Oracle Utilities Smart Grid Gateway Adapter for Landis + Gyr

Administrative User Guide Release 2.2.0.1 **E80270-02**

April 2017

Oracle Utilities Smart Grid Gateway Adapter for Landis + Gyr Administrative User Guide

Release 2.2.0.1

E80270-02

April 2017

Documentation build: 4.10.2017 11:36:37 [D3_1491849397000]

Copyright © 2011, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.

Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Landis+Gyr Adapter Overview	
Landis+Gyr Adapter Processing	6
Initial Measurement Data and Device Event Loading	
Initial Measurements	6
Device Events	8
Base Package Business Objects	
Device Communication	
Communication Flows	
Device Communication Base Package Business Objects	
External System	
Outbound Message Types	.14
Inbound / Outbound Service Configuration	
BPEL Processes	16
Configuring a Landis+Gyr Head-End System	
Inbound Web Services	
Message Senders	
Outbound Message Types	
External System	_
Service Provider	
Processing Methods	
Configuring Endpoint URIs	.23
Configuring Landis+Gyr Extendable Lookups	
Extending the Landis+Gyr Adapter	27
The Landis+Gyr Test Harness	28
Test Harness Design	
Locating the WSDL for the Test Harness	29
Web Services	29
General Services	.29
Locate Meter Services	.30
Meter Administration Services	31
Meter Attribute Administration Services	34
Landis+Gyr Interval Data Mapping	38
Non-Interval Usage with Additional Fields	.38
XML 'Plain' XML Format	
Non-Interval Usage to 'Plain' XML Mapping	
'Plain' XML to IMD Mapping	40
Non-Interval 'Plain' XML to IMD Mapping	.41
Mapping Additional Fields	42

Chapter 1

Landis+Gyr Adapter Overview

The Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr supports communication with the Landis+Gyr Command Center software version 6.0, including measurement data and device event loading, and command messaging in support of commissioning, connect, disconnect, decommissioning, and on-demand read. The following table describes the attributes of the adapter:

Attribute	Details	
Currently Supported Version	Gridstream Command Center 6.5	
Smart Meter Command Format	MultiSpeak v3.1	
Bulk Usage/Event Data Format	California Metering Exchange Protocol (CMEP)	
Market(s)	North America, portions of Asia Pacific, Sweden, Australia, New Zealand, and Latin America.	
Commodities Supported	Electricity, Gas, Water	
Architecture	PLC and RF	

The adapter uses Oracle Service Bus (OSB) and Oracle Business Process Execution Language (BPEL) to facilitate communication between Oracle Utilities Smart Grid Gateway and the Landis+Gyr Command Center.

The following functionality is included:

Measurement Data and Device Event Loading - data parsing and transformation via Oracle Service Bus from Landis +Gyr format into the Oracle Utilities Service and Measurement Data Foundation unified format for measurement data and device events.

Measurement Data and Device Event Processing - configurable mapping for Landis+Gyr status codes and device event names to Oracle Utilities Service and Measurement Data Foundation standard values.

Smart Meter Command Processing - sending/receiving messages to/from the Landis+Gyr application to initiate smart meter commands from Oracle Utilities Smart Grid Gateway. The Landis+Gyr adapter supports the following types of commands and communications:

- Device Status Check- business objects and BPEL processes to support issuing device status check commands.
- Meter Commissioning business objects and BPEL processes to support issuing meter commissioning commands (including registration and installation commands).
- Meter Decommissioning- business objects and BPEL processes to support issuing meter decommissioning commands.

- Meter Retirement business objects and BPEL processes to support issuing meter retire (deregistration) commands.
- On-Demand Read business objects and BPEL processes to support issuing on-demand read commands.
- Remote Connect business objects and BPEL processes to support issuing remote connect commands.
- Remote Disconnect business objects and BPEL processes to support issuing remote disconnect commands

Chapter 2

Landis+Gyr Adapter Processing

This section provides details concerning the OSB processing, BPEL Processes, OUAF objects supplied as part of the base package. This information illustrates how the base package objects were designed, and can serve as the basis for any customizations you create as part of your implementation.

Initial Measurement Data and Device Event Loading

The initial measurement data load and device event processing use OSB to poll for, parse, and transform the head-payloads into the Oracle Utilities Smart Grid Gateway service format. Payloads contain measurements and meter events in some head-end specific format OSB then places each service call into a JMS queue within the Oracle Utilities applications. The JMS client consumes the entries and invokes the respective services in parallel then a service creates initial measurements with data in a common format with head-end-specific processing as needed. A second service creates device events with data in a common format.

Initial Measurements

The usage data exported from the AMI head-end system as a file in Landis+Gyr format is loaded into Oracle Utilities as initial measurement data. The following OSB projects, delivered in the base product, help manage the usage processing:

- SGG-D3-USAGE-BASE contains components responsible for "actual" processing of incoming data. It should not
 be modified during configuration. This can be upgraded without affecting the customization and environment settings
 added to SGG-D3-USAGE-CM.
- **2. SGG-D3-USAGE-CM** allows for customization and simplifies future upgrades.

When importing non-interval usage data, separate initial measurements can be created for difference measurement types. For instance, if the data includes Power Factor or Volt data, separate initial measurements are created for each of these. See Non-Interval 'Plain' XML to IMD Mapping for more information about specific units of measure that trigger the creation of separate initial measurements.

The runtime configuration settings for the SGG-D3-USAGE-CM project are stored in the EnvironmentSettings.xq XQuery file. You can use this file to adjust initial measurement data processing. For example, if you want to load raw data you would specify "true" for the content of the populateRawIMD element.

The following table describes the elements included in the EnvironmentSettings.xq file:

Element	Description	Valid Values
populateRawIMD	Determines if the initial measurement data is	true
	populated as raw data.	false
callPreProcessing	Determines if the preprocessing proxy service is	true
	called.	false
callPostProcessing	Determines if the postprocessing proxy service is	true
	called.	false
destinationRootElementInterval	Holds the name of inbound web service for the interval IMD seeder.	
destinationRootElementScalar	Holds the name of inbound web service for the	
	scalar IMD seeder. In most cases it is the same as destinationRootElementInterval.	
modifyResultXMLInput	Specifies the name of an XQuery document (without the "xq" extension) used to map additional fields from the "plain" XML format to the result XML format sent as initial measurement data. See Mapping Additional Fields for more information.	
dateTimeInUTC	Indicates whether the Landis+Gyr system is	true
	sending date/time information in UTC (true) or	false
	local time of the device (false). If not provided the default behavior will be local time of the device.	1000
publishServices/service	Specifies the name of the business service within	
	the OSB project used to publish data for external systems (such as Oracle DataRaker).	
filterUsage	Determines if usage should be filtered.	true
		false

Publishing Initial Measurement Data

The Landis+Gyr adapter can be configured to publish initial measurement data for use in Oracle DataRaker or other external systems. Publishing data is enabled by referencing a publisher business service in the publishServices/service element in the EnvironmentSettings.xq file as follows:

```
<publishServices>
    <service>[publisherBusinessService]</service>
</publishServices>
```

Publishing measurement data to Oracle DataRaker is supported by the following components provided with the SGG-D3-USAGE-CM OSB project:

- The **DataRakerBusinessService** business service is used to publish data to a specified JMS queue (defined as an Endpoint URI), from which the external system can receive the data. This is the business service that should be specified in the EnvironmentSettings.xq file.
- The **DataRakerServiceAccount** service account is used to define and maintain the user name and password needed to access the JMS queue defined in the **DataRakerBusinessService** business service.

Initial measurement data is published in the "native" initial measurement data format (the format of the initial measurement seeder business object).

Ι

Filtering Initial Measurement Data

The Landis+Gyr adapter can be configured to filter initial measurement data passed into Oracle Utilities Smart Grid Gateway and Meter Data Management. Filtering data is enabled by setting the <filterUsage> element in the EnvironmentSettings.xq file to "true" as follows:

<filterUsage>true</filterUsage>

When filtering is enabled, only measurements whose <externalUOM> matches one of the values defined in the **Landis** +**Gyr UOM Code to Standard UOM Mapping** extendable lookup (D3-HeadendUOMLookup) are passed into the system for processing.

NOTE: Filtering of scalar initial measurement data is not supported in the Landis+Gyr adapter.

Processing Large Input Files

In some environments, the OSB project may begin processing a large input file before it has been completely copied to the input directory. To prevent this, configure the MinimumAge property in the "InboundProxyService" proxy service for the SGG-D3-USAGE-CM project. The MinimumAge property specifies the minimum age of files to be retrieved, based on the last modified time stamp. This enables large files to be completely copied to the input directory before they are retrieved for processing.

Prioritized Initial Measurement Processing

The Landis+Gyr adapter prioritizes processing of initial measurements created from smart meter commands and/or completion events by setting the Execution Method flag in these types of initial measurements to "Real Time" (D1RT). In addition, initial measurements received with the Execution Method flag set to "Real Time" will be processed in real time rather than via batch processing.

See Initial Measurement Data Prioritization in the Oracle Utilities Meter Data Management / Smart Grid Gateway Business User Guide for more information.

Device Events

The device event data exported from the head-end system as a file in Landis+Gyr format is loaded into Oracle Utilities as a Device Event. One of your configuration tasks is to customize the device events processing.

