
Start

Oracle® Documaker

Connector
Developer Guide
12.6.2

Part number: E96926-01

October 2018

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

CONTENTS

Preface ..4
Audience .. 4
Documentation Accessibility .. 4
Related Documents .. 5
Conventions ... 5

Introduction ..6
Overview ..7
Moving Documents ..9
Documaker Connector Components ..10
The Development Philosophy ..12

Developing Source Components ..13
Overview ..14
Source Component Details ..15
An Example Source ...17
The Source Implementation ... 18

Developing Destination Components ..22
Overview ..23
Destination Component Details ..24
An Example Destination ...25
The Destination Implementation .. 26

Developing Periodic Processes ..28
Overview ..29
An Example Periodic Process ..30

Developing Phase Listeners ...31
Overview ..32
Phase Listener Component Details ..33
An Example Phase Listener ...34
The Phase Listener Implementation .. 34
Standard Source Configuration Properties ..37
Standard Configuration Properties ...38
BatchLoaderSource Implementation ..40
BatchLoaderSystem Implementation ...43
BatchLoaderDocumentData Implementation ...53
FileECMDocument Implementation ...56
FTPDestination Implementation ... 58
FTPDestinationSystem Implementation ...59
MockPhaseListener Implementation ..76

4

Preface

This manual contains information a developer can use to create custom applications
for transferring documents using Oracle Documaker Connector.

AUDIENCE
This document is intended for developers who are creating new source or destination
components for use with Documaker Connector. Experience as a Java developer is
necessary, as well as programmer domain-knowledge in the APIs for the document
source or destination product to be used.

DOCUMENTATION ACCESSIBILITY

Accessibility of Links to External Web Sites in
Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.

Oracle Customer Support

If you have any questions about the installation or use of our products, please call
+1.800.223.1711 or visit the My Oracle Support website:

http://www.oracle.com/us/support/index.html.

Go to My Oracle Support to find answers in the Oracle Support Knowledge Base,
submit, update or review your Service Requests, engage the My Oracle Support
Community, download software updates, and tap into Oracle proactive support tools
and best practices.

Hearing impaired customers in the U.S. who need to speak with an Oracle Support
representative may use a telecommunications relay service (TRS); information about
TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of
phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.
International hearing impaired customers should use the TRS at 1.605.224.1837.

http://www.fcc.gov/cgb/consumerfacts/trs.html
http://www.fcc.gov/cgb/dro/trsphonebk.html
http://www.oracle.com/us/support/index.html

Preface

5

Contact

USA:+1.800.223.1711

Canada: 1.800.668.8921 or +1.905.890.6690

Latin America: 877.767.2253

For other regions including Latin America, Europe, Middle East, Africa, and Asia
Pacific regions: Visit- http://www.oracle.com/us/support/contact/index.html.

Follow us

 https://blogs.oracle.com/insurance

 https://www.facebook.com/oraclefs

 https://twitter.com/oraclefs

 https://www.linkedin.com/groups?gid=2271161

RELATED DOCUMENTS
For more information, refer to the following Oracle resources:

• Documaker Connector Installation Guide

• Documaker Connector Administration Guide

• Java programming resources

• API documentation for your source and destination systems

CONVENTIONS
The following text conventions are used in this document:

Convention Description

bold Indicates information you enter.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands, URLs, code in examples, and text that appears on the
screen.

https://blogs.oracle.com/insurance
https://www.facebook.com/oraclefs
https://twitter.com/oraclefs
https://www.linkedin.com/groups?gid=2271161

6

Chapter 1

Introduction

This chapter provides an overview of Documaker Connector and the components
that comprise it. This chapter includes these topics:

• Overview on page 7

• Moving Documents on page 9

• Documaker Connector Components on page 10

• The Development Philosophy on page 12

Overview

7

OVERVIEW

Moving documents between applications which do not have a common interface has
traditionally been a manual and tedious job. You can create batch and/or cron jobs
to automate this process, but these tend to be very specific and not reusable.

Documaker Connector provides a pipeline to move documents between applications.
The basic model of the Documaker Connector is that there is a source of incoming
or generated documents and a destination where those documents are to be sent or
stored. It consists of these parts:

The source and destination interfaces are customizable and this chapter explains how
to create new implementations of these components.

For example, the source might be a document automation solution, such as Oracle
Documaker, which may run continuously or on demand. Such an application can, for
example, push output documents into a file system directory or into database storage
with the documents in large-objects (LOB).

The destination could be an electronic content management system such as Oracle
WebCenter Content Core Capabilities, previously known as Oracle Universal
Content Management (UCM), or another service such as a queue system or web
service that leads to an archive or distribution, such as a printing or email.

Documaker Connector eases the fail-safe transfer of the documents from the source
to the destination, providing status reporting and restart and recovery if necessary.
The interfaces to the source and destination systems are encapsulated in replaceable
components which adhere to defined interfaces to the core Documaker Connector
engine.

In addition to the stand-alone Documaker Connector application, this same
technology is integrated with Documaker Enterprise Edition and Document Factory.
Destination components developed to work with Documaker Connector also
function as destinations for Document Factory’s Archiver.

It is important to note that sources and destinations are not designed to work with
each other. Instead, they are each designed to work with Documaker Connector
interfaces that are independent of any source or destination. This way, any source
should work with any destination, and vice versa.

Source
Interface

Component

Destination
Interface

Component

Documaker Connector Framework

Documaker Connector API

Document
Input/Publishing

System

Document
Storage/Archive

System

Documaker Connector
Engine

Overview

8

By implementing a new source or destination component which adheres to these
defined interfaces, you can create a new pipeline without domain knowledge of the
other systems involved (those for which you are not writing the interface
components).

Moving Documents

9

MOVING DOCUMENTS

Moving documents from a source application to a destination application via the
Documaker Connector API consists of these steps:

1. The client application, such as Documaker Connector or the Archiver, acquires
a Source instance from the Documaker ConnectorFramework, optionally
specifying a Source and/or Destination identifier.

Source aSrc = ConnectorFramework.getInstance().acquireSource();

2. The client application calls importDocuments on the Source instance.

int docCount = aSrc.importDocuments();

3. The Source instance acquires a list of DocumentData objects, usually by
querying the source application.

For each document acquired in step 3, repeat the next three steps:

4. The Source instance sends a DocumentData object to its associated Destination
instance.

5. The Destination instance imports the DocumentData object into the destination
application and sets the DocumentData's result code and description based on
the import result.

6. Once the destination process is complete for that DocumentData object, control
returns to the Source instance where it processes the result of the import attempt
and possibly updates the source application or some other system.

7. Finally, control is returned to the client application which may...

• Return to step 2

• Release the Source instance and continue processing

ConnectorFramework.getInstance().returnSource(aSrc);

• Release the Source instance and go back to step 1 and start over

The Documaker Connector client application executes these steps in one of these
modes of operation:

Mode In this mode, this process is

Server Repeated by each source component instance for as long as the application is running.

Singleton Executed until each source component replies with an empty document list. Then the application
exits.

Note For more information about the configuration and execution of Documaker Connector,
see the Documaker Connector Installation Guide.

http://docs.oracle.com/cd/E96926_01/Connector_ig_12.6.2.pdf

Documaker Connector Components

10

DOCUMAKER CONNECTOR COMPONENTS

The Documaker Connector is comprised of a number of components that work
together to provide its functionality. You can customize all of these components,
except the Connector Framework component, to...

• Acquire documents from a new source

• Import documents into a new destination

• Provide additional document metadata to the destination

External to the import process are the periodic process components. These generally
provide functionality to maintain Documaker Connector's environment. This
includes tasks like cleaning up temporary files, updating services, and so on.

The Configuration Component

The configuration component is a list of name/value pairs that contain the
configuration information for each of the other Documaker Connector components.
This component is generally not customized but it can be customized if necessary.
You can simply add name/value pairs to handle most situations without the need for
specialization.

The Documaker Connector Framework

This is the main interface client applications use to interact with Documaker
Connector. Along with managing the lifetimes of almost all of the other components,
this singleton provides access to the source-to-destination channel, which consists of
of a source, a destination, and phase listener components.

Destination Components

The interface between Documaker Connector and the destination system is
implemented via a specialization of the destination component. Based on properties
provided by the configuration component, the specific implementations establish
connections to the destination system, correctly package documents and metadata,
import those packages, and safely close destination system connections.

Class oracle.documaker.ecmconnector.connectorapi.data.ConfigurationData

Class oracle.documaker.ecmconnector.connectorapi.frameworks.ConnectorFramework

Class oracle.documaker.ecmconnector.connectorapi.Destination

Documaker Connector Components

11

Document Data Components

Each document that passes through Documaker Connector has a set of associated
metadata that can describe everything from the author to policy information to
security to legal dispensation. All of this information is collected in the Document
Data component that accompanies the document instance from the source to the
destination components.

Periodic Processes

Depending on the generation and importation of documents (the usage of the
Documaker Connector), it may happen that there are additional functional steps that
need to be taken outside the standard process. The periodic process component
provides the framework for the implementation of this functionality as well as its
integration into Documaker Connector.

Phase Listeners

During the importation of a document or list of documents, a number of milestones
(phases) occur. Examples of these phases are before the acquisition of the document
list or after the destination imports a single document, and so on. The phase listener
component gives the developer and system administrator the opportunity to insert
additional functionality at each of these points.

Source Components

Source components define the interaction between the Documaker Connector
channel and the document generation (source) system. These specializations are
responsible for acquiring a list of documents (along with metadata) to import, for
sending each of these to the destination component, and for processing the results of
the destination's import attempt.

Class oracle.documaker.ecmconnector.connectorapi.data.DocumentData

Class oracle.documaker.ecmconnector.connectorapi.process.PeriodicProcess

Class oracle.documaker.ecmconnector.connectorapi.PhaseListener

Class oracle.documaker.ecmconnector.connectorapi.Source

The Development Philosophy

12

THE DEVELOPMENT PHILOSOPHY

These Documaker Connector components were implemented using the concept of
inversion of control:

• Source

• Destination

• Phase Listener

• Periodic Process

Their basic functional paths are set, although specializations can provide custom
behavior at each step in their processing. Because of this rigor, implementations of
these components generally do not need any internal knowledge of any others. The
notable exception being periodic processes which are designed to work with
particular source or destination implementations.

13

Chapter 2

Developing Source Components

This chapter contains information you can use to develop source components for use
with Oracle Documaker Connector. This chapter includes these topics:

• Overview on page 14

• Source Component Details on page 15

• An Example Source on page 17

• The Source Implementation on page 18

Overview

14

OVERVIEW

As described earlier, the source components define the interaction between the
Documaker Connector channel and the document generation (source) system. This
interaction follows series of steps that perform these tasks:

• Acquire a list of documents

• Individually send those documents to the destination component

• Process the results of each import attempt

While there are several pre-packaged source components, you may want to create a
custom version to use with an unsupported document generation facility. When you
create a new specialization of the Source class, consider these questions:

• Where are the documents stored and how will their contents be accessed by the
source implementation?

• Where is the metadata (the information about, but not part of each document)
associated with each document stored?

• What is required to maintain the environment in which each instance will be run?

• How will the results from the destination component be processed?

Source Component Details

15

SOURCE COMPONENT DETAILS

To answer the source development questions, a detailed knowledge of the source
component's functional steps is required (or at least highly desired). In the
introduction, we saw where the main functions of the source component occur:

• At the beginning of the import request with the acquisition of the document list

• After each destination import attempt with the processing of the document's
results

This list describes each activity that takes place during an import request, such as
when a client application calls the Source.importDocuments function.

1. Each of the registered PREACQUIREDOCUMENTS phase listeners is
executed followed by the
Source.preAcquireDocumentList(List<DocumentData> documentList)
function. Any custom functionality that needs to execute before the documents
are acquired should either be implemented as a phase listener for this step or via
the override method.

2. The Source.acquireDocumentList(List<DocumentData> documentList)
function is called. This is normally where the source specialization interacts with
the document generation system (database, file system, and so on) to acquire the
list of documents and their metadata.

