
Oracle® Big Data Discovery

Extensions Guide

Version 1.4.0 • October 2016

Copyright and disclaimer
Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Table of Contents

Copyright and disclaimer ..2

Preface..5
About this guide ..5
Audience..5
Conventions ...5
Contacting Oracle Customer Support ...6

Part I: Custom Visualization Component

Chapter 1: Overview of the Custom Visualization Component8
About the Custom Visualization Component ..8
Requirements for using the Custom Visualization Component9
Installing the Custom Visualization Component ..9
Downloading the Custom Visualization Component Sample.................................9

Chapter 2: Developing a Custom Visualization Component10
Creating a Custom Visualization Component...10
Using tokens in an EQL query ...13
Editing JavaScript during development ..15
Publishing a Custom Visualization Component ...16
Unpublishing a Custom Visualization Component17
Deleting a Custom Visualization Component...17

Part II: Studio Component SDK

Chapter 3: Installing and Configuring the Component SDK19
About the Component SDK ...19
Requirements for using the Component SDK ..19
Installing the Component SDK ...20
Preparing your system for Component SDK development21

Chapter 4: Developing a Custom Security Manager23
Creating and implementing a new Security Manager23
Security Manager interface ...24
Building and deploying a new Security Manager ..25
Configuring Studio to use a different Security Manager25

Chapter 5: Developing Custom Components...26
Generating the Eclipse project for the component26
Obtaining query results for components ..27
Building a component ...28

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Table of Contents 4

Deploying and removing custom components ..29

Chapter 6: Working with QueryFunction Classes30
Provided QueryFunction filter classes..30
Provided QueryConfig functions ..37
Creating and deploying a custom QueryFunction class42

Generating the Eclipse project for the QueryFunction class42
Implementing a custom QueryFunction class43
Building and deploying a custom QueryFunction class................................44
Adding a custom QueryFunction to a custom component project44

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Preface
Oracle Big Data Discovery is a set of end-to-end visual analytic capabilities that leverage the power of Apache
Spark to turn raw data into business insight in minutes, without the need to learn specialist big data tools or
rely only on highly skilled resources. The visual user interface empowers business analysts to find, explore,
transform, blend and analyze big data, and then easily share results.

About this guide
This guide describes how to use the Custom Visualization Component to develop unique visualizations for
your particular business needs.

Audience
This guide is intended for developers who want to create custom components for Studio.

Conventions
The following conventions are used in this document.

Typographic conventions

The following table describes the typographic conventions used in this document.

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements such as
pages, dialog boxes, buttons, and fields.

Code Sample This formatting is used for sample code segments within a paragraph.

Variable This formatting is used for variable values.

For variables within a code sample, the formatting is Variable.

File Path This formatting is used for file names and paths.

Path variable conventions

This table describes the path variable conventions used in this document.

Path variable Meaning

$ORACLE_HOME Indicates the absolute path to your Oracle Middleware home directory,
where BDD and WebLogic Server are installed.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Preface 6

Path variable Meaning

$BDD_HOME Indicates the absolute path to your Oracle Big Data Discovery home
directory, $ORACLE_HOME/BDD-<version>.

$DOMAIN_HOME Indicates the absolute path to your WebLogic domain home directory. For
example, if your domain is named bdd-<version>_domain, then
$DOMAIN_HOME is $ORACLE_HOME/user_projects/domains/bdd-
<version>_domain.

$DGRAPH_HOME Indicates the absolute path to your Dgraph home directory,
$BDD_HOME/dgraph.

Contacting Oracle Customer Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support.
This includes important information regarding Oracle software, implementation questions, product and solution
help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

https://support.oracle.com

Part I

Custom Visualization Component

Chapter 1

Overview of the Custom Visualization
Component

This section defines a Custom Visualization Component and describes how to develop a Custom Visualization
Component for use in Studio.

About the Custom Visualization Component

Requirements for using the Custom Visualization Component

Installing the Custom Visualization Component

Downloading the Custom Visualization Component Sample

About the Custom Visualization Component
A Custom Visualization Component is an extension to Studio that lets you create customized visualizations in
cases where the default components in Studio do not meet your specific data visualization needs. A developer
creates a custom component, tests it, modifies it, and publishes it to become available to business users. A
business user then creates and configures an instance of the custom component on a project page in Studio.

Elements of a Custom Visualization Component

A Custom Visualization Component is made of the following:

• A JavaScript file to define the features, rendering, and interaction of the custom component with its data.
You code this file to conform to the Custom Visualization Portlet JavaScript API.

• An EQL statement to provide one or more result sets for the component. This may include EQL token
configuration to define variables in an EQL query.

You specify the JavaScript, the EQL, and the EQL token configuration on the Custom Visualizations page of
Studio along with additional configuration of the custom component.

Installed libraries and external libraries

BDD has D3 version 3 and jQuery version 2.0.3 installed by default. If you need to access additional
JavaScript libraries for use in your component, you specify them as a list of external JavaScript libraries when
you create the component.

Role privileges

You must have Administrator privileges to access the Custom Visualizations page in Studio. Once you
publish a Custom Visualization Component, any user with project access can create an instance of the custom
component on a project page.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Overview of the Custom Visualization Component 9

Reference API documentation

The Custom Visualization Portlet JavaScript API has generated JavaScript documentation that is available as
part of the full BDD documentation set. You can use this documentation as a reference to code the JavaScript
file for a custom component.

For details, see the Custom Visualization Portlet JavaScript API Reference.

Requirements for using the Custom Visualization
Component
Before developing a Custom Visualization Component, make sure that you meet the following requirements.

Supported platforms

While Big Data Discovery is always deployed on a Linux system, you can develop a Custom Visualization
Component on either a Windows or Linux system.

Required knowledge and skills

In order to work with a Custom Visualization Component, you should be familiar with the following:

• JavaScript development and charting libraries.

• Writing EQL statements to provide one or more result sets for a custom component. For details about
writing EQL queries, see the EQL Reference.

Installing the Custom Visualization Component
No additional installation tasks are required.

Downloading the Custom Visualization Component Sample
On the Oracle Technology Network, you can download a ZIP file containing the Custom Visualization
Component Sample.

The ZIP file contains a complete example of a custom component, including:

• A JavaScript file that illustrates how to use the Custom Visualization Component API. The sample code
implements a Donut Pie chart visualization and the code provides a reference for building your own
component.

• A text file of configuration settings that you use to populate fields on the Custom Visualization page of
Studio. This provides the configuration settings for the sample JavaScript code and a tokenized EQL
statement to generate results for the component.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Chapter 2

Developing a Custom Visualization
Component

This section describes how to create your own Custom Visualization Component and publish it for use in
Studio.

Creating a Custom Visualization Component

Using tokens in an EQL query

Editing JavaScript during development

Publishing a Custom Visualization Component

Unpublishing a Custom Visualization Component

Deleting a Custom Visualization Component

Creating a Custom Visualization Component
You create a component by coding a JavaScript file that uses the Custom Visualization Component JavaScript
API to initiate queries and render the returned data to the component. You upload the file as part of the
component configuration. Also you write one or more EQL statements to provide the result set for the
component.

Before performing this task, you should code the JavaScript file for the custom component to conform to the
Custom Visualization Component JavaScript API. You upload the file in the steps below. For details about
coding the JavaScript file, see the Custom Visualization Component JavaScript API Reference.