The required functionality is delivered in the base product as two OSB projects:

- SGG-D3-EVENT-BASE containing components responsible for "actual" processing of incoming data. It can be
 upgraded in future without affecting the customization and environment settings that done in SGG-D3-EVENT-CM
 project.
- **2. SGG-D3-EVENT-CM** allows the customization and simplifies the future upgrades.

The runtime configuration settings for the SGG-D3-EVENT-CM project are stored in the EnvironmentSettings.xq XQuery file. You can use this file to adjust device event data processing. For example, if you want to load raw data you would specify "true" for the content of the populateRaw element.

The following table describes the elements included in the EnvironmentSettings.xq file:

Element	Description	Valid Values
populateRaw	Determines if the device event data is populated as	true
	raw data.	false
callPreProcessing	Determines if the preprocessing proxy service is	true
	called.	false

Element	Description	Valid Values
callPostProcessing	Determines if the postprocessing proxy service is	true
	called.	false
destinationRootElement	Holds the name of inbound web service for the device event seeder.	
modifyResultXMLInput	Specifies the name of an XQuery document (without the "xq" extension) used to map additional fields from the "plain" XML format to the result XML format sent as device event data. See Mapping Additional Fields for more information.	
dateTimeInUTC	Indicates whether the Landis+Gyr system is	true
	sending date/time information in UTC (true) or local time of the device (false). If not provided the default behavior will be local time of the device.	false
publishServices/service	Specifies the name of the business service within the OSB project used to publish data for external systems (such as Oracle DataRaker).	
filterEvents	Determines if events should be filtered.	true
		false

Publishing Events

The Landis+Gyr adapter can be configured to publish device events for use in Oracle DataRaker or other external systems. Publishing data is enabled by referencing a publisher business service in the publishServices/service element in the EnvironmentSettings.xq file as follows:

```
<publishServices>
  <service>[publisherBusinessService]</service>
</publishServices>
```

Publishing device events to Oracle DataRaker is supported by the following components provided with the SGG-D3-EVENT-CM OSB project:

- The **DataRakerBusinessService** business service is used to publish data to a specified JMS queue (defined as an Endpoint URI), from which the external system can receive the data. This is the business service that should be specified in the EnvironmentSettings.xq file.
- The **DataRakerServiceAccount** service account is used to define and maintain the user name and password needed to access the JMS queue defined in the **DataRakerBusinessService** business service.

Device event data is published in the "native" device event data format (the format of the device event seeder business object).

Filtering Events

The Landis+Gyr adapter can be configured to filter device events passed into Oracle Utilities Smart Grid Gateway and Meter Data Management. Filtering data is enabled by setting the <filterEvents> element in the EnvironmentSettings.xq file to "true" as follows:

<filterEvents>true</filterEvents>

When filtering is enabled, only device events whose <externalEventName> matches one of the values defined in the **Landis+Gyr Device Event Mapping** extendable lookup (D3-DeviceEventMappingLookup) are passed into the system for processing.

Subscribing to Real-Time Device Events

The Landis+Gyr Command Center provides the ability to "subscribe" to device events from within their online interface. This is done by creating a subscriber in Command Center with an associated callback URL as well as a list of events types that subscriber is interested to receive. When an event that is subscribed to occurs it is sent to the callback URL in real time.

Within L+G Events are configured with one of three "alarm" settings. These settings determine how often the events will be sent to subscribers:

- **1.** Alarm: immediately delivered from the meter
- 2. Advisory: sent based upon a delivery schedule
- 3. Log Only: sent only upon request (not applicable for our implementation real time event processing)

Command Center will communicate the events using a CIM format that describes the message as a noun/verb combination. The details of the event itself will be contained within a "payload" element of the standard structure. The payload will be formatted using the EndDeviceEvent message structure. This message identifies device events using a CIM 4-part category number. These numbers are four period separated numbers that will describe the type of device and the event. For example: 3.33.1.257 is for "Tamper attempt suspected".

- Segment 1: End Device event domain code (e.g. 3. meter/10. collector/11. router/12. HAN device)
- Segment 2: End Device Event Domain Part Codes (e.g. 1. Access/2. Battery)
- Segment 3: End Device Event Type Codes (e.g. 1. Alarm/2. Alarm Mgt)
- Segment 4: End Device Event Index (e.g. 1. Abort/2. Access Attempt)

Refer to the Landis+Gyr documentation for details about the CIM Category Numbers. CIM Category Numbers must be mapped to standard device event names using the Landis+Gyr Device Event Mapping extendable lookup.

SGG receives these messages through a BPEL composite that saves the incoming request as a file to be picked up by OSB.

The **AMIEventSubscriber** composite is responsible for receiving the event messages based on subscriptions defined in the L+G Command Center. The callback URL configured for the subscription in the Command Center should point to this BPEL composite.

The following OSB projects parse individual device events from the message and perform the validation and mapping of the information to the Device Event Seeder Format.

- SGG-D3-CIM-EVENT-BASE contains components responsible for "actual" processing of incoming data. It can be
 upgraded in future without affecting the customization and environment settings that done in SGG-D3-CIM-EVENTCM project.
- 2. SGG-D3-CIM-EVENT-CM allows the customization and simplifies the future upgrades.

The runtime configuration settings for the SGG-D3-CIM-EVENT-CM project are stored in the EnvironmentSettings.xq XQuery file. You can use this file to adjust device event data processing. For example, if you want to load raw data you would specify "true" for the content of the populateRaw element.

The following table describes the elements included in the EnvironmentSettings.xq file:

Element	Description	Valid Values
populateRaw	Determines if the device event data is populated	true
	as raw data.	false
callPreProcessing	Determines if the preprocessing proxy service is	true
	called.	false
callPostProcessing	Determines if the postprocessing proxy service is	true
	called.	false
destinationRootElement	Holds the name of inbound web service for the	
	device event seeder.	
publishServices/service	Specifies the name of the business service within	
	the OSB project used to publish data for external	
	systems (such as Oracle DataRaker).	

Element	Description	Valid Values
filterEvents	Determines if events should be filtered.	true
		false

Processing statistics are gathered for any real time events that are received (even if there is just one event in the message) in the same manner as device events received via the flat-file interface.

Prioritized Device Event Processing

The Landis+Gyr adapter prioritizes processing of device events created from smart meter commands and/or completion events by setting the Execution Method flag in these types of device events to "Real Time" (D1RT). In addition, device events received with the Execution Method flag set to "Real Time" will be processed in real time rather than via batch processing.

See **Device Event Prioritization** in the *Oracle Utilities Meter Data Management / Smart Grid Gateway Business User Guide* for more information.

Base Package Business Objects

The Landis+Gyr adapter base package includes the following initial measurement business objects:

Business Object Name	Description
D3-InitialLoadIMDInterval	Landis+Gyr Initial Load IMD - Interval
	Used when loading Landis+Gyr interval measurements into the system for the first time.
D3-InitialLoadIMDScalar	Landis+Gyr Initial Load IMD - Scalar

Device Communication

The basic communication for all business processing is essentially the same. A communication request is sent from the Oracle Utilities application to Landis+Gyr. This request would be for a connect/disconnect, commission/decommission, measurement data or an on-demand read. The designated BPEL process transforms the request from Oracle Utilities format to MultiSpeak format and invokes the related Landis+Gyr web service. Landis+Gyr then returns a reply, the BPEL process transforms the reply message back to the appropriate format so that Oracle Utilities can receive the response.

Communication Flows

The table below lists the communications created for each Landis+Gyr command:

Command	Outbound Communication	Inbound Communication	Completion Event
Remote Connect (This command	Initiate MR by Mtr Num	Reading Changed Notification	Connect Device
has sub-commands)	Initiate Connect Disconnect	Connect Disconnect State Changed Notification	Create IMD Completion Event
Remote Disconnect (This command has sub-commands)	Initiate Connect Disconnect	Connect Disconnect State	Disconnect Device
	Initiate MR by Mtr Num	Changed Notification	Create IMD Completion Event
	,	Reading Changed Notification	•
Device Commissioning (Registration)	L+G Add Meter to Inventory		Device Commissioning
Device Commissioning (Installation)	L+G Meter Exchange Notification		Device Commissioning

Command	Outbound Communication	Inbound Communication	Completion Event	
Device Decommissioning	Meter Remove Notification	Meter Remove Notification		
Device Deregistration	L+G Meter Retire Notification		Device Deregistration	
On-Demand Read	Initiate MR by Mtr Num	Reading Changed Notification	Create IMD Completion Event	
(Scalar)				
On-Demand Read	CIM Meter On Demand Read	CIM Meter On Demand Read	Create IMD Completion Event	
(Scalar) - CIM	(Scalar)	Response		
On-Demand Read	Initiate MR by Mtr Num	Reading Changed Notification	Create IMD Completion Event	
(Interval)				
On-Demand Read	CIM Meter On Demand Read	CIM Meter On Demand Read	Create IMD Completion Event	
(Interval) - CIM	(Interval)	Response		
Device Status Check	CIM Ping	CIM Ping Response		
Demand Reset	Schedule Demand Reset (Multispeak)	Schedule Demand Reset Response (Multispeak)	Create IMD Completion Event	

Device Registration Commission Commands

Landis+Gyr device commission commands can be used to "register" the device and notify the L+G head-end system that meters have been added to inventory. Device commission commands of this type have the "Registration-Only Mode" flag set to "Yes". An Enter algorithm on the "Commission Ready" state evaluates the Registration-Only Mode of the command and if set to "Yes", the command skips the default "Waiting for Measurement" state and is transitioned to the "Execute Completion Event" state, and an activity log entry is created.