3. Each of the registered POSTACQUIREDOCUMENTS phase listeners is
executed followed by the
Source.postAcquireDocumentList(List<DocumentData> documentList)
function.

4. Each of the registered PRESUBMITALLDOCUMENTS phase listeners is
executed followed by the
Source.preSubmitAllDocuments(List<DocumentData> documentList)
function.

The destination's PREIMPORTALLDOCUMENT phase is executed at this
point.

5. A document is sent to the destination for import via the
Destination.importSingleDocument(DocumentData documentData) function.

6. Each of the registered PREPROCESSRESULTS phase listeners is executed
followed by the Source.preProcessResults(DocumentData documentData)
function.

7. The Source.processResults(DocumentData documentData) function is called to
process the results of the current document's import attempt.

8. Each of the registered POSTPROCESSRESULTS phase listeners is executed
followed by the Source.postProcessResults(DocumentData documentData)
function.

Steps 5-8, are repeated for each document on the list acquired in step 2. Once all
of the documents on the list have been through steps 5-8, the destination's
PREIMPORTALLDOCUMENT phase is executed.

Source Component Details

16

9. Each of the registered POSTSUBMITALLDOCUMENTS phase listeners is
executed followed by the
Source.postSubmitAllDocuments(List<DocumentData> documentList)
function.

10. The number of documents in the acquisition list is returned as the function exits.

You can introduce custom functionality to the source component in these ways:

• Override one of the methods called from importDocuments

• Configure a phase listener which will execute at the appropriate point in the
sequence

An Example Source

17

AN EXAMPLE SOURCE

Here is a brief description of the requirements for a source implementation that
processes batch files generated by the Oracle WebCenter Content BatchLoader
application (BatchLoader source component). The only objective is to be able to
make the documents (files) from a batch file available to Documaker Connector.

The Batch Loader source reads a single plain text file which contains a sequence of
multiline file reference entries. This file is called a batch file. Each file reference
includes a path to the file and a variable length list of name/value pairs which provide
metadata about each document. A sample from the WebCenter Content
documentation is this:

#This is a comment...
Action=insert
dDocName=Sample1
dDocType=Report
dDocTitle=Title of first document to be checked in
dDocAuthor=sysadmin
dSecurityGroup=Public
primaryFile=sample1.doc
dInDate=5/14/04
<<EOD>>

The only supported action for the sample component is insert. Each entry must end
with this end-of-data marker:

<<EOD>>

A pound sign (#) indicates a comment, which is ignored when the file is processed.
The primaryFile field gives the path to the file to be stored. The other lines are
properties for the document record.

The Batch Loader source can instead be configured with a batch queue file which is
a plain text file that contains the paths to multiple above-described batch files listed
one per line. This batch queue file can be appended to while Documaker Connector
is running to add batch files to the queue. This allows the Batch Loader source to be
usable with a Documaker Connector running as a service or daemon in Server mode.

Another process can add new lines to the end of the batch queue file. The Batch
Loader source will read and remove the first line of the batch queue file and use it as
a path to a batch file to process. When all the files in that batch file have been
processed, the Batch Loader returns to the batch queue file for the next line. When
the file is empty, the source returns an empty document list to Documaker
Connector. If Documaker Connector is running in Server mode, the source will
eventually be called again after a polling interval expires. Otherwise, the source
instance is terminated.

The BatchLoader source implementation includes these classes:

Class Name Extends Class Description

BatchLoaderSource Source Uses the BatchLoaderSystem class to read a list of
incoming files and translates that list into an
acceptable source output list for the engine. Also,
processes a list which is returned with result
statuses.

An Example Source

18

THE SOURCE IMPLEMENTATION
The Source class acquires lists of documents to be processed by the destination
component. It is the conduit between the document generation application and the
configured Destination class. As such, it has a number of methods that need to be
specialized to properly interact with the source application:

• The class constructor accepts a ConfigurationData object and a String identifier

• The acquireDocumentList method is called to query the Source for any
documents waiting to be imported

• The processResults method is called after each set of documents have been
imported

• The repair method is called periodically after an error has occurred in the Source
instance to give it an opportunity to recover

The BatchLoaderSource implementation is shown here:

To see how this version of source was completed, let’s look at each method in more
detail.

For the BatchLoader source implementation, you need to read from batch files. You
also need to remember where in the batch you are between requests for document
lists. A batch file could have records for a million documents. You cannot process
all of them at once. If a batch queue file is being used to submit multiple batch files,
you will need to span batch files if necessary and you will need to know which files
have been processed.

BatchLoaderSystem (none) Internal singleton class which handles maintaining
state and reading the configuration and incoming
batch input/definition files.

BatchLoaderDocumentData DocumentData An extension of DocumentData that remembers
the document's original batch file name.

BatchLoaderProcess PeriodicProcess Implements the periodic cleanup of processed
document files.

BatchLoaderSourceException SourceException Specializes the exception thrown on errors by
some BatchLoader source classes.

Class Name Extends Class Description

acquireDocumentList
Converts the batch file

records into
DocumentData instances

processResults
Updates the import error
file with any records that

failed

An Example Source

19

For this implementation, you will create a singleton to manage these requirements
and have the Source specialization interact with this class instead of the batch and
other files directly. This simplifies the configuration of the BatchLoaderSource
class. It reads one property (batchloader.source.max.records) and configures the
singleton’s instance.

The BatchLoaderSource's constructor

public BatchLoaderSource(ConfigurationData configData,
 String sourceId) throws SourceException {

super(configData, sourceId);
maxBatchSize = Integer.parseInt(configData.getProperty(

 "batchloader.source.max.records", "1"));
 if (maxBatchSize < 1)
 maxBatchSize = 1;

 if (batchSystem == null) {
 batchSystem = BatchLoaderSystem.getInstance();
 batchSystem.configure(configData);
 }
}

The BatchLoaderSystem’s configure method is more complicated as it:

• Reads and interprets more of the configuration data and stores it internally

• Checks for a configured batch file and if none, checks for a configured batch
queue file

• Validates the path to the directory containing the various error files

• Opens the initial batch file, either the one configured or removes the first entry
from the batch queue file and opens that one

As mentioned before, acquireDocumentList converts the batch records that contain
each document’s details into DocumentData objects that the Destination instance
can process. The source of these records in this example is the BatchLoaderSystem
class, which is in charge of managing the batch files.

The BatchLoaderSource's acquireDocumentList method

public void acquireDocumentList(List<DocumentData> documentList)
throws SourceException {
 Vector<Properties> fileRecords =
 batchSystem.acquireBatchFileList(maxBatchSize);
 String batchId = UUID.randomUUID().toString();

 for (Properties fileRecord : fileRecords) {
 String primaryFile = fileRecord.getProperty("primaryFile");
 String batchFileName =

fileRecord.getProperty(BatchLoaderSystem.BATCHFILENAME);

 if (primaryFile == null || primaryFile.isEmpty() == true) {
 batchSystem.writeBadRecordToFile(fileRecord,
 "\"primaryFile\" property is missing", null, false);
 continue;
 }

 ECMDocument ecmDoc = new FileECMDocument(primaryFile);
 DocumentData metaData =

An Example Source

20

 new BatchLoaderDocumentData(batchId, ecmDoc,
batchFileName);
 Enumeration keys = fileRecord.keys();

 try {
 while (keys.hasMoreElements()) {
 String key = (String)keys.nextElement();

 if ((key.equalsIgnoreCase("Action") == true) ||
 (key.equals(BatchLoaderSystem.BATCHFILENAME) ==
true))
 continue;

 if (key.toLowerCase().indexOf("date") >= 0)
 metaData.put(new DataIdentifier(key, true),
 dateFormat.format(batchDateFormat.parse(
 fileRecord.getProperty(key))));
 else
 metaData.put(new DataIdentifier(key),
 fileRecord.getProperty(key));
 }

 documentList.add(metaData);
 } catch (Exception genErr) {
 batchSystem.writeBadRecordToFile(fileRecord,
 "Invalid date format", null, false);
 }
 }
}

There are a number of items referenced in this method. The DocumentData class
contains the following:

• Each document’s information

• A reference to the document’s content wrapper class (the ECMDocument
implementation)

• After the import is complete, the result code and description

Since the destination component may processes date metadata differently from other
types, the DataIdentifier class contains the name of each piece of metadata and
whether it is a date or not.

Looking through the code, you can see the tasks most source specializations need to
complete.

• Get the list of document data from the source system or application (typically in
that system’s format)

• Determine the batch’s identifier (this often comes from the source system)

• For each item from the source system...

• Create an ECMDocument instance referencing the document’s contents

• Create a DocumentData instance to hold the document’s metadata

• Copy the document data into the DocumentData instance

Note The system assumes that if a property has the text date in its name, it is a date.

An Example Source

21

• Add the DocumentData instance to the DocumentData list

Once the Destination has processed each document, the list is returned to the source
implementation as a parameter to the processResults method call. This method lets
each implementation update the source system with the results of the import
attempts.

The BatchLoaderSource either places each imported record in a list to be deleted or
writes the record to an error file (with any error message) based on the record’s result
code.

The BatchLoaderSource's processResults method

public void processResults(List<DocumentData> documentList) throws
SourceException {
 for (DocumentData docData : documentList) {
 if (docData.getResultCode() == DocumentData.IMPORTED)
 batchSystem.addDeletableFile(
 (String)docData.getProperty("primaryFile"));
 else
 batchSystem.writeImportErrorRecordToFile(docData);
 }
}

Here are the additional methods you can override by a specialization. These methods
are not used in the BatchLoader source example:

Method Description

repair Called periodically to provide opportunity for the Source instance to correct the issues that led
to it being placed in the invalid source pool;

cleanUp Called by the Documaker ConnectorFramework when the system is being closed. This provides
an opportunity for the Source instance to clean up any system resources it has acquired and/or
perform any required termination functions. For example, you could use this to reestablish a
connection with the source system or database that was taken off-line.

22

Chapter 3

Developing Destination Components

This chapter contains information you can use to develop destination components for
use with Oracle Documaker Connector. This chapter includes these topics:

• Overview on page 23

• Destination Component Details on page 24

• An Example Destination on page 25

• Configuring the FTP destination on page 25

• The Destination Implementation on page 26

Overview

23

OVERVIEW

Destination components define the interaction between the Documaker Connector
channel and the document retention (destination) system. Typically the destination
is a traditional content management system, but it can be most anything.

Destination implementations maintain the connection to the external system and
convert the document and metadata into the appropriate format. Documaker
Connection includes a number of already-created destination components and you
can easily create a custom destination if necessary.

The questions you need to answer when creating a new destination implementation
mirror those for the source:

• Where will the documents be stored and how will their contents be transmitted?

• Which metadata items associated with each document are required and which
are optional?

• What is required to maintain the environment in which each instance will be run?

• How will the results from the import attempt be determined?

Destination Component Details

24

DESTINATION COMPONENT DETAILS

Just as you need a detailed knowledge of the source component to develop effective
custom implementations, you need a detailed knowledge of the destination
component to develop specializations that answer the destination questions. This list
describes each activity that takes place during an importSingleDocument request:

1. Each of the registered PREIMPORTALLDOCUMENT phase listeners is
executed followed by the
Destination.preImportAllDocument(List<DocumentData> documentList)
function. This functionality is called as part of the source component processing.

2. Each of the registered PREIMPORTDOCUMENT phase listeners is executed
followed by the Destination.preImportDocument(DocumentData
documentData) function.

3. All of the registered IMPORTDOCUMENT phase listeners is executed
followed by the Destination.importDocument(DocumentData documentData)
function.

4. Each of the registered POSTIMPORTDOCUMENT phase listeners is executed
followed by the Destination.postImportDocument(DocumentData
documentData) function.

Steps 2-4 are repeated for each document in the list acquired by the source
component.

5. Each of the registered POSTIMPORTALLDOCUMENT phase listeners is
executed followed by the
Destination.postImportAllDocument(List<DocumentData> documentList)
function. This functionality is called as part of the source component processing.