When a business user creates a custom component on a project page in Discover, Studio loads the
JavaScript code to render the component.

The JavaScript code has two major requirements:

• It must extend Oracle.BDD.Portlets.Visualization.Renderers.BaseRenderer.

• It must implement the init() function. This is executed on each Discover page load and it typically
queries for a result set and directs the responds in the component.

To create a Custom Visualization Component:

1. In the Studio header, click the Configuration Options icon and select Control Panel and then
Custom Visualizations.

2. Click + Component.

3. Specify a name for the component.

This is the display name of the component as it displays on the Component menu of the Discover
page.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Developing a Custom Visualization Component 11

4. Optionally, click Browse to locate an icon image for the component and then click Upload and Ok.

This is the icon image for the component as it displays on the Component menu of the Discover
page.

5. In JavaScript File, click Browse to locate the JavaScript file that implements your Custom
Visualization Component and click Open.

6. In Renderer class, specify the fully qualified name of the JavaScript class that renders the
component.

For example, in the following JavaScript snippet, the name of the renderer class is
Oracle.BDD.Portlets.Visualization.Renderers.DonutPieChart:

Oracle.BDD.Portlets.Visualization.Renderers.DonutPieChart
= Oracle.BDD.Portlets.Visualization.Renderers.BaseRenderer.extend({

init: function() {

/**
* Get the queryConfig for the initial query
*/

var queryConfig = this.getQueryConfig("eql");
...

Version 1.4.0 • October 2016

7. Select a Sort type of one of the following:

• None - Specifies that there is no sort option available for the business user to configure in the
component.

• Defined - Specifies that the sort option for the component is defined by token replacement in an
EQL statement. A business user then sorts by value of the token in either an ascending or
descending order.

• Per Dimension - Specifies that a sort option is available for any token defined as a dimension.

8. Optionally, expand Advanced Options and specify the following:

• CSS - Specifies visualization-specific CSS. Also note that the CSS is scoped to the visualization's
DOM container.

• External CSS - Specifies a list of URLs to external CSS files. Each URL should be line separated.

• External JavaScript - Specifies a list of URLs to external JavaScript files. Each URL should be
line separated. These JavaScript files might provide additional resources, such as third-party plug-
ins, to support the JavaScript file.

For example:

https://cdnjs.cloudflare.com/ajax/libs/EventEmitter/4.2.11/EventEmitter.min.js
https://cdnjs.cloudflare.com/ajax/libs/UAParser.js/0.7.9/ua-parser.min.js

9. Click Next.

10. In EQL query name, specify the name of the EQL query used in the JavaScript API function
getQueryConfig.

For example, if your Javascript file contains:

var queryConfig = this.getQueryConfig("eql");

...

then the EQL query name you specify is eql.

Oracle® Big Data Discovery: Extensions Guide

Developing a Custom Visualization Component 12

11. Specify the EQL query for your component in the text box.

For example:

For more details about writing EQL statements, see the EQL Reference.

12. Optionally, you can add more EQL queries to the component by clicking + and specifying a new name
and EQL query in the text box.

Each query that you add generates an additional result set for the component to use.

13. Click Detect Tokens.

Studio examines the tokens in the EQL query, and based on the syntax of how the tokens are used,
Studio adds the tokens to Attributes, Views, Data, and Sort categories. For example, tokens in a
FROM clause appear in Views. Tokens in a WHERE clause appear in Data.

14. If any of the tokens are incorrectly categorized, click the token and drag and drop it into the correct
Attributes, Views, Data, or Sort category.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Developing a Custom Visualization Component 13

15. Click each token name and specify the details of how the token is used in the component.

This steps configures how a business user interacts with the token values on the Discover page. You
specify whether a token is a metric or a dimension, its display name, its data view, its data type, and
aggregation type.

For example, the settings shown here configure the metric_1 token:

16. Click Save.

The new component is available at the bottom of the Add Component menu on the Discover page. For
example, here is the Donut Pie example used in the procedures:

The component is not available to business users until you publish it.

Before publishing, you should test the component by working with it as a business user would and adjusting
the JavaScript or other configuration if necessary to modify the component's behavior. Once the component
works correctly, you publish it for use by other Studio users.

Using tokens in an EQL query
The EQL queries for a Custom Visualization Component support token replacement in the EQL query. Tokens
are simply variables in an EQL query that correspond to user-interface controls in the Visualization Settings
panel the component. Controls include attributes (metrics or dimensions), views, data views and sorts. For

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Developing a Custom Visualization Component 14

example, a sort token in an EQL query creates an ASC or DSC sort control in the component configuration for
a project user to select. A dimension token creates a drop down menu of attributes for a project user to select.

In EQL query, tokens are strings enclosed by percentage signs (%), for example, %metric_1%. Here is an
example EQL statement that contains five tokens (%metric_1%, %groupby_1%, %dataview%, %sort%,
%num_recs%):

RETURN data AS SELECT
%metric_1% AS metric,
%groupby_1% AS groupby
FROM "%dataview%"
GROUP BY groupby
ORDER BY metric %sort%
PAGE(0,%num_recs%);

Version 1.4.0 • October 2016

Studio replaces the tokens with a value based on the user configuration in the Visualization Settings panel
the component. That value is used when Studio runs the query to generate results for the component.

Token types

Tokens are distinguished by the type of data the token represents and by how the component acquires the
token's value. The following table shows each token type and explains how Studio replaces the token with a
value before running the EQL query.

Token type Value Example
replacement value

Attribute SUM(p_price)
Attribute tokens represent either a metric or a dimension.

(metric or
dimension sub- A metric token represents menus of metric and aggregation
types) functions. During component configuration, you select a data type

for the metric token to determine which attributes are available for
a project user to select. Similarly, during component configuration,
you also select aggregation functions (e.g. SUM) to determine
which attributes are available for a project user to select.

A metric token is replaced when a project user selects an attribute
and aggregation function from the Visualization Settings panel of
the component.

A dimension token represents a drop-down menu of attributes for
a project user to select. During component configuration, you
select a data type for the dimension token to determine which
attributes are available for a project user to select. For example, if
you select data type of string, only string attributes are available
for selection.

A dimension token is replaced when a user selects an attribute
from the Visualization Settings panel of the component.

Both types of metric and dimension tokens are associated with a
View token that dictates which data view the attributes are taken
from to populate the user-interface menus.

Attribute token values may also be set with the JavaScript API.

Oracle® Big Data Discovery: Extensions Guide

Developing a Custom Visualization Component 15

Token type Value Example
replacement value

View p_price
A view token represents a drop-down menu of data views for a
project user to select.

The token is replaced when a user selects a data view from the
Visualization Settings panel of the component.

View token values may also be set with the JavaScript API.

Sort ASC
A sort token represents an ASC or DESC sort control in the
component configuration for a project user to select.

The token is replaced when a user selects a sort direction (ASC or
DESC) from the Visualization Settings panel of the component.
ASC is the default value.

Sort token values may also be set with the JavaScript API.

Data
Data token values must be set with the JavaScript API.

For additional details about tokens, see the Custom Visualization Component JavaScript API Reference.