Only the device registration request is sent to the head-end system for device commission commands of this type.

Device registration commands are typically created when new devices are added to inventory in an asset management system such as Oracle Utilities Operational Device Management.

Device Installation Commission Commands

Landis+Gyr device commission commands can be used to notify the L+G head-end system that meters have been installed or exchanged. An Enter algorithm on the "Commission Ready" state evaluates the "Is Installation Check Unnecessary" flag of the command and if set to "False", the algorithm creates an "L+G Meter Exchange Notification" outbound communication and sends an installation notification to the head-end system.

Device Deregistration Commands

The Landis+Gyr adapter supports the Device Deregistration command (based on the D1-DeviceDeregistration business object). This command sends a communication that deregisters the device in the head-end system, and is most often used when retiring a device. The specific message sent is defined for the Device Deregistration processing role for the L+G head-end system service provider.

Device deegistration commands are typically created when devices are retired in an asset management system such as Oracle Utilities Operational Device Management.

Device Communication Base Package Business Objects

The Landis+Gyr Adapter base package includes the following communication business objects:

Business Object Name	Description	
D3-AddMeterToInventoryMultiSp	L+G Add Meter to Inventory (MultiSpeak)	
D3-CIMGetLPData	CIM Meter On Demand Read (Interval)	
D3-CIMMeterOnDemandRead	CIM Meter On Demand Read (Scalar)	
D3-CIMMeterReadingResponse	CIM Meter On Demand Read Response	

Business Object Name	Description
D3-CIMPing	CIM Ping
D3-CIMPingResponse	CIM Ping Response
D3-ConnectDisconStateChgNtf	Connect Disconnect State Changed Notification
D3-InitiateConnectDisconnect	Initiate Connect Disconnect
D3-InitiateMRByMtrNbr	Initiate Meter Read By Meter (MultiSpeak)
D3-MeterAddNotificationMultiSp	Meter Add Notification (MultiSpeak)
D3-MeterExNotificationMultiSp	L+G Meter Exchange Notification
D3-MeterRetireNotification	L+G Meter Retire Notification
D3-MtrRmvNotifMultiSpeak	Meter Remove Notification (MultiSpeak)
D3-ReadingChgNotification	Reading Changed Notification
D3-ScheduleDemandReset	Schedule Demand Reset (Multispeak)
D3-ScheduleDemandResetResponse	Schedule Demand Reset Response (Multispeak)
D3-ReadingChgNotification	Reading Changed Notification

Landis+Gyr Event Data Mapping

The Landis+Gyr event file format maps as follows into the business object, D1-DeviceEventMappingLookup:

Landis+Gyr Flat File Field	Device Event Seeder BO Element	Comments
Transaction ID (from Header record)	External Source Identifier	This is the file name.
Device Identifier	External Device Identifier	
Event Name	External Event Name	
Event Creation Date/Time	Event Date/Time	
Device Type	External Device Type	This element has no real bearing on the device type within MDM/SGG. Its valid values include (although the element itself is free-form):
		Meter
		Collector
		Router
Service Location ID	External Service Location ID	
Communication Module Serial Number	External Communication Module Identifier	
Event Category ID	External Event Category	
Event Severity	External Event Severity	Valid values include (although the element itself is free-form):
		Alert
		Information
Status Value	External Status Value	This represents additional information that relates to the event itself.
Status Date/Time	External Status Date/Time	The date & time at which the additional information referenced above had occurred.

External System

You must create an External System for each external system to which Oracle Utilities Smart Grid Gateway will send messages. Each external system defines a set of outbound message types that will be sent to that system. Each external system outbound message type also specifies the following:

- The processing method used to send the message (Batch or Real-time)
- The corresponding message senders
- Batch Control (if Processing Method is set to Batch)
- Message XSL, W3C Schema, and Response XSL (as applicable)

Outbound Message Types

Acknowledgment and response messages are sent and received validating that commands have been transmitted. These notifications are based on the following outbound message types.

Outbound Message Type	Description
D3-ADDMTRINV	Add Meter to Inventory
D3-COMMS	Commission Device
D3-CONNECT	Connect Device
D3-DECOMMS	Decommission
D3-DEMRESET	Demand Reset
D3-DERDEV	Deregister Device
D3-DISCONNEC	Disconnect Device
D3-DVCSTSCHK	Device Status Check
D3-INITMRN	Initiate Meter Read by Meter Number
D3-INITMTR	Initiate Meter Read by Meter Number
D3-MTRADDNOT	Meter Add Notification Outbound Message Type
D3-MTREX	Meter Exchange Notification OB MSG
D3-MTRRMV	Meter Remove Notification

Inbound / Outbound Service Configuration

The inbound/outbound message utility allows you to configure your system to receive information from and to send information to external applications using XML. The Landis+Gyr adapter for Smart Grid Gateway uses one inbound web service to map device events. This is the same inbound web service used by the D1 application.

Inbound Web Services

Inbound web services define the details of how messages are received from an external system, including the inbound communication business object (or business service or service script) to be invoked when the response message is received. As in the case of inbound communication business objects, the set of inbound web services you need to create is based on the types of messages the system is designed to send.

The Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr includes the following inbound web services:

Inbound Web Service	Description
D1-BulkRequestHeader	Bulk Request Header

Inbound Web Service	Description
D1-BulkRequestUpdate	Bulk Request Update
D1-BulkResponse	Bulk Response
D1-DeviceEventSeeder	Used for upload of device events.
	The Device Event Seeder business object serves as a means of adding device events both from outside the application and from online. Its pre-processing algorithms determine the device event type - which in turn defines the device event BO that should be used to create the device event.
	If a device event type can't be determined, the device event is created using this BO. Such a device event can then be re-processed - and if successful, a new device event is created.
D1-InitialLoadIMD	Used for initial measurement upload.
	The IMDSeeder business object is used to determine the type of initial measurement business object to instantiate when receiving usage readings from a head-end system.
D3-CIMMeterReadingsResponse	CIM Meter On Demand Read Response
	Retrieve response from CIM On Demand Read command
D3-CIMPingResponse	CIM Ping Response
	Retrieve response from CIM Device Status Check command
D3-ConDisconStChgNotification	Initiate Connect Disconnect response.
	Retrieve response from the Initiate Connect Disconnect command.
D3-ReadingChangedNotification	Reading Changed Notification
	Notification that a Landis+Gyr device reading has changed.
D3-ScheduleDemandResetResponse	Scheduled Demand Reset Response
	Retrieve response from Demand Reset command

Message Senders

Message senders define the details of how messages are sent to an external system. As in the case of outbound communication business objects and outbound message types, the set of message senders you need to create is based on the types of messages the system is designed to accept.

The Oracle Utilities Smart Grid Gateway adapter for Landis+Gyr includes the following message senders:

Message Sender	Description	
D3-Comms	Commission Device	
D3-Connect	Connect Device	
D3-Decomm	Decommission Device	
D3-Decomms	Decommissioning Sender	
D3-DemReset	Demand Reset	
D3-DerDevice	Deregister Device	
D3-Disconnec	Disconnect Device	
D3-InitMTR	Initiate Meter Read by Meter Number Outbound Message	
D3-MTREXMS	Meter Exchange Notification Message Sender	

Message Sender	Description
D3-RTSender	Real Time Sender
D3-RTSnd	Real-time Sender (Landis+Gyr)
D3-SDemReset	SG Demand Reset

BPEL Processes

These processes are responsible for performing the conversion from Oracle Utilities format to MultiSpeak 3.0 format, invoking process callouts and invoking the remote endpoint to trigger the device events.

OnDemandRead Composite Process: Invokes the remote endpoint to trigger the on-demand read event. An asynchronous reply responds to the OUAF layer when the reading arrives.

ConnectDisconnect Composite Process: Invokes the remote endpoint to trigger the connect/disconnect event. An asynchronous reply responds to the OUAF layer when confirmation of the requested event arrives.

CommissionDecommission Composite Process: Invokes the remote endpoint to trigger the commission or decommission event. After the synchronous call completes, one of the following second business callout services is invoked to determine if the related "received" or "completed" callout should be executed:

- · isExecutingCommissionReceivedCallout
- isExecutingCommissionCompletedCallout
- isExecutingDecommissionReceivedCallout
- isExecutingDecommissionCompletedCallout
- isExecutingAddMeterToInventoryReceivedCallout
- isExecutingAddMeterToInventoryCompletedCallout
- isExecutingMeterExchangeNotificationReceivedCallout
- isExecutingMeterExchangeNotificationCompletedCallout

CIMOnDemandRead Composite Process: Invokes the remote endpoint to trigger the CIM on-demand read event. An asynchronous reply responds to the OUAF layer when the reading arrives.

CIMDeviceStatusCheck Composite Process: This process is similar to CIM OndemandRead BPEL process. SGG uses the result of On Demand Read command to identify the status of the meter. If reads are successfully returned, then meter is running healthy otherwise it is considered as meter inactive/dead.

DemandReset Composite Process: Invokes the remote endpoint to trigger the demand reset event. An asynchronous reply responds to the OUAF layer when the reading arrives.

