
Oracle Utilities Energy Information
Platform
Rules Language Reference Guide

Release 1.6.1.23 for Windows

E18203-24

December 2018

(Revised July 2019)

Oracle Utilities Rules Language/Rules Language Reference Guide, Volume 1, Release 1.6.1.23 for Windows

E18203-24

Copyright © 1999, 2018 Oracle and/or its affiliates. All rights reserved.

Primary Author: Lou Prosperi

Contributor: Steve Pratt

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
“commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/
or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

NOTIFICATION OF THIRD-PARTY LICENSES

Oracle Utilities software contains third party, open source components as identified below. Third- party license
terms and other third-party required notices are provided below.

License: Apache 1.1

Module: xercesImpl.jar, xalan.jar

Copyright © 1999-2000 The Apache Software Foundation. All rights reserved.

Use of xercesImpl and xalan within the product is governed by the following (Apache 1.1):

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other materials provided with the
distribution. (3) The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: “This product includes software developed by the Apache Software Foundation
(http://www.apache.org/) .” Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear. (4) Neither the component name nor Apache
Software Foundation may be used to endorse or promote products derived from the software without specific
prior written permission. (5) Products derived from the software may not be called “Apache”, nor may
“Apache” appear in their name, without prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License: Paul Johnston

Modules: md5.js

Copyright (C) Paul Johnston 1999 - 2002

Use of these modules within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other materials provided with the
distribution. (3) Neither the component name nor the names of the copyright holders and contributors may be
used to endorse or promote products derived from the software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

License: Tom Wu

Module: jsbn library

Copyright © 2003-2005 Tom Wu. All rights reserved

Use of this module within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other materials provided with the
distribution.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TOM
WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Contents
Contents

What’s New
New Features in the Oracle Utilities Rules Language Reference Guide ... 1-i

New Features for Release 1.6.0.0 .. 1-i

Chapter 1
Overview... 1-1

Statement Format ... 1-2
Conventions Used to Represent the Syntax of Statements ... 1-2
Description Format ... 1-3

Function Format... 1-4

Chapter 2
General Statements ... 2-1

General Statements .. 2-1
Assignment Statement... 2-2
Comment Statement.. 2-5

Chapter 3
Control Statements.. 3-1

Control Statements... 3-1
Abort Statement ... 3-2
Call Statement... 3-3
Done Statement.. 3-5
For Each Statements ... 3-6
For Each x in Channel Statement ... 3-7
For Each x in Factor Statement... 3-8
For Each x In List Statement... 3-10
For Each x In Number Statement... 3-12
For Each x In Override Statement.. 3-13
For Each x In Recordlist Statement.. 3-15
For Each x In Set Statement .. 3-16
For Each x In Week Statement.. 3-17
For Each x In Distribution Node Statement... 3-18
For Each x In CSV File Statement.. 3-19
For Each x In COM IENUM Statement ... 3-20
If-Then-Else Statement... 3-21
Include Statement .. 3-23
Leave For Statement.. 3-25
Leave Rider Statement .. 3-25
Next For Statement ... 3-25
Novalue Statement... 3-26
Section Statement... 3-27
Select Bill_Period Statement .. 3-28
Select Expression Statement .. 3-31
i

ii
Select Rate_Code Statement... 3-33
Warn Statement.. 3-35

Chapter 4
Revenue Computation Statements ... 4-1

Revenue Computation Statements .. 4-1
All Statement .. 4-2
Block Statements.. 4-4
Unbilled and Ignore Statements .. 4-9

Chapter 5
Report Statements... 5-1

Report Statements .. 5-1
Clear Statement .. 5-2
Determinant Statement ... 5-4
Label Statement.. 5-6
Remove Statement ... 5-7
Report Statement ... 5-8
Revenue Statement .. 5-10

Chapter 6
Miscellaneous Statements... 6-1

Miscellaneous Statements.. 6-1
Delete Statement .. 6-2
Save Statements.. 6-3

Chapter 7
Financial Management Statements .. 7-1

Using the Financial Management Statements .. 7-2
Using User-Defined Attributes.. 7-6
Post Charge Or Credit Statement.. 7-7
Post Tax Statement.. 7-9
Post Installment Statement... 7-11
Post Statement Statement ... 7-13
Post Bill Statement... 7-15
Post Payment Statement ... 7-17
Post Adjustment Statement.. 7-19
Post Refund Statement.. 7-21
Post Writeoff Statement ... 7-23
Post Deposit Statement .. 7-25
Post Deposit Interest Statement.. 7-27
Post Deposit Application Statement... 7-29
Cancel Transaction Statement.. 7-31
CALCULATE_LATEPAYMENT Function ... 7-33
FMGETBILLINFO Function... 7-34
PROCESSAUTOPAYMENT Function.. 7-35

Deprecated Statements .. 7-36
Post Service Charge Statement .. 7-36
Post Deferred Service Charge Statement ... 7-38
Post Budget Service Charge Statement... 7-40
Post Budget Bill Charge Statement ... 7-42
Post Budget Bill Trueup Statement... 7-44
Post Installment Charge Statement ... 7-46

Chapter 8
Workflow Management Statements.. 8-1

Workflow Management Statements .. 8-1

Using the Workflow Management Statements .. 8-2
Process Start Statement... 8-3
Process Suspend Statement .. 8-5
Process Resume Statement... 8-7
Process Terminate Statement... 8-9
Process Event Statement .. 8-11

Chapter 9
Interval Data Function Descriptions .. 9-1

Interval Data Functions... 9-2
INTDADDATTRIBUTE Function... 9-2
INTDADDVMSG Function ... 9-3
INTDBLOCKOP Function .. 9-4
INTDBLOCKOPNA Function.. 9-6
INTDCLOSE Function.. 9-8
INTDCOUNT Function.. 9-9
INTDCOUNTSTATUSCODE Function .. 9-10
INTDCREATEMASK Functions .. 9-11
INTDCREATEDAYMASK Function .. 9-12
INTDCREATEFACTORMASK Function.. 9-13
INTDCREATEHANDLE Function... 9-14
INTDCREATEMASK Function.. 9-15
INTDCREATEOVERRIDEDAYMASK Function... 9-16
INTDCREATEOVERRIDEMASK Function .. 9-17
INTDCREATESTATUSCODEMASK Function .. 9-18
INTDCREATETOUPERIOD Function ... 9-19
INTDDELETE Function.. 9-21
INTDDIPTEST Function ... 9-22
INTDEXPORT Function.. 9-23
INTDGETERRORCODE Function .. 9-25
INTDGETERRORMESSAGE Function... 9-26
INTDISEQUAL Function... 9-27
INTDJOIN Function.. 9-28
INTDLOAD Functions ... 9-29
INTDLOAD Function ... 9-34
INTDLOADACTUALCUT Function .. 9-35
INTDLOADDATES Function .. 9-36
INTDLOADHIST Function... 9-38
INTDLOADLIST Function.. 9-39
INTDLOADLISTDATES Function ... 9-40
INTDLOADLISTENERGY Function... 9-41
INTDLOADLISTHIST Function.. 9-42
INTDLOADRELATEDCHANNEL Function .. 9-43
INTDLOADSP Function .. 9-44
INTDLOADSTAGING Function... 9-46
INTDLOADUOM Function .. 9-47
INTDLOADUOMDATES Function.. 9-48
INTDLOADUOMHIST Function .. 9-49
INTDLOADVERSION Function ... 9-50
INTDOPEN Function ... 9-51
INTDREADFIRST Function ... 9-52
INTDREADNEXT Function... 9-53
INTDRECCOUNT Function ... 9-54
 INTDRELEASE Function... 9-55
INTDREPLACE Function.. 9-56
iii

iv
INTDROLLAVG Function .. 9-57
INTDROLLPEAK Function .. 9-58
INTDSCALAROP Function... 9-59
INTDSCALE Function .. 9-61
INTDSETATTRIBUTE Function... 9-63
INTDSETDSTPARTICIPANT Function.. 9-65
INTDSETSTRING Function ... 9-66
INTDSETVALUE Function... 9-67
INTDSETVALUESTATUS Function .. 9-68
INTDSHIFTSTARTTIME Function .. 9-70
INTDSMOOTH Function .. 9-71
INTDSORT Function .. 9-72
INTDSPIKETEST Function .. 9-73
INTDSUBSET Function.. 9-74
INTDTOU Function .. 9-75
INTDTOURELEASE Function .. 9-76
INTDTOUVALUE Function ... 9-77
INTDUPDATESTATS Function... 9-78
INTDVALUE Function... 9-79
STDEV Function... 9-84

Enhanced Interval Data Functions.. 9-85
Oracle Utilities Meter Data Management Interval Data .. 9-85
INTDDELETEEX Function.. 9-86
INTDGETATTREXALL Function .. 9-87
INTDLOADEXACTUAL Function ... 9-88
INTDLOADEXCUT Function.. 9-89
INTDLOADEXDATES Function .. 9-90
INTDLOADEX Function... 9-93
INTDLOADEXLIST Function.. 9-94
INTDLOADEXLISTDATES Function ... 9-95
INTDLOADEXRELATEDCHANNEL Function.. 9-96
INTDSAVEEX Function .. 9-97
INTDSAVEEXP Function.. 9-99
INTDSETATTREX Function .. 9-101
INTDSETATTREXALL Function.. 9-102
INTDVALUEEX Function... 9-103
Enhanced Interval Data Functional Differences .. 9-104
Interval Data Functions and Enhanced Interval Data Handles ... 9-105

Chapter 10
Meter Value Function Descriptions .. 10-1

Meter Value Functions .. 10-2
MVLOAD Function.. 10-2
MVLOADACCT Function.. 10-4
MVLOADACCTDATES Function ... 10-5
MVLOADACCTHIST Function.. 10-6
MVLOADDATES Function ... 10-8
MVLOADHIST Function ... 10-9
MVLOADLIST Function .. 10-10
MVLOADLISTDATES Function.. 10-11
MVLOADLISTHIST Function .. 10-12

Chapter 11
Math Function Descriptions.. 11-1

Math Functions... 11-2
ACOS Function.. 11-2

ASIN Function... 11-3
ATAN Function... 11-4
ATAN2 Function... 11-5
BITAND Function.. 11-6
CEIL Function ... 11-7
COS Function... 11-8
COSECANT Function ... 11-9
COSH Function ... 11-10
COTANGENT Function... 11-11
DIVQUOT Function.. 11-12
DIVREM Function ... 11-13
EXP Function... 11-14
FABS Function... 11-15
FLOOR Function .. 11-16
FMOD Function.. 11-17
FREXPM Function ... 11-18
FREXPN Function.. 11-19
LOG Function.. 11-20
LOG10 Function ... 11-21
MAX Function ... 11-22
MAXN Function.. 11-23
MIN Function .. 11-24
MINNZ Function.. 11-25
MODF Function.. 11-26
POW Function ... 11-27
ROUND Function... 11-28
ROUND2VALUE Function ... 11-29
ROUNDINT Function... 11-30
SECANT Function.. 11-31
SIN Function.. 11-32
SINH Function .. 11-33
SQROOT Function... 11-34
TAN Function.. 11-35
TANH Function .. 11-36

Chapter 12
String Function Descriptions... 12-1

String Functions.. 12-2
FLOAT2STRING Function .. 12-2
FLOAT2STRINGNC Function.. 12-3
INSTR Function .. 12-4
LEFT Function .. 12-5
LEN Function .. 12-6
LTRIM Function.. 12-7
MID Function .. 12-8
RIGHT Function ... 12-9
RTRIM Function ... 12-10
STRING Function... 12-11
STRINGNC Function .. 12-12
TOLOWER Function... 12-13
TOUPPER Function... 12-14
TRIM Function .. 12-15

Chapter 13
Other Function Descriptions... 13-1

Database Functions.. 13-2
v

vi
ACCOUNTFACTOR Function ... 13-2
ARRAYUPPERBOUND Function.. 13-3
CALLSTOREDPROC Function .. 13-4
GETADOCONNECTION Function... 13-6
GETCONNECT Function.. 13-7
GETDATASOURCE Function.. 13-8
GETQUALIFIER Function.. 13-9
GETUSERID Function.. 13-10
HASVALUE Function ... 13-11
LISTCOUNT Function .. 13-12
LISTOP Function.. 13-13
LISTUPDATE Function.. 13-14
LISTVALUE Function ... 13-15
PRORATEFACTOR Function... 13-16
RSPRORATE Function ... 13-17
SETBINPATH Function ... 13-18
SETDBMONITOR Function ... 13-19
WQ_OPEN Function... 13-20

Date/Time Functions.. 13-21
BILLINGHOURS Function.. 13-21
DATE Function... 13-22
DATEFROMFLOAT Function ... 13-23
DATETIMEFROMSTRING Function .. 13-24
DATETIMETOSTRING Function... 13-25
DATETOFLOAT Function.. 13-26
DAY Function.. 13-27
DAYDIFF Function ... 13-28
DAYNAME Function .. 13-29
DBDATETIME Function ... 13-30
HOUR Function .. 13-31
MINUTE Function ... 13-32
MONTH Function .. 13-33
MONTHDIFF Function.. 13-34
MONTHHOURS Function... 13-35
MONTHNAME Function... 13-36
ROUNDDATE Function .. 13-37
SAMEWEEKDAYLASTYEAR Function.. 13-38
SECOND Function... 13-39
WEEKDAY Function .. 13-40
WEEKDIFF Function.. 13-41
YEAR Function ... 13-42
YEARDAY Function.. 13-43
YEARSTR Function ... 13-44

Historical-Data Functions... 13-45
COMPSUM Function ... 13-46
HISTCOUNT Function ... 13-47
HISTMAX Function ... 13-48
HISTMIN Function .. 13-49
HISTMINNZ Function.. 13-50
HISTVALUE Function .. 13-51
MAXNRANGE Function.. 13-52
MAXRANGE Function ... 13-53
MINRANGE Function .. 13-54

Internal Functions .. 13-55
COMPIKVA Function ... 13-55

COMPKVA Function... 13-56
COMPKVARHFROMKQKW Function ... 13-57
COMPLF Function ... 13-58
IDATTR Function... 13-59
FLAG Function ... 13-61
LF2KW Function... 13-62
LF2KWH Function ... 13-63
MAXKW Function.. 13-64
POWERFACTOR Function ... 13-65
READING2USAGE Function ... 13-66

Season-Based Functions.. 13-67
AVGSEASON Function .. 13-67
MAXSEASON Function.. 13-69
MINSEASON Function... 13-70
MONTHLYMERGE Function .. 13-71
SEASONVALUE Function... 13-72
SUMSEASON Function .. 13-73

Term Functions .. 13-74
Term Function Tail Identifiers .. 13-74
LOADCONTRACTTERM Function.. 13-75
LOADCONTRACTTERMALL Function ... 13-77
LOADGROUPTERM Function .. 13-79
LOADGROUPTERMALL Function.. 13-82
LOADITEMTERM Function... 13-84
LOADITEMTERMALL Function .. 13-87
SAVECONTRACTTERM Function ... 13-90
SAVECONTRACTTERMALL Function... 13-92
SAVEGROUPTERM Function.. 13-93
SAVEGROUPTERMALL Function ... 13-95
SAVEITEMTERM Function .. 13-97
SAVEITEMTERMALL Function.. 13-99

Miscellaneous Functions .. 13-101
ACCTREADDATES Function.. 13-101
ACCTTABLELOAD Function ... 13-102
CONFIGADD Function .. 13-103
CONFIGGET Function ... 13-104
CREATEOBJECT Function .. 13-105
CREATEREPORT Function ... 13-106
EMAILCLIENT Function.. 13-109
EXPBLKMDMUSAGE Function... 13-112
EXPMDMUSAGE Function ... 13-114
EXPORT_USAGE Function ... 13-116
FACTORINEFFECT Function... 13-118
GETUSERSPECIFIEDSTOP Function.. 13-119
INEFFECT Function .. 13-120
ISHOLIDAY Function.. 13-121
RUNRATE Function... 13-122
SAVE_PROFILE Function.. 13-123
SETREPORTTITLE Function.. 13-124
USEREXIT Function .. 13-125
WAITFORRUNRATE Function .. 13-126

Appendix A
Reserved Words .. A-1

Statement Keywords ... A-2
vii

viii
Function Keywords... A-3
Interval Data Function Keywords.. A-4
Meter Value Function Keywords ... A-5

Predefined Identifiers ... A-6
Predefined, Assignable Identifiers .. A-6

Appendix B
XML Statements and Functions... B-1

XML Overview.. B-2
XML Data Types .. B-2
Using Stem.Tail XML Identifiers ... B-3

XML Statements... B-4
Identifier Statement .. B-4
OPTIONS Statement... B-5
XML_ELEMENT Statement ... B-6
FOR EACH x IN XML_ELEMENT_OF 0 Statement .. B-8
XML_OP Statement... B-9

XML/Document Object Management Functions... B-12
DOMDOCCREATE Function.. B-13
DOMDOCLOADFILE Function... B-14
DOMDOCLOADXML Function ... B-15
DOMDOCSAVEFILE Function .. B-16
DOMDOCGETROOT Function ... B-17
DOMDOCADDPI Function ... B-18
DOMNODEGETNAME Function ... B-19
DOMNODEGETTYPE Function ... B-20
DOMNODEGETVALUE Function ... B-21
DOMNODEGETCHILDCT Function... B-22
DOMNODEGETFIRSTCHILD Function .. B-23
DOMNODEGETSIBLING Function... B-24
DOMNODECREATECHILDELEMENT Function .. B-25
DOMNODESETATTRIBUTE Function... B-26
DOMNODEGETCHILDELEMENTCT Function... B-27
DOMNODEGETFIRSTCHILDELEMENT Function... B-28
DOMNODEGETSIBLINGELEMENT Function... B-29
DOMNODEGETATTRIBUTECT Function.. B-30
DOMNODEGETATTRIBUTEI Function.. B-31
DOMNODEGETATTRIBUTEBYNAME Function .. B-32
DOMNODEGETBYNAME Function ... B-33

Using the XML Statements and Functions ... B-34
Reading from XML Documents and Files.. B-34
Creating XML Documents and Files ... B-35

Index

What’s New
New Features in the Oracle Utilities Rules

Language Reference Guide

This chapter outlines the new features of the 1.6.0.0 release of the Oracle Utilities Rules Language
that are documented in this guide.

New Features for Release 1.6.0.0

Feature Description For more information, refer to...

Term-Based Rules Language
Functions

This release includes new Rules Language
functions to retrieve and save terms and
term details to and from the Oracle
Utilities Data Repository.

Term Functions on page 13-74

Query Lists Query lists are structured query language
(SQL) queries that can be used by Oracle
Utilities Rules Language to access records
stored in the Oracle Utilities Data
Repository. Query lists are created using
the Lists function available through the
Energy Information Platform user
interface.

Query Lists on page 7-66 in the Oracle
Utilities Energy Information Platform User’s
Guide

For Each x In List Statement on
page 3-10

LISTVALUE Function on page 13-
15

Support for Oracle Business
Intelligence Publisher

This release includes support for
publishing reports using Oracle Business
Intelligence Publisher 10.1.3.4. The
CREATEREPORT Rules Language
function has been enhanced to support
initiation of Oracle BI Publisher reports.

CREATEREPORT Function on
page 13-106
i

ii

Chapter 1
Overview

This chapter provides a brief overview of the Oracle Utilities Rules Language Reference Guide and
descriptions of the format used in the statement and function descriptions found in later chapters,
including:

• Statement Format

• Function Format
Overview 1-1

Statement Format
Statement Format
Each statement type has its own format and rules for use. Most statements begin with a keyword,
such as ALL or BLOCK. Each keyword is followed by one or more parameters that provide
additional information as to how the instruction is to be processed. A parameter can be a
constant, an identifier (variable), an arithmetic expression, or a function, depending upon the
particular type of statement. See Chapter 4: Identifiers, Constants, and Expressions in the
Oracle Utilities Rules Language User’s Guide for more information. Some statement types consist of
several keywords and parameters, organized on several lines.

It is possible to include statements inside other statements. This is called “nesting,” and is used
with a number of statements.

All statements end in a semicolon (;).

Conventions Used to Represent the Syntax of Statements
Throughout this manual, the format of statements is represented with the following conventions:

Format Example:

ALL <determinant> CHARGE <price> INTO <$rev_id>;

Sample Example:

ALL KWH CHARGE $0.05 INTO $ENERGY_CHARGE;

Convention Meaning

CAPS Words in all capital letters are reserved words, such as keywords. You must
use them exactly as they appear in the manual. A complete list of reserved
words is provided in Appendix A: Reserved Words.

< > Pointed brackets are used to indicate a required parameter. Do not use the
pointed brackets in your statements. In an actual statement, you substitute a
real value for the placeholder that appears between the brackets.

[] Square brackets are used to indicate an optional parameter. Do not use the
square brackets in your statements.

 | Vertical bars are used to indicate a choice. Do not use the vertical bar in your
statements.
1-2 Rules Language Reference Guide

Statement Format
Description Format
Each of the following statement descriptions uses the same format. If there are multiple types of
the same statement (such as FOR EACH x IN statements), each is described separately.

Purpose
The function and purpose of the statement. If there are multiple formats of a given statement,
each format is described.

Format
The specific format of the statement (see Statement Format on page 1-2).

Example
An example of the statement as it might be used in a rate form. If a given statement is used within
the context of another statement (i.e., as a nested statement), the statement appears in bold type.

Notes
Comments and notes concerning how the statement is used in specific circumstances, and any
special information you might need to use the statement.

To Create
A step-by-step explanation of how to create the statement in a rate form. If there are multiple
formats of a statement, the steps to create a statement in each format are included.

.
Overview 1-3

Function Format
Function Format
Each of the function descriptions that follow employ the same format:

Purpose
The first section of each description outlines the purpose of the function, as well as specific
information to help you understand how the function is used in a rate form.

Format
The specific format of the function, including the proper syntax to be used with the function, and
the function’s parameters.

Where
The function parameters are described.

Example
An example of the function used in a rate form. If a function is used within the context of a
statement (i.e., as part of a nested statement) the function will appear in bold type.
1-4 Rules Language Reference Guide

Chapter 2
General Statements

This chapter provides detailed descriptions of the General statements available in the Oracle
Utilities Rules Language. General statements are used in a number of ways throughout rate forms.

General Statements
• Assignment Statement

• Comment Statement
General Statements 2-1

Assignment Statement

Purpose
An ASSIGNMENT Statement assigns a value to an identifier. Identifiers are the equivalent of
variables in programming languages and algebraic formulas. See Chapter 4: Identifiers,
Constants, and Expressions in the Oracle Utilities Rules Language User’s Guide for more
information concerning identifiers. Assignment statements are the most basic type of statement;
they are used for many purposes. They are often used in a rate form to do intermediate
calculations.

You can set an identifier equal to a constant, to the result of an arithmetic expression, or to the
result of a function.

Format
The formats for Assignment statements are:

<Identifier> = <constant|expression|function>;

or

<Identifier> =+ <constant|expression|function>;
(=+ sets a negative result to zero)

Examples

Statement Format Sample Statement/Explanation

<Identifier> = <constant> $CUST_CHARGE = $5.00;

Set customer charge equal to $5.00.

<Identifier> = <expression> $DEMAND_RATE1 = $4.68 - VOLTAGE_DISCOUNT;

Calculate demand rate by subtracting customer's
voltage discount from $4.68

<Identifier> = <function> BILL_KW = MAX(5, KW);

Set identifier “BILL_KW” equal to whichever is
greater, 5 or the customer's value for KW during the
billing period.
2-2 Rules Language Reference Guide

To Create Assignment Statements
1. Select Statements-›Assignment.

The Assignment Statement template appears.

2. Specify the identifier.

The identifier on the left side of the equal sign is the name to which you are assigning the
value specified or computed on the right side of the equal sign. You can then use this
identifier on the right side of an another ASSIGNMENT Statement, or, depending upon the
type of identifier, in another type of statement.

It’s always best to use a descriptive name that is easily recognized.

Depending upon the value or values to be computed or assigned on the right side of the
statement, you may want to use one of the special types of identifiers described in Chapter 4:
Identifiers, Constants, and Expressions in the Oracle Utilities Rules Language User’s Guide.

You can type the identifier, or if it is a predefined identifier or one you've assigned elsewhere
in the rate form (including other rate forms that you've included in this rate form using an
INCLUDE Statement), you can use the Rules Language Elements Editor to pick it. To use
that feature, position the mouse pointer in the “Identifier” field and click the right mouse
button.

The identifier can be any name you choose, with the following restrictions:

• You cannot use any of the reserved words shown in Appendix A: Reserved Words.

• With the exception of hyphens, you can use any combination of letters, digits, and the
underscore character (_), as long as the first character is a letter. Revenue identifiers,
however, must begin with a dollar sign ($).

• It can be up to 64 characters.

• If an identifier consists of multiple words, you must join the words with an underscore
(blanks are not allowed within identifiers).
Examples: VOLTAGE_DISCOUNT and KWH_0_TO_150.

• Identifiers are case-insensitive—for example, the identifiers aaa and AAA are the same.

3. In the Expression field, specify the value that you want to assign to the identifier.
Expressions can be up to 256 characters. You can specify a constant, an expression
(arithmetic operation), or a function.

Constant: A constant is a value that doesn't change. You can set the identifier equal to any of
the following types of constants:

Number can be either an integer or a decimal number (e.g., 7 or 7.5).

Text strings: A string constant is any set of characters (except a double quote) enclosed
in double quotes.

Dates are represented as ‘mm/dd/yyyy’ or ‘yyyy-mm-dd’. A date can include a time:
‘mm/dd/yyyy hh:mm:ss’ (for example, 12/01/1998 12:00:00). If you don’t include a
time, midnight (00:00) is assumed.

Recorder, channel. A specific recorder and channel are indicated by ‘recorder,channel’
(enclosed in single quote marks, with no spaces before or after the comma). The
recorder is any combination of uppercase letters and digits, and the channel is any integer
from 0 through 9 (for example, KWH_HNDL = ‘RCDR1234,1’). When you assign a
recorder,channel to an identifier in this way, the program goes to the Interval Database
and gets the interval data for that recorder-id,channel-number for the current bill period,
and puts a reference to it in the identifier (this is called interval data loading). Note: This
approach “hard codes” a particular recorder channel, which you usually should not do,
except possibly in a contract for a particular account. The INTDLOADxxx functions are
a more flexible approach, because they automatically load data for whatever account is
General Statements 2-3

being billed, and allow to you to specify time periods other than just the current bill
period.

Expression: You can combine constants and variables into expressions using any of the
standard arithmetic operators: add (+), subtract (-), multiply (*), and divide (/). Specifically,
you can use constants (including 'recorder,channel' constants), interval data handles, TOU
handles, bill determinant identifiers defined in the database tables or in the rate form, and/or
any other identifiers assigned elsewhere in the rate form. Note: You can use
‘recorder,channel’ in an expression in the same way you would use an identifier that has been
assigned an interval data cut; for example, KWH_NEW_HNDL = ‘R1234,1’ - ‘R1234,2’.

For a complete description of the Arithmetic Expressions, including Operator Rules,
Precedence, etc., see Chapter 4: Identifiers, Constants, and Expressions in the Oracle
Utilities Rules Language User’s Guide.

Function: The Rules Language includes a diverse and powerful set of functions designed for
revenue calculations and reporting: for loading historical data (bill determinants or interval
data cuts), performing operations on that data, working with dates and text strings, etc. You
apply a function by putting it on the right side of an ASSIGNMENT Statement.

To enter a function in the ASSIGNMENT template, do one of the following:

• Click the mouse pointer in the Expression field. Click Functions... at the bottom of the
template. Select the desired function from the list that appears. You must add the
necessary parameters.

• Apply the Rules Language Elements Editor. To use that feature, position the mouse
pointer in the Expression field and click the right mouse button. Included in the list of
“Element Types” on the left are four categories of functions: Interval Data/Meter Value
Functions, Math Functions, String Functions, and Other Functions. Select the desired
category, select the function from the list that appears on the right, and click OK. You
can add the parameter using a similar technique.

4. Optional. If you wish to apply positive assignment (+), check the box for Set negative values
to zero. Use this option when a negative result is unacceptable. If the result of the expression
or function on the right side of the statement is negative, the identifier will be assigned a value
of 0.

For example, you may want to subtract a minimum demand from the actual demand and bill
the positive difference. To do this:

BILL_KW = KW - MIN_KW;

BILL_KW = MAX(BILL_KW, 0);

However, you could accomplish the same thing more simply using positive assignment:

BILL_KW =+ KW - MIN_KW;

which means assign the result, but set it to zero if it is less than zero. “=+” can be used in any
Assignment Statement, though its special effect is ignored if a string is assigned.

5. Click OK. The statement appears in the rate form.
2-4 Rules Language Reference Guide

Comment Statement

Purpose
Comments are statements that allow you to annotate your rate forms to help explain the purpose
of the rate form and its various parts. Unlike most statements, comments do not affect
computations, but they are important nonetheless.

You might preface the rate form with a description of the schedule’s availability, applicability, and
included rate codes, for example, or you might add comments at the end to note any riders. In the
middle of a rate schedule, you could use comments to explain individual charges and
computations. You can also use the Comments template to add blank lines to your rate forms, to
make them easier to read.

Format
A comment is a string of characters that starts with /* and ends with */, or for single-line
comments, starts with //.

 Example
/* Applicable rate codes associated with this schedule */
/* 301, 302, 303, 308, 309 */
/* Include Shoulder Peak Rider */

 To Create Comment Statements
1. Select Statements-›Comments.

The COMMENT Statement template appears.

2. In the Comment field, type the line of text you wish to appear (up to 79 characters). You can
include any characters, including spaces and upper and lower case. If you want to include a
blank line in your rate form, simply press the space bar once, and continue with the following
instructions.

3. When you have completed a line, click Insert. The text appears in the upper list box.

4. Repeat steps 2 and 3 for up to five lines of comments. To modify a comment in the upper
box, highlight it there; change the text in the field below, and click Update. Similarly, to delete
a comment, highlight it in the upper box and click Delete.

5. When you are satisfied with the comments as they appear in the upper box, click OK. The
comments appear in the rate form.
General Statements 2-5

2-6 Rules Language Reference Guide

Chapter 3
Control Statements

This chapter describes the control statements available in the Oracle Utilities Rules Language.
Control statements are used to control the order and method for rate form processing.

Control Statements
• Abort Statement

• Call Statement

• Done Statement

• For Each Statements

• For Each x in Channel Statement

• For Each x in Factor Statement

• For Each x In List Statement

• For Each x In Number Statement

• For Each x In Override Statement

• For Each x In Recordlist Statement

• For Each x In Set Statement

• For Each x In Week Statement

• For Each x In Distribution Node Statement

• For Each x In CSV File Statement

• For Each x In COM IENUM Statement

• If-Then-Else Statement

• Include Statement

• Leave For Statement

• Leave Rider Statement

• Next For Statement

• Novalue Statement

• Section Statement

• Select Bill_Period Statement
Control Statements 3-1

• Select Expression Statement

• Select Rate_Code Statement

• Warn Statement

Abort Statement

Purpose
The ABORT Statement is used with the If-Then-Else Statement to stop processing an account’s
bill when a condition you specify is met (or not met), and to issue an explanatory message on page
1 of the bill report.

If an ABORT Statement is triggered for an account by a user-specified condition during billing,
the bill calculations for that account stop. When the bill report is created, it displays the message
you supplied in the ABORT Statement. At that point, the bill can only be issued using the
Current/Final Bill module. The data that triggered the ABORT Statement must be corrected
before the bill can be run successfully.

Format
Abort statements have this format:

ABORT <'character_string'>;

Example
If the account’s value for KWH for the current bill period exceeds 999999, stop processing that
bill and display the following message in the bill report: “KWH is too high, invalid data.”

IF KWH > 999999
THEN

ABORT “KWH is too high, invalid data.”;
END IF;

Notes
The ABORT Statement in similar to the Warn Statement on page 3-35. Both ABORT and
WARN statements are used with IF-THEN-ELSE, so that they are triggered by a user-defined
condition. However, unlike ABORT, WARN stops processing only in the Automatic billing mode;
in the Approval Required mode, the bill is still computed but a warning message is displayed on
page 1 of the bill report. You could use the WARN and ABORT statements together for a two-
step validation; that is, if condition x is met, calculate the bill and issue a WARN message for the
billing analyst; if condition y is met, stop processing the bill and issue the ABORT message.

The billing and analysis programs can display up to 50 messages in one report.

To Create
1. Select Statements-›Abort from the Rules Language Editor menu bar.

The ABORT Statement template appears.

2. Type the message (up to 256 characters) that will appear on reports. The message must be a
string, so it must be enclosed within double-quotes (“ ”).

3. Click OK. The ABORT statement appears in the rate form.
3-2 Rules Language Reference Guide

Call Statement

Purpose
The CALL Statement is used to dynamically execute one rate form while in another. Within a rate
schedule, you can call riders, contracts, and other rate schedulers. Within a rate schedule or rider,
you can call other riders. Any statements can appear in a CALLed rider, including CALL and
INCLUDE statements. Their names will be resolved in the same way as the original CALL name
is resolved.

Note: Exercise care when using CALL statements inside CALLed riders and contracts. In
particular, a CALLed rider (or contract) should NOT include a CALL statement that calls “itself”.
For example, “Rider A” (a rider CALLed within a rate schedule) should NOT include CALL
statements that call “Rider A”. Doing so can result in recursion and the rider calling itself in an
“endless loop,” and can lead to undesirable results.

Note: A single rate schedule can contain up to a maximum of 20 riders and/or contracts
(including those included using both the Call Statement and the Include Statement).

Format
CALL <string_expression>;

Where:

• <string_expression> is a string that is the name of the rate form, or that evaluates to the
name of the rate form. The name can contain the operating company, jurisdiction, rate form
code, and version, separated by colons. The operating company and jurisdiction are optional,
and default to those of the CALLing rate schedule. The version is also optional, and defaults
to the version in effect on the effective date of the current run. Valid formats are:

When the statement is executed, the string is evaluated and the correct rider version determined. If
it has already been included or called, the previously compiled code will be “called.” If it was not
previously compiled, it will be loaded, compiled, and the first statement line in the rider will be
executed. After the last statement in the rider executes, control returns to the next statement after
the CALL Statement.

In Single Step, when a CALL Statement is executed and its rate form has not been loaded, the
rider will be loaded and compiled, and the text of the rate form will be appended at the bottom of

String Expressions Description

name name is the rate form code. Add current
operating company and jurisdiction, and
find the version in effect on the effective
date.

name:version name is the rate form code. Add current
operating company and jurisdiction, and
find the specified version (version may be a
number or a date).

opco:juris:name opco is the operating company code, juris
is the jurisdiction code, and name is the rate
form code. Find the version in effect on
the effective date.

opco:juris:name:version opco is the operating company code, juris
is the jurisdiction code, name is the rate
form code. Find the specified version
(version may be a number or a date).
Control Statements 3-3

the displayed rate schedule. The single step next-line highlight will be set to the first line of the rate
form (the new text or previously loaded text).

If an error occurs when executing a CALL Statement, loading or compiling the rate form
execution of the current rate schedule will stop with an appropriate error message.

Note that the values for Billing Determinants are retrieved from the database before a rate
schedule is run. Usually only the determinants seen in the rate schedule are retrieved. Because the
CALL Statement loads a rate form dynamically, if you reference a determinant only through the
CALL Statement the determinant would not be loaded. There are two ways to make sure
referenced determinants in CALL statements are retrieved. The first is to reference that
determinant outside of the CALL Statement's rate form. The second is to load all determinants
for each account by checking Retrieve all Account Determinants on the Billing Rules tab in
the CIS Billing Options dialog.

Note: Attributes of interval data handles loaded within the “calling” rate schedule cannot be
accessed within the “called” rate form. If this type of operation is required, use the INCLUDE
statement.

Example
Determine if the value of KWH is greater than the value of KWH_MAX and, if so, call the
“RIDER_1” rate form based on the account’s Operating Company and Jurisdiction.

OPCO=ACCOUNT.OPCOCODE;
JURIS=ACCOUNT.JURISCODE;

IF KWH > KWH_MAX THEN
CALL OPCO + “:” + JURIS + “:” + “RIDER_1”;

END IF;

To Create
1. Select Statements-›Call.

The CALL Statement template appears.

2. Complete the template:

Rate Form Name: The name (including opcocode, juriscode, and version if appropriate) of
the rate form you wish to call.

3. Click OK. The CALL Statement appears in the rate form.
3-4 Rules Language Reference Guide

Done Statement

Purpose
The DONE Statement stops processing of the rate schedule. It can be used with IF-THEN-
ELSE to stop processing an account’s bill when a specified condition occurs.

 Format
The DONE Statement consists only of the keyword DONE.

Example
If the transaction type is Cancel, create the CIS transaction record and quit the rate schedule.

IF ((BILL_TYPE = "CANCEL") OR (BILL_TYPE = "CANCEL/REBILL")) THEN
/* Force CISREC to be a stem identifier */
CISREC.DUMMY = 0;
SAVE CISREC TO CIS SECTION "CANCEL";
CLEAR CISREC;

IF (BILL_TYPE = "CANCEL") THEN
$EFFECTIVE_REVENUE = $0.00
DONE;
END IF;

END IF;

To Create
1. Select Statements-›Done.

The DONE Statement appears in your rate form.
Control Statements 3-5

For Each Statements
FOR EACH statements direct the Rules Language to repeat a set of statements for each item you
specify. There are several types of FOR EACH statements, including:

• For Each x in Channel Statement

• For Each x in Factor Statement

• For Each x In List Statement

• For Each x In Number Statement

• For Each x In Override Statement

• For Each x In Recordlist Statement

• For Each x In Set Statement

• For Each x In Week Statement

• For Each x In Distribution Node Statement

• For Each x In CSV File Statement

• For Each x In COM IENUM Statement
3-6 Rules Language Reference Guide

For Each x in Channel Statement

Purpose
The FOR EACH X IN CHANNEL Statement repeats one or more nested statements for each
cut in a channel. It is used to apply operations to a collection of like or unlike items that are related
to a given channel. For example, you could use it to process a set of peak values for a given
channel.

Format
FOR EACH <identifier> IN CHANNEL <recorder,channel>,[:<start_date>,
<stop_date>]

<nested_statements>
END FOR;

Example
Load and total each interval data cut in channel 1700,1.

FOR EACH CUT IN CHANNEL “1700,1”
TOTAL = TOTAL + CUT

END FOR;

The rate schedule would repeat the nested statement once for each cut in the channel:

To Create
1. Select Statement-›For Each x In-›Channel.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
expression during processing by the FOR EACH loop. This identifier has no requirement
beyond serving as a temporary variable in this statement. Do not use any of the reserved
words listed in Appendix A, such as CHANNEL, or any of the database table or
column names. This would cause errors in the program. You can use ITEM instead.

Recorder,Channel: Supply the recorder,channel. This can either be in the
“recorder,channel” format, or the “recorder,channel:start_date_time,stop_date_time”
format. For the “recorder,channel” format, the FOR EACH loop processes each cut that
intersects the current bill period. For the “recorder,channel:start_date_time,stop_date_time”
format, it processes each cut that intersects with the specified time period.

This can also be an identifier that was previously assigned to a channel in the rate form.

Date Range: Optional. Supply a start date and stop date that indicate the date range the FOR
EACH loop applies to.

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements to apply to each factor record, using any of the other statement types described in
this chapter.
Control Statements 3-7

For Each x in Factor Statement

 Purpose
The FOR EACH x IN FACTOR Statement repeats a set of statements for each factor value that
was in effect for an account during the current bill period. The factor value is considered in effect
if it overlaps the bill period in any way.

This statement type is typically used when the unit price (factor value) for a bill determinant
changed one or more times during the bill period, and you want to calculate and display the
revenue for each portion of the total period for which a different factor value was in effect (that is,
prorate the energy rather than the factor).

You can also allow the software to calculate a prorated value for the factor and apply that value in
the rate form. For example, for the factor ‘ENERGY CHARGE’, if its value changed three times
during the month of September, once every ten days, from $.12, to $.14, to $.15, and the
PRORATE? flag is set to Yes in the FACTORVALUE Table for this factor, the software would
calculate a single prorated factor value to apply during the period:

((.12 x 10) + (.14 x 10) + (.15 x 10)) / 30 = .136

You could also calculate charges by applying each individual factor value to the energy, based on
the portion of the bill period for which each factor was in effect. In this case, each factor was in
effect for 1/3 of the bill period, so each factor is applied to 1/3 of the energy. You can then add
the individual charges to get a total charge associated with the factor. The FOR EACH x IN
FACTOR makes this possible.

In the FOR EACH x IN FACTOR Statement, you specify the factor of interest. The program
automatically retrieves all of the records from the Factor Value Table that apply to the current
account for the current bill period. (A factor value is considered in effect if its start time is less
than the bill period stop, and its stop time is NULL or after the bill period start.) For each
retrieved record, the program repeats the statements that you supply immediately after the FOR
EACH x IN FACTOR clause.

All of the values associated with each retrieved factor value are available for calculations and
reporting by the statements nested in the FOR EACH Statement. These values consists of the
following components:

To apply the nested statements to the contents of a particular field, use the following convention
to identify the field of interest: stem.component. The “stem” is the temporary identifier (x) you
supply in the FOR EACH x FACTOR portion of the statement. The program assigns this
identifier to each record while it is being processed in the FOR EACH loop. A “component” is
the name that identifies an individual field in the record; it comes from the column name in the

Component Description

FACTORNAME Name of the factor, assigned in the FACTOR Lookup Table.

UOMCODE Unit of Measure code, assigned to the factor in the FACTOR
Lookup Table.

STARTTIME Beginning of the period over which the factor value applies.

STOPTIME End of the period. NULL signifies that the factor is still in
effect. A value other than NULL signifies that the factor is no
longer in effect.

VAL Value of the factor during this period.

PRORATEMETHOD? Will Oracle Utilities Billing Component prorate the factor?
(On the Data Manager interface, this field is labelled
“Prorate?”.)
3-8 Rules Language Reference Guide

FACTOR Table and the FACTORVALUE Table (e.g., STARTTIME, STOPTIME, VAL, or
PRORATEMETHOD). Therefore, if the FOR EACH clause were FOR EACH FCTR IN
FACTOR, you could refer to the stop time in the current record using the identifier
FCTR.STOPTIME.

Format
FOR EACH <identifier> IN FACTOR <factor_code>

<nested_statements>
END FOR;

Example
The following sample statement prorates energy for each factor in the bill period:

BILLDIFF = DAYDIFF(BILL_STOP, BILL_START); /*LENGTH OF BILL PERIOD */

FOR EACH FCTR IN FACTOR "ENERGY CHARGE"
FACTDIFF = DAYDIFF(FCTR.STOPTIME, FCTR.STARTTIME);
FCTKWH = KWH * (FCTDIFF/BILLDIFF); /*ENERGY USE IN FACTOR PERIOD*/
ALL FCTKWH CHARGE FCTR.VAL INTO $FCTCHRG;
$TOTAL_KWH_CHRG = $TOTAL_KWH_CHRG + $FCTCHRG

END FOR;

CLEAR FCTKWH, $FCTCHRG;

Without the CLEAR Statement, the report would display the units and charges for FCTKWH and
$FCTCHRG that the program computed in the last FOR EACH loop (the values from the earlier
loops would have been overwritten by succeeding loops). Because those “residual” values have
little meaning, you can use the CLEAR Statement to reset them to Null before the bill report is
printed. See the CLEAR Statement description (page 5-2) for more information.

Notes
If the PRORATE? field in the FACTORVALUE Table is set to YES for the factor, Oracle Utilities
Billing Component automatically prorates the factor. In that case, do not apply the FOR EACH x IN
FACTOR Statement to the factor value. To use this statement to prorate the energy rather than the
factor, using the FOR EACH x IN FACTOR Statement described in this section, you must be
sure that the PRORATE? flag is set to NO for the factor value.

STARTTIME is always greater than or equal to the BILL_START; STOPTIME is always less than
or equal to BILL_STOP.

To Create
1. Select Statement-›For Each x In-›Factor.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
retrieved factor value record during processing by the FOR EACH loop. This identifier has
no requirement beyond serving as a temporary variable in this statement. Do not use any of
the reserved words listed in Appendix A of the Oracle Utilities Rules Language User’s
Guide, such as FACTOR, or any of the database table or column names. This would
cause errors in the program.

Factor Code: To specify the lookup code that identifies the factor, position the pointer in the
field and click the right mouse button. When the Rules Language Elements dialog appears,
select Factor Codes from the top box. A list of available factors appears in the bottom box.
Each is identified by its lookup code and name. Highlight the desired factor.
Control Statements 3-9

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements that will apply to each factor record, using any of the other statement types
described in this chapter.

For Each x In List Statement

Purpose
The FOR EACH x IN LIST statement repeats a set of nested statements for each item in a list. In
other words, it repeats a set of nested statements for each item in the Oracle Utilities Data
Repository that matches a set of user-defined criteria expressed in a Table.Column query,
Customer/Account list, or query list.

Format
FOR EACH <identifier> IN LIST <list_name>

<nested_statements>
END FOR;

Example
In the following example, the query for “LIST_CHAN” targets the UIDCHANNEL column in
the CHANNEL Table. The query is WHERE Account.Accountid=ACCOUNT_ID.

FOR EACH CHANL IN LIST "LIST_CHAN"
RC = "" + CHANL.RECORDERID + "," CHANL.CHANNELNUM;
REPORT RC LABEL "Account Recorder, Channel";

END FOR;

This statement repeats the nested reporting statements for each channel that belongs to the
account being billed. For example, suppose the account being billed has one recorder (1701) and
three channel numbers 1, 2, and 3. The following lines would appear in the bill report:

Account Recorder,Channel
1701,1
1701,2
1701,3

Notes
Before you can apply a rate form containing a FOR EACH x IN LIST Statement, you must create
a table.column or customer/account query that creates the list. You create these queries using
Data Manager, and you save them in the Oracle Utilities Data Repository. See Chapter 8:
Working with Lists and Queries in the Data Manager User’s Guide for more information. You
create query lists using the Lists function available through the Energy Information Platform user
interface. See Lists on page 7-63 in the Oracle Utilities Energy Information Platform User’s Guide for
more information.

Queries enable you to specify the conditions that an item must meet in order for it to be included
in the list, as well as the column in the Oracle Utilities Data Repository Table that you want to get
the items from. For example, you can specify the Recorder ID column in the Recorder Table
(RECORDER.RECORDERID) to get a list of Recorder IDs, or the group name column in the
Channel Group Table (CHANNELGROUP.GROUPNAME) to get a list of channel groups. The
query itself is often WHERE Account.Accountid=ACCOUNT_ID, which means retrieve
the items belonging to the account currently being billed. The ACCOUNT_ID identifier has been
set to the current account’s ID in the Rules Language. Oracle Utilities Billing Component selects
the Items from the table and column you specified, where the parent account is the one being
billed.

About Stems and Components: Table.Column queries have another important feature you use.
If the target table.column stores the unique identifier (UID) for the table, the program retrieves
the UID for the item, as well as all other values in its database record. The program stores the
3-10 Rules Language Reference Guide

record in memory and assigns it the temporary identifier that you supply for x in the FOR EACH
x in LIST Statement. If you used the clause FOR EACH MYITEM IN LIST CHANLIST, each
record retrieved would be assigned the temporary identifier MYITEM for the purpose of
processing by the following nested statements. Each field in the retrieved record would be
identified in memory by the column name from the original target table. If the target table were
the Channel Table, the following records would be available for processing with the nested
statements: MYITEM.UIDCHANNEL, MYITEM.UIDRECORDER,
MYITEM.CHANNELNUM (UIDCHANNEL, UIDRECORDER, and CHANNELNUM are
the names of columns in the Channel Table). The temporary name of the record (in this example,
MYITEM) is a “stem,” and the column names are “components.” See Chapter Four in the Oracle
Utilities Rules Language User’s Guide for more information about stem.component identifiers.

Appendix A: Oracle Utilities Data Repository Database Schema in the Oracle Utilities Energy
Information Platform Configuration Guide contains a diagram of the database schema. It shows each
table in the database, including its name (all caps), the unique identifiers (underlined), and the
column names. This information is very helpful when constructing your queries and FOR EACH
statements.

Displaying the List SQL
You can also include the SQL statements executed by the Rules Language in the Rules Language.
The SQL statements are inserted as comments directly above the FOR EACH x IN LIST
statement in the rate form.

How to include list SQL in a rate form:

1. Select the line in the rate form that contains the FOR EACH x IN LIST statement.

2. Select Statement-›Include List SQL.

The SQL executed by the Rules Language appears in the rate form as comments directly
above the FOR EACH x IN LIST statement.

Note: This feature can be used with both Account/Customer lists, as well as table-column lists.

