent field in the MultiSpeak header of the reply message is set
to last SCADA point id sent in this block (it can be used to populate the lastReceived parameter
in the next request).

MultiSpeak Message Header
The attributes UserID and Pwd in the MultiSpeak message header are used for authentication
unless Basic HTTP Authentication is used. When used for authentication, these attributes should
be populated with valid NMS credentials for all messages coming to NMS with exception of
PingURL and GetMethods. When Basic HTTP Authentication is used, the attribute Pwd should
be either empty or omitted.

The attribute UserID is also used to determine the SCADA system the message originated from.
It is checked against the names of the known SCADA systems in the SCADA_IDS database table.
If the adapter is configured to communicate with a single SCADA system and the configuration
parameter config.strict_scada_name_check is set to false, then SCADA name check is
skipped.
11-48 Oracle Utilities Network Management System Adapters Guide

Software Configuration
Software Configuration
Configuration for the Oracle Utilities Network Management System MultiSpeak Adapter comes
from the following sources:

• CES_PARAMETERS database table;

• SCADA_IDS database table;

• SCADA_LINKS database table;

• SCADA_LINK_OPS database table;

• SCADA_SYNONYMS database table.

CES_PARAMETERS
Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle
Utilities Network Management System MultiSpeak Adapter should have the value
SCADAInterface in the APP column. Column ATTRIB should contain the name of the
configuration parameter and column VALUE its value.

Common Configuration Parameters
The following table describes the common configuration parameters.

Parameter Description

config.credentials Absolute path to the file containing user credentials the
adapter will use to communicate with Oracle Utilities
Network Management System.
Either this parameter or both config.username and
config.password parameters should be provided. If all are
present then config.username/config.password pair is
used.

config.enabled Enables SCADA processing.
Default: false

config.message_credentials_requi
red

If this parameter is set to false then credentials for
authenticating with NMS are taken from the MultiSpeak
header of the incoming message.
If this parameter is set to false and credentials are not
present in the MultiSpeak header of the incoming
message then username and password configured in the
adapter is used to authenticate with NMS.
Valid values: true/false. Default value: true

config.password NMS user password. Value of this parameter should be
encrypted.

config.strict_scada_name_check SCADA name validation. If set to 'false' and only one
SCADA system is configured for the MultiSpeak Adapter
in the SCADA_IDS database table then SCADA name
check is skipped. Otherwise field UserID in the
MultiSpeak message header or username of the web
services caller (if UserID is empty) is matched against the
values in the SCADA_NAME field in the SCADA_IDS
database table. Request is rejected if matched value is not
found.
Default: true
MultiSpeak Adapter 11-49

Software Configuration
Per SCADA System Configuration Parameters
The following configuration parameters are configured individually for each SCADA system the
adapter is communicating with. Names of such parameters are prefixed with the name of the
SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS
table).

Authentication with the SCADA System
The SCADA component of the Oracle Utilities Network Management System MultiSpeak
Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak
message header.

Note: Other MultiSpeak message header fields can be set by using desired field
name in the parameter name.

JNDI Name for JMS Connection Factory
When JMS transport is used this parameter defines JNDI name of the JMS connection factory
used for NMS to SCADA data flows.

JMS Connection Credentials
These parameters are used if credentials are required to establish connection to JMS server. They
are passed to the createConnection method of JMS connection factory.

SCADA System Plugin Class
Plugin class is a Java class, which encapsulates functionality of the adapter, which is specific to a
particular SCADA system.

config.username Valid NMS username, which has the 'NmsService' role in
WebLogic Server.

Parameter Description

Parameter Description

<scada name>.headers.UserID Username to be passed to the SCADA system.

<scada name>.headers.Pwd Password to be passed to the SCADA system.

Parameter Description

<scada name>.jms_cf_name JNDI name of the JMS connection factory which should be
used for NMS to SCADA data flows.
Default value: ConnectionFactory

Parameter Description

<scada name>.jms_user JMS connection username.

<scada name>.jms_password JMS connection password.

Parameter Description

<scada name>.plugin_class Full name of the Java class implementing ScadaSystemPlugin
interface for the SCADA system the adapter is connected to.
Default value:
com.splwg.oms.interfaces.scada.plugins.GenericScada
11-50 Oracle Utilities Network Management System Adapters Guide

Software Configuration
Support for Tags
These parameters control tag-related data flows.

<idx> - suffix used to make parameter name unique; any value can be used as long as resulting
configuration parameter name is unique.

Synchronization Sequence Timeout
This parameter limits how long synchronization sequence can last. If this value is exceeded then
link failure is declared.

Automatic Synchronization of Measurements Values
SCADA systems can have large number of analog measurements and synchronizing those can be a
lengthy task. This configuration parameter allows analog measurements to be excluded from
automated synchronization sequence, which is executed when connection to SCADA system is
established.

It is always possible to manually trigger synchronization of analog measurements regardless of the
value of this parameter.

Adapter Status Alarm Messages
NMS MultiSpeak adapter can generate system alarms to alert NMS operator about following
conditions:

• Adapter has been started

• Adapter has been stopped

• Connection to SCADA system has been established

• Connection to SCADA system has failed

Parameter Description

<scada name>.support_tags Enable/disable support for incoming tags.
Default value: false (incoming tags are not supported)

<scada
name>.outgoing_tag.class.<idx
>

Names of the NMS condition classes for which updates
should be sent to the SCADA system. This applies to the
children of the configured classes as well.

<scada
name>.outgoing_tag.block_siz
e

Block size for the outgoing condition messages.
Default: 10

Parameter Description

<scada name>.sync_timeout Maximum allowed duration (in seconds) of synchronization
sequence.
Default value: 3600

Parameter Description

<scada name>.sync_analogs Include measurement values into automated synchronization
sequence
Default value: true
MultiSpeak Adapter 11-51

Software Configuration
• Synchronization sequence has finished

If alarm text is not configured then corresponding alarm will not be generated.

Dynamic SCADA Point Configuration
When SCADA system has knowledge of NMS device aliases or device handles it is possible to
have process of SCADA point configuration to be performed by the adapter as part of integrity
check. New SCADA points are added to the database tables ANALOG_MEASUREMENTS,
DIGITAL_MEASUREMENTS and SCADA_MEASUREMENTS_ST. Orphaned SCADA
points can be removed from the SCADA_MEASUREMENTS_ST database table.

No additional actions are required for new SCADA points to take effect (users may have to
refresh SCADA Summary to see new points). Command 'UpdateDDS -recacheMeasures' need to
be executed to propagate record deletions to runtime tables (ANALOG_MEASUREMENTS and
DIGITAL_MEASUREMENTS).

In order for dynamic SCADA point configuration to be possible SCADA system plugin must
implement buildScadaPointId and parseScadaPointId methods.

Sending Device Status Information from NMS to SCADA
The adapter can be configured to send NMS device status information to SCADA system. List of
NMS devices classes has to be configured to enable this functionality (<scada
name>.outgoing_status.class.<idx> parameter).

Class inheritance is taken into account so if a device class is configured to have status changes to
be sent to SCADA system then status changes for all the child classes would also be sent out.

For conductors quality value in the outgoing message is set to Other. In all other cases quality
value is not set.

Status information for inline jumpers is reported as status on the underlying conductor.

Parameter Description

<scada name>.msg.started Text of the alarm generated when adapter has been started.

<scada name>.msg.stopped Text of the alarm generated when adapter has been stopped.

<scada name>.msg.established Text of the alarm generated when connection to SCADA
system has been established.

<scada name>.msg.failed Text of the alarm generated when connection to SCADA
system has failed.

<scada
name>.msg.synchronized

Text of the alarm generated when synchronization sequence
has finished.

Parameter Description

<scada
name>.dynamic_point_config

Dynamic SCADA point configuration support.
Valid values:

• full – dynamic addition and removal of SCADA
points is supported

• add – only dynamic addition of SCADA points is
supported

• none – not supported

Default: none.
11-52 Oracle Utilities Network Management System Adapters Guide

Software Configuration
Point-to-point jumpers are not supported.

<idx> - suffix used to make parameter name unique; any value can be used as long as resulting
configuration parameter name is unique.

Synchronization Method
The SCADA component of the Oracle Utilities Network Management System MultiSpeak
Adapter supports two methods of synchronizing device statuses and measurements with the
SCADA system: synchronous and asynchronous.

Parameter Description

<scada
name>.outgoing_status.class.<
idx>

Device classes for which status information should be sent
to SCADA system.

<scada
name>.outgoing_status.block_
size

Block size for outgoing device status messages.
Default: 10

<scada
name>.outgoing_status.allow_
scada

Allow device status updates for SCADA devices to be sent
to the SCADA system. This is disabled by default because
SCADA system is the master for the information about
SCADA devices.
Default: false

<scada
name>.outgoing_status.allow_
pending_construction

Allow device status updates for pending construction
devices as well as changes in pending construction status of
devices to be sent to the SCADA system.
Default: false

<scada
name>.conductor.class.<idx>

NMS conductor device classes.

<scada
name>.jumper.class.<idx>

NMS jumper device classes.

Parameter Description

<scada
name>.preferred_sync_metho
d

Preferred method of synchronization with the SCADA
system.
Valid values:

• sync – synchronous

• async - asynchronous

Default: async.

<scada
name>.need_sync_points

Whether full list of SCADA points known to NMS should
be sent to SCADA during synchronization process. Only
applicable when preferred_sync_method is async.
Valid values: true/false
Default: false
MultiSpeak Adapter 11-53

Software Configuration
SOAP Protocol Version
Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP protocol
versions 1.1 or 1.2.

Outbound Controls
The SCADA component of the Oracle Utilities Network Management System MultiSpeak
Adapter supports sending control requests to the SCADA system.

Heartbeat Interval
The SCADA component of the Oracle Utilities Network Management System MultiSpeak
Adapter periodically sends PingURL message to the SCADA system to check status of the link.
Heartbeat failure causes adapter to switch to alternate link (if available).

Support for Operating Non-SCADA Devices in the NMS Model
If set to 'true' this configuration parameter allows SCADA system to operate devices, which are
not SCADA-telemetered, in NMS model. For this to be possible the adapter must be able to
derive NMS device handle from SCADA point id. In addition if dynamic point configuration is
enabled, then SCADA plugin must implement 'isScadaPoint' method to allow adapter to
distinguish between status updates for SCADA and non-SCADA devices.

Obtaining list of configured SCADA points
SCADA system can retrieve list of SCADA points configured in NMS for that particular SCADA
system using the GetAllSCADAPoints MultiSpeak operation. The information is returned in

Parameter Description

<scada name>.soap12 Whether SOAP 1.2 should be used.
Valid values: true/false
Default: false (use SOAP 1.1)

Parameter Description

<scada name>.allow_controls Whether control requests should be sent to SCADA.
Valid values: true/false
Default: false (controls are not allowed)

Parameter Description

<scada
name>.heartbeat_interval

Interval in seconds between heartbeat messages.
Default: 60 seconds

Parameter Description

<scada
name>.allow_non_scada_ops

Allow SCADA to operate non-SCADA
devices in NMS model.
Default: false (do not allow SCADA to operate non-SCADA
devices)
11-54 Oracle Utilities Network Management System Adapters Guide

Software Configuration
blocks and the caller may have to invoke this operation multiple times to retrieve all configured
points.

Own Web Service URL
There are cases when the SCADA component of the Oracle Utilities Network Management
System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system.
For example, when sending asynchronous request to the SCADA system, it needs to provide a
URL where the response should be sent when the results become available.

SCADA_IDS
This database table is used to configure the list of SCADA systems that the adapter will be
communicating with. For SCADA systems compatible with this adapter, the column
ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)
VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)
VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS
This database table is used to configure communication links to the SCADA systems. It is allowed
to configure multiple links to a single SCADA system. If one link fails the adapter will switch to
another one in the order determined by the PRIORITY field (only one link is active at any given
time). HTTPS and JMS links are supported.

• For HTTP links, the WS_URL column is used to specify the URL of the SCADA system
web service.

• For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to
specify the JNDI names of the JMS queues used to send requests to and receive responses
from the SCADA system.

• The value in the TIMEOUT column controls how long the adapter should wait for a
response from the SCADA system (in seconds). This is only applicable to JMS links. The
maximum allowed value is 3600 (1 hour).

• The value in the PERSISTENT column defines the delivery mode for JMS messages. If set
to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default
messages are not persistent. This is only applicable to JMS links.

Parameter Description

<scada
name>.points.block_size

Block size for responses to GetAllSCADAPoints requests.

This is the maximum number of ScadaPoint objects which
will be included into a single response to
GetAllSCADAPoints request

Default: 100

Parameter Description

<scada name>.OA.url URL where the incoming web service of the Oracle Utilities
Network Management System MultiSpeak Adapter is
deployed.
MultiSpeak Adapter 11-55

Software Configuration
Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority,
active)
VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');
INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority,
active)
VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');
INSERT INTO scada_links (id, scada_id, request_queue, response_queue,
 timeout, persistent, priority, active)
VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N',
3, 'Y');

SCADA_LINK_OPS
This table can be used to configure communication parameters differently for individual outgoing
web service operations. If an operation does not have a record in the SCADA_LINK_OPS table
then values from the parent SCADA_LINKS record are used.

Column LINK_ID is the foreign key into the SCADA_LINKS table.

Column OPERATION is used to specify web service operation name. Supported operation
names:

• PingURL

• GetMethods

• InitiateAnalogReadByPointID

• InitiateStatusReadByPointID

• InitiateTagReadByPointID

• InitiateControl

• GetAllSCADAAnalogs

• GetAllSCADAStatus

• GetAllSCADATags

• SCADAStatusChangedNotification

• SCADAStatusChangedNotificationByPointID

• StatusChangedNotificationByPointID

• HighlightObjectInDisplay

• SCADATagChangedNotification

• TagChangedNotificationByPointID

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web
service. For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to
specify the JNDI names of the JMS queues used to send requests to and receive responses from
the SCADA system.

Value in the TIMEOUT column controls how long the adapter should wait for response from
SCADA system (in seconds). Maximum allowed value is 3600 (1 hour).

Value in the PERSISTENT column defines delivery mode for JMS messages. If set to 'Y' then
JMS messages are persistent, otherwise they are not persistent. By default messages are not
persistent.
11-56 Oracle Utilities Network Management System Adapters Guide

Software Configuration
Example

INSERT INTO scada_link_ops (id, link_id, operation, request_queue,
 response_queue, timeout, persistent)
VALUES (31, 3, 'PingURL', 'queue/ScadaRequest_PingURL',
 'queue/ScadaResponse_PingURL', 30, 'N');
INSERT INTO scada_link_ops (id, link_id, operation, ws_url, timeout,
persistent)
VALUES (32, 4, 'GetMethods', 'http://scada-server:8080/GetMethods',
30, 'N');

SCADA_SYNONYMS
This database table is used configure mapping of different data elements between SCADA and
NMS systems. The SCADA_ID column should always be populated with the id of the SCADA
system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Device Status Mapping
By default the adapter maps MultiSpeak device status values 'Open' and 'Closed' to the
corresponding device statuses in NMS and ignores all other device status values defined by
MultiSpeak 4.1 specification. SCADA_SYNONYMS table allows customization of device status
mapping by associating MultiSpeak device status value to a combination of NMS device status and
quality code.

The MultiSpeak device status value should be entered into the KEYWORD column. The NMS
device status value should be entered into the STATUS_VALUE column. Valid values are 'Open',
'Closed' or NULL.

If this column is NULL, the device status in NMS will not be affected.

The NMS quality code should be entered in the INT_VALUE column. It will be combined with
the quality code received in the MultiSpeak message. The PROCESS_TYPE should be 'S'.

The following example maps the 'Travel' device status received from SCADA to quality code 8192
and keeps device status in NMS unchanged.

INSERT INTO scada_synonyms (id, scada_id, keyword, status_value,
int_value, process_type)
VALUES (tmp_seq.nextval, 200, 'Travel', null, 262144, 'S');

Attribute Mapping
Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device
and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS
attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D'
for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value,
process_type)
VALUES (1, 200, 'faultIndicator', 23, 'D');
INSERT INTO scada_synonyms (id, scada_id, keyword, int_value,
process_type)
VALUES (2, 200, 'Amps', 1012, 'A');

An additional method for configuring mapping for digital measurements is available. It applies
specifically to the case when digital measurement is submitted to NMS via
SCADAStatusChangedNotification, SCADAStatusChangedNotificationByPointID or
StatusChangedNotificationByPointID operation. This is only possible when SCADA point id
uniquely identifies digital measurement in NMS.
MultiSpeak Adapter 11-57

Software Configuration
SCADA attribute name/key should be entered into the KEYWORD column.

NMS attribute name should be entered into ATTRIBUTE_ALIAS column.

Status value received from SCADA should be entered into STATUS_VALUE column.

Corresponding NMS attribute value should be entered into INT_VALUE column.

PROCESS_TYPE should be 'D'.

Column VALUE is not used.

Example configuration for AutoReclose digital attribute. Receiving status 'Open' from SCADA
would set AutoReclose attribute for a device to 1. Receiving status 'Closed' from SCADA would
set AutoReclose attribute for a device to 0.

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value,
process_type,
 attribute_alias, status_value, value)
VALUES (247, 200, 'AutoReclose', 1, 'D', 'AutoReclose', 'Open', 'On');
INSERT INTO scada_synonyms (id, scada_id, keyword, int_value,
process_type,
 attribute_alias, status_value, value)
VALUES (248, 200, 'AutoReclose', 0, 'D', 'AutoReclose', 'Closed',
'Off');

Quality Code Mapping
The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1
specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial,
Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are
reserved for NMS-specific quality codes).

The PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value,
process_type)
VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping
For incoming SCADA tags:

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

For outgoing NMS conditions:

NMS condition class name should be entered into the KEYWORD column.

SCADA tag type should be entered into the VALUE column.

The PROCESS_TYPE should be 'C'.
11-58 Oracle Utilities Network Management System Adapters Guide

Software Configuration
Examples
Incoming

INSERT INTO scada_synonyms (id, scada_id, keyword, value,
process_type)
VALUES (11, 200, 'Hold', 'hold', 'C');
INSERT INTO scada_synonyms (id, scada_id, keyword, value,
process_type)
VALUES (12, 200, 'Tag', 'tag', 'C');
INSERT INTO scada_synonyms (id, scada_id, keyword, value,
process_type)
VALUES (13, 200, 'Clear', 'clear', 'C');

Outgoing

INSERT INTO scada_synonyms (id, scada_id, keyword, value,
process_type)
VALUES (21, 200, 'hold', 'Hold', 'C');
INSERT INTO scada_synonyms (id, scada_id, keyword, value,
process_type)
VALUES (22, 200, 'hot', 'Hot', 'C');
INSERT INTO scada_synonyms (id, scada_id, keyword, value,
process_type)
VALUES (23, 200, 'note', 'Note', 'C');

DDService Configuration for Outbound Controls
The SCADA component of the Oracle Utilities Network Management System MultiSpeak
Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA
controls.

DDService only write records into this table when it is running with the '-sendAsyncSCADA'
command-line option.

SCADA Point Configuration
The SCADA component of the Oracle Utilities Network Management System MultiSpeak
Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and
DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The
adapter can be forced to reload the SCADA point configuration during runtime using the
following command:

Action -java multispeak.SCADA reload
The synchronization sequence will be automatically started after the SCADA point configuration
is reloaded.

SCADA Configuration for Bellwether Meters
In order for the reading from bellwether meters to be reflected in NMS they need to be
configured as SCADA measurements in the SCADA component of the NMS MultiSpeak adapter.
The following set of steps should be used to perform such configuration.

1. Add entry to the SCADA_IDS table. The entry should match the
'config.bellwether_scada_name' configuration parameter of the AMR component of the
NMS MultiSpeak adapter.

2. Add entries to the SCADA_MEASUREMENT_ST table for the measurement values coming
from bellwether meters. The RTI_ALIAS field must be populated using format "<meter id>-
<field name>", where <meter id> is the NMS meter identifier
(AMR_CU_METERS.METER_ID) and <field name> is the meter reading field name
coming from the AMR system (e.g., “Voltage”).