LGProcessCallout Composite: This business callout provides a point at which customers and implementers can incorporate custom business logic and transformations. This composite includes the WSDLs and processing logic for all of the MultiSpeak processes. The default implementation of each method is a direct return of the input.

Web Services

These web services are all defined in the Landis+Gyr head end system. The WSDLs were added to a Meta Data Storage (MDS) layer in OUAF and all references to the WSDL point to this MDS location.

Web Service	Related BPEL Process	Description
MR_CB	OnDemandRead	This web service is defined by the Landis+Gyr head end
	CommissionDecommission	system's implementation of MR_Server.

Web Service	Related BPEL Process	Description
	DemandReset	The WSDL defines the interface for requesting a meter
		reading from the head end system.
		The actual definition can be obtained from L&G or
		downloaded from multispeak.org. Build 3.0aa is
		appropriate if obtained from MultiSpeak.
		Default endpoint must be changed in configuration: http://
		demo.turtletech.com/Multispeak/webapi/MR_CB.asmx
CD_CB	ConnectDisconnect	This web service is defined by the Landis+Gyr
		implementation of CB_CD.
		The WSDL defines the interface for requesting a meter's
		connection or disconnection on the head end system.
		This web service defines the interface for reporting a
		connection or disconnection by the head end system.
		This web service is only invoked by the head end system;
		not OUAF.
		Only the CDStateChangedNotification web method is
		implemented in the composite.
		Default endpoint must be changed in configuration: http://
		demo.turtletech.com/Multispeak/webapi/CD_CB.asmx
CIMService	CIMOnDemandRead	This web service is defined by the L+G head end's
	CIMDeviceStatusCheck	implementation of AMIRequest Server.
		The WSDL defines the interface for requesting a meter
		reading from the head end system.
		The actual definition should be obtained from L&G or
		downloaded from L&G SDK for CIM 2.0.
LGProcessCallout	OnDemandRead	Imported from LGProcessCallout Composite
	ConnectDisconnect	Default endpoint must be changed in configuration:
	CommissionDecommission	http://127.0.0.1:8000/soa-infra/services/default/
		LGProcessCallout/LGProcessCallout

Landis+Gyr Command Center Web Services

The following table describes the Land+Gyr Command Center web services and operations used for the Oracle Utilities Smart Grid Gateway command messaging:

Smart Grid Gateway Command	AMI Adapter Business Objects	Landis+Gyr Web Services	Landis+Gyr Operations
Device Commissioning	D3-MeterAddNotificationMultiSp	MR	MeterAddNotification
Device Decommissioning	D3-MtrRmvNotifMultiSpeak	MR	MeterRemoveNotification
Remote Connect/ Remote Disconnect	D3-InitiateConnectDisconnect	CD	InitiateConnectDisconnect
On-Demand Read	D3-InitiateMRByMtrNbr	MR	InitiateMeterReadByMeterNumber
On-Demand Read (CIM)	D3-CIMGetLPData	CIMService	ScheduleDemandRead
	D3-CIMMeterOnDemandRead		
Demand Reset	D3-ScheduleDemandReset	MR	CIM

Chapter 3

Configuring a Landis+Gyr Head-End System

This section outlines the configuration required for the Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr to communicate with the Landis+Gyr Command Center software.

Inbound Web Services

Inbound web services define the details of how messages are received from an external system. This includes incoming usage and device events, as well as messages sent from the L+G Command Center in response to a command request.

The following inbound web services must be configured in your system. If these are not present in your configuration, add them. Refer to the Oracle Utilities Application Framework documentation for more information about creating inbound web services.

Inbound Web Service Name	Description	
D1-BulkRequestHeader	Bulk Request Header	
D1-BulkRequestUpdate	Bulk Request Update	
D1-BulkResponse	Bulk Response	
D1-DeviceEventSeeder	Device Event Seeder	
D1-InitialLoadIMD	IMD Seeder	
D1-PayloadErrorNotif	Payload Error Notification	
D1-PayloadStatistics	Payload Statistics	
D1-PayloadSummary	Payload Summary	
D3-ConDisconStChgNotification	Initiate Connect Disconnect Response	
D3-CIMMeterReadingsResponse*	CIM Meter On Demand Read Response	
D3-CIMPingResponse	CIM Ping Respose	
D3-ReadingChangedNotification*	Reading Changed Notification	
D3-ScheduleDemandResetResponse	Scheduled Demand Reset Response	

^{*}The Landis+Gyr adapter supports both MultiSpeak and CIM On Demand Read commands. You only need to configure the inbound service for the protocol you wish to use.

Note: The following apply to all of the above inbound web services:

Message Options

Trace: NoDebug: NoActive: YesOperations

• Operation Name: Same as web service name

• Schema Type: Business Object

Schema Name: Applicable business object code

Transaction Type: Add

Message Senders

Message senders define the details of how messages are sent to an external system, such as messages containing device command requests.

The following message senders must be configured in your system. If these are not present in your configuration, add them. Refer to the Oracle Utilities Application Framework documentation for more information about creating message senders.

Message Sender	Description	
D3-Comms	Commission Device	
D3-Connect	Connect Device	
D3-Decomm	Decommission Device	
D3-Decomms	Decommissioning Sender	
D3-DemReset	Demand Reset	
D3-DerDevice	Deregister Device	
D3-Disconnec	Disconnect Device	_
D3-InitMTR	Initiate Meter Read by Meter Number Outbound Message	
D3-MTREXMS	Meter Exchange Notification Message Sender	
D3-RTSender	Real Time Sender	
D3-RTSnd	Real-time Sender (Landis+Gyr)	
D3-SDemReset	SG Demand Reset	

Note: The following apply to all of the above message senders:

Main Tab:

• Invocation Type: Real-time

• Message Class: RTHTTPSNDR (Sender routes message via HTTP real-time)

• MSG Encoding: UTF-8 message encoding

Context Tab:

• HTTP Header: SOAPAction: http://xmlns.oracle.com/ouaf/multispeak_3.0/<operation>

• HTTP Login User: <user_id>

HTTP Login Password: <PASSWORD>

• HTTP Method: POST

• HTTP URL 1: http://<em_server>:<em_server_port>/soa-infra/services/D3/<service>/<service>

where:

- <OPERATION>: the operation performed by the message sender (see Operation column in the table above)
- <user_id>: the user ID used to log into WebLogic Enterprise Manager
- <pre
- <em_server_ip>: the machine name or IP address of server where the WebLogic Enterprise Manager is installed
- <em_server_port>: the port where the WebLogic Enterprise Manager is installed
- <service>: the service invoked by the message sender (see Service column in the table above)

Outbound Message Types

Outbound message types define specific types of messages sent to an external system, such as messages containing device command requests.

The following outbound message types must be configured in your system. If these are not present in your configuration, add them. Refer to the Oracle Utilities Application Framework documentation for more information about creating outbound message types.

Outbound Message Type	Description	
D3-ADDMTRINV	Add Meter to Inventory	
D3-COMMS	Commission Device	
D3-CONNECT	Connect Device	
D3-DECOMMS	Decommission	
D3-DEMRESET	Demand Reset	
D3-DERDEV	Deregister Device	
D3-DISCONNEC	Disconnect Device	
D3-DVCSTSCHK	Device Status Check	
D3-INITMRN	Initiate Meter Read by Meter Number	
D3-INITMTR	Initiate Meter Read by Meter Number	
D3-MTRADDNOT	Meter Add Notification Outbound Message Type	
D3-MTREX	Meter Exchange Notification OB MSG	
D3-MTRRMV	Meter Remove Notification	

Note: The following apply to all of the above outbound message types:

• **Business Object**: D1-OutboundMessage (Outbound Message)

• **Priority**: Priority 50

External System

External systems represent external applications with which the Smart Grid Gateway will exchange messages or data. In the case of the Smart Grid Gateway adapters, external systems represent the head-end systems with which the adapters communicate.

An external system that represents the L+G Command Center must be present in your system. If this is not present in your configuration, add it, along with the following Outbound Message Types. Refer to the Oracle Utilities Application Framework documentation for more information about creating external systems.

External System - Landis+Gyr:

• External System: LG

• **Description**: Landis+Gyr

• Outbound Message Types::

Outbound Message Type	Description	Message Sender
D3-ADDMTRINV	Add Meter to Inventory	Message sender associated with the Add Meter to Inventory Outbound Message Type
D3-COMMS	Commission Device	Message sender associated with the Commission Device Outbound Message Type
D3-CONNECT	Connect Device	Message sender associated with the Connect Device Outbound Message Type
D3-DECOMMS	Decommission	Message sender associated with the Decommission Device Outbound Message
D3-DEMRESET	Demand Reset	Message sender associated with the Demand Reset Outbound Message Type
D3-DERDEV	Deregister Device	Message sender associated with the Deregister Device Outbound Message Type
D3-DISCONNEC	Disconnect Device	Message sender associated with the Disconnect Device Outbound Message Type
D3-DVCSTSCHK	Device Status Check	Message sender associated with the Device Status Check Outbound Message Type
D3-INITMRN	Initiate Meter Read by Meter Number	Message sender associated with the Initiate Meter Read By Meter Number Outbound Message Type
D3-INITMTR	Initiate Meter Read by Meter Number	Message sender associated with the Initiate Meter Read By Meter Number Outbound Message Type
D3-MTRADDNOT	Meter Add Notification Outbound Message Type	Message sender associated with the Meter Add Notification Outbound Message Type
D3-MTREX	Meter Exchange Notification OB MSG	Message sender associated with the Meter Exchange Notification Outbound Message Type
D3-MTRRMV	Meter Remove Notification	Message sender associated with the Meter Remove Notification Outbound Message Type

Note: The following apply to all of the above outbound message types:

Processing Method: Real-time
Message XSL: D3-Request xsl
Response XSL: D3-Response.xsl

Service Provider

Service providers represent external entities that serve various roles relative to the application, including head-end systems, billing systems to which the application sends bill determinant data, market participants in a deregulated environment, outage management systems that receive meter event data from the application, or other parties that require or provide information to the system. The head-end systems that collect and send measurement data and meter events to the application are defined as service providers.