To Create
1. Select Statement-›For Each x In-›List.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
member of the list during processing by the FOR EACH loop. This identifier has no
requirement beyond serving as a temporary variable in this statement. Do not use any of the
reserved words listed in Appendix A, such as CHANNEL, or any of the database
table or column names. This would cause errors in the program. You can use CHANL
instead.

List Name Expression: To specify the table.column or customer/account list query that
will retrieve the desired items, position the pointer in the field and click the right mouse
button. When the Rules Language Elements dialog appears, select Table-Column Lists from
the top box. A list of available list queries appears in the bottom box, each identified by its list
name, target table, and target column. Highlight the desired list in the right box.

 Note: If the list name you wish to use contains a percent sign (%), the list
name MUST appear as a string in the rate form.

Note: Query lists created using the Lists function of the Energy Information
Platform user interface cannot be selected using the Rules Language Elements
Editor.

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements using any of the other statement types described in this chapter.
Control Statements 3-11

For Each x In Number Statement

Purpose
The FOR EACH x IN NUMBER Statement is used with an expression that yields an integer. For
each iteration of the nested statements, the identifier value is set first to 1, then to 2, and so on up
through the value of the expression or number.

Format
FOR EACH <identifier> IN NUMBER <expression>

<nested_statements>
END FOR;

Example
In the following example, the function HISTCOUNT is applied to count the number of values
loaded by a previous statement in the rate form. For the account currently being processed, the
temporary identifier NUMKW is assigned an integer. This will report every historical value in the
Meter Value Table for the account. The “- 1” in the HISTCOUNT function is used to exclude the
current bill period. “Recorder-id,channel” is the name stored in the Meter Value Table.

NUMKW = HISTCOUNT (OLDMVKW.VAL) - 1;

FOR EACH I IN NUMBER NUMKW
RPTMV.READDATE = HISTVALUE(OLDMVKW.READDATE , I);
RPTMV.CH = HISTVALUE(OLDMVKW.NAME, I);
RPTMV.ENERGY = HISTVALUE(OLDMVKW.VAL , I);
REPORT RPTMV LABEL "Historic Dates Channel Values";
CLEAR RPTMV;

END FOR;

The values would be formatted in the report as shown:

To Create
1. Select Statement-›For Each x In-›Number.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
retrieved record during processing by the FOR EACH loop. This identifier has no
requirement beyond serving as a temporary variable in this statement. Do not use any of the
reserved words listed in Appendix A, such as CHANNEL, or any of the database
table or column names. This would cause errors in the program.

Integer Expression: Supply an expression whose value is an integer, or can be rounded to
an integer. If the expression is an unassigned identifier or has a value of zero or less, the
statement will not execute. Otherwise the identifier is set to 1 for the first iteration, then 2, ...
and finally the value of the expression on the last iteration. After the last iteration the
identifier will be set to the last value plus one. The identifier value may be different if a
LEAVE FOR statement is executed. It is an error if the expression does not evaluate to a
number.

READDATE CH ENERGY

03/31/1997 1701,1 150

02/28/1997 1701,1 200

01/31/1997 1701,1 100
3-12 Rules Language Reference Guide

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements using any of the other statement types described in this chapter.

For Each x In Override Statement

Purpose
The FOR EACH x IN OVERRIDE Statement repeats a set of statements for each override that
was in effect for an account during the current bill period. The override is considered in effect if it
overlaps the bill period in any way.

In the FOR EACH x IN OVERRIDE Statement, you specify the override. The program
automatically retrieves all of the records that apply the override to the current account for the
current bill period. If the override applies to an account at the account level, the records are
retrieved from the Override History Table (ACCOUNTOVERRIDEHIST). If the override
applies to an account at the recorder channel, channel group, or CIS account level, the records are
retrieved from the Name Override History Table (ACCOUNTNAMEOVERHIST). For each
retrieved record, the program repeats the statements that you supply immediately after the FOR
EACH x IN OVERRIDE clause.

All the values in each retrieved override history record are available for calculations and reporting
by the statements nested in the FOR EACH Statement. An override history record consists of the
following fields:

From ACCOUNTOVERRIDEHIST

From ACCOUNTNAMEOVERRIDEHIST

You can identify these fields in the nested statements using the stem.component convention. In this
case the stem is the temporary identifier (x) you supply in the FOR EACH x IN OVERRIDE
portion of the statement. The program assigns this identifier to each record while it is being
processed in the FOR EACH loop. A component is the name that identifies a single value in the
record; it comes from the column name in the Override Table (e.g., HISTSTARTTIME,
HISTSTOPTIME, VAL, or STRVAL). The following example uses the stem.components
EVENT.HISTSTARTTIME and EVENT.HISTSTOPTIME.

Column Name Description

STARTTIME Beginning of the period over which the override applies

STOPTIME End of the period (Null if still in effect)

VAL (Optional) Value that express the magnitude of the override

STRVAL (Optional) Value for a string variable (utility-defined; could be an
informative note, or a qualifier for the override).

Column Name Description

NAME Name of the channel group, CIS account, or ‘recorder-id, channel’ to
which the override applies

STARTTIME Beginning of the period over which the override applies

STOPTIME End of the period (Null if still in effect)

VAL (Optional) Value that express the magnitude of the name override

STRVAL (Optional) Value for a string variable (utility-defined; could be an
informative note, or a qualifier for the override).
Control Statements 3-13

Format
FOR EACH <identifier> IN OVERRIDE <override_code>

<nested_statements>
END FOR;

Example
The following sample statements would count the number of times the account was interrupted:

COUNT_INTR = 0;
FOR EACH EVENT IN OVERRIDE "INTERRUPT"

COUNT_INTR = COUNT_INTR +1;
END FOR;

Notes
STARTTIME is always greater than or equal to the BILL_START; STOPTIME is always less than
or equal to BILL_STOP.

To Create
1. Select Statement-›For Each x In-›Override.

The FOR EACH Statement template appears

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
retrieved override record during processing by the FOR EACH loop. This identifier has no
requirement beyond serving as a temporary variable in this statement. Do not use any of the
reserved words listed in Appendix A, such as OVERRIDE, or any of the database
table or column names. This would cause errors in the program. You could use EVENT
instead.

Override Code Expression: To specify the lookup code that identifies the override to
process, position the pointer in the field and click the right mouse button. When the Rules
Language Elements dialog appears, select Override Codes from the left box. A list of
available overrides appears in the right box, each identified by its lookup code and name.
Highlight the desired override.

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements that you want to apply to each override history record, using any of the other
statement types described in this chapter.
3-14 Rules Language Reference Guide

For Each x In Recordlist Statement

Purpose
The FOR EACH x IN RECORDLIST statement repeats a set of nested statements for each item
in a table-column list. In other words, it repeats a set of nested statements for each item in the
LODESTAR Data Repository that matches a set of user-defined criteria expressed in a
Table.Column query.

The FOR EACH x IN RECORDLIST statement returns the entire database record for each
record in the list query. Individual column values can be obtained or set using a STEM.TAIL
syntax, where STEM is the identifier specified in the statement call, and TAIL is the name of the
specific column you wish to get or set.

Format
FOR EACH <identifier> IN RECORDLIST <list_name>

<nested_statements>
END FOR;

Example
The following example updates the Status Code of each Account record in the
"JURIS_ACCT_LIST" list to "ACTIVE". In this example, the query for “JURIS_ACCT_LIST” is
WHERE ACCOUNT.JURISCODE=JURIS_CODE (an identifier set elsewhere in the rate form).

FOR EACH ACCT IN RECORDLIST "JURIS_ACCT_LIST"
ACCT.ACCOUNTSTATUSCODE = "ACTIVE";
SAVE ACCT TO TABLE ACCOUNT;

END FOR;

Notes
Before you can apply a rate form containing a FOR EACH x IN RECORDLIST Statement, you
must create a table.column query that creates the list. You create these queries using Data
Manager, and you save them in the LODESTAR Data Repository. See Chapter 8: Working with
Lists and Queries in the Data Manager User’s Guide for more information.

Note: If the list name you wish to use contains a percent sign (%), the list name
MUST appear as a string in the rate form.

Appendix A: Oracle Utilities Data Repository Database Schema in the Oracle Utilities Energy
Information Platform Configuration Guide contains a diagram of the database schema. It shows each
table in the database, including its name (all caps), the unique identifiers (underlined), and the
column names. This information is very helpful when constructing your queries and FOR EACH
statements.

To Create
1. Select Statement-›For Each x In-›RecordList.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
member of the list during processing by the FOR EACH loop. This identifier has no
requirement beyond serving as a temporary variable in this statement. Do not use any of the
reserved words listed in Appendix A, such as CHANNEL, or any of the database
table or column names.

List Name: To specify the table.column list query that will retrieve the desired items,
position the pointer in the field and click the right mouse button. When the Rules Language
Elements dialog appears, select Table-Column Lists from the top box. A list of available list
Control Statements 3-15

queries appears in the bottom box, each identified by its list name, target table, and target
column.

Note: This statement works only with lists that return the full database record.
List queries that return only a specific column cannot be used with FOR
EACH x in RECORDLIST.

3. Highlight the desired list in the right box and click OK. The first and last clauses of the
statement appear in the rate form.

For Each x In Set Statement

Purpose
The FOR EACH x IN SET Statement repeats one or more nested statements for each key value
in a list of expressions or in an array identifier. It is used to apply operations to a collection of like
or unlike items. For example, you could use it to process a set of charges for an account.

Format
FOR EACH <identifier> IN SET <expression1>[,<expression2>...]

<nested_statements>
END FOR;

Examples
For the purposes of this example, assume that the value for the factor FUEL_CHARGE is $.10;
for DISTRIBUTION_CHARGE, $.07. The account used 100 kWh during the bill period.

ENERGY_CHARGE = $.05
FUEL_CHARGE = FACTOR["FUEL_CHARGE"].VALUE
DISTRIBUTION_CHARGE = FACTOR["DISTRIBUTION_CHARGE"].VAL
FOR EACH ITEM IN SET ENERGY_CHARGE, FUEL_CHARGE, DISTRIBUTION_CHARGE

$TOTAL_CHARGE = $TOTAL_CHARGE + (KWH * ITEM)
END FOR;

REVENUE $TOTAL_CHARGE "Total charge"

To perform the same logic using an array identifier:

#ARR_CHRG[1] = $.05
#ARR_CHRG[2] = FACTOR["FUEL_CHARGE"].VALUE
#ARR_CHRG[3] = FACTOR["DISTRIBUTION_CHARGE"].VAL
FOR EACH ITEM IN SET #ARR_CHRG[]

$TOTAL_CHARGE = $TOTAL_CHARGE + (KWH * ITEM)
END FOR;

In both examples, the rate schedule would repeat the nested statement three times, once for each
item, as follows:

0 + (100 * .05) (energy charge)
5.00 + (100 * .10) (fuel charge)
15.00 + (100 * .07) (distribution charge)

The following line would be displayed in the revenue section of the bill report.

Total charge $22.00
3-16 Rules Language Reference Guide

To Create
1. Select Statement-›For Each x In-›Set.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
expression during processing by the FOR EACH loop. This identifier has no requirement
beyond serving as a temporary variable in this statement. Do not use any of the reserved
words listed in Appendix A, such as CHARGE, or any of the database table or column
names. This would cause errors in the program. You could use ITEM instead.

Expressions: Supply one or more expression. Each “expression” may be virtually any type
of item that can be processed by the following nested statements; for example, identifiers,
determinants, mathematical operations, recorder-id,channel-numbers, and so on.

You can also supply an array identifier, in which case the statement will execute the nested
statements for each record in the array.

Note: The array should NOT contain an identifier in the index position (between the
brackets [X])

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements that you want to apply to each factor record, using any of the other statement
types described in this chapter.

For Each x In Week Statement

Purpose
The FOR EACH x IN WEEK Statement repeats a set of nested statements for each week in a bill
period. If a week overlaps the start of the bill period, it is included. If it overlaps the end of the bill
period, it is excluded.

For each week, the programs retrieves two values: the week’s start and stop times. You can refer to
these values using the convention stem.STARTTIME and stem.STOPTIME, where stem is the
identifier you supply after FOR EACH. In the example below, the stem is WK.

Format
FOR EACH <identifier> IN WEEK <week_day>

<nested_statements>
END FOR;

Example
The following sample statements find the account’s peak for each week in the bill period.

FOR EACH WK IN WEEK “SUNDAY”
WK_HNDL = INTDLOADDATES ('1701,1',WK.STARTTIME,WK.STOPTIME);
WK_PEAK = WK_HNDL.MAX;

END FOR;

To Create
1. Select Statement-›For Each x In-›Week.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
week record while it is processed by the FOR EACH loop. This identifier has no requirement
beyond serving as a temporary variable in this statement. Do not use any of the reserved
Control Statements 3-17

words listed in Appendix A, such as WEEK, or any of the database table or column
names. This would cause errors in the program.

Start Day of Week: Select the day to use as the first day of the week.

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements using any of the other statement types described in this chapter.

For Each x In Distribution Node Statement

Purpose
The FOR EACH x IN DISTRIBUTIONNODE Statement repeats a set of nested statements for
each record in the Distribution Node or Distribution Node History Table whose STARTTIME /
STOPTIME overlaps the current bill period. This date range can be changed by setting the
identifiers DISTNODE_HIST_START and DISTNODE_HIST_STOP to cover a different date
range.

Note: This statement is only available if you have a DISTRIBUTIONNODE
table in your database.

Values assigned to the DISTNODE_HIST_START and DISTNODE_HIST_STOP identifiers
must be in single quotes (‘ ’).

Format
FOR EACH <identifier> IN DISTRIBUTIONNODE <node-id>

<nested_statements>
END FOR;

Where:

• <node-id> is any expression whose value is a string that is a node ID in a
DISTRIBUTIONNODE record.

Example
The following sample statements obtain the values of specified attributes of each distribution
node for inclusion in a report.

FOR EACH X IN DISTRIBUTIONNODE "0152"
NODE.ID = X.NODEID;
NODE.NAME = X.NAME;
NODE.NOTE = X.NOTE;
NODE.KWREC = X.KWRECORDERID;
NODE.KWCHAN = X.KWCHANNELNUM;
REPORT NODE LABEL "DISTRIBUTION_NODE INFORMATION";
CLEAR NODE;

END FOR;

To Create
1. Select Statement-›For Each x In-›Distribution Node.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
record while it is processed by the FOR EACH loop. This identifier has no requirement
beyond serving as a temporary variable in this statement. Do not use any of the reserved
words listed in Appendix A, such as WEEK, or any of the database table or column
names. This would cause errors in the program.

Node ID Expression: Select the Node ID.
3-18 Rules Language Reference Guide

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements using any of the other statement types described in this chapter.

For Each x In CSV File Statement

Purpose
The FOR EACH x IN CSV FILE Statement repeats a set of nested statements for each line or
record in a specified CSV (comma separated values) file.

Format
FOR EACH <identifier> IN CSV FILE <csv-filename>

<nested_statements>
END FOR;

Where:

• <csv-filename> is any expression whose value is a string that is the name of a file.

Example
Display and label the values in a csv file.

FILENAME = "d:\lodestar\user\d377.lse";
LABEL X.COLUMN1 "Column 1";
LABEL X.COLUMN2 "Column 2";
LABEL X.COLUMN3 "Column 3";
LABEL X.COLUMN4 "Column 4";
LABEL X.COLUMN5 "Column 5";
FOR EACH X IN CSV_FILE FILENAME

REPORT X LABEL "File: " + FILENAME;
END FOR;

To Create
1. Select Statement-›For Each x In-›CSV File.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
record while it is processed by the FOR EACH loop. This identifier has no requirement
beyond serving as a temporary variable in this statement. Do not use any of the reserved
words listed in Appendix A, such as WEEK, or any of the database table or column
names. This would cause errors in the program.

File Name Expression: Enter the file name of the CSV file.

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements, using any of the other statement types described in this chapter.

Notes
The CSV file must be an ASCII text file. Each line or record must be less than 4095 characters.
Records are read one at a time, and the nested statements are processed after all columns in a
record are assigned. The column values are retrieved and assigned to stem.tail identifiers, where
the stem is the FOR EACH statement identifier and the tails are COLUMN1, COLUMN2,
Leading and trailing spaces around commas are ignored. If a field starts with a double quote ("),
then it must end with another double quote. All characters within the quotes are used, and a string
value is assigned for this column. Otherwise, blanks are removed from the beginning and end of
the field, and the characters in the field are used to determine if the field is an integer, bill month,
float, or date. The maximum lengths for conversions are 10 numbers to an integer, exactly seven
Control Statements 3-19

characters for a bill month, 25 characters to a float, and 19 characters to a date; longer values are
assumed to be strings, even if all characters are numbers. If the value contains characters that are
not part of an integer, float, or date, the field is loaded as a string.

For Each x In COM IENUM Statement

Purpose
The FOR EACH x IN COM IENUM Statement repeats a set of nested statements for each
variant in a COM object.

See COM Object Functions in Chapter 8: Working with COM Components in the Oracle
Utilities Rules Language User’s Guide for more information about using this statement.

Format
FOR EACH <identifier> IN IENUM <expression>

<nested_statements>
END FOR;

Where:

• <expression> is any expression whose value is a reference to a COM object.

Example
The following sample statements set the values of the “ACCOUNTID” nodes in an XML
document to the value of the “TEXT” property.

OBJECT = CREATEOBJECT (“MSXML.DOMDocument”);
XMLNODES = OBJECT->SELECTNODES (“//ACCOUNTID”);
FOR EACH X IN IENUM XMLNODES

ACCOUNTID = X->TEXT;
END FOR;

To Create
1. Select Statement-›For Each x In-›COM ENUM.

The FOR EACH Statement template appears.

2. Complete the template:

Identifier: Supply a temporary identifier of your choosing. The program will assign it to each
record while it is processed by the FOR EACH loop. This identifier has no requirement
beyond serving as a temporary variable in this statement. Do not use any of the reserved
words listed in Appendix A, such as WEEK, or any of the database table or column
names. This would cause errors in the program.

COM Enumeration: Select the COM Object.

3. Click OK. The first and last clauses of the statement appear in the rate form. Add the nested
statements using any of the other statement types described in this chapter.

Notes
The COM object file must have been previously created within the rate form using the
CREATEOBJECT Function.
3-20 Rules Language Reference Guide

If-Then-Else Statement

Purpose
IF-THEN-ELSE statements direct the program to evaluate a condition and take action based on
that condition. If the condition is met, the program takes the action specified in the THEN clause;
if the condition is not met, the program takes the action specified in the ELSE clause. You define
the actions to be taken using other statement types, such as ASSIGNMENT or ALL statements,
nested within the IF-THEN-ELSE Statement.

Format
If-Then-Else statements are constructed according to the following format:

IF <logical_expression> THEN
<nested_statements>

[ELSE
<nested_statements>]

END IF;

Examples
Here are three sample IF-THEN-ELSE statements:

Example 1: Compare a minimum charge to the energy charge; always use the larger of the two.

IF ($MIN_CHARGE > $ENERGY_CHARGE)
THEN $EFFECTIVE_REVENUE = $CUST_CHARGE + $MIN_CHARGE;
ELSE
$EFFECTIVE_REVENUE = $CUST_CHARGE + $ENERGY_CHARGE;

END IF;

Example 2: If the demand exceeds 300 kW, add in an RKVA charge.

IF KW > 300 THEN
ALL RKVA CHARGE $0.35 INTO $RKVA_CHARGE;
/* ELSE is default $RKVA_CHARGE = $0.00 */

END IF;

Example 3: If the currently computed billing kW is zero, use the recorded kW.

IF ((BILL_KW = 0) AND (KW > 0)) THEN
BILL_KW = KW;

END IF;

To Create
1. Select Statements-›If Then Else.

The IF THEN ELSE Statement template appears.

2. In the IF field, construct a logical expression. The expression can compare two identifiers, or
an identifier and a constant, using any of the standard relational operators:

• < (less than)

• <= (less than or equal to)

• = (equals)

• > (greater than)

• >= (greater than or equal to)

• <> (not equal to)

Note: When comparing strings, the programs use the ACSII values of the characters to
evaluate the clauses.
Control Statements 3-21

The expression can also contain the logical connectors AND and OR to join two or more
simple expressions, each of which must be enclosed in parentheses. The entire logical
expression may also be enclosed in parentheses, but that’s optional. (See example 3 above.)

3. Optional. If you intend to specify an ELSE subclause (that is, the action the program takes if
the result of logical expression is false), check the ELSE box. (If you do not supply an ELSE
subclause, the programs assume the default if the logical expression is false: take no action.)

4. Click OK. The IF portion of the statement appears in the rate form.

The final clause of the statement, “END IF;” is automatically supplied.

5. Using any of the other statement types (ALL, ASSIGNMENT, etc.), specify the action you
want to occur if the condition specified in the logical expression is true. Select Statements-
›[statement type], and complete the statement template as desired. Click OK. Notice that
the statement appears in the rate form, indented under “THEN”. This is a nested statement.
You can have any number of nested statements.

6. If you checked the ELSE box, you must specify the action you want the program to take if
the logical expression is false for the account. Highlight “ELSE” in the rate form, and use any
statement type to specify the action. Notice that this time, the completed statement appears
indented under “ELSE”. You can add any number of nested statements.
3-22 Rules Language Reference Guide

Include Statement

Purpose
The INCLUDE Statement is used to insert the contents of one rate form into another. When the
Oracle Utilities software processes a rate form, it automatically replaces any INCLUDE
statements with the included rate form.

This feature enables you to save a set of standardized statements in several other rate schedules,
riders, or contracts without tedious retyping. This approach is especially time-saving when dealing
with calculations or other operations that are used widely and are expected to change over time.
You need only modify the included rate form; and all rate forms that include it are in effect
updated automatically.

You can create a whole library of useful routines, such as saving data to the databases or writing to
the CIS transaction records, and INCLUDE them in your rate schedules as needed. You can also
include account-specific contracts in a rate schedule.

The riders or contracts must already exist before you can INCLUDE them in the current rate
form.

There are two versions of the INCLUDE Statement:

• INCLUDE RIDER: A “rider” refers to any “subform” that you might want to include; a
tariff rider, or a set of statements that executes a frequently-used routine.

• INCLUDE CONTRACT: A “contract” is a set of statements used to tailor a rate schedule
to a particular account. You can think of a contract as a rider that makes the rate schedule
account-specific. A contract can consist of different “sections,” such as an Energy section and
a Discount section. You can include selected sections at different points in the rate schedule.

Note: All Oracle Utilities Rate Management analyses, except Single Step, ignore INCLUDEd
contracts.

Format
The format for Include statements is:
INCLUDE <rate_form_name_constant>;

Examples
INCLUDE "R1";
/* Including company and jurisdiction, rate R1, */
/* current or historical version */

INCLUDE "UMS:MA:1-GL:1";
/* Company UMS, Jurisdiction MA, rate 1-GL, */
/* Trial version 1 */

Notes
There are some rules to keep in mind when applying the INCLUDE Statement:

• A rate schedule can include one or more riders or contracts.

• A contract can include a rider.

• Riders can include other riders or contracts.

• A single rate schedule can contain up to a maximum of 20 riders and/or contracts (including
those included using both the Include Statement and the Call Statement).
Control Statements 3-23

There are additional limitations for trial versus current versions. The table below indicate what can
be included in each type of rate form:

Another important point about the INCLUDE Statement is that the included rate form is literally
included in the other when the rate form is processed. The two rate forms share all identifiers.
(For that reason, if you have identifiers that are intended for use only within a particular rate form,
you should identify them with an appropriate prefix.)

When you include one rate form in another, the statements that make up the included rate form
are not visible. To view the included statements, select Statements-›View-›Expand Includes.
You cannot edit this view, but you can print it.

To Create — Include Contract
1. Select Statements-›Include-›Contract.

The INCLUDE CONTRACT Statement template appears.

2. Optional. If you only want to include a section or piece of the contract at this point in your rate
form, input the identifier of that section.

3. Click OK. The INCLUDE Statement appears in your rate form. To view the INCLUDEd
statements, select Statements-›View-›Expands Includes. You cannot edit the expanded
view, but you can print it.

To Create — Include Rider
1. Select Statements-›Include-›Rider.

The INCLUDE Statement dialog appears.

2. Complete the dialog to select the rider you wish to include. The dialog allows you to examine
different versions of the rider before making your selection:

Select the Operating Company and Jurisdiction that the rider belongs to.

Select the version(s) of the rider that you’re interested in by placing a checkmark in either or
both boxes: Current (the version currently in effect) or Trial. A list of all riders that match
your criteria appears in the middle list box.

To view the statements that make up a particular rider, highlight it in the middle list box. The
statements appear in the lower box.

To make your selection, highlight the rider in the middle list box

3. Click OK. The INCLUDE Statement appears in your rate form. To view the INCLUDEd
statements, select Statements-›View-›Expands Includes. You cannot edit the expanded
view, but you can print it.

Rate Form Type Trial version Current version

Rate Schedule Trial rider or contract
Current rider or contract

Current rider or contract

Contract Trial rider
Current rider

Current rider or contract

Rider Trial Rider contract
Current rider or contract

Current rider or contract
3-24 Rules Language Reference Guide

Leave For Statement

Purpose
The LEAVE FOR Statement exits the nearest enclosing FOR EACH Statement. LEAVE FOR
has no effect if it is not inside a FOR EACH Statement.

Format
The LEAVE FOR Statement consists only of the keywords LEAVE FOR.

To Create
1. Select Statements-›Leave For.

The LEAVE FOR statement appears in your rate form.

Leave Rider Statement

Purpose
The LEAVE RIDER Statement can be used within an INCLUDE’d or CALL’ed rider or contract
to terminate it. The LEAVE RIDER statement exits to the statement after the INCLUDE or
CALL statement. The LEAVE RIDER has no effect if it is not inside a rider or contract.

Format
The LEAVE RIDER Statement consists only of the keywords LEAVE RIDER.

To Create
1. Select Statements-›Leave Rider.

The LEAVE RIDER statement appears in your rate form.

Note: The Leave Rider statement only appears on the Statements menu when a
rider or contract is the open document in the Rules Language Editor.

Next For Statement

Purpose
The NEXT FOR Statement is used within a FOR EACH loop to skip the remaining statements in
the FOR LOOP. NEXT FOR has no effect if it is not inside a FOR EACH Statement.

Format
The NEXT FOR Statement consists only of the keywords NEXT FOR.

To Create
1. Select Statements-›Next For.

The NEXT FOR statement appears in your rate form.
Control Statements 3-25

Novalue Statement

 Purpose
The NOVALUE Statement assigns a value to an identifier whose value would otherwise be Null at
the time the statement is executed. This statement is used to supply a value for an empty customer
record field. That is, if the database field referenced by the identifier is empty, the program
computes a value for it using the statements nested in the NOVALUE Statement.

The NOVALUE Statement is not limited to database or determinant identifiers; it can also refer to
other identifiers that are not yet defined.

Format
The format for NOVALUE statements is:

NOVALUE <identifier>
[<nested_statements>]
<identifier> = <constant|expression|function>;

END NOVALUE;

Example
If the account’s current bill history record has no value for KW, compute one by dividing the
account’s value for KWH by 200. Use the computed value for KW in the ALL Statement

NOVALUE KW
KW = KWH /200;

END NOVALUE;
ALL KW CHARGE $1.00 INTO DEMAND_CHARGE;

To Create
1. Select Statements-›Novalue.

The NOVALUE Statement template appears.

In the Identifier field, specify the desired identifier.

2. Click OK. The statement appears in the rate form.

Apply any of the statement types to assign or compute a value for the identifier. Select
Statements-›[statement type]. Complete the statement template as desired and click OK.
You can supply as many nested statements here as necessary. The Rules Language Editor
automatically supplies the required “END NOVALUE;”.
3-26 Rules Language Reference Guide

Section Statement

Purpose
The SECTION Statement separates lines in a contract that should take effect at different times.
The SECTION Statement is only available in a contract. The INCLUDE CONTRACT
SECTION ...; Statement can be used to include those lines in the contract that belong within a
section.

Oracle recommends that either all lines in a contract reside in sections, or none do. The Section
name should indicate the determinant or other value that is computed in the section.

Format
SECTION <name>
...
END SECTION;

Note: SECTION and END SECTION are required keywords. The variable <name> is a used to
designate a section in the contract.

Example
SECTION KWH;
KWH_HNDL = INTDLOAD(KWH);
KWH = INTDVALUE(KWH_HNDL, "ENERGY");
END SECTION;

To Create
1. Select Statements-›Section.

A Section entry selection dialog box is displayed.

2. Enter a Section name to create a SECTION. You can then add lines within the section.

3. Click OK to insert the Section Statement after the last line highlighted in the rate form.
Control Statements 3-27

Select Bill_Period Statement

Purpose
The SELECT BILL_PERIOD Statement makes it possible to apply different rates during
different seasons. For example, a rate class might receive a voltage discount during the winter
months, but not in the summer. The seasons are defined in the season schedules, which you create
with Data Manager and store in the Oracle Utilities Data Repository. The rates are defined by
other statement types, such as Block statements or ASSIGNMENT statements, nested within the
SELECT BILL_PERIOD Statement.

Format
The SELECT BILL_PERIOD Statement format is:

SELECT BILL_PERIOD
WHEN <season_name> [, <season_name>]
<nested_statements>
WHEN <season_name> [, <season_name>]
<nested_statements>
...
OTHERWISE
<nested_statements>

END SELECT;

Examples
This example is a Select Statement used to define seasonal Block Rates with different limits and
charges.

SELECT BILL_PERIOD
WHEN "WINTER"

BLOCK KWH
FROM 0 TO 400 CHARGE $0.03709
FROM 400 CHARGE $0.03000
TOTAL $ENERGY_CHARGE_WIN;

WHEN "SUMMER"
BLOCK KWH
FROM 0 TO 700 CHARGE $0.06542
FROM 700 TO 1100 CHARGE $0.05339
FROM 1100 CHARGE $0.04238
TOTAL $ENERGY_CHARGE_SUM;

END SELECT;
$ENERGY_CHARGE = $ENERGY_CHARGE_WIN + $ENERGY_CHARGE_SUM;

Here’s another example of a Select Statement, used to define seasonal rates.

SELECT BILL_PERIOD
WHEN "SUMMER"

$VOLTAGE_DISCOUNT_SUM = $0.00
WHEN "WINTER"

$VOLTAGE_DISCOUNT_WIN = $200.00
OTHERWISE

$VOLTAGE_DISCOUNT_OTHER = $100.00
END SELECT;
$VOLTAGE_DISCOUNT = $VOLTAGE_DISCOUNT_SUM + $VOLTAGE_DISCOUNT_WIN +
$VOLTAGE_DISCOUNT_OTHER;
3-28 Rules Language Reference Guide

Notes
Season schedules are stored in the Oracle Utilities Data Repository. You can view, create, and
modify a Season Schedule by selecting File-›Setup-› Season Schedules (see the Data Manager’s
User Guide for details). Each season schedule consists of two or more periods, such as “Summer”
and “Winter.” Each period covers a specific date range, such as 04/01/1998 through 09/30/1998.

When you run a billing or analysis program using a rate form that includes a season reference, you
must specify which of the Season schedules in the database you wish to apply. There are two ways
to do this:

• You can specify the Season Schedule by selecting Tools-›Options-› Rate Analysis, then
making your selection under Default Season Schedule.

• You can specify it in the rate form by assigning the Season Schedule name to the special
identifier SEASON_SCHEDULE_NAME. For example, if the database contained a Season
Schedule called SEASON1, you could include the following Assignment Statement near the
beginning of your rate form:

SEASON_SCHEDULE_NAME = SEASON1

The Season Schedule specified via Options is the default. A Season Schedule specified in a
rate form overrides the Options value

How the programs determine which Season applies to the bill period: The SELECT
BILL_PERIOD Statement always applies to the current bill period. Oracle Utilities Billing
Component and Oracle Utilities Rate Management determine which season the bill period
belongs in by comparing one date in the current bill period to the seasons. You define which date is
to be compared by assigning a value to the BILL_PERIOD_SELECT identifier: 0 for the bill stop
date, 1 for the bill start date, 2 for the bill month date, 3 for the Schedule Read Date, and 4 for the
Governing Date. For example, if you wanted to use the first day of the bill period to determine
which season it belongs in, you would include the following Assignment Statement near the
beginning of your rate form: BILL_PERIOD_SELECT = 1.
Control Statements 3-29

To Create
1. Select Statements-›Select-›Billing Period.

The SELECT BILL_PERIOD Statement template appears.

2. The WHEN clause sets the condition under which a set of nested statements should be
applied; in this case, when the bill period falls within the specified season period(s). (You’ll
supply the nested statements later.) To create the WHEN clause, highlight one or more
season periods in the lower box and click Insert.

Note: Although the list box displays all season periods defined for all season schedules in the
database, you can select only the season periods that belong to the current season schedule.
See Notes on page 3-29 for more information.)

3. Repeat for each additional WHEN clause. You can have any number of WHEN clauses, but
you must have at least one.

4. If your statement includes an OTHERWISE clause, check the OTHERWISE box. The
OTHERWISE clause directs the program to apply the set of nested statements when the
current bill period does not match any of the season periods in the preceding WHEN clauses.

5. Click OK. The WHEN and OTHERWISE clauses appear in the rate form.

6. Immediately following each WHEN and (if supplied) OTHERWISE clause, you must define
the charge formulas you wish to apply during the season period. You can use one or more of
the rate definition statements described in this chapter (BLOCK, ASSIGNMENT, and so
on). To do this, highlight the clause and add the desired statement according to the
instructions for that statement type.
3-30 Rules Language Reference Guide

Select Expression Statement

Purpose
The SELECT EXPRESSION Statement makes it possible to specify different actions depending
on the value of an identifier or expression.

Format
The format for SELECT EXPRESSION statements is:

SELECT <expression>
WHEN <expression, expression,>
<nested statements>
WHEN <expression, expression,...>
<nested statements>
....
OTHERWISE
<nested statements>

END SELECT;

Example
Apply tariffs based on the JURISCODE (Jurisdiction Code) associated with the account being
processed.

SELECT ACCOUNT.JURISCODE
WHEN "MA", "RI"
/* Apply special MA and RI tariff */
WHEN "CA", "OR"
/* Apply special CA and OR tariff */

END SELECT;

Notes
Any identifier or expression except BILL_PERIOD and RATE_CODE can be used in a
SELECT EXPRESSION Statement.

To Create
1. Select Statements-›Select-›Expression.

The SELECT EXPRESSION Statement template appears.

2. The SELECT clause sets the identifier or expression for the statement. To enter a previously
defined identifier, position the cursor in the SELECT field and click the right mouse button to
open the Rules Language Elements Editor.

3. The WHEN clause sets the condition under which a set of nested statements should be
applied; in the preceding example, when an account’s Jurisdiction code matches one of the
supplied codes. (You’ll supply the nested statements later.) To create the WHEN clause,
highlight each applicable rate code in the lower box and click Insert. The WHEN clause
appears in the upper list box; for example, WHEN “MA” or “RI”.

4. Repeat for each additional WHEN clause. You can have any number of WHEN clauses. Each
WHEN clause can have any number of values; however, a value cannot be in more than one
WHEN clause.

5. If your statement includes an OTHERWISE clause, check the OTHERWISE box. The
OTHERWISE clause directs the program to apply the set of nested statements when the
expression does not match any of the values in the preceding WHEN clauses.

6. Click OK. The SELECT, WHEN and OTHERWISE clauses appear in the rate form.
Control Statements 3-31

7. Immediately following each WHEN and (if supplied) OTHERWISE clause, you must define
the charge formulas you wish to apply to accounts subject to the expression. You can use one
or more of the rate definition statements described in this chapter (BLOCK,
ASSIGNMENT, and so on). To do this, highlight the clause and add the desired statement
according to the instructions for that statement type.
3-32 Rules Language Reference Guide

Select Rate_Code Statement

Purpose
The SELECT RATE_CODE Statement allows you to specify different pricing options for a
number of rate codes within a single rate form. The pricing options are defined by other statement
types, such as Block statements or All statements, nested within the Select Statement (see the Data
Manager User’s Guide for details).

Format
The format for SELECT RATE_CODE statements is:

SELECT RATE_CODE
WHEN <rate_code>[, <rate_code>...]
<nested_statements>
WHEN <rate_code>[, <rate_code>...]
<nested_statements>
...
OTHERWISE
<nested_statements>

END SELECT;

Example
Here is an example of a Select Rate Code Statement used to define charges for five rates codes:
222, 223, 226, 221, and 227.

SELECT RATE_CODE
WHEN “222”, “223”

/* Space heating */
BLOCK KWH
FROM 0 TO 300 CHARGE $0.09646
FROM 300 CHARGE $0.05039
TOTAL $ENERGY_CHARGE_223;

WHEN “226”
/* Separately metered space heating */
$MIN_CHARGE = $4.75;
ALL KWH CHARGE $0.05347 INTO $ENERGY_CHARGE_226;

OTHERWISE
/* Non heating - 221 OR 227 */
BLOCK KWH
FROM 0 TO 300 CHARGE $0.09646
FROM 300 TO 1200 CHARGE $0.07920
FROM 1200 CHARGE $0.06761
TOTAL $ENERGY_CHARGE_OTH;

END SELECT;

Notes
Before you can specify a rate code in a SELECT RATE_CODE Statement, you must have already
entered the rate code in the Oracle Utilities Data Repository.
Control Statements 3-33

To Create
1. Select Statements-›Select-›Rate Code.

The SELECT RATE CODE Statement template appears.

2. The WHEN clause sets the condition under which a set of nested statements should be
applied; in this case, when an account’s rate code matches one of the supplied rate codes.
(You’ll supply the nested statements later.) To create the WHEN clause, highlight each
applicable rate code in the lower box and click Insert. The WHEN clause appears in the
upper list box; for example, WHEN “010” or “020”.

3. Repeat for each additional WHEN clause. You can have any number of WHEN clauses. Each
WHEN clause can have any number of rate codes; however, a rate code cannot be in more
than one WHEN clause.

4. If your statement includes an OTHERWISE clause, check the OTHERWISE box. The
OTHERWISE clause directs the program to apply the set of nested statements when an
account’s rate code does not match any of the rate codes in the preceding WHEN clauses.

5. Click OK. The WHEN and OTHERWISE clauses appear in the rate form.

6. Immediately following each WHEN and (if supplied) OTHERWISE clause, you must define
the charge formulas you wish to apply to accounts subject to the rate code(s). You can use
one or more of the rate definition statements described in this chapter (BLOCK,
ASSIGNMENT, and so on). To do this, highlight the clause and add the desired statement
according to the instructions for that statement type.
3-34 Rules Language Reference Guide

Warn Statement

Purpose
The WARN Statement is used with IF-THEN-ELSE to issue a warning message in the bill report
when a condition you specify is met (or not met). The message you supply in the WARN
Statement appears on page 1 of the bill report. The WARN Statement is typically used to validate
data.

Note: In the Approval Required mode, the bill is still processed. The warning simply alerts the
Billing Analyst to a condition that should be investigated before the bill is approved. In the
Automatic mode, the bill for the account that triggered the warning is not processed. In that case,
the bill can only be issued using the Current/Final Bill module.

Format
WARN statements have this format:

WARN <‘character_string’>;

Example
The following example uses the WARN Statement for data validation.

/* Do + or - 25% validation, comparing current KWH to past 11 months */
MAX_KWH = MAXRANGE(KWH, 1, 11)
IF KWH > (MAX_KWH * 1.25)

THEN
WARN "KWH exceeds 125% of the maximum reading in the past 11

months.";
END IF;

MIN_KWH = MINRANGE(KWH, 1, 11);
IF KWH < (MIN_KWH * .75)

THEN
WARN "KWH is less than 75% of the minimum reading in the past 11

months.";
END IF;

Notes
The ABORT and WARN statements are similar. Like ABORT (see Abort Statement on page 3-
2), the WARN Statement is used with IF-THEN-ELSE, so that it is triggered by a user-defined
condition. However, unlike ABORT, WARN stops processing only in the Automatic billing mode;
in the Approval Required mode, the bill is still computed, but a warning message is displayed on
page 1 of the bill report. You could use the WARN and ABORT statements together for a two-
step validation; that is, if condition x is met, calculate the bill and issue a WARNING message for
the billing analyst; if condition y is met, stop processing the bill and issue the ABORT message.

The billing and analysis programs can display up to 50 messages in one report.
Control Statements 3-35

To Create
1. Select Statements-›Warn.

The WARN Statement template appears.

2. Type the message (up to 256 characters) you wish to appear on reports. The message must be
a string, so must be enclosed within double-quotes (“ ”).

3. Click OK. The statement appears in the rate form.
3-36 Rules Language Reference Guide

Chapter 4
Revenue Computation Statements

This chapter describes the revenue computation statements available in the Oracle Utilities Rules
Language. Revenue computation statements are used to compute revenue based on bill
determinants, unit charges, and other factors.

Revenue Computation Statements
• All Statement

• Block Statements

• Unbilled and Ignore Statements
Revenue Computation Statements 4-1

All Statement

Purpose
ALL statements are used to calculate charges. ALL statements assign a unit price to a billing
determinant, and also trace the number of units that the account consumed during the bill period,
and the total charge for that determinant. If the Oracle Utilities Billing Component Print Detail
Option in effect for the account is “Normal” or “All”, the information is automatically printed in
reports (see Chapter 3: Working with Reports in the Oracle Utilities Billing Component User’s Guide).

Format
ALL statements use the following format:

ALL <determinant> CHARGE <price> INTO <$revenue_identifier>;

Example
Bill all KWH used during the billing period at a rate of $0.05094/KWH, assign the results to the
revenue identifier $ENERGY_CHARGE, and report the usage and resulting revenue on the line
labelled "$ENERGY_CHARGE".

ALL KWH CHARGE $0.05094 INTO $ENERGY_CHARGE;

For example, if the customer used 120 KWH during the bill period, the line shown below would
automatically appear on the report under “Bill Calculation Results.”

Notes
About the Difference Between All Statements and Assignment Statements: An
ALL Statement is equivalent to a simple Assignment Statement as far as calculating revenue, but it
also gathers information for reports (specifically, number of billing units and billing charge rate).
Compare the following Assignment Statement with the preceding All Statement example:

$ENERGY_CHARGE = KWH * 0.05094;

Both statements calculate the customer's energy charge based on KWH consumption. Both label
and report the resulting revenue as “$ENERGY_CHARGE” in reports. However, the All
Statement also reports the number of billing units (KWH) consumed and the billing charge rate
($0.05094), as illustrated above.

Billing
Units

Distribution
Charge
Rate

Revenue

ENERGY_CHARGE 120.0 0.05094 $6.11
4-2 Rules Language Reference Guide

To Create
1. Select Statements-›All from the Rules Language Editor menu bar.

The ALL Statement template appears.

2. Complete the template:

Determinant: Supply a usage variable that the charge will be based on; for example, KW or
KWH. You can use either a billing determinant stored in the database, or a derived
determinant calculated elsewhere in the rate form.

• To use a billing determinant from the database, click the down arrow to the right of the
field. A list of identifiers currently defined in the Bill Determinants table appears.
Highlight your selection.

• To use a variable calculated elsewhere in the rate form, type its identifier.

Price per determinant unit: Unit price; may be a constant, a factor, or an identifier that
points to the results of a function or expression elsewhere in the schedule.

• To supply a constant, type the value in the field. The dollar sign is optional. It will not
affect calculations, and may make your rate form easier to read.

• To use an identifier defined elsewhere, you can type it or use the advanced features of the
editor. To use the editor, position the cursor in the field, click the right mouse button, and
select from the options that appear.

Revenue identifier: Enter the name you wish to assign to the results of the charge
calculation. The results (number of billing units, charge rate, and revenue) will appear in a row
labelled with your input here (see example on previous page).

You can type a revenue identifier or select from a set of previously defined identifiers:

• If you type a revenue identifier of your own choosing, it must begin with a dollar sign.
You can use any combination of letters, digits, and the underscore character (_), but you
cannot use spaces. $ENERGY_CHARGE is acceptable; $ENERGY CHARGE is not.
Also, do not use any of the reserved words listed in Appendix A. The identifier can
be up to 32 characters.

• To select from revenue identifiers that have been previously defined in other rate forms,
position the cursor in the “Revenue Identifier” field and click the right mouse button.
Select from the options that appear.

3. Click OK. Your new statement appears in the rate form.
Revenue Computation Statements 4-3

Block Statements

Purpose
BLOCK statements define the block limits and unit charges for any type of block rate, including
declining, increasing, and hours of use. The optional INTO clause tells the program to keep track
of the account's usage, price, distribution, and revenue for each block for the bill period. If the
report option in effect for the account is “Normal” or “All”, that information is printed in reports.

The Rules Language provides two formats for blocked rates: “From/To” and “First/Next/
Additional”. They produce the same result, but the “First/Next/Additional” format is easier to
input.

Formats
The Rules Language provides two formats for Blocked Rates:

First/Next/Additional Format
BLOCK <determinant>

FIRST <constant|identifier> CHARGE <price> [INTO <$revenue_id>]
NEXT <constant|identifier> CHARGE <price> [INTO <$revenue_id>]
ADDITIONAL CHARGE <price> [INTO <$revenue_id>]
TOTAL <$revenue_id>;

A “First/Next/Additional” BLOCK Statement can have any number of NEXT clauses.

From/To Format
BLOCK <determinant>

FROM <constant|identifier> TO <constant|identifier> CHARGE <price>
[INTO <$revenue_id>]

FROM <constant|identifier> CHARGE <price> [INTO <$revenue_id>]
TOTAL <$revenue_id>;

A “From/To” BLOCK Statement can have any number of FROM/TO clauses.

Examples
In both of the following examples, if a customer used 500 kWh during the billing period, the first
150 kWh would be billed at $0.06, the second 150 at $0.05, and the remaining 200 at $0.04. The
total energy charge for the customer would be $24.50.

In the first pair of examples (1a and 1b), the limits of the block are defined by constants; in the
second pair (2a and 2b), by identifiers.

Example 1a: Declining Block (First/Next/Additional Format)

BLOCK KWH
FIRST 150 CHARGE $0.06 INTO $KWH_0_150
NEXT 150 CHARGE $0.05 INTO $NEXT_150
ADDITIONAL CHARGE $0.04 INTO $KWH_ADDITIONAL
TOTAL $ENERGY_CHARGE;
4-4 Rules Language Reference Guide

Example 1b: Declining Block (From/To Format)

BLOCK KWH
FROM 0 TO 150 CHARGE $0.06 INTO $KWH_0_150
FROM 150 TO 300 CHARGE $0.05 INTO $NEXT_150
FROM 300 CHARGE $0.04 INTO $KWH_ADDITIONAL
TOTAL $ENERGY_CHARGE;

Because the optional INTO clauses were used, the following lines would appear in the bill report
under “Bill Calculation Results”:

Example 2a: Hours Use (First/Next/Additional Format)

HIGH1 = 20;/* First 20 hours use */
HIGH2 = 40;/* Next 40 hours use */

BLOCK KWH
FIRST HIGH1 CHARGE $0.13037 INTO $BLK_1
NEXT HIGH2 CHARGE $0.09025 INTO $BLK_2
ADDITIONAL CHARGE $0.04764 INTO $BLK_3
TOTAL $ENERGY_CHARGE;

Example 2b: Hours Use (From/To Format)

HIGH1 = 20;/* First 20 hours use */
HIGH2 = HIGH1 + (40);/* Next 40 hours use */

BLOCK KWH
FROM 0 TO HIGH1 CHARGE $0.13037 INTO $BLK_1
FROM HIGH1 TO HIGH2 CHARGE $0.09025 INTO $BLK_2
FROM HIGH2 CHARGE $0.04764 INTO $BLK_3
TOTAL $ENERGY_CHARGE;

KWH
Billing
Units

Distribution
Charge
Rate

Revenue

KWH_0_150 150.0 30% 0.06 $9.00

NEXT_150 150.0 30% 0.05 $7.50

KWH_ADDITIONAL 200.0 40% 0.04 $8.00

ENERGY_CHARGE 500.0 100% $24.50
Revenue Computation Statements 4-5

To Create — Block, First/Next/Additional
1. Select Statements-›Block - First/Next/Addtl.

The Block (First/Next/Additional) Statement template appears.

To complete the statement, specify a BLOCK clause, a FIRST clause, any number of NEXT
clauses (including none), an ADDITIONAL clause, and a TOTAL clause. Each is explained
below. All are required except NEXT.

2. In the BLOCK field, supply the usage variable the block rate will be based on; for example,
KW or KWH. You can use either a billing determinant stored in the database, or a derived
determinant calculated elsewhere in the rate form:

• To use a billing determinant from the database, click the down arrow to the right of the
BLOCK field. A list of identifiers currently defined in the Bill Determinants Lookup
Code Table appears. Highlight your selection.

• To use a variable calculated elsewhere in the rate form, type its identifier.