3. Populate SCADA_SYNONYMS table with attribute mappings.
MultiSpeak Adapter 11-59

Plugin Support
4. Populate SCADA_SYNONYMS table with quality code mappings. The quality code for
meter readings is always “Measured.”

Note: Do not populate SCADA_LINKS table to indicate that this is "input-
only" SCADA system. It will prevent MultiSpeak adapter from attempting to
send heartbeat requests to the AMR system.

Plugin Support
SCADA vendors may interpret MultiSpeak specification differently or use extensions, which are
unique to each vendor. To address the issue of possible differences between various SCADA
components, the NMS MultiSpeak adapter has a plugin interface.

Plugin is a Java class, which encapsulates functionality specific to a particular SCADA system.
Plugin class must implement the interface
com.splwg.oms.interfaces.scada.ScadaSystemPlugin.

Default implementation of the SCADA system plugin is provided by the
com.splwg.oms.interfaces.scada.plugins.GenericScada class.

Methods
The available plugin methods, including description of how the default plugin class implements
each method, are:

getScadaPointId
java.lang.String getScadaPointId(MspObject obj)

This method is used to extract SCADA Point ID from the incoming MultiSpeak message.

Parameters:

obj - MultiSpeak object

Returns:

SCADA Point ID

Default implementation:

Returns value of the objectID attribute if not empty, otherwise value of the objectName
element

getScadaPointId
java.lang.String getScadaPointId(ScadaTag tag)

This method is used to extract SCADA Point ID from the incoming tag-related MultiSpeak
message.

Parameters:

tag - ScadaTag object

Returns:

SCADA Point ID

Default implementation:

Returns value of the scadaPointID element
11-60 Oracle Utilities Network Management System Adapters Guide

Plugin Support
setScadaPointId
void setScadaPointId(ScadaTag tag, java.lang.String pointId)
This method is used to set SCADA Point ID in the outgoing tag update message.

Parameters:

tag - ScadaTag object to be updated

pointId - SCADA Point ID

Default implementation:

Sets value of the scadaPointID element.

getStatus
StatusIdentifiers getStatus(final ScadaStatus status);

This method is used to extract device status value from the MultiSpeak device status update
message.

Parameters:

status - ScadaStatus object

Returns:

MultiSpeak device status value

Default implementation:

Returns value of the status element.

getQualityCodes
java.util.List<java.lang.String> getQualityCodes(ScadaStatus status)

This method is used to extract quality values from MultiSpeak status update message.

Parameters:

status - ScadaStatus object

Returns:

list of MultiSpeak quality values

Default implementation:

Returns value of the quality element

getQualityCodes
java.util.List<java.lang.String> getQualityCodes(ScadaAnalog analog)

This method is used to extract quality values from MultiSpeak analog update message.

Parameters:

analog - ScadaAnalog object

Returns:

list of MultiSpeak quality values

Default implementation:

Returns value of the quality element
MultiSpeak Adapter 11-61

Plugin Support
processChangeCounter
int processChangeCounter(StatusPoint point, int changeCounter)

This method is used to process SCADA change counter value.

Parameters:

point - SCADA status point

changeCounter - new change counter value for the SCADA status point

Returns:

Number of device operations, which occurred since the last processed update

Default implementation:

Assumes that change counter value received from SCADA is cumulative (total number of
times device has changed state since some point in the past). Number of device operations is
calculated as the difference between previous and current SCADA change counter values

getTagId
java.lang.String getTagId(ScadaTag tag)

This method is used to extract value from the tag update message, which is then used to populate
external id of the corresponding condition in NMS. This value has to uniquely identify the tag in
NMS.

Parameters:

tag - ScadaTag object

Returns:

SCADA tag id

Default implementation:

Returns value of the tagID element

setTagId
void setTagId(ScadaTag tag, java.lang.String tagId)

This method is used during synchronization process to set tag id value in the tag update message,
which is later extracted by the getTagId method.

Parameters:

tag - ScadaTag object to be updated

tagId - SCADA tag id

Default implementation:

Sets value of the tagID element
11-62 Oracle Utilities Network Management System Adapters Guide

Plugin Support
getTagHandle
Handle getTagHandle(ScadaTag tag)

This method is used to extract NMS condition handle from tag update message.

Parameters:

tag - ScadaTag object

Returns:

NMS condition handle

Default implementation:

Attempts to parse the objectID attribute as NMS handle and returns parsed value or null if
the objectID attribute cannot be parsed as NMS handle.

setTagHandle
void setTagHandle(ScadaTag tag, Handle condHdl)

This method is used to set NMS condition handle in the outgoing tag update message.

Parameters:

tag - ScadaTag object to be updated

condHdl - NMS condition handle

Default implementation:

Sets value of the objectID attribute.

getTagType
java.lang.String getTagType(ScadaTag tag)

This method is used to extract SCADA tag type from tag update message. This value is then used
to determine corresponding NMS condition class.

Parameters:

tag - ScadaTag object

Returns:

SCADA tag type

Default implementation:

Returns value of the tagType element

setTagType
void setTagType(ScadaTag tag, java.lang.String tagType)

This method is used to set SCADA tag type in the outgoing tag update message.

Parameters:

tag - ScadaTag object to be updated

tagType - SCADA tag type

Default implementation:

Sets value of the tagType element.
MultiSpeak Adapter 11-63

Plugin Support
getTagData
java.util.Map<java.lang.String,java.lang.Object> getTagData(ScadaTag
tag)

This method is used to extract additional tag data fields from tag message.

Parameters:

tag - ScadaTag object

Returns:

Map <tag field name -> tag field value>

Default implementation:

Returns map with a single entry ('text', value of the tagReason element)

setTagData
void setTagData(ScadaTag tag, java.util.Map<java.lang.String,
java.lang.Object> data)

This method is used to set additional tag data fields in the outgoing tag update message.

Parameters:

tag - ScadaTag object to be updated

data - Map <tag field name -> tag field value>

Default implementation:

Sets value of the tagReason element to the value of the 'text' entry in the data parameter.

getUserName
java.lang.String getUserName(ScadaTag tag)

Extracts operator username from tag update message.

Parameters:

tag - ScadaTag object

Returns:

SCADA operator username

Default implementation:

Returns value of the userName element

setUserName
void setUserName(ScadaTag tag, java.lang.String username)

This method sets operator username in the outgoing tag update message.

Parameters:

tag - ScadaTag object to be updated

username - NMS operator username

Default implementation:

Sets value of the userName element.
11-64 Oracle Utilities Network Management System Adapters Guide

Plugin Support
getAction
Action getAction(ScadaTag tag)

This method is used to extract action from tag update message. Action determines if the request is
to place a new tag, update an existing tag or remove an existing tag.

Parameters:

tag - ScadaTag object

Returns:

action

• NEW - add new tag

• CHANGE - update an existing tag

• DELETE - delete an existing tag

Default implementation:

Returns value of the verb attribute

setAction
void setAction(ScadaTag tag, Action action)

This method is used during synchronization process to set action value in the tag update message,
which is later extracted by the getAction method.

Parameters:

tag - ScadaTag object to be updated

action - action

• NEW - add new tag

• CHANGE - update an existing tag

• DELETE - delete an existing tag

Default implementation:

Sets value of the verb attribute
MultiSpeak Adapter 11-65

Plugin Support
buildScadaPointId
java.lang.String
buildScadaPointId(com.splwg.oms.common.intersys.Handle
nmsDeviceHandle, java.lang.String nmsDeviceAlias, int phase)
throws java.lang.IllegalArgumentException

This method is used to construct SCADA point id for status of an NMS device.

Note: This is the first of two overloaded versions of the buildScadaPointId
method.

Parameters:

nmsDeviceHandle - NMS device handle

nmsDeviceAlias - NMS device alias

phase - phase

Returns:

SCADA point id or null if not supported

Throws:

java.lang.IllegalArgumentException - SCADA point id cannot be constructed for
the given arguments

Default implementation:

Constructs SCADA point id of the following format:

• <base name>[#<phase text>]

• <base name> - nmsDeviceHandle if provided otherwise nmsDeviceAlias

• <phase code> - determined from the phase parameter according to the following
rules: 1 - 'A', 2 - 'B', 4 - 'C', otherwise empty string

buildScadaPointId
java.lang.String

buildScadaPointId(com.splwg.oms.common.intersys.HandlenmsDeviceHandle
java.lang.String nmsDeviceAlias, int phase, java.lang.String
scadaPointId)
throws java.lang.IllegalArgumentException

This method is used to construct SCADA point id for status of an NMS device.

Note: This is the second of two overloaded versions of the buildScadaPointId
method.

Parameters:

nmsDeviceHandle - NMS device handle

nmsDeviceAlias - NMS device alias

phase - phase

scadaPointId - SCADA point ID for the device status (only available for SCADA devices).

Returns:

SCADA point id or null if not supported

Throws:

java.lang.IllegalArgumentException - SCADA point id cannot be constructed for

the given arguments
11-66 Oracle Utilities Network Management System Adapters Guide

Plugin Support
Default implementation:

Invokes the buildScadaPointId method. which does not accept the scadaPointId parameter.
Thus the scadaPointId parameter passed to this method is not used in default
implementation.

parseScadaPointId
ParsedSCADAPointId parseScadaPointId(java.lang.String scadaPointId)
throws java.lang.IllegalArgumentException

Parse SCADA point id.

Parameters:

scadaPointId - SCADA point id

Returns:

ParsedSCADAPountId object

Throws:

java.lang.IllegalArgumentException - if scadaPointId cannot be parsed

Default implementation:

Populates NMS device id in ParsedSCADAPointId with scadaPointId argument.
MultiSpeak Adapter 11-67

Plugin Support
generateControl
ScadaControl generateControl(ExpectedAction action)

This method is used to create ScadaControl object based on information from the
EXPECTED_ACTIONS table.

Parameters:

action - row from EXPECTED_ACTIONS table

Returns:

ScadaControl object or null is controls are not supported

Default implementation:

Returns null

isScadaPoint
boolean isScadaPoint(final MspObject obj)

This method is used to determine if obj is a SCADA-telemetered point. Currently this method
gets invoked only for status points.

Parameters:

obj - MultiSpeak object

Returns:

true if obj is a SCADA-telemetered point, otherwise false

Default implementation:

Returns true

getPhaseName
java.lang.String getPhaseName(int phase)

This method is used to convert NMS phase code into phase name.

Parameters:

phases - NMS phase code (1 - A, 2 - B, 4 - C)

Returns:

phase name or empty string

Default implementation:

Returns 'A' if phase is 1, 'B' if phase is 2, and 'C' if phase is 4. Empty string is returned for any
other input.
11-68 Oracle Utilities Network Management System Adapters Guide

Plugin Support
Building Custom SCADA Plug-ins

Prerequisites
• NMS is installed.

• nms-install-config --java script has been executed and nms-multispeak.ear file exists in the
$NMS_HOME/java/deploy directory.

Steps
1. Unpack $CES_HOME/sdk/java/samples/nms-multispeak-plugins.zip archive

into desired location (this location will be referred as PLUGIN_HOME). It includes Java project
directory structure including example of plugin class and Ant build files.

2. Create Java class implementing
com.splwg.oms.interfaces.scada.ScadaSystemPlugin interface and place it into
desired location under PLUGIN_HOME/NmsScadaPlugin/src directory.

3. Execute following command to compile plugin class(s), build jar file and incorporate the jar
file into the nms-multispeak.ear file.

ant -Dplatforms.JDK_1.6.home=<JDK home> clean update-ear

where

<JDK home> is the location where Java Development Kit 1.6 or later is installed

4. Update configuration for the Oracle Utilities NMS MultiSpeak Adapter to use new plugin
class (configuration property '<scada name>.plugin_class').

5. Updated nms-multispeak.ear file can now be deployed into WebLogic server.
MultiSpeak Adapter 11-69

High-Level Messages
High-Level Messages

SCADA
SCADA component of the NMS MultiSpeak adapter responds to several high-level messages.
High-level message can be sent using Action command-line utility.

Action -java multispeak.SCADA <message>

Following messages are supported:

RELOAD

Forces adapter to reload configuration for the SCADA component.

RESYNC [statuses|analogs|tags] [<scada id>|<scada name>]

Initiates synchronization sequence.

If 'statuses', 'analogs' or 'tags' qualifier is present in the message then synchronization
sequence is executed only for that particular data flow. Otherwise full synchronization
sequence is executed.

If <scada id> or <scada name> is specified then synchronization sequence is executed only
for the designated SCADA system. Otherwise synchronization sequence is executed for all
SCADA systems the adapter is connected to.

FOCUS <user> <device> [<display>] [<action>]

Causes HighlightObjectInDisplay message to be sent to the SCADA system(s). This
message is used for display integration between NMS and SCADA system. For example,
NMS operator can select a SCADA device in NMS viewer and trigger action, which would
cause the same device to be selected/highlighted on SCADA system's display.

Parameters:

• <user> - username of SCADA operator

• <device> - NMS device handle

• <display> - SCADA display

• <action> - action to perform
11-70 Oracle Utilities Network Management System Adapters Guide

High-Level Messages
AMR
The AMR component of the NMS MultiSpeak adapter responds to several high-level messages.
High-level message can be sent using Action command-line utility.

Action -java multispeak.AMR <message>

The following messages are supported:

PING <meter id>
Initiates “urgent” meter ping request for a single meter. <meter id> is the internal NMS
meter identifier. When response to this ping request is received, the high-level message
PING_RESPONSE is sent to the client, which initiated the ping.

PING_RESPONSE <meter id> <meter status> <raw meter status>

Response to the PING message. This is an outgoing message. It should not be sent to the
adapter. The client, which sent the PING message, is expected to handle this message.

Parameters:

• <meter id> - the same meter identifier, which was sent in the PING message
being responded to.

• <meter status> - meter status.

Possible values:

ON - meter has power

OFF - meter does not have power

UNKNOWN - undetermined meter status

ERROR - error occurred while trying to ping the meter

• <raw meter status> - raw meter status value as received from the AMR/AMI
system.
MultiSpeak Adapter 11-71

Troubleshooting
Troubleshooting
NMS MultiSpeak Adapter uses Apache log4j library to log error, warning and debug messages. To
enable debug output following lines should be added to the log4j configuration file used by the
WebLogic Server where the Adapter is deployed.

<Logger name="com.splwg.oms.interfaces" level="debug"
additivity="false">
 <AppenderRef ref="Console"/>
</Logger>
<Logger name="com.splwg.oms.ws.multispeak" level="debug"
additivity="false">
 <AppenderRef ref="Console"/>
</Logger>
<Logger name="MultiSpeak" level="debug" additivity="false">
 <AppenderRef ref="Console"/>
</Logger>

For additional details about configuring log4j logging in WebLogic Server see Configure Log4j
Logging Services section in the Oracle Utilities Network Management System Installation Guide.

At runtime debug output can be toggled by sending high-level message to the appropriate
component of the Adapter.

Action -java multispeak.<component> DEBUG

where <component> is one of

• AMR - AMR/AMI component

• AVL - AVL component

• SCADA - SCADA component
11-72 Oracle Utilities Network Management System Adapters Guide

Chapter 12

Mobile Workforce Management
Adapter

This chapter includes the following topics:

• Introduction

• Installation

• Database Schema

• Supported Data Flows

• Software Configuration

• High-Level Messages

• Troubleshooting

Introduction
The Oracle Utilities Network Management System Mobile Workforce Management Adapter
provides services required by the Oracle Utilities Network Management System Integration to
Oracle Utilities Mobile Workforce Management.

One of the main functions of the adapter is translating Oracle Utilities Network Management
System trouble events into Oracle Utilities Mobile Workforce Management activities. A trouble
event is some situation in the electrical network, which requires attention (e.g., an outage causing
some number of customers to be without electric power). An activity is a unit of work which a
mobile crew needs to perform. Single event can be associated with multiple activities during its
lifetime (for example, one crew may need to perform initial assessment before another crew or
crews can start repair work). The responsibility of the adapter is to maintain relationships between
the trouble events and activities and subsequently between trouble events and mobile crews.

Note: For more information see Oracle Utilities Network Management System
Integration to Oracle Utilities Mobile Workforce Management Implementation
Guide.
 12-1

Installation
Installation
The Oracle Utilities Network Management System Mobile Workforce Management Adapter is
delivered as a single file:

• $CES_HOME/dist/install/nms-mwm.ear.base – NMS-MWM adapter application.

The nms-install-config script is used to apply adapter configuration changes and create the nms-
mwm.ear file, which can be deployed to the Oracle WebLogic Server (see Software Configuration
on page 12-9 for configuration instructions).

To avoid performance impact on the main NMS application (cesejb.ear), it is recommended that
the nms-mwm.ear not be deployed on the same managed server where the cesejb.ear is deployed;
however, both managed servers need to be in the same Oracle WebLogic Server domain.

Adapter Installation Instructions for Oracle WebLogic Server
Topics

• Create a Managed Server (Optional)

• Create a Foreign JNDI Provider

Note: Creating a foreign JNDI provider is required when the nms-mwm.ear is
on a different managed server than the cesejb.ear; if they are deployed on the
same server, skip this step.

• Configure Foreign JNDI Provider

• Configure Data Source for the Adapters Managed Server

• Deploy the Adapter

Create a Managed Server (Optional)
To simplify creation of a new managed server, you may clone an existing Oracle Utilities Network
Management System managed server.

6. Log in to the WebLogic Server Administration Console.
Note: The URL for WebLogic will be http://hostname:port/console where hostname represents
the DNS name or IP address of the Administration Server, and port represents the number of
the port on which the Administration Server is listening for requests (port 7001 by default).

7. Click Lock & Edit.

8. In the Domain Structure tree, expand Environment, then select Servers to open the
Summary of Servers page.

9. Select an Oracle Utilities Network Management System server in the Servers table and click
Clone.

10. Click the link to the cloned server and edit the settings:

• On the General tab, change the Listen Port and SSL Listen Port to unique values.

• On the Server Start tab, edit the Arguments field to remove the DRMI_URL parameter:
-DRMI_URL=t3://<hostname:port>
12-2 Oracle Utilities Network Management System Adapters Guide

Installation
Create a Foreign JNDI Provider
In order for the Oracle Utilities Network Management System Mobile Workforce Management
Adapter, deployed on its own managed server, to communicate with the Oracle Utilities Network
Management System (cesejb.ear), a foreign JNDI provider must be configured.

Note: Creating the foreign JNDI provider makes the cesejb.ear Enterprise
JavaBeans (EJBs) appear local to the Oracle Utilities Network Management
System Mobile Workforce Management Adapter.

1. Log in to the WebLogic Server Administration Console.

2. Click Lock & Edit.

3. In the Domain Structure tree, expand Services, then select Foreign JNDI Providers to
open the Summary of Foreign JNDI Providers page.

4. On the Summary of Foreign JNDI Providers page, click New.

5. Enter a name for the new Foreign JNDI Provider.

6. Click Finish.

Configure Foreign JNDI Provider
1. In the Foreign JNDI Provider table, click the new foreign JNDI provider name link.

2. In the Settings for Foreign_JNDI_Provider_Name General tab, enter the following
information:
Initial Context Factory: weblogic.jndi.WLInitialContextFactory
Provider URL: JNDI provider URL for the NMS (cesejb.ear)
User: valid NMS user who has the ‘NmsService’ role in WebLogic Server
Password: NMS user password
Confirm Password: enter the same NMS user password to confirm

3. Click Save.

4. Select the Links tab.

5. Create the following foreign JNDI links:

6. Select the Targets tab.

7. Select the managed server where the Oracle Utilities Network Management System Mobile
Workforce Management Adapter will be deployed and click Save.

Link Name Local JNDI Name Remote JNDI Name

Session cesejb/Session/remote cesejb/Session/remote

PublisherBean cesejb/PublisherBean/remote cesejb/PublisherBean/remote

CrewOperations cesejb/CrewOperations/remote cesejb/CrewOperations/remote
 12-3

Installation
Configure Data Source for the Adapters Managed Server
You may configure a new JDBC data source or add the adapter managed server as a target to an
existing Oracle Utilities Network Management System read/write data source.