A service provider that represents the L+G Command Center must be present in your system. If this is not present in your configuration, add it. Refer to the Oracle Utilities Service and Measurement Data Foundation documentation for more information about creating service providers.

Service Provider - Landis+Gyr:

Service Provider: LG
 Description: Landis+Gyr
 External Reference ID: L+G
 External System: Landis+Gyr
 Out Name/ID in Their System:

• AMI Device ID Type: Internal Meter Number

• AMI Measuring Component ID Type: Channel ID

Processing Methods

Processing methods define the format or means by which a service provider receives and/or sends data from and/or to the application, including as bill determinants, usage data, or device events. Processing methods are also used to define how to create information internal to the application such as initial measurement data and device events. Processing methods can also be used to define how command requests are sent to the L+G Command Center.

The following types of processing methods must be configured for the L+G service provider. Refer to the Oracle Utilities Service and Measurement Data Foundation documentation for more information about configuring processing methods.

Initial Measurement Creation

Initial measurement creation processing methods define the business objects used to create initial measurements. The IMD Seeder inbound web service uses this processing method to determine which type of initial measurement business object to instantiate when receiving usage from the L+G Command Center.

Device Event Mapping

Device event mapping processing methods define how head-end-specific device events are mapped to standard device event names. The Device Event Seeder inbound web service uses this processing method to determine which type of device event business object to instantiate when receiving device events from the L+G Command Center.

UOM Translation

UOM mapping processing methods define how head-end-specific unit of measure (UOM) codes are mapped to standard UOM codes. This processing method is used to determine how to map L+G UOM codes to standard UOM codes when receiving usage from the L+G Command Center.

Commands

Command processing methods define how command requests are sent to a head-end system. More specifically, they define the type of outbound communication business object to create for each type of command, and the outbound message type to send to the head-end system.

The following types of command processing methods can be configured for the L+G service provider, based on the requirements of each implementation using the "How to Create OB COMM/Send OB Message" processing method business object (D1–HowToCreateActivityOBComm).

Command	Processing Role	Default Business Object	Default Outbound Message Type
Device Commission	Device Registration	D3-AddMeterToInventoryMultiSp	Add Meter to Inventory
Device Commission	Device Installation	D3-MeterExNotificationMultiSp	Meter Exchange Notification
Device Decommission	Device Removal	D3-MtrRmvNotifMultiSpeak	Decommission

Command	Processing Role	Default Business Object	Default Outbound Message
			Type Meter Remove Notification
Device Deregistration	Device Deregistration	D3-MeterRetireNotification	Deregister Device
On-Demand Read (Scalar),	On-Demand Read (Scalar)	MS: D3-InitiateMRByMtrNbr	MS: Initiate Meter Read by Meter
Multispeak and CIM		CIM: D3-	Number
		CIMMeterOnDemandRead	CIM: CIM On Demand Read
On-Demand Read (Interval)	On-Demand Read (Interval)	D3-CIMGetLPData	CIM On Demand Read
Demand Reset	Demand Reset	D3-ScheduleDemandReset	Demand Reset
Device Status Check	Device Status Check	D3-CIMPing	Device Status Check
Remote Connect	Remote Connect	D3-InitiateConnectDisconnect	Connect Device
Remote Disconnect	Remote Disconnect	D3-InitiateConnectDisconnect	Disconnect Device

Configuring Endpoint URIs

Part of configuring your Landis+Gyr adapter is configuring your BPEL composites to work with your head-end system by defining the appropriate Endpoint URIs for each of the commands.

The default approach to defining Endpoints URIs is redeployment or reinstallation or the BPEL composites. For example, by default, changing an adapter from using the test harness to a production environment using the actual head end system requires editing the appropriate installation menu options and redeploying the BPEL composites. The Endpoints URIs defined during installation and deployment for each adapter are listed in the **Smart Grid Gateway Installation and Configuration Worksheets** section of the *Oracle Utilities Smart Grid Gateway Installation Guide*.

You can also use an "Endpoint Override" Domain Value Map (DVM) to override Endpoints URIs defined during deployment and installation. This DVM allows defining specific keys that provide an alternate URL that will override the original installed value. Endpoint Override DVMs can be edited using the Oracle SOA Composer.

The Landis+Gyr endpoint override DVM (D3–EndpointOverrides.dvm) uses a specific set of keys, each used for one or more commands. The table below lists the DVM keys available for the Landis+Gyr adapter and the command used with each:

DVM Key	Commands
CIMService	On-Demand Read (Scalar) - CIM
	On-Demand Read (Interval) - CIM
	Device Status Check
CD_CB	Remote Connect
	Remote Disconnect
Metering	Device Commissioning (Registration)
MR_CB	Device Commissioning
	Device Decommissioning
	Device Commissioning (Installation)
	Device Deregistration
	On-Demand Read (Scalar)
	On-Demand Read (Interval)
LGProcessCallout	User Exit Functions

To define an override Endpoint URI for the Landis+Gyr adapter, use the following procedure:

1. Open the SOA Composer for your BPEL configuration.

The URL for the SOA Composer is http://server:port/soa/composer.

- **2.** Select the D3–EndpointOverrides.dvm in the left panel.
 - In Fusion Middleware v12.2.1, this is located under **Shared** in the **Deployment View**, or under **Domain Value Maps** in the **Types View**.
 - In Fusion Middleware v12.2.2, this is located under **Metadata** in the **Deployment View**.

The DVM will open in the right panel. The **Description** field lists the available keys for the DVM (only the first key is shown, but you can scroll through the contents to view the list). The panel also displays a list of previously defined keys.

- 3. Click the Create Session button (above the left panel) to begin an editing session.
- **4.** Click the **Add Domain Values** icon ("+") to add a new key.

The Add Domain Values dialog opens.

- **5.** Enter the appropriate values in the **Add Domain Values** dialog as follows:
 - **key**: The DVM key for the Endpoint URI you wish to define (see the table above).
 - EndpointURI: The override Endpoint URI.
- 6. Click OK.

The new DVM value will appear in the list of keys.

- 7. Click the Save icon to save the DVM values.
- **8.** Click the **Publish** button to activate all the changes in the editing session.

Enter an optional note for the session in the Publish Session dialog.

Changes take effect immediately upon publishing the session.

Click **Discard** to discard your changes.

Click **Exit** to exit your current session. Note that your session will still be open if you exit. Use **Discard** to end your session without making changes.

Chapter 4

Configuring Landis+Gyr Extendable Lookups

This section outlines some of the extendable lookups that must be configured for use with the Landis+Gyr adapter. Refer to the Oracle Utilities Application Framework documentation for more information about working with extendable lookups.

CIM Response Status Extendable Lookup

The CIM Response Status extendable lookup is used to map descriptions to response status codes received from the L+G Command Center.

Each value defined for the CIM Response Status extendable lookup should include the following:

- Response Status: The CIM status code for the response status
- **Description**: A description of the response status
- Usage Flag: The status of the lookup value (can be Active or Inactive)

CIM Data Source Extendable Lookup

The CIM Data Source extendable lookup is used to map descriptions to data sources defined in the L+G Command Center.

Each value defined for the CIM Data Source extendable lookup should include the following:

- Data Source: The CIM code for the data source
- **Description**: A description of the data source
- Usage Flag: The status of the lookup value (can be Active or Inactive)

Landis+Gyr Device Event Mapping

The Landis+Gyr Device Event Mapping extendable lookup is used to determine which type of device event business object to instantiate when receiving device events from the L+G Command Center.

Each value defined for the Landis+Gyr Device Event Mapping extendable lookup should include the following:

- Head-End System Event Name: The event name used by the Landis+Gyr Command Center
- **Description**: A description of the device event
- **Status**: The status of the lookup value (can be Active or Inactive)

• **Standard Event Name**: The standard event name for device events of this type, from the "Standard Event Name" extendable lookup.

Landis+Gyr UOM Code to Standard UOM Mapping

Usage received from Landis+Gyr may use utility-specific unit of measures (UOMs). These custom UOMs must be mapped to standard UOM codes. The Landis+Gyr UOM Code to Standard UOM Mapping extendable lookup is used to determine how to map Landis+Gyr UOM codes to standard UOM codes when receiving usage from the Landis+Gyr Command Center.

Each value defined for the Landis+Gyr UOM Code to Standard UOM Mapping extendable lookup should include the following:

- Head-end UOM: The unit of measure code used by the Landis+Gyr Command Center
- Unit of Measure: The unit of measure defined in the system.
- **Description**: A description of the unit of measure code.