Just as with the source component, you can introduce custom functionality to the
destination component in one of these ways:

• Override one of the methods called

• Configure a phase listener which will execute at the appropriate point in the
sequence

An Example Destination

25

AN EXAMPLE DESTINATION

The FTP destination opens a session to the configured destination site and uploads
each document into a subdirectory of the FTP base directory named after the
document’s batch name. The destination is configured with the properties file and
contains these properties:

• destination.name

• destination.ftp.server

• destination.ftp.username

• destination.ftp.password

• destination.ftp.port

• destination.ftp.base.directory

• destination.ftp.side.base

• destination.ftp.template.path

The destination implementation for FTP includes these classes:

Configuring the FTP destination

The FTP destination is used to write out print streams to a specified accessible FTP
location. The FTP destination can be configured to generate an index file for each
batch processed, containing the indexing information needed for importing the print
stream into an indexed content management systems. The source of the index file
format is called a template and the source for the index file data are the values from
the columns associated with the batch within the Assembly Line schema.

Use these properties to define the FTP destination settings.

Class name Description

FTPDestinationSystem Internal singleton class which has all the real workhorse code in it.

FTPDestination Interfaces destination calls from the engine to the internal FTPDestinationSystem
object to process each document.

Property Description

Group Name = Configuration

destination.name oracle.documaker.ecmconnector.ftpdestination.FTPDestination is the name of
the

class used for the destination.Do not change the name.

destination.ftp.server Name of the ftp server, listed by server name only. Do not include ftp:// prefix.

destination.ftp.port Port of the ftp server.

destination.ftp.username User name for FTP access.

An Example Destination

26

THE DESTINATION IMPLEMENTATION
Destination specializations process import requests from Source instances. They
accomplish this by overriding a number of methods in the Destination class.

• The class constructor accepts a ConfigurationData object and a String identifier

• The importDocument method which imports a single document. This is called
by the importDocuments method for each item in the DocumentData list

• The repair method is called periodically after an error has occurred in the
Destination instance to give it an opportunity to recover

destination.ftp.password Password for FTP access.

destination.ftp.base.directo
ry

Location for output files. Files are placed in individual directories within this
location,one per batch by default. Default value of Files being placed in individual
directories within the base directory is{BCHS.BCH_ID}

destination.ftp.side.base Provides a secondary location if you wish to store index files separate from the
FTP base directory where the print files are stored. If not specified, the
destination.ftp.base.directory will be used

Note: Any variables referenced in the indexfiletemplate.xml (or referenced
template) must be defined as properties in the Mappings.

Property Description

Group Name = Mappings

destination.ftp.name.patte
rn

Provides the file naming structure for the printed output on written to the FTP
server. For example

{PUBID}.pdf would generate an output file with the PUB ID value with a .pdf
extension. Default value is {PUBS.PUB_ID}.{PUBS.PUBPRTTYPE}

destination.ftp.side.name.
pattern

Provides the file naming structure for the index file. If blank, the index file will not
be

generated. Default value is {PUBS.PUB_ID}_index.xml

destination.ftp.subdirector
y.pattern

Provides a location/naming convention if you wish to have further subdirectories
within the base directory. Use “.” to store files in the base directory. Default value
is {BCHS.BCH_ID}

destination.ftp.template Provides the content of the index file template. Use this option instead of the
destination.ftp.template.path in the Configuration to list out the content of the
template. Default value is {BCHS.BCH_ID},{PUBS.PUB_ID},{JOBS.JOB_ID} .
Use either one of the options.

Variable names to use in
the indexfiletemplate data

Tablename.column name from the dmkr_asline schema populate the variables
listed in the indexfiletemplate.xml referenced by the destination.ftp.template.path
Configuration option.

Property Description

An Example Destination

27

The FTPDestination has little functionality of its own. Most of what it does is to
proxy requests through to the FTPDestinationSystem singleton. Because of this, you
should understand how FTPDestinationSystem is used to process import requests.

The method called from the FTPDestination’s importDocument function is
uploadDocumentContents. This function performs these tasks:

• Checks the connection to the FTP server

• Moves to the batch directory (after creating it if necessary)

• Uploads the file using an input stream

This code shows how the FTPDestinationSystem gets access to the document
contents.

// Store file using provided file name
ECMInputStream ecmInput = contents.acquireStream();
InputStream in = ecmInput.getInputStream();

ftpClient.storeFile(ecmInput.getFileName(), in);

To free the resources you have acquired, execute the following code in the method’s
finally block:

try { contents.release(); }
catch(Exception genErr) { /* ignore */ }

Where contents is a ECMDocument reference from the current DocumentData
instance. From this, you get the ECMInputStream reference (ecmInput) that
provides the java.io.InputStream reference to the document contents and the file
name to be associated with them. These are all that are necessary for the FTP
interface to store the document. Other external destination systems may require more
from the list of document data.

28

Chapter 4

Developing Periodic Processes

This chapter contains information you can use to create periodic processes for use
with Oracle Documaker Connector. This chapter includes these topics:

• Overview on page 29

• An Example Periodic Process on page 30

Overview

29

OVERVIEW

There are times when your implementation of Documaker Connector requires
functionality that is associated with the import process, but is not executed as part of
it. In this situation, you can define a periodic process specialization to satisfy the
requirement.

Periodic processes are analogous to Java's runnable implementations. They do, in
fact, indirectly implement this interface. To specialize the periodic process
component, override the process method with the functionality you want to
implement each time the component is executed.

Then, in the component's configuration, specify the number of and the wait time
between iterations, as described in the Documaker Connector Installation Guide.

http://docs.oracle.com/cd/E96926_01/Connector_ig_12.6.2.pdf

An Example Periodic Process

30

AN EXAMPLE PERIODIC PROCESS

The BatchLoaderSource implementation created earlier has an additional
requirement, to delete the files that were successfully imported. The list of these files
is managed by the batch system and you can access this list via its
acquireDeletableFiles method call.

The following code gets the current list (all documents added since the last
execution) and attempts to delete each one if it exists. If the file does not exist, the
periodic process logs an error.

public void process() {
 Vector<String> filePaths = batchSystem.acquireDeletableFiles();

 for (String filePath : filePaths) {
 File deletableFile = new File(filePath);

 if (deletableFile.exists() == true)
 deletableFile.delete();
 else
 cleanUpErrors.println(
 "Deletable file [" + filePath + "] does not exist.");
 }
}

31

Chapter 5

Developing Phase Listeners

This chapter contains information you can use to create phase listener components
for use with Oracle Documaker Connector. This chapter includes these topics:

• Overview on page 32

• Phase Listener Component Details on page 33

• An Example Phase Listener on page 34

• The Phase Listener Implementation on page 34

Overview

32

OVERVIEW

Phase listener components provide a configurable way to add functionality to a
Documaker Connector channel regardless of the source and/or destination instances.
When requesting the Documaker Connector channel from the ConnectorFramework,
the client application can provide a list of identifiers for the desired phase listener
components as well. These will be executed at their specified points in the import
process.

As with the source and destination components, there are some questions that need
to be answered when developing a new Phase Listener:

• Is the functionality applicable to more than one channel configuration? Does it
make more sense as a new Source or Destination instead?

• At what point or points during the import process should the Phase Listener
execute? Will it need the entire list of documents or just a single one?

Phase Listener Component Details

33

PHASE LISTENER COMPONENT DETAILS

There are two primary methods any specialization of the phase listener component
must implement/override:

• getActivePhaseIdentifiers()

• One or more of the execute() methods, based on the phases in which the listener
is active

This table lists and describes the phases of the import process.

The active phases for the listener determines if the execute method will have access
to the entire list of documents or only individual documents.

Name execute() version Context Description

PREACQUIREDOCUMENTS document list Source Executed before the Source component's acquisition of the list of
documents for import.

POSTACQUIREDOCUMENTS document list Source Executed after the Source component's acquisition of the list of
documents for import.

PRESUBMITALLDOCUMENTS document list Source Executed before sending the list of documents to the Destination for
processing.

PREIMPORTALLDOCUMENTS document list Destination Executed before receiving the list of documents from the Source for
processing.

PREIMPORTDOCUMENT single document Destination Executed before importing a single document from the list.

POSTIMPORTDOCUMENT single document Destination Executed after importing a single document from the list.

PREPROCESSRESULTS single document Source Executed after importing a single document from the list but before
the results of that import attempt are processed.

POSTPROCESSRESULTS single document Source Executed after the results from a single document's import attempt
are processed.

POSTIMPORTALLDOCUMENTS document list Destination Executed after the entire list of documents have been imported.

POSTSUBMITALLDOCUMENTS document list Source Executed after sending the entire list of documents to the Destination
for import.

An Example Phase Listener

34

AN EXAMPLE PHASE LISTENER

The Documaker Connector library contains a number of mock components for
testing and sample implementations. The MockPhaseListener is a simple
specialization of the Phase Listener component that may be used as a starting point
for new implementations. It is configured with a list of phases that specify when it is
active and its execute methods simply display the name of the phase for when they
are called.

The Phase Listener implementation contains these classes:

THE PHASE LISTENER IMPLEMENTATION
Like the other components, phase listener specializations get and process their
configurations via their constructors. Generally, this is also where the list of active
phases is created, so calls to getActivePhaseIdentifiers() only need to return the pre-
constructed list.

The MockPhaseListener checks for and reads the phaselistener.mock.phase.list
property, tokenizes it based on the comma (,) character, and adds the phase
identifiers to its internal array.

 public MockPhaseListener(ConfigurationData configurationData,
 String phaseId) throws PhaseException {
 super(configurationData, phaseId);

 activePhases = new ArrayList<Phases>();

 String phaseListString =
 configurationData.getPropertyWithModifier(PHASE_LIST,
phaseId);

 if (phaseListString != null) {
 String[] phaseList = phaseListString.split(",");

 for (String phaseStr : phaseList) {
 Phases phaseInst = Phases.valueOf(phaseStr.trim());

 if (phaseInst != null) {
 activePhases.add(phaseInst);
 }
 else
 logger.debug("Invalid phase id string - " + phaseStr);
 }
 } else
 throw new PhaseException("A list of phases must be provided
for proper configuration of the MockPhaseListener.",
 ExceptionCodes.CNT0500000002,
 new Object[] { "A list of phases
must be provided for proper configuration of the MockPhaseListener."
});
 }

Class name Description

MockPhaseListener The specialization of the PhaseListener base class that implements the
getActivePhaseIdentifiers() method and overrides each of the execute(…) methods.

An Example Phase Listener

35

The execute(…) methods for specializing a phase listener component are normally
not all overridden unless the active phases require this. When more than one phase
causes the execute(…) method to fire, the implementation can use the provided
phase identifier to specify which functionality should be executed. The
MockPhaseListener's execute methods just display the name of the phase for which
they are being fired.

 public void execute(List<DocumentData> documentList,
 Phases phaseId) throws PhaseException {
 logger.debug("Executing phase (list) - " + phaseId.toString());
 }

 public void execute(DocumentData documentData,
 Phases phaseId) throws PhaseException {
 logger.debug("Executing phase (single) - " +
phaseId.toString());
 }

There is a bit of leeway in the code you can add to the execute(..) methods. For
example, the PDFBurster phase listener (included with Documaker Connector),
removes PDF documents found in the list and replaces them with a series of new
documents based on the Documaker forms found in the original. After the
documents are imported, the original document is returned to the list and updated
with the results of all the PDFlet import attempts.

36

Appendix A

Configuration Properties

This appendix documents the various configuration properties used by Documaker
Connector. These include the following topics:

• Standard Source Configuration Properties on page 37

• Standard Configuration Properties on page 38

Standard Source Configuration Properties

37

STANDARD SOURCE CONFIGURATION PROPERTIES

The following list of properties is available to any source implementation. Any
additional properties needed by the implementation should be documented in the
implementation’s guide.

Name Description Default

source.name The fully qualified name of the source implementation -

source.administration.name The fully qualified name of the SourceAdministration
implementation

-

source.count The number of instances of the source
implementation to create

1

source.max.records The maximum number of documents to return when
the getMetaData method is called

1

source.administration.cleanupwait The number of seconds between source system
cleanup calls.