3. The FIRST subclause defines the lowest block and its unit price. (You can think of the
FIRST, NEXT, and ADDITIONAL subclauses as directing the program, “Bill the portion of
the usage that falls within this block as the price specified here.”) To specify the FIRST clause,
you’ll enter its parameters in the 1st/Next line in the middle of the template, which is pointed
out in the illustration above. This line consists of the following three text fields:

1st/Next. Specify the upper limit of the block (the lower limit of the first block is
automatically zero). You have two options.

• If you want to use a constant, such as 150, simply type it. Use the Tab key to advance to
the next field.

• You can specify an identifier defined earlier in the rate form. (This approach enables you
to apply block expanders.) To do this, either type the identifier or position the cursor in
the field and click the right mouse button. A list of identifiers appears. For instance, if you
were creating Example 2a shown earlier, the identifiers HIGH1 and HIGH2 would be
available for selection.

CHARGE. Unit price for the first block; may be a constant, a factor, or an identifier that
points to the results of a function or expression elsewhere in the schedule:

• To supply a constant, type the value in the field. The dollar sign is optional. It will not
affect calculations, and it may make your rate form easier to read.

• To use an identifier defined elsewhere, type it or use the advanced features of the editor.
To use the editor, position the cursor in the field and click the right mouse button. Select
from the options that appear.

INTO. Optional. Enter a revenue identifier that you wish to assign to the results of the
intermediate block calculation. If you supply a revenue identifier, the number of billing units,
the charge rate, distribution, and revenue for the block will appear in a row on the bill report,
labelled with the identifier. If you do not supply an INTO clause, only the total revenue from
all blocks is reported.

If one clause in your block rate includes an INTO component, all others must as well. Also,
within a rate form, the revenue identifier for each block must be unique, and you cannot use
the same revenue identifier in another block or ALL Statement in the rate form.

You can use the default ($BLOCK1), type your own revenue identifier, or select from a set of
previously defined identifiers:

• If you type a revenue identifier of your own choosing, it must begin with a dollar sign.
You can use any combination of letters, digits, and the underscore character (_), but you
cannot use spaces. $KWH_0_150 is acceptable; _$KWH 0 TO 150 is not. Do not use
any of the reserved words listed in Appendix A. The identifier can be up to 32
characters.
4-6 Rules Language Reference Guide

• To select from revenue identifiers that have been previously defined, position the cursor
in the “Revenue Identifier” field and click the right mouse button. Select from the options
that appear.

4. When you have completed the three text fields that make up the FIRST clause, click Insert.
Your input appears in the upper list box.

If you change your mind about a portion of the clause, highlight it in the list box; change the
components in the same text fields in which you originally entered them, and click Update.
To delete a clause, highlight it in the list box and click Delete.

5. If desired, define intermediate blocks using the NEXT clause. You can have any number of
NEXT clauses, including none. Use the same technique as described in steps 2 and 3.

6. You must supply an ADDITIONAL clause that defines the highest block in the rate. Its
upper limit is automatically infinity. Specify the desired values in the CHARGE and INTO
fields.

7. Finally, specify a revenue identifier for the TOTAL clause (required). You can type the
identifier, or right-click to open the Rules Language Elements Editor and select from the
list that appears. Your input here identifies the total revenue for the sum of the blocks; it will
appear on the bill reports, and you can use it as a variable in other statements.

Note: If you type the revenue identifier, it must begin with a dollar sign ($) so the programs
recognize it as a revenue identifier.

8. When you have completed the template, click OK to insert the BLOCK Statement into the
rate form.

To Create — Block, From/To
1. Select Statements-›Block - From/To.

The BLOCK (From/To) Statement template appears.

To complete the statement, you'll specify a BLOCK clause, one or more FROM clauses, and a
TOTAL clause. Each is explained below. All are required.

2. In the BLOCK field, supply the usage variable the block rate is to be based on; for example,
KW or KWH. You can use either a billing determinant stored in the database or a derived
determinant calculated elsewhere in the rate form:

• To use a billing determinant from the database, click the down arrow to the right of the
BLOCK field. A list of identifiers currently defined in the Bill Determinants Lookup
Code Table appears. Highlight your selection.

• To use a variable calculated elsewhere in the rate form, type its identifier.

3. The FROM clauses define the blocks and their unit prices. You can think of each FROM
clause as directing the program, “Bill the portion of the usage that falls within this block at
the price specified here.” You can have any number of FROM clauses in a BLOCK
Statement.

To specify a FROM clause, enter its parameters in the box in the middle of the template,
shown in the preceding illustration. This box consists of the following four fields:

FROM and TO. Specify the lower limit and upper limit of the block. The lower limit of the
first block must be zero. The lower limit of successive blocks must be the upper limit of the
previous block. The upper limit of the last block must be blank (meaning infinity.) Your
options for specifying inputs here are:

• If you want to use a constant, such as 150, type it. Use the Tab key to advance to the next
field.

• Specify an identifier defined earlier in the rate form. (This approach enables you to apply
block expanders.) To do this, type the identifier, or position the cursor in the field and
Revenue Computation Statements 4-7

click the right mouse button. A list of identifiers appears. For instance, if you were
creating Example 2b shown earlier, the identifiers HIGH1 and HIGH2 would be
available for selection.

CHARGE. Unit price for the block; may be a constant, or an identifier that points to the
results of a function or expression elsewhere in the schedule:

• To supply a constant, type the value in the field. The dollar sign is optional. It will not
affect calculations, but it may make your rate form easier to read.

• To use an identifier defined elsewhere, you can type it or use the advanced features of the
editor. To use the editor, position the cursor in the field and click the right mouse button.
Select from the options that appear.

INTO. Optional. Enter a revenue identifier to assign to the results of the intermediate block
calculations. If you use the INTO sub-clause, the number of billing units, the charge rate,
distribution, and revenue for the block will appear in a row on the bill report, labeled with the
identifier. If you do not supply an INTO clause, only the total revenue from all blocks is
reported.

Note: If one clause in your block rate includes an INTO component, all others must as well.
Also, within a rate form, the revenue identifier for each block must be unique, and you cannot
use the same revenue identifier in another BLOCK or ALL Statement.

You can use the default ($BLOCK1), type your own revenue identifier, or select from a set of
previously defined identifiers:

• If you type a revenue identifier of your own choosing, it must begin with a dollar sign.
You can use any combination of letters, digits, and the underscore character (_), but you
cannot use spaces. $KWH_0_150 is acceptable; _$KWH 0 TO 150 is not. Also, do not
use any of the reserved words listed in Appendix A. The identifier can be up to 32
characters.

• To select from revenue identifiers that were previously defined, position the cursor in the
Revenue Identifier field and click the right mouse button. Select from the options that
appear.

4. When you have completed the fields that make up a FROM clause, click Insert. Your input
appears in the upper list box.

If you change your mind about a portion of the clause, highlight it in the list box; change the
components in the same text fields in which you originally entered them, and click Update.
To delete a clause, highlight it in the list box and click Delete.

5. If desired, define additional blocks using the FROM clause, as described in steps 3 and 4. You
can have any number of FROM clauses, but the upper limit of the last block must be blank
(meaning infinity).

6. Specify a revenue identifier for the TOTAL clause (required). You can type the identifier, or
right-click to open the Rules Language Elements Editor and select from the list that
appears. Your input here identifies the total revenue for the sum of the blocks; it will appear
on the bill reports, and you can use it as a variable in other statements.

Note: If you type the revenue identifier, it must begin with a dollar sign ($) so the programs
recognize it as a revenue identifier.

7. When you have completed the template, click OK to insert the BLOCK Statement into the
rate form.
4-8 Rules Language Reference Guide

Unbilled and Ignore Statements

Purpose
UNBILLED and IGNORE are special statements used in rate schedules that include a minimum
bill provision. They are typically nested in IF-THEN-ELSE statements, to exclude the usage-
based determinants and revenue associated with customers who are billed the minimum amount
from summary calculations.

When a minimum charge is specified in a rate schedule, it typically means that a customer is billed
the greater of two amounts; either a usage-based charge or a minimum charge. (The minimum
charge may be a flat fee or a usage charge based on a second determinant, such as KW instead of
KWH.) If a customer is billed the minimum charge, the customer's value for the first determinant
is not used to calculate the bill (because it would yield a smaller charge than the minimum) and,
therefore, neither that determinant value nor the charge based on that determinant should be
included in the customer's bill or the summaries for the group or class. The UNBILLED and
IGNORE statements are used in these cases.

The IGNORE Statement directs the program to exclude a customer’s determinant-based
revenue from the bill (typically in favor of the minimum charge) or vice versa. For example,
IGNORE $ENERGY_CHARGE;

The UNBILLED Statement directs the program to accumulate and report the unbilled usage as
a separate total. Although the determinant is not used to calculate the bill, it is still useful to report.
For example, UNBILLED KWH;

Format
IGNORE statements have this format:

IGNORE <$revenue_identifier>;

UNBILLED statements have this format:

UNBILLED <determinant_identifier>;

Examples
Ignore and Unbilled statements are typically nested in If-Then-Else statements. In the example,
look at the If-Then-Else Statement near the bottom of the schedule. If the minimum charge for a
customer exceeds that based on KWH, then the program will exclude the KWH-based revenue
from the revenue accumulation and will report KWH usage as a separate item.

$MIN_CHARGE = $2.50;

BLOCK KWH
FROM 0 TO 50 CHARGE $0.10 INTO $KWH_0_50
FROM 50 TO 200 CHARGE $0.05 INTO $KWH_50_200
FROM 200 CHARGE $0.02 INTO $KWH_200_OR_MORE
TOTAL $ENERGY_CHARGE;

$EFFECTIVE_REVENUE = MAX($MIN_CHARGE, $ENERGY_CHARGE);
Revenue Computation Statements 4-9

IF ($MIN_CHARGE > $ENERGY_CHARGE) THEN
IGNORE $ENERGY_CHARGE;
UNBILLED KWH;

ELSE
IGNORE $MIN_CHARGE;

END IF;

Here is another example to illustrate the use of the UNBILLED and IGNORE statements. In this
case, the minimum charge is computed from a second usage variable (determinant) rather than
just a flat rate.

KVA = COMPKVA(RKVA, KW); /* Function to compute kVA */
ALL KVA CHARGE $0.97 INTO $KVA_CHARGE;
MIN_KVA_CHARGE = $48.50;
$MIN_CHARGE = MAX(MIN_KVA_CHARGE, $KVA_CHARGE);

HIGH1 = 20 * KW; /* First 20 hours use */

BLOCK KWH
FROM 0 TO HIGH1 CHARGE $0.13037
FROM HIGH1 CHARGE $0.04764
TOTAL $ENERGY_CHARGE;

$EFFECTIVE_REVENUE = MAX($MIN_CHARGE, $ENERGY_CHARGE);

IF ($MIN_CHARGE > $ENERGY_CHARGE) THEN
IGNORE $ENERGY_CHARGE;
UNBILLED KWH;

ELSE
IGNORE $KVA_CHARGE, $MIN_CHARGE;

END IF;

To Create — Ignore
1. Select Statements-›Ignore.

The IGNORE Statement template appears.

2. In the Revenue Identifier(s) field, specify one or more revenue identifiers that will be
excluded from the bill calculations. You can type the identifier, or use the Rules Language
Elements selector to pick one. To use the Rules Language Elements feature, position the
mouse pointer in the field and click the right mouse button.

3. Click OK. The statement appears in the rate form.

To Create — Unbilled
1. Select Statements-›Unbilled.

The UNBILLED Statement template appears.

2. In the Determinant Identifiers list box, specify the determinant that you want to report,
even though it will not be included in the revenue calculations. Click Insert. Repeat for each
desired UNBILLED determinant.

3. Click OK. The statement appears in the rate form.
4-10 Rules Language Reference Guide

Chapter 5
Report Statements

This chapter describes the report statements available in the Oracle Utilities Rules Language.
Report statements are used with the Print Detail options to identify the values that appear in
reports, and how they are labeled.

Report Statements
• Clear Statement

• Determinant Statement

• Label Statement

• Remove Statement

• Report Statement

• Revenue Statement
Report Statements 5-1

Clear Statement

Purpose
The CLEAR Statement is used to reset the values of identifiers to null. You may need to apply the
CLEAR Statement when your rate schedule has a FOR EACH Statement that involves
stem.component identifiers (see Record Identifiers (stem.component) on page 4-14 in the
Oracle Utilities Rules Language User’s Guide), or when you have applied a REPORT Statement to a
revenue identifier.

Note: Oracle Utilities recommends using the CLEAR statement to clear stem
identifiers after saving records using the SAVE TO TABLE statement.

Using CLEAR statements with FOR EACH Loops
By nesting a CLEAR Statement in a FOR EACH loop, you are assured that no “residual” values
assigned to a stem.component in one loop of the FOR EACH Statement will appear in the next
loop.

For example, suppose that your utility’s CISREC format includes just three components:
CISREC.BILLSTART, CISREC.BILLSTOP, and CISREC.KW. You’ve created a FOR EACH
Statement that computes the account’s values for these three components for each channel and
saves them to the CISREC.TXT file (see example below).

You have an account with three channels, and Channel C is missing the last value, which is for
KW:

Channel A - 1998/01/01 00:00:00, 1998/01/31 00:00:00 120
Channel B - 1998/01/02 00:00:00, 1998/02/01 00:00:00 110
Channel C - 1998/01/01 00:00:00, 1998/01/31 00:00:00

You create a CIS record for each channel using a FOR EACH loop, but you don’t include a
CLEAR CISREC Statement in the loop. There would be no problem between the loop for A and
B, because B’s values would simply overwrite A’s. However, C is missing a value for KW. B’s value
for KW (110) would still be in memory, and would therefore be written to C’s CIS record.

You can avoid this circumstance if you always nest a CLEAR Statement in a FOR EACH
Statement when the FOR EACH Statement involves reporting or saving stem components.

About Revenue Identifiers and REPORT statements: If you apply a REPORT Statement to a
revenue identifier, the bill report displays the identifier’s value twice; once for the REPORT
Statement that you supplied, and once in the revenue identifier section that’s automatically a part
of the default format for bill reports. However, if you apply the CLEAR Statement to the revenue
identifier, the value appears only for the REPORT Statement. It’s eliminated from the pre-
formatted, default section for revenue identifiers.
5-2 Rules Language Reference Guide

Format
CLEAR <identifier1> [,identifier2...];

Example
Save the values associated with the stem identifier CISREC to CIS, then clear the values associated
with the stem identifier CISREC.

FOR EACH CHNL IN LIST ("ACCT_CHAN")
CISREC.BILLSTART = BILL_START;
CISREC.BILLSTOP = BILL_STOP;
CISREC.KW = KW;
SAVE CISREC TO CIS;
CLEAR CISREC;

END FOR;

To Create
1. Select Statements-›Clear.

The CLEAR Statement template appears.

2. In the Identifier(s) field, enter one or more identifiers whose values you wish to clear. You
can specify a revenue or determinant identifier, or any other Rules Language identifier. If you
specify a stem variable, all components are cleared. You can specify any number of identifiers
in one CLEAR Statement. If you supply multiple identifiers, be sure to separate them with
commas.

You can type the identifiers or use the Rules Language Elements Editor to select from
categories of identifiers. To use the Rules Language Elements Editor, position the mouse
pointer in the field and click the right mouse button. Make your selections as desired.

3. When you have entered all of the desired identifiers, click Insert. Your input appears in the
upper list box.

If you change your mind about your entry, highlight the line in the upper box; make the
desired changes in the lower box, and click Update. To delete a clause, highlight it in the
upper box and click Delete.

If you are supplying multiple identifiers in the CLEAR Statement, you can alternatively
specify the first identifier in the Identifier(s) field, click Insert, specify the second identifier
in the field, click Insert, and so on. In that way, the template automatically inserts the comma
between the identifiers for you.

4. Click OK. The statement appears in the rate form.
Report Statements 5-3

Determinant Statement

Purpose
The DETERMINANT Statement has three applications:

• Replaces a determinant identifier with an easier-to-read or more meaningful label of your
choosing in reports.

• Assigns the status of “determinant identifier” to a locally-defined identifier. Then, the rules
and features that apply to determinant identifiers apply to the new identifier. You can apply
any of the statements or functions that work with bill determinants to it. In addition, it will be
listed under “Bill Determinant Identifiers” in the Rules Language Elements dialog box.

• Loads historical values for determinants stored in the Bill History Table or the Bill History
Values Table. (See Notes below.)

Format
Determinant statements have this format:

DETERMINANT <determinant_identifier> <number_of_bill_periods> <"character_string">;

Example
Load the account’s demand values for last 24 bill periods*, and replace the determinant identifier
"KW" with the word "Demand" in the bill reports. (* See Notes below.)

DETERMINANT KW 24 "Demand";

Notes
If you request a number of bill periods greater than 1, the DETERMINANT Statement causes the
program to load historical determinant values for at least the number of bill periods requested (if
available), and may cause it to load all historical determinant values stored for the account. (The
number loaded is dictated by performance considerations, depending upon what is most efficient
for the table in which the values are stored.) This is an important consideration when supplying a
function or operation in the same rate form that requires a specific number of historical values. If
a function requires a specific number of bill periods to get the value you need, be sure to specify the number of bill
periods in the function. Do not use the DETERMINANT Statement for that purpose.

Consider the following two sets of statements:

Example 1 - would provide possibly unreliable results:

DETERMINANT KW 12 "Demand";
X = KW;
RATCH_KW = MAXRANGE(X);

Example 2 - would provide reliable results:

DETERMINANT KW "Demand";
RATCH_KW = MAXRANGE(KW, 0, 11);

In Example 1, the variable X may contain all historical values for the account, so the maximum
found by the MAXRANGE function may have occurred further back than the intended 12
periods. In Example 2, the DETERMINANT Statement labels the identifier, and the
MAXRANGE function applies only to the desired number of bill periods.
5-4 Rules Language Reference Guide

To Create
1. Select Statements-›Determinant.

The DETERMINANT Statement template appears.

2. Complete the template:

Determinant: Click the down arrow to the right of the field. A list of determinant identifiers
currently defined in the Bill Determinants Lookup Code Table appears. Highlight your
selection.

Number of months of historical bill periods to load: Type a value from 1 to 36, indicating
the number of bill periods to load. For example, if you enter 6, the program loads at least the
current bill period and the previous 5 periods of data for the determinant specified. Remember:
The program loads at least the number of bill periods that you specify and, depending upon
performance considerations, may load all historical values for a particular table. See Notes,
above.

Report Label: Enter the name you wish to appear in reports in place of the determinant
identifier.

3. Click OK. Your new statement appears in the rate form.
Report Statements 5-5

Label Statement

Purpose
LABEL statements are similar to Determinant and Revenue statements, except that they are used
to put labels on non-revenue and non-determinant identifiers. If the Oracle Utilities Billing
Component Print Detail Option in effect for the account is “All,” the value assigned to a labeled
identifier is displayed in the bill reports. This is useful for reporting the results of intermediate
calculations, for example.

Note: You can use the LABEL Statement with any identifier; however, it is an
error if the identifier already has a label.

Format
Label statements have this format:

LABEL <identifier> <"character_string">;

Example
Label the value computed for “METER_PEAK” with the title “Peak of Total Meters” and display
in the bill report.

/* Display the Meters’ Peak */
ME_HNDL = INTDLOAD(‘1700,1’)
METER_PEAK = INTDVALUE(ME_HNDL , "MAXIMUM");
LABEL METER_PEAK "Peak of Total Meters";

For example, if the result of the INTDVALUE function for an account is 6.749279 and the Oracle
Utilities Billing Component Print Detail Option in effect for the account is set to ALL, the
following will appear in the bill report for the account:

Peak of Total Meters: 6.749279

To Create
1. Select Statements-›Label.

The LABEL Statement template appears.

2. Complete the template:

Identifier: The identifier whose value you want to include in the bill reports.

Report Label: The title you wish to appear in reports in place of the identifier.

3. Click OK. The statement appears in the rate form.
5-6 Rules Language Reference Guide

Remove Statement

Purpose
The REMOVE Statement is used to remove identifiers from the Shared Symbol table (the table
where identifier values are stored in memory) in order to free up memory.

Using CLEAR statements with FOR EACH Loops
By nesting a REMOVE Statement in a FOR EACH loop, you are assured that no “residual” values
assigned to a stem.component in one loop of the FOR EACH Statement will appear in the next
loop.

Format
REMOVE <identifier1> [,identifier2...];

Example
Load and aggregate interval data associated with a transformer, then remove the values associated
with the handle ADD_HNDL.

FOR EACH CHNL IN LIST ("TRANS_CHAN")
RECORDERID = CHNL.RECORDERID;
CHANNELNUM = CHNL.CHANNELNUM;
REC_CHAN = RECORDERID + "," + CHANNELNUM;
THIS_CHNL_HNDL = INTDLOADDATES (REC_CHAN, BILL_START, BILL_STOP);
AGG_HNDL = AGG_HNDL + THIS_CHNL_HNDL;

END FOR;
AGG_TOTAL = AGG_HNDL.TOTAL
REMOVE AGG_HNDL;

To Create
1. Select Statements-›Remove.

The REMOVE Statement template appears.

2. In the Identifier(s) field, enter one or more identifiers whose values you wish to remove.
You can specify a revenue or determinant identifier, or any other Rules Language identifier,
including array identifiers. If you specify a stem variable, all components are removed. You
can specify any number of identifiers in one REMOVE Statement. If you supply multiple
identifiers, separate them with commas.

You can type the identifiers or use the Rules Language Elements Editor to select from
categories of identifiers. To use the Rules Language Elements Editor, position the mouse
pointer in the field and click the right mouse button. Make your selections as desired.

3. When you have entered all of the desired identifiers, click Insert. Your input appears in the
upper list box.

If you change your mind about your entry, highlight the line in the upper box; make the
desired changes in the lower box, and click Update. To delete a clause, highlight it in the
upper box and click Delete.

If you are supplying multiple identifiers in the REMOVE Statement, you can alternatively
specify the first identifier in the Identifier(s) field, click Insert, specify the second identifier
in the field, click Insert, and so on. In that way, the template automatically inserts the comma
between the identifiers for you.

4. Click OK. The statement appears in the rate form.
Report Statements 5-7

Report Statement

Purpose
The REPORT Statement is used to label and report values for identifiers (including
stem.components) that may be assigned different values during the rate form’s execution by the
billing or analysis program. While the LABEL, DETERMINANT, and REVENUE statements
report whatever value is assigned to their identifier when the rate form is done executing, a
REPORT Statement writes out a value each time it is executed.

For example, if you nest a REPORT Statement inside a FOR EACH Statement, the statement will
report its values for every pass of the FOR EACH loop. If you nest a Label inside a FOR EACH
loop, only the value for the last pass of the loop appears in the report.

Note: This information appears in an account’s bill report only if the “All” or
“Normal” Print Detail Option is in effect for the account.

Format
REPORT statements have this format:

REPORT <identifier> LABEL <[PAGE]“character_string”|label_identifier>;

Example
This example illustrates using the REPORT Statement to display the value of stem.components
(here, the stem is PK):

/* Report top five peaks */
LABEL PK.NM "Peak Number";
LABEL PK.MX "Value";
LABEL PK.MD " Date/Time";
FOR EACH I IN NUMBER 5

MX = "MAX" + I;
MD = "MAXDATE" + I;
PK.NM = "Peak " + I;
PK.MX = INTDVALUE(KWH_HNDL , MX);
PK.MD = INTDVALUE(KWH_HNDL , MD);
REPORT PK LABEL “Top Five Peaks”;
CLEAR PK;

END FOR;

Here is how the results would be formatted in the bill report:

Top Five Peaks

Peak Number Value Date/Time

Peak 1 4.158719 01/27/1998 19:00:00

Peak 2 4.055039 01/27/1998 08:00:00

Peak 3 3.997439 01/03/1998 09:00:00

Peak 4 3.951359 01/02/1998 09:00:00

Peak 5 3.000372 01/01/1998 09:00:00
5-8 Rules Language Reference Guide

Notes
About reporting Stem.Component values: If the identifier you use in a REPORT
Statement is a “stem,” the values for its “components” will appear in the corresponding section of
the bill report (as long as Oracle Utilities Billing Component’s “All” or “Normal” Print Detail
Option is in effect for the account). The billing program uses the following rules to format this
section of the report, based on the parameters you supply in the REPORT Statement:

1. The title of the section is the value to the right of the word LABEL in the REPORT
Statement. If you supply “” (two double quotes), the report will use the stem identifier.

2. All stem identifiers reported with the same title (e.g., whatever you supply after the word
LABEL) appear together in the same section. They are ordered when the REPORT
Statement executes. If you have multiple REPORT statements with different values for
<identifier>, the sections are ordered when the REPORT Statement for the first row in the
section executes.

3. The columns in the section are ordered by the appearance of the component in the rate form.
The first component to appear in the rate form is the leftmost column in the report. The
column header string for a column is the label of the corresponding component. The width
of the column is based on the width of this string, so it must be wide enough to fully display
the column values. The LABEL statements in the previous example set up the column
headers.

4. If a column value is unassigned, spaces will fill in the column value.

For example, you can insert a single-line report statement into the Bill Calculation Result
section of a report by including “Bill Calculation Result” as the title of the section (the value
to the right of the word LABEL in the REPORT Statement).

To Create
1. Select Statements-›Report.

The REPORT Statement template appears.

2. Complete the template:

Identifier: Specify the identifier whose value you want to report. It can be a simple identifier
or a compound identifier (e.g., a “stem.”).

Report Label: Enter the text for the report line label, or the table of values, if the identifier
was a stem. Note that the report label must be inside quotations (“kWh”).

To insert a page break in the report, include the PAGE keyword inside the report label
(“PAGE kWh”).

3. Click OK. The statement appears in the rate form.
Report Statements 5-9

Revenue Statement

Purpose
REVENUE statements label revenue identifiers in reports—that is, replace the identifier in the
rate form with a more meaningful or easier to read label in bill reports. You can also use a Revenue
Statement to establish an identifier as a revenue identifier, even if it has no leading $. (Revenue
identifiers are a special class of identifiers used for charges; their values are automatically printed at
the end of bill reports when Oracle Utilities Billing Component’s “All” or “Normal” Print Detail
Option is in effect.)

About the TOTAL clause: You can use the optional TOTAL clause in a REVENUE Statement
to designate an identifier of your own choosing to represent the bill total, or you can use the
predefined identifier $EFFECTIVE_REVENUE. Regardless of which Print Detail Option you
specify, the bill report always includes the value for $EFFECTIVE_REVENUE, or the user-
specified identifier you substitute using the TOTAL clause.

Format
Revenue statements have this format:

REVENUE <$revenue_identifier> TOTAL <“character_string”>;

Examples
Label the value for minimum charge, “Minimum charge.”

REVENUE $MIN_CHARGE “Minimum charge”;

Revenue statements are especially useful for labeling the results accumulated by Into clauses in
Block statements. For example:

BLOCK KWH
FROM 0 TO 300 CHARGE $0.09646 INTO $KWH1
FROM 300 CHARGE $0.05039 INTO $KWH2
TOTAL $ENERGY_CHARGE_223;

Without a Revenue Statement, the report rows for the two blocks would be labeled $KWH1 and
$KWH2, respectively. You could assign more meaningful labels using the following Revenue
statements:

REVENUE $KWH1 “0 to 300 kWh”";
REVENUE $KWH2 “300+ kWh”;
5-10 Rules Language Reference Guide

To Create
1. Select Statements-›Revenue.

The REVENUE Statement template appears.

2. Complete the template:

Revenue Identifier: Specify the identifier. You can type it or use the Rules Language
Elements feature to select it. To use the Rules Language Elements feature, position the mouse
pointer in the field and click the right mouse button.

TOTAL: Optional. To designate the identifier as representing the total bill, place a check in the
TOTAL checkbox.

Note: If you apply the TOTAL clause, you cannot use the special identifier
$EFFECTIVE_REVENUE in the same rate schedule. You can have only one REVENUE
Statement with a TOTAL clause in a rate schedule.

Report Label: Enter the name you wish to appear in reports in place of the identifier that
you specified in the first field.

3. Click OK. Your new statement appears in the rate form.
Report Statements 5-11

5-12 Rules Language Reference Guide

Chapter 6
Miscellaneous Statements

This chapter describes the miscellaneous statements available in the Oracle Utilities Rules
Language.

Miscellaneous Statements
• Delete Statement

• Save Statements
Miscellaneous Statements 6-1

Delete Statement

Purpose
The DELETE statement is used to remove a record from the database. A record can be deleted
immediately when SAVE COMMIT is used, or it can be deleted when a bill is approved.

Format
DELETE <identifier> FROM TABLE <"table-name">;

Where:

• <identifier> is the stem identifier whose record you wish to delete. All values in the record
key (i.e. all identity columns) must be specified as corresponding tail identifiers.

• <"table-name"> is the name of the table in the Oracle Utilities Data Repository. The name
must begin and end with double quotation marks, or must be the value of a string identifier or
expression.

 Example
Delete a record from the Meter Read table.

METER_READ.METERID = "METER_01";
METER_READ.MANUFACTURER = "METERSRUS";
METER_READ.SERIALNO = "12345";
METER_READ.UNINUMBER = "54321";
METER_READ.METERREADTIME = "01/31/2007 00:00:00";
METER_READ.BILLDETERMCODE = "1";
METER_READ.READMONTH = "01/2007";
DELETE METER_READ FROM TABLE "METERREAD";

 To Create
1. Select Statements-›Delete-›From Table.

The DELETE Statement template appears.

2. Complete the template:

DELETE: The stem identifier of the record you wish to delete.

FROM TABLE: The name of the table the record is to be deleted from.

3. Click OK. The DELETE statement appears in the rate form.
6-2 Rules Language Reference Guide

Save Statements

Purpose
The SAVE statements enable you to save bill determinant values, records, or interval data cuts. If a
determinant value is already stored in the database for the current bill month, it will be overwritten
with the SAVE’d value. If you save a computed cut with the same cut series key (recorder-
id,channel-number) as an existing cut, it will overwrite any data that already exists for the current
bill month. If desired, you can use the Default Options feature to specify that any overwritten cuts
be exported to an archive file before deletion from the database. To apply this option, go to the
Data Manager desktop. Select Tools-›Options-›Interval Data Source. Check the box next to
Export Records Overwritten by SAVE to File.

There are seven versions of the SAVE Statement:

SAVE AS: Saves a single value for a bill determinant identifier to the Bill History Table or the Bill
History Value Table, or saves a computed interval data cut to the Interval Database; for example,
SAVE AS BILL_KW; or SAVE AS ‘1701,1’.

SAVE TO TABLE: Saves a user-created data record (or an array of records) to a row(s) in a user-
specified table in the Oracle Utilities Data Repository. This is useful for saving data to a specific
table; for example, SAVE MV TO TABLE ‘METERVALUE”; (where MV is a stem identifier).

The SAVE TO TABLE statement first tries to update the record; if that fails, it tries to add the
record.

Note: If the SAVE_TO_TABLE_ADDFIRST=1 parameter is specified in
the LODESTAR.CFG configuration file, the SAVE TO TABLE statement first
tries to ADD the record, and if that fails, it tries to UPDATE the record. See
LODESTAR.CFG on page 2-2 in the Oracle Utilities Energy Information Platform
Configuratin Guide for more information.

If the record is always added or updated, use the SAVE_ADD TO TABLE or the
SAVE_UPDATE TO TABLE versions of this statement. If you use SAVE_ADD and a record
with the same key exists in the database, it is an error. If you use SAVE_UPDATE and a record
with the same key does not exist in the database, it is an error. You can select the Save mode in the
SAVE TO TABLE dialog box. If you use SAVE_UPDATE, the value of the stem must be “” or
the original key of the record. If it is the original key of the record (set automatically in a FOR
EACH IN LIST Statement), you can then update one or more of the identity columns.

Note: Oracle Utilities recommends using the CLEAR statement to clear stem
identifiers after saving records using the SAVE TO TABLE statement. This is
especially important when using the SAVE TO TABLE statement within a
FOR EACH statement to create a series of records in the same table.

To set a column value to NULL, save the column as "" (double quotes). For example:

X.KWH=""
SAVE X TO TABLE BILL HISTORY

would set the KWH column on the Bill History record to NULL.

Note: The SAVE TO statement should not be used with the Bill History and
Bill History Value Tables when running a rate schedule in the context of an
account. Use the SAVE AS statement above to save records to these tables.
This recommendation is intended to prevent errors when saving bill
determinants during billing calculations.

Using the SAVE TO TABLE statement with these tables can result in an error
in the Rules Language editor. To disable this error message, include the
DONOT_CHECK_SAVETOTABLE_BH_AND BHV” parameter in the
LODESTAR.CFG file.
Miscellaneous Statements 6-3

Note: If one of the columns in the saved record is XML, you must have an
Automatic Save mode turned on. You cannot delay the save until the user
approves the report.

Note: When saving large volumes of records, using Array identifiers will
improve performance and speed up processing.

SAVE TO CHANNEL: Saves a computed interval data cut (or an array of cuts) to the Interval
Database: for example, SAVE INTD_HNDL1 to CHANNEL ‘12345,1’.

Note: When saving large volumes of cuts, using Array identifiers will improve
performance and speed up processing.

SAVE to CIS: Saves a user-created data record to the CIS transaction record. The components of
the record must match the names of fields defined in your utility’s CISFORMT.TXT file (typically
in the CFG directory).

SAVE to XML: Saves user-created data in XML format. The data will be part of the report in a
section titled SAVE TO XML

SAVE to STAGING: Saves an interval data handle to either the Interval Data Staging
(LSINTDSTAGING) or Interval Data Reporting (LSRFINTDHEADER and
LSRFINTDVALUES) tables.

SAVE COMMIT: Commits database changes due to SAVE TO TABLE, SAVE TO CHANNEL
statements, interval data delete from the relational database, and the LISTUPDATE function. It
also writes out all save CIS and XML records. It will then start a new database transaction. It
applies only when the Save mode is 'Automatically save / approve each page if it is OK.'

SAVE ROLLBACK: Removes (rolls back) database changes due to SAVE TO TABLE, SAVE
TO CHANNEL (interval data in the relational database) statements, interval data delete from the
relational database, and the LISTUPDATE function. It also deletes saved CIS and XML records
(that were not directly written). No other SAVEs are affected. It will then start a new database
transaction. It applies only when the Save mode is 'Automatically save / approve each page if it is
OK'.

Format
Its format is:

SAVE <identifier_save_spec>;

An <identifier_save_spec> is one of:

<identifier_defined> or

<identifier_scalar> AS <determinant_identifier> or

<identifier_interval> AS <'recorder,channel'> or

<identifier_stem|array_stem> TO TABLE <table_identifier|literal> or

<identifier_interval|array_stem> TO CHANNEL <'recorder,channel’> or

<identifier_interval|array_stem> TO CHANNEL <'identifier,rcdr'> or

<identifier_stem> TO CIS or

<identifier_stem> TO XML or

<identifier_interval> TO STAGING [<TABLE_NAME>]<‘recorder,channel’> or

<array_stem> TO STAGING <TABLE_NAME> or
6-4 Rules Language Reference Guide

SAVE COMMIT or

SAVE ROLLBACK

where:

• <identifier_stem> is a stem identifier previously referenced in the rate form.

• <array_stem> is an array stem identifier previously referenced in the rate form. The array
stem supplied should not include the index. See Array Identifiers on page 4-20 in the Oracle
Utilities Rules Language User’s Guide for more information about using array identifiers.

• <identifier_interval> is an interval data reference.

Examples
Example 1: Perform calculations on all intervals and then save the cut with a new key, leaving the
original cut intact:

SIMPLE_CUT = 'RCDR1234,1';
SAVE SIMPLE_CUT AS 'RCDR1234,2';

Example 2: Save $EFFECTIVE_REVENUE as a determinant called CURRENT_CHARGES:

SAVE $EFFECTIVE_REVENUE AS CURRENT_CHARGES;

In this case, CURRENT_CHARGES must have been defined in the database as a billing
determinant.

Example 3: Create and save bought and sold cuts:

 /* Load the generator cut */
INTD_GEN_CUT = 'RCDR1234,1';

/* Load the use cut */
INTD_USE_CUT = 'RCDR1234,2';

/* Compute the bought cut */
INTD_BOUGHT_CUT =+ INTD_GEN_CUT - INTD_USE_CUT;

/* Compute the sold cut */
INTD_SOLD_CUT =+ INTD_USE_CUT - INTD_GEN_CUT;

/* Save them */
SAVE INTD_BOUGHT_CUT AS 'RCDR1234,3';
SAVE INTD_SOLD_CUT AS 'RCDR1234,4';

Example 4: Create account IDs for customer “CUSTOMER_1”.

FOR EACH Y IN NUMBER 25
FOR EACH X IN NUMBER 100

#ARR[X].ACCOUNTID = “ACCOUNT_” + Y + “_” + X;
#ARR[X].STARTTIME = ‘01/01/2004’;
#ARR[X].CUSTOMERID = “CUSTOMER_1”;

END FOR;
SAVE #ARR[] TO TABLE ACCOUNT;

END FOR;

Example 5: Save five years of interval data for recorder,channel “A20991,1” as monthly cuts.

#ARR[1] = INTDLOADDATES (‘A20991,1’, ‘01/01/1999 00:00:00’, ‘01/31/
1999 23:59:59’);
#ARR[2] = INTDLOADDATES (‘A20991,1’, ‘02/01/1999 00:00:00’, ‘02/28/
1999 23:59:59’);
#ARR[3] = INTDLOADDATES (‘A20991,1’, ‘03/01/1999 00:00:00’, ‘03/31/
1999 23:59:59’);
...
Miscellaneous Statements 6-5

#ARR[60] = INTDLOADDATES (‘A20991,1’, ‘12/01/2004 00:00:00’, ‘12/31/
2004 23:59:59’);
SAVE #ARR[] TO CHANNEL “A20991_MONTHLY,1”

Example 6: Save interval data for recorder,channel “METER_AA,1” to numbered recorder IDs
(1-100) with corresponding channel numbers (1-100) to the LSCHCLDB interval data table.

INTD_HNDL = INTDLOADDATES("METER_AA,1", START, STOP);
REC = "RECORDER";
FOR EACH X IN NUMBER 100
 #ARR[X] = INTD_HNDL;
 RST = INTDSETATTRIBUTE(#ARR[X] , "CHANNEL" , X);
 RST = INTDSETATTRIBUTE(#ARR[X] , "RECORDERID" , REC + X);
END FOR;
SAVE #ARR [] TO CHANNEL "RDB/LSCHLDB";

Notes
All versions of the SAVE statements (SAVE AS, SAVE TO TABLE, etc.) are ignored by Oracle
Utilities Rate Management.

To Create - Save As
1. Select Statements-›Save-›As.

The SAVE Statement template appears.

2. Complete the template:

Identifier: Specify a bill determinant identifier, an interval data handle, or a cut series key (the
cut series key uses the format ‘recorder,channel’; e.g., ‘1234,1’).

Optional Save As Name: This is the new name for the determinant, record, or interval data
cut.

3. Click OK. The statement appears in the rate form.

To Create — Save To Table
1. Select Statements-›Save-›To Table.

The SAVE Statement template appears.

2. Complete the template:

Identifier: The stem identifier or stem array identifier referenced earlier in the rate form.

Add/Update: Select Add/Update, Add, or Update, as appropriate.

Table Name: The name of the table you wish to save the record to.

3. Click OK. The statement appears in the rate form.

To Create - Save To Channel
1. Select Statements-›Save-›To Channel.

The SAVE Statement template appears.

2. Complete the template:

Identifier: Specify a bill determinant identifier, an interval data handle, a stem array identifier,
or a cut series key (the cut series key uses the format ‘recorder,channel’; e.g., ‘1234,1’).

Recorder,Channel: A cut key. If the key already exists in the database and it has interval data
for the current period, the old data will be overwritten. If you use a new key, the new data is
saved and the old data remains intact.

3. Click OK. The statement appears in the rate form.
6-6 Rules Language Reference Guide

To Create - Save To CIS
1. Select Statements-›Save-›To CIS.

The SAVE Statement template appears.

2. Complete the template:

Identifier: The stem identifier referenced earlier in the rate form.

Optional Section Name: An optional SECTION name; for example, SAVE x TO CIS
SECTION name, where x is a stem identifier and name is a section in the CISFORMT.TXT
file. If you supply a name, it overrides the record type (10, 20, etc.) and formats the record
based on the section with the same name. If there is a HEADER section, its fields are always
put first. This feature is useful for processing cancelled bills (see Cancel/Rebill Rider in
Chapter 1: Introducing the Oracle Utilities Rules Language of the Oracle Utilities Rules
Language User’s Guide for more information).

Optional File Name: An optional path and file name. The file name may be an identifier or
expression whose value is a string, or a literal string. The path and file name can be no longer
than 65 characters. When approved or committed, the record is written to this file instead of
the CISFILE set in the LODESTAR.CFG file. The default is the CISFILENAME
configuration parameter value, or the user-entered file name.

Note: Detail record types (31,41,51, and 61) can only be saved to the default CIS file, and
cannot be saved to specific CIS files. See Appendix A: Creating a CIS Transaction
Record Output File in the Oracle Utilities Billing Component Installation and Configuration Guide,
Volume 1 for more information.

3. Click OK. The statement appears in the rate form.

To Create - Save To XML
1. Select Statements-›Save-›To XML.

The SAVE Statement template appears.

2. Complete the template:

Identifier: The stem identifier referenced earlier in the rate form.

Optional File Name: An optional file name. The file name may be an identifier or
expression whose value is a string, or a literal string. When approved or committed, the
record will be written to this file. The data will be part of the report in a section titled SAVE
TO XML. If a File Name is not specified, the XML data must be created and used by a COM
object; otherwise, it is ignored.

If a file name is specified, the rate schedule that contains the SAVE TO XML statement must
create a correctly formatted XML file. A correctly formatted XML file has one root element,
with any number of sub-elements. This means that the first line to the file must be the begin
tag, and the last line must be the end tag.

Two special identifier names can be used to create these lines.

SAVE BEGIN_ELEMENT TO XML FILE x;

will write the opening XML tag, where the element name is the string value of the identifier
BEGIN_ELEMENT.

SAVE END_ELEMENT TO XML FILE x;

will write the closing XML tag, where the element name is the string value of the identifier
END_ELEMENT.

Note that these statements always create opening and closing tags, so they can be used several
times to create nested XML. However, a SAVE BEGIN_ELEMENT must be the first XML
save to a file, and a SAVE END_ELEMENT must be the last XML save to a file. (This is first
Miscellaneous Statements 6-7

and last period, not just first and last for the rate schedule.) It is possible to create the opening
line in one rate schedule, and the closing line in another.

3. Click OK. The statement appears in the rate form.

To Create - Save To Staging
1. Select Statements-›Save-›To Staging.

The SAVE Statement template appears.

2. Complete the template:

Identifier: Specify an interval data handle, or a cut series key (the cut series key uses the
format ‘recorder,channel’; e.g., ‘1234,1’).

Recorder,Channel: A cut key preceded by an optional table name, in the following format:

[QUAL/<alternate_qualifier>;][RDB/<alternate_table>;]<‘rec,chan’>

where:

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded.

• The meta-data of the alternate qualifier must be the same as the original qualifier.

• When using an alternate qualifier and processing in the context of an Account (such
as when running billing via Oracle Utilities Billing Component), the account must
be present in both the qualifiers.

• <alternate_table> is a string containing the either LSINTDSTAGING or an equivalent
(optional), or LSRFINTDHEADER. The table name is optional for saving data to the
LSINTDSTAGING table, but is required when saving data to the
LSRFINTDHEADER table (used when reporting on interval data).

• <‘rec,chan’> is a cut key. If the key already exists in the database and it has interval data
for the current period, the old data will be overwritten. If you use a new key, the new data
is saved and the old data remains intact. This is an optional parameter.

3. Click OK. The statement appears in the rate form.

To Create - Save Commit
1. Select Statements-›Save-›COMMIT.

2. The SAVE COMMIT statement appears in your rate form.

Note: SAVE COMMIT does not work on the Bill History Table.

To Create - Save Rollback
1. Select Statements-›Save-›ROLLBACK.

2. The SAVE ROLLBACK statement appears in your rate form.
6-8 Rules Language Reference Guide

Chapter 7
Financial Management Statements

Financial Management statements are used to post transactions to the Oracle Utilities Receivables
Component (a component of Oracle Utilities Billing Component). This chapter provides detailed
explanations of the Financial Management statements available in the Oracle Utilities Rules
Language, including:

• Using the Financial Management Statements

• Deprecated Statements
Financial Management Statements 7-1

Using the Financial Management Statements
Using the Financial Management Statements

The Financial Management statements are used to post charges or credits to the Oracle Utilities

Receivables Component’s Financial Engine. Each statement takes a transaction identifier as a
single argument. The transaction identifier is a stem that should contain several tail attributes, as
described below. Attributes marked with an asterisk (*) are required.

Attribute Description

ACCOUNTID An account ID that identifies the account for
posting or cancelling a transaction. If not provided,
the rate schedule account context is used. It is an
error if no account ID is provided and the rate
schedule is not run within the context of an account.

UID Unique ID of a posted transaction. Used with the
CANCEL_TRAN statement.

TRANSACTIONID A transaction ID for the transaction. If not provided,
the default transaction ID for the transaction type is
used.

REVENUEMONTH The revenue month for the transaction. If not
provided, the rate schedule bill month is used.

NOTE A note for the transaction.

CANCELREVENUEMONTH The revenue month for a cancelled transaction.
Optional attribute used with the CANCEL_TRAN
statement.

CANCELREASONCODE The reason for cancelling a transaction. Optional
attribute used with the CANCEL_TRAN statement.

CANCELNOTE A note for a cancelled transaction. Optional attribute
used with the CANCEL_TRAN statement.

CHARGEORCREDIT Indicates whether transaction is a charge (CH) or a
credit (CR). The default is charge ("CH") unless
otherwise indicated.

DEFERBALANCE Indicates whether transaction balance is deferred
("TRUE") or not ("FALSE"). The default is
"FALSE" unless otherwise indicated

AMOUNT* The amount of the transaction.

CURRENCY The currency code for the currency associated with
the account for the transaction. This is required if
the LS Currency column is populated in the Account
table.

BILLEDDATE* The billed date for the charge transaction. This is
only required for charge transactions.

DUEDATE* The due date for the charge transaction. This is only
required for charge transactions.

RECEIVABLETYPENAME The receivable type name for transactions (required
for all charge type transactions, except for POST
BILL, if CHARGETYPEID is not provided).
7-2 Rules Language Reference Guide

Using the Financial Management Statements
CHARGETYPEID The charge type identifier for transactions (required
for all charge type transactions, except for POST
BILL, if RECEIVABLETYPENAME is not
provided).

OPCOCODE The operating company code associated with the
transaction.

JURISCODE The jurisdiction code associated with the transaction.

STATEMENTDATE This attribute is used only with the POST
STATEMENT statement. The statement date
associated with the transaction.

INVOICEID The invoice ID associated with the transaction.

INVOICEDATE The invoice date associated with the transaction.

BILLCYCLEDATE The bill cycle date for the transaction. If not
provided, the rate schedule read date is used. It is an
error if no bill cycle date is provided and the rate
schedule does not have an associated read date.

BILLSTARTTIME This attribute is used only with the POST BILL
statement. The bill start time for the transaction. If
not provided, the transaction time of the previous
BILL transaction with the same transaction ID is
used.

BILLSTOPTIME This attribute is used only with the POST BILL
statement. The bill stop time for the transaction. If
not provided, the transaction time is used.

SUSPENDAUTOPAYMENT This attribute is used only with the POST BILL
statement. Indicates that automatic payments for the
bill transaction should be suspended.

SERVICEPLAN* This attribute is required for the POST SERVICE
CHARGE and POST BUDGET SERVICE
CHARGE statements. The service plan attribute is a
stem itself that requires both STARTDATE and
SERVICETYPECODE attributes; optional
attributes are ADDRESS1, ADDRESS2,
ADDRESS3, CITY, COUNTY, STATE, ZIP (to
identify the associated premise), and
LDCACCOUNTNO.

BUDGETPLAN* This attribute is used only with the POST BUDGET
SERVICE CHARGE, POST BUDGET BILL
CHARGE, and POST BUDGET BILL TRUEUP
statements. The budget plan attribute is a stem itself
that requires STARTDATE and
BUDGETTYPECODE attributes; the
SERVICEPLAN attribute (to identify any associated
service plan) is optional.

Attribute Description
Financial Management Statements 7-3

Using the Financial Management Statements
TAXRATE The tax rate associated with either a TAX transaction
or one or more individual
TAXEDTRANSACTIONS.