Token substitution example

Here is an example EQL query with tokens:

RETURN data AS SELECT
%metric_1% AS metric,
%groupby_1% AS groupby
FROM "%dataview%"
GROUP BY groupby
ORDER BY metric %sort%
PAGE(0,%num_recs%);

Version 1.4.0 • October 2016

Here is the same EQL query with values substituted for the tokens:

RETURN data AS SELECT
SUM(p_price) AS metric,
p_color AS groupby
FROM "wine_dataset"
GROUP BY groupby
ORDER BY metric ASC
PAGE(0,20);

Editing JavaScript during development
As a troubleshooting convenience, Studio provides an inline JavaScript editor so you can modify a
component's JavaScript directly. You do not have to upload the file again using the Add Component wizard.

Oracle® Big Data Discovery: Extensions Guide

Developing a Custom Visualization Component 16

You modify the JavaScript inline as part of debugging the component. This JavaScript editor is available only
while a component is unpublished.

You must have already created a custom visualization component and added it to a project before you can
edit the component's JavaScript.

To edit JavaScript during development:

1. Open a project and add your Custom Visualization Component to a Discover page.

2. Click the pencil icon to edit the visualization settings.

3. Click the Edit JavaScript link.

For example:

4. In the Edit JavaScript editor, modify the component's code as necessary to adjust its behavior.

5. Click Save and exit.

The code changes take place immediately.

Publishing a Custom Visualization Component
After you are satisfied that a Custom Visualization Component behaves as desired, you publish it to make it
available on the Discover page of Studio to all Studio users. Unpublished components are available only to
administrators.

To publish a Custom Visualization Component:

1. In the Studio header, click the Configuration Options icon and select Custom Visualizations.

2. Locate the component you want to make available and click Published.

The component immediately becomes available on the component menu of the Discover page.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Developing a Custom Visualization Component 17

Unpublishing a Custom Visualization Component
To remove a Custom Visualization Component from the component menu, you unpublish it. Previously
created instances of the component are still available on the Discover page, but business users cannot create
new instances of the component after it has been unpublished.

An unpublished component is still stored in Studio, so a developer with the administrator role can modify it if
necessary and publish it again later.

To unpublish a Custom Visualization Component:

1. In the Studio header, click the Configuration Options icon and select Custom Visualizations.

2. Locate the component that you want to make unavailable and deselect Published.

3. Click Unpublish.

Deleting a Custom Visualization Component
Deleting removes the component from the component menu of the Discover page and removes the
component from any project where it was used.

To delete a Custom Visualization Component:

1. In the Studio header, click the Configuration Options icon and select Custom Visualizations.

2. Locate the component you want to remove and click Remove.

3. In the confirmation dialog, click Delete.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Part II

Studio Component SDK

Chapter 3

Installing and Configuring the Component
SDK

The Component SDK supports custom development for components and data security.

About the Component SDK

Requirements for using the Component SDK

Installing the Component SDK

Preparing your system for Component SDK development

About the Component SDK
You can use the Component SDK to extend Studio by creating and deploying custom Security Managers and
components.

You can create Security Managers to restrict access to specific data.

You can create custom components to visualize data in Studio. Once you deploy a custom component, it can
be added to a project page.

As part of developing custom components, you can also create custom QueryFunctions, used to retrieve and
display data on a component.

To see the full generated documentation for the Component SDK, see the Component SDK API Reference
(Javadoc).

Requirements for using the Component SDK
Before using the Component SDK, make sure that you meet the system and skill set requirements.

Required knowledge and skills

In order to work with the Component SDK, you should be familiar with Java development and JavaScript.

Components are extensions of a custom version of the Java Portlet class, so to develop a custom component,
you should also have some understanding of Java portlets and the Portlet specification.

The Component SDK generates Eclipse projects, so it also helps to be familiar with Eclipse.

Supported platforms

While Big Data Discovery is always deployed on a Linux system, you can use the Component SDK from either
a Windows or Linux system.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Installing and Configuring the Component SDK 20

There are .bat and .sh versions of each of the Component SDK scripts.

Software requirements

All Component SDK work requires the following:

• Eclipse. You must use a version that supports JDK 1.7.

• JDK 1.7 or above

• Apache Ant 1.8.4 or higher, to build your custom items

For custom components, you may also need:

Software or License Description

Ext JS While Ext JS is not required, and the sample component provided with the
Component SDK does not use it, most Big Data Discovery components were
developed using Ext JS 3.4.

Big Data Discovery does not include a license for Ext JS. If you want to use Ext JS
for custom component development, you must obtain your own copy of it.

YUI Compressor 2.4.8 By default, when you compile a custom component, JavaScript minification is not
used.

While components do build successfully without JavaScript minification, for
performance purposes you may want to enable it.

If you enable minification, then files in the docroot/js directory of your custom
components are minified.

In order to be able to use minification to build components, you must obtain the .jar
file for version 2.4.8 of YUI Compressor.

The file is available at
https://github.com/yui/yuicompressor/releases/download/v2.4.8/yuicompressor-
2.4.8.jar.

JUnit If you are planning to create unit tests for your custom components, you will need
to first obtain junit.jar.

The Component SDK can use JUnit for unit tests, but does not come with the
junit.jar file.

Installing the Component SDK
The Component SDK is contained in a .zip file in the Big Data Discovery Media Pack.

To install the Component SDK:

1. From the Big Data Discovery Media Pack, download the Component SDK .zip file (component-sdk-
<versionNumber>.zip).

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

http://www.sencha.com/products/extjs3
https://github.com/yui/yuicompressor/releases/download/v2.4.8/yuicompressor-2.4.8.jar
https://github.com/yui/yuicompressor/releases/download/v2.4.8/yuicompressor-2.4.8.jar

Installing and Configuring the Component SDK 21

2. Extract the Component SDK .zip file to a separate directory.

The directory path to the Component SDK cannot contain spaces.

Once you have installed the Component SDK, you can continue with your custom development.

For information on developing custom Security Managers, see Developing a Custom Security Manager on
page 22.

For information on developing custom components, see Developing Custom Components on page 25.

Preparing your system for Component SDK development
After installing the Component SDK, before you can start development, you must complete some initial
preparation on your system.

This includes:

• Extracting the Studio .ear file and portal .war file

• Configuring build files to point to the directories for these extracted files

• Optionally, enabling JavaScript minification for custom components.

If minification is enabled, then files in the docroot/js directory of custom components are minifiied.

To prepare your system for custom component development:

1. Extract the Studio .ear file and portal .war file:

(a) From the Big Data Discovery Media Pack, download the .ear file.

(b) Extract the .ear file to a directory on your machine.

(c) From that directory, extract the file endeca-portal.war to a directory within the extracted .ear
file directory.

For example, if the .ear file is extracted to /bdd_ear, the contents of the extracted .war file might be
in /bdd_ear/portal/.

2. Next, in the Component SDK, create and configure the build properties files:

(a) Go to the components directory of the Component SDK.

(b) In the components directory, create a file called build.<user>.properties, where <user>
is the user name that you use to log in to the current machine.

For example, if your user name is jsmith, then you would create a file called
build.jsmith.properties.

(c) Add the following properties to build.<user>.properties:

portal.base.dir=<extracted .ear file directory>
app.server.lib.global.dir=<extracted .ear file directory>/APP-INF/lib
app.server.portal.dir=<extracted portal .war file directory>
war.output.dir=<directory for generated components>

Version 1.4.0 • October 2016

The war.output.dir setting indicates where the build process should place the .war file that it
generates when you compile a custom component. This can be any directory on your system.