10

source.import.delete.imported.files Delete the imported files from the file system. True

source.import.delete.imported.files.count The number of files to be deleted during each
cleanUp call.

50

source.persistence.path The directory path to contain any result data that
cannot be updated in the source system.

-

Standard Configuration Properties

38

STANDARD CONFIGURATION PROPERTIES

The following list of properties is available to any destination implementation. any
additional properties needed by the implementation should be documented in the
implementation’s guide.

Name Description Default

destination.name The fully qualified name of the destination implementation -

destination.administration.name The fully qualified name of the DestinationAdministration
implementation

-

destination.active.wait The number of seconds to wait for the destination system to
return as active

10

39

Appendix B

Sample Implementations

This appendix provides the following sample implementations:

• BatchLoaderSource Implementation on page 40

• BatchLoaderSystem Implementation on page 43

• BatchLoaderDocumentData Implementation on page 53

• FileECMDocument Implementation on page 56

• FTPDestinationSystem Implementation on page 59

• MockPhaseListener Implementation on page 76

BatchLoaderSource Implementation

40

BATCHLOADERSOURCE IMPLEMENTATION

package oracle.documaker.ecmconnector.batchloadersource;

import java.text.SimpleDateFormat;

import java.util.Enumeration;
import java.util.List;

import java.util.Properties;
import java.util.UUID;
import java.util.Vector;

import org.apache.log4j.Logger;

import oracle.documaker.ecmconnector.connectorapi.Source;
import
oracle.documaker.ecmconnector.connectorapi.data.ConfigurationData;
import oracle.documaker.ecmconnector.connectorapi.data.DocumentData;
import
oracle.documaker.ecmconnector.connectorapi.data.DataIdentifier;
import oracle.documaker.ecmconnector.connectorapi.data.ECMDocument;
import
oracle.documaker.ecmconnector.connectorapi.data.FileECMDocument;
import
oracle.documaker.ecmconnector.connectorapi.exceptions.SourceExceptio
n;

public class BatchLoaderSource extends Source {
 private static Logger logger =
 Logger.getLogger(BatchLoaderSource.class.getName());
 private static Integer maxBatchSize;
 private SimpleDateFormat dateFormat =
 new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
 private SimpleDateFormat batchDateFormat =
 new SimpleDateFormat("MM/dd/yy");
 private BatchLoaderSystem batchSystem;

 public BatchLoaderSource(ConfigurationData configData,
 String sourceId) throws SourceException {
 super(configData, sourceId);
 if (maxBatchSize == null)
 maxBatchSize =

Integer.parseInt(configData.getProperty("batchloader.source.max.reco
rds",
 "1"));
 if (maxBatchSize < 1)
 maxBatchSize = 1;
 logger.debug("Maximum batch size is " + maxBatchSize);

 if (batchSystem == null) {
 batchSystem = BatchLoaderSystem.getInstance();
 batchSystem.configure(configData);
 }
 }

 public void acquireDocumentList(List<DocumentData> documentList)
throws SourceException {
 Vector<Properties> fileRecords =
 batchSystem.acquireBatchFileList(maxBatchSize);
 String batchId = UUID.randomUUID().toString();

 logger.debug("BatchId=" + batchId);

BatchLoaderSource Implementation

41

 for (Properties fileRecord : fileRecords) {
 String primaryFile = fileRecord.getProperty("primaryFile");
 String batchFileName =
 fileRecord.getProperty(BatchLoaderSystem.BATCHFILENAME);

 if (primaryFile == null || primaryFile.isEmpty() == true) {
 batchSystem.writeBadRecordToFile(fileRecord,
 "\"primaryFile\" property is missing", null, false);
 continue;
 }

 ECMDocument ecmDoc = new FileECMDocument(primaryFile);
 DocumentData metaData =
 new BatchLoaderDocumentData(batchId, ecmDoc,
 batchFileName);
 Enumeration keys = fileRecord.keys();

 try {
 while (keys.hasMoreElements()) {
 String key = (String)keys.nextElement();

 if (key.equalsIgnoreCase("Action") == true) {
 logger.debug("Skipping \"Action\" name/value
pair");
 continue;
 }

 if (key.equals(BatchLoaderSystem.BATCHFILENAME)
== true) {
 logger.debug("Skipping batch file name name/
value pair");
 continue;
 }

 if (key.toLowerCase().indexOf("date") >= 0)
 metaData.put(new DataIdentifier(key, true),

dateFormat.format(batchDateFormat.parse(fileRecord.getProperty(key))
));
 else
 metaData.put(new DataIdentifier(key),
 fileRecord.getProperty(key));
 }

 documentList.add(metaData);
 } catch (Exception genErr) {
 batchSystem.writeBadRecordToFile(fileRecord,
 "Invalid date format", null,
 false);
 }
 }
 }

 public void processResults(List<DocumentData> documentList) throws
SourceException {
 for (DocumentData docData : documentList) {
 if (docData.getResultCode() == DocumentData.IMPORTED)

batchSystem.addDeletableFile((String)docData.getProperty("primaryFil
e"));
 else
 batchSystem.writeImportErrorRecordToFile(docData);
 }
 }

BatchLoaderSource Implementation

42

 public boolean repair() {
 return false;
 }

 public void cleanUp() {
 }
}

BatchLoaderSystem Implementation

43

BATCHLOADERSYSTEM IMPLEMENTATION

BatchLoaderSource Implementation section with the following code:

package oracle.documaker.ecmconnector.batchloadersource;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.RandomAccessFile;

import java.nio.channels.FileLock;

import java.util.Collections;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Properties;
import java.util.Set;
import java.util.Vector;

import oracle.documaker.ecmconnector.connectorapi.data.DocumentData;
import
oracle.documaker.ecmconnector.connectorapi.data.ConfigurationData;
import
oracle.documaker.ecmconnector.connectorapi.data.DataIdentifier;
import
oracle.documaker.ecmconnector.connectorapi.exceptions.ExceptionCodes
;
import
oracle.documaker.ecmconnector.connectorapi.exceptions.SourceExceptio
n;

import org.apache.log4j.Logger;

class BatchLoaderSystem {
 private static Logger logger =
 Logger.getLogger(BatchLoaderSystem.class.getName());
 private boolean configured;
 private String identifier;
 private String pathSep;
 private File currentBatchFile;
 private File batchQueueFile;
 private boolean queuedFiles;
 private String errorDirectory;
 private BufferedReader batchFileReader;
 private PrintWriter sourceRecordErrors;
 private PrintWriter importRecordErrors;
 private Set deletableFiles =
 Collections.synchronizedSet(new HashSet<String>());
 private Boolean deleteImportedFiles;
 private Integer deleteFileCount;
 private static BatchLoaderSystem batchSystem;
 private static Hashtable<String, BatchLoaderSystem>
alternateSystems;

 private BatchLoaderSystem() {
 // Hidden to prevent instances
 logger.debug("Executing");

BatchLoaderSystem Implementation

44

 configured = false;
 }

 static synchronized BatchLoaderSystem getInstance() {
 logger.debug("Executing");

 if (batchSystem == null) {
 logger.debug("Creating singleton instance");
 batchSystem = new BatchLoaderSystem();
 }

 return batchSystem;
 }

 static synchronized BatchLoaderSystem getInstance(String
identifier) throws BatchLoaderSourceException {
 logger.debug("Executing");

 if (identifier == null)
 return getInstance();

 if (alternateSystems == null)
 alternateSystems = new Hashtable<String,
BatchLoaderSystem>();

 BatchLoaderSystem retVal = alternateSystems.get(identifier);

 if (retVal == null) {
 retVal = new BatchLoaderSystem();
 retVal.identifier = identifier;
 alternateSystems.put(identifier, retVal);
 }

 return retVal;
 }

 synchronized void configure(ConfigurationData configData) throws
SourceException {
 logger.debug("Executing");

 boolean configError = false;

 pathSep = System.getProperty("file.separator");

 // Read the cleanup data
 if (deleteImportedFiles == null)
 deleteImportedFiles =

Boolean.parseBoolean(configData.getPropertyWithModifier("source.impo
rt.delete.imported.files",
 identifier,
 "false"));
 logger.debug("Delete imported files - " + deleteImportedFiles);

 if (deleteFileCount == null)
 deleteFileCount =

Integer.parseInt(configData.getPropertyWithModifier("source.import.d
elete.imported.files.count",
 identifier,
 "0"));
 logger.debug("Number of files per deletion - " +
deleteFileCount);

BatchLoaderSystem Implementation

45

 // Get the batch file or batch queue file
 if (currentBatchFile == null && batchQueueFile == null) {
 String path =

configData.getPropertyWithModifier("source.batchloader.batchfile",
 identifier);

 if (path != null && path.isEmpty() == false) {
 currentBatchFile = new File(path);

 if (currentBatchFile.exists() == false) {
 logger.error("Configured batch file [" + path +
 "] does not exist. Please check
configuration.");
 configError = true;
 } else if (currentBatchFile.isFile() == false) {
 logger.error("Configured batch file [" + path +
 "] does not reference a file. Please
check configuration.");
 configError = true;
 } else {
 logger.debug("The configured batch file is " + path);
 queuedFiles = false;
 }
 } else {
 path =
configData.getPropertyWithModifier("source.batchloader.batchqueuefil
e",
 identifier);

 if (path != null && path.isEmpty() == false) {
 batchQueueFile = new File(path);

 if (batchQueueFile.exists() == false) {
 logger.error("Configured batch queue file ["
+ path +
 "] does not exist. Please check
configuration.");
 configError = true;
 } else if (batchQueueFile.isFile() == false) {
 logger.error("Configured batch queue file ["
+ path +
 "] does not reference a file.
Please check configuration.");
 configError = true;
 } else {
 logger.debug("The configured batch queue file
is " +
 path);
 queuedFiles = true;
 }
 } else {
 logger.error("No batch file or batch queue file
property provided. Please check configuration.");
 configError = true;
 }
 }

 if (errorDirectory == null) {
 errorDirectory =

configData.getPropertyWithModifier("source.batchloader.errordirector
y",
 identifier);

BatchLoaderSystem Implementation

46

 if (errorDirectory == null ||
 errorDirectory.isEmpty() == true) {
 logger.error("An error directory needs to be
defined. Please check configuration.");
 configError = true;
 } else {
 File errorDir = new File(errorDirectory);

 if (errorDir.exists() == false)
 errorDir.mkdir();

 if (errorDir.isDirectory() == false) {
 logger.error("The error directory path [" +
 errorDirectory +
 "] does not point to a directory.");
 configError = true;
 } else if (errorDirectory.endsWith(pathSep) == false)
 errorDirectory += pathSep;
 }
 }

 // Validate operational mode
 // Todo - figure this out
 }

 if (configError == true)
 throw new SourceException("Failed to configure the Batch
Loader Source. Please check log for details.",
 ExceptionCodes.CNT0501500002, null);

 configured = true;
 openBatchFile();
 }

 synchronized Vector<Properties> acquireBatchFileList(int count)
throws SourceException {
 if (configured == false)
 throw new SourceException("The BatchLoaderSystem instance
has not been configured.",
 ExceptionCodes.CNT0501500002, null);

 Vector<Properties> batchFileList = new Vector<Properties>();

 if (batchFileReader == null) {
 openBatchFile();

 if (batchFileReader == null)
 return batchFileList;
 }

 while (batchFileList.size() < count) {
 Properties batchData = readBatchRecord();