TAXEDTRANSACTION<ID> One of the taxed transactions associated with a
POST TAX statement. The taxed transaction
attribute is a stem itself that may contain the
following attributes: UIDTRANSACTION or
TRANSACTIONNO (at least one of which is
required), AMOUNT, TAXAMOUNT, TAXRATE,
TAXEXEMPT ("TRUE" or "FALSE").

UIDINSTALLMENTPLAN Unique ID of associated installment plan. Either this
or INSTALLMENTPLANNO below is required for
the POST INSTALLMENT statement.

INSTALLMENTPLANNO The transaction number of deferred charge
transaction associated with installment plan. Either
this or UIDINSTALLMENTPLAN above is
required for the POST INSTALLMENT statement.

UIDDEPOSIT Unique ID of associated deposit. Either this or
DEPOSITTIME below is required for the POST
DEPOSIT INTEREST and POST DEPOSIT
APPLICATION statements.

DEPOSITTIME Time of associated deposit. Either this or
UIDDEPOSIT above is required for the POST
DEPOSIT INTEREST and POST DEPOSIT
APPLICATION statements.

DEPINTRATE Optional interest rate for deposit. This is used by the
POST DEPOSIT statement.

APPLICATIONMETHOD Indicates how to apply the transaction against
outstanding charges or credits. Valid values are
"DEFERRED", "IMMEDIATE", and
"INVOICEID". Default is "DEFERRED" unless
otherwise indicated.

DEFACCOUNTID Required default account id used by the POST
PAYMENT statement.

SOURCECODE Required payment source code used by the POST
PAYMENT statement.

PAYMENTID Optional payment id used by the POST PAYMENT
statement.

METHODCODE Optional payment method code used by the POST
PAYMENT statement.

INSTITUTION Optional institution name from which payment is
drawn; used by the POST PAYMENT statement.

ACCOUNTNO Optional account number from which payment is
drawn; used by the POST PAYMENT statement.

Attribute Description
7-4 Rules Language Reference Guide

Using the Financial Management Statements
Example:

SERV_PLAN.STARTDATE = "01/01/2000";
SERV_PLAN.SERVICETYPECODE = "ELECTRIC";

BUDGET_PLAN.STARTDATE = "01/01/2000";
BUDGET_PLAN.BUDGETTYPECODE = "SIMPLE";
BUDGET_PLAN.SERVICEPLAN = "SERV_PLAN";

SERV_CHG_1.TRANSACTIONID = "350";
SERV_CHG_1.AMOUNT = 59.95;
SERV_CHG_1.CURRENCY = “USD”;
SERV_CHG_1.BILLEDDATE = "07/15/2000";
SERV_CHG_1.DUEDATE = "07/30/2000";
SERV_CHG_1.CHARGETYPEID = "ELECTRIC_USAGE_CHARGE";
SERV_CHG_1.SERVICEPLAN = "SERV_PLAN";
SERV_CHG_1.BUDGETPLAN = "BUDGET_PLAN";

POST CHARGEORCREDIT SERV_CHG_1;

CHECKNO Optional payment check number used by the POST
PAYMENT statement.

RELATEDTRANSACTIONn Optional related transaction(s) to which credits are
applied when using the POST
CHARGEORCREDIT statement. If multiple
related transactions are specified, credits are applied
in the order specified in the Rules Language. For
example, RELATEDTRANSACTION1 first,
RELATEDTRANSACTION2 second, etc.

MISC1 Optional user-defined miscellaneous attribute used
by the POST PAYMENT statement.

MISC2 Optional user-defined miscellaneous attribute used
by the POST PAYMENT statement.

MISC3 Optional user-defined miscellaneous attribute used
by the POST PAYMENT statement.

Attribute Description
Financial Management Statements 7-5

Using the Financial Management Statements
Using User-Defined Attributes
If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed), you can post values to those columns
by assigning values to corresponding STEM.COLUMN_NAME identifiers in the rate schedule.
In this case, the column name specified in the rate schedule must be the exact name of the column
in the database. For example, if your Transaction Table contains a column called ZONE, you
could post data to that column by including the following line in your rate schedule:

USAGE_SERV_CHG.ZONE = “ZONE_1”

/* Post Service Charge Statement */
POST STATEMENT USAGE_SERV_CHG;

This would post the value assigned to the USAGE_SERV_CHG.ZONE identifier (“ZONE_1”)
to the ZONE column in the Transaction Table.
7-6 Rules Language Reference Guide

Using the Financial Management Statements
Post Charge Or Credit Statement

Purpose
The POST CHARGEORCREDIT Statement posts a charge or credit as a single transaction. The
transaction may be either deferred or not deferred. An optional service plan or budget plan may
be associated with the transaction. If a budget plan is provided, the plan’s variance will be updated
accordingly.

Format
POST CHARGEORCREDIT statements have this format:

POST CHARGEORCREDIT <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Charge or Credit from the Rules Language Editor

menu bar.

The POST CHARGEORCREDIT Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-7

Using the Financial Management Statements
Example
Post a service charge transaction based on energy usage.

/* Set Service Charge Attributes */
USAGE_SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;
USAGE_SERV_CHG.TRANSACTIONID = "310";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;
USAGE_SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE_SERV_CHG.AMOUNT = $ENERGY_CHARGE;
USAGE_SERV_CHG.CURRENCY = “USD”;
USAGE_SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";

USAGE_SERV_CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE_SERV_CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;
USAGE_SERV_CHG.JURISCODE = JURISCODE;
USAGE_SERV_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Usage Service Charge */
POST CHARGEORCREDIT USAGE_SERV_CHG;

Notes
In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.
7-8 Rules Language Reference Guide

Using the Financial Management Statements
Post Tax Statement

Purpose
The POST TAX Statement posts a tax charge or credit transaction for a specified account. The
transaction may be either deferred or not deferred. An optional service plan or budget plan may
be associated with the transaction. If a budget plan is provided, the plan’s variance will be updated
accordingly. Additionally, the tax transaction may be associated with one or more previously
posted transactions.

Format
POST TAX statements have this format:

POST TAX <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Tax from the Rules Language Editor menu bar.

The POST TAX Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-9

Using the Financial Management Statements
Example
Post a tax transaction based on energy usage.

/* Set Energy Tax Charge Attributes */
USAGE_TAX.ACCOUNTID = ACCOUNT.ACCOUNTID;
USAGE_TAX.REVENUEMONTH = BILLMONTH;
USAGE_TAX.NOTE = "Electric Energy Tax Charge - Energy Service
Provider";

USAGE_TAX.AMOUNT = $TAX_CHARGE;
USAGE_TAX.CURRENCY = “USD”;
USAGE_TAX.BILLEDDATE = "07/15/2000";
USAGE_TAX.DUEDATE = "08/15/2000";

USAGE_TAX.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE_TAX.CHARGETYPEID = "ESCO ENERGY";
USAGE_TAX.OPCOCODE = OPCOCODE;
USAGE_TAX.JURISCODE = JURISCODE;
USAGE_TAX.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Tax Transaction */
POST TAX USAGE_TAX;

Notes
In the above example, several of the USAGE_TAXG attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_TAX attributes. These are included to illustrate how those attributes might
be supplied in a rate schedule.
7-10 Rules Language Reference Guide

Using the Financial Management Statements
Post Installment Statement

Purpose
The POST INSTALLMENT Statement posts a non-deferred charge transaction related to a
previously created installment plan against a specified account.

Format
POST INSTALLMENT statements have this format:

POST INSTALLMENT <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Installment from the Rules Language Editor menu

bar.

The POST INSTALLMENT Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-11

Using the Financial Management Statements
Example
Post an installment transaction based on energy usage.

/* Set installment Attributes */
USAGE_INST.ACCOUNTID = ACCOUNT.ACCOUNTID;
USAGE_INST.TRANSACTIONID = "310";
USAGE_INST.REVENUEMONTH = BILLMONTH;
USAGE_INST.NOTE = "Electric Energy Charge - Energy Service Provider";

USAGE_INST.AMOUNT = $ENERGY_CHARGE;
USAGE_INST.CURRENCY = “USD”;
USAGE_INST.BILLEDDATE = "07/15/2000";
USAGE_INST.DUEDATE = "08/15/2000";

USAGE_INST.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE_INST.CHARGETYPEID = "ESCO ENERGY";
USAGE_INST.OPCOCODE = OPCOCODE;
USAGE_INST.JURISCODE = JURISCODE;
USAGE_INST.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Installment */
POST INSTALLMENT USAGE_INST;

Notes
In the above example, several of the USAGE_INST attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository or through list queries. Also, the above example includes values for all
the optional USAGE_INST attributes. These are included to illustrate how those attributes might
be supplied in a rate schedule.
7-12 Rules Language Reference Guide

Using the Financial Management Statements
Post Statement Statement

Purpose
The POST STATEMENT Statement posts a single statement transaction against an account. The
transaction indicates the current balance for the account. The account's current balance will not
change.

Format
POST STATEMENT statements have this format:

POST STATEMENT <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Statement from the Rules Language Editor menu bar.

The POST STATEMENT Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-13

Using the Financial Management Statements
Example
Post a statement transaction based on energy usage.

/* Set Service Charge Attributes */
USAGE_SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;
USAGE_SERV_CHG.TRANSACTIONID = "310";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;
USAGE_SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE_SERV_CHG.AMOUNT = $ENERGY_CHARGE;
USAGE_SERV.CURRENCY = “USD”;
USAGE_SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";

USAGE_SERV_CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE_SERV_CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;
USAGE_SERV_CHG.JURISCODE = JURISCODE;
USAGE_SERV_CHG.STATEMENTDATE = "08/01/2000;
USAGE_SERV_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Usage Statement */
POST STATEMENT USAGE_SERV_CHG;

Notes
In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.
7-14 Rules Language Reference Guide

Using the Financial Management Statements
Post Bill Statement

Purpose
The POST BILL Statement posts a bill transaction against an account. This will trigger the
IMMEDIATE credit application process, unless the APPLICATIONMETHOD is set to
“DEFERRED”. It may also initiate an autopayment for the account, if set up to do so. The
account’s current balance will not change, unless DEFERBALANCE is set to “FALSE”.

Format
POST BILL statements have this format:

POST BILL <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Bill from the Rules Language Editor menu bar.

The POST BILL Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-15

Using the Financial Management Statements
Example
Post a bill for the total charge to the customer.

/* Set Bill Attributes */
TOTAL_BILL.ACCOUNTID = ACCOUNT.ACCOUNTID;
TOTAL_BILL.TRANSACTIONID = "3000";
TOTAL_BILL.REVENUEMONTH = BILLMONTH;
TOTAL_BILL.NOTE = "Total Bill, including customer and energy charges";

TOTAL_BILL.AMOUNT = $EFFECTIVE_REVENUE;
TOTAL_BILL.CURRENCY = “USD”;
TOTAL_BILL.BILLEDDATE = "07/15/2000";
TOTAL_BILL.DUEDATE = "08/15/2000";

TOTAL_BILL.RECEIVABLETYPENAME = "ESCO ELECTRIC";
TOTAL_BILL.CHARGETYPEID = "ESCO ENERGY";
TOTAL_BILL.OPCOCODE = OPCOCODE;
TOTAL_BILL.JURISCODE = JURISCODE;
TOTAL_BILL.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Bill */
POST BILL TOTAL_BILL;

Notes
In the above example, several of the TOTAL_BILL attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional TOTAL_BILL attributes. These are included to illustrate how those attributes might
be supplied in a rate schedule.

The POST BILL statements returns the following tail identifiers to allow utilizing a created
transaction in subsequent processing:

• UIDTRANSACTION: The UID of the transation

• TRANSACTIONTIME: The time of the transaction

• TRANSACTIONO: The transaction number
7-16 Rules Language Reference Guide

Using the Financial Management Statements
Post Payment Statement

Purpose
The POST PAYMENT Statement posts a payment transaction against an account. This will
trigger the IMMEDIATE credit application process, unless the APPLICATIONMETHOD is set
to “DEFERRED” or “INVOICEID”. The account’s current balance will change.

Format
POST PAYMENT statements have this format:

POST PAYMENT <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Payment from the Rules Language Editor menu bar.

The POST PAYMENT Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-17

Using the Financial Management Statements
Example
Post a payment.

/* Set Payment Attributes */
PAYMENT.ACCOUNTID = ACCOUNT.ACCOUNTID;
PAYMENT.DEFACCOUNTID = “99999”;
PAYMENT.SOURCECODE = “LOCKBOX”;

PAYMENT.AMOUNT = “$90.00”;
PAYMENT.CURRENCY = “USD”;

/* Post Payment */
POST PAYMENT PAYMENT;

Notes
In the preceding example, several of the PAYMENT attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Utilities
Data Repository or through list queries.
7-18 Rules Language Reference Guide

Using the Financial Management Statements
Post Adjustment Statement

Purpose
The POST ADJUSTMENT Statement posts an adjustment transaction against an account. This
will, by default, trigger the credit application process if the adjustment is a credit, unless the
APPLICATIONMETHOD is overridden. The account’s current balance will change by default
unless the DEFERBALANCE is set to TRUE.

Format
POST ADJUSTMENT statements have this format:

POST ADJUSTMENT <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Adjustment from the Rules Language Editor menu

bar.

The POST ADJUSTMENT Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-19

Using the Financial Management Statements
Example
Post a credit adjustment.

/* Set Payment Attributes */
CHG_ADJUST.ACCOUNTID = ACCOUNT.ACCOUNTID;
CHG_ADJUST.CHARGEORCREDIT = “CR”

CHG_ADJUST.AMOUNT = “$90.00”;
CHG_ADJUST.CURRENCY = “USD”;

/* Post Adjustment */
POST ADJUSTMENT CHG_ADJUST;

Notes
In the preceding example, several of the ADJUSTMENT attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Utilities
Data Repository or through list queries.
7-20 Rules Language Reference Guide

Using the Financial Management Statements
Post Refund Statement

Purpose
The POST Refund Statement posts a refund transaction against an account. This will trigger the
IMMEDIATE credit application process, unless the APPLICATIONMETHOD is set to
“DEFERRED” or “INVOICEID”. The account’s current balance will change.

Format
POST REFUND statements have this format:

POST REFUND <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Refund from the Rules Language Editor menu bar.

The POST REFUND Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-21

Using the Financial Management Statements
Example
Post a refund for the total charge to the customer.

/* Set Bill Attributes */
BILL_REFUND.ACCOUNTID = ACCOUNT.ACCOUNTID;
BILL_REFUND.TRANSACTIONID = "3000";
BILL_REFUND.REVENUEMONTH = BILLMONTH;
BILL_REFUND.NOTE = "Refund for Total Bill, including customer and
energy charges";

BILL_REFUND.AMOUNT = $EFFECTIVE_REVENUE;
BILL_REFUND.CURRENCY = “USD”;

BILL_REFUND.RECEIVABLETYPENAME = "ESCO ELECTRIC";
BILL_REFUND.CHARGETYPEID = "ESCO ENERGY";
BILL_REFUND.OPCOCODE = OPCOCODE;
BILL_REFUND.JURISCODE = JURISCODE;
BILL_REFUND.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

BILL_REFUND.APPLICATIONMETHOD = “IMMEDIATE”;
BILL_REFUND.DEFERBALANCE = “FALSE”;

/* Post Refund */
POST REFUND BILL_REFUND;

Notes
In the above example, several of the BILL_REFUND attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional BILL_REFUND attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.
7-22 Rules Language Reference Guide

Using the Financial Management Statements
Post Writeoff Statement

Purpose
The POST WRITEOFF Statement is used to write off an account. All transactions for the
account with an outstanding balance will be written off. This will trigger the IMMEDIATE credit
application process. The account’s current balance will change.

Format
POST WRITEOFF statements have this format:

POST WRITEOFF <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Writeoff from the Rules Language Editor menu bar.

The POST WRITEOFF Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-23

Using the Financial Management Statements
Example
Write off an account.

/* Set Write Off Attributes */
ACCT_WRITEOFF.ACCOUNTID = ACCOUNT.ACCOUNTID;

/* Post Write Off */
POST WRITEOFF ACCT_WRITEOFF;
7-24 Rules Language Reference Guide

Using the Financial Management Statements
Post Deposit Statement

Purpose
The POST DEPOSIT Statement posts a deposit charge transaction against an account. The
account’s current balance will change by default unless DEFERBALANCE is set to TRUE.

Format
POST DEPOSIT statements have this format:

POST DEPOSIT <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Deposit from the Rules Language Editor menu bar.

The POST DEPOSIT Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-25

Using the Financial Management Statements
Example
Post a deposit.

/* Set Deposit Attributes */
ACCT_DEP.ACCOUNTID = ACCOUNT.ACCOUNTID;
ACCT_DEP.DEPINTRATE = FACTOR[DEPOSIT_INT_RATE].VALUE

ACCT_DEP.AMOUNT = “$90.00”;
ACCT_DEP.CURRENCY = “USD”;

/* Post Deposit */
POST DEPOSIT ACCT_DEP;
7-26 Rules Language Reference Guide

Using the Financial Management Statements
Post Deposit Interest Statement

Purpose
The POST DEPOSIT INTEREST Statement posts deposit interest as a single transaction.

Format
POST DEPOSIT INTEREST statements have this format:

POST DEPOSIT INTEREST <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Deposit Interest from the Rules Language Editor

menu bar.

The POST DEPOSIT INTEREST Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-27

Using the Financial Management Statements
Example
Post deposit interest.

/* Set Deposit Interest Attributes */
DEP_INT.ACCOUNTID = ACCOUNT.ACCOUNTID;

DEP_INT.AMOUNT = $DEPOSIT_INTEREST;
DEP_INT.CURRENCY = “USD”;

DEP_INT.OPCOCODE = OPCOCODE;
DEP_INT.JURISCODE = JURISCODE;

/* Post Deposit Interest */
POST DEPOSIT INTEREST USAGE_SERV_CHG;

Notes
In the preceding example, several of the DEP_INT attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional DEP_INT attributes. These are included to illustrate how those attributes might be
supplied in a rate schedule.
7-28 Rules Language Reference Guide

Using the Financial Management Statements
Post Deposit Application Statement

Purpose
The POST DEPOSIT APPLICATION Statement is used to apply a deposit as a single
transaction.

Format
POST DEPOSIT APPLICATION statements have this format:

POST DEPOSIT APPLICATION <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Deposit Application from the Rules Language Editor

menu bar.

The POST DEPOSIT APPLICATION Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-29

Using the Financial Management Statements
Example
Post a deposit application.

/* Set deposit application attributes */
DEP_APP.ACCOUNTID = ACCOUNT.ACCOUNTID;

DEP_APP.AMOUNT = $ENERGY_CHARGE;
DEP_APP.CURRENCY = “USD”;

DEP_APP.OPCOCODE = OPCOCODE;
DEP_APP.JURISCODE = JURISCODE;

/* Post Deposit Application */
POST DEPOSIT APPLICATION DEP_APP;

Notes
In the above example, several of the DEP_APP attributes are ‘hard-coded’ into the rate schedule.
In actual practice, this data would probably come directly from records in the Oracle Utilities Data
Repository, or through list queries. Also, the above example includes values for all the optional
DEP_APP attributes. These are included to illustrate how those attributes might be supplied in a
rate schedule.
7-30 Rules Language Reference Guide

Using the Financial Management Statements
Cancel Transaction Statement

Purpose
The CANCEL_TRAN statement cancels a single transaction.

Format
CANCEL_TRAN statements have this format:

CANCEL_TRANS <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the following:

• UID

• ACCOUNTID

• TRANSACTIONID

• CANCELREVENUEMONTH (optional)

• CANCELREASONCODE (optional)

• CANCELNOTE (optional)

Note: Either the UIDTRANSACTION or the ACCOUNTID and TRANSACTIONID are
required to identify the specific transaction to be cancelled. See Using the Financial
Management Statements on page 7-2 for more information about attributes used with
Oracle Utilities Receivables Component Rules Language statements.

To Create
1. Select Statements-›Financials-›Cancel Transaction from the Rules Language Editor menu

bar.

The CANCEL_TRAN statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Financial Management Statements 7-31

Using the Financial Management Statements
Example
Cancel a service charge transaction based on energy usage.

/* Set Cancel Attributes */
CANCEL_SERV_CHG.UID = 24579;
CANCEL_SERV_CHG.CANCELNOTE = "Cancelled";
CANCEL_SERV_CHG.CANCELREASONCODE = "ERROR";
CANCEL_SERV_CHG.CANCELREVENUEMONTH = BILLMONTH;

/* Cancel Service Charge */
CANCEL_TRAN CANCEL_SERV_CHG;

or

Cancel a service charge transaction based on energy usage.

/* Set Cancel Attributes */
CANCEL_SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTUID;
CANCEL_SERV_CHG.TRANSACTIONID = 110;
CANCEL_SERV_CHG.CANCELNOTE = "Cancelled";
CANCEL_SERV_CHG.CANCELREASONCODE = "ERROR";
CANCEL_SERV_CHG.CANCELREVENUEMONTH = BILLMONTH;

/* Cancel Service Charge */
CANCEL_TRAN CANCEL_SERV_CHG;

Notes
In the above example, several of the CANCEL_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional CANCEL_SERV_CHG attributes. These are included to illustrate how those
attributes might be supplied in a rate schedule.
7-32 Rules Language Reference Guide

Using the Financial Management Statements
CALCULATE_LATEPAYMENT Function

Purpose
The CALCULATE_LATEPAYMENT function is used to calculate a late payment fee based on
an account’s outstanding balance and current collections status.

Format
Statements using the CALCULATE_LATEPAYMENT function have this format:

<identifier> = CALCULATE_LATEPAYMENT (<ACCOUNTID> , <DATETYPE> ,
<COLLECTIONSTATUS) ;

Where:

• <ACCOUNTID> The Account ID of the account.

• <DATETYPE> The date type used for the calculation. Valid values include:

• TRANSACTIONTIME

• STATEMENTDATE

• INVOICEDATE

• DUEDATE

• <COLLECTIONSTATUS> The account’s current collection status, from the Account
Oracle Utilities Receivables Component table.

The function will return a structure that includes:

• The calculated late payment fee

• The maximum amount the late payment should be for the account.

Example
Calculate latepayment fees for each account in the BACK_OFFICE list based on INVOICEDATE.

FOR EACH ACCT IN LIST BACK_OFFICE
ACCT_ID = ACCOUNTS.ACCOUNTID
STATUS = ACCOUNTFME.COLLECTIONSTATUS
ACCOUNT_LATE_FEE = CALCULATE_LATEPAYMENT(ACCT_ID, “INVOICEDATE”,

STATUS)
...

END FOR;
Financial Management Statements 7-33

Using the Financial Management Statements
FMGETBILLINFO Function

Purpose
The FMGETBILLINFO function is used to gather bill information for an account.

Format
Statements using the FMGETBILLINFO function have this format:

<identifier> = FMGETBILLINFO [(<ID> , <DATE>)];

Where:

• <ID> <DATE> Optional. Account ID and date. If the account ID is not provided, the
account processed in the rate form will be used. If the date is not provided, the current date
will be used.

The function will return a structure (stem) that includes:

• The Account’s Receivable Status

• The Account’s Current Balance

• The Account’s Past Due Balance.

Example
Get the account bill info for account ID BACK-OFFICE-1 for August 15, 2000.

ACCOUNT_BILL_INFO = FMGETBILLINFO(BACK-OFFICE-1, ‘08/15/2000’)
7-34 Rules Language Reference Guide

Using the Financial Management Statements
PROCESSAUTOPAYMENT Function

Purpose
The PROCESSAUTOPAYMENT function is used to process an automatic payment for an
account. This function is typically used if normal automatic payments for an account have been
suspended.

Format
Statements using the PROCESSAUTOPAYMENT function have this format:

<identifier> = PROCESSAUTOPAYMENT (<STEM>);

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

The function return zero (0) if successful.

Example
Process an automatic payment after posting a bill.

/* Set Bill Attributes */
TOTAL_BILL.ACCOUNTID = ACCOUNT.ACCOUNTID;
TOTAL_BILL.TRANSACTIONID = "3000";
TOTAL_BILL.REVENUEMONTH = BILLMONTH;
TOTAL_BILL.NOTE = "Total Bill, including customer and energy charges";

TOTAL_BILL.AMOUNT = $EFFECTIVE_REVENUE;
TOTAL_BILL.CURRENCY = “USD”;
TOTAL_BILL.BILLEDDATE = "07/15/2000";
TOTAL_BILL.DUEDATE = "08/15/2000";

TOTAL_BILL.RECEIVABLETYPENAME = "ESCO ELECTRIC";
TOTAL_BILL.CHARGETYPEID = "ESCO ENERGY";
TOTAL_BILL.OPCOCODE = OPCOCODE;
TOTAL_BILL.JURISCODE = JURISCODE;
TOTAL_BILL.SUSPENDAUTOPAYMENT = "TRUE";
TOTAL_BILL.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Bill */
POST BILL TOTAL_BILL;
...
...
/* Process autopayment */
PAP = PROCESSAUTOPAYMENT (TOTAL_BILL);
Financial Management Statements 7-35

Deprecated Statements
Deprecated Statements
The following statements have been replaced or fallen into disuse. Use the POST
CHARGEORCREDIT statement instead of the following statements where possible.

Post Service Charge Statement

Purpose
The POST SERVICE CHARGE Statement posts a service charge against an account associated
with a service plan. The account’s current balance should increase by the amount of the charge,
unless the DEFERBALANCE is set to “TRUE”.

Format
POST SERVICE CHARGE statements have this format:

POST SERVICE CHARGE <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Service Charge from the Rules Language Editor

menu bar.

The POST SERVICE CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
7-36 Rules Language Reference Guide

Deprecated Statements
Example
Post a service charge for energy usage.

/* Set Service Charge Attributes */
USAGE_SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;
USAGE_SERV_CHG.TRANSACTIONID = "310";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;
USAGE_SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE_SERV_CHG.AMOUNT = $ENERGY_CHARGE;
USAGE_SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";

USAGE_SERV_CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE_SERV_CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;
USAGE_SERV_CHG.JURISCODE = JURISCODE;
USAGE_SERV_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Usage Service Charge */
POST SERVICE CHARGE USAGE_SERV_CHG;

Notes
In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

USAGE_SERV_CHG.ZONE = “ZONE_1”

/* Post Usage Service Charge */
POST SERVICE CHARGE USAGE_SERV_CHG;

This would post the value assigned to the USAGE_SERV_CHG.ZONE identifier (“ZONE_1”)
to the ZONE column in the Transaction Table.
Financial Management Statements 7-37

Deprecated Statements
Post Deferred Service Charge Statement

Purpose
The POST DEFERRED SERVICE CHARGE Statement posts a deferred service charge against
an account associated with a service plan. The account’s current balance will not change.

Format
POST DEFERRED SERVICE CHARGE statements have this format:

POST DEFERRED SERVICE CHARGE <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Deferred Service Charge from the Rules Language

Editor menu bar.

The POST DEFERRED SERVICE CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
7-38 Rules Language Reference Guide

Deprecated Statements
Example
Post a deferred service charge for energy usage.

/* Set Deferred Service Charge Attributes */
USAGE_SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;
USAGE_SERV_CHG.TRANSACTIONID = "310";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;
USAGE_SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE_SERV_CHG.AMOUNT = $ENERGY_CHARGE;
USAGE_SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";

USAGE_SERV_CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE_SERV_CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;
USAGE_SERV_CHG.JURISCODE = JURISCODE;
USAGE_SERV_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Usage Service Charge */
POST DEFERRED SERVICE CHARGE USAGE_SERV_CHG;

Notes
In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

USAGE_SERV_CHG.ZONE = “ZONE_1”

/* Post Usage Service Charge */
POST DEFERRED SERVICE CHARGE USAGE_SERV_CHG;

This would post the value assigned to the USAGE_SERV_CHG.ZONE identifier (“ZONE_1”)
to the ZONE column in the Transaction Table.
Financial Management Statements 7-39

Deprecated Statements
Post Budget Service Charge Statement

Purpose
The POST BUDGET SERVICE CHARGE Statement posts a service charge against an account
associated with a service plan and a budget plan. The account's current balance will not change;
however, the budget plan variance will increase by the amount of the charge.

Format
POST BUDGET SERVICE CHARGE statements have this format:

POST BUDGET SERVICE CHARGE <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Budget Service Charge from the Rules Language

Editor menu bar.

The POST BUDGET SERVICE CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
7-40 Rules Language Reference Guide

Deprecated Statements
Example
Post a budget service charge for energy usage.

/* Set Service Plan Attributes */
SERV_PLAN.STARTDATE = "01/01/1998";
SERV_PLAN.SERVICETYPECODE = "ELECTRIC";

/* Set Budget Plan Attributes */
BUDGET_PLAN.STARTDATE = "01/01/1998";
BUDGET_PLAN.BUDGETTYPECODE = "BUDGETELECTRIC";
BUDGET_PLAN.SERVICEPLAN = "SERV_PLAN";

/* Set Budget Service Charge Attributes */
USAGE_SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;
USAGE_SERV_CHG.TRANSACTIONID = "1105";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;
USAGE_SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";
USAGE_SERV_CHG.AMOUNT = $ENERGY_CHARGE;
USAGE_SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";
USAGE_SERV_CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE_SERV_CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;
USAGE_SERV_CHG.JURISCODE = JURISCODE;
USAGE_SERV_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

USAGE_SERV_CHG.SERVICEPLAN = "SERV_PLAN";
USAGE_SERV_CHG.BUDGETPLAN = "BUDGET_PLAN";

/* Post Usage Budget Service Charge */
POST BUDGET SERVICE CHARGE USAGE_SERV_CHG;

Notes
In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

USAGE_SERV_CHG.ZONE = “ZONE_1”

/* Post Usage Service Charge */
POST BUDGET SERVICE CHARGE USAGE_SERV_CHG;

This would post the value assigned to the USAGE_SERV_CHG.ZONE identifier (“ZONE_1”)
to the ZONE column in the Transaction Table.
Financial Management Statements 7-41

Deprecated Statements
Post Budget Bill Charge Statement

Purpose
The POST BUDGET BILL CHARGE Statement posts a budget bill charge against an account
associated with a budget plan. The account's current balance should increase by the amount of the
charge, and the budget plan variance should decrease by the amount of the charge.

Format
POST BUDGET BILL CHARGE statements have this format:

POST BUDGET BILL CHARGE <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Budget Bill Charge from the Rules Language Editor

menu bar.

The POST BUDGET BILL CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
7-42 Rules Language Reference Guide

Deprecated Statements
Example
Post a budget bill charge for energy usage.

/* Set Service Plan Attributes */
SERV_PLAN.STARTDATE = "01/01/1998";
SERV_PLAN.SERVICETYPECODE = "ELECTRIC";

/* Set Budget Plan Attributes */
BUDGET_PLAN.STARTDATE = "01/01/1998";
BUDGET_PLAN.BUDGETTYPECODE = "BUDGETELECTRIC";
BUDGET_PLAN.SERVICEPLAN = "SERV_PLAN";

/* Set Budget Bill Attributes */
USAGE_BUDGET_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;
USAGE_BUDGET_CHG.TRANSACTIONID = "1100";
USAGE_BUDGET_CHG.REVENUEMONTH = BILLMONTH;
USAGE_BUDGET_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";
USAGE_BUDGET_CHG.AMOUNT = $ENERGY_CHARGE;
USAGE_BUDGET_CHG.BILLEDDATE = "07/15/2000";
USAGE_BUDGET_CHG.DUEDATE = "08/15/2000";
USAGE_BUDGET_CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE_BUDGET_CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_BUDGET_CHG.OPCOCODE = OPCOCODE;
USAGE_BUDGET_CHG.JURISCODE = JURISCODE;
USAGE_BUDGET_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

USAGE_BUDGET_CHG.SERVICEPLAN = "SERV_PLAN";
USAGE_BUDGET_CHG.BUDGETPLAN = "BUDGET_PLAN";

/* Post Budget Bill Usage Charge */
POST BUDGET BILL CHARGE USAGE_BUDGET_CHG;

Notes
In the above example, several of the USAGE_BUDGET_CHG attributes are ‘hard-coded’ into
the rate schedule. In actual practice, this data would probably come directly from records in the
Oracle Utilities Data Repository, or through list queries. Also, the above example includes values
for all the optional USAGE_BUDGET_CHG attributes. These are included to illustrate how
those attributes might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

USAGE_BUDGET_CHG.ZONE = “ZONE_1”

/* Post Budget Bill Usage Charge */
POST BUDGET BILL CHARGE USAGE_BUDGET_CHG;

This would post the value assigned to the USAGE_BUDGET_CHG.ZONE identifier
(“ZONE_1”) to the ZONE column in the Transaction Table.
Financial Management Statements 7-43

Deprecated Statements
Post Budget Bill Trueup Statement

Purpose
The POST BUDGET BILL TRUEUP Statement posts a budget bill true-up charge or credit
against an account associated with a budget plan. The account's current balance should increase (if
a charge) or decrease (if a credit) by the amount of the transaction. The budget plan variance
should decrease (if a charge) or increase (if a credit) by the amount of the transaction.

Format
POST BUDGET BILL TRUEUP statements have this format:

POST BUDGET SERVICE CHARGE <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Budget Bill Trueup from the Rules Language Editor

menu bar.

The POST BUDGET BILL TRUEUP Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
7-44 Rules Language Reference Guide

Deprecated Statements
Example
Post a budget bill true-up charge based on energy usage.

/* Set Service Plan Attributes */
SERV_PLAN.STARTDATE = "01/01/1998";
SERV_PLAN.SERVICETYPECODE = "ELECTRIC";

/* Set Budget Plan Attributes */
BUDGET_PLAN.STARTDATE = "01/01/1998";
BUDGET_PLAN.BUDGETTYPECODE = "BUDGETELECTRIC";
BUDGET_PLAN.SERVICEPLAN = "SERV_PLAN";

/* Set Budget Bill Trueup Attributes */
BUDGET_TRUEUP_USAGE_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;
BUDGET_TRUEUP_USAGE_CHG.TRANSACTIONID = "1130";
BUDGET_TRUEUP_USAGE_CHG.REVENUEMONTH = BILLMONTH;
BUDGET_TRUEUP_USAGE_CHG.NOTE = "Budget Bill Trueup - Electric Energy
Charge";
BUDGET_TRUEUP_USAGE_CHG.CHARGEORCREDIT = “CH”
BUDGET_TRUEUP_USAGE_CHG.AMOUNT = $ENERGY_CHARGE;
BUDGET_TRUEUP_USAGE_CHG.BILLEDDATE = "07/15/2000";
BUDGET_TRUEUP_USAGE_CHG.DUEDATE = "08/15/2000";
BUDGET_TRUEUP_USAGE_CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
BUDGET_TRUEUP_USAGE_CHG.CHARGETYPEID = "ESCO ENERGY";
BUDGET_TRUEUP_USAGE_CHG.OPCOCODE = OPCOCODE;
BUDGET_TRUEUP_USAGE_CHG.JURISCODE = JURISCODE;
BUDGET_TRUEUP_USAGE_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;
BUDGET_TRUEUP_USAGE_CHG.SERVICEPLAN = "SERV_PLAN";
BUDGET_TRUEUP_USAGE_CHG.BUDGETPLAN = "BUDGET_PLAN";

/* Post Budget Bill Trueup Usage Charge */
POST BUDGET BILL TRUEUP BUDGET_TRUEUP_USAGE_CHG;

Notes
In the above example, several of the BUDGET_TRUEUP_USAGE_CHG attributes are ‘hard-
coded’ into the rate schedule. In actual practice, this data would probably come directly from
records in the Oracle Utilities Data Repository, or through list queries. Also, the above example
includes values for all the optional BUDGET_TRUEUP_USAGE_CHG attributes. These are
included to illustrate how those attributes might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

BUDGET_TRUEUP_USAGE_CHG.ZONE = “ZONE_1”
/* Post Budget Bill Trueup Usage Charge */
POST BUDGET BILL TRUEUP BUDGET_TRUEUP_USAGE_CHG;

This would post the value assigned to the BUDGET_TRUEUP_USAGE_CHG.ZONE identifier
(“ZONE_1”) to the ZONE column in the Transaction Table.
Financial Management Statements 7-45

Deprecated Statements
Post Installment Charge Statement

Purpose
The POST INSTALLMENT CHARGE Statement posts an installment charge against an
account. The account's current balance should increase by the amount of the charge, unless the
DEFERBALANCE is set to “TRUE”.

Format
POST INSTALLMENT CHARGE statements have this format:

POST INSTALLMENT CHARGE <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-›Financials-›Post Installment Charge from the Rules Language Editor

menu bar.

The POST INSTALLMENT CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
7-46 Rules Language Reference Guide

Deprecated Statements
Example
Post an installment charge.

/* Set Installment Charge Attributes */
BILL_INST_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;
BILL_INST_CHG.TRANSACTIONID = "1510";
BILL_INST_CHG.REVENUEMONTH = BILLMONTH;
BILL_INST_CHG.NOTE = "Bill Installment";

BILL_INST_CHG.AMOUNT = $INSTALL_CHG;
BILL_INST_CHG.BILLEDDATE = "07/15/2000";
BILL_INST_CHG.DUEDATE = "08/15/2000";

BILL_INST_CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
BILL_INST_CHG.CHARGETYPEID = "ESCO ENERGY";
BILL_INST_CHG.OPCOCODE = OPCOCODE;
BILL_INST_CHG.JURISCODE = JURISCODE;
BILL_INST_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Installment Charge */
POST INSTALLMENT CHARGE BILL_INST_CHG;

Notes
In the above example, several of the BILL_INST_CHG attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional BILL_INST_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

BILL_INST_CHG.ZONE = “ZONE_1”

/* Post Installment Charge */
POST INSTALLMENT CHARGE BILL_INST_CHG;

This would post the value assigned to the BILL_INST_CHG.ZONE identifier (“ZONE_1”) to
the ZONE column in the Transaction Table.
Financial Management Statements 7-47

Deprecated Statements
7-48 Rules Language Reference Guide

Chapter 8
Workflow Management Statements

This chapter provides detailed explanations of the Workflow Management statements available in
the Oracle Utilities Rules Language. These statements are used to work with processes and events
using the workflow management functions of Oracle Utilities Billing Component.

Workflow Management Statements
• Process Start Statement

• Process Suspend Statement

• Process Resume Statement

• Process Terminate Statement

• Process Event Statement
Workflow Management Statements 8-1

Using the Workflow Management Statements
Using the Workflow Management Statements
The Workflow Management statements are used with processes in run via the workflow
management functionality of Oracle Utilities Billing Component. Each statement takes as a single
argument an identifier. The identifier is a stem that should contain several tail attributes, as
described below.

Example:

COLLECT_PROC.PROCESSNAME = "Collections";
COLLECT_PROC.OPCOCODE = "AGL";
COLLECT_PROC.ACCOUNTID = ACCOUNT.ID;

PROCESS START COLLECT_PROC;

Attribute Description

UID The process instance UID. Required input for the Process
Suspend, Process Resume, and Process Terminate statements, and
is the output of the Process Start Statement.

NOTE A process instance note. Required input for the Process Terminate
Statement; optional for all others.

UIDACCOUNT Optional account UID, used as input for the Process Start or
Process Event statements. If an account is to be associated with
the process, either this or the ACCOUNTID (below) must be
provided.

ACCOUNTID Optional account ID, used as for input for the Process Start or
Process Event statements. If an account is to be associated with
the process, either this or the UIDACCOUNT (above) must be
provided.

PROCESSNAME Name of the process model to be started by the Process Start
Statement. Required input for the Process Start Statement.

OPCOCODE Optional operating company code of the process model to be
started by the Process Start Statement.

JURISCODE Optional jurisdiction code of the process model to be started by
the Process Start Statement.

EVENTCODE Required event type code for the Process Event Statement.

CONTEXT Optional context for the Process Start or Process Event
statements. Should be set to an identifier that is either an XML
DOM node or XML DOM document.
8-2 Rules Language Reference Guide

Using the Workflow Management Statements
Process Start Statement

Purpose
The PROCESS START Statement is used to start a new process instance.

Format
PROCESS START statements have this format:

PROCESS START <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.

To Create
1. Select Statements-›Workflow-›Process Start from the Rules Language Editor menu bar.

The PROCESS START Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Workflow Management Statements 8-3

Using the Workflow Management Statements
Example
Start a process instance of the COLLECT_PROC process.

/* Set the process context */
PROC_CONTEXT = DOMDOCLOADFILE (“COLLECT_CONTEXT.XMl”)

/* Set Process Instance Attributes */
COLLECT_PROC.ACCOUNTID = ACCOUNT.ID;
COLLECT_PROC.PROCESSNAME = "Collections";
COLLECT_PROC.OPCOCODE = "AGL";
COLLECT_PROC.JURISCODE = "GA";
COLLECT_PROC.CONTEXT = PROC_CONTEXT;

/* Start the process */
PROCESS START COLLECT_PROC;

Notes
In the preceding example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data could also come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for
several of the optional COLLECT_PROC attributes. These are included to illustrate how those
attributes might be supplied in a rate schedule.
8-4 Rules Language Reference Guide

Using the Workflow Management Statements
Process Suspend Statement

Purpose
The PROCESS SUSPEND Statement is used to suspend an existing running process instance.

Format
PROCESS SUSPEND statements have this format:

PROCESS SUSPEND <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.

To Create
1. Select Statements-›Workflow-›Process Suspend from the Rules Language Editor menu

bar.

The PROCESS SUSPEND Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Workflow Management Statements 8-5

Using the Workflow Management Statements
Example
Suspend a process instance of the COLLECT_PROC process.

/* Set Process Instance Attributes */
COLLECT_PROC.UID = “123”;
COLLECT_PROC.NOTE = "Verify customer status";

/* Suspend the process */
PROCESS SUSPEND COLLECT_PROC;

Notes
In the above example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Utilities
Data Repository, or through list queries.
8-6 Rules Language Reference Guide

Using the Workflow Management Statements
Process Resume Statement

Purpose
The PROCESS RESUME Statement is used to resume an existing suspended process instance.

Format
PROCESS RESUME statements have this format:

PROCESS RESUME <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.

To Create
1. Select Statements-›Workflow-›Process Resume from the Rules Language Editor menu

bar.

The PROCESS RESUME Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Workflow Management Statements 8-7

Using the Workflow Management Statements
Example
Resume a suspended process instance of the COLLECT_PROC process.

/* Set Process Instance Attributes */
COLLECT_PROC.UID = “123”;
COLLECT_PROC.NOTE = "Verify customer status";

/* Resume the process */
PROCESS RESUME COLLECT_PROC;

Notes
In the above example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Utilities
Data Repository, or through list queries.
8-8 Rules Language Reference Guide

Using the Workflow Management Statements
Process Terminate Statement

Purpose
The PROCESS TERMINATE Statement is used to terminate an existing process instance.

Format
PROCESS TERMINATE statements have this format:

PROCESS TERMINATE <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.

To Create
1. Select Statements-›Workflow-›Process Terminate from the Rules Language Editor menu

bar.

The PROCESS TERMINATE Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Workflow Management Statements 8-9

Using the Workflow Management Statements
Example
Terminate a process instance of the COLLECT_PROC process.

/* Set Process Instance Attributes */
COLLECT_PROC.UID = “123”;
COLLECT_PROC.NOTE = "Verify customer status";

/* Terminate the process */
PROCESS TERMINATE COLLECT_PROC;

Notes
In the above example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Utilities
Data Repository, or through list queries.
8-10 Rules Language Reference Guide

Using the Workflow Management Statements
Process Event Statement

Purpose
The PROCESS EVENT Statement posts an activity event.

Format
PROCESS EVENT statements have this format:

PROCESS EVENT <stem_identifier>;

Where:

• <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.

To Create
1. Select Statements-›Workflow-›Process Event from the Rules Language Editor menu bar.

The PROCESS EVENT Statement template appears.

2. Enter the appropriate stem identifier, or click the right mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.
Workflow Management Statements 8-11

Using the Workflow Management Statements
Example
Post an activity event in the COLLECT_PROC process.

/* Set Event Attributes */
COLLECT_PROC.UID = “123”;
COLLECT_PROC.NOTE = "Verify customer status";

/* Post the Event */
PROCESS EVENT COLLECT_PROC;

Notes
In the above example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Utilities
Data Repository, or through list queries.
8-12 Rules Language Reference Guide

Chapter 9
Interval Data Function Descriptions

This chapter describes all of the interval data functions available with the Oracle Utilities Rules
Language, including:

• Interval Data Functions

• Enhanced Interval Data Functions

• INTDDELETEEX Function

• INTDGETATTREXALL Function

• INTDLOADEXACTUAL Function

• INTDLOADEXCUT Function

• INTDLOADEXDATES Function

• INTDLOADEX Function

• INTDLOADEXLIST Function

• INTDLOADEXLISTDATES Function

• INTDLOADEXRELATEDCHANNEL Function

• INTDSAVEEX Function

• INTDSAVEEXP Function

• INTDSETATTREX Function

• INTDSETATTREXALL Function

• INTDVALUEEX Function

• Enhanced Interval Data Functional Differences

• Interval Data Functions and Enhanced Interval Data Handles
Interval Data Function Descriptions 9-1

Interval Data Functions
Interval Data Functions

INTDADDATTRIBUTE Function

Purpose
The INTDADDATTRIBUTE Function adds a user-defined attribute to an interval data handle
and returns an integer; 0 if successful, not 0 if an error.

This function can be used to add attributes related to EDI transactions. The maximum number of
user-defined attributes is 20. These attributes are only visible if the handle is exported as an LSE
file, in which case the attributes are listed in records with sort codes 00000030 through 00000039.

Format
<identifier> = INTDADDATTRIBUTE(<interval_data_reference>,
<attribute>, <identifier|expression>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle. It may be a

‘recorder, channel’ constant or an interval data handle.

• <attribute> is a user-defined attribute.

• <identifier|expression> is either an identifier, or an expression that sets the values of the
attribute. If an identifier, it must have been assigned earlier in the rate form.

Example
Add the “EDI_TRANSACTION” attribute with a value of “997”to the “HNDL_1’ interval data handle.

HNDL_1 = INTDLOADUOM(‘01’);
EDI_ID = “997”
HNDL_1_ADD_EDI = INTDADDATTRIBUTE(HNDL_1, “EDI_TRANSACTION”, EDI_ID);
9-2 Rules Language Reference Guide

Interval Data Functions
INTDADDVMSG Function

Purpose
The INTDADDVMSG Function adds a validation message to an interval data handle. Up to 10
messages can be added to the handle using this function. If successful, the function returns the
index of the array where the message has been stored. If the array already has ten messages, the
function fails, and returns an integer (99).

Format
<identifier> = INTDADDVMSG(<interval_data_reference>,
<validation_message_text>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle. It may be a

‘recorder, channel’ constant or an interval data handle.

• <validation_message_text> is a string (or an identifier that contains a string) that is text for
the validation message to be added to the handle.

Examples
Add the “Missing (Status Code 9) values found” message to “HNDL_1’.

HNDL_1 = INTDLOADUOM(‘01’);
HNDL_1_ADD_VAL_MSG = INTDADDVMSG(HNDL_1,“Missing (Status Code 9)
values found”);

or

HNDL_1 = INTDLOADUOM(‘01’);
VAL_MSG = “Missing (Status Code 9) values found”;
HNDL_1_ADD_VAL_MSG = INTDADDVMSG(HNDL_1, VAL_MSG);
Interval Data Function Descriptions 9-3

Interval Data Functions
INTDBLOCKOP Function

Purpose
The INTDBLOCKOP Function enables you to perform operations on one interval data
reference (add, subtract, etc.) using the values in another. The intervals in the first handle are
operated on by the corresponding (same date and time) intervals in the second handle. If the first
reference is zero it is an error. If the second reference is zero, the INTDSCALAROP function is
called using the same operation and a value of 0.0. If the second handle contains intervals beyond
the stop time of the first handle, those intervals are appended to the end of the resulting handle.
Returns an interval data reference.

Format
<interval_data_reference> = INTDBLOCKOP(<interval_data_reference>,
<operation>, <interval_data_reference>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle. It may be a

‘recorder, channel’ constant or an interval data handle.

• <operation> is one of the following:

• ATAN2: Performs the ATAN2 Function using values in the first handle and
corresponding values in the second handle.

• DIVQUOT: Performs the DIVQUOT Function using values in the first handle and
corresponding values in the second handle.

• DIVREM: Performs the DIVREM Function using values in the first handle and
corresponding values in the second handle.

• FMOD: Performs the FMOD Function using values in the first handle and
corresponding values in the second handle.

• POW: Performs the POW Function using values in the first handle and corresponding
values in the second handle.

• TOTAL: Adds the value in the first handle to the corresponding value in the second
handle.

• ADD: Adds the value in the first handle to the corresponding value in the second handle.

• SUBTRACT: Subtracts the value in the second handle from the value in the first.

• MULTIPLY: Multiplies the value in the first handle by the value in the second.

• DIVIDE_BY: Divides the value in the first handle by the corresponding value in the
second.

• MAXIMUM: Finds the maximum of the two corresponding interval values.