Oracle® Big Data Discovery: Extensions Guide

Installing and Configuring the Component SDK 22

So for example, if:

• You extracted the .ear file to a directory called /bdd_ear

• You extracted the portal .war file to a portal directory in /bdd_ear

• You want the generated .war files for custom components to be placed in
/generated_components

the settings would be:

portal.base.dir=/bdd_ear
app.server.lib.global.dir=/bdd_ear/APP-INF/lib
app.server.portal.dir=/bdd_ear/portal
war.output.dir=/generated_components

Version 1.4.0 • October 2016

(d) In the components directory, create a file called build.shared.properties.

(e) In build.shared.properties, add the following property:

portal.base.dir=<extracted .ear file directory>

3. To enable JavaScript minification when building custom components:

(a) If you haven't already, obtain the required YUI Compressor .jar file. See Requirements for using
the Component SDK on page 19.

(b) In the components directory of the Component SDK, update build.<user>.properties to
add the following property:

yui.compressor.jar=<path to YUI Compressor .jar file>

4. In Eclipse, create the following Eclipse classpath variables:

Name Path

DF_GLOBAL_LIB Path to the application server global library, which is:

<extracted .ear file directory>/APP-INF/lib

DF_PORTAL_LIB Path to the Web application library, which is:

<extracted portal .war file directory>

Oracle® Big Data Discovery: Extensions Guide

Chapter 4

Developing a Custom Security Manager

Using the Component SDK, you can create a custom Security Manager to customize how Big Data Discovery
filters the data that users see.

Creating and implementing a new Security Manager

Security Manager interface

Building and deploying a new Security Manager

Configuring Studio to use a different Security Manager

Creating and implementing a new Security Manager
The Component SDK includes a batch script for creating a new Security Manager.

To create a new Security Manager project:

1. From a command prompt, change to the components/endeca-extensions directory in the
Component SDK.

2. Run the appropriate version of the create-bddsecuritymanager command.

For Linux:

./create-bddsecuritymanager.sh <securityManagerName>

Version 1.4.0 • October 2016

For Windows:

create-bddsecuritymanager.bat <securityManagerName>

Where <securityManagerName> is the name you want to use for the security manager. For
example:

./create-bddsecuritymanager.sh restrict-region-data

The name cannot have spaces.

This command creates a <securityManagerName> directory in bddsecuritymanager.

This directory is an Eclipse project that you can import directly into Eclipse.

It also contains a sample implementation that can help you understand how the Security Manager is
used.

Note: The sample implementation illustrates one way to use the API. The sample is not
intended to provide a recommended design pattern for a production application.

3. Your Security Manager must implement the applySecurity method.

Oracle® Big Data Discovery: Extensions Guide

Developing a Custom Security Manager 24

public void applySecurity(PortletRequest request, MDEXState mdexState, Query query) throws
BddSecurityException;

Version 1.4.0 • October 2016

The Query class in this signature is com.endeca.portal.data.Query. This class provides a simple
wrapper around a Conversation Service request.

Security Manager interface
The com.endeca.portal.data.security.BddSecurityManager interface represents a Security Manager
capable of applying record-level security filters for BDD.

For additional details about BddSecurityManager, see the Component SDK API Reference.

Class Summary Item Item Value or Description

Abstract base class com.endeca.portal.data.security.AbstractBddSecurityManager

Concrete implementation com.endeca.portal.data.security.AttributeAclSecurityManager

class

Implementation behavior The AttributeAclSecurityManager implementation filters records in a
data set (collection) according to Access Control List (ACL) multi-assign
attributes which have been added to each record during a data ingest.

The class assumes that these attributes are named:

• __allow_user for user-permissions

• __allow_group for group-permissions

• __allow_role for role-permissions

This implementation requires a collection/data-set to have all three of these
attributes if it is to be secured, even if one or more of them is not used. It is
also required that each of these attributes must be multi-assign string
attributes (i.e., type=mdex:string and isSingleAssign=false). Each record is
filtered according to the name of the user and those of the groups/roles
held by that user, the names of which need to be assigned to the above
attributes.

The SDK package contains a SampleBddSecurityManager.java that is based on
AttributeAclSecurityManager. The file is included in the bddsecuritymanager.zip, which is in the
components/endeca-extensions directory in the Component SDK.

Oracle® Big Data Discovery: Extensions Guide

Developing a Custom Security Manager 25

Building and deploying a new Security Manager
Before you can use your custom Security Manager, you must deploy it to Studio. To do this, you generate a
.jar file for it, then add the .jar file to the Studio .ear file.

To build and deploy a custom Security Manager:

1. From the <securityManagerName>-mdexsecuritymanager directory you created for your new
Security Manager, run the Ant build script.

This generates a .jar file named <your-security-manager-name>-bddsecuritymanager.jar,
and places it in the Security Manager project directory.

2. Add the .jar file to the app-inf/lib directory within the deployed .ear file for Studio.

3. Redeploy the .ear file.

Configuring Studio to use a different Security Manager
In order to for Studio to use your Security Manager, you must configure Studio to pick up and use the new
class.

To configure Studio to use a different Security Manager:

1. On the Control Panel menu, click Studio Settings.

2. Change the value of df.bddSecurityManager to the full name of your class, similar to the following
example:

df.bddSecurityManager = com.endeca.portal.extensions.YourSecurityManagerClass

Version 1.4.0 • October 2016

3. Click Update Settings.

4. To have the change take effect, restart Studio. You may also need to clear any cached user sessions.

Oracle® Big Data Discovery: Extensions Guide

Chapter 5

Developing Custom Components

The most common use of the Component SDK is to create and deploy custom components.

Generating the Eclipse project for the component

Obtaining query results for components

Building a component

Deploying and removing custom components

Generating the Eclipse project for the component
The Component SDK includes a script to generate an Eclipse project for a new component.

New components are extensions of the EndecaPortlet class, which is in turn an extension of the basic Java
Portlet class.

To create a new component:

1. At a command prompt, change to the components/portlets directory in the Component SDK.

2. Run the appropriate .sh or .bat version of the create command:

For example:

create.sh <componentName> "<componentDisplayName>"

Version 1.4.0 • October 2016

Where:

Parameter Description

<componentName> The name of the component. The component name:

• Must be all lower case.

• Cannot have spaces.

• Cannot include the string -ext, because it causes confusion
with the ext plug-in extension. For example, my-component-
extension would not be a valid name.

<componentDisplayName> The display name for the component.

If the display name contains spaces, it must be enclosed in
quotation marks.

For example:

Oracle® Big Data Discovery: Extensions Guide

Developing Custom Components 27

create.sh my-test "My New Test Component"

Version 1.4.0 • October 2016

The script creates in the portlets directory a new directory for the new component.

The directory is the component name, with endeca- pre-pended and -portlet appended
automatically. For example, if you set the name to my-test, the directory is named endeca-my-
test-portlet.

This directory is an Eclipse project that you can import directly into Eclipse.

3. Import the project into Eclipse.

If your components depend on shared library projects located within the /shared directory, import
those as well.

Note that it takes some time for projects to build after they are imported.