 // Check for end of file
 if (batchData == null || batchData.size() == 0) {
 openBatchFile();

 if (batchFileReader == null)
 return batchFileList;
 else
 continue;
 }

BatchLoaderSystem Implementation

47

 String actionType = batchData.getProperty(ACTIONLABEL);

 if (actionType == null)
 writeBadRecordToFile(batchData, "No action specified",
null,
 false);
 else if (actionType.equalsIgnoreCase(ACTIONINSERT) == false)
 writeBadRecordToFile(batchData,
 "Unsupported action specified - " +
 actionType, null, false);
 else
 batchFileList.add(batchData);
 }

 return batchFileList;
 }

 synchronized void addDeletableFile(String filePath) {
 if (deleteImportedFiles == true)
 deletableFiles.add(filePath);
 }

 synchronized Vector<String> acquireDeletableFiles() {
 Vector<String> returnVal = new Vector<String>();

 if (deleteImportedFiles == true) {
 Iterator<String> fileIter = deletableFiles.iterator();

 while (returnVal.size() < deleteFileCount &&
fileIter.hasNext())
 returnVal.add(fileIter.next());

 for (String fileP : returnVal) {
 logger.debug("returning - " + fileP);

 deletableFiles.remove(fileP);
 }
 }

 return returnVal;
 }

 private void openBatchFile() throws SourceException {
 // Open configured batch file
 if (queuedFiles == false) {
 if (batchFileReader != null)
 throw new SourceException("Trying to reprocess configured
batch file. This is probably due to running in server mode without a
batch queue. Please check configuration.",
 ExceptionCodes.CNT0501500004, null);
 else {
 try {
 batchFileReader =
 new BufferedReader(new
FileReader(currentBatchFile));
 return;
 } catch (Exception genErr) {
 throw new SourceException("Failed to open configured
batch file [" +

currentBatchFile.getAbsolutePath() +
 "] - " + genErr.getMessage(),
 genErr,
 ExceptionCodes.CNT0501500005,

BatchLoaderSystem Implementation

48

 new Object[] {
currentBatchFile.getAbsolutePath(),
 genErr.getMessage()
});
 }
 }
 } else {
 try {
 String nextFilePath = readNextBatchFilePath();

 if (nextFilePath == null || nextFilePath.isEmpty() ==
true) {
 logger.info("No batch file found in queue.");
 batchFileReader = null;
 } else {
 currentBatchFile = new File(nextFilePath);
 batchFileReader =
 new BufferedReader(new
FileReader(currentBatchFile));
 }
 } catch (SourceException srcErr) {
 throw srcErr;
 } catch (Exception genErr) {
 throw new SourceException("Failed to open batch queue
file or queue'd batch file - " +
 genErr.getMessage(), genErr,
 ExceptionCodes.CNT0501500006,
 new Object[] { genErr.getMessage()
});
 }
 }
 }

 private String readNextBatchFilePath() throws SourceException {
 if (batchQueueFile == null)
 throw new SourceException("No batch queue file configured.",
 ExceptionCodes.CNT0501500007, null);

 RandomAccessFile randFile = null;
 FileLock fileLock = null;

 try {
 randFile = new RandomAccessFile(batchQueueFile, "rwd");

 fileLock = randFile.getChannel().lock();

 BufferedReader fileRdr =
 new BufferedReader(new FileReader(randFile.getFD()));
 Vector<String> lines = new Vector<String>();
 String line = fileRdr.readLine();
 String nextFilePath = line;

 while (line != null) {
 lines.add(line);
 line = fileRdr.readLine();
 }

 randFile.seek(0);

 PrintWriter fileWtr =
 new PrintWriter(new FileWriter(randFile.getFD()));

 for (int lcv = 1; lcv < lines.size(); ++lcv) {
 fileWtr.println(lines.get(lcv));

BatchLoaderSystem Implementation

49

 fileWtr.flush();
 }

 randFile.setLength(randFile.getFilePointer());

 return nextFilePath;
 } catch (Exception genErr) {
 throw new SourceException("Failed to get path for next
batch file - " +
 genErr.getMessage(), genErr,
 ExceptionCodes.CNT0501500008,
 new Object[] { genErr.getMessage() });
 } finally {
 if (fileLock != null)
 try {
 fileLock.release();
 } catch (Exception genErr) { /* ignore */
 }
 if (randFile != null)
 try {
 randFile.close();
 } catch (Exception genErr) { /* ignore */
 }
 }
 }

 private Properties readBatchRecord() throws
BatchLoaderSourceException {
 logger.debug("Executing");

 Properties fileData = new Properties();

 fileData.setProperty(BATCHFILENAME,
currentBatchFile.getName());
 try {
 String line = batchFileReader.readLine();

 while (line != null && line.equals(EODMARKER) == false) {
 if (line.startsWith("#") == false &&
 line.trim().isEmpty() == false) {
 int index = line.indexOf("=");

 if (index < 1 || index == (line.length() - 1)) {
 // Write current record to source error file
 writeBadRecordToFile(fileData,
 "Line does not contain a
name value pair",
 line, true);

 // Start new record
 fileData.clear();
 } else {
 String name = line.substring(0, index).trim();
 String value = line.substring(index + 1).trim();

 if (name.isEmpty() || value.isEmpty()) {
 // Write current record to source error file
 writeBadRecordToFile(fileData,
 "Line does not contain
a name value pair",
 line, true);

 // Start new record
 fileData.clear();

BatchLoaderSystem Implementation

50

 } else
 fileData.setProperty(name, value);
 }
 }

 line = batchFileReader.readLine();
 }
 } catch (IOException ioErr) {
 writeBadRecordToFile(fileData, ioErr.getMessage(), null,
false);
 throw new BatchLoaderSourceException("Batch file read
exception - " + ioErr.getMessage(),
 ioErr,
ExceptionCodes.CNT0501500009, new Object[] { ioErr.getMessage() });
 }

 return ((fileData.size() <= 1) ? null : fileData);
 }

 synchronized void writeBadRecordToFile(Properties record,
 String errorMessage, String line,
 boolean getRest) throws
BatchLoaderSourceException {
 try {
 getErrorWriter(SOURCEWRITER,
record.getProperty(BATCHFILENAME));
 sourceRecordErrors.println("### RECORD ERROR - " +
errorMessage);

 Enumeration keys = record.keys();

 while (keys.hasMoreElements()) {
 String key = (String)keys.nextElement();

 if (key.equalsIgnoreCase(BATCHFILENAME) == false)
 sourceRecordErrors.println(key + "=" +
 record.getProperty(key));
 }

 if (line != null)
 sourceRecordErrors.println("### INVALID DATA IN BATCH
FILE - " +
 line);

 if (getRest == true) {
 String tempBuf = batchFileReader.readLine();

 while (tempBuf != null) {
 sourceRecordErrors.println(tempBuf);

 if (tempBuf.equals(EODMARKER) == true)
 break;

 if ((tempBuf = batchFileReader.readLine()) == null) {
 sourceRecordErrors.println("### Missing end
of data marker ... adding");
 sourceRecordErrors.println(EODMARKER);
 }
 }
 }
 } catch (IOException ioErr) {
 throw new BatchLoaderSourceException("Source Error File
write exception - " + ioErr.getMessage(),

BatchLoaderSystem Implementation

51

 ioErr,
ExceptionCodes.CNT0501500010, new Object[] { ioErr.getMessage() });
 } finally {
 if (sourceRecordErrors != null)
 sourceRecordErrors.close();
 }
 }

 synchronized void writeImportErrorRecordToFile(DocumentData
metaDatum) throws BatchLoaderSourceException {
 try {
 getErrorWriter(IMPORTWRITER,

((BatchLoaderDocumentData)metaDatum).getBatchFileName());
 importRecordErrors.println("### RECORD ERROR - Record Faied
to Import");

 Enumeration keys = metaDatum.keys();

 // Write the failure info
 importRecordErrors.println("### [" +
metaDatum.getResultCode() +
 "] - " +
 metaDatum.getResultDescription());
 // Add the action back to the record (will always be insert)
 importRecordErrors.println("Action=insert");

 while (keys.hasMoreElements()) {
 DataIdentifier key = (DataIdentifier)keys.nextElement();

 importRecordErrors.println(key.getName() + "=" +
 metaDatum.get(key));
 }

 // Add end of data marker
 importRecordErrors.println("<<EOD>>");
 importRecordErrors.println();
 } finally {
 if (importRecordErrors != null)
 importRecordErrors.close();
 }
 }

 synchronized void getErrorWriter(int writerType,
 String batchFileName) throws
BatchLoaderSourceException {
 StringBuffer errorFileName = new
StringBuffer().append(errorDirectory);

 if (writerType == SOURCEWRITER)
 errorFileName.append(batchFileName + ".SOURCEERRORS");
 else
 errorFileName.append(batchFileName + ".IMPORTERRORS");

 File errFile = new File(errorFileName.toString());

 if (errFile.length() > (100 * 1024)) {
 int nameCntr = 1;
 File newFile =
 new File(errFile.getAbsolutePath() + "." + nameCntr);

 while (newFile.exists() == true) {
 nameCntr += 1;

BatchLoaderSystem Implementation

52

 newFile = new File(errFile.getAbsolutePath() + "." +
nameCntr);
 }

 errFile.renameTo(newFile);
 }

 try {
 if (writerType == SOURCEWRITER)
 sourceRecordErrors =
 new PrintWriter(new
java.io.FileWriter(errorFileName.toString(),
 true), true);
 else
 importRecordErrors =
 new PrintWriter(new
java.io.FileWriter(errorFileName.toString(),
 true), true);
 } catch (Exception genErr) {
 if (writerType == SOURCEWRITER) {
 sourceRecordErrors = null;
 throw new BatchLoaderSourceException("Could not open
source error file [" +
 errorFileName.toString()
+ "] - " + genErr.getMessage(),
 genErr,
ExceptionCodes.CNT0501500011, new Object[] {
errorFileName.toString(), genErr.getMessage() });
 } else {
 importRecordErrors = null;
 throw new BatchLoaderSourceException("Could not open
import error file [" +
 errorFileName.toString()
+ "] - " + genErr.toString(),
 genErr,
ExceptionCodes.CNT0501500012, new Object[] {
errorFileName.toString(), genErr.getMessage() });
 }
 }
 }

 private static final String EODMARKER = "<<EOD>>";
 private static final String ACTIONLABEL = "Action";
 private static final String ACTIONINSERT = "insert";
 public static final String BATCHFILENAME = "__BATCH_FILE_NAME__";
 private static final int SOURCEWRITER = 1;
 private static final int IMPORTWRITER = 2;
}

BatchLoaderDocumentData Implementation

53

BATCHLOADERDOCUMENTDATA IMPLEMENTATION

In the BatchLoaderSource implementation, you need to maintain additional
information about each document that will not be part of the import data (the batch
file name that the record came from). To do this, you simply sub-class the
DocumentData class and add an accessor for the information.

package oracle.documaker.ecmconnector.batchloadersource;

import oracle.documaker.ecmconnector.connectorapi.data.DocumentData;
import oracle.documaker.ecmconnector.connectorapi.data.ECMDocument;

public class BatchLoaderDocumentData extends DocumentData {
 private String batchFileName;

 public BatchLoaderDocumentData(String string, ECMDocument
ecmDocument, String batchFileName) {
 super(string, ecmDocument);
 this.batchFileName = batchFileName;
 }

 public String getBatchFileName() {
 return batchFileName;
 }
}

The BatchLoaderProcess Implementation
package oracle.documaker.ecmconnector.batchloadersource;

import java.io.File;

import java.io.PrintWriter;

import java.util.Vector;

import
oracle.documaker.ecmconnector.connectorapi.data.ConfigurationData;
import
oracle.documaker.ecmconnector.connectorapi.process.PeriodicProcess;
import
oracle.documaker.ecmconnector.connectorapi.exceptions.SourceExceptio
n;

public class BatchLoaderProcess extends PeriodicProcess {
 private PrintWriter cleanUpErrors;

 public BatchLoaderProcess(ConfigurationData configurationData,
 String identifier) throws SourceException {
 super(configurationData, identifier);
 configure(configurationData);
 }

 public BatchLoaderProcess(ConfigurationData configurationData)
throws SourceException {
 super(configurationData);
 configure(configurationData);
 }

 private void configure(ConfigurationData configurationData) throws
SourceException {
 BatchLoaderSystem.getInstance().configure(configurationData);

 String pathSep = System.getProperty("file.separator");