Note: See “Configure Database Connectivity” in the Oracle Utilities Network
Management System Installation Guide for information on creating JDBC data
sources.

1. In the Domain Structure tree, expand Services, then select Data Sources.

2. In the Data Sources table, click the data source name (either a new data source or an existing
read/write NMS data source) to open the Settings for JDBC_Data_Source_Name page.

3. Select the Targets tab.

4. Add the adapter managed server to the list of targets.

5. Click Save.

Deploy the Adapter
1. In the left pane of the Administration Console, select Deployments.

2. In the right pane, click Install.

3. In the Install Application Assistant, locate the nms-mwm.ear file.

4. Click Next.

5. Select Install this deployment as an application.

6. Click Next.

7. Select the servers and/or clusters to which you want to deploy the application.

Note: If you have not created additional Managed Servers or clusters, you will
not see this assistant page.

8. Click Next.

9. Set the deployed name of the application to: nms-mwm.

10. Click Next.

11. Review the configuration settings you have specified.

12. Click Finish to complete the installation.
12-4 Oracle Utilities Network Management System Adapters Guide

Database Schema
Database Schema
The adapter uses several database tables where the information about trouble events, activities,
and notifications is persisted.

OMS_MWM_EVENTS
This table stores the most recent information about the trouble events which have been sent to
the Oracle Utilities Mobile Workforce Management system. This table is used to determine if
trouble event update contains changes which should be sent out. This table is also used during
synchronization sequence.

OMS_MWM_ACTIVITIES
This table stores mobile activities known to the adapter.

Field Description

EVENT_IDX Event index.
Primary key.

EXTERNAL_ID Event’s external id.

DEVICE_CLS Class part of the event’s device handle.

DEVICE_IDX Index part of the event’s device handle.

PHASES Affected device phases.

STATUS Event’s condition status (PSO, PDO, etc.)

STATE_KEY Event’s state key.

NUM_CUST_OUT Number of affected customers.

NUM_CALLS Number of customer calls.

TROUBLE_CODE Event’s trouble code (combination of the unique trouble
codes of the customer calls).

ERT Estimated restoration time.

COMMENTS Event comments.

LAST_UPDATE_TIME Last update time.

Field Description

ACTIVITY_ID Activity identifier. Primary key. Generated by the adapter.

EXTERNAL_ID External identifier of the activity. Presently unused.

EVENT_IDX NMS event index. Foreign key into the
OMS_MWM_EVENTS table.

CREW_ID Crew id/name.

CREW_TYPE Crew type. Only populated if in NMS a generic crew is
assigned to the activity.
 12-5

Database Schema
OMS_MWM_ALARMS
This table stores notifications sent to the Oracle Utilities Mobile Workforce Management system.
It is used to prevent sending of duplicate notifications.

STATUS Activity status.
Valid values:

• INITIAL - initial state for activities created by
NMS

• NO_CREW - activity without a crew

• DISPATCHED - activity has been given to a
crew

• DISPATCHED_ACK - crew has accepted the
activity

• EN_ROUTE - crew is en-route to work
location

• ARRIVED - create has arrived at the work
location but haven't started the work

• STARTED - crew has started the work

• SUSPENDED - crew has temporarily
suspended this activity

• COMPLETE - activity is completed

• CANCELLED - activity is cancelled

PENDING 'Pending flag (Y means that this activity should not be
cancelled when crew is released). It is set when an activity
is created from the MWM without a crew.

CREATED Activity creation time.

COMPLETED Activity completion/cancellation time.

LAST_UPDATE_TIME Last update time.

Field Description

Field Description

ALARM_IDX Alarm index.
Primay key.

ACTIVITY_ID Activity identifier. Foreign key into the
OMS_MWM_ACTIVITIES table.

SENT_TIME Time when the alarm was sent to mobile
system.
12-6 Oracle Utilities Network Management System Adapters Guide

Supported Data Flows
OMS_MWM_CREW_ACTIONS
This table is used to record actions performed by a mobile crew in the course of working on a
trouble event.

Supported Data Flows
All data flows are implemented as SOAP web services. HTTPS transport is used (by default access
over plain HTTP is disabled).

Outgoing Flows

Heartbeat
When connection to the Oracle Utilities Mobile Workforce Management system is not established
the adapter periodically sends out PingURL message. Once such message is sent successfully, the
connection is considered established, sending of the PingURL messages stops and the adapter
executes synchronization sequence. The purpose of the synchronization sequence is to send out
updates for the activities where corresponding trouble event information has changed with the
connection was down.

Create/Update Mobile Activity
CreateUpdateMessage message is sent by the adapter whenever new mobile activity needs to be
created or an existing activity needs to be updated. The message contains full details of the trouble
event associated with the activity as well as details of the activity itself. If there are multiple
activities associated with the same trouble event separate CreateUpdateMessage is sent for each
activity.

Complete/Cancel Mobile Activity
CompleteOrder message is sent by the adapter when activity is needs to be completed or
cancelled. When a trouble event is completed or cancelled all the activities associated with the
trouble event are completed or cancelled. When a crew is released from a trouble event - only the
activity associated with that crew is cancelled.

Notification
When a trouble event-related alarm is created in Oracle Utilities Network Management System a
Notification message containing text of the alarm can be sent by the adapter. The alarm has to be
of the supported type. Only one type of notifications is supported – ERT Expiration notification.
Separate Notification message is sent for each activity associated with the trouble event.

Field Description

ID Primary key.
Generated by the sequence
OMS_MWM_CREW_ACTIONS_SEQ.

EXTERNAL_ID External identifier. Should be unique for
the rows associated with the same trouble
event.

EVENT_IDX Event index.
 12-7

Supported Data Flows
Incoming Flows

Create Mobile Activity
Sending CreateActivity message to the adapter creates a new mobile activity for an existing
trouble event. Either an index of an existing trouble event or activity id of an existing activity
needs to be passed in the request. Activity id of the newly created mobile activity is returned.

Update Mobile Activity
Sending UpdateActivity message to the adapter allows to perform different crew-related actions
depending on the state value passed in the request.

• Dispatched – assigns the mobile crew associated with the activity to the trouble event.

• EnRoute – places the mobile crew associated with the activity en-route to the trouble event.

• Started - places the mobile crew associated with the activity onsite for the trouble event.

• Suspended – suspends the mobile crew associated with the activity from working on the
trouble event.

• NoCrew – releases the mobile crew associated with the activity from working on the trouble
event. The same effect can be achieved by sending crewId in the message. Releasing the crew
will cause the activity to be cancelled.

• Complete – completes the activity and releases the crew from the trouble event.

• Cancelled – cancels the activity and releases the crew from the trouble event.

Update Trouble Event
Sending UpdateEvent message to the adapter allows trouble event in the Oracle Utilities
Network Management System to be updated. In particular it allows to

• Update Estimated Restoration Time

• Update Event Case Note

• Update Event Details information

• Update Failed Equipment information

• Update crew action steps

• Confirm Outage Device

• Move outage upstream or downstream

• Restore outage

• Cancel trouble event

Query
Query request allows retrieving information from Oracle Utilities Network Management System.
The following query types are supported:

• call – returns customer calls for specific trouble event

• customer – returns customer information for specific account number

• device_info – returns device information for specific device name (alias)
12-8 Oracle Utilities Network Management System Adapters Guide

Software Configuration
Asynchronous Message Acknowledgment
The outgoing requests other than PingURL can be processed asynchronously. In such case the
receiving side would send back response message containing error code ‘DEFERRED’. This is an
indication the request is being processed asynchronously. The adapter would wait up to the
configured amount of time (mwm.ack_wait_timeout) for the incoming MessageAck message
containing result of the earlier request. There are 3 possible outcomes: Success – request was
processed successfully; Error – an error occurred while processing the request; Failure – request
cannot be delivered to the Oracle Utilities Mobile Workforce Management system. Failure
response is treated as loss of connection between the system and initiates heartbeat flow followed
by synchronization sequence. If MessageAck message is not received during the configured
period of time then the Failure outcome is assumed.

Correspondence between the original request message and the MessageAck message is
established through the messageId attribute in the message header of the original request. The
MessageAck message must contain the same message id.

Software Configuration
Configuration for the Oracle Utilities Network Management System Mobile Workforce
Management Adapter comes from the following sources:

• CES_PARAMETERS database table

• Oracle Utilities Network Management System configuration rules

• Data mapping configuration

Support for Encrypted Configuration Parameters
Some configuration parameters that are stored in the CES_PARAMETERS database table contain
sensitive information, such as authentication credentials, which should be protected. To protect
this data, the VALUES column can be encrypted using Oracle WebLogic Server encrypt utility.
This utility encrypts cleartext strings for use with Oracle WebLogic Server. Its output can then be
used to populate values in CES_PARAMETERS database table.

Note: For detailed information see “encrypt” in the Oracle WebLogic Server
Command Reference.
 12-9

Software Configuration
Configuration Parameters
Entries in the CES_PARAMETERS database table for the Oracle Utilities Network Management
System Mobile Workforce Management Adapter should have value 'MWMInterface' in the APP
column. Column ATTRIB should contain name of the configuration parameter and column
VALUE its value.

General Configuration Parameters

Parameter Description

config.enabled Enable/disable NMS-MWM interface.

Default: true

config.credentials Absolute path to the file containing user
credentials the adapter will use to
communicate with Oracle Utilities
Network Management System.

Either this parameter or both
config.username and config.password
parameters should be provided. If all are
present, then the config.username/
config.password pair is used.

config.username Valid NMS username, which has the
'NmsService' role in WebLogic Server.

config.password NMS user password. Value of this
parameter should be encrypted.

config.activity_accepted_action Key of the state transition action, which is
executed when activity create/update
message is accepted by the Oracle Utilities
Mobile Workforce Management system.

config.activity_rejected_action Key of the state transition action, which is
executed when activity create/update
message is rejected by the Oracle Utilities
Mobile Workforce Management system.

config.default_crew_type Default crew type.

The adapter uses this crew type when it
needs to create a mobile crew which does
not exist in NMS. This parameter should be
set to the name of a valid NMS crew type.
If not specified then the adapter will not be
able to create crews.

config.allow_device_ops Allow the adapter to operate device in
NMS model.

Default: false
12-10 Oracle Utilities Network Management System Adapters Guide

Software Configuration
config.call_send_limit Maximum number of customer calls
(incidents) to be included into an activity
create/update message sent by the adapter.
Customer calls with higher priority are
included ahead of the calls with lower
priority. Note: including large number of
calls greatly increases message size.

Default: 0

config.suppress_ws_errors When enabled, it prevents errors from
being included into web service response
messages. Instead, the errors are just
logged locally.

Default: false

mwm.activity_id_prefix Activity id prefix.

Default: NMS-

mwm.ws_request_timeout Timeout (in seconds) for the outgoing web
service requests. Requests would fail if
response is not received before the timeout
expires.

Default: 30

mwm.ack_wait_timeout Timeout (in seconds) when waiting for
acknowledgment of outgoing messages
sent asynchronously. Link failure is
declared if acknowledgment is not received
before the timeout expires.

Default 60

mwm.url Default URL of the web service where the
adapter should send outgoing messages.

mwm.url.<operation name> Operation-specific web service URLs.
Allows for the outgoing messages to be
send to the different URLs based on the
message type (operation).

Valid operation names:

• PingURL - hearbeat message

• CreateUpdateOrder - creating or
updating mobile activity

• CompleteOrder - completing or
canceling mobile activity

• Notification - notification
message

mwm.username Username included in the outgoing
messages as part of HTTP Basic
authentication.

Parameter Description
 12-11

Software Configuration
Description Text for the Alarm Messages Generated by the Adapter

mwm.password Password included in the outgoing
messages as part of HTTP Basic
authentication. Value of this parameter
should be encrypted.

mwm.header.<attribute name> The outgoing messages include standard
header (XML element 'MessageHeader').
This configuration parameter is used to
specify additional header attributes.

The following attributes are required when
integrating with the Oracle Utilities Mobile
Workforce Management system:

• systemId - NMS instance
identifier

• country - country code

Parameter Description

Parameter Description

msg.started The adapter has been started.

msg.stopped The adapter has been stopped.

msg.established Connection to the Oracle Utilities Mobile
Workforce Management system has been
established.

msg.synchronized Synchronization sequence has finished.

msg.failed Connection to the Oracle Utilities Mobile
Workforce Management system has failed.

msg.activity_rejected Oracle Utilities Mobile Workforce
Management returned error in response to
a request to create an activity.
Note: this alarm is not current being
generated.

msg.event_canceled Event cancelation has been requested from
the Oracle Utilities Mobile Workforce
Management system but the event cannot
be canceled in NMS.

msg.outage_restored Outage restoration has been reported from
the Oracle Utilities Mobile Workforce
Management system but the outage cannot
be restored in NMS (most likely because
outage device cannot be closed).
12-12 Oracle Utilities Network Management System Adapters Guide

Software Configuration
Query Configuration

msg.outage_confirmed Outage has been confirmed by the Oracle
Utilities Mobile Workforce Management
system but the outage cannot be confirmed
in NMS (outage device cannot be opened).

Parameter Description

Parameter Description

query.type.<query type> Query type.

Valid query types:

• device_info - device information

• customer - customer information

• call - customer call information
for an event

query.<query type>.table Database table or view to query.

Not applicable to the "device_info" query
type.

query.<query type>.where Additional conditions to be included in the
query's WHERE clause.

query.<query type>.order_by Query's ORDER BY clause (sorting
condition).

query.<query type>.max_results Maximum number of rows allowed to be
returned for this query type.

Default: 100

query.<query
type>.param.<param_name>

Maps query parameter name to a database
column name.

The following parameters are defined for
different query types:

• device_info

• deviceAlias - device alias

• customer

• accountNumber -customer
account number

• call

• eventIdx - NMS event index

query.<query
type>.column.<column_name>

Label for the data retrieved for the
specified database column
 12-13

Software Configuration
Oracle Utilities Network Management System Configuration Rules
Oracle Utilities Network Management System configuration rules control various aspects of the
system. You can configure these rules using the Oracle Utilities Network Management System
Configuration Assistant tool. This section only covers the rules which directly affect the
integration between Oracle Utilities Network Management System and Oracle Utilities Workforce
Management system.

Rule Description

crewFollowOutageDevice This rule indicates whether or not crews
dispatched to an event are automatically
relocated if the device location changes. If
this rule is enabled, dispatched crews are
automatically relocated to the new device
when an event moves to a different device
in Oracle Utilities Network Management
System. Typically, this rule should be
enabled when Oracle Utilities Network
Management System is integrated with
Mobile Workforce Management system.

Default: no (disabled)

mobilePreassignCrew Allows Oracle Utilities Network
Management System user to assign and
release mobile crews.

Default: no (disabled)
12-14 Oracle Utilities Network Management System Adapters Guide

Software Configuration
repredictionCrewReassignment This rule enables or disables automatic
crew reassignment/redispatch when event
reprediction occurs in Oracle Utilities
Network Management System.

For example:

Events A, B, and C exist on laterals off of a
feeder backbone. Crew 1 is dispatched to
event A, crew 2 is dispatched to event B,
and crew 3 is assigned to event C. More
calls come in on the feeder, eventually
causing the system to repredict and group
events A, B, and C to an upstream device.
The resulting grouped event is called event
A.

• If this rule is enabled, crew 1
remains dispatched to event A,
crew 2 is undispatched from event
B and redispatched to event A,
and crew 3 is unassigned from
event C and reassigned to event
A.

• If this rule is disabled, crew 1
remains dispatched to event A,
crew 2 is only undispatched from
event B, and crew 3 is only
unassigned from event C.

Default: yes (enabled)

sendToMobileState This rule specifies the state(s) at which an
event is sent to Oracle Utilities Mobile
Workforce Management. When an event
transitions to one of the states defined in
this rule, a "send to mobile" flag is set in
the event. The Oracle Utilities Network
Management System-Mobile Workforce
Management Interface uses this flag to
determine whether an event should be
processed by the interface, triggering field
order creation in Oracle Utilities Mobile
Workforce Management.

Default: none

singleCrewPerEvent This rule indicates whether or not multiple
crews can be assigned or dispatched to an
event in Oracle Utilities Network
Management System. If this rule is enabled,
only one crew can be assigned or
dispatched to an event at any given time.
The repreditionCrewReassignment rule is
implicitly disabled if this rule is enabled.

Default: no (disabled)

Rule Description
 12-15

Software Configuration
Data Mapping
Data mapping converts data elements between a data source and a destination. Oracle Utilities
Network Management System Mobile Workforce Management Adapter uses data mapping
configuration to determine activity type and notification type for the outgoing messages.

Data Mapping Overview
The Oracle Utilities Network Management System Mobile Workforce Management Adapter
provides a configurable data-mapping facility. This facility can be used to populate certain data
elements in the outgoing messages.

Many-to-many data mapping: Most data flows from Oracle Utilities Network Management System
to Oracle Utilities Mobile Workforce Management use many-to-many data mapping. This means
that a source value can be mapped to many different target values, based on one or more
conditions.

Data mapping is rules-based. Rule configuration is defined in the following database tables:

useGenericAssign Allows treating of crews with crew key less
1000 as "generic crews".

Default: no (disabled)

useMdt This rule enables or disables MDT (Mobile
Dispatch Terminal) crew flag functionality.
This rule should be enabled when the
Oracle Utilities Network Management
System-Mobile Workforce Management
Interface is being used.

Default: no (disabled)

Rule Description

Mapping Table Description

OMS_MWM_MAPPING_RULES This table defines the field to be mapped
and, for many-to-many mapping, the value
to be written to the mapped field if all
conditions are met.

OMS_MWM_MAPPING_CHECKS This table defines conditions that may be
applied to mapping rules.

OMS_MWM_MAPPING_RULE_CHEC
KS

This table associates a rule with a
condition. Together, this table and the two
previous tables are used to define many-to-
many data mapping.
12-16 Oracle Utilities Network Management System Adapters Guide

Software Configuration
OMS_MWM_MAPPING_RULES Table
The OMS_MWM_MAPPING_RULES table contains rules for mapping data values between
Oracle Utilities Network Management System and Oracle Utilities Mobile Workforce
Management. The fields comprising each rule are described below:

Note: To define the default value for a field, configure a rule with no
conditions and set that rule to be the last rule applied.

OMS_MWM_MAPPING_CHECKS Table
The OMS_MWM_MAPPING_CHECKS table contains conditions that can be used by the
mapping rules defined in the OMS_MWM_MAPPING_RULES table.

Field Description

rule_id A unique identifier for this rule.

mapping The name of the mapping rule set used to
group related mapping rules. For example,
the mapping rule set 'mwmOrder' defines
rules for mapping Oracle Utilities Network
Management System event data to the
corresponding field order data in Oracle
Utilities Mobile Workforce Management
for outgoing orders.

mapped_field The name of the field where the target
value (the result of the mapping) should be
written. For example, orderType, priority
and alarmType are mapped fields.

mapped_value This is the value to be written to the
mapped field if all conditions defined for
this rule are met. This is also referred to as
the target value.

table_id This field is not used.

rule_order The order in which this rule should be
applied when a series of rules is being used.
The lowest value is used first.

Field Description

check_id A unique identifier for this condition.

field_name The name of the field to which the
condition applies.

cond_str The condition to be applied. For a
description of the condition format, see the
next section.

negate Indicates whether or not to negate the
condition result. If this is set to Y, the result
is negated. This field is optional.
 12-17

Software Configuration
Condition Format
Three different types of conditions are allowed in mapping rule checks. The format for each type
of condition is shown in the table below.

Note: The angle brackets (<>) shown in the following table are not part of the
format. The text inside the brackets should be replaced with the actual value as
indicated.

OMS_MWM_MAPPING_RULE_CHECKS Table
This table is used to create many-to-many relationship between
OMS_MWM_MAPPING_RULES and OMS_MWM_MAPPING_CHECKS tables. Each rule
check associates a mapping rule with a condition (mapping check).