Landis+Gyr Interval Status Code to Condition Mapping

Interval usage received from the Landis+Gyr Command Center can include Landis+Gyr interval status codes that indicate the status or condition of the interval value. These interval status codes must be mapped to standard condition codes in the system. The Landis+Gyr Interval Status Code to Condition Mapping extendable lookup is used to determine how to map Landis+Gyr interval status codes to standard status codes when receiving usage from the Landis+Gyr Command Center.

Each value defined for the Landis+Gyr Interval Status Code to Condition Mapping extendable lookup should include the following:

- Interval Status: The Landis+Gyr interval status code
- Condition: The condition code to which the interval status code is to be mapped, from the Measurement Condition
 extendable lookup.
- **Description**: A description of the interval status code.

Chapter 5

Extending the Landis+Gyr Adapter

The Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr supports a number of commands, including:

- Demand Reset
- Device Commission
- Device Decommission
- Device Deregistration
- Device Status Check (CIM)
- On-Demand Read (Multispeak)
- On-Demand Read (CIM)
- Remote Connect
- Remote Disconnect

The Adapter for Landis+Gyr can be extended to support additional commands provided by the Landis+Gyr Command Center.

Chapter 6

The Landis+Gyr Test Harness

Oracle Utilities Smart Grid Gateway Adapter for Landis+Gyr (LG) includes a test harness that can be configured to simulate the Landis+Gyr Gridstream Command Center head-end system for testing the two-way commands. The test harness is Multispeak 3.0 standard compliant and includes a BPEL composite, web services for standard meter functions, and an XML file that can be used to contain information for one or more meters. This chapter describes the test harness and its components.

Test Harness Design

The L+G Harness is divided into two main layers. A "front end" set of services implements the LG-specified interfaces. They receive requests corresponding to:

- MR CB (Meter Reading Customer Billing)
 - MeterAddNotification
 - MeterRemoveNotification
 - InitiateMeterReadByMeterNumber
- CD_CB (Connect/Disconnect_Customer Billing)
 - InitiateConnectDisconnect

The LG Harness will send below responses to corresponding BPEL composites:

- CB_MR (Customer Billing_Meter Reading)
 - ReadingChangedNotification
- CB_CD (Customer Billing_Connect/Disconnect)
 - CDStateChangedNotification

Each of these services calls into the "back end" layer which defines meters and sets their attributes. These meters are stored in a file within the test harness called meterdb.xml. This file can be modified pre-deployment. Post-deployment changes to the file are not supported. However, the Test Harness retains an in-memory "database" of the meters in the file. The in-

memory representation can be modified using the Utility web services. Note that any changes to the in-memory structure will be lost when the server is restarted or the Test Harness composite is redeployed.

Locating the WSDL for the Test Harness

Follow these procedures to locate the test harness WSDL:

How to Use Enterprise Manager to Locate the WSDL

- 1. Open Enterprise Manager and use the navigation pane to open the dashboard of the test harness composite:
- **2.** The top bar of the dashboard contains several buttons and icons. One of these is a "world" icon with a puzzle piece over it. Click this icon to display a list of the WSDLs and endpoint URIs for the composite:
- 3. Click the UtilService WSDL URL link to see the WSDL in the browser, or right click and save it to your machine

Depending on your requirements, it may be necessary to download the associated schema found in the wsdl:types section. The URL can be pasted into a browser tab and downloaded in the same manner as the WSDL. The main schema has imported schemas that may also be required.

How to Use a Direct URL to locate the WSDL

The WSDL can be accessed without Enterprise Manager by understanding the paths used on the SOA server. In general, they have the following form:

http://{server name}:{port number}/soa-infra/services/{partition}/{Composite}/{Web Service}?WSDL

So by default, the test harness WSDL can be found at

http://{server name}:{port number}/soa-infra/services/LG_Test/LGTestHarness/UtilService?WSDL

Web Services

This section describes the web services included in the Landis+Gyr test harness BPEL composite.

General Services

This section describes the general services of the Landis+Gyr test harness composite.

LoadMeterIndex

This web service loads the data store from the internal file. By default, if the store is already in memory, it will NOT reload. This behavior can be overridden with the forceReload parameter.

Input — LoadMeterIndexInput

Part: payload

Element: LoadMeterIndexRequest

Parameter	Description
forceReload	A switch telling the system whether to reload the meter index from
	the configuration file. Default is false.

Output — LoadMeterIndexOutput

Part: payload

Element: LoadMeterIndexResult

Parameter	Description
loaded	A boolean value for whether or not the index was reloaded from
	the configuration file

Fault — UtilityFault (see UtilityFault for more details).

ViewAuditTrail

This web service returns the audit log for the entire session.

Input - View Audit Trail Input

Part: payload

Element: ViewAuditTrailRequest Output — ViewAuditTrailOutput

Part: payload

Element: ViewAuditTrailResult

An Entry consisting of a timestamp and an Operation. Each entry may have an associated meter object showing the latest update.

Fault — See UtilityFault, above.

UtilityFault

Fault with similar mapping to SGG/OUAF faults:

Typically, the faultCode, faultString, faultActor, and detail/text elements will be populated.

Locate Meter Services

This section describes the locate meter web services of the Landis+Gyr test harness composite.

FindMeters

This web service queries the data store for one or more meters. The difference between GetMeter and FindMeters is GetMeter can return at most one meter and it must match the provided ID exactly. GetMeter will throw an error if the ID is not found. FindMeters can return more than one meter (when using the regex) and will not throw an error when the ID does not match any of the meters in the index.

Part: payload

Element: FindMetersRequest

Parameter	Description
id	The meter ID for which to search
isRegex	The provided id can be a regex value when this parameter is true. Hint: to search for all meters in the system, use ".*" for the ID.

Output — FindMetersOutput

Part: payload

Element: FindMetersResult

Zero or more meter objects can be returned from the search

Fault — See <u>UtilityFault</u>. Unlike other methods, FindMeters does not throw an exception if the meter is not found. As such, it can be used to test for the existence of a Meter prior to querying for it.

IsMeterDefined

This web service queries whether a particular meter is defined in the data store.

Input — IsMeterDefinedInput

Part: payload

Element: IsMeterDefinedRequest

Output — IsMeterDefinedOutput

Part: payload

Element: IsMeterDefinedResult

Whether or not the provided ID is part of the index.

Fault — See UtilityFault. Thrown when meter id is not found.

GetMeter

This web service returns all the attributes of a single meter from the in-memory data store. The difference between GetMeter and FindMeters is GetMeter can return at most one meter and it must match the provided ID exactly. GetMeter will throw an error if the ID is not found. FindMeters can return more than one meter (when using the regex) and will not throw an error when the ID does not match any of the meters in the index.

Input — GetMeterInput

Part: payload

Element: GetMeterRequest

Output — GetMeterOutput

Part: payload

Element: GetMeterResult

The meter object requested by the ID.

Fault — See UtilityFault. Thrown when meter id is not found.

Meter Administration Services

This section describes the meter administration services of the Landis+Gyr test harness composite.

AddMeters

This web service adds a set of meters to the in-memory data store. This will not permanently add it to the control file.

Input — AddMetersInput

Part: payload

Element: AddMetersRequest

Danamatan.	Description	
Parameter	Description	
id	The identification code for the meter.	
macID	A MAC address that must be unique within the system.	
utility	An informational string.	
serviceType	One of the valid ServiceType values (see schema). "Electric" is the only option at this time.	
isCommissioned	Whether or not the meter is in a commissioned state.	
loadActionCode	One of the possible LoadActionCode values used in Connect and Disconnect (see schema).	
outageEventType	One of the possible OutageEventType values used in Device Status Check (see schema).	
executionStatus	One of the possible ExecutionStates (see schema). These values control how the meter will respond to commands.	
groupName	The name linking multiple meters together into a set.	
jobExecutionStatus	One of the possible Job Execution Status values (see schema). This attribute determines how requested jobs perform.	
updateIfExisting	Whether or not to update the meter with the provided values if it already exists in the index.	
Comment	An informational string describing the purpose of the meter.	
Channels	A listing of unit of measures supported by this meter.	
uomCode	A code describing the unit of measure for the channel.	
uomName	A short string containing the name of the unit of measure.	
decimals	The number of digits to the right of the decimal that should be generated when reading the meter.	
description	A longer description of the unit of measure.	

Part: payload

Element: AddMetersResult

Whether or not each meter was added to the index.

Fault — See UtilityFault

RemoveMeter

This web service removes a meter from the in-memory data store. This will not permanently remove it from the control file.

Input — RemoveMeterInput

Part: payload

Element: RemoveMeterRequest

Parameter	Description
id	The ID for the meter to be removed

Output — RemoveMeterOutput

Part: payload

Element: RemoveMeterResult

Whether or not the meter was removed from the index.

Fault — See UtilityFault. Thrown when meter id is not found.

AddMeterChannel

This web service adds a new channel to a single meter.

Input — AddMeterChannelInput

Part: payload

Element: AddMeterChannelRequest

Parameter	Description
id	The identification code for the meter.
uomCode	A code describing the unit of measure for the channel.
uomName	A short string containing the name of the unit of measure.
decimals	The number of digits to the right of the decimal that should be generated when reading the meter.
description	A longer description of the unit of measure.

Output - Add Meter Channel Output

Part: payload

Element: AddMeterChannelResult

Whether or not the channel was added to the index.

Fault — See UtilityFault. Thrown when meter id is not found.