• MINIMUM: Finds the minimum of the two corresponding interval values.

• MINNZ: Finds the nonzero minimum of the two corresponding interval values.

• KVA: Calculates KVA; one interval data reference must have a UOM of KW, the other
of KVAR.

• IKVA: Calculates IKVA (inverse KVA); the first handle must have a UOM of KVA and
the second a UOM of either KVAR or KW. The resulting handle has the appropriate
UOM.

• KVAH: Calculates KVAH; one interval data reference must have a UOM of KW, the
other of KVAR.
9-4 Rules Language Reference Guide

Interval Data Functions
• IKVAH: Calculates IKVAH (inverse KVAH); the first handle must have a UOM of
KVAH and the second a UOM of either RKVA or KW. The resulting handle has the
appropriate UOM.

• COMPVARHFROMKWKQ: Performs the COMPKVARHFROMKQKW
Function using values in the first handle and corresponding values in the second handle.

• POWERFACTOR: Performs the POWERFACTOR Function using values in the
first handle and corresponding values in the second handle.

Example
Subtract the interval data values in a handle that measures energy use from those in a handle that measures energy
generation.

KWH_HNDL = INTDLOADDATES (‘ENERGY,1’, BILL_START, BILL_STOP);
GEN_HNDL = INTDLOADDATES (‘GEN,1”, BILL_START, BILL_STOP);
BOUGHT_HNDL = INTDBLOCKOP(GEN_HNDL, “SUBTRACT”, KWH_HNDL);

A more direct way to perform some of the block operations (specifically add, subtract, multiply,
and divide) is to use an arithmetic expression on the right side of the equal sign in an
ASSIGNMENT Statement. For example:

BOUGHT_HNDL = GEN_HNDL - KWH_HNDL;
Interval Data Function Descriptions 9-5

Interval Data Functions
INTDBLOCKOPNA Function

Purpose
The INTDBLOCKOPNA Function is similar to the INTDBLOCKOP Function, but does not
require the intervals be aligned (i.e. have the same date and time).

This function enables you to perform operations on one interval data reference (add, subtract,
etc.) using the values in another. The intervals in the first handle are operated on by the
corresponding (same index, not time-aligned) intervals in the second handle. For example, the first
interval in the first handle is operated on by the first interval in the second handle, the second
interval in the first handle is operated on by the second interval in the second handle, etc.

Format
<interval_data_reference> = INTDBLOCKOPNA(<interval_data_reference>,
<operation>, <interval_data_reference>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle. It may be a

‘recorder, channel’ constant or an interval data handle.

• <operation> is one of the following:

• ATAN2: Performs the ATAN2 Function using values in the first handle and
corresponding values in the second handle.

• DIVQUOT: Performs the DIVQUOT Function using values in the first handle and
corresponding values in the second handle.

• DIVREM: Performs the DIVREM Function using values in the first handle and
corresponding values in the second handle.

• FMOD: Performs the FMOD Function using values in the first handle and
corresponding values in the second handle.

• POW: Performs the POW Function using values in the first handle and corresponding
values in the second handle.

• TOTAL: Adds the value in the first handle to the corresponding value in the second
handle.

• ADD: Adds the value in the first handle to the corresponding value in the second handle.

• SUBTRACT: Subtracts the value in the second handle from the value in the first.

• MULTIPLY: Multiplies the value in the first handle by the value in the second.

• DIVIDE_BY: Divides the value in the first handle by the corresponding value in the
second.

• MAXIMUM: Finds the maximum of the two corresponding interval values.

• MINIMUM: Finds the minimum of the two corresponding interval values.

• MINNZ: Finds the nonzero minimum of the two corresponding interval values.

• KVA: Calculates KVA; one interval data reference must have a UOM of KW, the other
of RKVA.

• IKVA: Calculates IKVA (inverse KVA); the first handle must have a UOM of KVA and
the second a UOM of either RKVA or KW. The resulting handle has the appropriate
UOM.

• KVAH: Calculates KVAH; one interval data reference must have a UOM of KW, the
other of RKVA.
9-6 Rules Language Reference Guide

Interval Data Functions
• IKVAH: Calculates IKVAH (inverse KVAH); the first handle must have a UOM of
KVAH and the second a UOM of either RKVA or KW. The resulting handle has the
appropriate UOM.

• COMPVARHFROMKWKQ: Performs the COMPKVARHFROMKQKW
Function using values in the first handle and corresponding values in the second handle.

• POWERFACTOR: Performs the POWERFACTOR Function using values in the
first handle and corresponding values in the second handle.

Example
Add the interval data values from a baseline handle (channel ‘BASELINE,1’) to the values in a handle that
measures energy for the current bill period.

BASE_HNDL = INTDLOAD (‘BASELINE,1’);
KWH_HNDL = INTDLOADDATES (KWH, BILL_START, BILL_STOP)
TOTAL_HNDL = INTDBLOCKOPNA (BASE_HNDL “ADD,” KWH_HNDL);
Interval Data Function Descriptions 9-7

Interval Data Functions
INTDCLOSE Function

Purpose
The INTDCLOSE Function closes an Interval Data Database that was previously opened using
the INTDOPEN Function on page 9-51. Returns 0.

Format
<identifier> = INTDCLOSE(<interval_data_source_index>);

Where
• <interval_data_source_index> is an index from a previously loaded interval data file. The

parameter must be the result of an INTDOPEN function call.

Example
Close a previously opened interval data file (INTD_FILE).

INTD_FILE = INTDOPEN(“C:\LODESTAR\USER\MYDATA.LSE”);
INTD_COUNT = INTDRECCOUNT(INTD_FILE);
INTD_FILE = INTDCLOSE(INTD_FILE);
9-8 Rules Language Reference Guide

Interval Data Functions
INTDCOUNT Function

Purpose
The INTDCOUNT Function returns the count of intervals that are not missing, are missing, or
the combined number. Also counts the number of hours or days in the handle. This function
enables you to get a count of interval data values in a handle (or mask) that you’ve previously
loaded or calculated in the rate form.

Format
<identifier> = INTDCOUNT(<interval_data_reference>[, <type>]);

Where
• <interval_data_reference> is a handle that refers to a loaded interval data handle, or a

‘recorder,channel’ constant.

• <type> (Optional) is one of the following:

• INCLUDE: Counts the number of intervals with any status code other than ‘9’
(missing).

• EXCLUDE: Counts the number of intervals with missing values (status code '9').

• NON_ZERO: Counts the number of intervals with a nonzero value.

• ALL: Counts all intervals, regardless of status code or value. This is the default.

• HOURS: Counts the number of hours in which in the interval data handle (or mask) is
not 0. To do this, the program counts the number of nonzero intervals, then divides that
result by the IPH (intervals-per-hour) to get the number of hours. The number of hours
is incremented by 1 if the remainder is 2 or more. Note: This parameter should not be
used with handles of 1 day intervals.

• DAYS: Same as HOURS, except the number of hours is divided by 24 to get the number
of days. The number of days is incremented if the remainder is 12 or more. Note: This
parameter should not be used with handles of 1 day intervals.

Example
Count the number of missing intervals in the handle KW_HNDL. If the result is greater than 10, include a
warning message, “TOO MANY MISSING INTERVALS”, on the bill report.

NUM_MISS = INTDCOUNT(KW_HNDL, “EXCLUDE”);
IF NUM_MISS > 10 THEN

WARN “TOO MANY MISSING INTERVALS”;
END IF;
Interval Data Function Descriptions 9-9

Interval Data Functions
INTDCOUNTSTATUSCODE Function

Purpose
The INTDCOUNTSTATUSCODE Function enables you to get a count of interval data values in
a handle (or mask) that you’ve previously loaded or calculated in the rate form based on a
comparison of the intervals’ status codes to a supplied status code.

Format
<identifier> = INTDCOUNTSTATUSCODE(<interval_data_reference>,
<comparison>, <status_code>);

Where
• <interval_data_reference> is a handle that refers to a loaded interval data handle, or a

‘recorder,channel’ constant.

• <comparison> is one of the following.

• “=” - Equal

• “<>” - Not equal

• “<“ - Less than

• “>” - Greater than

• “<=” - Less than or equal

• “>=” - Greater than or equal

• “IN” - IN the status code string

• “NOT IN” - NOT IN the status code string.

The comparison order is (from highest to lowest): (space) A B C...Z 0 1 2...8 9.

• <status_code> is an identifier or string constant that specifies a valid status code, or, for
“IN” and “NOT IN”, a string of status codes (no separator: “ABC” for codes A, B, and C).

Example
Count the number of intervals in the handle KW_HNDL with a status code of 1.

NUM_STS_CODE_1 = INTDCOUNTSTATUSCODE(KW_HNDL, “=”, “1”);
9-10 Rules Language Reference Guide

Interval Data Functions
INTDCREATEMASK Functions
An interval data mask is a handle whose values are all 0 or 1, as opposed to a data handle, which
can have any value. A 0 value means the interval is excluded from the handle; a 1 means it is
included. A mask can be used to remove values from a data handle, or it can be combined with
another mask to include or exclude additional intervals. A mask can be created by the functions
below, by an interval data function that operates on an existing mask, or by a divide operation that
creates a handle with all 0s and 1s.

Interval Data Mask Functions
Interval data mask functions include:

• INTDCREATEDAYMASK Function on page 9-12

• INTDCREATEFACTORMASK Function on page 9-13

• INTDCREATEMASK Function on page 9-15

• INTDCREATEOVERRIDEDAYMASK Function on page 9-16

• INTDCREATEOVERRIDEMASK Function on page 9-17

• INTDCREATESTATUSCODEMASK Function on page 9-18

• INTDCREATETOUPERIOD Function on page 9-19

These functions return a mask if:

1. The operation is one of "MASK", "REVERSE_MASK", "ZERO", "NON_ZERO" or
"MISSING", or

2. The input interval data reference is a mask and the operation is one of the above, plus
"VALUE" and "REVERSE_VALUE".

Otherwise, an interval data handle is returned.

For more information about interval data mask operations, see Interval Data Mask Operator
Rules on page 4-28 in the Oracle Utilities Rules Language User’s Guide and Computing Load Factor
in Masked Cuts on page 4-29 in the Oracle Utilities Rules Language User’s Guide.
Interval Data Function Descriptions 9-11

Interval Data Functions
INTDCREATEDAYMASK Function

Purpose
The INTDCREATEDAYMASK Function sets all values within each 24-hour period (midnight to
midnight) to either 1 or 0. It is the same as the INTDCREATEMASK Function on page 9-15,
except that all values in each day are set to the same value.

Note: These masks can be used in any interval data function or expression.

Format
<interval_data_reference> =
INTDCREATEDAYMASK(<interval_data_reference>, <operation>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <operation> is one of “ZERO”, “NON_ZERO”, or “MISSING” (default is “ZERO”).

ZERO: If there are any zero interval values in a day, all values in that day's mask are set to 1.
If there are no zero values in a day, all values in that day's mask are set to 0.

NON_ZERO: If any interval values in a day are nonzero, all values in that day's mask are set
to 1. If all values in a day are zero (0), all values in that day's mask are set to 0.

MISSING: If any interval status code in a day is equal to 9, all values in that day's mask are
set to 1. If no status code in a day are equal to 9, all values in that day's mask are set to 0.

Example
To create a mask of backup days, where a day is a backup day if at any time during the day the co-generation drops
to 0:

BACKUPMASK_HNDL = INTDCREATEDAYMASK(GEN_HNDL, “ZERO”);

If this is a representation of the values in the referenced handle in the example above:

Then this is a representation of the values in the mask that would be created:

GEN_HNDL 11 5 12 15 6 0 4 5 11 0 8 9

Day 1 Day 2 Day 3 Day 4...

BACKUPMASK_HNDL
0

0

0

1 1 1 0 0 0 1 1 1

Day 1 Day 2 Day 3 Day 4...
9-12 Rules Language Reference Guide

Interval Data Functions
INTDCREATEFACTORMASK Function

Purpose
The INTDCREATEFACTORMASK Function sets the interval values to the factor value and the
remaining values to 0 for all intervals in which a selected factor is applied.

This function creates an interval data handle that matches the referenced handle (same IPH,
UOM, and number of intervals). It reads the FACTORVALUE Table for the specified factor code
and determines the date ranges that have different factor values (there could be one date range
with only one value, or none if no factor value is in effect over the handle). Intervals in the new
handle that fall within these date ranges are set to the corresponding factor values.

Format
<interval_data_reference> =
INTDCREATEFACTORMASK(<interval_data_reference>,
<factor_code|factor_identifier>);

Where
• <interval_data_reference> is a handle that refers to a loaded interval data handle, or a

‘recorder,channel’ constant.

• <factor_code |factor_ identifier> is a string constant or identifier that specifies a factor. See
the ACCOUNTFACTOR function description for information about specifying factors.

Example
Create a mask of factor values and multiply it by the KWH handle:

TEMP_MASK_HNDL = INTDCREATEFACTORMASK(KWH_HNDL, “ENERGY_CHG”);

/* Multiply the Energy Charge factor times the KWH handle */
ENERGY_CHG_HNDL = TEMP_MASK_HNDL * KWH_HNDL;
Interval Data Function Descriptions 9-13

Interval Data Functions
INTDCREATEHANDLE Function

Purpose
The INTDCREATEHANDLE Function creates an interval data handle based on user-specified
parameters. The interval values of the handle are either “missing values” (status code '9'), or all
equal to a specified value and status code.

Once a handle has been created using this function, the handle can be manipulated via other
interval data functions, such as setting of attributes for the handle, such as Recorder ID, Channel
Number, etc. using the INTDSETATTRIBUTE Function.

Format
<identifier> = INTDCREATEHANDLE(<start>, <stop>, <SPI>, <DST>,
<VALUE>, <STATUS>);

Where
• <start> the start date and time for the handle. Can be either a datetime constant or an

identifier that resolves to a datetime.

• <stop> the start date and time for the handle. Can be either a datetime constant or an
identifier that resolves to a datetime.

• <SPI> is the Seconds-per-Interval value for the handle.

• <DST> is a string that is the DST Participant flag (“Y” or “N”) for the handle.

• <VALUE> is an integer that is interval value for each interval in the handle.

• <STATUS> is a string that is the Status Code to assign to each interval value in the handle.
To assign a blank status code, you must specify quote-space-quote (“ ”) for this parameter.

Examples
Create an empty interval data handle (values of 0) of hourly data for 5/1/2006, with a DST Participant flag of
“Y”.

EMPTY_HNDL = INTDCREATEHANDLE(‘05/01/2006 00:00:00’, ‘05/01/2006
23:59:59’, 3600, “Y”, “0”, “ ”);

Create an interval data handle of hourly data for 5/1/2006 with a DST Participant Flag of “Y” and interval
values equal to 5.

EMPTY_HNDL = INTDCREATEHANDLE(‘05/01/2006 00:00:00’, ‘05/01/2006
23:59:59’, 3600, “Y”, “5”, “ ”);

Create an empty interval data handle (values of 0) of hourly data for 5/3/2006, and set the Recorder ID for the
handle equal to “RECORDER_1.”

EMPTY_HNDL = INTDCREATEHANDLE(‘05/03/2006 00:00:00’, ‘05/03/2006
23:59:59’, 3600, “Y”, “0”, “ ”);

SET_RECORDER_ID = INTDSETATTRIBUTE (EMPTY_HNDL, RECORDER,
“RECORDER_1”);
9-14 Rules Language Reference Guide

Interval Data Functions
INTDCREATEMASK Function

Purpose
The INTDCREATEMASK Function creates an interval data handle that matches the referenced
handle (same IPH, UOM, and number of intervals). Its values are 0 or 1, depending on the zero or
nonzero value in the referenced handle. The new handle can be used as a “mask” handle, as
described under Interval Data Mask Operator Rules on page 4-28 in the Oracle Utilities Rules
Language User’s Guide. Returns an interval data reference.

Note: Masks created using this function can be used in any interval data
function or expression.

Format
<interval_data_reference> = INTDCREATEMASK(<interval_data_reference>,
<operation>);

Where
• <interval_data_reference> is a handle for a loaded interval data handle, or a

‘recorder,channel’ constant.

• <operation> is one of the following:

• ZERO: Sets the interval value to 1 if matching input value is 0; sets all other values to 0.
This is the default.

• NON_ZERO: Sets the interval value to 0 if matching input value is 0; sets all other
pulse values to 1.

• MISSING: Sets the interval value to one if matching input status code is 9, sets all other
interval values to zero. All status codes are set to ' ' (space).

Example
Create a mask for a handle where the interval value is 1 if the referenced handle value is 0:

MASK_HNDL = INTDCREATEMASK(KWH_HNDL, “ZERO”);

If this is a representation of the values in the referenced handle in the example above:

KWH_HNDL1020 15 17 0 4 10 0 9 ...

Then this is a representation of the values in the mask that would be created:

MASK_HNDL00 0 0 1 0 0 1 0 ...
Interval Data Function Descriptions 9-15

Interval Data Functions
INTDCREATEOVERRIDEDAYMASK Function

Purpose
The INTDCREATEOVERRIDEDAYMASK Function creates an interval data mask for
overrides expanded to a full day.

This is the same as the INTDCREATEOVERRIDEMASK Function on page 9-17, except
that each date “range” is expanded to start and end at midnight (or the day start). It reads the
ACCTOVERRIDEHIST Table or the ACCTNAMEOVERRIDEHIST Table for the current
account and specified override code, and determines the date ranges where the override code is
“On”. Intervals in the new handle that fall within these date ranges are set to the values specified
by the operation.

If the operation is “MASK” or “REVERSE_MASK”, the new handle will be used as a “mask”
handle, as described in the Interval Data Mask Operator Rules on page 4-28 in the Oracle
Utilities Rules Language User’s Guide.

Format
<interval_data_reference> =
INTDCREATEOVERRIDEDAYMASK(<interval_data_reference>, <override_code>,
<operation>);

Where
• <interval_data_reference> is a handle that refers to a loaded interval data handle, or a

‘recorder,channel’ constant.

• <override_code> is a string constant that specifies a code in the OVERRIDE database table.
If the override is in the ACCTNAMEOVERRIDEHIST Table, this should be in the form of
“OVERRIDE,NAME.”

• <operation> is one of the following:

• MASK: Set values in a date range to 1, values not in a date range to 0.

• REVERSE_MASK: Set values not in a date range to 1, others to 0.

• VALUE: Set values in a date range to the same as the corresponding values in the
specified handle, others to 0.

• REVERSE_VALUE: Set values not in a date range same as in the specified handle, others
to 0.

• OVERRIDE_VALUE: Set values in a date range to the first VAL value in the Override
Table, others to 0. This is the default.

Example
Create a mask of backup days, where a day is a backup day if at any time during the day the co-generation drops to
0.

BACKUP_HNDL = INTDCREATEOVERRIDEDAYMASK(KWH_HNDL,“BACKUP”, “VALUE”);
9-16 Rules Language Reference Guide

Interval Data Functions
INTDCREATEOVERRIDEMASK Function

Purpose
The INTDCREATEOVERRIDEMASK Function creates an interval data mask for overrides
(special events).

This function creates an interval data handle that matches the referenced handle (same IPH,
UOM, and number of intervals). It reads the ACCTOVERRIDEHIST or the
ACCTNAMEOVERRIDEHIST Table for the current account and specified override code, and
determines the date ranges where the override code is “On”. Intervals in the new handle that fall
within these date ranges are set to the values specified by the operation.

If the operation is “MASK” or “REVERSE_MASK”, the new handle will be used as a “mask”
handle, as described in the Interval Data Mask Operator Rules on page 4-28 in the Oracle
Utilities Rules Language User’s Guide.

Format
<interval_data_reference> =
INTDCREATEOVERRIDEMASK(<interval_data_reference>, <override_code>,
<operation>);

Where
• <interval_data_reference> is a handle that refers to a loaded interval data handle, or a

‘recorder,channel’ constant.

• <override_code> is a string constant that specifies a code in the OVERRIDE database table.
If the override is in the ACCTNAMEOVERRIDEHIST Table, this should be in the form of
“OVERRIDE,NAME.”

• <operation> is one of the following:

• MASK: Set values in a date range to 1, values not in a date range to 0.

• REVERSE_MASK: Set values not in a date range to 1, others to 0.

• VALUE: Set values in a date range to the same as the corresponding values in the
specified handle, others to 0.

• REVERSE_VALUE: Set values not in a date range same as in the specified handle, others
to 0.

• OVERRIDE_VALUE: Set values in a date range to the first VAL value in the Override
Table, others to 0. This is the default.

Example
Create a handle of all curtailable override values:

OVR_MASK_HNDL = INTDCREATEOVERRIDEMASK(KWH_HNDL, “CURTIAL”,
“OVERRIDE_VALUE”);
Interval Data Function Descriptions 9-17

Interval Data Functions
INTDCREATESTATUSCODEMASK Function

Purpose
The INTDCREATESTATUSCODEMASK Function creates an interval data handle of 1 and 0
(true and false) as the result of status code comparisons.

The function creates an interval data handle that matches the referenced handle (same IPH,
UOM, and number of intervals). The value of intervals in the new handle is determined by the
success of a comparison of the input intervals status code to a supplied status code, and by the
operation.

Format
<interval_data_reference> =
INTDCREATESTAUSCODEMASK(<interval_data_reference>, <comparison>,
<status_code>, <operation>, <result_status_code>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <comparison> is one of the following:

• “=” - Equal

• “<>” - Not equal

• “<” - Less than

• “>” - Greater than

• “<=” - Less than or equal

• “>=” - Greater than or equal

• “IN” - IN the status code string

• “NOT IN” - NOT IN the status code string.

The comparison order is (from highest to lowest): (space) A B C...Z 0 1 2...8 9.

• <status_code> is an identifier or string constant that specifies a valid status code, or, for
“IN” and “NOT IN”, a string of status codes (no separator: “ABC” for codes A, B, and C).

• <operation> is one of the following:

• MASK: Set true values to 1, false values to 0.

• REVERSE_MASK: Set false values to 1, others to 0.

• VALUE: Set true values same as in <interval_data_reference>, others to 0. This is the
default.

• REVERSE_VALUE: Set false values same as in <interval_data_reference>, others to 0.

• <result_status_code> is an optional identifier or string constant that specifies a valid status
code, or “@”. It is assigned as the status code of any value set to 0. If it is “@”, the original
status code is maintained. The default is a space.

Example
Create a mask that is 1 where status code is A or B, and 0 (zero) elsewhere.

HNDL3 = INTDCREATESTATUSCODEMASK (HNDL1, “IN,” “AB,” “MASK”);
9-18 Rules Language Reference Guide

Interval Data Functions
INTDCREATETOUPERIOD Function

Purpose
The INTDCREATETOUPERIOD Function creates a handle in which the interval values that
fall within a user-specified Time-Of-Use period are distinguished from those that fall outside the
period.

The interval values that are in the period may be set to 1 (and all others to 0) or to their actual
value (and all others to 0). You can also specify the reverse. The resulting “mask” handle can be
used in TOU computations.

To get average weekly values or other values for a Time-of-Use (TOU) period, the interval data
must be masked first so only values in the period are used.

This function creates an interval data handle that matches the referenced handle (same IPH,
UOM, and number of intervals). It uses the TOU schedule and period specified to determine the
time and day ranges when the period is in effect. Intervals in the new handle that fall within these
time and day ranges are set to the values specified by the operation.

Note: TOU schedules and periods are set up in Data Manager. See the Data
Manager User’s Guide for more information.

If the operation is “MASK” or “REVERSE_MASK”, the new handle will be used as a “mask”
handle, as described in the Interval Data Mask Operator Rules on page 4-28 in the Oracle
Utilities Rules Language User’s Guide.

Format
<interval_data_reference> =
INTDCREATETOUPERIOD(<interval_data_reference>, <operation>,
<schedule_name>, <period>[, <holiday_list_name>]);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <operation> is one of the following:

• MASK: Set values in a TOU period to 1, values not in a date range to 0.

• REVERSE_MASK: Set values not in a TOU period to 1, others to 0.

• VALUE: Set values in a TOU period to the same as the corresponding values in the
specified handle, others to 0.

• REVERSE_VALUE: Set values not in a TOU period to the same as in the specified handle,
others to 0.

• <schedule_name> is the name of a Time-of-Use schedule stored in the Data Repository.

• <period> is the name of a period in the selected Time-of-Use schedule.

• <holiday_list_name> Optional. A holiday list to be used with the TOU schedule. Default is
the default holiday schedule for the rate schedule's operating company, jurisdiction, which is
opcocode|juriscode (e.g., GECO|MA).
Interval Data Function Descriptions 9-19

Interval Data Functions
Examples
The following pairs of statements represent two ways of accomplishing the same result; for any operation supported by
both functions, you would supply an operation for the placeholder operation:

TOU_MASK_HNDL = INTDCREATETOUPERIOD(KWH_HNDL, "VALUE", TOU_SCHED,
TOU_PERIOD);
TOU_MASK_VALUE = INTDVALUE(TOU_MASK_HNDL, operation);

and

TOU_HNDL = INTDTOU(KWH_HNDL, TOU_SCHED);
TOU_VALUE = INTDTOUVALUE(TOU_HNDL, TOU_PERIOD, operation);

The second approach is faster if you want several different period values.
9-20 Rules Language Reference Guide

Interval Data Functions
INTDDELETE Function

Purpose
This INTDDELETE Function deletes one or more cuts from the database. It has two options.
You can delete a cut from the database with a specific recorder,channel and start date/time, or
delete all cuts from the database with the specified recorder and channel whose start date/time
and stop date/time fall within a specified date range.

Formats
To delete the cut from the database with this recorder,channel and start date/time, use.

<identifier> = INTDDELETE(<recorder>, <channel>, <cut_start>);

To delete all cuts from the database with this recorder and channel whose start date/time and stop
date/time fall within the date range, use the following. Cuts with a start or stop date outside the
range are not deleted.

<identifier> = INTDDELETE(<recorder>, <channel>, <start_time>,
<stop_time>);

Where
• <recorder> is the recorder.

• <channel> is the channel.

• <cut_start> is the start time and date of the cut.

• <start_time> is the start time of the range of cuts to delete.

• <stop_time> is the stop time of the range of cuts to delete.

Example
Delete all cuts from channel ‘1700,1’ that have a start date equal to the BILL_START date and a stop date
equal to the BILL_STOP date.

DELETED_CUTS = INTDDELETE(“1700”, “1”, BILL_START, BILL_STOP);
Interval Data Function Descriptions 9-21

Interval Data Functions
INTDDIPTEST Function

Purpose
This INTDDIPTEST Function examines the interval data for dips as defined by the two
parameters N and P. A dip is defined as any interval that exceeds a percent (P) or greater than the
rolling average of the N preceding intervals in the handle. Validation is NOT performed for all
interval values preceding the Nth interval in the handle. Negative values for intervals are always
treated as valid dips if they are in fact mathematical dips in the stream of data. This function
returns a stem component variable that is the name of the variable in the Assignment statement
(STEM in the example below). If no dips are found in the handle of interval data, the
DIPCOUNT value will be set to zero. The stem will be set to “” if the function was successful,
else it will be set to the integer zero. The component variables will include:

• STEM.DIPCOUNT contains an integer count of the number of dips found, up to 500.

• STEM.DIP1 contains the index of the first interval defined as a dip.

• STEM.DIP2 contains the index of the second interval defined as a dip.

• STEM.DIPn contains the index of the nth interval defined as a dip.

Format
<stem> = INTDDIPTEST(<interval_data_reference>, <N>, <P>,
<status_code>);

Where
• <interval_data_reference> is a reference to the loaded interval data handle to be tested

• <N> is number of preceding intervals used to calculate a rolling average

• <P> is the percent lower than the rolling average of the preceding intervals that any interval
must be to be considered a dip

• <status_code> Optional is the status code that all intervals must be above or better than to be
included in the validation. If not supplied, the status code will default to “9”.

Example
Identify the intervals in CUT_HNDL that are more than 40 percent lower than the rolling average of the
preceding 5 intervals, and that have a Status Code of “L” or better:

DIPTEST = INTDDIPTEST(CUT_HNDL, 5, 40, "L");

Result :

DIPTEST.DIPCOUNT = 2
DIPTEST.DIP1 = 45
DIPTEST.DIP2 = 285
9-22 Rules Language Reference Guide

Interval Data Functions
INTDEXPORT Function

Purpose
This INTDEXPORT Function outputs the data in the handle to a file. All file types are opened in
“append” mode, so they are always added to (or created if they do not exist). If no path is specified
in the file name, the file is created in the LODESTAR\USER directory. This function always
returns the integer 0. This function is primarily for testing; it should not be used in actual billing
rate schedules.

Format
<identifier> = INTDEXPORT(<interval_data_reference>, <file_name>
[, <export_flag>]);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <file_name> is a string constant that specifies a file name, optionally including its path. The
file name must include the file extension, and can be one of the following:

• LSE - exports the loaded interval data in Oracle Utilities Enhanced Input/Output
format.

• CSV - exports the loaded interval data in Oracle Utilities CSV Interval Data format.

• XML - exports the loaded interval data in Oracle Utilities XML Interval Data format.

• <export_flag> is a flag that specifies how to set the Validate_Record_Flag on the exported
handle. Can be one of the following:

• WV - Force Valid: Forces the Validate_Record_Flag on each exported handle to be set to
“N”.

• WI - Force Invalid: Forces the Validate_Record_Flag on each exported handle to be set
to “Y” (Default).

• WU - Use Flag: Uses the Internal_Validation flag and the Merge flag in the stored handle
to determine how to set the Validate_Record_Flag when exporting. If either the Merge
flag or the Internal_Validation flag are “Y”, then the Validate_Record_Flag in the
exported handle is set to “N”. If both are set to “N” then the Validate_Record_Flag is
set to “Y”.
Interval Data Function Descriptions 9-23

Interval Data Functions
Example
Export the handle to a file in the USER directory called MYFILE.LSE, and set the Validate_Record_Flag on
the handle to “N”:

MY_FILE = INTDEXPORT(KWH_HNDL,“MYFILE.LSE”, WV);

Notes
This function executes in all modes, and is not disabled if saves are disabled. Also, if used with
Oracle Utilities Billing Component, this function executes when the rate schedule is processed,
and even if the bill report is rejected.

To override this default behavior, you can use an IF THEN statement and the
LSRSENV.COMMIT Rate Schedule Environment identifier to make sure the rate schedule being
processed is in “commit” mode (that is, saves are enabled), as follows:

Export interval data if in “commit” mode.

//Verify “commit” mode
IF LSRSENV.COMMIT = 1

THEN
//Export data
MY_FILE = INTDEXPORT(KWH_HNDL,“MYFILE.LSE”, WV);

END IF;
9-24 Rules Language Reference Guide

Interval Data Functions
INTDGETERRORCODE Function

Purpose
The INTDGETERRORCODE Function returns the error code from the last interval data
function call. Returns 0 if there was no error.

Format
<identifier> = INTDGETERRORCODE();

Example
Get the error code for the last function performed on a previously opened interval data file (INTD_FILE).

INTD_FILE = INTDOPEN(“C:\LODESTAR\USER\MYDATA.LSE”);
INTD_COUNT = INTDRECCOUNT(INTD_FILE);
INTD_FILE = INTDGETERRORCODE();
Interval Data Function Descriptions 9-25

Interval Data Functions
INTDGETERRORMESSAGE Function

Purpose
The INTDGETERRORMESSAGE Function returns an error message from the last function to
use a specified interval data reference, or the last function that used the default Interval Data
Database, if there is no parameter. Returns “” if there was no error.

Format
<identifier> = INTDGETERRORMESSAGE([<interval_data_source_index>]);

Where
• <interval_data_source_index> (Optional) is an index from a previously loaded interval data

file. If present, this must be the result of an INTDOPEN function call.

Example
Get an error message for the last function performed on a previously opened interval data file (INTD_FILE).

INTD_FILE = INTDOPEN(“C:\LODESTAR\USER\MYDATA.LSE”);
INTD_COUNT = INTDRECCOUNT(INTD_FILE);
INTD_FILE = INTDGETERRORMESSAGE(INTD_FILE);
9-26 Rules Language Reference Guide

Interval Data Functions
INTDISEQUAL Function

Purpose
Compares two handles.

The INTDISEQUAL Function compares a first handle with a second handle. The two handles
will be considered equal if their start times, stop times, SPI, UOM, start and stop readings, pulse
and meter multiplier and offsets, and corresponding intervals (values and status codes) match.
Returns 0 if the two handles are not equal, nonzero if the two handles are equal.

Format
<identifier> = INTDISEQUAL(<interval_data_reference>,
<interval_data_reference>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

Example
Determine if two interval data handles (INT_HNDL_ONE and INT_HNDL_TWO) are equal.

INT_HNDL_ONE = INTDLOAD(KW);
INT_HNDL_TWO = INTDLOAD(‘1700,1’);
EQUAL_HNDLS = INTDISEQUAL(INT_HNDL_ONE, INT_HNDL_TWO);
Interval Data Function Descriptions 9-27

Interval Data Functions
INTDJOIN Function

Purpose
The INTDJOIN Function merges two interval data handles into one based on user-specified
criteria. The criteria by which the handles are merged can be selected from the Tools-›Options-
›Interval Data Merge Options tab. See Default Options on page 2-9 in the Data Manager User’s
Guide for more information.

Format
<identifier> = INTDJOIN(<interval_data_reference>,
<interval_data_reference>, [<interval_data_merge criterion>], [<CHECK/
NOCHECK INTD VALIDATION>]);

Where
• <interval_data_reference> is a reference to a previously loaded interval data handle.

Note: Both handles must have the same UOM and SPI in order to be joined using this
function.

• <interval_data_merge_criterion> (Optional) specifies how overlapping interval handles are
merged. Must be one of:

• MOST RECENT START: Use the interval from the handle with the later start time
(default). If the handles have the same start time, the interval values are averaged.

• BEST STATUS: use the interval from the handle with a better status code. If the
intervals have the same status code, the values are averaged.

• AVERAGE VALUE: use the time-weighted average of the two overlapped intervals.

• MAXIMUM VALUE: use the interval from the handle with a larger value.

• <CHECK/NOCHECK_INTD_VALIDATION> (Optional) is a flag (‘Y’ or ‘N’) that if set to
‘Y’ checks the handles’ Merge validation flag. The default is ‘Y’.

Example
Merge the HNDL_ONE and HNDL_TWO interval data handles.

HDNL_ONE = INTDLOAD (‘1700,1’)
HDNL_TWO = INTDLOAD (‘1700,2’)
HNDL_MERGE = INTDJOIN(HNDL_ONE, HNDL_TWO);
9-28 Rules Language Reference Guide

Interval Data Functions
INTDLOAD Functions
The following general information applies to all INTDLOADxxxx functions.

Summary values loaded with the interval data (stem.component)
Along with the interval data, the program automatically computes a group of summary values
about the handle. These are the result of adding, averaging, or taking the maximum of the interval
values in the handle. This data is stored in memory until the program determines that the rate
form no longer needs it, or until you explicitly release it using the INTDRELEASE Function.
In the rate form, you can apply statements to this group of values by identifying them with the
convention <stem.component>, where stem is the interval data handle that you assigned in the
INDTLOAD Statement (which automatically refers to the entire group), and component is the name
of a particular component in the group. For example, one of the computed summary values is
AVERAGE, which is the average of all non-missing values in the interval data record. If you used
the handle INT_MY_HNDL as shown above, you could print the average value in a bill report
using a Label Statement:

LABEL INT_MY_HNDL.AVERAGE;

Following is a list of values that are automatically loaded whenever you load an interval data
handle using one of the INTLOADxxx functions. They are the result of adding, averaging, or
taking the maximum of the interval values.

Value Description

TOTAL The sum of all interval values in the interval data handle.

ENERGY Total energy represented by the handle, computed properly for its
UOM according to the TOTAL flag in the UOM Table. UOM for
the interval values must be either KW or KWH. If not, result is 0.

AVERAGE Average of all non-missing interval values.

AVERAGE_NZ Average of all nonzero interval values.

MAXIMUM Peak value (computed using actual values, not the absolute value of
the values).

MAXIMUMn Value of nth peak (e.g., MAXIMUM2 reports second highest peak.
For n, you may supply any value from 2 through 10).

KW_MAXIMUM The maximum KW value in the handle. If the UOM is KWH, the
actual maximum is multiplied by the IPH (intervals per hour) to
get this value.

ABS_MAXIMUM Peak value (computed using absolute maximum). “Absolute”
means the program converts negatives to positives and selects the
largest.

MAXDATE Date and time of the peak interval.

MAXDATEn Date and time of nth peak interval (e.g., MAXDATE2 reports the
date and time of second highest peak. For n, you may supply any
value from 2 through 10).

ABS_MAXDATE Date and time of peak interval (computed using
ABS_MAXIMUM).

MINIMUM Minimum interval value in the handle (computed using the actual
values, not the absolute value of the values).
Interval Data Function Descriptions 9-29

Interval Data Functions
About cut start and stop times
This applies to all INTDLOADxxx functions, except INTDLOADLISTENERGY. The functions use
the cuts whose start and stop time are closest to the bill period start and stop time, as specified for
the billing cycle code that applies to the account. If the account itself has a start or stop time, that
takes precedence. If the account’s channels (or the list’s channels for INTDLOADLIST) have
different start and stop times, the program automatically applies the earliest start and the earliest
stop among the channels.

Accessing Multiple Interval Databases from the same Rate Schedule
You can load interval data from more than one interval data source in the same rate schedule using
either INTDOPEN or INTDLOADxxx. When interval data has been opened or loaded in the
rate form, you can use other functions as normal on the data.

Using INTDOPEN:
The INTDOPEN Function on page 9-51 enables you to open multiple Interval Data Databases
from a single rate form.

Using INTDLOADxxx functions:
To load interval data from a rate form, use the following format:

MINIMUM_NZ Minimum of all nonzero values in the handle.

MINDATE Date and time that the minimum occurred.

LF Load factor (load factor=average interval/maximum interval
value) (computed using the absolute maximum).

STARTTIME Date and time of the start of the handle data.

STOPTIME Date and time of the end of the handle data.

COUNT Total number of intervals in the handle.

COUNT_NZ Total number of nonzero intervals in the handle.

IPH Intervals per hour.

SPI Seconds per interval.

UOM Unit of measure, denoted by a code

DSTTOTAL Total of the interval values in the fall Daylight Saving Hour. If the
handle does not include this hour, the value is 0.

DSTENERGY Total of the interval values in the fall Daylight Saving Hour. If the
handle does not include this hour, the value is 0. The Unit of
Measure for the intervals must be KW or KWH; otherwise, the
value returned is 0.

MULTIPLIER Pulse multiplier*.

OFFSET Pulse offset*.

RECORDER Recorder identifier.

CHANNEL Channel number.

RECORDERCHAN Recorder,channel.

Value Description
9-30 Rules Language Reference Guide

Interval Data Functions
<interval_data_reference> = INTDLOADxxx(“<file and path name to interval
database>;<determinant_identifier|recorder,channel>”);

Where:

• <file and path name to interval database> is a string containing the absolute path and file
name of the Interval Database, followed by a semicolon, and the <recorder,channel>. The
string can have no spaces, but can name any supported file type. The interval database file can
be in any of the following formats:

• Enhanced Oracle Utilities Input/Output Format (*.lse)

• Oracle Utilities Standard Format (*.inp)

• Oracle Utilities Comma Separated Format (*.csv)

• Oracle Utilities Standard XML Format (*.xml)

This applies to all INTDLOADxxx functions.

Example: Your Interval Data Options (see the Data Manager User’s Guide) are set to retrieve
interval data from: c:\lodestar\user\getwell.lse. Another interval data file is located at:
d:\lodestar\user\getwell2.lse, and you need to load data from that file also. You could load
interval data from the second file with the following statement:

HNDL_2 = INTDLOAD (“d:\lodestar\user\getwell2.lse;1700,1”);

Another example might look like this:

// Load test data for the current bill period
CUTNAME = "d:\comndata\testfile.lse;RECORDER_TEST,1";
HNDL = INTDLOAD(CUTNAME);

Loading Interval Data from Relational Database Tables
You can also load interval data from multiple relational database tables in the Oracle Utilities Data
Repository using the following functions:

• INTDLOAD Function

• INTDLOADDATES Function

• INTDLOADHIST Function

• INTDLOADLIST Function

• INTDLOADLISTHIST Function

• INTDLOADLISTDATES Function

To load interval data from the relational database, use the following format:

<interval_data_reference> = INTDLOADxxx(“[QUAL/<alternate_qualifier>;]RDB/
<alternate_table>;<recorder,channel>”);

Where:

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded.

• When an alternate qualifier is specified, all database calls for the function will be directed
at the specified qualifier, with one exception. In the case of INTDLOADLISTxxx()
functions, the list query alone will be fetched from the original qualifier.

• The metadata of the alternate qualifier must be the same as the original qualifier.

• When using an alternate qualifier and processing in the context of an Account (such as
when running billing via Oracle Utilities Billing Component), the account must be
present in both the qualifiers.
Interval Data Function Descriptions 9-31

Interval Data Functions
• <alternate_table> is a string containing the name of a table with the same schema as the
LSCHANNELCUTHEADER table. The name of this table must begin with the letters
“LSC”. Also, this table must have two child tables, one with column VALUESCODES and
one with column SEQUENCE, and which have the same schema as the
LSCHANNELCUTDATA and LSCHANNELCUTEDITS tables, respectively. This table
must also have one parent table, the CHANNEL table, which in turn also has one parent
table, the RECORDER table.

• <recorder,channel> is an identifier for a particular recorder-ID, channel-number in the
Interval Database.

For example:

// Header data is stored in LSCHANNELHEADERVERS table
CUTNAME = "RDB/LSCHANNELHEADERVERS;RECORDER_TEST,1";
HNDL = INTDLOADDATES(CUTNAME, BILL_START, BILL_STOP);

Saving Data

You can also save data to an alternate qualifier and/or table using the SAVE TO CHANNEL
statement, using the following format:

SAVE <HNDL> TO CHANNEL “[QUAL/<alternate_qualifier>;]RDB/
<alternate_table>;<recorder,channel>”);

Where:

• <HNDL> is the interval data handle you wish to save.

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded (see above).

• <alternate_table> is a string containing the name of a table with the same schema as the
LSCHANNELCUTHEADER table (see above). The name of this table must begin with the
letters “LSC” (see above).

• <recorder,channel> is an identifier the recorder-ID, channel-number you wish to save the
data to.

For example:

// Load data from LSCHVERS table
HNDL = INTDLOADDATES(“RDB/LSCHVERS;TEST,1”, BILL_START, BILL_STOP);
// Save data to LSCHVERS2 table in PRICING qualifier
SAVE HNDL TO CHANNEL "QUAL/PRICING;RDB/LSCHVERS2;TEST,1";

Deleting Data

You can also delete interval data from an alternate qualifier and/or table using the
INTDDELETE Function, using the following format:

<interval_data_reference> = INTDDELETE(“[QUAL/<alternate_qualifier>;]RDB/
<alternate_table>;<recorder,channel>”);

Where:

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded (see above).

• <alternate_table> is a string containing the name of a table with the same schema as the
LSCHANNELCUTHEADER table (see above). The name of this table must begin with the
letters “LSC” (see above).

• <recorder,channel> is an identifier the recorder-ID, channel-number you wish to delete.
9-32 Rules Language Reference Guide

Interval Data Functions
For example:

// Save data to LSCHVERS2 table in PRICING qualifier
SAVE HNDL TO CHANNEL "QUAL/PRICING;RDB/LSCHVERS2;TEST,1";
// Delete cut “Test,1” from LSCHVERS table
DEL_HNDL = INTDDELETE(“RDB/LSCHVERS;TEST,1”, BILL_START, BILL_STOP);
Interval Data Function Descriptions 9-33

Interval Data Functions
INTDLOAD Function

Purpose
The INTDLOAD Function loads and totalizes all of an account’s interval data for a user-specified
determinant for the current bill period.

When specifying the account’s interval data to be loaded using INTDLOAD, you have two
choices: you can specify a particular channel by its recorder-ID, channel-number; or you can ask
for all of the account’s channels that collect data for a selected billing determinant. The first option
is typically used in a contract that is specific to the account, because you are “hard coding” a
particular recorder-ID, channel-number into the rate form. For the second option, if you select a
billing determinant, the program looks up the unit of measure (UOM) associated with the bill
determinant in the BILLDETERMINANT Table. Then, it looks at the CHANNELHISTORY
Table to determine which of the channels that belong to the account currently being billed collect
data in that UOM.

Format
<interval_data_reference> =
INTDLOAD(<determinant_identifier|recorder,channel>[,<string>])

Where
• <determinant_identifer> is an identifier for a billing determinant, as defined in the

BILLDETERMINANT Table. Its UOM is retrieved, and the matching recorder,channels
under the account are totalized to get the interval data cut.

• <recorder,channel> is the identifier (also called a “cut series key”) for a particular recorder-
ID, channel-number in the Interval Database. The format is ‘recorder,channel’; e.g., ‘1701,1’

• <string> (Optional) is the second parameter, which can be “LAST_CUT” or “PURE_CUT”.
If it is “LAST_CUT”, the last cut for the recorder,channel is loaded, preserving its cut start
and stop times. If “PURE_CUT”, the cuts that overlap the bill period are loaded, preserving
the cut start and stop times.

Examples
Load interval data cuts based on KW, KVAR, and channel 80001,2.

INT_MY_HNDL = INTDLOAD(KW);
INT_KVAR_HNDL =INTDLOAD(KVAR);
INT_ANOTHER_HNDL = INTDLOAD('80001,2', “PURE_CUT”);
9-34 Rules Language Reference Guide

Interval Data Functions
INTDLOADACTUALCUT Function

Purpose
This INTDLOADACTUALCUT Function loads a specific, single interval data cut for a specified
recorder,channel or billing determinant for a given start time. This function loads individual cuts
as stored in the Oracle Utilities Data Repository. This function does NOT load multiple cuts if
multiple cuts (or overlapping cuts) exist for the supplied parameters. Returns an interval data
reference.

Format
<identifier> = INTDLOADACTUALCUT
(<determinant_identifier|recorder,channel>[,<date_identifier|expressio
n>]);

Where
• <determinant_identifer> is an identifier for a billing determinant, as defined in the

BILLDETERMINANT table. Use of a billing determinant with this function is applicable
only when running in the context of an account (such as when running in Oracle Utilities
Billing Component).

• <recorder,channel> is the identifier (also called a “cut series key”) for a particular recorder-
ID, channel-number in the Interval Database. The format is ‘recorder,channel’; e.g., ‘1701,1’

• <date_identifier> (Optional) is the start time of the cut as stored in the Oracle Utilities Data
Repository. If not supplied, the default value is equal to BILL_START.

Example
Load the interval data cut for recorder,channel 80001,2 with a start time of 06/01/2005.

HNDL = INTDLOADACTUALCUT('80001,2', “06/01/2005”);
Interval Data Function Descriptions 9-35

Interval Data Functions
INTDLOADDATES Function

Purpose
The INTDLOADDATES Function loads interval data for a user-specified date range. This
function is similar to the INTDLOAD Function on page 9-34, except that you can specify a
recorder,channel and a date range for the data.

Format
<interval_data_reference> =
INTDLOADDATES(<determinant_identifier|recorder,channel>,
<date_identifier|date_constant>,
<date_identifier|date_constant>[,<loadflag>][,<tzstd>][,<dst_flag>]);

Where
• <determinant_identifer> is an identifier for a billing determinant, as defined in the

BILLDETERMINANT Table. Its UOM and End Use are retrieved, and the matching
recorder,channels under the account are totalized to get the interval data cut.

• <recorder,channel> is the identifier (also called a “cut series key”) for a particular recorder-
ID,channel-number in the Interval Database. The format is ‘recorder,channel’; e.g., ‘1701,1’.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. Acceptable formats are ‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’, and ‘MM/
DD/YYYY HH:MM:SS’.

If you do not specify a time, the time defaults to 00:00:00.

• <loadflag> (optional) specifies the behavior of the function when loading cuts with mixed
time zones and/or DST Participant flags. This parameter must be an integer, or an identifier
or expression that resolves to an integer that is the sum of two values, one that specifies how
to resolve mixed time zones (using the Time Zone Standard Name field), and one that
specifies how to resolve mixed DST Participant flags.

• Time Zones:

• 0: If the Time Zone Standard Names are different, return an error. (Default)

• 1: Use the first cut's Time Zone Standard Name (TZSN).

• 2: Use the TZSN supplied in the function call.*

• DST Participants

• 4: If the DST Participant flags are different, return an error. (Default)

• 8: Use the first cut's DST Participant flag.

• 16: Use the DST Participant flag supplied in the function call.*

For example, to return an error if either the TZSN or the DST Participant flags are different,
you would set this parameter to 4 (0 for TZSN and 4 for DST) This is the default value for
this parameter. To use both the TZSN and DST Participant flag from the first cut, you would
set this parameter to 9 (1 for TZSN, 8 for DST).