Mapping from Oracle Utilities Network Management System to Oracle Utilities Mobile
Workforce Management

All data mapping rules for Oracle Utilities Network Management System to Oracle Utilities
Mobile Workforce Management data flows belong to the “mwmOrder” rule set. This rule set
supports mapping for the following data elements:

• Activity Type (“orderType”)

• Activity Priority (“externalPriority”)

• Notification Type (“alarmType”)

These data elements are mapped using many-to-many data mapping, as described in the following
example.

Field Order Type Mapping Configuration Example

This example shows how to define data mapping rules to set the Oracle Utilities Mobile
Workforce Management activity type to ‘ROUTXFMWD’ for events meeting the following
conditions:

• The event is an RDO (real device outage);

Condition Type Condition Format Description

Exact string compare <string to compare against> The condition is true if the field value
(converted to a string) exactly matches the
comparison string.

Regular expression @regex <regular expression> The condition is the true if the field value
(converted to a string) matches the given
regular expression.

Class inheritance @inheritFrom <class name> The condition is true if the field contains
the class name specified in the condition or
the name of any child class.

Field Description

rule_id The key to the mapping rule in the
OMS_MWM_MAPPING_RULES table.

check_id The key to the condition in the table
OMS_MWM_MAPPING_CHECK table.
12-18 Oracle Utilities Network Management System Adapters Guide

Software Configuration
• The event is on a transformer;

• The event has “Wire Down Pole-to-Pole” trouble code;

• The event is created under normal (non storm) conditions.

To configure data mapping for this example, complete the following steps:

1. Configure a mapping rule in the OMS_MWM_MAPPING_RULES table to set the Order
Type to ROUTXFMWD. The rule set is ‘mwmOrder’; the mapped field is ‘orderType’; the
mapped_value is ‘ROUTXFMWD':

INSERT INTO oms_mwm_mapping_rules
(rule_id, mapping, mapped_field, mapped_value, rule_order)
VALUES (15, 'mwmOrder', 'orderType', 'ROUTXFMWD', 70);

2. Configure the required conditions in the OMS_MWM_MAPPING_CHECKS table:

/* RDO */
INSERT INTO oms_mwm_mapping_checks (check_id, field_name, cond_str)
VALUES (1, 'cond_status', '4');
/* Wire Down Pole to Pole */
INSERT INTO oms_mwm_mapping_checks (check_id, field_name, cond_str)
VALUES (15, 'trouble_code', '@regex ^(.*[-,]|)P2P([-,].*|)$');
/* Non storm */
INSERT INTO oms_mwm_mapping_checks (check_id, field_name, cond_str,
negate)
VALUES (33, 'rule_set', '@regex storm', 'Y');
/* Transformar */
INSERT INTO oms_mwm_mapping_checks (check_id, field_name, cond_str)
VALUES (35, 'dev_cls_name', '@inheritFrom transformer');

3. Assign each of the four conditions (rules checks) to the mapping rule in the
OMS_MWM_MAPPING_RULE_CHECKS table:

/* ROUTXFMWD */
INSERT INTO oms_mwm_mapping_rule_checks (rule_id, check_id)
VALUES (15, 1);
INSERT INTO oms_mwm_mapping_rule_checks (rule_id, check_id)
VALUES (15, 35);
INSERT INTO oms_mwm_mapping_rule_checks (rule_id, check_id)
VALUES (15, 15);
INSERT INTO oms_mwm_mapping_rule_checks (rule_id, check_id)
VALUES (15, 33);

Use the same process described above to configure data mapping for notification types
(alarmType) and activity priority values (priority).
 12-19

Troubleshooting
High-Level Messages
The Oracle Utilities Network Management System Mobile Workforce Management Adapter
responds several commands sent as high-level messages.

High-level message can be sent using Action command-line utility.

Action any.publisher* ejb client NMS-MWM command <message>

Following messages are supported:

• RELOAD - Forces adapter to reload configuration and then initiates synchronization
sequence.

• RESYNC - Initiates synchronization sequence.

• STOP - Temporarily stops the adapter.

• START - Re-starts previously stopped adapter.

Troubleshooting
The Oracle Utilities Network Management System Mobile Workforce Management Adapter uses
Apache log4j library to log error, warning and debug messages. To enable debug output following
lines should be added to the log4j configuration file used by the WebLogic Server where the
adapter is deployed.

<Logger name="com.splwg.oms.interfaces.mwm" level="debug"
additivity="false">
 <AppenderRef ref="Console"/>
</Logger>
<Logger name="MOBILE" level="debug" additivity="false">
 <AppenderRef ref="Console"/>
</Logger>
<Logger name="MOBLE_WS" level="debug" additivity="false">
 <AppenderRef ref="Console"/>
</Logger>
<Logger name="MOBILE_WS" level="debug" additivity="false">
 <AppenderRef ref="Console"/>
</Logger>
<Logger name="SOAP" level="debug" additivity="false">
 <AppenderRef ref="Console"/>
</Logger>

For additional details about configuring log4j logging in WebLogic Server, see the Configure
Log4j Logging Services section in the Oracle Utilities Network Management System Installation Guide.
12-20 Oracle Utilities Network Management System Adapters Guide

Chapter 13

SOAP Web Services
This chapter includes the following topics:

• Authentication

• Trouble Management Web Service

• Switching and Safety Web Service

• Damage Assessment Web Service

Authentication
In order to invoke Oracle Utilities Network Management System web services, the caller needs to
be authenticated using valid Oracle Utilities Network Management System credentials. HTTP
Basic Authentication protocol is used for authentication. Since HTTP Basic Authentication does
not encrypt credentials, the HTTPS transport should be used.
 13-1

Trouble Management Web Service
Trouble Management Web Service
Trouble Management web service provide access to the subset of the trouble management
functionality available in the Oracle Utilities Network Management System.

Port TroubleServiceSOAP
Location: https://<nms host>:<nms port>/nms/trouble

Protocol: SOAP

Default Style: document

Transport Protocol: SOAP over HTTP

Target Namespace: http://oms.splwg.com/ws/trouble/

Operations

CreateEvent
Creates new event in NMS.

Operation Type: Request-response. The endpoint receives a message and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/trouble/CreateEvent

Input: CreateEventRequest (soap:body, use = literal)

parameters type CreateEvent

status type jobConditionStatus - type string with restriction - enum { 'NO_OUTAGE',
'PROBABLE_SERVICE_OUTAGE', 'PROBABLE_DEVICE_OUTAGE',
'REAL_SERVICE_OUTAGE', 'REAL_DEVICE_OUTAGE', 'RESERVED_5',
'RESERVED_6', 'NON_OUTAGE', 'CRITICAL_MEET', 'FUTURE_MEET',
'CONFIRMED_SERVICE_OUTAGE', 'CONFIRMED_SECONDARY_OUTAGE',
'ADDITIONAL_ALARM', 'PROBABLE_MOMENTARY_OUTAGE',
'REAL_MOMENTARY_OUTAGE', 'PLANNED_OUTAGE',
'NON_ELECTRIC_EVENT', 'SWITCHING_JOB', 'FAULT_CURRENT_EVENT',
'CVR_JOB' }

Condition status

device - optional; type handle

Device handle

deviceAlias - optional; type string

Device alias. If device handle is not provided device alias is used to determine it

phases - optional; type phaseCode

Affected device phases (default: all phases)

groupable - optional; type boolean

Groupable flag (default: non-groupable)

beginTime - optional; type dateTime

Event begin time (default: current time)

restoreTime - optional; type dateTime

Event restoration time (only applicable to momentary outages)
13-2 Oracle Utilities Network Management System Adapters Guide

Trouble Management Web Service
priority - optional; type int

Event priority

appliedRule - optional; type int

Initial applied rule value. When creating real momentary outage value 3 (SRS_SCADA)
indicates that this is SCADA-reported event

accidental - optional; type int

0 - normal, 1 - accidental, 2 - planned

numMomentaries - optional; type int

Number of momentaries (only applicable to momentary outages)

description - optional; type string

Description text

dispatchGroup - optional; type string

Dispatch group

userCustOut - optional; type int

Number of customers affected by the created event. Populates USER_CUST_OUT field
in the created event

ddsAlarm - optional; type handle

Handle of the DDS alarm (device operation) related to the event being created.

switchingPlan - optional; type handle

When creating SWITCHING_JOB event this element must be populated with the
switching plan handle.

Output: CreateEventResponse (soap:body, use = literal)

parameters type CreateEventResponse

event type handle

Handle of the created event

Fault: TroubleServiceException (soap:fault, use = literal)

parameters type TroubleServiceFault
 13-3

Trouble Management Web Service
SetGenericFields
Updates generic fields of an existing event in NMS.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/trouble/SetGenericFields

Input: SetGenericFieldsRequest (soap:body, use = literal)

parameters type SetGenericFields

• event - optional; type handle

Event handle

• externalId - optional; type string

Event's external id.

• fields type ArrayOfStringPair

Generic field values (list of name-value pairs).

Output: None.

Fault: TroubleServiceException (soap:fault, use = literal)

parameters type TroubleServiceFault

Faults

TroubleServiceFault
• errors - unbounded; type Error

List of errors

• error type errorCode

Error code.

Valid values: 'ERROR', 'UNKNOWN_EVENT', 'UNKNOWN_GENERIC_FIELD',
'COMPLETED_EVENT'.

[a] errorMessage type string1

 Error message

[a] eventIdx type int

 Event index associated with the error

1. [a] bullets designate attributes.
13-4 Oracle Utilities Network Management System Adapters Guide

Switching and Safety Web Service
Switching and Safety Web Service

Port SwmanServiceBeanPort
Location: https://<nms host>:<nms port>/ExternalSwmanServiceImpl/SwmanServiceBean

Protocol: SOAP

Default style: rpc

Transport protocol: SOAP over HTTP

Target Namespace: http://www.oracle.com/ugbu/nms

Operations

GetSafetyDocument
Retrieves safety document by handle.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

Input: GetSafetyDocument (soap:body, use = literal)

docHdl type handle

Safety document handle.

Output: GetSafetyDocumentResponse (soap:body, use = literal)

safetyDoc type SafetyDoc

Safety document

• id - nillable; type long

Safety document identifier

• externalId - optional; type normalizedString

Safety document external identifier

• handle - nillable; type handle

Safety document handle

• docType - nillable; type normalizedString

Safety document type

• state - optional; type State

Real-time state

• swSheet - optional; type handle

Switching sheet handle

• deleted - optional; type boolean

Safety document deleted flag

• version - optional; type long

Safety document version (used for optimistic locking)

• extensions - optional; type ArrayOfExtensionField

Extension fields
 13-5

Switching and Safety Web Service
• steps - optional; type ArrayOfSwStep

Switching steps associated with this safety document

• step - optional, unbounded; type SwStep

Switching step

• cls - nillable; type long

Switching step class

• id - nillable; type long

Switching step identifier

• parentId - optional; type long

Parent step

• groupNumber - optional; type long

Group number

• device - optional; type handle

Handle of the main device associated with this switching step

• deviceAlias - optional; type normalizedString

Alias of the main device associated with this switching step

• controlZone - optional; type ControlZone

Switching step control zone

• phases - optional; type phaseCode

Phases of the main device affected by this switching step

• availablePhases - optional; type phaseCode

All phases of the main device associated with this switching step

• secondaryDevice - optional; type handle

Handle of the secondary device associated with this switching step

• groundNode - optional; type handle

Grounding node associated with this switching step

• condition - optional; type handle

Condition associated with this switching step

• state - optional; type State

Switching step real-time state
13-6 Oracle Utilities Network Management System Adapters Guide

Switching and Safety Web Service
• controlAction - optional; type ControlAction

Control Tool action

• action - nillable; type normalizedString

• switchingCode - optional; type normalizedString

• attribute - optional; type long

[a] cls - required; type normalizedString

[a] idx - required; type normalizedString

[a] key - required; type long

Switching step control action

• revision - optional; type long

Switching step revision number

• description - optional; type string

Description

• comments - optional; type string

Comments

• plannedOffset - optional; type duration

Planned offset

• createTime - optional; type dateTime

Date/time when this step was created

• createUser - optional; type normalizedString

User who created this step

• updateTime - optional; type dateTime

Date/time when step was last updated

• updateUser - optional; type normalizedString

User who made the latest update this step

• instructTime - optional; type dateTime

Date/time when step was instructed

• instructUser - optional; type normalizedString

User who instructed this step

• executeTime - optional; type dateTime

Date/time when step was executed

• executeUser - optional; type normalizedString

User who executed this step

• executeOrder - optional; type long

Step execution order

• operationOutcome - optional; type normalizedString

Operation outcome
 13-7

Switching and Safety Web Service
• undoOperationOutcome - optional; type normalizedString

Undo operation outcome

• resultOfOperation - optional; type normalizedString

Result of operation

• resultFeeders - optional; type normalizedString

Result feeders

• lastResultOfOperation - optional; type normalizedString

Last result of operation

• editedOperation - optional; type normalizedString

Edited operation

• modelBuild - optional; type normalizedString

Step affected by model build

• safetyDocId - optional; type long

Safety document id (for safety-related steps)

• safetyDevStatus - optional; type normalizedString

Status of the device as it pertains to the associated safety document. This is
used to keep track of a user's modifications to a safety document's device
list. ADD - The device has been added as part of a viewer device selection.
ADD_STEP - The device has been added as part of a switching sheet step
association. COND_APPLIED - The condition has been applied and
updated to the device in the device list. INCOMPLETE - The device is
associated to a switching step where the condition has already been applied
to the device. REMOVE - The device has been marked for removal and
will be removed the next time the document transitions from the Unissued
to Issued state. REMOVED - The device has been removed from the
device list. These devices are filtered out of the device list.

• safetyCondAdded - optional; type long

Safety document version number where this safety condition step was
added

• safetyCondRemoved - optional; type long

Safety document version number where this safety condition step was
added

• crews - optional; type ArrayOfCrewId

Crew ids

• extensions - optional; type ArrayOfExtensionField

Extension fields

• crews - optional; type ArrayOfSafetyCrew

Crew information associated with this safety document

• crew - optional, unbounded; type SafetyCrew

Crew information associated with a safety document

• crewId - optional; type normalizedString

Crew id
13-8 Oracle Utilities Network Management System Adapters Guide

Switching and Safety Web Service
• position - optional; type normalizedString

Position the crew is in with regards to the zone of protection

• auditLog - optional; type ArrayOfAuditLogEntry

Audit log entries

• log - optional, unbounded; type AuditLogEntry

Audit log entry

• id - nillable; type long

Audit log entry identifier

• entryType - optional; type normalizedString

Audit log entry type

• userLog - optional; type string

User log

• device - optional; type handle

Device handle

• deviceAlias - optional; type normalizedString

Device alias

• state - optional; type State

State

• revision - optional; type long

Revision number

• comment - optional; type string

Log comment

• phases - optional; type phaseCode

Phases

• crews - optional; type ArrayOfCrewId

Crew ids

Fault: OmsServiceException (soap:fault, use = literal)

fault type OmsServiceException

GetSafetyDocumentsForSheet
Retrieves all safety documents for a switching sheet.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

Input: GetSafetyDocumentsForSheet (soap:body, use = literal)

sheetHdl type handle

Switching sheet handle.

Output: GetSafetyDocumentsForSheetResponse (soap:body, use = literal)

safetyDocs type ArrayOfSafetyDoc

List of safety documents
 13-9

Switching and Safety Web Service
• safetyDoc - optional, unbounded; type SafetyDoc

Safety document (see GetSafetyDocument)

Fault: OmsServiceException (soap:fault, use = literal)

fault type OmsServiceException

GetSwitchingSheet
Retrieves switching sheet by handle.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

Input: GetSwitchingSheet (soap:body, use = literal)

sheetHdl type handle

Switching sheet handle

Output: GetSwitchingSheetResponse (soap:body, use = literal)

swSheet type SwSheet

Switching sheet

• id - nillable; type long

Switching sheet identifier

• handle - nillable; type handle

Switching sheet handle

• externalId - optional; type normalizedString

Switching sheet external identifier

• device - optional; type handle

Handle of the main device associated with this switching sheet

• deviceAlias - optional; type normalizedString

Alias of the main device associated with this switching sheet

• controlZone - optional; type ControlZone

Switching sheet control zone

• owner - optional; type normalizedString

Switching sheet owner

• revision - optional; type long

Switching sheet revision number

• version - nillable; type long

Switching sheet version (used for optimistic locking)

• checkedIn - optional; type normalizedString

Switching sheet is checked in

• state - optional; type State

Real-time state

• createTime - optional; type dateTime

Date/time when this sheet was created
13-10 Oracle Utilities Network Management System Adapters Guide

Switching and Safety Web Service
• createUser - optional; type normalizedString

User who created this sheet

• updateTime - optional; type dateTime

Date/time when this sheet was last updated

• updateUser - optional; type normalizedString

User who updated this sheet last

• lockedTime - optional; type dateTime

Date/time when sheet was locked

• lockedUser - optional; type normalizedString

User who locked this sheet

• startTime - optional; type dateTime

Date/time when execution of this switching sheet is expected to start

• finishTime - optional; type dateTime

Date/time when execution of this switching sheet is expected to finish

• completedTime - optional; type dateTime

Completion date/time

• reworkDescription - optional; type string

Rework description

• reworkTime - optional; type dateTime

Rework date/time

• defaultOffset - optional; type duration

Default offset

• modelBuild - optional; type normalizedString

Switching sheet is affected by model build

• extensions - optional; type ArrayOfExtensionField

Extension fields

• steps - optional; type ArrayOfSwStep

Switching steps

• step - optional, unbounded; type SwStep

Switching step

• cls - nillable; type long

Switching step class

• id - nillable; type long

Switching step identifier

• parentId - optional; type long

Parent step

• groupNumber - optional; type long

Group number
 13-11

Switching and Safety Web Service
• device - optional; type handle

Handle of the main device associated with this switching step

• deviceAlias - optional; type normalizedString

Alias of the main device associated with this switching step

• controlZone - optional; type ControlZone

Switching step control zone

• phases - optional; type phaseCode

Phases of the main device affected by this switching step

• availablePhases - optional; type phaseCode

All phases of the main device associated with this switching step

• secondaryDevice - optional; type handle

Handle of the secondary device associated with this switching step

• groundNode - optional; type handle

Grounding node associated with this switching step

• condition - optional; type handle

Condition associated with this switching step

• state - optional; type State

Switching step real-time state

• controlAction - optional; type ControlAction

Control tool action

• action - nillable; type normalizedString

• switchingCode - optional; type normalizedString

• attribute - optional; type long

[a] cls - required; type normalizedString

[a] idx - required; type normalizedString

[a] key - required; type long

Switching step control action

• revision - optional; type long

Switching step revision number

• description - optional; type string

Description

• comments - optional; type string

Comments

• plannedOffset - optional; type duration

Planned offset

• createTime - optional; type dateTime

Date/time when this step was created

• createUser - optional; type normalizedString
13-12 Oracle Utilities Network Management System Adapters Guide

Switching and Safety Web Service
User who created this step

• updateTime - optional; type dateTime

Date/time when step was last updated

• updateUser - optional; type normalizedString

User who made the latest update this step

• instructTime - optional; type dateTime

Date/time when step was instructed

• instructUser - optional; type normalizedString

User who instructed this step

• executeTime - optional; type dateTime

Date/time when step was executed

• executeUser - optional; type normalizedString

User who executed this step

• executeOrder - optional; type long

Step execution order

• operationOutcome - optional; type normalizedString

Operation outcome

• undoOperationOutcome - optional; type normalizedString

Undo operation outcome

• resultOfOperation - optional; type normalizedString

Result of operation

• resultFeeders - optional; type normalizedString

Result feeders

• lastResultOfOperation - optional; type normalizedString

Last result of operation

• editedOperation - optional; type normalizedString

Edited operation

• modelBuild - optional; type normalizedString

Step affected by model build

• safetyDocId - optional; type long

Safety document id (for safety-related steps)

• safetyDevStatus - optional; type normalizedString

Status of the device as it pertains to the associated safety document. This is used to
keep track of a user's modifications to a safety document's device list. ADD - The
device has been added as part of a viewer device selection. ADD_STEP - The
device has been added as part of a switching sheet step association.
COND_APPLIED - The condition has been applied and updated to the device in
the device list. INCOMPLETE - The device is associated to a switching step where
the condition has already been applied to the device. REMOVE - The device has
been marked for removal and will be removed the next time the document
 13-13

Switching and Safety Web Service
transitions from the Unissued to Issued state. REMOVED - The device has been
removed from the device list. These devices are filtered out of the device list.