BatchLoaderDocumentData Implementation

54

 String persistencePath =
 configurationData.getProperty("source.persistence.path",
".");

 try {
 cleanUpErrors =
 new PrintWriter(new java.io.FileWriter(persistencePath +
 (persistencePath.endsWith(pathSep) ?
 "" : pathSep) + "CLEANUP_ERRORS",
 true), true);
 } catch (Exception genErr) {
 throw new SourceException("Failed to create writer to
cleanup errors file.",
 genErr);
 }
 }

 public void process() {
 Vector<String> filePaths =
 BatchLoaderSystem.getInstance().acquireDeletableFiles();

 for (String filePath : filePaths) {
 File deletableFile = new File(filePath);

 if (deletableFile.exists() == true)
 deletableFile.delete();
 else
 cleanUpErrors.println("Deletable file [" + filePath +
 "] does not exist.");
 }
 }
}

< The FileECMDocument implementation is good to go >

< Drop the FTPDestinationAdministration implementation >

< Replace the FTPDestination Implementation code with the following >
package oracle.documaker.ecmconnector.ftpdestination;

import oracle.documaker.ecmconnector.connectorapi.Destination;
import
oracle.documaker.ecmconnector.connectorapi.data.ConfigurationData;
import oracle.documaker.ecmconnector.connectorapi.data.DocumentData;
import
oracle.documaker.ecmconnector.connectorapi.exceptions.DestinationExc
eption;

import org.apache.log4j.Logger;

public class FTPDestination extends Destination {
 private static Logger logger =
 Logger.getLogger(FTPDestination.class.getName());
 private FTPDestinationSystem ftpSystem;

 public FTPDestination(ConfigurationData configurationData,
 String destinationId) throws DestinationException
{
 super(configurationData, destinationId);

 ftpSystem = FTPDestinationSystem.getInstance(destinationId);
 ftpSystem.configure(configurationData);
 }

BatchLoaderDocumentData Implementation

55

 public void importDocument(DocumentData documentData) throws
DestinationException {
 ftpSystem.uploadDocumentContents(documentData);
 }

 public boolean repair() {
 return ftpSystem.establishConnection();
 }

 public void cleanUp() {
 }
}}

FileECMDocument Implementation

56

FILEECMDOCUMENT IMPLEMENTATION

public class FileECMDocument implements ECMDocument {
 private String filePath;
 private String fileName;
 private FileInputStream inputStream;
 private long contentLength;
 private Logger logger =
Logger.getLogger(FileECMDocument.class.getName());

 /**
 * Constructs a new FileECMDocument instance using the given file
path to identify the location of the document's contents.
 *
 * @param filePath The path to the file containing the document's
contents
 */
 public FileECMDocument(String filePath) {
 this.filePath = filePath;
 inputStream = null;

 File sourceFile = new File(filePath);

 contentLength = sourceFile.length();
 fileName = sourceFile.getName();
 logger.debug("fileName = " + fileName);
 }

 public String acquireFilePath() throws ECMDocumentException {
 if (filePath == null)
 throw new ECMDocumentException("No filepath available.");
 return filePath;
 }

 public ECMInputStream acquireStream() throws ECMDocumentException
{
 try {
 if (inputStream == null)
 inputStream = new FileInputStream(filePath);
 else
 throw new ECMDocumentException("Input stream associated
with previous instance.");
 } catch (FileNotFoundException fnfErr) {
 fnfErr.printStackTrace();
 throw new ECMDocumentException("Failed to create input
stream.",
 fnfErr);
 }

 return new ECMInputStream(fileName, inputStream);
 }

 public long getContentLength() {
 return contentLength;
 }

 public void release() throws ECMDocumentException {
 try {
 if (inputStream != null) {
 inputStream.close();
 inputStream = null;
 }
 } catch (IOException ioErr) {

FileECMDocument Implementation

57

 throw new ECMDocumentException("Failed to close input
stream.",
 ioErr);
 }
 }
}

FileECMDocument Implementation

58

FTPDESTINATION IMPLEMENTATION
public class FTPDestination implements Destination {
 private static Logger logger =
Logger.getLogger(FTPDestination.class.getName());
 private FTPDestinationSystem ftpSystem;

 public FTPDestination() {
 logger.debug("Executing");
 }

 public void configure(Properties properties) throws
DestinationException {
 logger.debug("Executing");

 if (ftpSystem == null)
 ftpSystem = FTPDestinationSystem.getInstance();
 }

 public void beginTransaction(TransactionTypes transactionTypes)
throws DestinationException {
 logger.debug("Executing");
 }

 public void executeTransaction(TransactionTypes transactionType,
MetaData metaData) throws DestinationException {
 logger.debug("Executing");

 switch (transactionType) {
 case IMPORT:
 ftpSystem.uploadDocumentContents(metaData);
 metaData.setResultCode(MetaData.IMPORTED);
 break;

 default:
 throw new DestinationException("Transaction type not
supported");
 }
 }

 public void endTransaction(TransactionTypes transactionTypes)
throws DestinationException {
 logger.debug("Executing");
 }
}

FTPDestinationSystem Implementation

59

FTPDESTINATIONSYSTEM IMPLEMENTATION

class FTPDestinationSystem {

 private static Logger logger =

 Logger.getLogger(FTPDestinationSystem.class.getName());

 private boolean configured;

 private String identifier;

 private String ftpServer;

 private String userName;

 private String passWord;

 private int port=0;

 private String baseDirectory;

 private String sideBaseDirectory;

 private String defaultSubdirectoryPattern;

 private String defaultSideSubdirectoryPattern;

 private String defaultTemplatePath;

 private String defaultTemplateString;

 private String defaultFileNamePattern;

 private String defaultSideFileNamePattern;

 private FTPClient ftpClient;

 private Configuration fmConfig;

 private static FTPDestinationSystem ftpDestinationSystem;

 private static Hashtable<String, FTPDestinationSystem>
alternateSystems;

 private FTPDestinationSystem() {

 logger.debug("Executing");

 configured = false;

 }

 static FTPDestinationSystem getInstance() {

 logger.debug("Executing");

 if (ftpDestinationSystem == null) {

 logger.debug("Creating singleton instance");

 ftpDestinationSystem = new FTPDestinationSystem();

 }

 return ftpDestinationSystem;

 }

 static synchronized FTPDestinationSystem
getInstance(String identifier) throws DestinationException {

 logger.debug("Executing");

FTPDestinationSystem Implementation

60

 if (identifier == null)

 return getInstance();

 if (alternateSystems == null)

 alternateSystems = new Hashtable<String,
FTPDestinationSystem>();

 FTPDestinationSystem retVal =
alternateSystems.get(identifier);

 if (retVal == null) {

 retVal = new FTPDestinationSystem();

 retVal.identifier = identifier;

 alternateSystems.put(identifier, retVal);

 }

 return retVal;

 }

 synchronized void configure(ConfigurationData configData)
throws DestinationException {

 logger.debug("Executing");

 if (ftpServer == null)

 ftpServer =

 configData.getPropertyWithModifier(FTP_SERVER,

 identifier);

 logger.debug("FTP server address - " + ftpServer);

 if (userName == null)

 userName =

configData.getPropertyWithModifier(FTP_USERNAME,

 identifier);

 logger.debug("FTP user name - " + userName);

 if (passWord == null)

 passWord =

configData.getPropertyWithModifier(FTP_PASSWORD,

 identifier);

FTPDestinationSystem Implementation

61

 logger.debug("FTP password acquired");

 if (port ==0)

 port =

Integer.parseInt(configData.getPropertyWithModifier(FTP_PORT,

 identifier));

 logger.debug("FTP port number");

 if (baseDirectory == null)

 baseDirectory =

configData.getPropertyWithModifier(BASE_DIRECTORY,

 identifier);

 //startrs added by Kotes to implement FTP indexng and
templating

 baseDirectory =

 baseDirectory +
(baseDirectory.endsWith(File.separator) ? "" :
File.separator);

 logger.debug("Base directory - " + baseDirectory);

 sideBaseDirectory =
configData.getPropertyWithModifier(SIDE_BASE_DIRECTORY,identi
fier);

 if (sideBaseDirectory == null)

 sideBaseDirectory = baseDirectory;

 else {

 sideBaseDirectory =

 sideBaseDirectory +
(sideBaseDirectory.endsWith(File.separator) ? "" :
File.separator);

 }

 defaultTemplatePath =

 configData.getPropertyWithModifier(TEMPLATE_FILE,
identifier);

 if (defaultTemplatePath != null) {

 File templateFile = new File(defaultTemplatePath);

 if (templateFile.exists() == false)

 throw new DestinationException("The specified
template file [" +

 defaultTemplatePath +

 "] does not exist.",

FTPDestinationSystem Implementation

62

ExceptionCodes.CNT0500800008,

 new Object[] {
defaultTemplatePath });

 if (logger.isDebugEnabled() == true)

 logger.debug("Template path is " +
defaultTemplatePath);

 } else {

 defaultTemplateString =

configData.getPropertyWithModifier(TEMPLATE_CONTENTS,

 identifier);

 if (logger.isDebugEnabled() == true)

 logger.debug("Template pattern - " +
defaultTemplateString);

 }

 defaultFileNamePattern =

 configData.getPropertyWithModifier(FILE_PATTERN,

 identifier);

 if (logger.isDebugEnabled() == true)

 logger.debug("Filename pattern - " +
defaultFileNamePattern);

 defaultSideFileNamePattern =

configData.getPropertyWithModifier(SIDE_FILE_PATTERN,

 identifier);

 if (logger.isDebugEnabled() == false)

 logger.debug("Side filename pattern - " +

 defaultSideFileNamePattern);

 defaultSubdirectoryPattern =

configData.getPropertyWithModifier(SUB_DIRECTORY_PATTERN,

 identifier);

 if (logger.isDebugEnabled() == true)

 logger.debug("Subdirectory pattern - " +
defaultSubdirectoryPattern);

FTPDestinationSystem Implementation

63

 defaultSideSubdirectoryPattern =

configData.getPropertyWithModifier(SIDE_SUB_DIRECTORY_PATTERN
,

 identifier);

 if (logger.isDebugEnabled() == true)

 logger.debug("Side subdirectory pattern - " +

 defaultSideSubdirectoryPattern);

 configured = true;

 establishConnection();

 try {

 fmConfig = new Configuration();

 fmConfig.setDirectoryForTemplateLoading(new
File("."));

 fmConfig.setObjectWrapper(new
DefaultObjectWrapper());

 } catch (IOException ioErr) {

 throw new DestinationException("Failed to initialize
template framework.",

ExceptionCodes.CNT0500800009,

 null);

 }

 }

 /**

 * Establish conection to FTP server with the given details

 */

 public boolean establishConnection() {

 if (configured == false)

 return false;

 try {

 if (checkServer() == true)

 ftpClient.disconnect();

 ftpClient = new FTPClient();

 ftpClient.connect(ftpServer,port);

 if
(FTPReply.isPositiveCompletion(ftpClient.getReplyCode()) ==
false) {

FTPDestinationSystem Implementation

64

 ftpClient.disconnect();

 ftpClient = null;

 } else if (ftpClient.login(userName, passWord) ==
false) {

 ftpClient.logout();

 ftpClient = null;

 } else {

 int retVal = ftpClient.cwd(baseDirectory);

 if (FTPReply.isPositiveCompletion(retVal) ==
false) {

 ftpClient.mkd(baseDirectory);

 ftpClient.cwd(baseDirectory);

 }

 }

 return true;

 } catch (IOException ioErr) {

 try {

 ftpClient.disconnect();

 ftpClient = null;

 } catch (Exception genErr) {

 // Ignore

 }

 return false;

 }

 }

 synchronized boolean checkServer() {

 logger.debug("Executing");

 return (ftpClient != null && ftpClient.isConnected());

 }

 synchronized void close() {

 try {

 if (checkServer() == true)

 ftpClient.disconnect();

 } catch (IOException ioErr) {

 // Do nothing

 }

 }

FTPDestinationSystem Implementation

65

 /**

 * Upload documents in FTP server

 * Main Files

 * Side Files

 * With the given Template formats

 */

 synchronized void uploadDocumentContents(DocumentData
metaData) throws DestinationException {

 logger.debug("Executing");