*When using either the TZSN or the DST Participant flag supplied in the function call, use 2
or 16 as normal. To use both the TZSN and DST Participant flag supplied in the function
call, use 32.
9-36 Rules Language Reference Guide

Interval Data Functions
The table below lists the possible combinations of the Time Zone and DST Participant
values:

• <tzstd> (optional) is the TZSN for the handle. The supplied value must be one of “EST”,
“CST”, “MST”, “PST”, or be defined in the LSCALENDAR.XML configuration file (if
present). If empty, this is equal to the Time Zone Standard Name of the first cut. The Default
value is the default time zone, as specified in the LSCALENDAR.XML file.

• <dst_flag> (optional) is the DST Participant flag for the handle. Must be either “Y” or “N”.
If empty, this is equal to the DST Participant flag of the first cut. The Default value is “N”.

Examples
Load kWh interval data for the month of January, 2007:

KWH_HNDL = INTDLOADDATES(KWH, ‘01/01/2007’, ‘01/31/2007’);

OR

STARTDT = '01/01/2007';
STOPDT = '01/31/2007';
KWH_HNDL = INTDLOADDATES(KWH, STARTDT, STOPDT);

Load interval data for recorder,channel ‘RECORDER01,1’ for the month of January, 2007:

HNDL = INTDLOADDATES('RECORDER01,1', '01/01/2007', '01/31/2007');

OR

RECORDER = "RECORDER01";
CHANNEL = "1";
RECORDER_CHANNEL = RECORDER + "," + CHANNEL;
STARTDT = '01/01/2007';
STOPDT = '01/31/2007';
HNDL = INTDLOADDATES(RECORDER_CHANNEL, STARTDT, STOPDT);

Load kWh interval data for the month of January, 2006, and use the supplied Time Zone Standard Name and
DST Participant flag.

STARTDT = '01/01/2006';
STOPDT = '01/31/2006';
KWH_HNDL = INTDLOADDATES(KWH, STARTDT, STOPDT, 32, “EST”, “N”);

TZSN DST Participant
Load Flag
Parameter

Error if different (0) Error if different (4) 4

Error if different (0) From first cut (8) 8

Error if different (0) From function call (16) 16

From first cut (1) Error if different (4) 5

From first cut (1) From first cut (8) 9

From first cut (1) From function call (16) 17

From function call (2) Error if different (4) 6

From function call (2) From first cut (8) 10

From function call (2)* From function call (16)* 32*
Interval Data Function Descriptions 9-37

Interval Data Functions
INTDLOADHIST Function

Purpose
The INTDLOADHIST Function loads an account's interval data for a user-specified set of bill
periods. This function is identical to the INTDLOAD Function on page 9-34, except that you
can specify historical periods to load.

Format
<interval_data_reference> =
INTDLOADHIST(<determinant_identifier|recorder,channel>,
<start_bill_period_previous>, <end_bill_period_previous>);

Where
• <determinant_identifer> is an identifier for a billing determinant, as defined in the

BILLDETERMINANT Table. Its UOM and End Use are retrieved, and the matching
recorder,channels under the account are totalized to get the interval data cut.

• <recorder,channel> is the identifier (also called a “cut series key”) for a particular recorder-
ID,channel-number in the Interval Database. The format is ‘recorder,channel’; e.g., ‘1701,1’.

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period _previous is 0 or the current period. The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters in the section Rules for Using
Functions in Chapter 6: Rules Language Functions Overview in the Oracle Utilities Rules
Language User’s Guide for additional details about specifying bill period parameters.

If you omit both start and end bill period parameters from INTDLOADHIST, it is the same
as INTDLOAD—only the data for the current bill period is loaded.

Examples
Load the account's KW data for the last 13 bill periods (including the current):

INT_MY_HNDL = INTDLOADHIST(KW,0,12);

Load the account’s KVAR data for the current bill period.

INT_KVAR_HNDL =INTDLOADHIST(KVAR);

Load the interval data for recorder-id, channel-number 80001,2 for the bill period just before the current period.

INT_ANOTHER_HNDL = INTDLOADHIST(’80001,2’, 1, 1);
9-38 Rules Language Reference Guide

Interval Data Functions
INTDLOADLIST Function

Purpose
The INTDLOADLIST Function totalizes the interval data for the current bill period for all
channels in a TABLE.COLUMN list. (See the Data Manager User's Guide for information about
creating TABLE.COLUMN lists.) The list must consist of a list of unique identifiers for the
channels (UIDCHANNELs).

If the rate schedule is run in the context of an account, only channels in the list that are also in a
CHANNELHISTORY record are loaded (CHANNELHISTORY STARTTIME and
STOPTIME values are ignored; all matching channels are loaded for the full bill period). If there is
no account (for example, for a rate schedule run using RUNRS.EXE) ALL channels in the list are
loaded. In either case, all channels in the list should have the same UOM.

Note: This function returns summary values, and uses cut start and stop times. See About cut
start and stop times on page 9-30 for more information.

Format
<interval_data_reference> = INTDLOADLIST(<list_identifier|list_name>);

Where
• <list_identifier | list_name> is an identifier, or literal constant of the form “listname”, that

identifies a list of UIDCHANNELs.

Example
These two statements would load and total all KWH channels for the account, given that the list (named
ACCT_CHAN) is created with a TABLE.COLUMN query that targets the UIDCHANNEL column in
the CHANNEL Table, and the query is: where ACCOUNTS.ID = ACCT_ID and
CHANNELHISTORY.UNIT-OF-MEASURE CODE = 01.

ACCT_ID = ACCOUNT.ACCOUNTID;
KWH_HNDL = INTDLOADLIST ("ACCT_CHAN");
Interval Data Function Descriptions 9-39

Interval Data Functions
INTDLOADLISTDATES Function

Purpose
The INTDLOADLISTDATES Function totalizes the interval data for all channels in a list, over a
user-specified date range. This function is identical to the INTDLOADLIST Function on page
9-39, except that you can specify a date range for the data.

Format
<interval_data_reference> =
INTDLOADLISTDATES(<list_identifier|list_name>,
<date_identifier|date_constant>, <date_identifier|date_constant>);

Where
• <list_identifier | list_name> is an identifier, or literal constant of the form “listname”, that

identifies a list of UIDCHANNELs.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. You can use any of the following formats:
‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’, or
‘MM/DD/YYYY HH:MM:SS’.

If you do not specify a time for the end date, the cut ends at midnight of the beginning of the
specified date (default start time is 00:00:00; default end time is 23:59:59).

Example
Load and total all of the account’s KWH data for the month of January 1997.

ACCT_ID = ACCOUNT.ACCOUNTID;
STARTDT = ‘01/01/1997’;
STOPDT = ‘01/31/1997’;

KWH_HNDL = INTDLOADLISTDATES (“ACCT_CHAN”, STARTDT, STOPDT);
9-40 Rules Language Reference Guide

Interval Data Functions
INTDLOADLISTENERGY Function

Purpose
The INTDLOADLISTENERGY Function finds the total kWh for all of an account’s channels
(or all channels in a list) that record billed kW or kWh, for the current bill period.

For this function, the listname is optional. It totalizes all (or all in the list) billed kWh or kW cuts
(converting kW to kWh). It uses the entire cut, where the start date of the cut is on or after the bill
start date and on or before the bill stop date. All intervals in each cut, including intervals after the
bill stop date, are included.

Format
<interval_data_reference> =
INTDLOADLISTENERGY[(<list_identifier|list_name>)];

Where
• <list_identifier | list_name> (Optional) is an identifier, or literal constant of the form

“listname”, that identifies a list of UIDCHANNELs.

Examples
Load and total all KWH for an account that has only KWH cuts:

KWH_HNDL = INTDLOADLISTENERGY;

Loads and totals all KWH for an account that has KWH and KQH cuts (where the ACCT_CHAN query is
ACCOUNTS.ID = ACCT_ID and CHANNELHISTORY.UNIT-OF-MEASURE CODE = 01):

KWH_HNDL = INTDLOADLISTENERGY (“ACCT_CHAN”);

About cut start and stop times:

In the illustration below, INTDLOADLISTENERGY would use each cut's own recorded start
and stop times, as noted.

1701,1

1701,2

1701,3

Cut 1 start: 01/30/1998 01:30:00

Cut 1 stop: 02/27/1998 01:30:00

Cut 2 start: 02/01/1998 09:37:00

Cut 2 stop: 02/28/1998 09:00:00

Cut 3 stop: 03/02/1998 10:30:00

Cut 3 start: 02/01/1998 10:30:00

...................

...................

Cut start and stop used by other INTDLOADxxx functions

...................
Interval Data Function Descriptions 9-41

Interval Data Functions
INTDLOADLISTHIST Function

Purpose
The INTDLOADLISTHIST Function totalizes the interval data for all channels in a list, over a
user-specified set of bill periods. This function is identical to the INTDLOADLIST Function
on page 9-39, except that you can specify historical periods to load.

Format
<interval_data_reference> =
INTDLOADLISTHIST(<list_identifier|list_name>,
<start_bill_period_previous>,<end_bill_period_previous>);

Where
• <list_identifier | list_name> is an identifier, or literal constant of the form “listname”, that

identifies a list of UIDCHANNELs.

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The end period must be
greater than or equal to the start bill period. The default start_bill_period_previous is 0 or the
current period. The default end_bill_period_previous is the last period of data for the
determinant. If you specify a start but no end, the default end is the last period of data for
that determinant stored for the account. If you specify an end, you must specify a start. If you
omit both start and end bill period from INTDLOADLISTHIST, it is the same as
INTDLOADLIST—only the data for the current bill period is loaded.

Examples
In the following examples, the list is the same as that used in the description of the
INTDLOADHIST Function on page 9-38.

Load and total all of the account’s KWH data for the last 13 periods, including the current:

ACCT_ID = ACCOUNT.ACCOUNTID;
KWH_HNDL = INTDLOADLISTHIST("ACCT_CHAN", 0, 12);

Load and total all of the account’s KWH data for the current bill period:

ACCT_ID = ACCOUNT.ACCOUNTID;
KWH_HNDL = INTDLOADLISTHIST("ACCT_CHAN");

Load and total all of the account’s KWH data for the bill period just before the current period:

ACCT_ID = ACCOUNT.ACCOUNTID;
KWH_HNDL = INTDLOADLISTHIST("ACCT_CHAN", 1, 1);
9-42 Rules Language Reference Guide

Interval Data Functions
INTDLOADRELATEDCHANNEL Function

Purpose
The INTDLOADRELATEDCHANNEL Function loads the interval data for the
recorder,channel related to the interval data reference’s recorder and channel through the
CHANNELHISTORY Table, UIDRELATEDCHANNEL column, for the current account, for
the record in effect on the reference’s stop date. Returns an interval data reference.

Format
<identifier> = INTDLOADRELATEDCHANNEL(<interval_data_reference>);

Where
<interval_data_reference> is a reference to a loaded interval data cut, or a recorder,channel
constant.

Example
Load the interval data for recorder,channel “1700,1”.

INT_HNDL = INTDLOADRELATEDCHANNEL(‘1700,1’);
Interval Data Function Descriptions 9-43

Interval Data Functions
INTDLOADSP Function

Purpose
The INTDLOADSP Totalizes the interval data for all channels belonging to a specified
Aggregation Group, over a user-specified date range.

This function is typically used to totalize the interval data for all channels assigned to an Energy
Service Provider. You can optionally filter the channel cuts by service code and factor code
records.

Format
<interval_data_reference> = INTDLOADSP(<aggregation_group>,<service_code>,
<factor_code>, <start-date_identifier|date_constant>,
<end_date_identifier|date_constant>);

Where
• <aggregation_group> is an identifier or constant that contains an aggregation group name.

Only channels belonging to this aggregation group are added. Typically this is the aggregation
group for the service provider’s Operating Company.

To specify an alternate interval data table for the function call, include “RDB/
<TABLE_NAME>;” immediately preceding the Aggregation group name, where
<TABLE_NAME> is the name of the alternate interval data table. For example, “RDB/
LSCHWEATHER;AGG_GROUP1” would load data from the LSCHWEATHER table for
the AGG_GROUP1 aggregation group.

To load from an alternate qualifier, include “QUAL/<QUALIFIER>; immediately before the
table name, where <QUALIFIER> is the alternate qualifier. For example, “QUAL/
PMQA;RDB/LSCHWEATHER;AGG_GROUP1” would load data from the
LSCHWEATHER table in the PMQA qualifier for the AGG_GROUP1 aggregation group.

• <service_code> is an optional identifier or constant that contains a service code from the
Service Table. If not specified, the default is all services. If the service code is not specified, or
if the UOM associated with the Service Code is NULL, the program assumes UOMCODE
“01” (kWh).

• <factor_code> is an optional identifier or constant that contains a key to the Factor Table. If
supplied, only accounts with a matching ACCTFACTORHIST record are used. The actual
key requires an operating company and jurisdiction; if not supplied, they default to the
current rate form’s. To explicitly specify an Operating Company and Jurisdiction, the code
value must be “opcocode,juriscode,factorcode”. To indicate that the factor is
global (applies across all operating companies and jurisdictions), use the convention
“,,factorcode”.

• <start_date_identifier|date_constant>, <end_date_identifier|date_constant> are actual
start and end dates. You can use any of these formats: ‘MM/DD/YYYY’, ‘MM/DD/YYYY
HH:MM’, or ‘MM/DD/YYYY HH:MM:SS’.

If you do not specify a time for the end date, the handle ends at midnight of the beginning of the
specified date (default start time is 00:00:00; default end time is 23:59:59). If neither start date or
end date is specified, the current bill period BILL_START and BILL_STOP is used.

If there are no accounts or channels that match the criteria, a handle of 0s is returned.
9-44 Rules Language Reference Guide

Interval Data Functions
Examples
Example 1: Load all of the energy from supplier ESP1 for the current bill period.

ESP1_ENERGY_HNDL = INTDLOADSP(“ESP1”)

Example 2: Load data from the LSCHWEATHER table for the AGG_GROUP1 aggregation group for the
current bill period.

WEATHER_HNDL = INTDLOADSP (“RDB/LSCHWEATHER;AGG_GROUP1”);
Interval Data Function Descriptions 9-45

Interval Data Functions
INTDLOADSTAGING Function

Purpose
The INTDLOADSTAGING function loads interval data from the Interval Data Staging Tables
(LSINTDSTAGING) for a user-specified date range. This function is similar to the
INTDLOADDATES Function on page 9-36, except that it loads data from the Interval Data
Staging tables.

Format
<interval_data_reference> = INTDLOADSTAGING(<recorder,channel>,
<date_identifier|date_constant>, <date_identifier|date_constant>);

Where
• <recorder,channel> is the identifier (also called a “cut series key”) for a particular recorder-

ID,channel-number in the Interval Database. The format is ‘recorder,channel’; e.g., ‘1701,1’.
Optionally, a table name and qualifier can also be specified, in the following format:

[QUAL/<alternate_qualifier>,][RDB/<alternate_table>;]

where:

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded.

• The metadata of the alternate qualifier must be the same as the original qualifier.

• When using an alternate qualifier and processing in the context of an Account (such
as when running billing via Oracle Utilities Billing Component), the account must
be present in both the qualifiers.

• <alternate_table> is a string containing either LSINTDSTAGING or an equivalent.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. Acceptable formats are ‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’, and ‘MM/
DD/YYYY HH:MM:SS’.

If you do not specify a time, the time defaults to 00:00:00.

Example
Load data for recorder,channel ‘1700,1’ for the month of January, 2004 from the Interval Data Staging table:

STAG_HNDL = INTDLOADSTAGING(‘1700,1’, ‘01/01/2004’, ‘01/31/2004’);

OR

STARTDT = '01/01/2004';
STOPDT = '01/31/2004';
STAG = INTDLOADSTAGING(‘1700,1’, STARTDT, STOPDT);
9-46 Rules Language Reference Guide

Interval Data Functions
INTDLOADUOM Function

Purpose
The INTDLOADUOM function loads the interval data for the specified UOM (and optional end
use) for the current bill period.

This function is identical to the INTDLOAD Function on page 9-34, except that you specify the
UOM and (optionally) end use of interest. INTDLOAD retrieves interval data according to the
bill determinant you specify; this function retrieves interval data according to the UOM and end
use you specify.

Format
<interval_data_reference> = INTDLOADUOM(<uom_code>, [<end_use_code>]);

Where
• <uom_code> is the code for a unit of measure in the UOM Lookup Code Table. All

matching recorder,channels under the account are totalized to get the interval data handle.

• <end_use_code> (Optional) is the code for an end use from the ENDUSE Table. If specified,
the recorder,channels must match both the UOM and End Use to be totalized to get the new
interval data handle.

Examples
Load and totalize all of the account’s KWH data for the current bill period:

KWH_HNDL = INTDLOADUOM ("01");

Load and totalize all of the account’s KWH data for the end use “refrigeration,” for the current bill period:

KWH_HNDL = INTDLOADUOM ("01", "REFRIGERATION");
Interval Data Function Descriptions 9-47

Interval Data Functions
INTDLOADUOMDATES Function

Purpose
The INTDLOADUOMDATES function loads the interval data for the specified UOM (and
optional end use) over a specified date range. This function is identical to the INTDLOADUOM
Function on page 9-47, except that it enables you to specify the date range of interest.

Format
<interval_data_reference> = INTDLOADUOMDATES(<uom_code>,
<end_use_code>, <date_identifier|date_constant>,
<date_identifier|date_constant>);

Where
• <uom_code> is the code for a unit of measure in the UOM Lookup Code Table. All

matching recorder,channels under the account are totalized to get the interval data handle.

• <end_use_code> is the code for an end use from the ENDUSE Table. It is ignored if it is ""
(Null). If specified, the recorder,channels must match both the UOM and End Use to be
totalized to get the interval data handle.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. If no time is supplied with the end date, the handle ends at midnight of the beginning
of the specified date.

Examples
Load and totalize all of the account’s KW data for January 1997:

KW_HNDL = INTDLOADUOMDATES ("02", "", '01/01/97', '01/31/97');

Load and totalize all of the account’s KW data for January, 1997 for the end use “refrigeration”:

STARTDT = '01/01/1997';
STOPDT = '01/31/1997';
KW_HNDL = INTDLOADUOMDATES ("02", "REFRIGERATION", STARTDT, STOPDT);
9-48 Rules Language Reference Guide

Interval Data Functions
INTDLOADUOMHIST Function

Purpose
The INTDLOADUOMHIST function loads the interval data for the specified UOM and
(optionally) end use for the specified bill periods. This function is identical to the
INTDLOADUOM Function on page 9-47, except that it enables you to specify the bill periods
of interest.

Format
<interval_data_reference> = INTDLOADUOMHIST(<uom_code>,
<end_use_code>, <start_bill_period_previous>,
<end__bill_period_previous>);

Where
• <uom_code> is the code for a unit of measure in the UOM Lookup Code Table. All

matching recorder,channels under the account are totalized to get the interval data handle.

• <end_use_code> is the code for an end use from the ENDUSE Table. It is ignored if it is “
”. If specified, the recorder,channels must match both the UOM and End Use to be totalized
to get the interval data handle.

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 (the current period). The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. If you specify an end, you must specify a start. If you omit both start and end bill
period parameters from INTDLOADUOMHIST, it is the same as INTDLOADUOM—only
the data for the current month is loaded.

Examples
Load and totalize all of the account’s KWH data for the last 13 periods, including the current:

KWH_HNDL = INTDLOADUOMHIST("01"," ", 0, 12);

Load and totalize all of the account's KW data for the end use “refrigeration”, for the current bill period:

KW_HNDL = INTDLOADUOMHIST("02", "REFRIGERATION");

Load and totalize all of the account's KWH data for the bill period just before the current period:

KWH_HNDL = INTDLOADUOMHIST("01"," ", 1, 1);
Interval Data Function Descriptions 9-49

Interval Data Functions
INTDLOADVERSION Function

Purpose
The INTDLOADVERSION Function loads interval data from the Interval Data Version Tables
(LSCHVERSION and LSCDVERSION) for a specified versioned cut. This function is similar to
the INTDLOAD Function on page 9-34, except that it loads data from the Interval Data
Version tables.

Format
<interval_data_reference> = INTDLOADVERSION(<header table name>,
<recorder,channel>, <date_identifier|date_constant>[, <version
sequence number>);

Where
• <header table name> is the name of the Interval Data Version table where the cut to be

loaded is located.

• <recorder,channel> is the identifier (also called a “cut series key”) for a particular recorder-
ID,channel-number in the Interval Data Version table. The format is ‘recorder,channel’; e.g.,
‘1701,1’.

• <date_identifier|date_constant>is the start time of the cut to be loaded. Acceptable formats
are ‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’, and ‘MM/DD/YYYY HH:MM:SS’. If
you do not specify a time, the time defaults to 00:00:00.

• <version sequence number> Optional. is the version sequence (from the LSCHVERSIONS
table) for the cut to be loaded.

Example
Load a versioned cut for recorder,channel ‘1700,1’ with a start time of January 1, 2004, and version sequence of 3.

VER_HNDL = INTDLOADVERSION(LSCHVERSION, ‘1700,1’, ‘01/01/2004’, 3);
9-50 Rules Language Reference Guide

Interval Data Functions
INTDOPEN Function

Purpose
The INTDOPEN Function opens an Interval Data Database in a user-specified mode. Returns an
index to the file, which can be used in the INTDREADFIRST, INTDREADNEXT,
INTDRECCOUNT, and INTDCLOSE functions.

Note: A maximum number of five interval data files can be open at the same
time.

Format
<identifier> = INTDOPEN(<interval_data_source_file_name>,
[<open_mode>]);

Where
• <interval_data_source_file_name> is the path and file name for the Interval Data Database.

This file can be in any of the following formats:

• Enhanced Oracle Utilities Input/Output Format (*.lse)

• Oracle Utilities Standard Format (*.inp)

• Oracle Utilities Comma Separated Format (*.csv)

• Oracle Utilities Standard XML Format (*.xml)

• Relational Database Table (see Loading Interval Data from Relational Database
Tables on page 9-31 for more information)

• <open_mode> (Optional) specifies the mode in which the file is opened:

• “A” - open the file for writing only; create the file if it does not exist.

• “U” - open the file for reading and writing; create the file if it does not exist.

• “R” - open the file for reading only.

Example
Open the interval data file “MYDATA.LSE” in read-only mode.

INTD_FILE = INTDOPEN(“C:\LODESTAR\USER\MYDATA.LSE”, “R”);
INTD_COUNT = INTDRECCOUNT(INTD_FILE);
Interval Data Function Descriptions 9-51

Interval Data Functions
INTDREADFIRST Function

Purpose
The INTDREADFIRST Function returns a reference to the first record in an Interval Data
Database. Records in the Oracle Utilities Data Repository are ordered by recorder ID, channel,
and starttime. Records in files are ordered as they appear in the file. Returns an interval data
reference.

Format
<identifier> = INTDREADFIRST(<interval_data_source_index>);

Where
• <interval_data_source_index> An index from a previously loaded interval data handle. If the

parameter is omitted, the interval data source that is selected under the Interval Data Source
tab of the Default Options dialog is used. If present, this parameter must be the result of an
INTDOPEN Function call.

Example
Load a reference to the first record in “MYDATA.LSE”.

INTD_FILE = INTDOPEN(“C:\LODESTAR\USER\MYDATA.LSE”);
INTD_FIRST = INTDREADFIRST(INTD_FILE);
9-52 Rules Language Reference Guide

Interval Data Functions
INTDREADNEXT Function

Purpose
The INTDREADNEXT Function returns a reference to the next record in an Interval Data
Database. Records are ordered by recorder ID, channel, and starttime. Records in files are ordered
as they appear in the file. If there are no more records, the function returns a 0. Returns an interval
data reference.

Format
<identifier> = INTDREADNEXT(<interval_data_source_index>);

Where
• <interval_data_source_index> An index from a previously loaded interval data handle. If the

parameter is omitted, the interval data source that is selected under the Interval Data Source
tab of the Default Options dialog is used. If present, this parameter must be the result of an
INTDOPEN Function call.

Example
Load a reference to the next record in “MYDATA.LSE”.

INTD_FILE = INTDOPEN(“C:\LODESTAR\USER\MYDATA.LSE”);
INTD_NEXT = INTDREADNEXT(INTD_FILE);
Interval Data Function Descriptions 9-53

Interval Data Functions
INTDRECCOUNT Function

Purpose
The INTDRECCOUNT Function returns the number of records in an Interval Data Database.
Returns a scalar numeric value.

Format
<identifier> = INTDRECCOUNT(<interval_data_source_index>);

Where
• <interval_data_source_index> An index from a previously loaded interval data handle. If the

parameter is omitted, the interval data source that is selected under the Interval Data Source
tab of the Default Options dialog is used. If present, this parameter must be the result of an
INTDOPEN Function call.

Example
Find the number of records in “MYDATA.LSE”.

INTD_FILE = INTDOPEN(“C:\LODESTAR\USER\MYDATA.LSE”);
INTD_COUNT = INTDRECCOUNT(INTD_FILE);
9-54 Rules Language Reference Guide

Interval Data Functions
 INTDRELEASE Function

Purpose
The INTDRELEASE Function releases an interval data reference. It can be used to free up
resources used by the reference; for example, to conserve memory, you can release the interval
data as soon as the rate form is done with it. The resources are automatically released at the end of
the rate form; however, resources should be freed as soon as possible if complex calculations are
performed over large sets of interval data. This also frees any Time-of-Use references that were
created from this interval data reference. This function always returns the integer 0.

Note that you can release a ‘recorder,channel’ constant; if you refer to it again, the interval data
will be reloaded.

Format
<identifier> = INTDRELEASE(<interval_data_reference>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

Example
Release the KWH handle.

KWH_REL = INTDRELEASE(KWH_HNDL);
Interval Data Function Descriptions 9-55

Interval Data Functions
INTDREPLACE Function

Purpose
The INTDREPLACE Function replaces a range of intervals in an interval data handle with
another previously loaded interval data handle of the same SPI. Intervals are replaced based on the
Start and Stop time of the replacement handle only (not indexes). Replaced intervals have a status
code of “A”. Additionally, the “Edited by Rules Language” flag for the handle will be set to “Y”
and the Descriptor of the handle be set to “Computed”. This function returns 0 if successful, 1 if
an error occurs.

Format
<identifier> = INTDREPLACE(<original_handle>,
<replacement_handle>[,<update_flag>);

Where
• <original_handle> is a reference to a loaded interval data handle.

• <replacement_handle> is a reference to a loaded interval data handle that will replace
intervals in the <original_handle>. This must have the same SPI as the <original_handle>.
The Start Time and Stop Time of the <replacement_handle> must fall completely within the
Start Time and Stop Time of the <original_handle>. In other words, the Start Time of the
<replacement_handle> must be greater than or equal to the Start Time of the
<original_handle>, and the Stop Time of the <replacement_handle> must be less than or
equal to the Stop Time of the <original_handle>.

• <update_flag> is an optional flag that indicates (Y = yes, N = no) if the statistics for the
handle should be automatically updated when the intervals are replaced by the function. If set
to “N”, statistics for the handle can be updated using the INTDUPDATESTATS
Function. The default is “Y.”

Example
Replace the intervals for June 2 in the KWH_HNDL with intervals from a profile meter, without updating
statistics.

//Load KWH_HNDL
START = '06/01/2005 00:00:00';
STOP = '06/30/2005 23:59:59';
KWH_HNDL = INTDLOADDATES (‘METER,1’, START, STOP);
//
//Load PROFILE_HNDL
REP_START = '06/02/2005 00:00:00';
REP_STOP = '06/02/2005 23:59:59';
PROFILE_HNDL = INTDLOADDATES (‘PROFILE,1’, REP_START, REP_STOP);
//
//Replace intervals
REPLACE = INTDREPLACE(KWH_HNDL, PROFILE_HNDL, “N”);
9-56 Rules Language Reference Guide

Interval Data Functions
INTDROLLAVG Function

Purpose
The INTDROLLAVG Function calculates the rolling average (or total) in interval data.

Each interval in the target handle is totaled or averaged over the specified number of intervals
from the source handle. For example, if the original handle contains 15-minute data and you want
a 60-minute rolling average, you would specify a “run length” of 4 and the AVERAGE method.
To create the new handle, the program replaces each value from the original handle with a value
that is the sum of itself and the preceding three values, divided by 4.

If you specify a run length of 2 and AVERAGE, the program gets each new value by adding the
original value to the preceding value, and dividing by 2.

If you specify the TOTAL method, the result is a rolling sum instead of a rolling average. If you
specify a run length of 4 and TOTAL, the program gets each new value by adding the original
value to the preceding three values (and does not divide by 4).

Note: All interval data values whose quality is worse than the quality code specified under
Options are ignored by this function. (To view this setting, select Tools, then Options, then
Interval Data Options from the Oracle Utilities application’s menu bar. For more information,
see the Data Manager User's Guide.)

Format
<interval_data_reference> = INTDROLLAVG(<interval_data_reference>,
<number_intervals>, <type>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

‘recorder,channel’ constant.

• <number_intervals> is the number of intervals to roll (the “run length” in the description
above).

• <type> is the way to roll the intervals, where type is one of the following:

• AVERAGE: Averages the values for the number of intervals. This is the default.

• TOTAL: Totals the values for the number of intervals.

Example
Roll a handle with 15-minute date to an hourly average.

ROLL_60_HNDL = INTDROLLAVG(KWH_HNDL, 4, "AVERAGE");
Interval Data Function Descriptions 9-57

Interval Data Functions
INTDROLLPEAK Function

Purpose
The INTDROLLPEAK Function identifies the peak interval from a specified number of intervals
from the source handle, and creates a new handle consisting of those peak intervals.

For example, if the original handle contains 15-minute data and you want a 60-minute rolling peak,
you would specify a “run length” of 4. To create the new handle, the program replaces each value
from the original handle with a value that is the peak among itself and the preceding three values.

Note: All interval data values whose quality is worse than the quality code specified under
Options are set to 0 by this function. (To view this setting, select Tools, then Options, then
Interval Data Options from the Oracle Utilities application’s menu bar. For more information,
see the Data Manager User's Guide.)

Format
<interval_data_reference> = INTDROLLPEAK(<interval_data_reference>,
<scalar_value>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

‘recorder,channel’ constant.

• <scalar_value> is the rolling window size in number of intervals (2, 3, ...).

Example
Roll a handle with 15-minute data to an hourly peak.

ROLL_60_HNDL = INTDROLLPEAK(KWH_HNDL, 4);
9-58 Rules Language Reference Guide

Interval Data Functions
INTDSCALAROP Function

Purpose
The INTDSCALAROP Function performs scalar operation on each interval value in the handle.
The scalar value may be any numeric constant or identifier.

Format
<interval_data_reference> = INTDSCALAROP(<interval_data_reference>,
<operation>, <scalar_value>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <operation> is one of “ADD”, “SUBTRACT”, “MULTIPLY”, “DIVIDE_BY”,
“NORMALIZE”, “NORM_100”, “MAXIMUM”, “MINIMUM”, “ABSOLUTE”, any of
the Math Functions described in Chapter Eleven: Math Function Descriptions, or any of
the following special operations:

• NORMALIZE: Set a divisor equal to the maximum value of the cut, and then divides
every value in the cut by this divisor. In other words, it sets the maximum value of the cut
to 1 and adjust the remaining values proportionally.

• NORM_100: Set a divisor equal to the maximum value of the cut divided by a 100, and
then divides every value in the cut by this divisor. In other words, it sets the maximum
value of the cut to 100 and sets remaining values proportionally.

• QUANTITY: If the handle has a UOM that is a Rate UOM, multiply every interval by
SPI / Seconds Per Unit, and change the UOM to the corresponding Quantity UOM.

• RATE: If the handle has a UOM that is a Quantity UOM, multiply every interval by
Seconds Per Unit / SPI, and change the UOM to the corresponding Rate UOM.

• ROUND_AND_CARRY: Round each value, carry the remainder (positive or negative)
forward, and add to the next non-missing interval value before rounding it.

• SC2NUM: Convert the status codes to numbers, from 0 to the number of different
status codes possible. Space gets the highest number, then A, ... with 9 assigned 1. Zero is
set if the status code is not recognized.

• SC2NORM: Convert the status codes to numbers, scaled to a maximum of 2/3rds the
handle maximum. Space gets the highest number, then A, ... with 9 assigned the lowest
nonzero number. Zero is set if the status code is not recognized.

• SETALLVALUES: Assign the scalar to every interval.

If the operation is “MAXIMUM” or “MINIMUM”, the result element is the maximum or
minimum, respectively, of the corresponding interval value and the scalar value. If the
operation is “SQROOT” (square root), the scalar value is ignored, and the square root of
each interval is computed. If the operation is “ABSOLUTE”, the scalar value is ignored, and
the absolute value of each interval is computed. “SC2NUM” converts status codes to
numbers ranging from 0 to the number of different status codes possible. “SC2NORM”
converts status codes to numbers scaled to a maximum of 2/3rds of the handle maximum.
SETALLVALUES assigns the scalar value to every interval. If the operation is QUANTITY
or RATE, the scalar value is ignored. If the operation is QUANTITY, the handle will be
converted to its quantity UOM. If the operation is RATE, the handle will be converted to its
rate UOM. If the handle’s UOM is not mapped or is the same as the operation UOM, the
handle will be copied unchanged.

• <scalar_value> is a numeric constant or an identifier that has a numeric value. The scalar
value may be any numeric constant or identifier.
Interval Data Function Descriptions 9-59

Interval Data Functions
Example
Multiply each interval value in the handle by 2 (both of the following statements perform the same function).

KWH_HNDL_2 = INTDSCALAROP(KWH_HNDL, “MULTIPLY”, 2);

KWH_HNDL_2 = KWH_HNDL * 2;
9-60 Rules Language Reference Guide

Interval Data Functions
INTDSCALE Function

Purpose
The INTDSCALE Function creates a new interval data handle, where each interval has the IPH
of the specified period. It aggregates the intervals in the input handle to determine each new
interval, based on the aggregation type.

Format
<interval_data_reference> = INTDSCALE(<interval_data_reference>,
<period>, < type>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <period> is the new interval period; “MIN15”, “MIN30”, “HOUR”, “DAY”, “WEEK”,
“MONTH”, “QUARTER”, “YEAR”, or in Seconds. Valid seconds values (“1” through
“3600”) must be divisible by the SPI (seconds per interval).

Note: Scaling up to and/or down from “WEEK”, “MONTH”, “QUARTER”, or “YEAR”
periods can produce unexpected results.

• <type> is one of the following. The default is the AGGREGATE value for the
corresponding UOM record. In the following, IPH is the original IPH (Intervals per Hour);
tIPH is the new IPH.

• TOTAL: Add the values for each interval in the <period> (or TOU period in the
<period>).

• HOUR_TOTAL: If AGGREGATE=Average, then TOTAL/IPH, else TOTAL.

• MAXIMUM: The maximum of the interval values.

• HOUR_MAXIMUM: If AGGREGATE=Total, then MAXIMUM*IPH, else
MAXIMUM.

• MINIMUM: The minimum of the interval values.

• MINIMUM_NZ: The minimum of the nonzero values.

• AVERAGE: The average of the interval values.

• AVERAGE_NZ: The average of the nonzero values.

• LF: AVERAGE/MAXIMUM.

• HOURS: The number of hours in <period> for nonzero interval values (or TOU
period in <period>).

• IPH_TOTAL: If AGGREGATE=Average, then (TOTAL/IPH)*tIPH, else TOTAL.

• IPH_MAXIMUM: If AGGREGATE=Total, then (MAXIMUM*IPH)/tIPH, else
MAXIMUM.

• MAXIMUMn: The nth maximum of the interval values.

• HOUR_MAXIMUMn: If AGGREGATE=Total then MAXIMUMn * IPH, else
MAXIMUMn.

• MAXDATEn: Set the nth maximum, and its date and time.
Interval Data Function Descriptions 9-61

Interval Data Functions
Examples
Aggregate a previously loaded 15-minute-per-interval handle to a 60-minute-per-interval handle, using the method
appropriate to the handle’s UOM.

KWH_60_HNDL = INTDSCALE(KWH_15_HNDL, "HOUR");

Scale a 15-minute-per-interval interval data handle to a 5-minute-per-interval handle using the method appropriate
to the handle’s UOM.

// Scale 15 Minute Data to 300 Seconds (5 Minutes)
GG_HNDL = INTDLOADDATES('DAY,1', '01/21/1999 19:45:00',
'01/22/1999 19:44:59');
GG_HNDL = INTDSCALE(GG_HNDL, "300");
9-62 Rules Language Reference Guide

Interval Data Functions
INTDSETATTRIBUTE Function

Purpose
The INTDSETATTRIBUTE Function sets the attributes of a specified data handle. Returns an
integer; zero if successful, not zero if an error (for example, if this attribute cannot be modified).

Format
<identifier> = INTDSETATTRIBUTE(<interval_data_reference>,
<attribute>, <identifier|expression>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <attribute> is one of the following:

• CALC_CONSTANT: the CALC value.

• CATEGORY: the category of the handle. Used only with enhanced interval data tables.

• CHANNEL: the channel number.

• DATA_STATUS_FLAG: the data status flag.

• DATE: the date and time of the handle.

• DATE_INDEX: the index of the interval containing that time.

• DC_FLOW: the DC Flow (power flow) of the handle.

• DESCRIPTOR: the descriptor field.

• DSTPARTICIPANT: the DST Participant Flag for the handle.

• EDIT_FLAG_CHAR: the edit flag.

• EXTERNAL_VAL_FLAG_CHAR: the external validation status flag.

• INTERNAL_VAL_FLAG_CHAR: the internal validation status flag.

• IPH: the intervals per hour.

• MASK_FLAG: a flag that indicates if the handle is a mask or not.

• MERGE_FLAG_CHAR: the merge flag.

• MESSAGE01, ..., MESSAGE10: the corresponding message field.

• METER_MULT: the meter multiplier for the readings.

• METER_OFFSET: the meter offset for the readings.

• MULTIPLIER: the pulse multiplier.

• OFFSET: the pulse offset.

• ORIGIN: the origin of the handle.

• PARENTKEY: the identity of the parent of the handle. Used only with enhanced
interval data tables.

• POPULATION: the population value. Used with Statistical records only.

• QUANTITY_MAX: the maximum if UOM is not a rate, else maximum * SPI /
Seconds-Per-Unit.

• QUANTITY_TOTAL: the total if UOM is not a rate, else total * SPI / Seconds-Per-
Unit.
Interval Data Function Descriptions 9-63

Interval Data Functions
• RATE_MAX: the maximum if UOM is not a quantity, else maximum * Seconds-Per-
Unit / SPI.

• REALSTARTTIME: the date and time of the first interval.

• REALSTOPTIME: the date and time of the last interval.

• RECORDER: the recorder ID.

• START_READING: the start reading.

• STOP_READING: the stop reading.

• STOPTIME: the date and time of the last interval.

• TIMESTAMP: the date and time the handle was input.

• TIMEZONES: the number of timezones of the handle dates from GMT (-1 is
unknown). Each timezone is 1/2 hour long; i.e., EST is 10 timezones from GMT.

• TZSTDNAME: the Time Zone Standard Name for the handle.

• UOM: the numeric UOM code for the handle.

• VAL_FLAG_E: the value of the validation flag E.

• VAL_FLAG_I: the value of the validation flag I.

• VAL_FLAG_N: the value of the validation flag N.

• VAL_FLAG_O: the validation flag O.

• WEIGHT: the weight value. Used with Statistical records only.

• <identifier|expression> is either an identifier or an expression that sets the values of the
attribute. If an identifier, it must have been assigned earlier in the rate form. The type of
identifier or expression must match the return type listed above.

Examples
Set the Meter Multiplier (METER_MULT) of ‘MY_HNDL’ to 1.1.

MY_HNDL_MM = INTDSETATTRIBUTE(MY_HNDL, METER_MULT, 1.1);

OR

MY_MM = 1.1;
MY_HNDL_MM = INTDSETATTRIBUTE(MY_HNDL, METER_MULT, MY_MM);
9-64 Rules Language Reference Guide

Interval Data Functions
INTDSETDSTPARTICIPANT Function

Purpose
The INTDSETDSTPARTICIPANT Function changes the DST Participant flag on an interval
data handle. Optionally the function can also adjust the Start Time and Stop Time of the handle as
appropriate for the new DST Participant flag (forward one hour when changing from “N” to “Y”,
and back one hour when changing from “Y” to “N” when the handle’s Start Time falls during
Daylight Savings Time). Returns an interval data reference.

Note: This function creates a new handle. If the user saves the new handle to the same data
source as the original cut, an interval data overlap situation will occur. Therefore Oracle Utilities
recommends that users recognize and understand that when performing DST conversions using
this function and the cut’s start time has changed, if they wish to save the new handle to the
original data source, they should delete the original cut from the data source.

Format
<identifier> = INTDSETDSTPARTICIPANT(<interval_data_reference>,
<DST_Participant>, <Convert_Flag>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <DST_Participant> is the value (“Y” or “N”) to which the DST Participant flag on the
handle will be set.

• <Convert_Flag> whether to change only the DST Participant flag or to also convert the
handle as appropriate. The two options include:

• N: Change only the DST Participant flag and do not adjust the Start Time and Stop
Time of the handle (Default).

• Y: Change the DST Participant flag and adjust the Start Time and Stop Time of the
handle.

Example
Change the DST Participant flag from “N” to “Y”, and convert the handle’s Start Time and Stop Time
appropriately.

HNDL = INTDLOAD(‘1700,1’);
SET_DST_Y = INTDSETDSTPARTICIPANT(HNDL, Y, Y);
Interval Data Function Descriptions 9-65

Interval Data Functions
INTDSETSTRING Function

Purpose
The INTDSETSTRING Function sets the status code value of all non-missing intervals in an
interval data handle to a user-specified character.

INTDSETSTRING is often used with the IDATTR Function to assign a status code to all of
the non-missing intervals in a Profiled handle (a “Profiled” handle is one that was created by
taking an account's bill determinant scalar value for the bill period and “spreading” it out into a
load shape that matches a class profile template). The status code assigned to each interval can be
the same as that stored in the Data Repository for the scalar value.

Format
<interval_data_reference> = INTDSETSTRING(<interval_data_reference>,
"STATUSCODE", <status_code>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <status_code> is an identifier, expression, or string constant whose value is a string
consisting of a single character.

Example
Set the status code of each non-missing interval in the original handle to the value assigned to the temporary identifier
SC, and store the new version of the handle with the handle MY_PROFILED_handle.

SC = IDATTR(KWH, "STATUSCODE");
MY_PROFILED_HNDL = INTDSETSTRING(OLD_PROF_HNDL, "STATUSCODE," SC);

In the first statement, the IDATTR function gets the status code stored in the Bill History Table’s
KWHSC column for the current account, and assigns it to the temporary identifier SC.
9-66 Rules Language Reference Guide

Interval Data Functions
INTDSETVALUE Function

Purpose
The INTDSETVALUE Function sets an interval value for a previously loaded interval data
handle. It creates a new (temporary) handle based on a set of supplied parameters. The index
argument is one-based, and indicates which interval to set. The value argument indicates what
value to set it to. The status code is always set to A. This function returns 0 if successful, nonzero if an
error occurred.

This function will not change the current value of original cut. The maximum can be retrieved
using the INTDVALUE Function on page 9-79.

To use this function to change an existing value, you need to assign the new handle to the
identifier of the original cut via an Assignment Statement) (i.e., HNDL=HNDL2) or use the
INTDVALUE Function to get new maximum values.

Format
<identifier> = INTDSETVALUE(<interval_data_reference>, <index>,
<value>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <index> is the interval to be set by the function.

• <value> is the value to set the particular interval to.

Example
Assign the interval values of HNDL to 5.

HNDL = INTDLOAD(‘1700,1’);
COUNT_INTERVALS = INTDCOUNT(HNDL, “ALL”);
FOR EACH I IN NUMBER COUNT_INTERVALS

SET_VALUE = INTDSETVALUE(HNDL, I, 5);
END FOR;
Interval Data Function Descriptions 9-67

Interval Data Functions
INTDSETVALUESTATUS Function

Purpose
The INTDSETVALUESTATUS Function changes the status code and/or value of some intervals
in a handle, based on a comparison of their current status code with a supplied status code, a date
range, or a range of indices. It creates an interval data handle that matches the referenced handle
(same IPH, UOM, and number of intervals).

Formats
<identifier> = INTDSETVALUESTATUS(<interval_data_reference>,
<comparison>, <status_code>[, <result_value>], <result_status_code>);

or

<identifier> = INTDSETVALUESTATUS(<interval_data_reference>,
<start_datetime>, <end_datetime>[, <result_value>],
<result_status_code>);

or

<identifier> = INTDSETVALUESTATUS(<interval_data_reference>,
<start_index>, <end_index>[, <result_value>], <result_status_code>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <comparison> is one of the following:

• “=” - Equal

• “<>” - Not equal

• “<” - Less than

• “>” - Greater than

• “<=” - Less than or equal

• “>=” - Greater than or equal

• “IN” - IN the status code string

• “NOT IN” - NOT IN the status code string.

The comparison order is (from highest to lowest): (space) A B C...Z 0 1 2...8 9.

• <status_code> is an identifier or string constant that specifies a valid status code, or, for
“IN” and “NOT IN”, a string of status codes (no separator; “ABC” for codes A, B, and C).
To set the status code to NULL, enter “ ” (double-quote-space-double-quote).

• <start_datetime>, <end_datetime> are identifiers or constants that specify dates and times.

• <start_index>, <end_index> are identifiers or constants that specify integer values.

• <result_value> (Optional) is an identifier or constant with a numeric value. If not supplied, the
value is unchanged.

• <result_status_code> is an identifier or constant with a string value that specifies a valid
status code. If not supplied, the status code is unchanged.

For the first format: The value or status code is set in any interval where the status code comparison
is true. If the comparison is false, the value and status code are unchanged.
9-68 Rules Language Reference Guide

Interval Data Functions
For the second and third formats: The value or status code is set in any interval whose date or index
overlaps in any way the supplied date-time range or range of indices. All other values and status
codes are unchanged.

Example
Set the status codes of all intervals in ‘MY_HNDL’ that fall between START_DATE and STOP_DATE to
“A” and assign the resulting handle to ‘NEW_STATUS_HANDLE’.

NEW_STATUS_HNDL = INTDSETVALUESTATUS(MY_HNDL, START_DATE, STOP_DATE,
“A”);
Interval Data Function Descriptions 9-69

Interval Data Functions
INTDSHIFTSTARTTIME Function

Purpose
The INTDSHIFTSTARTTIME Function shifts the start (and stop) time of an interval data
handle. The time identifier selects either the “STARTTIME” or “REALSTARTTIME” as the date
from which the start time is shifted. The date time is the new start date/time. This function shifts
the stop time of the handle by the same amount of time as the start time. If you shift the start time
of a handle by 5 days, the stop date of the handle will also be shifted by 5 days.

Format
<interval_data_reference> =
INTDSHIFTSTARTTIME(<interval_data_reference>, <time_identifier>,
<date_time>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <time_identifier> is a string value that is either “STARTTIME” or “REALSTARTTIME”.

• <date_time> is the new start date/time of the handle.

Example
Shift the start time of MY_HNDL from 05/01/93 to 05/08/93:

MY_HNDL_SHIFT = INTDSHIFTSTARTTIME(MY_HNDL, "STARTTIME", ‘05/08/93’);
9-70 Rules Language Reference Guide

Interval Data Functions
INTDSMOOTH Function

Purpose
The INTDSMOOTH Function smoothes gaps in interval data based on the type value. The type
value must be “VALUE”, “AVERAGE”, or “PATCH”. If “VALUE”, all gaps are filled with the
specified smooth value. If “AVERAGE”, all gaps are filled with the average of all non-gaps. If
“PATCH”, gaps are filled with corresponding intervals from a supplied interval data handle.

Format
<interval_data_reference> = INTDSMOOTH(<interval_data_reference>,
<type>[, <scalar_value>][,<patch_interval_data_reference>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <type> is either VALUE, AVERAGE, or PATCH.

• <scalar_value> is a numeric constant, or an identifier that has a numeric value. It is required
for type VALUE, and optional (ignored) for type AVERAGE.

• <patch_interval_data_reference> is a reference to loaded interval data handle that will be
used to patch missing intervals in the <interval_data_reference>. This handle must contain at
least the same number of intervals (or more) than the first handle.