• safetyCondAdded - optional; type long

Safety document version number where this safety condition step was added

• safetyCondRemoved - optional; type long

Safety document version number where this safety condition step was added

• crews - optional; type ArrayOfCrewId

Crew ids

• extensions - optional; type ArrayOfExtensionField

Extension fields

• auditLog - optional; type ArrayOfAuditLogEntry

Audit log entries

• log - optional, unbounded; type AuditLogEntry

Audit log entry

• id - nillable; type long

Audit log entry identifier

• entryType - optional; type normalizedString

Audit log entry type

• userLog - optional; type string

User log

• device - optional; type handle

Device handle

• deviceAlias - optional; type normalizedString

Device alias

• state - optional; type State

State

• revision - optional; type long

Revision number

• comment - optional; type string

Log comment

• phases - optional; type phaseCode

Phases

• crews - optional; type ArrayOfCrewId

Crew ids

• standaloneSafetyDoc - optional; type SafetyDoc

Safety document (see GetSafetyDocument)

Fault: OmsServiceException (soap:fault, use = literal)

fault type OmsServiceException
13-14 Oracle Utilities Network Management System Adapters Guide

Switching and Safety Web Service
createSwmanSheetFromExternalSystem
Creates new or updates an existing switching sheet.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

Input: createSwmanSheetFromExternalSystem (soap:body, use = literal)

dataString type string

XML representation of the switching sheet.

sheetHdl type handle

Switching sheet handle.

Output: createSwmanSheetFromExternalSystemResponse (soap:body, use = literal)

return type int

Return code.

sheetHdl type handle

Switching sheet handle.

Fault: OmsServiceException (soap:fault, use = literal)

fault type OmsServiceException

sheetStateTransition
Executes state transition on a switching sheet.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

Input: sheetStateTransition (soap:body, use = literal)

sheetHdl type handle

Switching sheet handle.

actionType type string

State transition action type.

actionName type string

State transition action name.

username type string

Username.

Output: sheetStateTransitionResponse (soap:body, use = literal)

Fault: OmsServiceException (soap:fault, use = literal)

fault type OmsServiceException
 13-15

Damage Assessment Web Service
Damage Assessment Web Service
Oracle Utilities Network Management System Damage Assessment web service

Port DamageServiceSOAP
Location: https://<nms host>:<nms port>/nms/damage

Protocol: SOAP

Default style: document

Transport protocol: SOAP over HTTP

Target Namespace: http://oms.splwg.com/ws/damage/

Operations

CompleteDamageReport
Completes an existing damage report.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/CompleteDamageReport

Input: CompleteDamageReportRequest (soap:body, use = literal)

parameters type CompleteDamageReport

reportId type long

Damage report id

Output: CompleteDamageReportResponse (soap:body, use = literal)

parameters type CompleteDamageReportResponse

report type damageReport

Damage assessment report

• id - optional; type long

Damage report unique identifier assigned by the server

• groupable - optional; type boolean

 Allow this damage report to be grouped upstream

• externalId - optional; type string

External id of the damage assessment incident in NMS

• eventIdx - optional; type int

Index of the event associated with this damage report

• eventExternalId - optional; type string

External id of the event associated with this damage report

• patrolEventIdx - optional; type int

Index of the patrol event associated with this damage report

• device - optional; type handle

[a] cls - required; type short

[a] index - required; type int
13-16 Oracle Utilities Network Management System Adapters Guide

Damage Assessment Web Service
[a] app - optional; type short

Handle of the affected device

• deviceAlias - optional; type string

Alias of the affected device

• feeder - optional; type string

Feeder name

• gpsLocation - optional; type gpsLocation

GPS location

• latitude type double

Latitude

• longitude type double

Longitude

GPS location of the damage

• zone - optional; type string

• grid - optional; type string

• location - optional; type string

• section - optional; type string

• city - optional; type string

• address - optional; type string

Street address of the damage

• phases - optional; type phaseCode - type string with restriction - enum { 'NONE',
'A', 'B', 'AB', 'C', 'AC', 'BC', 'ABC', 'N', 'AN', 'BN', 'ABN', 'CN', 'ACN', 'BCN',
'ABCN', 'Unknown' }

Affected phases

• loadAffected - optional; type boolean

Is damage causing an outage

• roadBlocked - optional; type boolean

Is road blocked

• streetLightDamage - optional; type boolean

Is street light damage reported

• hazardous - optional; type boolean

Is damage hazardous

• crew - optional; type crew

[a] id - required; type string

NMS crew identifier (crew name)

[a] mobileNumber - optional; type string

Crew's mobile (radio) number

Crew, who submitted this damage report

• stateName - optional; type string
 13-17

Damage Assessment Web Service
Damage report state (New, Assessed, etc.)

• stateBitmask - optional; type int

Damage report state bitmask (New=0x1, Assessed=0x2, Complete=0x4,
Obsolete=0x8)

• active - optional; type boolean

• reportTime - optional; type dateTime

• lastModified - optional; type dateTime

• version - optional; type long

Damage report version used for optimistic concurrency control

• damageType - optional, unbounded; type reportDamageType

• typeId type int

• typeName - optional; type normalizedString

• accessible - optional; type int

• inaccessible - optional; type int

List of specific damage instances

• damageComment - optional; type string

• requiredPart - optional, unbounded; type reportDamagePart

• quantity - optional; type int

• partId type string

List of required parts/materials needed to address reported damage

• requirePartsComment type string

• crewType - optional, unbounded; type crewType

• id type int

Crew type id

• name type string

Crew type name

List of crew types needed to address reported damage

• miscField1 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_TEXT1

• miscField2 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_TEXT2

• miscField3 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_TEXT3

• miscField4 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_TEXT4

• miscField5 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_TEXT5
13-18 Oracle Utilities Network Management System Adapters Guide

Damage Assessment Web Service
• miscField6 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_OPTION1

• miscField7 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_OPTION2

• miscField8 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_OPTION3

• miscField9 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_OPTION4

• miscField10 - optional; type string

Mapped to database column DAMAGE_REPORT.MISC_OPTION5

• udf1 - optional; type string

User-defined field 1

• udf2 - optional; type string

User-defined field 2

• udf3 - optional; type string

User-defined field 3

• udf4 - optional; type string

User-defined field 4

• udf5 - optional; type string

User-defined field 5

• udf6 - optional; type string

User-defined field 6

• udf7 - optional; type string

User-defined field 7

• udf8 - optional; type string

User-defined field 8

• udf9 - optional; type string

User-defined field 9

• udf10 - optional; type string

User-defined field 10

• udf11 - optional; type string

User-defined field 11

• udf12 - optional; type string

User-defined field 12

• udf13 - optional; type string

User-defined field 13

• udf14 - optional; type string

User-defined field 14
 13-19

Damage Assessment Web Service
• udf15 - optional; type string

User-defined field 15

• udf16 - optional; type string

User-defined field 16

• udf17 - optional; type string

User-defined field 17

• udf18 - optional; type string

User-defined field 18

• udf19 - optional; type string

User-defined field 19

• udf20 - optional; type string

User-defined field 20

• attachment - optional, unbounded; type attachment

List of damage report attachments. Actual attachment data is not included.

• data - optional; type base64Binary

Attachment data

• description - optional; type string

Description of the attachment

[a] id - required; type string

Attachment id (file name)

[a] reportId - required; type long

Damage report id

[a] uri - optional; type anyURI

Link to the attachment. Can be used instead of passing attachment data in the
message

[a] contentType - optional; type string

MIME content type

[a] lastModified - optional; type dateTime

Last modification timestamp

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

• error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType',
'LoadAffectedSetForNonOutage', 'DatabaseError', 'UnknownReportId',
'AlreadyCompleted', 'StaleData', 'IncidentCreateFailed', 'InvalidCrewType',
'InvalidDamageType', 'InvalidRequiredPart', 'NeedEventOrDevice', 'NeedAddress',
'NeedCrewId', 'MoveFailed', 'AttachmentTooBig', 'AttachmentSaveError',
'AttachmentNotFound', 'Other' }
13-20 Oracle Utilities Network Management System Adapters Guide

Damage Assessment Web Service
String representation of the error code

[a] code type int

Error code

[a] reportId type long

Damage report id associated with the error

DeleteAttachments
Deletes one or more damage report attachments.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/DeleteAttachments

Input: DeleteAttachmentsRequest (soap:body, use = literal)

parameters type DeleteAttachments

attachmentId - unbounded; type attachmentId

Identifier for damage report attachment

• id type string

Attachment id (file name). If empty then all attachments for this damage report are
included.

• reportId type long

Damage report id

Output: DeleteAttachmentsResponse (soap:body, use = literal)

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

• error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType',
'LoadAffectedSetForNonOutage', 'DatabaseError', 'UnknownReportId',
'AlreadyCompleted', 'StaleData', 'IncidentCreateFailed', 'InvalidCrewType',
'InvalidDamageType', 'InvalidRequiredPart', 'NeedEventOrDevice', 'NeedAddress',
'NeedCrewId', 'MoveFailed', 'AttachmentTooBig', 'AttachmentSaveError',
'AttachmentNotFound', 'Other' }

String representation of the error code

[a] code type int

Error code

[a] reportId type long

Damage report id associated with the error

GetAttachments
Retrieves damage report attachments.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/GetAttachments
 13-21

Damage Assessment Web Service
Input: GetAttachmentsRequest (soap:body, use = literal)

parameters type GetAttachments

attachmentId - unbounded; type attachmentId

Identifier for damage report attachment

• id type string

Attachment id (file name). If empty then all attachments for this damage report are
included.

• reportId type long

Damage report id

Output: GetAttachmentsResponse (soap:body, use = literal)

parameters type GetAttachmentsResponse

result - optional, unbounded; type attachment

[a] data - optional; type base64Binary

Attachment data

[a] description - optional; type string

Description of the attachment

• id - required; type string

Attachment id (file name)

• reportId - required; type long

Damage report id

• uri - optional; type anyURI

Link to the attachment. Can be used instead of passing attachment data in the
message

• contentType - optional; type string

MIME content type

• lastModified - optional; type dateTime

Last modification timestamp

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

• error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType',
'LoadAffectedSetForNonOutage', 'DatabaseError', 'UnknownReportId',
'AlreadyCompleted', 'StaleData', 'IncidentCreateFailed', 'InvalidCrewType',
'InvalidDamageType', 'InvalidRequiredPart', 'NeedEventOrDevice', 'NeedAddress',
'NeedCrewId', 'MoveFailed', 'AttachmentTooBig', 'AttachmentSaveError',
'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code
13-22 Oracle Utilities Network Management System Adapters Guide

Damage Assessment Web Service
• reportId type long

Damage report id associated with the error

GetCrewTypes
Returns all crew types configured in NMS.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/GetCrewTypes

Input: GetCrewTypesRequest (soap:body, use = literal)

parameters type GetCrewTypes

Output: GetCrewTypesResponse (soap:body, use = literal)

parameters type GetCrewTypesResponse

result - optional, unbounded; type crewType

• id type int

Crew type id

• name type string

Crew type name

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• reportId type long

Damage report id associated with the error

GetDamageReportById
Returns damage report for given report id.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/GetDamageReportById

Input: GetDamageReportByIdRequest (soap:body, use = literal)

parameters type GetDamageReportById

reportId type long

Damage report id
 13-23

Damage Assessment Web Service
Output: GetDamageReportByIdResponse (soap:body, use = literal)

parameters type GetDamageReportByIdResponse

report type damageReport

Damage assessment report (see CompleteDamageReport)

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• reportId type long

Damage report id associated with the error

GetDamageReportsByHandle
Returns all damage reports for given event or device handle.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/GetDamageReportsByHandle

Input: GetDamageReportsByHandleRequest (soap:body, use = literal)

parameters type GetDamageReportsByHandle

handle type handle

• cls - required; type short

• index - required; type int

• app - optional; type short

Event or device handle

Output: GetDamageReportsByHandleResponse (soap:body, use = literal)

parameters type GetDamageReportsByHandleResponse

report - optional, unbounded; type damageReport

Damage assessment report (see CompleteDamageReport)

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error
13-24 Oracle Utilities Network Management System Adapters Guide

Damage Assessment Web Service
[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• reportId type long

Damage report id associated with the error

GetDamageReportsByPatrol
Returns all damage reports for given patrol event index.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/GetDamageReportsByPatrol

Input: GetDamageReportsByPatrolRequest (soap:body, use = literal)

parameters type GetDamageReportsByPatrol

patrolEventIdx type int

Patrol event index

Output: GetDamageReportsByPatrolResponse (soap:body, use = literal)

parameters type GetDamageReportsByPatrolResponse

report - optional, unbounded; type damageReport

Damage assessment report (see CompleteDamageReport)

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• • reportId type long

Damage report id associated with the error
 13-25

Damage Assessment Web Service
GetDamageTypes
Returns all damage types configured in NMS.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/GetDamageTypes

Input: GetDamageTypesRequest (soap:body, use = literal)

parameters type GetDamageTypes

Output: GetDamageTypesResponse (soap:body, use = literal)

parameters type GetDamageTypesResponse

result - optional, unbounded; type damageType

• id type int

• name type string

• source - optional; type string

• repairMinutes type int

• inaccessibleRepairMinutes type int

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• reportId type long

Damage report id associated with the error

GetRequiredParts
Returns all required parts/materials configured in NMS.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/GetRequiredParts

Input: GetRequiredPartsRequest (soap:body, use = literal)

parameters type GetRequiredParts

Output: GetRequiredPartsResponse (soap:body, use = literal)

parameters type GetRequiredPartsResponse

result - optional, unbounded; type requiredPart

• id type string
13-26 Oracle Utilities Network Management System Adapters Guide

Damage Assessment Web Service
• name type string

• source - optional; type string

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• reportId type long

Damage report id associated with the error

NewDamageReport
Returns populated damage report for given event or device. This operation does not create new
damage report in NMS.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/NewDamageReport

Input: NewDamageReportRequest (soap:body, use = literal)

parameters type NewDamageReport

handle - optional; type handle

• cls - required; type short

• index - required; type int

• app - optional; type short

Event or device handle

• deviceAlias - optional; type string

Device alias (only used if handle is not provided)

• externalId - optional; type string

Event's external id (only used if handle is not provided)

Output: NewDamageReportResponse (soap:body, use = literal)

parameters type NewDamageReportResponse

report type damageReport

Damage assessment report (see CompleteDamageReport)

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault
 13-27

Damage Assessment Web Service
errors - unbounded; type Error

Damage Service error

[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• reportId type long

Damage report id associated with the error

SaveAttachments
Creates new or updates existing damage report attachments.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/SaveAttachments

Input: SaveAttachmentsRequest (soap:body, use = literal)

parameters type SaveAttachments

attachment - unbounded; type attachment

• data - optional; type base64Binary

Attachment data

• description - optional; type string

Description of the attachment

id - required; type string

Attachment id (file name)

reportId - required; type long

Damage report id

uri - optional; type anyURI

Link to the attachment. Can be used instead of passing attachment data in the message

contentType - optional; type string

MIME content type

lastModified - optional; type dateTime

Last modification timestamp

Output: SaveAttachmentsResponse (soap:body, use = literal)

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error
13-28 Oracle Utilities Network Management System Adapters Guide

Damage Assessment Web Service
[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• reportId type long

Damage report id associated with the error

SaveDamageReport
Creates new or updates existing damage report. This operation cannot be used to complete an
existing damage report.

Operation Type: Request-response. The endpoint receives a message, and sends a correlated
message.

SOAP Action: http://oms.splwg.com/ws/damage/SaveDamageReport

Input: SaveDamageReportRequest (soap:body, use = literal)

parameters type SaveDamageReport

report type damageReport

Damage assessment report (see CompleteDamageReport)

action - optional; type string

Action to trigger state transition

Output: SaveDamageReportResponse (soap:body, use = literal)

parameters type SaveDamageReportResponse

report type damageReport

Damage assessment report (see CompleteDamageReport)

Fault: DamageServiceException (soap:fault, use = literal)

parameters type DamageServiceFault

errors - unbounded; type Error

Damage Service error

[a] error type errorCode - type string with restriction - enum { 'CreateFailed',
'CompletedEvent', 'UnknownEvent', 'BadEventType', 'LoadAffectedSetForNonOutage',
'DatabaseError', 'UnknownReportId', 'AlreadyCompleted', 'StaleData',
'IncidentCreateFailed', 'InvalidCrewType', 'InvalidDamageType', 'InvalidRequiredPart',
'NeedEventOrDevice', 'NeedAddress', 'NeedCrewId', 'MoveFailed',
'AttachmentTooBig', 'AttachmentSaveError', 'AttachmentNotFound', 'Other' }

String representation of the error code

• code type int

Error code

• reportId type long

Damage report id associated with the error
 13-29

Damage Assessment Web Service
13-30 Oracle Utilities Network Management System Adapters Guide

Chapter 14
REST API

Oracle Utilities Network Management System REST API exposes a subset of NMS functionality
in form of RESTful web services. NMS resources, with some exceptions (e.g., images represented
in binary form), are represented in JSON format.

The base URL for accessing the REST API is

https://<server>:<port>/nms-ws

• <server> - DNS name or IP address of the WebLogic server where nms-ws.ear is running.

• <port> - SSL port of the WebLogic server

This chapter includes the following topics:

• Authentication

• Resources

Authentication
In order to invoke Oracle Utilities Network Management System REST API, the caller needs to
be authenticated using valid Oracle Utilities Network Management System mobile user credentials.
HTTP Basic Authentication protocol is used for authentication. Since HTTP Basic Authentication
does not encrypt credentials, the HTTPS transport should be used.

If using BASIC Authentication, the Header would look like this:

Authorization: Basic <credentials> <app-key>

If using IDCS or another OAuth2 Authentication provider, you can pass the token Authentication
like this:

Authorization: <TokenType> <Token> <app-key> <LoginName>
REST API 14-1

Resources

ey
Resources
• GET /dmg-rest/reports

• POST /dmg-rest/reports

• GET /dmg-rest/reports/:id

• POST /dmg-rest/reports/:id

• GET /dmg-rest/reports/:id/attachments/:att_id

• PUT /dmg-rest/reports/:id/attachments/:att_id

• DELETE /dmg-rest/reports/:id/attachments/:att_id

• GET /dmg-rest/reports/required-parts

•

• GET /dmg-rest/reports/damage-types

• GET /mobile/control-zones

• GET /mobile/conditions

• GET /mobile/conditions/:class

• POST /mobile/condition/:class

• PUT /mobile/condition/:class/:id/status/:status

• GET /mobile/crews/:id/availability

• POST /mobile/crews/:id/availability

• GET /mobile/crews/:id/status

• POST /mobile/crews/:id/status

• GET /mobile/get-permissions

• GET /mobile/mobile-user-validation

• GET /mobile/create-new-account

• GET /mobile/set-current-crew/:id

• GET /mobile/damage-device-details

• GET /mobile/devices

• GET /mobile/crew-types

• GET /mobile/maps

•

• GET /mobile/crews

• GET /mobile/crews/:id

• GET /mobile/crews/:id/assignments

• POST /mobile/crews/:id/assignments/:event-id/
dispatch

• POST /mobile/crews/:id/assignments/:event-id/
onsite

• POST /mobile/crews/:id/assignments/:event-id/
undispatch

• POST /mobile/crews/:id/assignments/:event-id/
unassign

• POST /mobile/crews/:id/assignments/:event-id/
undispatch-and-assign

• POST /mobile/crews/:id/assignments/:event-id/
undispatch-and-assign-and-dispatch/:new-event-id

• GET /trbl-rest/events/:id

• POST /trbl-rest/events/:id

• GET /trbl-rest/config/:cfg

• GET / mobile/ version

• GET / mobile/application-version/:name/:arch

• GET / mobile/application-versions/:name/:arch

• GET / mobile/application/:name/:arch

• GET / mobile/application/:name/:arch/:version

• PUT / mobile/ user-profile/ :field-name / :value

• GET / mobile/ device/ :id/ info

• GET / mobile/ device/ :id/ operate/ :operation/
phases/ :phases / time/ :time

• GET / mobile/ device/ :id/ lookahead/ :operation/
:phases

• POST / mobile/device/statuses

• GET / mobile/:id/customers

• GET / mobile/ maps/ :mapname

• POST / mobile/ crew

• GET / mobile/ condition/ :class/ :id

• PUT / mobile/ condition/ :class/ :id/ text/ :text

• DELETE / mobile/ condition/ :class/ :id

• GET / mobile/ switch-sheets/ assignments/ :crew-k

• POST / mobile/ switch-sheets/ :sheet-class/ :sheet-
index/ steps/ :step-class/ :step-index

• POST / mobile/ switch-sheets/ :sheet-class/ :sheet-
index/ steps/ :step-class/ :step-index/ location

• GET / mobile/ switch-sheets/ :sheet-class/ :sheet-
index / report

• GET / mobile/ switch-sheets/ :sheet-class/ :sheet-
index / document/ :document-id

• PUT / mobile/ switch-sheets/ :sheet-class/ :sheet-
index / document

• PUT / trbl-rest/ event/ :id/ confirm-outage

• POST / trbl-rest/ event/ :id/ log
14-2 Oracle Utilities Network Management System Adapters Guide

Resources
GET /dmg-rest/reports
Retrieves damage reports or given query parameters.