 String fileName="";

 String fileDirPath="";

 if (configured == false){

 throw new DestinationException("FTP
destination system has not been configured.",

ExceptionCodes.CNT0500900001, null);

 }

 if (ftpClient == null || ftpClient.isConnected() ==
false){

 if(!establishConnection())

 throw new DestinationException("No FTP destination
system connection available.",

ExceptionCodes.CNT0500900002, null);

 }

 fileDirPath =

 baseDirectory +
(baseDirectory.endsWith(File.separator) ? "" : File.separator)
+

 determineActualPath(SUB_DIRECTORY_PATTERN,
defaultSubdirectoryPattern, metaData);

 ECMDocument contents = metaData.getECMDocument();

 try {

 ECMInputStream ecmInput =
contents.acquireStream();

 fileName = createMainFilePath(metaData);

 if(fileName==null){

 fileName=ecmInput.getFileName();

 }

 InputStream in =ecmInput.getInputStream();

 // InputStream in =new
FileInputStream(contents.acquireFilePath()); //To work in
Local Environment

FTPDestinationSystem Implementation

66

 // Calling FTP Operation to store MAIN DOC

 if(logger.isDebugEnabled() == true)

 logger.debug("THe SUB DIRECTORY PATH
IS @@@@@@@@@@1"+fileDirPath);

 ftpOperations(fileDirPath, fileName,in);

 metaData.put(new DataIdentifier(GENERATED_NAME),

 fileDirPath);

 String sideFileName = createSideFilePath(metaData);

 if (sideFileName != null && sideFileName.length() >
0) {

 String sideFileDirPath =

 sideBaseDirectory +
(sideBaseDirectory.endsWith(File.separator) ? "" :
File.separator) +

determineActualPath(SIDE_SUB_DIRECTORY_PATTERN,
defaultSideSubdirectoryPattern, metaData);

 //Call for Side file operations

 if(logger.isDebugEnabled() == true)

 logger.debug("THe SIDE SUB DIRECTORY
PATH IS @@@@@@@@"+sideFileDirPath);

 generateXMLDocument(sideFileDirPath,sideFileName,
metaData);

 }

 else if (logger.isDebugEnabled() == true)

 logger.debug("No side-car file to be written.");

 } catch (ECMDocumentException docErr) {

 throw new DestinationException("Failed to acquire
document contents - " +

 docErr.getMessage(),

ExceptionCodes.CNT0500900003,

 new Object[] {
docErr.getMessage() });

 }

 catch (IOException ioErr) {

 try {

 ftpClient.disconnect();

 } catch (IOException innerIoErr) { /* ignore */

FTPDestinationSystem Implementation

67

 }

 ftpClient = null;

 throw new DestinationException("Error in destination
system communication - " +

 ioErr.getMessage(),

ExceptionCodes.CNT0500900004,

 new Object[] {
ioErr.getMessage() });

 }

finally {

 try {

 contents.release();

 } catch (Exception genErr) { /* ignore */

 }

 }

 }

 /**

 * Upload documents in FTP server

 * in Given directory

 * given file name

 * and input stream

 */

 private void ftpOperations(String fileDirPath, String
filename, InputStream in) throws DestinationException,

 IOException {

 boolean dirExists = true;

 String fileSep = System.getProperty("file.separator");

 establishConnection();

 if (ftpClient == null || ftpClient.isConnected() ==
false){

 if(!establishConnection())

 throw new DestinationException("No FTP destination
system connection available.",

 ExceptionCodes.CNT0500900002,
null);

 }

 if(fileSep!=null && !fileSep.equalsIgnoreCase("/
"))

 fileSep="\\";

FTPDestinationSystem Implementation

68

 String fileDir1=fileDirPath.replace(fileSep,
"/");

 ftpClient.cwd("..");

 String[] directories = fileDir1.split("/");

 for (String dir : directories) {

 if (!dir.isEmpty()) {

 if (dirExists) {

 dirExists =
ftpClient.changeWorkingDirectory(dir);

 }

 if (!dirExists) {

 if (!ftpClient.makeDirectory(dir)) {

 throw new DestinationException("Unable to
created remote directory '" + dir,
ExceptionCodes.CNT0500900004, new Object[]
{ftpClient.getReplyString()});

 }

 if (!ftpClient.changeWorkingDirectory(dir)) {

 throw new DestinationException("Unable to
change into newly created remote directory '" + dir,
ExceptionCodes.CNT0500900004, new Object[]
{ftpClient.getReplyString()});

 }

 }

 }

 }

 ftpClient.setFileType(FTP.BINARY_FILE_TYPE);

 ftpClient.enterLocalPassiveMode();

 ftpClient.storeFile(filename, in);

 for(int i=0; i<=directories.length; i++){

 ftpClient.changeToParentDirectory();

 }

// ftpClient.cwd("..");

// int retVal = ftpClient.cwd(fileDirPath);

// if (logger.isDebugEnabled() == true)

// logger.debug("The Ret values is " + retVal);

// if (FTPReply.isPositiveCompletion(retVal) == false) {

// if (logger.isDebugEnabled() == true)

// logger.debug("The Ret values is @@@@@@@@" +
retVal);

// if (logger.isDebugEnabled() == true)

// logger.debug("THe Current working Directory
is" + ftpClient.printWorkingDirectory());

// ftpClient.mkd(fileDirPath);

FTPDestinationSystem Implementation

69

// ftpClient.cwd(fileDirPath);

// }

// // Change mode to binary

//

//

// ftpClient.setFileType(FTP.BINARY_FILE_TYPE);

// ftpClient.enterLocalPassiveMode();

// ftpClient.storeFile(filename, in);

// ftpClient.cwd("..");

 }

 private String createMainFilePath(DocumentData
documentData) throws DestinationException {

 String mainFileName = generateFileName(documentData,
FILE_PATTERN,

 defaultFileNamePattern);

 return mainFileName;

 }

 private String createSideFilePath(DocumentData
documentData) throws DestinationException {

 String sidefile=generateFileName(documentData,
SIDE_FILE_PATTERN,

 defaultSideFileNamePattern);

 return sidefile;

 }

 private String generateFileName(DocumentData documentData,

 String patternKey,

 String defaultPattern)
throws DestinationException {

 HashMap dataMap = generateDataMap(documentData);

 String fileNamePattern =
(String)documentData.getProperty(patternKey);

 if (fileNamePattern == null)

 fileNamePattern = defaultPattern;

 if (fileNamePattern == null || fileNamePattern.length()
== 0) {

 if (logger.isDebugEnabled() == true)

FTPDestinationSystem Implementation

70

 logger.debug("No filename pattern specified.
No filename generated.");

 return null;

 }

 try {

 Template temp =

 new Template(fileNamePattern, new
StringReader(fileNamePattern),

 fmConfig);

 StringWriter strOut = new StringWriter();

 temp.process(dataMap, strOut);

 return strOut.toString();

 } catch (Exception genErr) {

 throw new DestinationException("Failed to generate
file name due to template error - " + genErr.getMessage(),

ExceptionCodes.CNT0500800010,

 new Object[] {
genErr.getMessage() });

 }

 }

 private HashMap generateDataMap(DocumentData documentData)
throws DestinationException {

 HashMap dataMap = new HashMap();

 String s=documentData.getBatchId();

 if (s!=null && s.equalsIgnoreCase(""))

 s="ftpodee";

 dataMap.put("BATCHID", s);

 dataMap.put("substr", new SubstringMethod());

 for (DataIdentifier key : documentData.keySet()) {

 addMapItem(key.getName(),
documentData.get(key).toString(),

 dataMap);

 }

 try {

 ECMDocument ecmDoc = documentData.getECMDocument();

 String filePath = ecmDoc.acquireFilePath();

FTPDestinationSystem Implementation

71

 ecmDoc.release();

 int extIndex = filePath.lastIndexOf(".");

 int fnIndex = filePath.lastIndexOf(File.separator);

 if (extIndex > 0 && extIndex != (fnIndex + 1))

 dataMap.put("INPUT_FILE_EXT",
filePath.substring(extIndex + 1));

 else

 dataMap.put("INPUT_FILE_EXT", "");

 if (fnIndex >= 0) {

 if (extIndex > (fnIndex + 1))

 dataMap.put("INPUT_FILE_NAME",
filePath.substring(fnIndex + 1, extIndex));

 else

 dataMap.put("INPUT_FILE_NAME",
filePath.substring(fnIndex + 1));

 }

 else {

 if (extIndex > 0)

 dataMap.put("INPUT_FILE_NAME",
filePath.substring(0, extIndex));

 else

 dataMap.put("INPUT_FILE_NAME", filePath);

 }

 } catch (ECMDocumentException e) {

 throw new DestinationException("Error in destination
system communication - " +

 e.getMessage(),

ExceptionCodes.CNT0500900004,

 new Object[] {
e.getMessage() });

 }

 return dataMap;

 }

 private void addMapItem(String itemName, String itemValue,

 HashMap dataMap) {

 HashMap childMap = dataMap;

 String[] elements = itemName.split("\\.");

FTPDestinationSystem Implementation

72

 int length = elements.length;

 for (int lcv = 0; lcv < (length - 1); ++lcv) {

 HashMap newChild =
(HashMap)childMap.get(elements[lcv]);

 if (newChild == null) {

 newChild = new HashMap();

 childMap.put(elements[lcv], newChild);

 }

 childMap = newChild;

 }

 childMap.put((length > 0 ? elements[length - 1] :
itemName),

 itemValue);

 }

 public String determineActualPath(String pathPatternId,
String defaultPattern, DocumentData documentData) throws
DestinationException {

 String pathPattern =
(String)documentData.getProperty(pathPatternId);

 if (pathPattern == null)

 pathPattern = defaultPattern;

 if (pathPattern == null)

 pathPattern = "${BATCHID}";

 HashMap dataMap = generateDataMap(documentData);

 Configuration fmConfig = new Configuration();

 fmConfig.setObjectWrapper(new DefaultObjectWrapper());

 try {

 Template temp =

 new Template(pathPattern, new
StringReader(pathPattern),

 fmConfig);

 StringWriter strOut = new StringWriter();

 temp.process(dataMap, strOut);

 return strOut.toString();

 } catch (Exception genErr) {

FTPDestinationSystem Implementation

73

 throw new DestinationException("Generic Exception
- Failed to generate templated string: " +

 pathPattern + " :: " +

 genErr.getMessage(),

 ExceptionCodes.CNT0500000002,

 new Object[] { "Failed to
generate templated string: " +

 pathPattern + " :: " +

 genErr.getMessage()
});

 }

 }

 private void generateXMLDocument(String xmlDirnName, String
xmlFileName,

 DocumentData documentData)
throws DestinationException {

 StringWriter strOut = null;

 try {

 HashMap dataMap = generateDataMap(documentData);

 String templatePath =

 (String)documentData.getProperty(TEMPLATE_FILE);

 String templateString = null;

 if (templatePath == null)

 templatePath = defaultTemplatePath;

 if (templatePath == null) {

 templateString =

(String)documentData.getProperty(TEMPLATE_CONTENTS);

 if (templateString == null)

 templateString = defaultTemplateString;

 if (logger.isDebugEnabled() == true)

 logger.debug("Template: " + templateString);

 } else if (logger.isDebugEnabled() == true)

 logger.debug("Template file path is " +
templatePath);

 if ((templatePath == null || templatePath.length()
== 0) &&

FTPDestinationSystem Implementation

74

 (templateString == null || templateString.length()
== 0)) {

 throw new DestinationException("There is no
template specified for the side-car file, but a file name has
been speccified.",

ExceptionCodes.CNT0500800011,

 null);

 }

 Template temp = null;

 if (templatePath == null) {

 if (logger.isDebugEnabled() == true)

 logger.debug("Using template string");

 temp =new Template(templateString, new
StringReader(templateString), fmConfig);

 } else {

 String fileSep =
System.getProperty("file.separator");

 int index = templatePath.lastIndexOf(fileSep);

 String fileName = templatePath.substring(index
+ 1);