Examples
Fill in all missing intervals in KWH_RAW_HNDL with the average value of non-missing intervals:

KWH_RAW_HNDL = INTDLOAD (KWH);
KWH_HNDL = INTDSMOOTH(KWH_RAW_HNDL, "AVERAGE");

Fill in all missing intervals in KWH_RAW_HNDL with the corresponding intervals from
KWH_PATCH_HNDL:

KWH_RAW_HNDL = INTDLOAD (KWH);
KWH_PATCH_HNDL = INTDLOAD (‘PATCH,1’);
KWH_HNDL = INTDSMOOTH(KWH_RAW_HNDL, "PATCH", KWH_PATCH_HNDL);
Interval Data Function Descriptions 9-71

Interval Data Functions
INTDSORT Function

Purpose
The INTDSORT Function sorts the values in an interval data handle. The type value must be
either “ASCENDING” or “DESCENDING”. If “ASCENDING”, the values are sorted from
smallest to largest. If “DESCENDING”, the values are sorted from largest to smallest. The
default is “ASCENDING”. This function returns an interval data reference.

Format
<interval_data_reference> = INTDSORT(<interval_data_reference>,
<type>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <type> is either ASCENDING or DESCENDING.

Example
Sort the intervals, from smallest to largest, in KWH_RAW_HNDL:

KWH_HNDL_SORT = INTDSORT(KWH_RAW_HNDL, "ASCENDING");
9-72 Rules Language Reference Guide

Interval Data Functions
INTDSPIKETEST Function

Purpose
The INTDSPIKETEST Function examines the interval data for spikes as defined by the two
parameters N and P. A spike is defined as any interval that exceeds a percent (P) of the average of
the highest N number of intervals in the handle. This function returns a stem component variable
that is the name of the variable in the Assignment statement (STEM in the example below). If no
spikes are found in the handle of interval data, the SPIKECOUNT value will be set to zero. The
stem will be set to “” if the function was successful, else it will be set to the integer zero. The
component variables will include:

• STEM.SPIKECOUNT contains an integer count of the number of spikes found, up to 500.

• STEM.SPIKE1 contains the index of the first interval defined as a spike.

• STEM.SPIKE2 contains the index of the second interval defined as a spike.

• STEM.SPIKEn contains the index of the nth interval defined as a spike.

Format
<stem> = INTDSPIKETEST(<interval_data_reference>, <N>, <P>,
<status_code>);

Where
• <interval_data_reference> is a reference to the loaded interval data handle to be tested

• <N> is number of peaks to average

• <P> is the percent higher than the average of the specified peaks that any interval must be to
be considered a spike

• <status_code> Optional is the status code that all intervals must be above or better than to be
included in the validation. If not supplied, the status code will default to “9”.

Example
Identify the intervals in CUT_HNDL that are more than 40 percent higher than the average of the top 5 peaks,
and that have a Status Code of “L” or better:

SPIKETEST = INTDSPIKETEST(CUT_HNDL, 5, 40, "L");

Result :

SPIKETEST.SPIKECOUNT = 2
SPIKETEST.SPIKE1 = 96
SPIKETEST.SPIKE2 = 225
Interval Data Function Descriptions 9-73

Interval Data Functions
INTDSUBSET Function

Purpose
The INTDSUBSET Function returns a new interval data reference whose values are those
between the two dates or the supplied range of indices. The first date/index is the beginning date
and time (or index) of an interval in the input interval data reference; the second date/index is the
end date and time (or index) of an interval. You must use either start and stop dates OR start and
stop indices. You cannot combine a start date with a stop index or a start index with a stop date.

Format
<identifier> = INTDSUBSET(<interval_data_reference>,
<date_identifier|expression>, <date_identifier|expression>);

OR

<identifier> = INTDSUBSET(<interval_data_reference>, <start_index>, <stop_index>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle or a

recorder,channel constant.

• <date_identifier|expression> is either an identifier that contains a date (such as
BILL_PERIOD and BILL_START) or a date expression.

• <start_index> is an identifier that specifies an integer value. This value is one-based.

• <stop_index> is an identifier that specifies an integer value. This value is one-based.

Example
Return a subset of HNDL_1 that falls between 5/1/1993 and 5/4/1993:

HNDL_1 = INTDLOAD (KWH);
GET_SUBSET = INTDSUBSET (HNDL_1, “5/1/1993,” “5/4/1993”);

Return a subset of HNDL_1 that falls between index 5 and 15.

HNDL_1 = INTDLOAD (KWH);
GET_SUBSET = INTDSUBSET (HNDL_1, 5, 15);
9-74 Rules Language Reference Guide

Interval Data Functions
INTDTOU Function

Purpose
The INTDTOU Function computes time-of-use values for the interval data handle, based on the
given TOU schedule. If a season is specified, the computation is done only over those months
within the season (in schedule SEASON_SCHEDULE_NAME). Values are computed for each
period in the TOU schedule. The holidays are retrieved from the set named in the
HOLIDAY_NAME.

Format
<interval_data_reference> = INTDTOU(<interval_data_reference>,
<schedule_name> [, <holiday_list_name>]);

Where
• <interval_data_reference> is a reference to a loaded interval data handle or a

recorder,channel constant.

• <schedule_name> is an identifier with a string value, or a string constant, that is the name of
a Time-of-Use Schedule.

• <holiday_list_name> (Optional) is a holiday list to be used with the TOU Schedule. The
default is the default holiday schedule for the rate schedule's operating company, jurisdiction,
which is opcocode|juriscode (e.g., GECO|MA).

Example
Create a Time-of-Use handle for the account:

TOU_HNDL = INTDTOU(KWH_HNDL, “MYTOUSCHED”, “MYHOLIDAY”);

Note
The INTDTOU function supports handles with up to 2 Daylight Savings Time shifts. Applying
this function to a handle with more than 2 Daylight Savings Time shifts will result in incorrect
values.
Interval Data Function Descriptions 9-75

Interval Data Functions
INTDTOURELEASE Function

Purpose
The INTDTOURELEASE Function releases a time-of-use reference set with INTDTOU. This
function is similar to the INTDRELEASE Function on page 9-55, but is used specifically with
TOU references. This function should be used to free resources used by TOU references. There
can be up to four TOU references open that were created from the same interval data reference.
The resources are also released when the interval data reference is released. This function always
returns the integer 0.

Format
<identifier> = INTDTOURELEASE(<tou_handle_reference>);

Where
• <tou_handle_reference> is a reference returned by INTDTOU.

Example
Release the ‘TOU_HNDL’ reference.

TOU_REL = INTDTOURELEASE(TOU_HNDL);
9-76 Rules Language Reference Guide

Interval Data Functions
INTDTOUVALUE Function

Purpose
The INTDTOUVALUE Function returns a value computed for a time-of-use period.

Format
<identifier> = INTDTOUVALUE(<interval_data_reference>, <period>,
<type>);

Where
• <interval_data_reference> is a reference returned by INTDTOU.

• <period> is an identifier with a string value, or a string constant (that is the name of a period
in the time-of-use schedule), exactly as it appears in the schedule screen (trailing blanks are
ignored).

• <type> is one of the following:

• TOTAL: Adds the values for each interval in the period. This is the default.

• ENERGY: Finds total energy for the period. This option is available only if interval data
is kW or kWh. The values are combined appropriately based on IPH to compute the
total energy in the period.

• MAXIMUM: Finds maximum of the interval values during the period.

• MAXIMUMn: Finds nth maximum of the interval values during the period. For
example, “MAXIMUM3” would find third highest value. You can specify the value of n
as an integer from 2 through 10.

• KW_MAXIMUM: If the UOM is KWH, this option returns the KW maximum by
multiplying the actual maximum KWH value by the IPH (intervals per hour).

• MAXDATEn: Find the date and time of the nth maximum interval value during the
period. For example, “MAXDATE3” would return the date and time of the third highest
peak. You can specify the value of n as an integer from 2 through 10.

• MINIMUM: Finds the minimum of the nonzero values during the period.

• AVERAGE: Returns the average of the interval values during the period.

• LF: Finds the load factor using the formula LF=(average/maximum) * 100%

• HOURS: Finds the number of hours (rounded) in the bill period that were in the
specified TOU period.

• DAYS: Finds the number of days that have at least one interval in the specified period
(not the number of hours divided by 24).

Example
Get the on-peak and off-peak energy for billing at different rates:

ONPEAK_KWH = INTDTOUVALUE(TOU_HNDL, “ONPEAK”, “ENERGY”);
OFFPEAK_KWH = INTDTOUVALUE(TOU_HNDL, “OFFPEAK”, “ENERGY”);
Interval Data Function Descriptions 9-77

Interval Data Functions
INTDUPDATESTATS Function

Purpose
This INTDUPDATESTATS Function updates statistics for an interval data handle that has had a
range of intervals replaced via the INTDREPLACE Function. The default for the
INTDREPLACE Function is to update statistics automatically. This function should only be
used when statistics are explicitly NOT updated when using the INTDREPLACE Function.

Format
<identifier> = INTDUPDATESTATS(<interval_data_reference>);

Where
• <interval_data_reference> is an interval data handle previously operated on by the

INTDREPLACE Function.

Example
Update statistics for KWH_HNDL.

//Load KWH_HNDL
START = '06/01/2005 00:00:00';
STOP = '06/30/2005 23:59:59';
KWH_HNDL = INTDLOADDATES (‘METER,1’, START, STOP);
//
//Load PROFILE_HNDL
REP_START = '06/02/2005 00:00:00';
REP_STOP = '06/02/2005 23:59:59';
PROFILE_HNDL = INTDLOADDATES (‘PROFILE,1’, REP_START, REP_STOP);
//
//Replace intervals
REPLACE = INTDREPLACE(KWH_HNDL, PROFILE_HNDL, “N”);
//
...
//Update KWH_HNDL statistics
UPDATE = INTDUPDATESTATS (KWH_HNDL);
9-78 Rules Language Reference Guide

Interval Data Functions
INTDVALUE Function

Purpose
The INTDVALUE Function computes a value for an interval data handle. The returned value is
the result of adding, averaging, or taking the maximum of all the interval values. If “ENERGY” is
specified, the interval data must be KW or KWH. It is added appropriately to compute the total
energy in the handle. If “KW_MAXIMUM” is specified and the UOM is KWH, the actual
maximum is multiplied by the IPH (intervals per hour) to get the KW maximum. The
“AVERAGE” is over the non-missing values; the “AVERAGE_NZ” is over nonzero values.

If “QUANTITY_TOTAL” and a rate UOM are specified, the total is converted to a quantity;
otherwise, a total is returned. If “QUANTITY_MAX” and a rate UOM are specified, the
maximum is converted to a quantity; otherwise, a maximum is returned. If “RATE_MAX” and a
quantity UOM are specified, the maximum is converted to a quantity; otherwise, a maximum is
returned.

“QUANTITY_TOTAL” is the same as “ENERGY” for UOMs 01 and 02. “RATE_MAX” is the
same as “KW_MAXIMUM” for UOMs 01 and 02. “MAX”, “QUANTITY_MAX”, and
“RATE_MAX” are all equal for UOMs that do not appear in the UOMRATEQUANTITY Table.

Note: Whenever an interval data handle is loaded, the programs automatically compute all of the
values that you can calculate using INTDVALUE, except INDEX and DATE. DATE enables you
to retrieve the value for a specified date and time. INDEX enables you to retrieve the value for a
specific interval, such interval #29.

Format
<identifier> = INTDVALUE(<interval_data_reference>, <type>,
<identifier|constant>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle, or a

recorder,channel constant.

• <type> must be one of the following:

• ABS_MAXIMUM: returns a float that is the maximum of all the absolute values
(ignores positive or negative sign).

• ABS_MAXDATE: returns the date and time of the absolute maximum.

• AVERAGE: returns a float that is TOTAL / COUNT.

• AVERAGE_NZ: returns a float that is TOTAL / COUNT_NZ.

• CALC_CONSTANT: returns a float that is the CALC value.

• CATEGORY: returns a string containing the category of the cut. Used only with
enhanced interval data tables.

• CHANNEL: returns an integer that is the channel number.

• CHNSTATUS: returns the channel status for the handle. Note: Only available when
loading data from enhanced interval data tables.

• CMBSTATUS: returns the combined status code for the handle (based on channel
status and extended status codes). Note: Only available when loading data from
enhanced interval data tables.

• COUNT: returns an integer that is the total number of values.

• COUNT_NZ: returns an integer that is the total number of values that are not zero or
missing.
Interval Data Function Descriptions 9-79

Interval Data Functions
• DATA_STATUS_FLAG: returns a character (Y or N, depending on whether the data
and status codes are both present). This type is Oracle Utilities Load Analysis specific.

• DATE: the identifier or expression must be present (containing a date and time). The
value at that time is returned. It is an error if the date is outside the range of the interval
data reference.

• DATE_INDEX: the identifier or expression must be present (containing a date and
time). The index of the interval containing that time is returned. It is an error if the date
is outside the range of the interval data reference.

• DC_FLOW: returns a character: D (Delivered), R (Received), or a space if unknown.

• DELETE_FLAG: returns 1 if the Delete flag is On (Y); else returns 0.

• DELETE_FLAG_CHAR: returns Delete flag; Y or N.

• DESCRIPTOR: returns a string that is the descriptor field.

• DST_OFFSET: returns an integer that is DST_STOP-DST_START, the number of
intervals in the first fall DST hour.

• DST_START: returns an integer that is the index of the first interval in the first fall
DST hour if the handle contains the fall DST transition; else zero.

• DST_STOP: returns an integer that is the index of the first interval in the second fall
DST hour if the handle contains the fall DST transition; else zero.

• DSTENERGY: returns a float that is the sum of the values in the single Fall DST hour,
IPH and UOM corrected (but is nonzero only if UOM is 01 or 02). This value is nonzero
only if the handle includes 2:00 AM in the Fall DST shift day, and DSTPARTICIPANT
is not “Y”.

• DSTPARTICIPANT: returns a string that is “Y” if this handle includes a Daylight
Savings Time transition and is not 24-hour adjusted.

• DSTTOTAL: returns a float that is the sum of the values in the single Fall DST hour,
not IPH or UOM corrected. This value is nonzero only if the handle includes 2:00 AM in
the Fall DST shift day, and DSTPARTICIPANT is not “Y”.

• EDIT_FLAG: returns 1 if the Edit flag is On (Y); else returns 0.

• EDIT_FLAG_CHAR: returns Edit flag; Y or N.

• END_TIME: returns an integer that is 0 or the SPI-1, depending on the setting of the
“User interval end time...” option.

• ENERGY: returns a float that is the sum of all the values, IPH and UOM corrected (but
is nonzero only if UOM is 01 or 02).

• EX_STATUS: returns the extended status code at a specified index. The
<identifier|constant> parameter must be present (containing a one-based integer) to use
this option. It is an error if the index is outside the range of the interval data reference.
Note: Only available when loading data from enhanced interval data tables.

• EXTERNAL_VAL_FLAG: returns 1 if the external validation status flag is On (Y);
else returns 0.

• EXTERNAL_VAL_FLAG_CHAR: returns the external validation status flag; Y or N.

• INDEX: returns the value at a specified index. The <identifier|constant> parameter
must be present (containing a one-based integer) to use this option. It is an error if the
index is outside the range of the interval data reference.

• INDEX_START: returns the start date and time of a specified index. The
<identifier|constant> parameter must be present (containing a one-based integer) to use
this option. It is an error if the index is outside the range of the interval data reference.
9-80 Rules Language Reference Guide

Interval Data Functions
• INDEX_STATUS: returns the status code at a specified index. The
<identifier|constant> parameter must be present (containing a one-based integer) to use
this option. It is an error if the index is outside the range of the interval data reference.

• INDEX_STOP: returns the stop date and time of a specified index. The
<identifier|constant> parameter must be present (containing a one-based integer) to use
this option. It is an error if the index is outside the range of the interval data reference.

• INTERNAL_VAL_FLAG: returns 1 if the internal validation status flag is On (Y); else
returns 0.

• INTERNAL_VAL_FLAG_CHAR: returns internal validation status flag; Y or N.

• IPH: returns an integer that is the intervals per hour. This is zero if the SPI is greater
than 3600.

• KW_MAXIMUM: returns a float that is the maximum value, corrected for IPH if the
UOM is 01 and IPH is not zero.

• LF: The LF attribute returns the load factor, where the average is defined as the total
divided by the count of intervals with non-9 status code. See Interval Data Mask
Functions on page 9-11 for the correct way to compute the load factor on masked
handles.

• MASK_FLAG: returns 1 if the handle is a mask; else returns 0.

• MAXDATE: returns the date and time of the maximum (the first one, if there are more
than one with the same value).

• MAXIMUM: (or “MAX” or “>=”) - returns a float that is the maximum value.

• MAXINDEX: returns and integer that is the 1-based index of maximum.

• MERGE_FLAG: returns 1 if the Merge flag is On (Y); else returns 0.

• MERGE_FLAG_CHAR: returns Merge flag; Y or N.

• MESSAGE01, ..., MESSAGE10: returns a string that is the value of the corresponding
message field.

• METER_MULT: returns a float that is the meter multiplier for the readings.

• METER_OFFSET: returns a float that is the meter offset for the readings.

• MINDATE: returns the date and time of the first minimum.

• MINIMUM: (or “MIN” or “<=”) - returns a float that is the smallest value.

• MINIMUM_NZ: returns a float that is the smallest nonzero value.

• MULTIPLIER: returns the pulse multiplier as a float.

• NEG_VALUES_FLAG: returns 1 if the handle has negative values; else returns 0.

• NON_9_VALUE: returns an integer that is the total number of values that are not
missing.

• OFFSET: returns the pulse offset as a float.

• ORIGIN: returns a string that is one of: “M” = metered, “C” = computed, “P” =
profiled, or “S” = statistical.

• PARENTKEY: returns a string containing the identity of the parent of the handle. Used
only with enhanced interval data tables.

• POPULATION: Returns the float equal to the population value. This is used with
Statistical records only.

• QUANTITY_MAX: returns the maximum if UOM is not a rate; else returns maximum
* SPI / Seconds-Per-Unit.
Interval Data Function Descriptions 9-81

Interval Data Functions
• QUANTITY_TOTAL: returns the total if UOM is not a rate; else returns total * SPI /
Seconds-Per-Unit.

• RATE_MAX: returns the maximum if UOM is not a quantity; else returns maximum *
Seconds-Per-Unit / SPI.

• READING_VALUE: returns a float that is ((start_reading - stop_reading) *
meter_mult) + meter_offset, corrected for rollover (stop_reading < start_reading).

• REALSTARTTIME: returns the date and time of the first interval.

• REALSTOPTIME: returns the date and time of the last interval.

• RECORDER: returns a string that is the recorder ID.

• RECORDERCHAN: returns a string that is “recorder,channel”.

• SPI: returns an integer that is the seconds per interval.

• SPRING_DST: returns an integer that is the index of the first interval in the spring
DST hour if the handle contains the spring DST transition; else returns 0.

• START_OFFSET_FLAG: returns a character; “Y” or “N”, depending on whether the
start date and time are both present (Oracle Utilities Load Analysis specific).

• START_READING: returns a float that is the start reading.

• STARTTIME: returns the date and time of the first interval, rounded to the beginning
of the interval.

• STOP_READING: returns a float that is the stop reading.

• STOPTIME: returns the date and time of the last interval, rounded to the end of the
interval.

• TIMESTAMP: returns date and time the handle was input.

• TIMEZONES: returns the number of timezones of the handle dates from GMT (-1 is
unknown). Each timezone is 1/2 hour long, so EST is 10 timezones from GMT.

• TIMEZONES_FLAG: returns 1 if the timezones flag is On; else returns 0.

• TZSTDNAME: returns the Time Zone Standard Name for the handle.

• TOTAL: returns a float that is the sum of all the values, not IPH or UOM corrected.

• UOM: returns the numeric UOM code as an integer.

• UOMAGGREGATE: returns a character that is the UOM Aggregate value: T (Total),
M (Maximum), or A (Average).

• UOMCODE: returns the UOM code as a string.

• UOMNAME: returns the name of the UOM as a string.

• UOMRATEQUANTITY: returns a character that indicates whether the UOM is a
quantity (Q) or a rate (R). It returns “ ” if neither.

• UOMRELATEDUOM: returns a string that is the UOM code related to this UOM.

• UOMSECSPERUNIT: if the UOM is a rate, returns an integer that is the number of
seconds per unit; else returns zero.

• UOMTOTALIZE: returns a character that is the UOM Totalize value: T (Total), M
(Maximum), or A (Average).

• UOMUNIT: returns a string that is the unit of the UOM.

• VAL_FLAG_E: returns a character that is the value of the validation flag E.

• VAL_FLAG_I: returns a character that is the value of the validation flag I.
9-82 Rules Language Reference Guide

Interval Data Functions
• VAL_FLAG_N: returns a character that is the value of the validation flag N.

• VAL_FLAG_O: returns a character that is the value of the validation flag O.

• WEIGHT: Returns the float equal to the weight value. Used with Statistical records only.

The default is TOTAL. In addition, the second through tenth peaks can be retrieved and
reported using the types “MAXIMUM2”, “MAXDATE2”, “QUANTITY_MAX2”,
“RATE_MAX2”, …, “MAXIMUM10”, “MAXDATE10”, “QUANTITY_MAX10”,
“RATE_MAX10”.

• <identifier|constant> is only required if the type is DATE or INDEX. If DATE, the value
at the specified date and time is retrieved. If the date and time is outside the handle, 0 is
returned. If INDEX, it must evaluate to a number from 1 to the number of intervals in the
handle (COUNT). If the number is less than 1 or greater than COUNT, 0 is returned.

Examples
To get the KWH for a previously loaded handle:

KWH = INTDVALUE(KWH_HNDL, "ENERGY");

To get the KW for a previously loaded handle:

KW = INTDVALUE(KWH_HNDL, "KW_MAXIMUM");
Interval Data Function Descriptions 9-83

Interval Data Functions
STDEV Function

Purpose
The STDEV Function returns the standard deviation from a previously loaded interval data
handle. This function can also return the standard deviation for time of use periods within an
interval data handle by supplying a Time of Use schedule and optional holiday list.

Format
<identifier> = STDEV(<interval_data_reference>[, <schedule_name>[,
<holiday_list_name>]]);

Where
• <interval_data_reference> is a reference to a loaded interval data handle

• <schedule_name> Optional is the name of a Time-of-Use schedule stored in the Data
Repository

• <holiday_list_name> Optional. A holiday list to be used with the TOU schedule.

Examples
Get the standard deviation from HNDL.

HNDL = INTDLOADDATES ('RECORDER,1”, START, STOP);
SD = STDEV (HNDL);

Get the standard deviations for OFF_PEAK and ON_PEAK time of use periods from HNDL.

HNDL = INTDLOADDATES ('RECORDER,1”, START, STOP);
SD = STDEV (HNDL, TOU_SCHEDULE, 2007_HOLIDAYs);
ONPK_SD = SD.ON_PEAK;
OFFPK_SD = SD.OFF_PEAK;

Note: In this example, ON_PEAK and OFF_PEAK are time of use periods
defined for the TOU_SCHEDULE time of use schedule.
9-84 Rules Language Reference Guide

Enhanced Interval Data Functions
Enhanced Interval Data Functions
This section includes interval data functions that specifically work with interval data stored in
Enhanced Interval Data tables. Rules Language functions used with enhanced/generic interval
data use a specific set of parameters that differ slightly from other interval data functions. These
include:

• <parent_identity> - the identity of the parent record. This can be in the form of a string
that contains the identity or a database identifier that contains the identity. This is used by all
enhanced interval data functions.

• <parent_stem> - a stem identifier that contains the parent record, including all required
columns. Used by the INTDSAVEEXP function.

• <table_name> - the name of the interval data table in which the data is stored. This is used
by all enhanced interval data functions.

• <category> - the optional category code associated with the interval data. This can be in the
form of a string that contains the category or a database identifier that contains the category.
This is used by all enhanced interval data functions.

Oracle Utilities Meter Data Management Interval Data
When using these functions with the Oracle Utilities Meter Data Management application, the
following apply:

• The <parent_identity> parameter comes from the MDM Meter table, and comprises the
meter ID, UOM, and channel number of the meter for which you wish to load/save/delete
data, separated by commas.(example: “METER,01,1”).

• The <category> parameter comes from the Usage Category.

• The <table_name> parameter is the Meter Data Channel Cut (LSMDMTRDATACUT) table.

• The <identity> parameter used by the INTDLOADEXCUT function comprises the
following:

• Meter ID

• UOM

• Channel Number

• Category Code

• Start Time

• Version Sequence

• Example: “METER,01,1, FINAL, 04/01/2006 00:00:00, 2”).
Interval Data Function Descriptions 9-85

Enhanced Interval Data Functions
INTDDELETEEX Function

Purpose
The INTDDELETEEX Function deletes an interval data cut from a specified Enhanced Interval
Data table.

Format
<identifier> = INTDDELETEEX(<parent_identity|parent_db_identifier> ,
[<category|category_db_identifier>,][QUAL/<alternate_qualifier>,]
<table_name>, <date_identifier>);

Where
• <parent_identity> is a string containing the identity of the parent of the data to be deleted.

• <parent_db_identifier> is a database identifier that contains the database record for the
Enhanced Interval Data table from which to delete the data. See Database Identifiers on
page 4-5 in the Oracle Utilities Rules Language User’s Guide for more information about using
database identifiers.

• <category> (Optional) is a string containing the category for the data to be deleted.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be deleted. See Database Identifiers on page 4-5 in the
Oracle Utilities Rules Language User’s Guide for more information about using database
identifiers.

• <alternate_qualifier> is a string containing the name of an alternate database qualifier
containing the interval data to be deleted. When specifying an alternate database qualifier, the
<alternate_qualifier> and <table_name> arguments should be concatenated, separated by a
comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table from which to delete the
data.

• <date_identifier> is the start time of the cut to be deleted as stored in the Oracle Utilities
Data Repository.

Example
Delete the interval data cut for meter ID 80001, UOM 01, channel 2 with a start time of
06/01/2005 with a category of “FINAL” from the Meter Data Channel Cut (LSMDMTRDATACUT)
table.

METER = “80001,01,2”;
CATEGORY = “FINAL”;
TABLE_NAME = “LSMDMTRDATACUT”;
DATE = ‘06/01/2005 00:00:00’;
DELETED = INTDDELETEEX(METER, CATEGORY, TABLE_NAME, DATE);

Delete data from LSINTERVALDATACUT

//Deleting Enhanced Interval Data Tables: LSINTERVALDATACUT
//Set parameters
IDENTITY = "Cut1,2";
CATEGORY = "Type1,09/01/2006 00:00:00";
TABLE_NAME = "LSINTERVALDATACUT";
STARTTIME = DATE("01/01/2006 00:00:00");
//Delete data
DELETE_HNDL = INTDDELETEEX(IDENTITY, CATEGORY, TABLE_NAME, STARTTIME);
9-86 Rules Language Reference Guide

Enhanced Interval Data Functions
INTDGETATTREXALL Function

Purpose
The INTDGETATTREXALL function gets multiple custom and parent attributes of a specified
enhanced interval data handle.

This function is used to get multiple custom and parent attributes of an enhanced interval data
handle in a single function call. Returns an integer; zero if successful, not zero if an error (for
example, if this attribute cannot be modified).

Format:
<identifier> = INTDGETATTREXALL(<interval_data_reference>,
<intd_stem>, <parent_stem>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle.

• <intd_stem> a stem identifier whose tails will be assigned from custom columns in the
loaded handle.

• <parent_stem> - a stem identifier whose tails will be assigned from parent columns in the
loaded handle.

Example:
Report the C1 and C2 custom columns, and P1 and P2 parent columns in the #SAVE_AR array.

FOR EACH I IN NUMBER 100
CUSTOM.C1 = "C" + I;
CUSTOM.C2 = I;
PARENT.P1 = "Parent" + I;
PARENT.P2 = "Parent2_" + I;
RET = INTDSETATTREXALL (#SAVE_AR[I], CUSTOM, PARENT);

END FOR;

FOR EACH I IN NUMBER 100
RET = INTDGETATTREXALL (#SAVE_AR[I], CUSTOM, PARENT);
REPORT CUSTOM.C1;
REPORT CUSTOM.C2;
REPORT PARENT.P1;
REPORT PARENT.P2;

END FOR;
Interval Data Function Descriptions 9-87

Enhanced Interval Data Functions
INTDLOADEXACTUAL Function

Purpose
The INTDLOADEXACTUAL Function loads a specific interval data cut from a specified
Enhanced Interval Data table. It loads a specific interval data cut for a given start time. This
function loads cuts as stored in the Oracle Utilities Data Repository. Returns an interval data
reference.

Format
<interval_data_reference> = INTDLOADEXACTUAL(
<parent_identity|parent_db_identifier> ,
[<category|category_db_identifier>,][QUAL/<alternate_qualifier>,]
<table_name>, <date_identifier>);

Where
• <parent_identity> is a string containing the identity of the parent of the data to be loaded.

• <parent_db_identifier> is a database identifier that contains the database record for the
Enhanced Interval Data table from which to load the data. See Database Identifiers on
page 4-5 in the Oracle Utilities Rules Language User’s Guide for more information about using
database identifiers.

• <category> (Optional) is a string containing the category for the data to be loaded.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be loaded. See Database Identifiers on page 4-5 in the Oracle
Utilities Rules Language User’s Guide for more information about using database identifiers.

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded. When specifying an alternate database qualifier, the
<alternate_qualifier> and <table_name> arguments should be concatenated, separated by a
comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table from which to load the data.

• <date_identifier> (Optional) is the start time of the cut as stored in the Oracle Utilities Data
Repository. If not supplied, the default value is equal to BILL_START.

Example
Load the interval data cut for meter ID 80001, UOM 01, channel 2 with a start time of
06/01/2005 with a category of “FINAL” from the Meter Data Channel Cut (LSMDMTRDATACUT)
table.

METER = “80001,01,2”;
CATEGORY = “FINAL”;
TABLE_NAME = “LSMDMTRDATACUT”;
HNDL = INTDLOADEXACTUAL(METER, CATEGORY, TABLE_NAME, “06/01/2005”);
9-88 Rules Language Reference Guide

Enhanced Interval Data Functions
INTDLOADEXCUT Function

Purpose
The INTDLOADEXCUT Function loads a specific interval data cut from an Enhanced Interval
Data table, including versioning tables. It returns an interval data reference.

Format
<interval_data_reference> = INTDLOADEXCUT(<identity>, [QUAL/
<alternate_qualifier>,] <table_name>);

Where
• <identity> is a string containing the identity of the interval data cut to be loaded. When

loading from a versioning table, this must include the parent identity of the interval data cut,
plus the start time and version sequence (separated by commas).

• <alternate_qualifier> is a string containing the name of an alternate database qualifier
containing the interval data to be loaded. When specifying an alternate database qualifier, the
<alternate_qualifier> and <table_name> arguments should be concatenated, separated by a
comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data Versioning table from which to
load the data.

Example
Load an interval data cut for meter ID 80001, UOM 01, channel 2 with a start time of 06/01/2005 and a
category of “FINAL” from the Meter Data Channel Cut (LSMDMTRDATACUT) table.

METER = “80001”
UOM = “01”;
CHAN = “1”;
CATEGORY = “FINAL”;
START = “06/01/2005 00:00:00”
ID = METER + "," + UOM + "," + CHAN + "," + CATEGORY + "," + START;
TABLE_NAME = “LSMDMTRDATACUT”;
HNDL = INTDLOADEXCUT(ID, TABLE_NAME);

Load the versioned interval data cut for meter ID 80001, UOM 01, channel 2 with a start time of 06/01/2005
and a version sequence of 3 with a category of “FINAL” from the Meter Data Channel Cut Version
(LSMDMTRDATACUTV) table.

METER = “80001”
UOM = “01”;
CHAN = “1”;
CATEGORY = “FINAL”;
START = “06/01/2005 00:00:00”
SEQ = “3”
ID = METER + "," + UOM + "," + CHAN + "," + CATEGORY + "," + START + ","
+ SEQ;
TABLE_NAME = “LSMDMTRDATACUTV”;
HNDL = INTDLOADEXCUT(ID, TABLE_NAME);
Interval Data Function Descriptions 9-89

Enhanced Interval Data Functions
INTDLOADEXDATES Function

Purpose
The INTDLOADEXDATES Function loads interval data for a user-specified date range from a
specified Enhanced Interval Data table. This function is similar to the INTDLOADEX
Function on page 9-93, except that you specify a parent and date range for the data.

Format
<interval_data_reference> =
INTDLOADEXDATES(<parent_identity|parent_db_identifier> ,
[<category|category_db_identifier>,][QUAL/<alternate_qualifier>,]
<table_name>, <date_identifier|date_constant>,
<date_identifier|date_constant>[,<loadflag>][,<tzstd>][,<dst_flag>]);

Where
• <parent_identity> is a string containing the identity of the parent of the data to be loaded.

• <parent_db_identifier> is a database identifier that contains the database record for the
Enhanced Interval Data table from which to load the data. See Database Identifiers on
page 4-5 in the Oracle Utilities Rules Language User’s Guide for more information about using
database identifiers.

• <category> (Optional) is a string containing the category for the data to be loaded.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be loaded. See Database Identifiers on page 4-5 in the Oracle
Utilities Rules Language User’s Guide for more information about using database identifiers.

• <alternate_qualifier> is a string containing the name of an alternate database qualifier
containing the interval data to be loaded. When specifying an alternate database qualifier, the
<alternate_qualifier> and <table_name> arguments should be concatenated, separated by a
comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table from which to load the data.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. Acceptable formats are ‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’, and ‘MM/
DD/YYYY HH:MM:SS’.

If you do not specify a time, the time defaults to 00:00:00.

• <loadflag> (optional) specifies the behavior of the function when loading cuts with mixed
time zones and/or DST Participant flags. This parameter must be an integer, or an identifier
or expression that resolves to an integer that is the sum of two values, one that specifies how
to resolve mixed time zones (using the Time Zone Standard Name field), and one that
specifies how to resolve mixed DST Participant flags.

• Time Zones:

• 0: If the Time Zone Standard Names are different, return an error. (Default)

• 1: Use the first cut's Time Zone Standard Name (TZSN).

• 2: Use the TZSN supplied in the function call.*

• DST Participants

• 4: If the DST Participant flags are different, return an error. (Default)

• 8: Use the first cut's DST Participant flag.

• 16: Use the DST Participant flag supplied in the function call.*
9-90 Rules Language Reference Guide

Enhanced Interval Data Functions
*When using either the TZSN or the DST Participant flag supplied in the function call, use 2
or 16 as normal. To use both the TZSN and DST Participant flag supplied in the function
call, use 32.

The table below lists the possible combinations of the Time Zone and DST Participant
values:

For example, to return an error if either the TZSN or the DST Participant flags are different,
you would set this parameter to 4 (0 for TZSN and 4 for DST) This is the default value for
this parameter. To use both the TZSN and DST Participant flag from the first cut, you would
set this parameter to 9 (1 for TZSN, 8 for DST).

• <tzstd> (optional) is the TZSN for the handle. The supplied value must be one of “EST”,
“CST”, “MST”, “PST”, or be defined in the LSCALENDAR.XML configuration file (if
present). If empty, this is equal to the Time Zone Standard Name of the first cut. The Default
value is the default time zone, as specified in the LSCALENDAR.XML file.

• <dst_flag> (optional) is the DST Participant flag for the handle. Must be either “Y” or “N”.
If empty, this is equal to the DST Participant flag of the first cut. The Default value is “N”.

Examples
Load the interval data cut for meter ID 80001, UOM 01, channel 2 with a category of “FINAL” from the
Meter Data Channel Cut (LSMDMTRDATACUT) table for the month of January, 2006:

METER = “80001,01,2”;
CATEGORY = “FINAL”;
TABLE_NAME = “LSMDMTRDATACUT”;
KWH_HNDL = INTDLOADEXDATES(METER, CATEGORY, TABLE_NAME, ‘01/01/2006’,
‘01/31/2006 23:59:59’);

OR

STARTDT = '01/01/2006';
STOPDT = '01/31/2006 23:59:59';
METER = “80001,01,2”;
CATEGORY = “FINAL”;
TABLE_NAME = “LSMDMTRDATACUT”;
KWH_HNDL = INTDLOADEXDATES(METER, CATEGORY, TABLE_NAME, STARTDT,
STOPDT);

Load the interval data cut for meter ID 80001, UOM 01, channel 2 from the Meter Data Channel Cut
(LSMDMTRDATACUT) table for the month of January, 2006, and use the supplied Time Zone Standard
Name and DST Participant flag.

TZSN DST Participant
Load Flag
Parameter

Error if different (0) Error if different (4) 4

Error if different (0) From first cut (8) 8

Error if different (0) From function call (16) 16

From first cut (1) Error if different (4) 5

From first cut (1) From first cut (8) 9

From first cut (1) From function call (16) 17

From function call (2) Error if different (4) 6

From function call (2) From first cut (8) 10

From function call (2)* From function call (16)* 32*
Interval Data Function Descriptions 9-91

Enhanced Interval Data Functions
STARTDT = '01/01/2006';
STOPDT = '01/31/2006 23:59:59';
METER = “80001,01,2”;
TABLE_NAME = “LSMDMTRDATACUT”;
KWH_HNDL = INTDLOADEXDATES(METER, TABLE_NAME, STARTDT, STOPDT, 34,
“EST”, “N”);

Load interval data from the LSINTERVALDATACUT table.

//Loading Enhanced Interval Data Tables: LSINTERVALDATACUT,
//Set parameters
IDENTITY = "Cut1,2";
CATEGORY = "Type1,09/01/2006 00:00:00";
TABLE_NAME = "LSINTERVALDATACUT";
STARTTIME = DATE("01/01/2006 00:00:00");
STOPTIME = DATE("01/05/2006 23:59:59");
//Load HNDL
LOAD_HNDL = INTDLOADEXDATES(IDENTITY , CATEGORY , TABLE_NAME ,
STARTTIME , STOPTIME);
9-92 Rules Language Reference Guide

Enhanced Interval Data Functions
INTDLOADEX Function

Purpose
The INTDLOADEX Function loads and totalizes an account’s interval data for a user-specified
determinant for the current bill period from a specified Enhanced Interval Data table. It looks up
the unit of measure (UOM) associated with the bill determinant in the Bill Determinant table.
Then, it looks at the Meter Configuration table to determine which of the meters that belong to
the account currently being billed collect data in that UOM. This function can only be used with
Oracle Utilities Billing Component and Oracle Utilities Meter Data Management.

Format
<interval_data_reference> = INTDLOADEX(<determinant_identifer>,
[<category|category_db_identifier>,][QUAL/<alternate_qualifier>,]
<table_name>);

Where
• <determinant_identifer> is an identifier for a billing determinant, as defined in the Bill

Determinant table. Its UOM is retrieved, and the matching meters for the account are
totalized to get the interval data cut.

• <category> (Optional) is a string containing the category for the data to be loaded.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be loaded. See Database Identifiers on page 4-5 in the Oracle
Utilities Rules Language User’s Guide for more information about using database identifiers.

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded. When specifying an alternate database qualifier, the
<alternate_qualifier> and <table_name> arguments should be concatenated, separated by a
comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table from which to load the data.

Examples
Load interval data cuts based on KW and KVAR with a category of “FINAL” from the Meter Data Channel
Cut (LSMDMTRDATACUT) table.

CATEGORY = “FINAL”;
TABLE_NAME = “LSMDMTRDATACUT”;
INT_KW_HNDL = INTDLOADEX(KW, CATEGORY, TABLE_NAME);
INT_KVAR_HNDL =INTDLOADEX(KVAR, CATEGORY, TABLE_NAME);
Interval Data Function Descriptions 9-93

Enhanced Interval Data Functions
INTDLOADEXLIST Function

Purpose
Totalizes the interval data stored in an enhanced interval data table for the current bill period for
all parent records in a list.

This function totalizes the interval data for all parent records in a TABLE.COLUMN list. (See the
Data Manager User's Guide for information about creating TABLE.COLUMN lists.) The list must
consist of a list of unique identifiers for the parents.

Format
<interval_data_reference> = INTDLOADEXLIST([QUAL/<alternate_qualifier>,]
<table_name>, <list_identifier|list_name>,
[<category|category_db_identifier>]);

Where
• <alternate_qualifier> is a string containing the name of an alternate database qualifier

containing the interval data to be loaded. When specifying an alternate database qualifier, the
<alternate_qualifier> and <table_name> arguments should be concatenated, separated by a
comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table from which to load the data.

• <list_identifier> is an identifier that contains the name of a list of parent records.

• <list_name> is a literal constant of the form “listname”, that identifies a list of parent
records.

• <category> is a string containing the category for the data to be loaded.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be loaded. See Database Identifiers on page 4-5 in the Oracle
Utilities Rules Language User’s Guide for more information about using database identifiers.

Example
Load all interval data for all weather stations returned by the “GET_TX_WEATHER_STATIONS” list
(includes all weather stations with a Jurisdiction of TEXAS) with a category of “FINAL.”

TABLE_NAME = "LSWEATHERDATA";
LIST_NAME = "GET_TX_WEATHER_STATIONS";
CATEGORY = "FINAL";
LST_HNDL = INTDLOADEXLIST (TABLE_NAME, LIST_NAME, CATEGORY);
9-94 Rules Language Reference Guide

Enhanced Interval Data Functions
INTDLOADEXLISTDATES Function

Purpose
The INTDLOADEXLISTDATES function totalizes the interval data stored in an enhanced
interval data table for all parent records in a list over a specified time range.

This function totalizes the interval data for all parent records in a TABLE.COLUMN list. (See the
Data Manager User's Guide for information about creating TABLE.COLUMN lists.) The list must
consist of a list of unique identifiers for the parents.

Format
<interval_data_reference> = INTDLOADEXLISTDATES([QUAL/
<alternate_qualifier>,] <table_name>, <list_identifier|list_name>,
[<category|category_db_identifier>,]<date_identifier|date_constant>,
<date_identifier|date_constant>);

Where
• <alternate_qualifier> is a string containing the name of an alternate database qualifier

containing the interval data to be loaded. When specifying an alternate database qualifier, the
<alternate_qualifier> and <table_name> arguments should be concatenated, separated by a
comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table from which to load the data.

• <list_identifier> is an identifier that contains the name of a list of parent records.

• <list_name> is a literal constant of the form “listname”, that identifies a list of parent
records.

• <category> is a string containing the category for the data to be loaded.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be loaded. See Database Identifiers on page 4-5 in the Oracle
Utilities Rules Language User’s Guide for more information about using database identifiers.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. Acceptable formats are ‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’, and ‘MM/
DD/YYYY HH:MM:SS’. If you do not specify a time, the time defaults to 00:00:00.

Example
Load all interval data for all weather stations returned by the “GET_TX_WEATHER_STATIONS” list
(includes all weather stations with a Jurisdiction of TEXAS) with a category of “FINAL” for the month of
January 2007.

TABLE_NAME = "LSWEATHERDATA";
LIST_NAME = "GET_TX_WEATHER_STATIONS";
CATEGORY = "FINAL";
START = DATE ('01/01/2007 00:00:00');
STOP = DATE ('01/31/2007 23:59:59');
LST_HNDL = INTDLOADEXLISTDATES (TABLE_NAME, LIST_NAME, CATEGORY,
START, STOP);
Interval Data Function Descriptions 9-95

Enhanced Interval Data Functions
INTDLOADEXRELATEDCHANNEL Function

Purpose
The INTDLOADEXRELATEDCHANNEL Function loads the interval data for the related
meter specified in the MDM Meter table from a specified Enhanced Interval Data table. It loads
the interval data for the meter related to the interval data reference’s meter through the MDM
Meter table. This function is used with Oracle Utilities Meter Data Management ONLY. Returns
an interval data reference.

Format
<identifier> = INTDLOADEXRELATEDCHANNEL
(<parent_identity|parent_db_identifier> ,
[<category|category_db_identifier>,][QUAL/<alternate_qualifier>,]
<table_name>, <date_identifier|date_constant>,
<date_identifier|date_constant>);

Where
• <parent_identity> is a string containing the identity of the parent of the meter to which the

data to be loaded is related.

• <parent_db_identifier> is a database identifier that contains the database record for the
Enhanced Interval Data table from which to load the data. See Database Identifiers on
page 4-5 in the Oracle Utilities Rules Language User’s Guide for more information about using
database identifiers.

• <category> (Optional) is a string containing the category for the data to be loaded.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be loaded. See Database Identifiers on page 4-5 in the Oracle
Utilities Rules Language User’s Guide for more information about using database identifiers.

• <alternate_qualifier> is a string containing the name of an alternate database qualifier
containing the interval data to be loaded. When specifying an alternate database qualifier, the
<alternate_qualifier> and <table_name> arguments should be concatenated, separated by a
comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table from which to load the data.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. Acceptable formats are ‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’, and ‘MM/
DD/YYYY HH:MM:SS’. If you do not specify a time, the time defaults to 00:00:00.

Example
Load related interval data for for January 2006 for meter ID 80001, UOM 01, channel 2.

STARTDT = '01/01/2006';
STOPDT = '01/31/2006 23:59:59';
METER = “80001,01,2”;
CATEGORY = “FINAL”;
TABLE_NAME = “LSMDMTRDATACUT”;
INT_HNDL = INTDLOADEXRELATEDCHANNEL(METER, CATEGORY, TABLE_NAME,
STARTDT, STOPDT);
9-96 Rules Language Reference Guide

Enhanced Interval Data Functions
INTDSAVEEX Function

Purpose
The INTDSAVEEX Function saves an interval data handle to a specified Enhanced Interval Data
table. It can save individual handles, or can save multiple handles with a single function call
(known as “bulk saves”).

Format
<identifier> = INTDSAVEEX((<parent_identity|parent_db_identifier> ,
[<category|category_db_identifier>,][QUAL/<alternate_qualifier>,]
<table_name>, <intd_hndl|hndl_array>);

Where
• <parent_identity> is a string containing the identity of the parent of the data to be saved.

• <parent_db_identifier> is a database identifier that contains the database record for the
Enhanced Interval Data table to which the data is to be saved. See Database Identifiers on
page 4-5 in the Oracle Utilities Rules Language User’s Guide for more information about using
database identifiers.

Note: When performing bulk saves with this function, this parameter should
be an empty string (""). In this case, the parent identity is derived from the
<hndl_array> parameter.

• <category> (Optional) is a string containing the category for the data to be saved.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be saved. See Database Identifiers on page 4-5 in the Oracle
Utilities Rules Language User’s Guide for more information about using database identifiers.

Note: Even if a category is not used, the <category> parameter is required
when using this function. In this case, specify an empty string ("").

• <alternate_qualifier> is a string containing the name of an alternate database qualifier
containing the table where the interval data is to be saved. When specifying an alternate
database qualifier, the <alternate_qualifier> and <table_name> arguments should be
concatenated, separated by a comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table to which to the data is to be
saved.

• <intd_hndl> is a reference to the loaded interval data handle to be saved.

• <hndl_array> is an array identifier that contains multiple handles to be saved. This is used
when performing bulk saves.

Examples
Save the interval data in KWH_HNDL to meter ID 80001, UOM 01, channel 2 with a with a category of
“FINAL” to the Meter Data Channel Cut (LSMDMTRDATACUT) table.

METER = “80001,01,2”;
CATEGORY = “FINAL”;
TABLE_NAME = “LSMDMTRDATACUT”;
SAVE_HNDL = INTDSAVEEX(METER, CATEGORY, TABLE_NAME, KWH_HNDL);

Save the interval data in LOAD_HNDL to the LSINTERVALDATACUT table

//Saving Enhanced Interval Data Tables: LSINTERVALDATACUT
IDENTITY = "Cut1,2";
CATEGORY = "Type1,09/01/2006 00:00:00";
TABLE_NAME = "LSINTERVALDATACUT";
LOAD_HNDL.READSTATUSCODE = “VALID”;
Interval Data Function Descriptions 9-97

Enhanced Interval Data Functions
SHIFT_STARTTIME = DATE("09/10/2006 00:00:00");
SHIFT_WEEK = INTDSHIFTSTARTTIME(LOAD_HNDL , "STARTTIME" ,
SHIFT_STARTTIME);
//Save shifted HNDL
SAVE_HNDL = INTDSAVEEX(IDENTITY , CATEGORY , TABLE_NAME , SHIFT_WEEK);

When saving existing interval data loaded from standard interval data tables (such as Channel Cut
Header), there are additional steps required. A parent record, if it is not already in the database,
must be created before the data can be saved. Once the parent record is in place, the loaded
interval data can be saved using the INTDSAVEEX function.