After you generate and import the component project, you can begin the actual component development.

Obtaining query results for components
When developing a component, use the QueryState and QueryResults classes to request and receive data
from data sets.

To specify the types of results the component needs, you must add the relevant QueryConfigs to the
QueryState. For example:

QueryState query = getDataSource(request).getQueryState();
CollectionBaseView defaultBaseView = EndecaPortletUtil.getDefaultCollection(request);
query.addFunction(new NavConfig(), defaultBaseView, request.getLocale());
QueryResults results = getDataSource(request).execute(query);

You can then get the underlying Conversation Service API results in order to obtain the data required by your
component.

Results discoveryResults = results.getDiscoveryServiceResults();

Before executing the query, you can also make other local modifications to your query state by adding filters
or configurations to your query. For example:

String viewKey = request.getParameter(VIEW_KEY_PARAM);
DataSource ds = getDataSource(request);
QueryState query = ds.getQueryState();
SemanticView sView = ds.getCollectionOrSemanticView(viewKey, request.getLocale());
query.addFunction(new ResultsConfig(), sView, request.getLocale());
ExpressionBase expression = getDataSource(request).parseLQLExpression("Region = 'Midwest'");
query.addFunction(new SelectionFilter(expression), sView, request.getLocale());
QueryResults results = getDataSource(request).execute(query);

To persist QueryState changes to the user's session, which also updates the associated components, use
setQueryState. For example:

String viewKey = request.getParameter(VIEW_KEY_PARAM);
DataSource ds = getDataSource(request);
QueryState query = ds.getQueryState();
SemanticView sView = ds.getCollectionOrSemanticView(viewKey, request.getLocale());
query.addFunction(new ResultsConfig(), sView, request.getLocale());
ExpressionBase expression = getDataSource(request).parseLQLExpression("Region = 'Midwest'");
query.addFunction(new SelectionFilter(expression), sView, request.getLocale());
ds.setQueryState(query);

Oracle® Big Data Discovery: Extensions Guide

Developing Custom Components 28

For details on the QueryConfig and QueryFunction classes, see Working with QueryFunction Classes on
page 29, and the Component SDK API Reference.

Building a component
After completing the component development, you set the build properties, then build the component in
Eclipse.

To build a component:

1. Before building the component, you need to make sure the build properties are set correctly. Open the
build.xml in the root directory of the component.

By default, the build properties are:

<property name="shared.libs" value="endeca-common-resources,endeca-discovery-taglib" />
<property name="endeca-common-resources.includes" value="**/*" />
<property name="endeca-common-resources.excludes" value="" />

Version 1.4.0 • October 2016

These properties are used as follows:

Property Description

shared.libs Controls which projects in the shared/ directory
to include in the component.

These shared projects are compiled and
included as .jar files where appropriate.

endeca-common-resources.includes Controls which files in the shared/endeca-
common-resources project are copied into the
component.

The default value is "**/*", indicating that all of
the files are included.

These files provide AJAX enhancements
(preRender.jspf and postRender.jspf).

endeca-common-resources.excludes Controls which files from the shared/endeca-
common-resources project are excluded from
the component.

By default, the value is "", indicating that no files
are excluded.

If your component needs to override any of these
files, you must use this build property to exclude
them. If you do not exclude them, your code will
be overwritten.

You can specify the includes and excludes properties for any shared library. For example:

<property name="endeca-discovery-taglib.includes" value="**/*" />
<property name="endeca-discovery-taglib.excludes" value="" />

Oracle® Big Data Discovery: Extensions Guide

Developing Custom Components 29

2. Once the build properties are set, then in your Eclipse project, open the build.xml file.

3. If the project is not configured to build automatically, then in the outline view, right-click the deploy
task and select Run as... and then Ant Build.

The build process generates the component .war file, and places it in the output directory you specified. The
.war file has the same name as the component.

Deploying and removing custom components
Once you have built the component .war file, you can add the component to a Big Data Discovery instance.
You can also remove a component.

To deploy and remove components:

1. To deploy a custom component:

(a) Open the Studio .ear file.

(b) Add the component .war file to the root of the .ear file, with the other component .war files.

(c) In the meta-inf directory of the .ear file, open application.xml

(d) Add an entry for the new component, then save the file.

For example:

<module>
<web>

<web-uri>my-new-component-portlet.war</web-uri>
<context-root>/eid/my-new-component-portlet/</context-root>

</web>
</module>

Version 1.4.0 • October 2016

(e) Redeploy the .ear file.

(f) Restart Big Data Discovery.

During the startup process, you can check the Big Data Discovery logs to confirm that the
component loaded successfully.

2. After redeploying the .ear file, to test that the component was added successfully:

(a) Log in to Big Data Discovery.

(b) From within a Big Data Discovery project, click the add component option.

Your component should be included in the list of available components.

(c) Drag and drop the new component onto the page.

3. To remove a component:

(a) Open the Big Data Discovery .ear file.

(b) Remove the component .war file.

(c) In meta-inf/application.xml, remove the entry for the component.

(d) Redeploy the .ear file.

Oracle® Big Data Discovery: Extensions Guide

Chapter 6

Working with QueryFunction Classes

When developing custom components, you can use the provided QueryFunction classes to filter and query
data. You can also create and implement your own QueryFunction classes.

Provided QueryFunction filter classes

Provided QueryConfig functions

Creating and deploying a custom QueryFunction class

Provided QueryFunction filter classes
Big Data Discovery provides the following QueryFunction filter classes. Filters are used to change the current
query state.

The available filter classes are:

• DataSourceFilter

• RefinementFilter

• NegativeRefinementFilter

• RangeFilter, including the following date/time-specific range filters that extend RangeFilter:

• DateRangeFilter

• TimeRangeFilter

• DurationRangeFilter

• DateFilter

• LastNDateFilter

• GeoFilter

• SearchFilter

In addition to the information here, for more details on the QueryFunction filter classes, see the Component
SDK API Reference.

DataSourceFilter
Uses an EQL snippet to provide the filtering. DataSourceFilter refinements are not added to the Selected
Refinements panel.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Working with QueryFunction Classes 31

The available properties are:

Property Description

filterString The EQL snippet containing the filter information.

For a DataSourceFilter, this would be the content of a WHERE
clause for an EQL statement.

For details on the EQL syntax, see the EQL Reference.

For example, to filter data to only show records from the Napa Valley region with a price lower than 40 dollars:

ExpressionBase expression = dataSource.parseLQLExpression("Region='Napa Valley' and P_Price<40");
DataSourceFilter dataSourceFilter = new DataSourceFilter(expression);

Version 1.4.0 • October 2016

RefinementFilter
Used to filter data to include only those records that have the provided attribute values. RefinementFilter
refinements are added to the Selected Refinements panel.

The properties for a RefinementFilter are:

Property Description

attributeValue String

The attribute value to use for the refinement.

attributeKey String

The attribute key. Identifies the attribute to use for the
refinement.

sourceCollectionKey String

The key of the data set. This is typically a long encoded value
that starts with default_edp.

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 32

Property Description

multiSelect AND |OR | NONE

For multi-select attributes, how to do the refinement if the filters
include multiple values for the same attribute:

• If set to AND, then matching records must contain all of the
provided values.

• If set to OR, then matching records must contain at least one
of the provided values.