 String path = templatePath.substring(0, index);

 fmConfig.setDirectoryForTemplateLoading(new
File(path));

 temp = fmConfig.getTemplate(fileName);

 }

 strOut = new StringWriter();

 temp.process(dataMap, strOut);

 InputStream in = new
ByteArrayInputStream(strOut.toString().getBytes());

 //FTP operations for Side file creation and store

 ftpOperations(xmlDirnName,xmlFileName,in);

 documentData.put(new
DataIdentifier(GENERATED_SIDE_NAME),

 xmlFileName);

 } catch (IOException ioe) {

 throw new DestinationException("There is no template
specified for the side-car file, but a file name has been
speccified.",

ExceptionCodes.CNT0500800011,

 null);

FTPDestinationSystem Implementation

75

 } catch (TemplateException e) {

 throw new DestinationException("There is no template
specified for the side-car file, but a file name has been
speccified.",

ExceptionCodes.CNT0500800011,

 null);

 } finally {

 if (strOut != null) {

 try {

 strOut.close();

 } catch (Exception genErr) {

 /* Ignore*/

 }

 }

 }

 }

 private static final String BASE_DIRECTORY =

 "destination.ftp.base.directory";

 private static final String SUB_DIRECTORY_PATTERN =
"destination.ftp.subdirectory.pattern";

 private static final String SIDE_BASE_DIRECTORY =

 "destination.ftp.side.base.directory";

 private static final String SIDE_SUB_DIRECTORY_PATTERN =
"destination.ftp.side.subdirectory.pattern";

 private static final String TEMPLATE_FILE =

 "destination.ftp.template.path";

 private static final String FILE_PATTERN =
"destination.ftp.name.pattern";

 private static final String SIDE_FILE_PATTERN =

 "destination.ftp.side.name.pattern";

 private static final String TEMPLATE_CONTENTS =

 "destination.ftp.template";

 private static final String GENERATED_NAME =

 "destination.ftp.generated.file.name";

 private static final String GENERATED_SIDE_NAME =

 "destination.ftp.generated.side.file.name";

 private static final String FTP_SERVER =
"destination.ftp.server";

 private static final String FTP_USERNAME =
"destination.ftp.username";

 private static final String FTP_PASSWORD =
"destination.ftp.password";

 private static final String FTP_PORT =
"destination.ftp.port";}

MockPhaseListener Implementation

76

MOCKPHASELISTENER IMPLEMENTATION

package oracle.documaker.ecmconnector.mockphaselistener;

import java.util.ArrayList;
import java.util.List;

import oracle.documaker.ecmconnector.connectorapi.PhaseListener;
import oracle.documaker.ecmconnector.connectorapi.Phases;
import
oracle.documaker.ecmconnector.connectorapi.data.ConfigurationData;
import oracle.documaker.ecmconnector.connectorapi.data.DocumentData;
import
oracle.documaker.ecmconnector.connectorapi.exceptions.ExceptionCodes
;
import
oracle.documaker.ecmconnector.connectorapi.exceptions.PhaseException
;

import org.apache.log4j.Logger;

public class MockPhaseListener extends PhaseListener {
 private static Logger logger =
 Logger.getLogger(MockPhaseListener.class.getName());
 private List<Phases> activePhases;

 public MockPhaseListener(ConfigurationData configurationData,
 String phaseId) throws PhaseException {
 super(configurationData, phaseId);

 activePhases = new ArrayList<Phases>();

 String phaseListString =
 configurationData.getPropertyWithModifier(PHASE_LIST,
phaseId);

 if (phaseListString != null) {
 String[] phaseList = phaseListString.split(",");

 for (String phaseStr : phaseList) {
 Phases phaseInst = Phases.valueOf(phaseStr.trim());

 if (phaseInst != null) {
 activePhases.add(phaseInst);
 }
 else
 logger.debug("Invalid phase id string - " + phaseStr);
 }
 } else
 throw new PhaseException("A list of phases must be provided
for proper configuration of the MockPhaseListener.",
 ExceptionCodes.CNT0500000002,
 new Object[] { "A list of phases
must be provided for proper configuration of the MockPhaseListener."
});
 }

 public List<Phases> getActivePhaseIdentifiers() {
 return activePhases;
 }

 public void execute(List<DocumentData> documentList,
 Phases phaseId) throws PhaseException {
 logger.debug("Executing phase (list) - " + phaseId.toString());

MockPhaseListener Implementation

77

 }

 public void execute(DocumentData documentData,
 Phases phaseId) throws PhaseException {
 logger.debug("Executing phase (single) - " +
phaseId.toString());
 }

 public void execute(Phases phaseId) throws PhaseException {
 logger.debug("Executing phase (none) - " + phaseId.toString());
 }

 public void cleanUp() {
 }

Appendix C

Legal Notices

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Software Foundation (http://
www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

Apache Commons Math Copyright 2001-2008 The Apache Software Foundation

This product includes software translated from the odex Fortran routine developed by E. Hairer
and G. Wanner and distributed under the following license:

Copyright (c) 2004, Ernst Hairer

Apache License Version 2.0, January 2004 (http://www.apache.org/licenses/LICENSE-2.0)

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE VISIGOTH SOFTWARE SOCIETY OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Apache Commons Codec Copyright 2002-2009 The Apache Software Foundation
Copyright (C) 2002 Kevin Atkinson (kevina@gnu.org)

Apache Commons Pool
Copyright 2001-2011 The Apache Software Foundation

Apache Jakarta Commons Lang
Copyright 2001-2007 The Apache Software Foundation

Apache Jakarta Commons FileUpload

Copyright 2002-2006 The Apache Software Foundation

Apache Commons CLI
Copyright 2001-2009 The Apache Software Foundation

Apache Commons Collections
Copyright 2001-2008 The Apache Software Foundation

Apache Commons Logging
Copyright 2003-2013 The Apache Software Foundation

Barcode4J
Copyright 2002-2010 Jeremias Märki
Copyright 2005-2006 Dietmar Bürkle
Portions of this software were contributed under section 5 of the
Apache License. Contributors are listed under: (http://barcode4j.sourceforge.net/
contributors.html)
Copyright 2002-2010 The Apache Software Foundation

This product includes software distributed via the Berkeley Software Distribution (BSD) and
licensed for binary distribution under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software
is provided 'as-is', without any express or implied warranty. In no event will the authors be held
liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/
).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All
Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://
www.bluecreststudios.com).

Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project
Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OR GUARANTEES.
YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR

EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES
OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS
FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-
INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT,
USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER
ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project
Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OR GUARANTEES.
YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR
EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES
OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS
FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-
INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT,
USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER
ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open
License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OR GUARANTEES.
YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR
EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES
OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS
FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-
INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT,
USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER
ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all
accompanying material is copyright (c) 1998-1999 Erwin Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED
WARRANTY. USE IT AT YOUR OWN RISK! THE AUTHOR ACCEPTS NO LIABILITY
FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND
ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE

USE OR PERFORMANCE OF THIS SOFTWARE

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn
Randers-Pehrson (current maintainer), and others. (http://www.libpng.org)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc.
disclaim all warranties, expressed or implied, including, without limitation, the warranties of
merchantability and of fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary, or consequential
damages, which may result from the use of the PNG Reference Library, even if advised of the
possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE CRYPTIX FOUNDATION LIMITED OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANYIMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE
SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT,
SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains
material that is © 1994-2005 The Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree -
www.destroydrop.com/hjavascripts/tree/version 0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines
Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights
reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but
DISCLAIMS ALL WARRANTIES WITH REGARD TO IT, including all implied warranties
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In no event shall
University of Coimbra be liable for any special, indirect or consequential damages (or any
damages whatsoever) resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or
performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://
www.opensymphony.com/.)"

Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may
not match PANTONE-identified standards. Consult current PANTONE Color Publications for
accurate color. PANTONE(R) and other Pantone LLC trademarks are the property of Pantone
LLC. (C) Pantone LLC, 2011.

Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle
to distribute for use only in combination with Oracle Documaker. PANTONE Color Data and/
or Software shall not be copied onto another disk or into memory unless part of the execution
of Oracle Documaker.

This product includes software developed by Dave Gamble and distributed via

SourceForge.net (http://sourceforge.net/projects/cjson/)

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2009 Dave Gamble

This product includes software developed by the Zxing Project.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2013 Zxing Project (https://github.com/zxing/zxing)

This product includes software developed by the Wintertree software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

The Sentry Spelling-Checker Engine Copyright (c) 1993 Wintertree (https://wintertree-
software.com/dev/ssce/windows/index.html)

Freemarker Copyright (c) 2003 The Visigoth Software Society. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE VISIGOTH SOFTWARE SOCIETY OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO,PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the

Visigoth Software Society. For more information on the Visigoth Software Society, please see
http://www.visigoths.org/

Copyright (c) 2000,2002,2003 INRIA, France Telecom (http://asm.ow2.org/) All rights
reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright© 2001-2016 ej-technologies GmbH (https://www.ej-technologies.com/products/
install4j/overview.html) All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This component is distributed with the following third party components: (1) Third party
components licensed under EPL v1.0; (2) JARGS (Stephen Purcell); JDOM (Brett McLaughlin
& Jason Hunter); and (3) ORO (Apache Software Foundation). Please see EPL v1.0 and
applicable components (#2072, 2686, 2074) for restrictions/requirements.

Copyright 2001-2005 (C) MetaStuff, Ltd.(http://www.dom4j.org) All Rights Reserved.

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS "AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Little CMS Copyright (c) 1998-2011 (http://www.littlecms.com/) All Rights Reserved.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Marti Maria Saguer Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

 Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite
catholique de Louvain (UCL), Belgium

Copyright (c) 2002-2007, Professor Benoit Macq

Copyright (c) 2001-2003, David Janssens

Copyright (c) 2002-2003, Yannick Verschueren

Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe

Copyright (c) 2005, Herve Drolon, FreeImage Team

All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THEIMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

 Copyright (c) 2004-2013 QOS.ch (http://www.qos.ch/shop/index) All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright notice
and this permission notice shall be included in all copies or substantial portions of the
Software.

The Code Project Open License (CPOL) 1.02

Copyright © CodeProject, 1999-2016 (http://www.codeproject.com/info/cpol10.aspx) All
Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper

Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers (http://
expat.sourceforge.net/)

All Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2002-2010 Atsuhiko Yamanaka, JCraft,Inc(http://www.jcraft.com/jsch/) All
rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL JCRAFT,INC. OR ANY CONTRIBUTORS TO

THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OFLIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by Christian Bach and distributed via (http://
tablesorter.com/docs/)

All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2007 Christian Bach

This product includes software developed by Dmitry Baranovskiy and distributed via (https://
github.com/DmitryBaranovskiy)

All rights reserved.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright © 2008 Dmitry Baranovskiy.

This product includes software developed by John Resig and distributed via (http://jquery.com/
) All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND,EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2011 John Resig

Copyright (c) Monotype Imaging, Inc (http://www.monotype.com/) All rights reserved.

Monotype®, Albany®, Andale®, Cumberland®, Thorndale®, MT®, WorldType® is a
trademark of Monotype Imaging, Inc., registered in U.S. Patent and Trademark Office and
certain other jurisdictions.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

	Start
	Notice
	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Introduction
	Overview
	Moving Documents
	Documaker Connector Components
	The Development Philosophy

	Developing Source Components
	Overview
	Source Component Details
	An Example Source
	The Source Implementation

	Developing Destination Components
	Overview
	Destination Component Details
	An Example Destination
	The Destination Implementation

	Developing Periodic Processes
	Overview
	An Example Periodic Process

	Developing Phase Listeners
	Overview
	Phase Listener Component Details
	An Example Phase Listener
	The Phase Listener Implementation

	Configuration Properties
	Standard Source Configuration Properties
	Standard Configuration Properties

	Sample Implementations
	BatchLoaderSource Implementation
	BatchLoaderSystem Implementation
	BatchLoaderDocumentData Implementation
	FileECMDocument Implementation
	FTPDestination Implementation

	FTPDestinationSystem Implementation
	MockPhaseListener Implementation

	Legal Notices