Supported query types:

• Location - returns damage reports within the given radius from the specified location.
Parameters lat, long, and rad are required for this query type.

• Patrol - returns damage reports associated with the given patrol event. Parameter patrol
is request for this query type.

• Event - returns damage reports associated with the given event. Parameter event is
request for this query type.

Note: parameters from different query types cannot be mixed (for example, it is
not possible to request damage reports for a patrol event which are location
near specific point).

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing damage reports

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

lat query[floating-point] Latitude of the location

long query[floating-point] Longitude of the location.

rad query[floating-point] Radius in meters.

event query[integer] Event index.

patrol query[integer] Patrol event index.

device query[string] Device Handle
REST API 14-3

Resources
POST /dmg-rest/reports
Creates new damage report.

Parameters

Success Response

• Code: 201 Created

Content: JSON representation of the created damage report

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

unnamed
required

dataa

a. ‘data’ parameters represent the body of a POST or PUT request. Such parameters do not
have a name thus ‘unnamed’ in the list of parameters.

JSON representation of a
damage report

action query[string] State transition action when
saving damage report (i.e.,
assess).
14-4 Oracle Utilities Network Management System Adapters Guide

Resources
GET /dmg-rest/reports/:id
Retrieves existing damage report by id.

Parameters

Success Response

• Code: 200

Content: JSON representation of a damage report

Error Response

• Code: 204 No Content

Damage report with the given identifier were not found.

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Damage report identifier.
REST API 14-5

Resources
POST /dmg-rest/reports/:id
Updates existing damage report.

Parameters

Success Response

• Code: 200

Content: JSON representation of a damage report

Error Response

• Code: 204 No Content

Damage report with the given identifier were not found.

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Damage report identifier.

action query[string] State transition action when
saving damage report (i.e.,
assess).

unnamed
required

data JSON representation of a
damage report
14-6 Oracle Utilities Network Management System Adapters Guide

Resources
GET /dmg-rest/reports/:id/attachments/:att_id
Retrieves content of an existing damage report attachment.

Parameters

Success Response

• Code: 200

Content: Binary attachment data (e.g., image)

Error Response

• Code: 204 No Content.

Requested attachment does not exist.

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Damage report identifier.

att_id
required

path[string] Attachment name/identifier.

w query[string] If image, reduce width to w
pixels.

h query[string] If image, reduce height to h
pixels.
REST API 14-7

Resources
PUT /dmg-rest/reports/:id/attachments/:att_id
Uploads contents of a damage report attachment.

Note: This API only uploads the binary attachment data to the server. The list
of attachments is part of the damage report itself.

Parameters

Success Response

• Code: 201 Created

Error Response

• Code: 204 No Content.

Requested attachment does not exist.

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Damage report identifier.

att_id
required

path[string] Attachment name/identifier.

unnamed
required

data Attachment data.
14-8 Oracle Utilities Network Management System Adapters Guide

Resources
DELETE /dmg-rest/reports/:id/attachments/:att_id
Deletes a damage report attachment.

Parameters

Success Response

• Code: 204 No Content

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

GET /dmg-rest/reports/required-parts
Retrieves list of required parts and materials which are configured in NMS.

Parameters

None.

Success Response

• Code: 200

Content: Array of JSON objects representing all known required parts

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Damage report identifier.

att_id
required

path[string] Attachment name/identifier.
REST API 14-9

Resources
GET /dmg-rest/reports/damage-types
Retrieves list of types of damage which are configured in NMS.

Parameters

None.

Success Response

• Code: 200

Content: Array of JSON objects representing all known damage types

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

GET /mobile/control-zones
Retrieves list of control zones NMS.

Parameters

None.

Success Response

• Code: 200

Content: Array of JSON objects representing all NMS control zones

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.
14-10 Oracle Utilities Network Management System Adapters Guide

Resources
GET /mobile/conditions
Retrieves conditions for given geographical area.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing conditions.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

lat1
required

query[floating-point] Latitude of the top left
corner of the area

lat2
required

query[floating-point] Latitude of the bottom right
corner of the area.

long1
required

query[floating-point] Longitude of the top left
corner of the area

long2
required

query[floating-point] Longitude of the bottom
right corner of the area

qt
optional

query[string] Query type.
Valid values:
da – damage reports
event – events
All conditions are returned if
this parameter is not
provided.
REST API 14-11

Resources
GET /mobile/conditions/:class
Returns a list of conditions for the requesting authentication user name of the given condition
class.

Parameters

Response

• 200: The return data will be a list of conditions

POST /mobile/condition/:class
Create a condition with the given class, status, and text for the given device.

Parameters

Response

• 200: Returns the condition index of the new condition created.

Name Type Description

:class path[string] Name of the class of
conditions.

Name Type Description

:class path[string] Name of the class of
conditions

status query[integer] Status of the class

dev-class query[integer] Handle Class number of the
device

dev-index query[integer] Handle Index number of the
device

text path[string] Text to be saved with the
condition

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-12 Oracle Utilities Network Management System Adapters Guide

Resources
PUT /mobile/condition/:class/:id/status/:status
Updates the given condition's status to the given status.

Parameters

Response

• 200: No content returned

GET /mobile/crews/:id/availability
Retrieves the current availability information for a crew.

Parameters

Success Response

• Code: 200

Content: Crew availability information in JSON format.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

:class path[string] Class Name of the condition

:id path[integer] Id of the condition

:status path[integer] The new status of the
condition

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.

Name Type Description

id
required

path[integer] Crew key.
REST API 14-13

Resources
POST /mobile/crews/:id/availability
Updates the current availability information for a crew.

Parameters

Success Response

• Code: 200

Content: Crew availability information in JSON format.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

GET /mobile/crews/:id/status
Retrieves the current status of a crew.

Parameters

Success Response

• Code: 200

Content: Crew status information in JSON format. Possible crew statuses: Inactive, OnShift,
OffShift.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Crew key.

unnamed
required

data Crew availability information
in JSON format

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.

Name Type Description

id
required

path[integer] Crew key.
14-14 Oracle Utilities Network Management System Adapters Guide

Resources
POST /mobile/crews/:id/status
Updates current status of a crew.

Parameters

Success Response

• Code: 200

Content: Crew status information in JSON format.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Crew key.

unnamed
required

data Crew status information in
JSON format.
Valid crew statuses:
• OnShift

• OffShift

• Inactive

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-15

Resources
GET /mobile/get-permissions
Retrieves permissions of the mobile user.

Parameters

Success Response

• Code: 200

Content: List of permissions assigned to the mobile user.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

GET /mobile/mobile-user-validation
Performs validation of user credentials.

Parameters

Success Response

• Code: 200

Content: User information in JSON format. If validation is unsuccessful value -2 is returned
in the userId field.

Error Response

• Code: 500 Internal Server Error

Unspecified error has occurred.

Note: This request does not require Authorization header.

Name Type Description

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.

Name Type Description

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-16 Oracle Utilities Network Management System Adapters Guide

Resources
GET /mobile/create-new-account
Creates new account with the specified username and password. The server checks whether the
provided user key is valid and have not exhausted its account creation quota.

Parameters

Success Response

• Code: 200

Content: User information in JSON format. If account creation is unsuccessful negative
value is returned in the userId field.

Error Response

• Code: 500 Internal Server Error

Unspecified error has occurred.

Note: This request does not require Authorization header.

GET /mobile/set-current-crew/:id
Sets crew associated with this mobile user.

Parameters

Success Response

• Code: 200

Content: Crew information in JSON format.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

new-user-key
required

query[string] User key.

Name Type Description

id
required

path[integer] Crew key.
REST API 14-17

Resources
GET /mobile/damage-device-details
Retrieves device information for given alias.

Parameters

Success Response

• Code: 200

Content: Device information in JSON format.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

GET /mobile/devices
Retrieves information for devices matching given device alias search string.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing device information.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

device-id
required

query[string] Device alias.

Name Type Description

device-id
required

query[string] Device alias search string
(can contain SQL wildcard
characters).
14-18 Oracle Utilities Network Management System Adapters Guide

Resources
GET /mobile/crew-types
Retrieves list of crew types configured in NMS.

Parameters

None.

Success Response

• Code: 200

Content: Array of JSON objects representing crew types.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

GET /mobile/maps
Retrieves list of map definition objects.

Parameters

None.

Success Response

• Code: 200

Content: Array of JSON objects representing map definitions.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.
REST API 14-19

Resources
GET /mobile/crews
Retrieves list of crews present in NMS. Depending on permissions of the mobile user either all or
only MDT crews are returned.

Parameters

None.

Success Response

• Code: 200

Content: Array of JSON objects representing crews.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

GET /mobile/crews/:id
Retrieves information for a crew.

Parameters

Success Response

• Code: 200

Content: Crew information in JSON format.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Crew key.
14-20 Oracle Utilities Network Management System Adapters Guide

Resources
GET /mobile/crews/:id/assignments
Retrieves list of current assignments for a crew.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing crew assignments.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

POST /mobile/crews/:id/assignments/:event-id/dispatch
Places a crew en-route to an event.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing crew assignments.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Crew key.

Name Type Description

id
required

path[integer] Crew key.

event-id
required

path[integer] Event index.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-21

Resources
POST /mobile/crews/:id/assignments/:event-id/onsite
Places a crew onsite for an event.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing crew assignments.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

POST /mobile/crews/:id/assignments/:event-id/undispatch
Makes a crew no longer en-route or onsite for an event.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing crew assignments.

Name Type Description

id
required

path[integer] Crew key.

event-id
required

path[integer] Event index.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.

Name Type Description

id
required

path[integer] Crew key.

event-id
required

path[integer] Event index.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-22 Oracle Utilities Network Management System Adapters Guide

Resources
Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

POST /mobile/crews/:id/assignments/:event-id/unassign
Removes assignment of a crew to an event.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing remaining crew assignments.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Crew key.

event-id
required

path[integer] Event index.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-23

Resources
POST /mobile/crews/:id/assignments/:event-id/undispatch-and-assign
Makes a crew no longer en-route or onsite for an event but keeps the assignment of the crew to
the event.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing crew assignments.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Crew key.

event-id
required

path[integer] Event index.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-24 Oracle Utilities Network Management System Adapters Guide

Resources
POST /mobile/crews/:id/assignments/:event-id/undispatch-and-assign-and-
dispatch/:new-event-id

Places crew en-route to a different event.

Parameters

Success Response

• Code: 200

Content: Array of JSON objects representing crew assignments.

Error Response

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Crew key.

event-id
required

path[integer] Original event index.

new-event-id
required

path[integer] New event index.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-25

Resources
GET /trbl-rest/events/:id
Retrieves an event with the given index.

Parameters

Success Response

• Code: 200

Content: JSON representation of an NMS event or the NMS Event and TroubleEvent.

Error Response

• Code: 204 No Content

Event with the given index was not found.

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Event index.

max_calls query[integer] Maximum number of calls to
return about the event.
Default: 10.

extended query[char] If value is ‘Y’, will return the
NMS TroubleEvent
structure in addition to the
Event structure.
14-26 Oracle Utilities Network Management System Adapters Guide

Resources
POST /trbl-rest/events/:id
Updates information for an event. The following event fields can be updated: case notes, ERT,
Event Details picklists. Event can also be restored and completed.

Parameters

Success Response

• Code: 204 No Content

Error Response

• Code: 400 Bad Request

Event index mismatch between resource URL and body.

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

Name Type Description

id
required

path[integer] Event index.

crew_id query[string] Crew Id updating the event.

unnamed
required

data Event information in JSON
format.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-27

Resources
GET /trbl-rest/config/:cfg
Retrieves NMS Trouble Management configuration items. Currently this request always returns
Event Details picklist options (the ‘cfg’ parameter is ignored).

Parameters

Success Response

• Code: 200

Content: JSON representation of the requested configuration item.

Error Response

• Code: 204 No Content

• Code: 401 Unauthorized

User is not authorized to perform the request.

• Code: 500 Internal Server Error

Unspecified error has occurred.

GET / mobile/ version
Get

Parameters

None.

Success Response

• Code: 200
Content: Version information for the NMS Application Server and the NMS Mobile Server
including items like build date, build tag, project name, NMS version, and server host name.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

cfg
optional

path[string] Configuration type.
14-28 Oracle Utilities Network Management System Adapters Guide

Resources
GET / mobile/application-version/:name/:arch
Returns the latest version number of the application for the given Application Name and
Architecture.

Parameters

Response

• 200: The return data will be the latest application version number. If there is no version
available matching the app Name and App Architecture, a -1 is returned.

GET / mobile/application-versions/:name/:arch
Returns a list of available version numbers of the application for the given Application Name and
Architecture.

Parameters

Response

• 200: The return data will be a list of integers for the version numbers of the application that
are available. If there is no version available matching the app Name and App Architecture, an
empty list is returned.

Name Type Description

:name path[string] Name of the application (i.e.,
OMA).

:arch path[string] Architecture of the
application. Can be one of
these values: ANDROID,
IOS, WIN10, BROWSER

Name Type Description

:name path[string] Name of the application (i.e.,
OMA).

:arch path[string] Architecture of the
application. Can be one of
these values: ANDROID,
IOS, WIN10, BROWSER
REST API 14-29

Resources
GET / mobile/application/:name/:arch
Returns the latest version of the application for the given Application Name and Architecture in
.zip format.

Parameters

Response

• 200: The return data will be the application in .zip format. If there is no version available
matching the app Name and App Archictecure, an exception is returned.

GET / mobile/application/:name/:arch/:version
Returns the application for the given Application Name, Application version and Architecture in
.zip format.

Parameters

Response

• 200: The return data will be the application in .zip format. If there is no application matching
the app Name, app Version and App Architecture, an exception is returned.

Name Type Description

:name path[string] Name of the application (i.e.,
OMA).

:arch path[string] Architecture of the
application. Can be one of
these values: ANDROID,
IOS, WIN10, BROWSER.

Name Type Description

:name path[string] Name of the application (i.e.,
OMA).

:arch path[string] Architecture of the
application. Can be one of
these values: ANDROID,
IOS, WIN10, BROWSER.

:version path[integer] Version of the application.
14-30 Oracle Utilities Network Management System Adapters Guide

Resources
PUT / mobile/ user-profile/ :field-name / :value
Updates the requesting users profile for the given field-name with the given value.

Parameters

Success Response

• Code: 200
Content: User information including all profile value

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

GET / mobile/ device/ :id/ info
Returns information about a given device given a device handle.

Parameters

Success Response

• Code: 200
Content: Returns information about the device including alias, phases, closed phases, fully
open flag, fully closed flag.

Name Type Description

field-name
required

path[string] Profile field to update.
Names include:

• First name

• Last name

• Email

• Phone

• Company

value
required

path[string] Value to set field to.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.

Name Type Description

id
required

path[string] The device handle in the
format: class.index
REST API 14-31

Resources
Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred
14-32 Oracle Utilities Network Management System Adapters Guide

Resources
GET / mobile/ device/ :id/ operate/ :operation/ phases/ :phases / time/ :time

Performs the operation on the given phases for a device.

Parameters

Success Response

• Code: 200
Content: Operation successful

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

id
required

path[string] The device handle in the
format: class.index

operation
required

path[string] Operation to perform on the
device, either open or close

phases
required

path[integer] Integer representation of the
phases to operate. For
example, 1=A, 2=B, 3=AB,
4=C, 5=AC, 6=BC, 7=ABC.

time
required

Path[long] Time the operation was
requested. 0 = current time.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-33

Resources
GET / mobile/ device/ :id/ lookahead/ :operation/ :phases
Returns look ahead data about the requested operation on the given device.

Parameters

Success Response

• Code: 200
Content: Returns Look Ahead Information including device information, alias, phases,
customers affected by phase, ato customers affected by phase, condition, abnormal devices,
critical customers, and DERs.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

id
required

path[string] The device handle in the
format: class.index

operation
required

path[string] Operation to perform on the
device, either open or close

phases
required

path[integer] Integer representation of the
phases to operate. For
example, 1=A, 2=B, 3=AB,
4=C, 5=AC, 6=BC, 7=ABC.
14-34 Oracle Utilities Network Management System Adapters Guide

Resources
POST / mobile/device/statuses
Take a list of object handles and return status of the objects.

Parameters

Response

• 200: with JSON formatted return.

For example:

[{"deviceClass":126,"deviceIndex":1601,"nominalStatus":4,"currentStatu
s":4,"phases":0},{"deviceClass":126,"deviceIndex":1600,"nominalStatus"
:2,"currentStatus":0,"phases":0}]

The phase value is not supported yet will be returned as zero.

GET / mobile/:id/customers
Get a list of customers associated with a device id, including downstream devices. The call will
take a device handle and a maximum number of SND's to get customers for.

Parameters

Response

• 200: The return value will be the list of customers in JSON double array format, where the
first record of the array will be the field names, and the rest of the array will be records of just
values. It is up to the client to reformat the return value into true JSON objects.

Name Type Description

return-unknown-device query[Y or N] Flag to indicate if devices
that statuses were requested
for that do not exist in the
DDService, if set to Y, will
be returned as objects with
statuses set to -1, otherwise
the unknown objects will not
have any returned statuses.

handles data List of object handles to
return statuses for.
For example:

[{"deviceClass":126,
"deviceIndex":1600},
{"deviceClass":126,"
deviceIndex":1601}]

Name Type Description

id path[handle string] Handle of the device to get
customers for (e.g.,
123.1001).

max-supply-nodes query[integer] Maximum number of SND's
to get customers for.
REST API 14-35

Resources
GET / mobile/ maps/ :mapname
Returns the requested map in GeoJSON format.

Parameters

Success Response

• Code: 200
Content: GeoJSON map.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

POST / mobile/ crew

Update crew information. This is a stub API and not yet implemented.

Parameters

Success Response

• Code: 200
Content: updated Mobile Crew information

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Errors
Unspecified error has occurred

Name Type Description

mapname
required

path[string] Name of the map to retrieve.

compression
optional, defaults to ‘Y’

query[string] Indicates if the returned map
is to be compressed or not
by given value, Y or N.

Name Type Description

crew data Mobile Crew Information

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-36 Oracle Utilities Network Management System Adapters Guide

Resources
GET / mobile/ condition/ :class/ :id
Return condition details given the condition class and id.

Parameters

Success Response

• Code: 200
Content: Condition details including handle, affected device handle, node, who created, class
name, partition, when created, condition status, phases, ncg, x/y coordinates, application
string, text, condition specific data, and external id.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

class
required

path[string] Condition class name

id
required

path[integer] Condition index

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-37

Resources
PUT / mobile/ condition/ :class/ :id/ text/ :text
Updates the text value of a given condition.