• If set to NONE, then multi-select is not supported. Only the
first value is used for the refinement.

This setting must match the refinement behavior configured for
the attribute in the data set. For information on using the Views
page to view and configure the refinement behavior for an
attribute, see the Studio User's Guide.

In the following example, the data is refined to only include records that have a value of 1999 for the Year
attribute.

RefinementFilter refinementFilter = new RefinementFilter("1999", "Year", "default_edp_cc7ea");

Version 1.4.0 • October 2016

NegativeRefinementFilter
Used to filter data to exclude records that have the provided attribute value. NegativeRefinementFilter
refinements are added to the Selected Refinements panel.

The properties for a NegativeRefinementFilter are:

Property Description

attributeValue String

The attribute value to use for the refinement.

attributeKey String

The attribute key. Identifies the attribute to use for the
refinement.

attributeType BOOLEAN | STRING | DOUBLE | LONG | GEOCODE | DATETIME |
TIME | DURATION

The type of value to use for the refinement. The default is
STRING.

If the attribute is a type other than string, then you must provide
the type.

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 33

Property Description

attributeValueName String

Optional. The value to display on the Selected Refinements
panel for the refinement.

If you do not provide a value for attributeValueName, then the
Selected Refinements panel displays the value of
attributeValue.

ancestors Not supported.

isAttributeSingleAssign Boolean.

If set to true, then the attribute can only have one value.

If set to false, then the attribute is multi-value.

For information on using the Views page to see whether an
attribute is multi-value, see the Studio User's Guide.

sourceCollectionKey String

The key of the data set. This is typically a long encoded value
that starts with default_edp.

In the following example, the data is refined to only include records that do NOT have a value of Washington
for the Region attribute. Because Region is a string attribute, no other configuration is needed.

NegativeRefinementFilter negativeRefinementFilter
= new NegativeRefinementFilter("Region", "Washington");

Version 1.4.0 • October 2016

In the following example, the data is refined to only include records that do NOT have a value of 1997 for the
P_Year attribute, which is a single-assign attribute. Because P_Year is not a string attribute, the attribute type
LONG is specified.

NegativeRefinementFilter negativeRefinementFilter
= new NegativeRefinementFilter("P_Year", "1997", PropertyType.LONG,

true, "default_edp_cc7ea760");

RangeFilter

Used to filter data to include only those records that have attribute values within the specified range.
RangeFilter refinements are added to the Selected Refinements panel.

The properties for a RangeFilter are:

Property Description

attributeKey String

The attribute key. Identifies the attribute to use for the filter.

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 34

Property Description

rangeOperator LT | LTEQ |GT |GTEQ| BTWN |GCLT |GCGT | GCBTWN

The type of comparison to use.

• LT - Less than

• LTEQ - Less than or equal to

• GT - Greater than

• GTEQ - Greater than or equal to

• BTWN - Between. Inclusive of the specified range values.

• GCLT - Geocode less than

• GCGT - Geocode greater than

• GCBTWN - Geocode between

rangeType DECIMAL | INTEGER | DATE | GEOCODE | TIME | DURATION

The type of value that is being compared.

value1 Numeric

The value to use for the comparison.

For BTWN, this is the low value for the range.

For the geocode range operators, the origin point for the
comparison.

value2 Numeric

For a BTWN, this is the high value for the range.

For GCLT and GCGT, this is the value to use for the comparison.

For GCBTWN, this is the low value for the range.

value3 Numeric

Only used for the GCBTWN operator. The high value for the
range.

In the following example, the data is refined to only include records where the value of P_Score is a number
between 80 and 100:

RangeFilter rangeFilter
= new RangeFilter("P_Score", RangeType.INTEGER, RangeOperator.BTWN, "80", "100");

Version 1.4.0 • October 2016

There are also date/time-specific range filters that extend RangeFilter:

• DateRangeFilter

• TimeRangeFilter

• DurationRangeFilter

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 35

DateFilter
Used to filter date values. Using a DateFilter, you can filter by subsets of the date/time value. For example,
you can filter a date attribute to include all records with a specific year or specific month.

The properties for a DateFilter are:

Property Description

dateFilters A list of DateFilterDimension objects that represent the date
filters to apply.

Each DateFilterDimension object consists of:

• DatePart constants identify each date part

• Integer values to represent the values for each date part

The filter only filters down to the most specific date part
provided.

In the following example, the data is refined to only include records where SalesDate is June 15, 2006. The
filter only provides the year, month, and day. Even if records have different hour-minute-second values for
SalesDate, as long as they are within June 15, 2006, they still match this filter:

DateFilterDimension dfd = new DateFilterDimension();
dfd.addDatePartFilter(DatePart.YEAR, 2006);
dfd.addDatePartFilter(DatePart.MONTH, 6);
dfd.addDatePartFilter(DatePart.DAY_OF_MONTH, 15);
DateFilter dateFilter = new DateFilter("SalesDate", dfd);

Version 1.4.0 • October 2016

LastNDateFilter

Used to filter the date to include records with a date attribute with a value in the last n years, months, or days.

The properties for a LastNDateFilter are:

Property Description

attributeKey The key name of the attribute.

ticksBack The number of years, months, or days within which to include
records in the results.

datePart The date part to use for the filtering. The possible values are:

• YEAR

• MONTH

• DAY_OF_MONTH

• HOUR

• MINUTE

• SECOND

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 36

Property Description

sourceCollectionKey String

The key of the data set. This is typically a long encoded value
that starts with default_edp....

In the following example, the data is refined to only include records with SalesDate values from the last 3
years:

LastNDateFilter lastNDateFilter = new LastNDateFilter("SalesDate", 3, DatePart.YEAR);

Version 1.4.0 • October 2016

GeoFilter

Used filter data to include records with a geocode value within a specific distance of a specific location.

The properties for a GeoFilter are:

Property Description

attributeKey The key name for the geocode attribute.

rangeOperator The comparison operator.

value1 A geocode value to use as the starting point.

radius The number of miles or kilometers within which to search.

locationName The name of a location to use as the starting point.

unit The unit of distance (mi or km) for the comparison.

SearchFilter
Used to filter the data to include records that have the provided search terms. SearchFilter refinements are
added to the Selected Refinements panel.

The properties for a SearchFilter are:

Property Description

searchInterface String

Either the name of the search interface to use, or the name of
an attribute that is enabled for text search.

terms String

The search terms.

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 37

Property Description

matchMode ALL | PARTIAL | ANY | ALLANY | ALLPARTIAL | PARTIALMAX |
BOOLEAN

The match mode to use for the search.

enableSnippeting Boolean

Whether to enable snippeting.

Optional. If not provided, the default is false.

snippetLength Integer

The number of characters to include in the snippet.

Required if enableSnippeting is true.

To enable snippeting, set enableSnippeting to true, and
provide a value for snippetLength.

In the following example, the filter uses the "default" search interface to search for the terms "California" and
"red". The matching records must include all of the search terms. Snippeting is supported, with a 100-
character snippet being displayed.

SearchFilter.Builder builder = new SearchFilter.Builder("default", "California red");
builder.matchMode(MatchMode.ALL);
builder.enableSnippeting(true);
builder.snippetLength(100);
SearchFilter searchFilter = builder.build();

Version 1.4.0 • October 2016

Provided QueryConfig functions
Studio provides the following QueryConfig functions, used to manage the results returned by a query. These
are more advanced functions for component development.