RemoveMeterChannel

This web service removes a Channel from a meter.

Input - Remove Meter Channel Input

Part: payload

Element: RemoveMeterChannelRequest

Parameter	Description	
id	The ID for the meter to be removed.	
uomCode	A code describing the unit of measure for the channel.	
uomName	A short string containing the name of the unit of measure.	

These three parameters are combined to locate a unique channel

Output -- Remove Meter Channel Output

Part: payload

Element: RemoveMeterChannelResult

Whether or not the channel was removed from the meter.

Fault — See UtilityFault. Thrown when meter id is not found.

ReadScalarMeter

This web service generates a scalar reading for each channel of a given meter.

Input — ReadScalarMeterInput

Part: payload

Element: ReadScalarMeterRequest

Parameter	Description
id	The ID for the meter to be read

Output — ReadScalarMeterOutput

Part: payload

Element: ReadScalarMeterResult

Zero or more scalar readings for the given meter.

Parameter	Description	
uomCode	A code describing the unit of measure for the channel.	
uomName	A short string containing the name of the unit of measure.	
decimals	The number of digits to the right of the decimal that should be generated when reading the meter.	
description	A longer description of the unit of measure.	
value	A random number representing the scalar reading.	

Meter Attribute Administration Services

This section describes the meter administration services of the Landis+Gyr test harness composite.

GetLoadActionCode

This web service queries whether the given meter is connected or disconnected. This method is used by the Connect/Disconnect service. The values for load action code are:

- Connect
- Disconnect

Input - GetLoadActionCodeInput

Part: payload

Element: GetLoadActionCodeRequest

Parameter	Description
id	The ID for the meter for which the load action code status should
	be retrieved

Output — GetLoadActionCodeOutput

Part: payload

Element: GetLoadActionCodeResult

The connection status of the requested meter.

Fault — See UtilityFault. Thrown when meter id is not found.

SetLoadActionCode

This web service updates the load action code for a given meter. This method is used by the Connect/Disconnect service. The values for load action code are:

- Connect
- Disconnect

Input — SetLoadActionCodeInput

Part: payload

Element: SetLoadActionCodeRequest

Parameter	Description
id	The ID for the meter for which the load action code status should be set.
value	The new value of LoadActionCode to set on the meter.

Output — SetLoadActionCodeOutput

Part: payload

Element: SetLoadActionCodeResult

The boolean response indicates the success or failure of the update (not the current field status).

Fault — See UtilityFault. Thrown when meter id is not found.

IsCommissioned

This web service queries the commissioning status for a given meter. This service is used by the Commission/Decommission process. The commissioning attribute can be true or false.

Input — IsCommissionedInput

Part: payload

Element: IsCommissionedRequest

Parameter	Description
id	The ID for the meter for which the Commissioned status should be
	retrieved

Output — IsCommissionedOutput

Part: payload

Element: IsCommissionedResult

The value of the Commissioned status attribute for the requested meter.

Fault — See UtilityFault. Thrown when meter id is not found.

SetCommission

This web service updates the commissioning status for a given meter. This service is used by the Commission/Decommission process. The commissioning attribute can be true or false.

Input — SetCommissionedInput

Part: payload

Element: SetCommissionedRequest

Parameter	Description
id	The ID for the meter for which the Commissioned status should be
	set
value	The new value of Commissioned status to set on the meter

Output -- SetCommissionedOutput

Part: payload

Element: SetCommissionedResult

The boolean response indicates the success or failure of the update (not the current field status).

Fault — See UtilityFault. Thrown when meter id is not found.

GetExecutionStatus

This web service queries the status of the property controlling the overall execution of the command. The possible values of execution status are:

- Success The command should complete successfully
- ResponseTimeout The asynchronous response will never arrive
- SyncOperationFail A simulated fault will occur in the during the initial request
- AsyncOperationFailure A simulated fault will occur in the asynchronous response

Input — GetExecutionStatusInput

Part: payload

Element: GetExecutionStatusRequest

Parameter	Description
id	The ID for the meter for which the ExecutionStatus should be
	retrieved

Output — GetExecutionStatusOutput

Part: payload

Element: GetExecutionStatusResult

The value of the ExecutionStatus attribute for the requested meter.

Fault — See UtilityFault. Thrown when meter id is not found.

SetExecutionStatus

This web service updates the property controlling the overall completion of the command. The possible values of execution status are:

- Success The command should complete successfully
- ResponseTimeout The asynchronous response will never arrive
- SyncOperationFail A simulated fault will occur in the during the initial request
- AsyncOperationFailure A simulated fault will occur in the asynchronous response

Input - SetExecutionStatusInput

Part: payload

Element: SetExecutionStatusRequest

Parameter	Description
id	The ID for the meter for which the ExecutionStatus should be set
value	The new value of ExecutionStatus to set on the meter

Output — SetExecutionStatusOutput

Part: payload

Element: SetExecutionStatusResult

The boolean response indicates the success or failure of the update (not the current field status).

Fault — See UtilityFault. Thrown when meter id is not found.

Chapter 7

Landis+Gyr Interval Data Mapping

This section describes how data in Landis+Gyr import files is mapped to the XML document format created by OSB and sent to Oracle Utilities Smart Grid Gateway.

When Landis+Gyr data is processed, it is initially received in a tilda-separated file format, which is converted into a "plan" XML format before being converted into the "result" XML format which is sent to the IMD Seeder and/or Device Event Seeder inbound services.

Non-Interval Usage with Additional Fields

The following is a sample file of non-interval usage that contains additional fields.

ID~PremiseID~ESIID~Provisioned~Meter~kWh~DateTime~Peak~PeakDateTime~Dmd~TouA~TouB~TouC~TouD~TouE~Volts~PF~PremiseID~ESIID~Provisioned~Meter~kWh~DateTime~Peak~PeakDateTime~Dmd~TouA~TouB~TouC~TouD~TouE~Volts~PF~PremiseID~ESIID~Provisioned~Meter~kWh~DateTime~Peak~PeakDateTime~Dmd~TouA~TouB~TouC~TouD~TouE~Volts~PF~PremiseID~ESIID~Provisioned~Meter~kWh~DateTime~PeakDateTime~Dmd~TouA~TouB~TouC~TouD~TouE~Volts~PF~PremiseID~ESIID~Provisioned~Meter~kWh~DateTime~PeakDateTime~Dmd~TouA~TouB~TouB~TouD~TouE~Volts~PF~PremiseID~ESIID~Provisioned~Meter~kWh~DateTime~PeakDateTime~Dmd~TouA~TouB~TouB~TouD~TouB~Volts~PF~PremiseID~ESIID~ES

 $EMED01 \sim SL002 \sim \sim 96968280 \sim 34315.000 \sim 08042010120000 AM \sim 2.66 \sim 03122009063000 AM \sim \sim 34315.000 \sim 0.000 \sim 0.0000 \sim 0.000 \sim 0.00$

 $EMED01 \sim SL001 \sim \sim 96968285 \sim 33693.000 \sim 08042010120000 AM \sim 2.62 \sim 03122009061500 AM \sim \sim 33693.000 \sim 0.000 \sim 0.000$

This data is mapped to the "plain" XML format.

XML 'Plain' XML Format

The "Plain" XML contain elements to hold the extra fields (highlighted in bold).

```
<xs:element name="Origin"/>
          <xs:element name="ServProvExtRefId"/>
          <xs:element name="RecordType">
              <xs:simpleType>
                <xs:restriction base="xs:string">
                  <xs:enumeration value="MEPMD01" />
                  <xs:enumeration value="EMED01" />
                </xs:restriction>
              </xs:simpleType>
            </xs:element>
          <xs:element name="RecordVersion" minOccurs="0">
              <xs:simpleType>
                <xs:restriction base="xs:string">
                  <xs:enumeration value="20080519" />
                </xs:restriction>
              </xs:simpleType>
            </xs:element>
          <xs:element name="TimeStamp" />
          <xs:element name="Premise" minOccurs="0" />
          <xs:element name="ESIID" minOccurs="0" />
          <xs:element name="Provisioned" minOccurs="0" />
          <xs:element name="MeterID" />
          <xs:element name="Purpose" minOccurs="0" />
          <xs:element name="Comodity" minOccurs="0" />
          <xs:element name="Units" minOccurs="0" />
          <xs:element name="CalcConst" minOccurs="0"/>
          <xs:element name="Interval" minOccurs="0"/>
          <xs:element name="Count" minOccurs="0"/>
          <xs:element name="FirstIntervalDateTime" />
          <xs:element name="Data">
            <xs:complexType>
              <xs:sequence>
                <xs:element name="Row" maxOccurs="unbounded" minOccurs="0">
                  <xs:complexType>
                    <xs:attribute name="v" />
                    <xs:attribute name="s" />
                  </xs:complexType>
                </xs:element>
              </xs:sequence>
            </xs:complexType>
          </xs:element>
          <xs:element name="kWh" minOccurs="0" />
          <xs:element name="Peak" minOccurs="0" />
          <xs:element name="PeakDateTime" minOccurs="0" />
          <xs:element name="Dmd" minOccurs="0" />
          <xs:element name="TouA" minOccurs="0" />
          <xs:element name="TouB" minOccurs="0" />
          <xs:element name="TouD" minOccurs="0" />
          <xs:element name="TouC" minOccurs="0" />
          <xs:element name="TouE" minOccurs="0" />
          <xs:element name="Volts" minOccurs="0" />
          <xs:element name="PF" minOccurs="0" />
          <xs:element name="ExtraFields" minOccurs="0">
            <xs:complexType>
              <xs:sequence>
                <xs:element name="ExtraField" maxOccurs="255"minOccurs="0">
                  <xs:complexType>
                    <xs:sequence>
                      <xs:element name="FieldName" minOccurs="0"/>
                      <xs:element name="FieldValue" minOccurs="0"/>
                    </xs:sequence>
                  </xs:complexType>
                </xs:element>
              </xs:sequence>
           </xs:complexType>
          </xs:element>
          <xs:element name="RawData"/>
        </xs:sequence>
      </xs:complexType>
   </xs:element>
 </xs:sequence>
</xs:complexType>
```