Parameters

Success Response

• Code: 200
Content: None.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

class
required

path[string] Condition class name

id
required

path[integer] Condition index

text
required

path[string] Text value to update to
condition

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-38 Oracle Utilities Network Management System Adapters Guide

Resources
DELETE / mobile/ condition/ :class/ :id
Deletes the given condition.

Parameters

Success Response

• Code: 200
Content: None.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

GET / mobile/ switch-sheets/ assignments/ :crew-key
Returns a list of Mobile Switch Sheets associated to the given crew key

Parameters

Success Response

• Code: 200
Content: A list of Mobile Switch Sheets, each sheet contains a sheet id, list of attribute/
values, a list of steps, and a list of switch sheet associated document names and descriptions.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

class
required

path[string] Condition class name

id
required

path[integer] Condition index

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.

Name Type Description

crew-key
required

path[integer] Crew Key
REST API 14-39

Resources
POST / mobile/ switch-sheets/ :sheet-class/ :sheet-index/ steps/ :step-class/
:step-index

Updates status and fields of a switch sheet step.

Parameters

Success Response

• Code: 200
Content: None.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

sheet-class
required

path[integer] Sheet class number

sheet-index
required

path[integer] Sheet index number

step-class
required

path[integer] Step class number

step-index
required

path[integer] Step index number

action
optional

query[string] Step transition action:
complete_step, abort_step,
fail_step

update-fields
optional

query[string] Step fields that have changes:
comments, switching_desc,
step_details, executed_time.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-40 Oracle Utilities Network Management System Adapters Guide

Resources
POST / mobile/ switch-sheets/ :sheet-class/ :sheet-index/ steps/ :step-class/
:step-index/ location

Update location (address) of a step of a switching plan.

Parameters

Success Response

• Code: 200
Content: number indicating a count of the number of step that had this device location
updated.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

sheet-class
required

path[integer] Sheet class number

sheet-index
required

path[integer] Sheet index number

step-class
required

path[integer] Step class number

step-index
required

path[integer] Step index number

unnamed
required

data New location (Address) of
the step.

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-41

Resources
GET / mobile/ switch-sheets/ :sheet-class/ :sheet-index / report
Get a formatted report for the given switching sheet.

Parameters

Success Response

• Code: 200
Content: content of report

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

sheet-class
required

path[integer] Sheet class number

sheet-index
required

path[integer] Sheet index number

format query[string] Format of the report:
pdf (default)
html

options query[string] Content of the report, use
the following content values
fallowed by true or false for
inclusion in the report,
default value is true for all:
 SHOW_EC:true;
SHOW_AL:true;
EXTERNAL_DOCUMEN
TS:true;
SHOW_SAFETY:true;
SHOW_REQUEST:true;
SHOW_IC:true;
SHOW_STEPS:true
14-42 Oracle Utilities Network Management System Adapters Guide

Resources
GET / mobile/ switch-sheets/ :sheet-class/ :sheet-index / document/
:document-id

Get an attached document from a switching sheet given the document ID.

Parameters

Success Response

• Code: 200
Content: document requested

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

sheet-class
required

path[integer] Sheet class number

sheet-index
required

path[integer] Sheet index number

document-id
required

path[integer] Document ID
REST API 14-43

Resources
PUT / mobile/ switch-sheets/ :sheet-class/ :sheet-index / document
Add a document to a switching sheet

Parameters

Success Response

• Code: 200
Content: Attachment Document details

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

sheet-class
required

path[integer] Sheet index number

sheet-index
required

path[integer] Sheet index number

unnamed
required

data Document to add

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-44 Oracle Utilities Network Management System Adapters Guide

Resources
PUT / trbl-rest/ event/ :id/ confirm-outage

Will confirm open the device associated with a probable outage Event.

Parameters

Success Response

• Code: 200
Content: None.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

id
required

path[integer] Event Idx

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-45

Resources
POST / trbl-rest/ event/ :id/ log

Add an Event Log entry to the given event.

Parameters

Success Response

• Code: 200
Content: None

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

id
required

path[integer] Event ID

logEntry
required

data[string] Log message

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
14-46 Oracle Utilities Network Management System Adapters Guide

Resources
POST / trbl-rest/ event/ :id/ log-once

Add an Event Log entry to the given event; verify it has not already been added before.

Parameters

Success Response

• Code: 200
Content: None.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

id
required

path[integer] Event ID

logEntry
required

data[string] Log message

as-user
optional

query[string] User to do the API call as,
calling user must have
“Allow as-user Parameter”
mobile permission.
REST API 14-47

Resources
POST / trbl-rest/ user-log

Add an User Log entry to the given event.

Parameters

Success Response

• Code: 200
Content: None.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

logEntry
required

data[string] Log message
14-48 Oracle Utilities Network Management System Adapters Guide

Resources
POST / trbl-rest/ user-log-once
Add an User Log entry to the given event; verify it has not already been added before.

Parameters

Success Response

• Code: 200
Content: None.

Error Response

• Code: 401 Unauthorized
User is not authorized to perform the request

• Code: 500 Internal Server Error
Unspecified error has occurred

Name Type Description

logEntry
required

data[string] Log message
REST API 14-49

Resources
14-50 Oracle Utilities Network Management System Adapters Guide

Chapter 15
Weather Data Adapter

This chapter includes the following topics:

• Adapter Overview

• Data Import Formats

• Running the Adapter

• Related Runtime and Configuration Tables

Adapter Overview
The Weather Data adapter is responsible for pulling real-time and future forecast weather data for
use by the DMS power flow analysis. The weather data is used within the DMS applications for
two purposes.

1. To drive the load forecast used by the power flow analysis. The weather data will be used to
set which load profile is used by the real-time and forecast power flow solutions.

2. The weather data will be archived in the NMS PF_DERMS_FORECAST_HISTORY
database table such that it can be used by the Profile Adapter to determine a historical
weather conditions for a particular weather zone. The Profile Adapter needs the historical
data such that provided load profiles can be adjusted properly by the adapter depending on
the recorded temperature.
Weather Data Adapter 15-1

Data Import Formats
Data Import Formats
The Weather Data Adapter can import the weather data to either an NMS database or to a non-
NMS database from any of the following sources:

1. Flat CSV Files

2. External Database Table

3. NOAA Weather Service

Flat CSV Files
The adapter can import the data either from a single large CSV file or multiple smaller CSV files.
However, they need to have a consistent format. Which means that they all should either have a
header row or no header row and they all should have the columns in the same sequence. Projects
should make sure that data is given in the same units as in the load profiles. The Adapter does not
perform any unit conversions. However, while importing data to a NMS database, adapter can
convert the data into profile keys if configured. For example, cloud coverage can be given as a
string, 'Cloudy', 'Clear', 'Partially Cloudy' etc. or it can also be given as a solar potential index which
varies between 0 and 1, or it can also be given in percentile. Power Flow can only process the
indexes. If the data is given as a string or percentile, then adapter converts them to a profile key. In
this case, project will have to set the rule_value_integer_4 to 1 in the corresponding
'distGenDefault' SRS-rule, and also have to provide the mapping between the values and the
profile keys in the 'pf_weather_data_profile_map' table. If the data value is numerical then it will
be mapped to the upper limit of that band. This kind of data conversion is not possible if
importing data to a non-NMS database.

Input File Format

CSV files should have following four columns in any order:

• Zone: Name of the zone.

• Time: Date and time.

• Power Source: An integer representing temperature (-1), solar, and wind power source.
This value should be consistent with the rule_value_integer_1 value of 'distGenDefault'
SRS-rules.

• Value: Forecasted value.

Configuration

The adapter parameters are configured in the pf_weather_data_config database table, which
should be present in the host database. The configuration table should have a row with
parameter_name as 'source' and parameter_value_1 as 'CSV'. This configuration parameter tells
the adapter the source of the weather data. The rest of the parameters are as follows:

• input_address: Environmental variable OPERATIONS_MODELS should be
configured. This variable is set to the path to the directory that hosts the 'weather_data'
directory. All input CSV files should be stored in 'weather_data' directory. The adapter
creates two more directories in the weather_data directory. The first is 'log' which host
the log files, and the second is 'parsed_csvs' which host all the csv files which have been
processed by the adapter.

• headerPresent: This parameter should be set to 'yes' if CSV files have a header row
present; otherwise, it should be set to 'no'.

• zone_column: It should be an integer specifying the column number of CSV file which
contains the zone names. Column numbers start from 0 in CSVs
15-2 Oracle Utilities Network Management System Adapters Guide

Data Import Formats
• datetime_column: It should be an integer specifying the column number of CSV file
which contains the date and time.

• power_source_column: It should be an integer specifying the column number of CSV
file which contains power_source number

• value_column: It should be an integer specifying the column number of CSV file which
contains the value for the corresponding power_source.

External Database Table
The adapter can import the data from an external database table. The connection with the external
database should only be made through an Oracle Wallet. If the data is imported in an NMS
database, the data conversion for solar and wind should be performed. The adapter does not
perform data unit conversions while importing from a database table.

Input Table Schema

Similar to CSV format, the source database table should have the following fields:

• Zone: Name of the zone

• Time: Date and time

• Power Source: an integer representing temperature (-1), solar, and wind power source.
This value should be consistent with the rule_value_integer_1 value of 'distGenDefault'
SRS-rules.

• Value: forecast-ed value

Configuration

The adapter parameters are configured in the pf_weather_data_config database table, which
should be present in the host database. The configuration table should have a row with
parameter_name as 'source' and parameter_value_1 as 'DB'. This configuration parameter tells the
adapter the source of the weather data. The rest of the parameters are as follows:

• sourceDBServer: This parameter needs three values:

• parameter_value_1: Name of the server machine.

• parameter_value_2: Port number on which database service is running.

• parameter_value_3: Database service name.

• sourceDBTableName: The name of the source database table.

• zone_column: The name of the database table field that contains the zone names.

• datetime_column: The name of the database table field that contains the date and time.

• power_source_column: name of the database table field which contains power_source
number.

• value_column: name of the database table field which contains the value for the
corresponding power_source.
Weather Data Adapter 15-3

Data Import Formats
NOAA Weather Service
The adapter is capable of capturing 1 hour, 24 hour, and 7 days of hourly data from NOAA. The
adapter pulls the temperature, wind speed and cloud coverage data from the Internet.

Since the adapter is pulling data from the NOAA weather feeder, this adapter is only applicable to
US customers. The adapter works by reading the configured weather zones in the local
PF_WEATHER_ZONE database table. The associated latitude and longitude is then used to
gather the associated weather data. Therefore, the host database must have this table for the
adapter to work. The adapter parses the data and places it in the
PF_WEATHER_ZONE_FORECAST database table.

Configuration

The adapter parameters are configured in the pf_weather_data_config database table, which
should be present in the host database. The configuration table should have a row with
parameter_name as ‘source’ and parameter_value_1 as ‘NOAA’.

To utilize the adapter the following configuration items will need to be completed.

1. proxy: If a proxy is needed to get out of the internal network, the following rule will need to
be configured with proxy details in local database table PF_WEATHER_DATA_CONFIG.
If no proxy exists this rule does not need to be configured.

Example

INSERT INTO pf_weather_data_config (parameter_name,
parameter_value_1, parameter_value_2, parameter_value_3)
 VALUES ('proxy', 'http', 'www-proxy.us.oracle.com', '80');

2. solar_power_id: It should be consistent with the corresponding 'distGenDefault' SRS-rule'.

3. wind_power_id: It should also be consistent with the corresponding 'distGenDefault' SRS-
rule'.

4. temperature_unit: F or C. By default, NOAA gives temperature data in Fahrenheit.
However, the adapter can convert the temperatures to Celsius if configured. This unit should
be consistent with the unit used in the load profiles.

5. wind_speed_unit: By default, NOAA gives the wind speed in knots. However, adapter
converts it to miles per hour (mph) or kilometer per hour (kph) as configured. This unit
should be consistent with the unit used in the load profiles.

Load Frequency

Customers wishing to use the NMS weather adapter to pull NOAA weather service data need to
configure the adapter to be invoked on a cron job. Setting up a cron job allows customers to
decide the frequency and amount of data to pull at any given time. The adapter can be called for
the following forecast modes.

1. Weekly - The adapter will obtain 7 days worth of weather forecast data

2. Hourly - The adapter will obtain weather data for the next 24 hours

3. Current - The adapter will obtain the current weather data if it is run without either the -
hourly or -weekly options.

For example, a customer may want to update the weekly forecast daily, the hourly forecast twice a
day, and gather the current weather data each hour. Another example would be to run the weekly
forecast daily and just run the hourly forecast once in the morning.
15-4 Oracle Utilities Network Management System Adapters Guide

Related Runtime and Configuration Tables
Running the Adapter

Command Line Options
The weather data adapter can be run with the following options:

Related Runtime and Configuration Tables
The following runtime and configuration tables are related to the weather adapter.

• PF_WEATHER_ZONE: Configures the weather zones for use by the DMS analysis. The
latitude and longitude can be specified for each zone within this table.

• PF_WEATHER_ZONE_FORECAST: Stores the weather zone forecast. The
temperature forecast is placed within this table by the adapter.

• PF_DERMS_FORECAST_HISTORY: Stores the weather zone history. The temperature
data is archived in this table for use by the NMS Profile Adapter.

• PF_WEATHER_DATA_CONFIG: Stores configuration parameters related to the weather
adapter.

• PF_WEATHER_DATA_PROFILE_MAP: Stores the mapping between the weather data
and profile keys for the specified power sources.

Option Description

-v verbose

-debug messages for debugging

-hourly to pull hourly data from NOAA

-weekly to pull weekly data from NOAA

-exdb must run with this option if importing data to a non-NMS
database
Weather Data Adapter 15-5

Related Runtime and Configuration Tables
15-6 Oracle Utilities Network Management System Adapters Guide

Chapter 16
DERMS Adapter

This chapter includes the following topics:

• Overview

• Configuration

• Running the Adapter

• Database Tables

• Log Files

Overview
The Oracle Utilities NMS Distribution Management System uses DERMS forecast updates of
various fuel source types (such as wind, solar/photovoltaic, diesel, etc.) for power flow analysis.
The forecast updates are loaded into the NMS PF_DER_FORECAST,
PF_DER_DEMAND_RESPONSE_FORECAST, and PF_WEATHER_ZONE_FORECAST
database tables. These tables may be populated by any mechanism suitable for the project’s
business processes and data sources. An NMS script, product_DERMSAdapter.py, can be used
to load the tables with data from a CSV file or an RDBMS table.

Configuration
The script expects the CSV file at the path $OPERATIONS_MODELS/derms_forecasts. The
processed CSV files are moved to $OPERATIONS_MODELS/derms_forecasts/parsed_CSVs
sub directory and the errors are logged at $OPERATIONS_MODELS/derms_forecasts/log
directory. The CSV file format is specified in the PF_DERMS_ADAPTER_CONFIG database
table. This includes configuring information like number of columns, column positions and
whether header present or not.

If the input is an RDBMS table, then the forecast updates are expected in a database table. If the
adapter is running on enterprise service network, then the forecast updates are expected in the
DERMS_FORECAST_UPDATES table. If the adapter is running on operational service
network, then the forecast updates are expected in the PF_DERMS_FORECAST_UPDATES
table.
DERMS Adapter 16-1

Configuration
PF_DERMS_ADAPTER_CONFIG

The following parameters are configured in the in the table PF_DERMS_ADAPTER_CONFIG:

Name Data Type Description

parameter_name VARCHAR2(32) The name of the parameter. Required.

parameter_value_1 VARCHAR2(64) Required parameter value.

parameter_value_2 VARCHAR2(64) Optional parameter value.

parameter_value_3 VARCHAR2(64) Optional parameter value.

Parameter Description

sourceDBServiceName Sets the database service name, server name, and port
details for the forecast updates table.

• parameter_value_1: server name. Default
value is DB.

• parameter_value_2: port number.

• parameter_value_3: database service
name.

operationalService Sets whether the adapter is running on the operational
service network or the enterprise service network.

• parameter_value_1: Yes | No

• Yes: operational service network

• No: the enterprise service network

useSqlLoader Sets whether to use SQL Loader or NMS Import to load
the data into NMS tables.

• parameter_value_1: Yes | No

• Yes: SQL Loader

• No: NMS Import or other process

forecastDir The directory containing the forecast CSV file.

numIntervals Define rule to specify the number of intervals in each
DER source in raw CSV.

numDataCol Define rule to specify the number of columns in raw CSV
16-2 Oracle Utilities Network Management System Adapters Guide

Running the Adapter
Running the Adapter
The script can be run with following command line options:

python product_DERMSAdapter.py [-db] [-v] [-debug][-help]

The following assumptions apply:

1. Location of the Forecast Data

• File Based Input: The input CSV files are stored in the $OPERATIONS_MODELS/
derms_forecasts directory.

• RDBMS Table Based Input: DERMS forecast updates are available in the following
table:

• On operational service bus:

pf_derms_forecast_updates (FORECAST_DATE, RESOURCE_NAME,
HOUR, POWER_SOURCE_TYPE, FORECAST_VALUE)

• On enterprise service bus:

derms_forecast_updates (FORECAST_DATE, RESOURCE_NAME,
HOUR, POWER_SOURCE_TYPE, FORECAST_VALUE)

dermsColumnMap Defines the CSV columns.
• parameter_value_1: column name.

• parameter_value_2: column number. The
column numbering starts with 0, which is the
first column in the table. The standard
configuration is defined as follows:

• Column 0 = ForecastDate (MM/DD/YY)

• Column 1 = ResourceName

• Column 2 = Hour

• Column 3 = PowerSourceType

• Column 4 = ForecastValue

headerPresent Sets whether the CSV file has a header row or not.
• parameter_value_1: Yes | No

Parameter Description

Option Description

-db Input is RDBMS table. Otherwise, the input is a CSV file.

-v Turn on verbose output.

-debug Turn on debug for assisting with issues in the adapter. If
debug is turned on, it will turn on verbose.

-help Print help.
DERMS Adapter 16-3

Database Tables
2. Processing the Forecast Data

• File Based Input: Once the CSV files have been processed, they are moved to the
$OPERATIONS_MODELS/derms_forecasts/parsed_csvs directory.

• RDBMS Table Based Input: The processed rows will be deleted from the input database
table.

3. Once the data is validated, DER forecast data is written to the following table:

• On operational service:

Based on the forecast type (rule_value_2) defined by the SRS rules distGenDefault:

• 0 = Weather Affected Fuel Type; write to pf_weather_zone_forecast

• 1 = Single DER Forecast type; write to table pf_der_forecast

• 2 = Demand Response type; write to table pf_demand_reponse_forecast

Staging mechanism is used to load data from input RDBMS table to the run
time forecast tables.

• On enterprise service bus:

pf_derms_forecast_updates (FORECAST_DATE, RESOURCE_NAME, HOUR,
POWER_SOURCE_TYPE, FORECAST_VALUE)

4. For duplicate items within a single input file or in the RDBMS table, the first item read will be
used. In some instances, these duplicates may be flagged as errors and placed into the error
log file.

The OPAL configuration can be examined for examples of how this script is used. In OPAL, the
script is called from a parent script (LoadOPALDermsForecasts.ces), which is called from the
OPAL_postbuild.ces script.

Database Tables
• DERMS_FORECAST_UPDATES: Input RDBMS table with forecast updates on the

enterprise service network.

• PF_DERMS_FORECAST_UPDATES: Input RDBMS table with forecast updates on the
operational service network.

• PF_DER_FORECAST, PF_DER_DEMAND_RESPONSE_FORECAST, and
PF_WEATHER_ZONE_FORECAST: The NMS runtime database tables that the
processed data is loaded into.

• PF_DER_FORECAST_ST, PF_DER_DEMAND_RESPONSE_FORECAST_ST,
and PF_WEATHER_ZONE_FORECAST_ST: The staging tables before merging the
forecast data into the run time NMS tables.
16-4 Oracle Utilities Network Management System Adapters Guide

Log Files
Log Files
Log files are placed in the $OPERATIONS_MODELS/derms_forecasts/log directory. When
the adapter is executed, old log files will be moved to the $OPERATIONS_MODELS/
derms_forecasts/logs/old_log directory.