Each QueryConfig function generally has a corresponding function in DiscoveryServiceUtils to get the
results.

QueryConfig functions are most often used to obtain results that are specific to a component. Because of this,
QueryConfig functions should never be persisted to the application data domain using setQueryState(), as
this would affect all of the components that are bound to the same data. Instead, QueryConfig functions
should only be added to a component's local copy of the QueryState object.

The available QueryConfig functions are:

• AttributeTextValueSearchConfig

• AttributeValueSearchConfig

• BreadcrumbsConfig

• LQLQueryConfig

• RecordDetailsConfig

• ResultsConfig

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 38

• ResultsSummaryConfig

• SearchAdjustmentsConfig

• SortConfig

In addition to the information here, for more details on the QueryConfig functions, see the Component SDK
API Reference.

AttributeTextValueSearchConfig

Used for text searches, such as in the Available Refinements panel and the Search Box functions.

AttributeTextValueSearchConfig has the following properties:

Property Description

searchTerm String

The term to search for in the attribute values.

attribute String (optional)

The attribute key for the attribute to search in.

Use the attribute property to search against a single attribute.
To search against multiple attributes, use searchWithin.

searchWithin List<String> (optional)

A list of attributes to search in for matching values.

languageId String (optional)

The country code for a supported language (such as "en" for
English).

The following example searches for the term "merlot":

AttributeTextValueSearchConfig attributeTextValueSearchConfig
= new AttributeTextValueSearchConfig("merlot");

Version 1.4.0 • October 2016

AttributeValueSearchConfig

Used for type-ahead in a search field. For example, used for Available Refinements to narrow down the list
of available values for an attribute.

AttributeValueSearchConfig has the following properties:

Property Description

searchTerm String

The term to search for in the attribute values.

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 39

Property Description

maxValuesToReturn int (optional)

The maximum number of matching values to return.

If you do not provide a value, then the default is 10.

attribute String (optional)

The attribute key for the attribute to search in.

Use the attribute property to search against a single attribute.
To search against multiple attributes, use searchWithin.

searchWithin List<String> (optional)

A list of attributes to search in for matching values.

matchMode ALL|PARTIAL|ANY|ALLANY|ALLPARTIAL|PARTIALMAX|BOOLEAN

(optional)

The match mode to use for the search.

relevanceRankingStrategy String (optional)

The name of the relevance ranking strategy to use during the
search.

languageId String (optional)

The country code for a supported language (such as "en" for
English).

The following example searches for the term "red" in the WineType attribute values:

AttributeValueSearchConfig attributeValueSearchConfig
= new AttributeValueSearchConfig("red", "WineType");

Version 1.4.0 • October 2016

BreadcrumbsConfig

Used to return the refinements associated with the query.

BreadcrumbsConfig has the following property:

Property Description

id String (optional)

The ID of the breadcrumbs to be instantiated.

This example returns the refinements:

BreadcrumbsConfig breadcrumbsConfig = new BreadcrumbsConfig();

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 40

LQLQueryConfig

Executes an EQL query on top of the current filter state.

LQLQuery has the following property:

Property Description

lqlQuery AST

The EQL query to add.

To retrieve the AST from the query string, call
DataSource.parseLQLQuery.

The following example retrieves the average of the P_Price attribute grouped by Region:

Query query
= dataSource.parseLQLQuery("return mystatement as select avg(P_Price) as avgPrice group by Region",
true);
LQLQueryConfig lqlQueryConfig = new LQLQueryConfig(query);

Version 1.4.0 • October 2016

RecordDetailsConfig

Sends an attribute key-value pair to assemble the details for a selected record. The complete set of attribute-
value pairs must uniquely identify the record.

RecordDetailsConfig has the following property:

Property Description

recordSpecs List<RecordSpec>

Each new RecordDetailsConfig is appended to the previous
RecordDetailsConfig.

The following example sends the value of the P_WineID attribute:

List<RecordSpec> recordSpecs = new ArrayList<RecordSpec>();
recordSpecs.add(new RecordSpec("P_WineID", "37509"));
RecordDetailsConfig recordDetailsConfig = new RecordDetailsConfig(recordSpecs);

ResultsConfig

Used to manage the returned records. Allows for paging of the records.

ResultsConfig has the following properties:

Property Description

recordsPerPage Long

The number of records to return at a time.

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 41

Property Description

offset Long (optional)

The position in the list to start at. The very first record is at
position 0.

For example, if recordsPerPage is 10, then to get the second
page of results, the offset would be 10.

columns String[] (optional)

The columns to include in the results.

If not specified, then the results include all of the columns.

numBulkRecords Integer (optional)

The number of records to return. Overrides the value of
recordsPerPage.

The following example returns a selected set of columns for the third page of records, where each page
contains 50 records:

ResultsConfig resultsConfig = new ResultsConfig();
resultsConfig.setOffset(100);
resultsConfig.setRecordsPerPage(50);
String[] columns = {"WineID", "Name", "Description", "WineType", "Winery", "Vintage"};
resultsConfig.setColumns(columns);

Version 1.4.0 • October 2016

ResultsSummaryConfig

Gets the number of records returned from a query.

ResultsSummaryConfig resultsSummaryConfig = new ResultsSummaryConfig();

SearchAdjustmentsConfig

Returns DYM (Did You Mean) and auto-correction items for a search.

SearchAdjustmentsConfig searchAdjustmentsConfig = new SearchAdjustmentsConfig();

SortConfig
Used to sort the results of a query. Used in conjunction with ResultsConfig.

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 42

SortConfig has the following properties:

Property Description

ownerId String (optional)

The ID of the ResultsConfig that this SortConfig applies to. If
not provided, uses the default ResultsConfig ID.

If you configure a different ID, then you must provide a value for
ownerId.

property String

The attribute to use for the sort.

ascending Boolean

Whether to sort in ascending order.

If set to false, then the results are sorted in descending order.

For example, with the following SortConfig, the results are sorted by the P_Score attribute in descending
order:

SortConfig sortConfig = new SortConfig("P_Score", false);

Version 1.4.0 • October 2016

Creating and deploying a custom QueryFunction class
The Component SDK allows you to create custom QueryFunction classes.

Generating the Eclipse project for the QueryFunction class

Implementing a custom QueryFunction class

Building and deploying a custom QueryFunction class

Adding a custom QueryFunction to a custom component project

Generating the Eclipse project for the QueryFunction class
The Component SDK includes a script to generate the Eclipse project for the QueryFunction class.

To generate the Eclipse project for a new QueryFunction class:

1. From the command line, change to the components/endeca-extensions subdirectory of the
Component SDK.

2. To create a QueryFilter class, run the appropriate .sh or .bat version of the create-
queryfilter command.

For example on Linux:

./create-queryfilter.sh <queryFilterName>

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 43

Where <queryFilterName> is the name you want to use for the QueryConfig class. The name
cannot have spaces.

The command creates a new directory called <queryFilterName>-QueryFilter in the endeca-
extensions directory.

This directory is an Eclipse project that you can import directly into Eclipse.

It contains an empty sample implementation of a QueryFilter.