Non-Interval Usage to 'Plain' XML Mapping

The following table shows the mapping between fields in incoming non-interval data and child elements of MeterReads/MeterRead element in the "Plain" XML format:

L+G Interval Structure Field	"Plain" XML element
ID	RecordType
Premise ID	Premise
ESIID	ESIID
Provisioned	Provisioned
Meter	MeterID
kWh	kWh
Date/Time of initial Read	FirstIntervalDateTime
Peak	Peak
Peak Date/Time	PeakDateTime
Dmd	Dmd
TouA	TouA
TouB	TouB
TouC	TouC
TouD	TouD
TouE	TouE
Volts	Volts
PF	PF
<pre><extrafieldnamel></extrafieldnamel></pre>	ExtraFields/ExtraField/FieldName with value of <extrafieldname1></extrafieldname1>
	ExtraFields/ExtraField/FieldValue with value in <extrafieldname1></extrafieldname1>
<extrafieldname2></extrafieldname2>	ExtraFields/ExtraField/FieldName with value of <extrafieldname2></extrafieldname2>
	ExtraFields/ExtraField/FieldValue with value in <extrafieldname2></extrafieldname2>
<extrafieldname3></extrafieldname3>	ExtraFields/ExtraField/FieldName with value of <extrafieldname3></extrafieldname3>
	ExtraFields/ExtraField/FieldValue with value in <extrafieldname3></extrafieldname3>
<extrafieldnamen></extrafieldnamen>	ExtraFields/ExtraField/FieldName with value of <extrafieldnamen></extrafieldnamen>
	ExtraFields/ExtraField/FieldValue with value in <extrafieldnamen></extrafieldnamen>
RawData	A record content from incoming file.

'Plain' XML to IMD Mapping

The following table outlines how data from the "plain" XML format is mapped to the InitialLoadIMD format when the Landis+Gyr record type is set to "MEPMD01" (interval usage).

"Plain" XML element	InitialLoadIMD element Note
Record Type	N/A
RecordVersion	N/A
Premise ID	N/A
ESIID	N/A
Provisioned	N/A

"Plain" XML element	InitialLoadIMD element	Note
Meter ID	dvcldN	as is
Purpose	N/A	
Commodity	N/A	
Units	externalUOM	as is
CalcConst	mcm	as is
Interval	spi	Transform from DDHHMM to SPI
Count	N/A	
FirstIntervalDateTime	stDt	Convert to OUAF date/time format
Data	msrs	Value -> msrs/mL/q
Status -> msrs/mL/sts/stsL/st		
N/A	imdType	'D1IL
Origin	externalld	the origin attribute in "Plain" XML (incoming file name)
N/A	serviceProviderExternalId	L+G
RawData	rawData	Vendor-specific "raw" data

Non-Interval 'Plain' XML to IMD Mapping

The following table outlines how non-interval data in the "plain" XML format is mapped to the InitialLoadIMD format when the Landis+Gyr record type is set to "EMED01" (non-interval usage).

"Plain" XML Element	InitialLoadIMD element	Notes
RecordType	N/A	
Premise	N/A	
ESIID	N/A	
Provisioned	N/A	
MeterID	dvcldN	as is
kWh	enQty	as is
	uom	KWH
TimeStamp	enDt	Convert to OUAF date/time format
		This should be mapped to enDt. Relevant only to non-interval data.
Peak	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KW</uom>
PeakDateTime	enDt	Convert to OUAF date/time format
Dmd	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KW and 'Dmd' in " <mcidn></mcidn></uom>
TouA	enQty	as is
		A separate IMD Seeder will be created with $$ in IMD Seeder populated with KWH and 'kWh Rate A' in " $$
TouB	enQty	as is
		A separate IMD Seeder will be created with <code><uom></uom></code> in IMD Seeder populated with KWH' and 'kWh Rate B' in " <code><mcidn></mcidn></code>
TouC	enQty	as is

"Plain" XML Element	InitialLoadIMD element	Notes
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KWH and 'kWh Rate C' in "<mcidn></mcidn></uom>
TouD	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KWH and 'kWh Rate D' in " <mcidn></mcidn></uom>
TouE	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with KWH and 'kWh Rate E' in "<mcidn></mcidn></uom>
Volts	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with Volts</uom>
PF	enQty	as is
		A separate IMD Seeder will be created with <uom> in IMD Seeder populated with PF</uom>
N/A	imdType	D1IL
Origin	externalld	the origin element in "Plain" XML (incoming file name)
N/A	serviceProviderExternalId	L+G
		This is a constant. There is no such field in incoming structure.
RawData	rawData	Vendor-specific "raw" data
		When the "populateRawIMD" parameters in the EnvironmentSettings.xq file is set to true.

Mapping Additional Fields

Measurement and device event files received from the Landis+Gyr head-end system can include additional fields containing data to be imported into Oracle Utilities Smart Grid Gateway. These additional fields must be mapped to elements within the XML document processed by OSB and sent to Smart Grid Gateway.

This mapping can be performed through use of a custom XQuery document, specified in the EnvironmentSettings.xq file via the "modifyResultXMLInput" parameter.

The following sample XQuery documents illustrate how additional fields can be mapped into the XML format sent to Smart Grid Gateway.

Sample XQuery — Initial Measurements

The following XQuery is an example that shows a transformation that passes in a root element with 3 children (the "result" XML, the "plain" XML, the environment settings) that returns a modified "result" XML For testing purposes, it changes the original value in the <enQty> "result" element and replaces it with a value from the "plain" XML depending on an environment setting variable. The <serviceProviderExternalId> value was also replaced by a hard-coded value.

Sample XQuery — Device Events

The following XQuery is an example that shows a transformation that passes in a root element with 3 children (the "result" XML, the "plain" XML, and the environment settings) and returns a modified "result" XML For testing purposes, it changes the original value in the <externalCommunicationModuleIdentifier> "result" element and replaces it with a value from the "plain" XML depending on an environment setting variable. The <externalServiceLocationId> value is also replaced by a hard-coded value.

```
declare namespace lan = "http://xmlns.oracle.com/LandisGyrEvent";
declare namespace xf = "http://tempuri.org/D3/event";
declare namespace soap = "http://schemas.xmlsoap.org/soap/envelope/";
declare function xf:modifyResultXML($modifyResultXMLInput as element(*)) as element(*){
 <DeviceEventSeeder>
    <externalSenderId>{data($modifyResultXMLInput/DeviceEventSeeder/externalSenderId) }/
externalSenderId>
    <deviceIdentifierNumber>{ data($modifyResultXMLInput/DeviceEventSeeder/
deviceIdentifierNumber) }</deviceIdentifierNumber>
    <externalEventName>{ data($modifyResultXMLInput/DeviceEventSeeder/externalEventName) }
externalEventName>
   <eventDateTime>{ data($modifyResultXMLInput/DeviceEventSeeder/eventDateTime) }/
eventDateTime>
    <externalSourceIdentifier>{ data($modifyResultXMLInput/DeviceEventSeeder/
externalSourceIdentifier)
}</externalSourceIdentifier>
    <eventInformation>
      <externalEventCategory>{data($modifyResultXMLInput/DeviceEventSeeder/eventInformation/
externalEventCategory)
}</externalEventCategory>
      <externalEventSeverity>{data($modifyResultXMLInput/DeviceEventSeeder/eventInformation/
externalEventSeverity)
}</externalEventSeverity>
     <externalDeviceType>{data($modifyResultXMLInput/DeviceEventSeeder/eventInformation/
externalDeviceType)
}</externalDeviceType>
      <externalServiceLocationId>{1234 }</externalServiceLocationId>
     if ($modifyResultXMLInput/EnvironmentSettings/testA="true")
      then <externalCommunicationModuleIdentifier>{ data($modifyResultXMLInput/lan:DeviceEvents/
lan:DeviceEvent/lan:DeviceType)}</externalCommunicationModuleIdentifier>
     else <externalCommunicationModuleIdentifier>{data($modifyResultXMLInput/lan:DeviceEvents/
lan:DeviceEvent/lan:CategoryId)}</externalCommunicationModuleIdentifier>
     <externalStatusValue>{data($modifyResultXMLInput/DeviceEventSeeder/eventInformation/
externalStatusValue)
}</externalStatusValue>
     <externalStatusDateTime>{data($modifyResultXMLInput/DeviceEventSeeder/eventInformation/
externalStatusDateTime)}</externalStatusDateTime>
    </eventInformation>
  </DeviceEventSeeder>
declare variable $modifyResultXMLInput as element(*) external;
xf:modifyResultXML($modifyResultXMLInput)
```