Log files are generated with following name format:

• DERMS_Data_Errors_YYYYMMDD_HHMMSS.log: Contains any invalid data
rows along with an error code from the below list.

• DERMS-001: Too many fields.

• DERMS-002: Too few fields.

• DERMS-003: Invalid forecast date.

• DERMS-004: Invalid hour value should be integer.

• DERMS-005: Invalid hour value should be 0-23.

• DERMS-006: Duplicate hourly record found for day type/hour value.

• DERMS-007: Invalid Resource Name. The weather zone, DER, or Demand Response
Group associated to the forecast could not be located in the configuration.

• DERMS-008: Invalid forecast value. It should be a float value.

• DERMS-009: Invalid number of hourly records.
DERMS Adapter 16-5

Log Files
16-6 Oracle Utilities Network Management System Adapters Guide

Chapter 17
Profile Adapter

This chapter includes the following topics:

• Adapter Overview

• PV Profile Creation

• Load Profile Creation

• SRS Rule Configuration

• Load Profile File Format

• Error Handling

Adapter Overview
The NMS Profile adapter is responsible for two main tasks:

1. Create Photovoltaic (PV) profile curves based on a utilities location and the time of year.

2. Create and adjust temperature based load profiles for use in the real-time power flow analysis
and forecasting.

PV Profile Creation
If required the NMS Profile adapter can be configured to create PV profiles based on the time of
year and the utilities location. These profiles are used within the NMS power flow analysis to
simulate time of day PV output based on varying ranges of cloud cover and help provide more
accurate power flow solutions. The power flow analysis holds weather forecast data for customer
configured weather zones, this forecast data drives which PV profiles are used for each weather
zone. For example if a customer had two weather zones “Coastal” and “Mountain”, If it was
predicted to be “Sunny” from 9am-1pm then “Cloudy” from 1pm-6pm in the “Coastal” zone the
analysis would use the proper output for each hour using snippets from both profiles. For
solutions from 9am-1pm the analysis would use the “Sunny” profile then switch to using the
“Cloudy” profile for solutions from 1pm-6pm. This same methodology would be applied to the
“Mountain” zone power flow solutions using its own unique weather forecast. It is up to the utility
to determine the granularity at which they require weather zones some may take a broad approach
based on geographic region others may chose something more granular such as zip code.

The curves generated by the adapter reflect a normalized output and within the power flow
analysis will be applied against the device specific kW output. The number of PV generation
curves that represent varying levels of cloud cover is configurable; some customers may require
more granularity for accurate results. For example one customer may deem that only three profiles
are needed to represent Sunny, Partly, and Cloudy. Another customer may configure this with 10
different levels of cloud cover for more granularity. During PV profile generation the adapter first
Profile Adapter 17-1

SRS Rule Configuration
creates a max output curve based on the location and time of year. The adapter then creates the
various profiles based on customer provided scale factors to represent output based on different
levels of cloud cover. For example a customer may say Sunny = 100%, Partly Cloudy=70%,
Cloudy = 40%, etc.

Load Profile Creation
The main purpose of the NMS Profile adapter is to create and adjust temperature based load
profiles. These profiles are used within the NMS power flow analysis to simulate time of day load
behavior for a particular temperature band. Similar to PV profiles the load profile curve used at a
particular time of the day will be dependent upon the weather zone forecast. As the temperature
increases or decreases in each zone the power flow analysis will continually switch between
different temperature based profiles to simulate load as accurately as possible.

The source of data for the load profiles is expected to be an AMI/MDM system that has
aggregated the meter data up to the service transformer level. The data should be provided with
an associated date/time. During the load the adapter will determine if a profile already exists for
the transformer in which case the data will be used to adjust the existing profile or create an
entirely new record if no data yet exists. The adapter will use the date/time provide to cross
reference what the temperature was for that hour such that each hour worth of data can be utilized
in the appropriate profile. If a new sample is received for Monday at 9am for profile
Sample_xfmr_1 at 65F the adapter will need to determine if this sample already exists. If a sample
already exists the adapter must look at the number of samples that have been taken into account
and calculate a rolling average based on that. Each row in the pf_load_interval_data will consist of
a profile id, day type, profile values, and temperature or temp band for which the profile is a part
of. When PFService is finding a profile to use for each day it will essentially be grabbing snippets
from each row within this table, since the temp generally doesn’t stay constant all day. For example
it may use hours 0-5 from the 60-69F profile then use hours 6-12 from the 70-79F profile, etc. For
profiles that are used in study mode only (e.g. peak) the profile will be loaded into the database as
a direct replacement, no averaging will be conducted. For study only profiles a blank date can be
provided.

During an initial implementation no data will yet exist for load profiles so it may take some time to
start building up accurate profiles. After each load however the profiles will adapt and change as
needed based on new data.

SRS Rule Configuration
A number of SRS rules exist that configure the behavior of the Profile adapter to meet different
customer business requirements. To view the Load Profiles SRS Rules, open the Configuration
Assistant’s Event Management Rules tab, expand the DMS Application Rules navigation tree,
and then either select or expand the Load Profile Rules tree.
17-2 Oracle Utilities Network Management System Adapters Guide

Command Line Options
Command Line Options

Option Description

-clean This option will clean all non default load profiles and load
profile history before loading a new CSV file. The adapter will
first truncate tables pf_loads_profile_samples and
pf_loads_profile_override. It will then prune all non
distributed generation and default load profiles from table
pf_load_interval_data. After the tables are cleaned up it will
then process the new CSV file which essentially does a fresh
load.

-partial Used when doing a partial load of profiles. (e.g., the entire data
set is not being loaded).

-createPvOnly Force the adapter to create PV profiles only, non processing
of load profiles will be conducted.

-debug number Required debug level (0-3).

-verbose Turn on verbose output for adapter.
Profile Adapter 17-3

Load Profile File Format
Load Profile File Format
Profiles are to be loaded on customer specified maintenance interval (Product recommends doing
this weekly or bi-weekly to reduce the CSV file size). Profiles will need to be aggregated by the
customer from meter data to service transformers that are represented as load points within the
NMS. The data provided for each service transformer will represent a profile for a specific date,
for study mode only profiles (e.g. Peak, Seasonal Peak) a blank date can be provided.

The transformer load profile data is provided as a comma-separated file with a comma separated
header.

The expected (but not required) header is:

Date,TransformerName,TransformerAlternateName,FeederName,DayType,Hour,
KW,KVAR,Temperature

File Characteristics Values

Fixed length fields? N

Delimiter Comma

Header style Comma separated, optional

Footer Style No

No of files Can be feeder based or 1 file for entire service territory

S. No Field Name Length Mandatory Data type

<Order of the
element in the
record>

<Name of the
field>

<Field
Length>

<Optional (N)
or Mandatory
(Y)>
[Note #]

<Data type as per XSD
standards>

1 Date (MM/
DD/YY)

8 Y [1] Date

2 TransformerN
ame

32 Y String

3 TransformerAl
ternateName

32 N [2] String

4 FeederName 32 Y String

5 DayType 12 Y Enumerated string (weekday,
weekend, peak) or associated
Integer key that corresponds to
the DayType

6 Hour 2 Y Integer (max 23)

7 KW N/A Y Floating point

8 KVAR N/A Y [3] Floating point
17-4 Oracle Utilities Network Management System Adapters Guide

Load Profile File Format
Note 1: Date can be left blank is profile is for study mode only (e.g., Peak, Seasonal Peak, etc).

Note 2: Optional fields may be omitted from the file, resulting in two consecutive commas.

Note 3: If KVAR is not measured, it can be calculated from KW with a default power factor.

Note 4: The temperature field is optional. A utility may provided temperature data for location,
date, and time. If no temperature data is provided the adapter will use historical data stored in the
NMS database. If this data is going to be omitted please leave the temperature field null.

9 Temperature N/A N [4] Floating point, can be provided in
either Fahrenheit or Celsius

S. No Field Name Length Mandatory Data type
Profile Adapter 17-5

Error Handling
Error Handling
The ingestion process for load profiles will perform error validation on the incoming data. It will
create two error validation files, which will be located in a subdirectory of the project configurable
data location directory:

1. Invalid transformers (LP_Invalid_Transformers_YYYYMMDD_HHMMSS.log)

This file will contain a list of the transformer/feeder combinations that cannot be located
within the NMS model.

2. Invalid data (LP_Data_Errors_YYYYMMDD_HHMMSS.log)

This file will contain any invalid data rows along with an error code from the table below.

Error Code Error Description Notes

LP-001 Too many fields Expect 8 fields, 7 commas

LP-002 Too few fields Expect 8 fields, 7 commas

LP-003 Invalid day type The day type specified is not valid

LP-004 Invalid hour value Should be integer type

LP-005 Invalid hour value Should be 0 through 23

LP-006 Invalid KW value Should be floating type

LP-007 Invalid KVAR value Should be floating type

LP-008 Duplicate Record Duplicated hourly record found

LP-009 Invalid KVA rating or utilization
factor

These values should be present in
table pf_loads

LP-010 Transformer loading exceeds the
rating based on specified
threshold.

The threshold can be configured
in the SRS rules, currently set to
200%

LP-011 Invalid Weather Zone The weather zone associated to
the load could not be located in
the configuration.

NM-001 Dist Gen data could not be
located

Dist Gen information could not
be located for a dist gen
associated with a net metered
profile.

NM-002 Dist Gen has an invalid power
source

Power source is invalid for a dist
gen associated with a net metered
profile.

NM-003 Dist Gen Invalid Weather Zone Weather zone is invalid for a dist
gen associated with a net metered
profile.

NM-004 Dist Gen Profile is invalid The profile associated to the dist
gen could not be located. This is
needed to perform net metered
profile processing.
17-6 Oracle Utilities Network Management System Adapters Guide

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	Chapter 1
	Generic IVR Adapter
	Introduction
	Supported Application Data Flows
	IVR Data Flows with Oracle Utilities Network Management System
	CIS Data Flows with Oracle Utilities Network Management System
	Callbacks Application Data Flows with Oracle Utilities Network Management System

	Interaction Diagram
	Data Flow Details
	Overview
	Trouble Calls
	Callback Requests
	Callback Request Notes
	Callback Responses

	Adapter Installation
	Ensure that the Generic IVR Adapter is installed.
	Setup the Generic IVR Adapter System Variables
	Configure Adapter to run as NMS System Service
	IVRAdapter Command Line Options
	Load the Generic IVR Adapter Database Tables and Stored Procedures

	Software Configuration
	Overview
	Trouble Call Mapping Configuration
	Mapping to Customer-Defined Fields in Oracle Utilities Network Management System's INCIDENTS table

	Trouble Callback Mapping Configuration
	SRS Rules Configuration
	Map Customer-Defined Fields in the INCIDENTS Table
	callbackInterfaceEnabled SRS Rule
	useExternalCause SRS Rule
	customerPhoneParentheses SRS Rule
	defaultCallbackAgent SRS Rule
	callbackFeederTimeout SRS Rule
	streetXsectionOffset SRS Rule
	Generic IVR Adapter Trouble Call Performance
	Generic IVR Adapter Troubleshooting

	Database Schema
	Overview
	Database Table Schema
	Stored Procedure Parameters
	SRSInput Testing Utility Command Line Options

	Terminology

	Chapter 2
	SmallWorld GIS Adapter Template
	Chapter 3
	ESRI ArcGIS Adapter
	Adapter Overview
	Adapter Documentation

	Chapter 4
	Intergraph G/Electric Adapter
	Adapter Overview
	Adapter Documentation

	Chapter 5
	Generic WebSphere MQ Mobile Adapter
	Introduction
	Overview Description
	Terminology

	Functional Description
	Functional Requirements
	Hardware and Software Requirements
	Required Installed Software

	Adapter Installation
	Overview
	Configure Queues for Required Data Flows

	Design Overview
	Configuration Concepts
	Integration with System Services
	Aggregation of Objects
	Information Flows
	Performance
	High Level Messages
	Information Models

	Configuration
	DML Files
	Configuration Tables
	Run Time Errors
	DML Examples

	DML Reference
	Lexical Conventions
	Basic Concepts
	Order of Document Processing and Other Considerations
	Ordering of Incidents in the Incident Object
	DML Function Calls
	List of Functions

	Event Object Fields
	Incident Object Fields
	Permanent Order Object Fields
	Permanent Relationship Object Fields

	Chapter 6
	SCADA Measurements
	Introduction to scadapop
	Configuration
	RDBMS Configuration

	Recaching Measurements
	Information Model
	Database Schema

	Chapter 7
	Generic SCADA Adapter
	Introduction
	Generic SCADA Adapter Configuration
	RDBMS vs. File Mode
	Configure Adapter to Run as an NMS System Service
	SRS_RULES Configuration for Generic SCADA Adapter
	Command Line Options for Generic SCADA Adapter
	Scripts Used by the Generic SCADA Adapter
	CES_PARAMETERS Configuration

	Measurement Configuration
	Using SCADAPOP

	RDBMS Configuration
	Configuration/Execution Sequence
	File-Based (RTAdapter)
	SCADA Data - File Input
	RDBMS Table Polling (RTDBAdapter)

	Information Model
	Database Schema

	MultiSpeak Integration
	DataRaker Integration
	Use Cases

	Chapter 8
	ICCP Adapter
	ICCP Adapter Overview
	LiveData ICCP Adapter Configuration
	Configuring the Adapter to Run as a System Service
	Populating the NMS Measurements Tables
	Information Model - Database Schema

	TMW ICCP Adapter Configuration
	Configuring the Adapter to Run as a System Service
	Populating the NMS Measurements Tables
	Information Model - Database Schema

	Chapter 9
	Specific SCADA Adapters
	OSI SCADA Adapter
	General Configuration Parameters
	Point List Configuration
	Real-Time States/Values
	Tags

	Chapter 10
	SCADA Calculation Engine
	Introduction
	SCADA Calculation Engine Database Configuration
	Examples

	SCADA Calculation Engine SRS Rules Configuration

	Chapter 11
	MultiSpeak Adapter
	Introduction
	Installation
	Installation Overview
	Adapter Installation Instructions for Oracle WebLogic Server

	Software Configuration
	Support for Encrypted Configuration Parameters
	AMR Configuration Parameters
	Storing Meter Readings in AMR_RESPONSES Table
	AVL Configuration Parameters
	Credentials Files
	Oracle Utilities Network Management System Configuration Rules

	Adapter Interface Communication Overview
	Adapter Design
	Supported Data Flows
	AMR Business Processes

	Database Schema
	AMR_REQUESTS
	AMR_RESPONSES
	AMR_CU_METERS
	AMR_CU_METERS_HISTORY
	AMR_VOLTAGE_HISTORY

	SCADA Component
	JMS Transport Mechanism
	Configuring JMS Support
	Outgoing Data Flows

	Supported Data Flows
	NMS to SCADA
	SCADA to NMS

	Software Configuration
	CES_PARAMETERS

	Plugin Support
	Methods
	Building Custom SCADA Plug-ins

	High-Level Messages
	Troubleshooting

	Chapter 12
	Mobile Workforce Management Adapter
	Introduction
	Installation
	Adapter Installation Instructions for Oracle WebLogic Server

	Database Schema
	OMS_MWM_EVENTS
	OMS_MWM_ACTIVITIES
	OMS_MWM_ALARMS
	OMS_MWM_CREW_ACTIONS

	Supported Data Flows
	Outgoing Flows
	Incoming Flows

	Software Configuration
	Support for Encrypted Configuration Parameters
	Configuration Parameters
	Oracle Utilities Network Management System Configuration Rules

	High-Level Messages
	Troubleshooting

	Chapter 13
	SOAP Web Services
	Authentication
	Trouble Management Web Service
	Port TroubleServiceSOAP

	Switching and Safety Web Service
	Port SwmanServiceBeanPort

	Damage Assessment Web Service
	Port DamageServiceSOAP

	Chapter 14
	REST API
	Authentication
	Resources
	GET /dmg-rest/reports
	POST /dmg-rest/reports
	GET /dmg-rest/reports/:id
	POST /dmg-rest/reports/:id
	GET /dmg-rest/reports/:id/attachments/:att_id
	PUT /dmg-rest/reports/:id/attachments/:att_id
	DELETE /dmg-rest/reports/:id/attachments/:att_id
	GET /dmg-rest/reports/required-parts
	GET /dmg-rest/reports/damage-types
	GET /mobile/control-zones
	GET /mobile/conditions
	GET /mobile/conditions/:class
	POST /mobile/condition/:class
	PUT /mobile/condition/:class/:id/status/:status
	GET /mobile/crews/:id/availability
	POST /mobile/crews/:id/availability
	GET /mobile/crews/:id/status
	POST /mobile/crews/:id/status
	GET /mobile/get-permissions
	GET /mobile/mobile-user-validation
	GET /mobile/create-new-account
	GET /mobile/set-current-crew/:id
	GET /mobile/damage-device-details
	GET /mobile/devices
	GET /mobile/crew-types
	GET /mobile/maps
	GET /mobile/crews
	GET /mobile/crews/:id
	GET /mobile/crews/:id/assignments
	POST /mobile/crews/:id/assignments/:event-id/dispatch
	POST /mobile/crews/:id/assignments/:event-id/onsite
	POST /mobile/crews/:id/assignments/:event-id/undispatch
	POST /mobile/crews/:id/assignments/:event-id/unassign
	POST /mobile/crews/:id/assignments/:event-id/undispatch-and-assign
	POST /mobile/crews/:id/assignments/:event-id/undispatch-and-assign-and- dispatch/:new-event-id
	GET /trbl-rest/events/:id
	POST /trbl-rest/events/:id
	GET /trbl-rest/config/:cfg
	GET / mobile/ version
	GET / mobile/application-version/:name/:arch
	GET / mobile/application-versions/:name/:arch
	GET / mobile/application/:name/:arch
	GET / mobile/application/:name/:arch/:version
	PUT / mobile/ user-profile/ :field-name / :value
	GET / mobile/ device/ :id/ info
	GET / mobile/ device/ :id/ operate/ :operation/ phases/ :phases / time/ :time
	GET / mobile/ device/ :id/ lookahead/ :operation/ :phases
	POST / mobile/device/statuses
	GET / mobile/:id/customers
	GET / mobile/ maps/ :mapname
	POST / mobile/ crew
	GET / mobile/ condition/ :class/ :id
	PUT / mobile/ condition/ :class/ :id/ text/ :text
	DELETE / mobile/ condition/ :class/ :id
	GET / mobile/ switch-sheets/ assignments/ :crew-key
	POST / mobile/ switch-sheets/ :sheet-class/ :sheet-index/ steps/ :step-class/ :step-index
	POST / mobile/ switch-sheets/ :sheet-class/ :sheet-index/ steps/ :step-class/ :step-index/ location
	GET / mobile/ switch-sheets/ :sheet-class/ :sheet-index / report
	GET / mobile/ switch-sheets/ :sheet-class/ :sheet-index / document/ :document-id
	PUT / mobile/ switch-sheets/ :sheet-class/ :sheet-index / document
	PUT / trbl-rest/ event/ :id/ confirm-outage
	POST / trbl-rest/ event/ :id/ log
	POST / trbl-rest/ event/ :id/ log-once
	POST / trbl-rest/ user-log
	POST / trbl-rest/ user-log-once

	Chapter 15
	Weather Data Adapter
	Adapter Overview
	Data Import Formats
	Flat CSV Files
	External Database Table
	NOAA Weather Service

	Running the Adapter
	Command Line Options

	Related Runtime and Configuration Tables

	Chapter 16
	DERMS Adapter
	Overview
	Configuration
	PF_DERMS_ADAPTER_CONFIG

	Running the Adapter
	Database Tables
	Log Files

	Chapter 17
	Profile Adapter
	Adapter Overview
	PV Profile Creation
	Load Profile Creation
	SRS Rule Configuration
	Command Line Options
	Load Profile File Format
	Error Handling