3. To create a QueryConfig class, run the appropriate .sh or .bat version of the create-
queryconfig command.

For example on Linux:

./create-queryconfig.sh <queryConfigName>

Version 1.4.0 • October 2016

Where <queryConfigName> is the name you want to use for the QueryConfig class. The name
cannot have spaces.

The command creates a new directory called <queryConfigName>-QueryConfig in the endeca-
extensions directory.

This directory is an Eclipse project that you can import directly into Eclipse.

It contains an empty sample implementation of a QueryConfig.

For both QueryFilter and QueryConfig classes, the skeleton implementation:

• Extends either QueryFilter or QueryConfig.

• Creates stubs for the applyToDiscoveryServiceQuery, toString, and beforeQueryStateAdd methods.

applyToDiscoveryServiceQuery and toString are required methods that you must implement.

beforeQueryStateAdd is an optional method to verify the query state before the function is added. This
method is used to prevent invalid query states such as duplicate refinements.

• Creates a no-argument, protected, empty constructor. The protected access modifier is optional, but
recommended.

• Creates a private member variable for logging.

Implementing a custom QueryFunction class
After you create your new QueryFunction class, you then implement it.

To implement your new QueryFunction, you must:

• Add private filter or configuration properties.

• Create getters and setters for any filter properties you add.

• Define a no-argument constructor (protected access modifier optional, but recommended).

• Implement the applyToDiscoveryServiceQuery method.

This method is called with the following arguments:

• The Conversation Service query

• A stateName string

Oracle® Big Data Discovery: Extensions Guide

Working with QueryFunction Classes 44

Your custom function should use the Conversation Service API to apply itself to the conversation service
query argument.

The stateName argument provides the value to use for state name references in Conversation Service
filters or content element configs that your custom function adds to the query.

• Implement the toString method, which is used to compare QueryFunction instances for equality.

toString should be consistent and deterministic in order to accurately determine if two instances of your
custom QueryFunction are identical or distinct.

• Optionally, implement the beforeQueryStateAdd(QueryState state) method to check the current query
state before the function is added.

Building and deploying a custom QueryFunction class
When you have finished development on your custom QueryFunction class, you build it, then add the
resulting .jar file to the .ear file.

To build and deploy a QueryFunction:

1. In your Eclipse project for the QueryFunction, open the build.xml file.

2. If the project is not configured to build automatically, then in the outline view, right-click the deploy
task and select Run as... and then Ant Build.

The Component SDK builds the QueryFunction, and places the resulting .jar file in the output
directory you specified.

3. To make the QueryFunction available to all of your custom components, place the .jar file in the
app-inf/lib directory of the extracted .ear file.

4. To add the QueryFunction to the Big Data Discovery instance:

(a) Add the .jar file to the app-inf/lib directory of the .ear file.

(b) Re-deploy the .ear file.

Adding a custom QueryFunction to a custom component project
If you just want to use a custom QueryFunction in a specific custom component, you add its .jar file to the
component's Eclipse build path.

To add the QueryFunction to a custom component project:

1. In Eclipse, right-click the component project, then select Build Path and then Configure Build Path.

2. Click the Libraries tab.

3. Click Add Variable.

4. Select DF_GLOBAL_LIB.

You should have added this variable when you set up the Component SDK. See Preparing your
system for Component SDK development on page 21.

5. Click Extend.

6. Open the ext/ directory.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Working with QueryFunction Classes 45

7. Select the .jar file for your custom QueryFunction.

8. Click OK.

After adding the .jar file to the build path, you can import the class, and use your custom QueryFilter or
QueryConfig to modify your QueryState.

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Index

A L
AttributeTextValueSearchConfig QueryConfig LastNDateFilter QueryFunction class 35
function 38 LQLQueryConfig QueryConfig function 40
AttributeValueSearchConfig QueryConfig function 38

N
B NegativeRefinementFilter QueryFunction class 32

BreadcrumbsConfig QueryConfig function 39

Q
C QueryConfig functions

components AttributeTextValueSearchConfig 38
building 28 AttributeValueSearchConfig 38
deploying 29 BreadcrumbsConfig 39
Eclipse project, generating 26 LQLQueryConfig 40
query results, obtaining 27 RecordDetailsConfig 40
removing 29 ResultsConfig 40

ResultsSummaryConfig 41Component SDK
SearchAdjustmentsConfig 41about 19
SortConfig 41components, building 28

components, generating the Eclipse project 26 QueryFunction classes
configuration for 21 building custom 44
implementing Security Manager 23 custom component, adding to 44
installing 20 deploying custom 44
Security Manager, building 25 Eclipse project, generating 42
Security Manager, creating 23 implementing custom 43
Security Manager, deploying 25 QueryFunction filter classes
Security Manager interface 24 DataSourceFilter 30
skills, required 19 DateFilter 35
system requirements 20 GeoFilter 36

Custom Visualization Component LastNDateFilter 35
creating 10 NegativeRefinementFilter 32
deleting 17 RangeFilter 33
example code 9 RefinementFilter 31
introduced 8 SearchFilter 36
modifying JavaScript inline 16
publishing 16 Rskills, required 9

RangeFilter QueryFunction class 33unpublishing 17
RecordDetailsConfig QueryConfig function 40
RefinementFilter QueryFunction class 31D
ResultsConfig QueryConfig function 40DataSourceFilter QueryFunction class 30
ResultsSummaryConfig QueryConfig function 41DateFilter QueryFunction class 35

SE
SearchAdjustmentsConfig QueryConfig function 41EQL tokens 14
SearchFilter QueryFunction class 36
Security ManagerG

building 25GeoFilter QueryFunction class 36
configuring in Studio 25
creating 23
deploying 25

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

Index 47

implementing 23 SortConfig QueryConfig function 41
interface summary 24

Oracle® Big Data Discovery: Extensions Guide Version 1.4.0 • October 2016

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Audience
	Conventions
	Contacting Oracle Customer Support

	Part I: Custom Visualization Component
	Chapter 1: Overview of the Custom Visualization Component
	About the Custom Visualization Component
	Requirements for using the Custom Visualization Component
	Installing the Custom Visualization Component
	Downloading the Custom Visualization Component Sample

	Chapter 2: Developing a Custom Visualization Component
	Creating a Custom Visualization Component
	Using tokens in an EQL query
	Editing JavaScript during development
	Publishing a Custom Visualization Component
	Unpublishing a Custom Visualization Component
	Deleting a Custom Visualization Component

	Part II: Studio Component SDK
	Chapter 3: Installing and Configuring the Component SDK
	About the Component SDK
	Requirements for using the Component SDK
	Installing the Component SDK
	Preparing your system for Component SDK development

	Chapter 4: Developing a Custom Security Manager
	Creating and implementing a new Security Manager
	Security Manager interface
	Building and deploying a new Security Manager
	Configuring Studio to use a different Security Manager

	Chapter 5: Developing Custom Components
	Generating the Eclipse project for the component
	Obtaining query results for components
	Building a component
	Deploying and removing custom components

	Chapter 6: Working with QueryFunction Classes
	Provided QueryFunction filter classes
	Provided QueryConfig functions
	Creating and deploying a custom QueryFunction class
	Generating the Eclipse project for the QueryFunction class
	Implementing a custom QueryFunction class
	Building and deploying a custom QueryFunction class
	Adding a custom QueryFunction to a custom component project

	Index