//Load data to be saved from LSCHANNELCUTHEADER
IDENTITY_OLD = "000004_COM_DP,100";
SAVE_OLD_HNDL = INTDLOADDATES(IDENTITY_OLD , DATE("07/16/2002
00:00:00") , DATE("07/16/2002 23:59:59"));
//
//Save meter info to parent LSINTERVALDATA first if not in that table
LSINTD.CUTNAME = "000004_COM_DP";
LSINTD.CUTNUM = "100";
LSINTD.DATA_ID = "TEST";
LSINTD.BILLDETERMCODE = "1";
SAVE LSINTD TO TABLE "LSINTERVALDATA";
//
//Save data to new table
CATEGORY = "Type1,09/01/2006 00:00:00";
TABLE_NAME = "LSINTERVALDATACUT";
SAVE_HNDL = INTDSAVEEX(IDENTITY_OLD , CATEGORY , TABLE_NAME ,
SAVE_OLD_HNDL);
9-98 Rules Language Reference Guide

Enhanced Interval Data Functions
INTDSAVEEXP Function

Purpose
The INTDSAVEEXP function saves an interval data handle and its parent to specified Enhanced
Interval Data tables.

This function can save individual handles/parents, or can save multiple handles/parents with a
single function call (known as “bulk saves”).

Format
<identifier> = INTDSAVEEXP((<parent_stem|parent_array> ,
[<category|category_db_identifier|<category_array>,][QUAL/
<alternate_qualifier>,] <table_name>, <intd_hndl|hndl_array>);

Where
• <parent_stem> is a stem identifier containing the parent record of the data to be saved. This

stem must contain all required columns for the parent record, not only those used by the
identity.

• <parent_array> is an array identifier containing the parent records that correspond to the
handles to be saved.

• <category> (Optional) is a string containing the category for the data to be saved.

• <category_db_identifier> (Optional) is a database identifier that contains the database record
for the category for the data to be saved. See Database Identifiers on page 4-5 in the Oracle
Utilities Rules Language User’s Guide for more information about using database identifiers.

• <category_array> (Optional) is an array identifier containing categories that correspond to the
handles to be saved.

• Note: Even if a category is not used, the <category> parameter is required when using this
function. In this case, specify an empty string ("").

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the table where the interval data is to be saved. When specifying an alternate
database qualifier, the <alternate_qualifier> and <table_name> arguments should be
concatenated, separated by a comma (Ex: "QUAL/TEST,LSMDMTRDATACUT").

• <table_name> is the name of the Enhanced Interval Data table to which to the data is to be
saved.

• <intd_hndl> is a reference to the loaded interval data handle to be saved.

• <hndl_array> is an array identifier that contains multiple handles to be saved. This is used
when performing bulk saves.

Examples
Save the interval data in KWH_HNDL to meter ID 45678, UOM 01, channel 2 with a
with a category of “FINAL” to the Meter Data Channel Cut (LSMDMTRDATACUT)
table.

MTR.METERID = "45678";
MTR.EXPECTEDUOMCODE = "01";
MTR.CHANNELID = "2";
CATEGORY = "FINAL";
TABLE_NAME = "LSMDMTRDATACUT";
SAVE_HNDL = INTDSAVEEXP(MTR, CATEGORY, TABLE_NAME, KWH_HNDL);
Interval Data Function Descriptions 9-99

Enhanced Interval Data Functions
Save the interval data in LOAD_HNDL to the LSINTERVALDATACUT table

//Saving Enhanced Interval Data Tables: LSINTERVALDATACUT
ID.CUTNAME = "CUT1";
ID.CUTNUMBER = "2";
CATEGORY = "Type1,09/01/2006 00:00:00";
TABLE_NAME = "LSINTERVALDATACUT";
LOAD_HNDL.READSTATUSCODE = "VALID";
SHIFT_STARTTIME = DATE("09/10/2006 00:00:00");
SHIFT_HNDL = INTDSHIFTSTARTTIME(LOAD_HNDL , "STARTTIME" ,
SHIFT_STARTTIME);
//Save shifted HNDL
SAVE_HNDL = INTDSAVEEXP(ID , CATEGORY , TABLE_NAME , SHIFT_HNDL);

Load data for weather stations WS_1 through WS_30 in Texas (TEXAS) that have a
category of “INITIAL” for the month of June 2007 and save them to new weather stations
WSN_1 through WSN_30 with a category of “FINAL.”

TABLE_NAME = "LSWEATHERDATA";
START = DATE ('06/01/2007 00:00:00');
STOP = DATE ('06/30/2007 23:59:59');
FOR EACH REC IN LIST "GET_WS_DATA"

X = X + 1;
WS = REC.STATIONCODE;
JURIS = REC.JURISCODE;
WEATHER_STATION = WS + "," + JURIS;
#ARR[X] = INTDLOADEXDATES (WEATHER_STATION, "INITIAL", TABLE_NAME,

START, STOP);
WST = "WSN_" + X;
PARENT_KEY = WST + "," + JURIS
#PAR[X] = PARENT_KEY;
CATEGORY = "FINAL";
SET_PK = INTDSETATTRIBUTE (#ARR[X], "PARENTKEY", PARENT_KEY);

END FOR;
SAVE_HNDL = INTDSAVEEXP(#PAR[], CATEGORY, TABLE_NAME, #ARR[]);
9-100 Rules Language Reference Guide

Enhanced Interval Data Functions
INTDSETATTREX Function

Purpose
The INTDSETATTREX function sets an attribute of a specified enhanced interval data handle.

This function is used to set attributes of enhanced interval data handles. This function is similar to
the INTDSETATTRIBUTE function. Returns an integer; zero if successful, not zero if an error
(for example, if this attribute cannot be modified).

Format
<identifier> = INTDSETATTREX(<interval_data_reference>, <attribute>,
<identifier|expression>[,<field_type>]);

Where
• <interval_data_reference> is a reference to a loaded interval data handle.

• <attribute> is the custom attribute to be set.

• <identifier|expression> is either an identifier or an expression that sets the values of the
attribute. If an identifier, it must have been assigned earlier in the rate form. The type of
identifier or expression must match the return type listed above.

• <field_type> is either an identifier or an expression that sets the type of attribute to be set.
Valid values are "P" (parent) or "C" (custom). The default is "C."

Examples
Set the Related Profile (REL_PRF) of ‘HNDL’ to RES_PROFILE_1.

HNDL_PF = INTDSETATTREX(HNDL, REL_PRF, "RES_PROFILE_1");

OR

PROFILE = "RES_PROFILE_1";
HNDL_PF = INTDSETATTRIBUTE(HNDL, REL_RPF, PROFILE);
Interval Data Function Descriptions 9-101

Enhanced Interval Data Functions
INTDSETATTREXALL Function

Purpose
The INTDSETATTREXALL function sets multiple custom and parent attributes of a specified
enhanced interval data handle.

This function is used to set multiple custom and parent attributes of an enhanced interval data
handle in a single function call. This function is similar to the INTDSETATTRIBUTE and
INTDSETATTREX functions. Returns an integer; zero if successful, not zero if an error (for
example, if this attribute cannot be modified).

Format
<identifier> = INTDSETATTREXALL(<interval_data_reference>,
<intd_stem>, <parent_stem>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle.

• <intd_stem> a stem identifier that contains custom colums.

• <parent_stem> - a stem identifier that contains the parent record, including
all required columns.

Example
Set the C1 and C2 custom columns, and P1 and P2 parent columns in the #SAVE_AR array.

FOR EACH I IN NUMBER 100
CUSTOM.C1 = "C" + I;
CUSTOM.C2 = I;
PARENT.P1 = "Parent" + I;
PARENT.P2 = "Parent2_" + I;
RET = INTDSETATTREXALL (#SAVE_AR[I], CUSTOM, PARENT);

END FOR;
9-102 Rules Language Reference Guide

Enhanced Interval Data Functions
INTDVALUEEX Function

Purpose
The INTDVALUEEX function returns an attribute of a specified enhanced interval data handle.

This function is used to return attribute values of enhanced interval data handles. This function is
similar to the INTDVALUE function.

Format
<identifier> = INTDVALUEEX(<interval_data_reference>,
<type>[,<field_type>);

Where
• <interval_data_reference> is a reference to a loaded interval data handle.

• <type> is the name of the custom attribute to be returned

• <field_type> is either an identifier or an expression that sets the type of attribute to be set.
Valid values are "P" (parent) or "C" (custom). The default is "C."

Example
Get the Related Profile (REL_PRF) for a previously loaded handle:

PROFILE = INTDVALUEEX(HNDL, "REL_PRF");
Interval Data Function Descriptions 9-103

Enhanced Interval Data Functions
Enhanced Interval Data Functional Differences
The following table lists each of the Enhanced Interval Data functions, its corresponding standard
function, and a brief description of the differences between the two.

Enhanced Interval Data Function Standard Interval Data Function Difference

INTDDELETEEX INTDDELETE Enhanced function deletes data
from enhanced interval data
tables.

INTDLOADEX INTDLOAD Enhanced function loads data
from specified enhanced interval
data table.

INTDLOADEXACTUAL INTDLOADACTUALCUT Enhanced function loads data
from specified enhanced interval
data table.

INTDLOADEXCUT INTDLOADVERSION Enhanced function loads data
from specified enhanced interval
data version table.

INTDLOADEXDATES INTDLOADDATES Enhanced function loads data
from specified enhanced interval
data table.

INTDLOADEXLIST INTDLOADLIST Enhanced function loads data
from specified enhanced interval
data table.

INTDLOADEXLISTDATES INTDLOADLISTDATES Enhanced function loads data
from specified enhanced interval
data table.

INTDLOADEXRELATEDCHANNEL INTDLOADRELATEDCHANNEL Enhanced function loads data
from specified enhanced interval
data table.

INTDSETATTREX INTDSETATTRIBUTE Enhanced function sets attributes
for enhanced interval data handle.
Supports attributes based on
Required, Optional, and Custom
columns.*

INTDVALUEEX INTDVALUE Enhanced function gets values
from enhanced interval data
handles. Supports values based on
Required, Optional, and Custom
columns.*

INTSAVEEX SAVE TO CHANNEL Enhanced function saves interval
data handle to an enhanced
interval data table.

INTDSAVEEXP SAVE TO CHANNEL Enhanced function saves interval
data handle and it’s corresponding
parent record to an enhanced
interval data table.

* Available in the Patch 9 release, scheduled for August 10, 2007.
9-104 Rules Language Reference Guide

Enhanced Interval Data Functions
Interval Data Functions and Enhanced Interval Data Handles
The following table lists the interval data functions not listed above, and whether or not the
function can be used with enhanced interval data.

Other Interval Data Functions Applicable to Enhanced Interval Data

INTDADDATTRIBUTE Yes

INTDADDVMSG Yes

INTDBLOCKOP Yes

INTDBLOCKOPNA Yes

INTDCLOSE N/A

INTDCOUNT Yes

INTDCOUNTSTATUSCODE Yes

INTDCREATEDAYMASK Yes

INTDCREATEFACTORMASK Yes

INTDCREATEHANDLE Yes. Handles created using this function can be
saved to an enhanced interval data table. Note
that attributes based on required columns must
be set using the INTDSETATTREX function
prior to saving.

INTDCREATEMASK Yes

INTDCREATEOVERRIDEDAYMASK Yes

INTDCREATEOVERRIDEMASK Yes

INTDCREATESTATUSCODEMASK Yes

INTDCREATETOUPERIOD Yes

INTDDIPTEST Yes

INTDEXPORT Yes. When enhanced interval data handles are
exported to XML format, they are exported to
the Compact XML format.

INTDGETERRORCODE Yes

INTDGETERRORMESSAGE Yes

INTDISEQUAL Yes

INTDJOIN Yes

INTDLOADHIST N/A

INTDLOADLISTENERGY N/A

INTDLOADLISTHIST N/A

INTDLOADSP N/A

INTDLOADSTAGING N/A

INTDLOADUOM N/A
Interval Data Function Descriptions 9-105

Enhanced Interval Data Functions
INTDLOADUOMDATES N/A

INTDLOADUOMHIST N/A

INTDOPEN N/A

INTDREADFIRST N/A

INTDREADNEXT N/A

INTDRECCOUNT N/A

INTDRELEASE Yes

INTDREPLACE Yes

INTDROLLAVG Yes

INTDROLLPEAK Yes

INTDSCALAROP Yes

INTDSCALE Yes

INTDSETDSTPARTICIPANT Yes

INTDSETSTRING Yes

INTDSETVALUE Yes

INTDSETVALUESTATUS Yes

INTDSHIFTSTARTTIME Yes

INTDSMOOTH Yes

INTDSORT Yes

INTDSPIKETEST Yes

INTDSUBSET Yes

INTDTOU Yes

INTDTOURELEASE Yes

INTDTOUVALUE Yes

INTDUPDATESTATS Yes

STDEV Yes
9-106 Rules Language Reference Guide

Chapter 10
Meter Value Function Descriptions

This chapter describes all of the meter value functions available with the Oracle Utilities Rules
Language.
Meter Value Function Descriptions 10-1

Meter Value Functions
Meter Value Functions

MVLOAD Function

Purpose
Loads and totalizes meter values for a specified bill determinant and (optionally) billing entity for
the current bill period.

The Meter Value Table is used to store bill determinant values for account “sub-entities”—CIS
accounts, individual channels, or channel groups that belong to a parent account. The MVLOAD
function loads and totalizes either all of an account's values for a specified bill determinant that are
stored in the Meter Value Table for the current bill period, or just those bill determinant values
that belong to one of the account’s sub-entities (that is, a particular CIS account, channel, or
channel group) for the current bill period.

Format
<stem_identifier> = MVLOAD(<determinant_identifier>
[,<name_identifier|name_literal>]);

Where
• <determinant_identifier> is a billing determinant identifier defined in the

BILLDETERMINANT Table. The matching meter value records under the account are
totalized to get the determinant value.

• <name_identifier | name_literal> (Optional) is the name of the account “sub-entity” in the
Meter Value Table whose bill determinant values you want to load and totalize.

Note: The <stem_identifier> on the left side of the equal sign is the name you assign to the
temporary record created by the function (see “About records loaded by the MVLOADxxx
functions,” below).

Examples
Load and totalize all KW data stored in the Meter Value Table for the account for the current bill period:

MV = MVLOAD(KW);

Load and totalize the KW data stored in the Meter Value Table for the channel group named “CHGRP” for the
current bill period:

MV = MVLOAD(KW, "CHGRP");
10-2 Rules Language Reference Guide

Meter Value Functions
About records loaded by the MVLOADxxx functions
The following applies to all MVLOADxxx functions.

When the billing program executes the MVLOAD function, it automatically creates a temporary
record that includes the desired bill determinant value, as well as other information from the
Meter Value Table. The temporary record includes the scheduled read date, the earliest start time
among totaled values, the latest stop time among totaled values, and a string value. Which of these
values are loaded depends upon the function. When loaded, these records are automatically
assigned the identifier stem.component, where “stem” is the identifier for the entire temporary record
and component refers to an individual field in the record. See Record Identifiers
(stem.component) on page 4-14 of the Oracle Utilities Rules Language User’s Guide for more
information. You assign the “stem” by supplying an identifier on the left side of the
ASSIGNMENT Statement that contains the function; the system automatically assigns the names
to the components, as shown:

• NAME: The recorder-ID/channel, CIS account, or group name this data is for.

• VAL: Value, or the accumulated values, if loaded.

• READDATE: Scheduled read date. This ties to the Billing Cycle Read Date and identifies
the Billing Cycle this data is for.

• STARTTIME: Earliest start time of any totaled value.

• STOPTIME: Last stop time of any totaled value.

• STRVAL: Its string value (only assigned if there is one meter value; they are not totaled).

• CODE: The bill determinant code for the data represented in the record, such as kW or
kWh.

When they have been loaded, you can apply other statements in the rate form to these record
values by using <stem.component> to identify them. If you use MV as the identifier on the left
side of the statement (as shown in the preceding examples), you would use the identifier
MV.NAME to refer to the value in the temporary record’s NAME field.

Each record identifier may have historical values, depending on the function.
Meter Value Function Descriptions 10-3

Meter Value Functions
MVLOADACCT Function

Purpose
The MVLOADACCT Function loads and totalizes meter values for a specified bill determinant
and (optionally) billing entity for a specified account (typically the SYSTEM) for the current bill
period.

This function is similar to the MVLOAD Function on page 10-2, except that it enables you to
load bill determinant values for a specific account other than the one being billed. This is typically
used to access information about the entire utility System, which is stored in the Meter Value
Table under an “account” named SYSTEM. The “account’s” records selected for the current bill
period are those whose READDATE is in the billed account's bill period (may not match the
current account’s read date).

Format
<stem_identifier> = MVLOADACCT(<determinant_identifier>, <accountid>
[,<name_identifier|name_literal>]);

Where
• <determinant_identifier> is a billing determinant identifier, as defined in the

BILLDETERMINANT Table. The matching meter value records under the “account” are
totalized to get the determinant value.

• <accountid> identifies the account whose values you want to load and totalize, typically
SYSTEM.

• <name_identifier | name_literal> (Optional) is the name of the account “sub-entity” in the
Meter Value Table whose bill determinant values you want to load and totalize. This is
typically the name of values of interest, such as ACTUAL_PEAK or BILLED_PEAK.

The <stem_identifier> on the left side of the equal sign is the name you assign to the temporary
record created by the function. See About records loaded by the MVLOADxxx functions on
page 10-3 for more information.

Example
Get the actual system peak (value, start and stop times) for the current bill period, then get the interval value at that
time from previously loaded current account's cut in KW_HNDL:

SYSPEAK = MVLOADACCT(KW, "SYSTEM", "ACTUAL_PEAK”);
VALUE_AT_PEAK = INTDVALUE(KW_HNDL, "DATE", SYSPEAK.STARTIME);
10-4 Rules Language Reference Guide

Meter Value Functions
MVLOADACCTDATES Function

Purpose
The MVLOADACCTDATES Function loads and totalizes meter values for a specified bill
determinant and (optionally) billing entity for a specified account (typically the System) for a user-
specified time period. This function is identical to the MVLOADACCT Function on page 10-4,
except that it loads and totalizes bill determinant values for a user-specified time period.

Format
<stem_identifier> = MVLOADACCTDATES(<determinant_identifier>,
<accountid> [,<name_identifier|name_literal>],
<date_identifier|date_constant>, <date_identifier|date_constant>);

Where
• <determinant_identifier> is a billing determinant identifier defined in the

BILLDETERMINANT Table. The matching meter value records under the “account” are
totalized to get the determinant value.

• <accountid> identifies the account whose values you want to load and totalize, typically
SYSTEM.

• <name_identifier | name_literal> (Optional) is the name of the account “sub-entity” in the
Meter Value Table whose bill determinant values you want to load and totalize. This is
typically the name of values of interest, such as ACTUAL_PEAK or BILLED_PEAK.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. You can use the following formats: ‘MM/DD/YYYY’ , ‘MM/DD/YYYY HH:MM’ or
‘MM/DD/YYYY HH:MM:SS’.

The <stem_identifier> on the left side of the equal sign is the name you assign to the temporary
record created by the function. See About records loaded by the MVLOADxxx functions on
page 10-3 for more information.

Example
Get the actual system peak (value, start and stop times) for the period between BILL_START and
BILL_STOP, then get the interval value at that time from previously loaded current account's cut in
KW_HNDL:

SYSPEAK = MVLOADACCT(KW, "SYSTEM", "ACTUAL_PEAK”, BILL_START,
BILL_STOP);
VALUE_AT_PEAK = INTDVALUE(KW_HNDL, "DATE", SYSPEAK.STARTIME);
Meter Value Function Descriptions 10-5

Meter Value Functions
MVLOADACCTHIST Function

Purpose
The MVLOADACCTHIST Function loads and totalizes meter values for a specified bill
determinant for a specified account (typically the SYSTEM) for a user-specified set of bill periods.
This function is identical to the MVLOADACCT Function on page 10-4, except that you can
specify a desired set of billing periods.

Format
<stem_identifier> = MVLOADACCTHIST(<determinant_identifier>, <accountid>
[,<name_identifier|name_literal>], <start_bill_period_previous>,
<end_bill_period_previous>);

Where
• <determinant_identifier> is a billing determinant identifier defined in the

BILLDETERMINANT Table. The matching meter value records under the “account” are
totalized to get the determinant value.

• <accountid> identifies the account whose values you want to load and totalize, typically
SYSTEM.

• <name_identifier | name_literal> (Optional) is the name of the account “sub-entity” in the
Meter Value Table whose bill determinant values you want to load and totalize. This is
typically the name of values of interest, such as ACTUAL_PEAK or BILLED_PEAK.

• <start_bill_period_previous>, <end_bill_period_previous> specify the bill periods to be
loaded using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 or the current period. The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. (See “Rules for Using Functions” in Chapter Six of the Oracle Utilities Rules Language
User’s Guide for additional details about specifying bill period parameters.)

If you omit both start and end bill period parameters from MVLOADACCTHIST, it is the
same as MVLOADACCT—only the data for the current bill period is loaded.

The <stem_identifier> on the left side of the equal sign is the name you assign to the temporary
record created by the function. See About records loaded by the MVLOADxxx functions on
page 10-3 for more information.
10-6 Rules Language Reference Guide

Meter Value Functions
Example
Get the actual system peak (value, start and stop times) for the past 2 bill periods, then get the interval value at that
time from the previously loaded current account's cut in KW_HNDL:

SYSPEAK = MVLOADACCTHIST(KW, "SYSTEM", "ACTUAL_PEAK” 1, 2);
VALUE_AT_PEAK = INTDVALUE(KW_HNDL, "DATE", SYSPEAK.STARTIME);
Meter Value Function Descriptions 10-7

Meter Value Functions
MVLOADDATES Function

Purpose
The MVLOADDATES Function loads and totalizes meter values for a specified bill determinant
and (optionally) billing entity for a user-specified time period. This function is identical to the
MVLOAD Function on page 10-2, except that you can specify a date range for the data.

Format
<stem_identifier> = MVLOADDATES (<determinant_identifier>
[,<name_identifier|name_literal>], <date_identifier|date_constant>,
<date_identifier|date_constant>);

Where
• <determinant_identifier> is a billing determinant identifier defined in the

BILLDETERMINANT Table. The matching meter value records under the account are
totalized to get the determinant value.

• <name_identifier | name_literal> (Optional) is the name of the account “sub-entity” in the
Meter Value Table whose bill determinant values you want to load and totalize.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. You can use the following formats: ‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’,
or ‘MM/DD/YYYY HH:MM:SS’.

The <stem_identifier> on the left side of the equal sign is the name you assign to the temporary
record created by the function. See About records loaded by the MVLOADxxx functions on
page 10-3 for more information.

Examples
Load and totalize all KW data stored in the Meter Value Table for the account for the month of January 1997.

MV_JAN = MVLOADDATES(KW, '01/01/1997', '01/31/1997');

STARTDT = '01/01/1997';
STOPDT = '01/31/1997';
MV_JAN = MVLOADDATES(KW, STARTDT, STOPDT);

Load and totalize the KW data stored in the Meter Value Table for the channel group named “CHGRP” for the
month of January 1997:

MV_JAN = MVLOADDATES(KW, "CHGRP", '01/01/1997', '01/31/1997');
10-8 Rules Language Reference Guide

Meter Value Functions
MVLOADHIST Function

Purpose
The MVLOADHIST Function loads and totalizes meter values for a specified bill determinant
and (optionally) billing entity for a user-specified set of bill periods. This function is identical to
the MVLOAD Function on page 10-2, except that you can specify a desired set of billing periods.

Format
<stem_identifier> = MVLOADHIST (<determinant_identifier>
[,<name_identifier|name_literal>], <start_bill_period_previous>,
<end_bill_period_previous>);

Where
• <determinant_identifier> is a billing determinant identifier defined in the

BILLDETERMINANT Table. The matching meter value records under the account are
totalized to get the determinant value.

• <name_identifier | name_literal> (Optional) is the name of the account “sub-entity” in the
Meter Value Table whose bill determinant values you want to load and totalize.

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded, using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 or the current period. The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for additional details about specifying bill period parameters.)

If you omit both start and end bill period parameters from MVLOADHIST, it is the same as
MVLOAD—only the data for the current bill period is loaded.

The <stem_identifier> on the left side of the equal sign is the name you assign to the temporary
record created by the function. See About records loaded by the MVLOADxxx functions on
page 10-3 for more information.

Examples
Load and totalize all KW data stored in the Meter Value Table for the account for the last 13 bill periods,
including the current bill period:

MV_HIST = MVLOADHIST(KW, 0, 12);

Load and totalize the KW data stored in the Meter Value Table for the channel group named “CHGRP” for the
bill period just before the current bill period:

MV_HIST = MVLOADHIST(KW, "CHGRP", 1, 1);
Meter Value Function Descriptions 10-9

Meter Value Functions
MVLOADLIST Function

Purpose
The MVLOADLIST Function loads and totalizes meter values for a specified bill determinant for
the current bill period for all entities whose NAME appears in a specified Table.Column list. This
function totalizes the bill determinant values for all entities in a TABLE.COLUMN list. See
Chapter 8: Working with Lists and Queries in the Data Manager User's Guide for information
about creating TABLE.COLUMN lists.

Format
<stem_identifier> = MVLOADLIST(<determinant_identifier>,
<list_identifier|list_name>);

Where
• <determinant_identifier> is a billing determinant identifier defined in the

BILLDETERMINANT Table. The matching meter value records under the list are totalized
to get the determinant value.

• <list_identifier | list_name> is an identifier, or a literal constant of the form “listname”, that
identifies a list of NAMES from the Meter Value Table.

The <stem_identifier> on the left side of the equal sign is the name you assign to the temporary
record created by the function. See About records loaded by the MVLOADxxx functions on
page 10-3 for more information.

Example
Load KWH for the ‘METER_VAL_LIST’ list for the current bill period.

MY_LIST = MVLOADLIST(KWH, “METER_VAL_LIST”);
10-10 Rules Language Reference Guide

Meter Value Functions
MVLOADLISTDATES Function

Purpose
The MVLOADLISTDATES Function loads and totalizes meter values for a specified bill
determinant for all entities whose NAME appears in a specified Table.Column list, for a user-
specified time period. This function is identical to the MVLOADLIST Function on page 10-10,
except that you can specify a date range for the data.

Format
<stem_identifier> = MVLOADLISTDATES(<determinant_identifier>,
<list_identifier|list_name>, <date_identifier|date_constant>,
<date_identifier|date_constant>);

Where
• <determinant_identifier> is a billing determinant identifier defined in the

BILLDETERMINANT Table. The matching meter value records under the list are totalized
to get the determinant value.

• <list_identifier | list_name> is an identifier, or a literal constant of the form “listname”, that
identifies a list of NAMES from the Meter Value Table.

• <date_identifier|date_constant>, <date_identifier|date_constant> are actual start and end
dates. You can use the following formats: ‘MM/DD/YYYY’, ‘MM/DD/YYYY HH:MM’,
or ‘MM/DD/YYYY HH:MM:SS’.

The <stem_identifier> on the left side of the equal sign is the name you assign to the temporary
record created by the function. See About records loaded by the MVLOADxxx functions on
page 10-3 for more information.

Example
Load KWH for the ‘METER_VAL_LIST’ list for the time period that falls between 5/1/1993 and 5/8/
1993.

MY_LIST = MVLOADLISTDATES(KWH, “METER_VAL_LIST”, ‘5/1/1993’, ‘5/8/
1993’);
Meter Value Function Descriptions 10-11

Meter Value Functions
MVLOADLISTHIST Function

Purpose
The MVLOADLISTHIST Function loads and totalizes meter values for a specified bill
determinant for all entities whose NAME appears in a specified Table.Column list, for a user-
specified set of bill periods. This function is identical to the MVLOADLIST Function on page
10-10, except that you can specify a desired set of bill periods.

Format
<stem_identifier> = MVLOADLISTDATES(<determinant_identifier>,
<list_identifier|list_name>, <start_bill_period_previous>,
<end_bill_period_previous>);

Where
• <determinant_identifier> is a billing determinant identifier defined in the

BILLDETERMINANT Table. The matching meter value records under the list are totalized
to get the determinant value.

• <list_identifier | list_name> is an identifier, or a literal constant of the form “listname”, that
identifies a list of NAMES from the Meter Value Table.

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The end period must be
greater than or equal to the start bill period. The default start_bill_period_previous is 0 or the
current period. The default end_bill_period_previous is the last period of data for the
determinant. If you specify a start but no end, the default end is the last period of data for
that determinant stored for the account. If you specify an end, you must specify a start. If you
omit both start and end bill period from MVLOADLISTHIST, it is the same as
MVLOADLIST—only the data for the current bill period is loaded.

The <stem_identifier> on the left side of the equal sign is the name you assign to the temporary
record created by the function. See About records loaded by the MVLOADxxx functions on
page 10-3 for more information.

Example
Load KWH for the ‘METER_VAL_LIST’ list for the last three bill periods, including the current bill period.

MY_LIST = MVLOADLISTHIST(KWH, “METER_VAL_LIST”, 0, 2);
10-12 Rules Language Reference Guide

Chapter 11
Math Function Descriptions

This chapter describes all of the math functions available with the Oracle Utilities Rules Language.
Math Function Descriptions 11-1

Math Functions
Math Functions

ACOS Function

Purpose
The ACOS Function returns the arccosine value of an input. The return value is in the range 0 to
PI radians. If the input value is less than -1 or greater than 1, ACOS returns 0.

Format
<identifier> = ACOS(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the arccosine value of 0.5.

ARC_COSINE = ACOS(.5);

Result:

ARC_COSINE = 1.047197551
11-2 Rules Language Reference Guide

Math Functions
ASIN Function

Purpose
The ASIN Function returns the arcsine value of an input.The return value is in the range -PI/2 to
PI/2 radians. If the input is less than -1 or greater than 1, ASIN returns 0.

Format
<identifier> = ASIN(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the arcsine value of 0.5.

ARC_SIN = ASIN(.5);

Result:

ARC_SIN = -.5235987756
Math Function Descriptions 11-3

Math Functions
ATAN Function

Purpose
The ATAN Function returns the arctangent value of an input. The return value is in the range -
PI/2 to PI/2 radians.

Format
<identifier> = ATAN(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the arctangent values of 0.75 and -4.

ARC_TAN = ATAN(.75);
ARC_TAN2 = ATAN(-4);

Result:

ARC_TAN = .6435011088
ARC_TAN2 = -1.325817664
11-4 Rules Language Reference Guide

Math Functions
ATAN2 Function

Purpose
The ATAN2 Function divides the first input by the second input, then returns the arctangent
value of the result. The return value is in the range -PI to PI radians, using the signs of both
parameters to determine the quadrant of the return value.

Format
<identifier> = ATAN2(<identifier|expression>,
<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the arctangent value of the result BILL_DTMT_VAL1 divided by BILL_DTMT_VAL2.

BILL_DTMT_VAL1 = 2;
BILL_DTMT_VAL2 = 8;
ARCTANGENT2 = ATAN2(BILL_DTMT_VAL1, BILL_DTMT_VAL2);

Process:

2 ÷ 8 = .25
ATAN2 (.25) =.2449786631

Result:

ARCTANGENT2 =.2449786631
Math Function Descriptions 11-5

Math Functions
BITAND Function

Purpose
The BITAND Function returns an integer that is the result of a bitand operation on two supplied
integer values. The function converts the integers to binary data, performs the bitand operation,
and returns the result as an integer. Input values are rounded to the nearest integer before the
operation is performed. Returns 0 if an error occurs.

Format
<identifier> = BITAND(<identifier|expression>,
<identifier|expression>)

Where:

• <identifier|expression> is either an identifier, or an expression that sets the (non-negative)
values of the integer. If an identifier, it must have been assigned earlier in the rate form.

Examples
RC = BITAND(1, 3);

Result: RC = 1

RC = BITAND(1, 4);

Result: RC = 0

EX_ST = INTDVALUE(HNDL, "EX_STATUS", 5);
//Check the first bit
RC = BITAND(EX_ST, 1);
//
//Check the first and second bit
RC = BITAND(EX_ST, 3);

Notes:

This function can be used to obtain the combined status code (combination of channel status
code and extended status code) of interval data stored in the Enhanced Interval Data tables. See
Enhanced Interval Data Functions on page 9-85 for more information about loading interval
data from these tables using the Rules Language.
11-6 Rules Language Reference Guide

Math Functions
CEIL Function

Purpose
The CEIL Function returns a scalar numeric value that is the smallest integer greater than or equal
to the value.

Format
<identifier> = CEIL(<identifier|constant>, <places>);

Where
• <identifier|constant > is either an identifier that contains a floating-point number (such as a

bill determinant identifier) or a floating-point constant.

• <places> (Optional) specifies number of places to ceil. 0 directs the program to ceil to an
integer; 1, ceil to tenths (0.1); 2, ceil to hundredths (0.01); -2, ceil to hundreds (100), and so
on. The default is 0 (ceil to an integer).

Example
Return smallest integer greater than or equal to MY_VAL, rounded to 0, 1, and 3 decimal places.

MY_VAL = 1.54763
CEILING1 = CEIL(MY_VAL);
CEILING2 = CEIL(MY_VAL, 1);
CEILING3 = CEIL(MY_VAL, 3);

Result:

CEILING1 = 2
CEILING2 = 1.6
CEILING3 = 1.548
Math Function Descriptions 11-7

Math Functions
COS Function

Purpose
The COS Function Returns the cosine value of an input. Input and return values are in radian
measure.

Format
<identifier> = COS(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the cosine value of 1.

COS_VAL = COS(1);

Result:

COS_VAL = .877582562
11-8 Rules Language Reference Guide

Math Functions
COSECANT Function

Purpose
Returns the cosecant (1/sin) value of an input. On error, returns 0.

Input and return values are in radian measure.

Format
<identifier> = COSECANT(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the cosecant value of 1.

COSECANT_VAL = COSECANT(1);

Result:

COSECANT_VAL = 1.188395105
Math Function Descriptions 11-9

Math Functions
COSH Function

Purpose
The COSH Function returns the hyperbolic cosine value of an input. If the result is too large, the
function returns 0.

Format
<identifier> = COSH(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the hyperbolic cosine value of 0.

HYP_COS = COSH(0);

Result:

HYP_COS = 1
11-10 Rules Language Reference Guide

Math Functions
COTANGENT Function

Purpose
The COTANGENT Function returns the cotangent (1/tan) value of an input. On error, returns
0. Input and return values are in radian measure.

Format
<identifier> = COTANGENT(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the cotangent value of 1.

COTANGENT_VAL = COTANGENT(1);

Result:

COTANGENT_VAL = .6420926159
Math Function Descriptions 11-11

Math Functions
DIVQUOT Function

Purpose
The DIVQUOT Function divides the first input by the second input, and returns the integral
quotient. Both values are rounded to integers before the operation is performed. If the value of
the second input is 0, returns 0.

Format
<identifier> = DIVQUOT(<identifier|expression>,
<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Note: A bill month returned as a date can be used as the first parameter if the
second parameter is 16. In this case, the function returns the year and month,
respectively.

Example
Find the integral quotient of: 17 divided by 3, 16 divided by 3.2, and 16 divided by 3.7.

DIVQUOT_VAL1 = DIVQUOT(17, 3);
DIVQUOT_VAL2 = DIVQUOT(16, 3.2);
DIVQUOT_VAL3 = DIVQUOT(16, 3.7);

Result:

DIVQUOT_VAL1 = 5
DIVQUOT_VAL2 = 5
DIVQUOT_VAL3 = 4
11-12 Rules Language Reference Guide

Math Functions
DIVREM Function

Purpose
The DIVREM divides the first input by the second input, and returns the integral remainder. Both
the input values are rounded to integers before the operation is performed. If the value of the
second input is 0, returns 0.

Format
<identifier> = DIVREM(<identifier|expression>,
<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the integral remainder of: 17 divided by 3, 16 divided by 3.2, and 16 divided by 3.7.

DIVREM1 = DIVREM(17, 3);
DIVREM2 = DIVREM(16, 3.2);
DIVREM2 = DIVREM(176, 3.7);

Result:

DIVREM1 = 2
DIVREM2 = 1
DIVREM2 = 0
Math Function Descriptions 11-13

Math Functions
EXP Function

Purpose
The EXP Function returns the exponential value of an input on success, or 0 on overflow (input
> 709.782712893) and underflow (input < -708.396418532264).

Format
<identififier> = EXP(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the exponential values of 1 and 1.36.

EXP_VAL1 = EXP(1);
EXP_VAL2 = EXP(1.36);

Result:

EXP_VAL1 = 2.72
EXP_VAL1 = 3.90
11-14 Rules Language Reference Guide

Math Functions
FABS Function

Purpose
The FABS Function returns the absolute value of its input.

Format
<identifier> = FABS(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Return the absolute value of -25.

FABS_VAL = FABS(-25);

Result:

FABS_VAL = 25
Math Function Descriptions 11-15

Math Functions
FLOOR Function

Purpose
The FLOOR Function returns a scalar numeric value that is the largest integer (or optionally, real
number) not greater than a supplied value. The optional “places” argument lets you specify the
precision of the returned value.

Format
<identifier> = FLOOR(<identifier|constant>, <places>);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

• <places> (Optional) specifies the precision of the returned value. 0 means floor to an integer,
2 means floor to hundredths (0.01), -2 means floor to hundreds (100). The default is 0.

Example
Return largest integer less than or equal to MY_VAL2, rounded to tenths, and the nearest multiple of 10.

MY_VAL2 = 132.548
FLOOR_VAL1 = FLOOR(MY_VAL2, 1);
FLOOR_VAL2 = FLOOR(MY_VAL2, -1);

Result:

FLOOR_VAL1 = 132.50
FLOOR_VAL2 = 130.00
11-16 Rules Language Reference Guide

Math Functions
FMOD Function

Purpose
The FMOD Function returns the remainder of the first input divided by the second input. If the
value of the second input is 0, FMOD returns 0.

Format
<identifier> = FMOD(<identifier|expression>, <identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Note: A bill month returned as a date can be used as the first parameter if the
second parameter is 16. In this case, the function returns the year and month,
respectively.

Example
Find the remainder of 17 divided by 3 and -17 divided by 3.

FMOD_VAL1 = FMOD(17, 3);
FMOD_VAL2 = FMOD(-17, 3);

Result:

FMOD_VAL1 = 2
FMOD_VAL2 = -2
Math Function Descriptions 11-17

Math Functions
FREXPM Function

Purpose
The FREXPM Function breaks down an input value into a mantissa (m) and an exponent (n), and
returns m.

The absolute value of m is greater than or equal to 0.5 and less than or equal to 1.0, and the input
value is equal to m*(2 to the power of integer n). If the input value is 0, 0 is returned.

Format
<identifier> = FREXPM(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the mantissa (m) of: 2, 1, and 7.

FREXPM1 = FREXPM(2);
FREXPM2 = FREXPM(1);
FREXPM3 = FREXPM(7);

Result:

FREXPM1 = 0.5
FREXPM2 = 0.5
FREXPM3 = 0.88
11-18 Rules Language Reference Guide

Math Functions
FREXPN Function

Purpose
The FREXPN Function breaks down an input value into a mantissa (m) and an exponent (n), and
returns n. The absolute value of m is greater than or equal to 0.5 and less than or equal to 1.0, and
the input value is equal to m*(2 to the power of integer n). If the input value is 0, 0 is returned.

Format
<identifier> = FREXPM(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the exponent (n) of: 2, 1, and 7.

FREXPN1 = FREXPN(2);
FREXPN2 = FREXPN(1);
FREXPN3 = FREXPN(7);

Result:

FREXPN1 = 2
FREXPN2 = 1
FREXPN3 = 3
Math Function Descriptions 11-19

Math Functions
LOG Function

Purpose
The LOG Function returns the base e logarithm value of an input on success. If the input value is
negative or 0, the function returns 0.

Format
<identifier> = LOG(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the base e logarithm value of 2.

LOGARITHM = LOG(2);

Result:

LOGARITHM = .6931471806
11-20 Rules Language Reference Guide

Math Functions
LOG10 Function

Purpose
The LOG10 Function returns the base 10 logarithm value of an input on success. If the input
value is negative or 0, the function returns 0.

Format
<identifier> = LOG10(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the base 10 logarithm value of 100.

LOG10_VAL = LOG10(100);

Result:

LOG10_VAL = 2
Math Function Descriptions 11-21

Math Functions
MAX Function

Purpose
The MAX Function returns the maximum value of two or more parameters. You can compare
database values, constants, and/or values defined elsewhere in the schedule. You can supply as
many parameters as you wish, but there must be at least two. Returns a scalar numeric value.

Format
<identifier> = MAX(<identifier|expression>, <identifier|expression>,
<...>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the maximum value among the VAL1 ... VAL5.

VAL1 = 12
VAL2 = -8
VAL3 = 0
VAL4 = 18
VAL5 = 3
MAX_VAL = MAX(VAL1, VAL2, VAL3, VAL4, VAL5);

Result:

MAX_VAL = 18
11-22 Rules Language Reference Guide

Math Functions
MAXN Function

Purpose
The MAXN Function finds the nth maximum value of the parameters supplied. N can be an
expression, or the value of an identifier. The return value is 0 if n is less than 1 or greater than the
count of values. Returns a scalar numeric value.

Format
<identifier> = MAXN(<n>, <identifier|expression>,
<identifier|expression>, <...>);

Where
• <n> is an identifier or integer constant that indicates which peak to find; e.g., first, second,

third, etc.

• <identifier|expression> is either an identifier or expression. If an identifier, it must have
been assigned earlier in the rate form.

Example
Find the 4th maximum value among the VAL1 ... VAL6.

VAL1 = 7
VAL2 = 8
VAL3 = 1
VAL4 = 5
VAL5 = 3
VAL6 = 9
MAX_4 = MAXN(4, 7, 8, 1, 5, 3, 9);

Result:

MAX_4 = 5
Math Function Descriptions 11-23

Math Functions
MIN Function

Purpose
The MIN Function returns the minimum of two or more parameters.

Format
<identifier> = MIN(<identifier|constant>, <identifier|constant>,
<...>);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

Example
Get the minimum demand from a set of values.

MINKW = MIN(CONTRACT_KW, 100);
11-24 Rules Language Reference Guide

Math Functions
MINNZ Function

Purpose
The MINNZ Function finds nonzero minimum value. This function is identical to the MIN
function, except that it excludes zero values from the comparison.

Format
<identifier> = MINNZ(<identifier|constant>, <identifier|constant>,
<...>);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

Example
Get the minimum nonzero demand from a set of values:

MINKW = MINNZ(CONTRACT_KW, KW);
Math Function Descriptions 11-25

Math Functions
MODF Function

Purpose
The MODF Function returns the signed fractional portion of an input value.

Format
<identifier> = MODF(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the signed fractional portion of HNDL_VAL.

HNDL_VAL = -14.876543;
MODULES = MODF(HNDL_VAL);

Result:

MODULES = -0.876543
11-26 Rules Language Reference Guide

Math Functions
POW Function

Purpose
The POW Function returns the value of the first input raised to the power of the second input
value. It returns 1 if the second value is 0, and 0 on overflow or underflow.

Format
<identifier> = POW(<identifier|expression>, <identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Raise 3 to the 2nd power:

NEW_NUM = POW(3, 2);
REPORT NEW_NUM LABEL “THREE TO THE SECOND POWER = ”;

Result:

THREE TO THE SECOND POWER = 9.00

Raise 2 to the 4th power:

NEW_NUM = POW(2, 4);
REPORT NEW_NUM LABEL “TWO TO THE FOURTH POWER = ”;

Result:

TWO TO THE FOURTH POWER = 16.00
Math Function Descriptions 11-27

Math Functions
ROUND Function

Purpose
The ROUND Function rounds a value to user-specified decimal place.

Format
<identifier> = ROUND(<identifier|constant>, <places>);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

• <places> is an integer that indicates how many decimal places to keep. A value of 0 means
round to an integer, 2 means round to hundredths (0.01), -2 means round to nearest hundred
(100).

Example
Round the ENERGY.CHG charge to dollars and cents:

ENERGY_CHG = 105.132057;
MY_CHARGE = ROUND(ENERGY_CHG,2);

Result:

MY_CHARGE = 105.13
11-28 Rules Language Reference Guide

Math Functions
ROUND2VALUE Function

Purpose
The ROUND2VALUE Function rounds a value to the nearest multiple of another value. Returns
a scalar numeric value. If the second value is 0, the first value is returned unchanged.

Format
<identifier> = ROUND2VALUE(<identifier1|constant1>,
<identifier2|constant2>);

Where
• <identifier1|constant1> is either an identifier that contains a floating-point number (such as

a determinant identifier) or a floating-point constant.

• <identifier2|constant2> is either an identifier that contains an integer or floating-point
number, or an integer or floating-point constant.

Example
Round the value 55.36 to the nearest multiple of 50, then to the nearest multiple of 0.11:

VALUE1 = 55.36;
ROUND2V_1 = ROUND2VALUE (VALUE1, 50);
ROUND2V_2 = ROUND2VALUE (VALUE1, 0.11);

Result:

ROUND2V_1 = 50.00
ROUND2V_2 = 55.33
Math Function Descriptions 11-29

Math Functions
ROUNDINT Function

Purpose
The ROUNDINT Function rounds a value to the nearest n number of digits, where n is a user-
specified number of places.

The function returns an integer if places is less than or equal to 0; else returns a float.

Format
<identifier> = ROUNDiNT(<identifier|constant>[, <places>]);

Where
• <identifier|constant> is an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

• <places> (Optional) is an integer that indicates how many decimal places to keep. The default
is 0 (round to an integer); 2 means round to hundredths (0.01), and -2 means round to nearest
hundred (100).

Example
Round the ENERGY.CHG charge to the nearest dollar:

ENERGY_CHG = 105.132057;
MY_CHARGE_ROUND = ROUNDINT(ENERGY_CHG);

Result:

MY_CHARGE_ROUND = 105
11-30 Rules Language Reference Guide

Math Functions
SECANT Function

Purpose
The SECANT Function returns the secant (1/cos) value of an input. On error, returns 0.

Format
<identifier> = SECANT(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the secant value of 1.

SEC = SECANT(1);

Result:

SEC = 1.850815718
Math Function Descriptions 11-31

Math Functions
SIN Function

Purpose
The SIN Function returns the sine value of an input.

Format
<identifier> = SIN(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the sine value of 1.

SIN_VAL = SIN(1);

Result:

SIN_VAL = .8414709848
11-32 Rules Language Reference Guide

Math Functions
SINH Function

Purpose
The SINH Function returns the hyperbolic sine value of an input. If the result is too large, returns
0.

Format
<identifier> = SINH(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the hyperbolic sine value of 15.

HYP_SINE = SINH(15);

Result:

HYP_SINE = 1,634,508.69
Math Function Descriptions 11-33

Math Functions
SQROOT Function

Purpose
The SQROOT Function returns the square root of a non-negative value. If value is negative,
returns 0.

The value may be a database value, a constant, or a value defined elsewhere in the schedule.
Returns a scalar numeric value.

Format
<identifier> = SQROOT(<identifier|constant>);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

Example
Find the square root of NUMBER.

NUMBER = 16;
SQROOT = SQROOT(NUMBER);

Result:

SQROOT = 4.0
11-34 Rules Language Reference Guide

Math Functions
TAN Function

Purpose
The TAN Function returns the tangent value of an input.

Format
<identifier> = TAN(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the tangent value of 8.

TAN = TAN(8);

Result:

TAN = -6.79971145
Math Function Descriptions 11-35

Math Functions
TANH Function

Purpose
The TANH Function returns the hyperbolic tangent value of an input value.

Format
<identifier> = TANH(<identifier|expression>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

Example
Find the hyperbolic tangent values of 0.5 and -2.

HYP_TAN = TANH(.5);
HYP_TAN2 = TANH(-2);

Result:

TANH = .4621171573
TANH2 = -0.9640275801
11-36 Rules Language Reference Guide

Chapter 12
String Function Descriptions

This chapter describes all of the string functions available with the Oracle Utilities Rules
Language.
String Function Descriptions 12-1

String Functions
String Functions

FLOAT2STRING Function

Purpose
The FLOAT2STRING Function converts the value of an identifier to a string.

The value must be an integer or a floating-point number. The second, optional parameter is an
integer expression or identifier that must be equal to 0, 1, 2, 3, or 6. If specified, the string will
have a number of decimal places equal to the integer expression. If not specified, trailing 0s are
removed; if the decimal point ends up as the rightmost character, it is also removed. Returns a
string value.

Format
<IDENTIFIER> = FLOAT2STRING(<identifier|expression>, <integer>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

• <integer> optional is an integer expression or identifier. The possible expressions are 0, 1, 2, 3,
and 6. If an identifier, it must have been assigned earlier in the rate form.

Format
Convert the value of ARC_TAN to a string with 3 decimal places.

ARC_TAN = 0.644
ARC_TAN_STR = FLOAT2STRING(ARC_TAN, 3);

Result:

ARC_TAN_STR = “0.644”
12-2 Rules Language Reference Guide

String Functions
FLOAT2STRINGNC Function

Purpose
The FLOAT2STRINGNC Function converts the value of an identifier to a string, but without
commas to mark the thousands.

This function is the same as FLOAT2STRING, except that no commas are inserted in the
number.

Format
<IDENTIFIER> = FLOAT2STRINGNC(<identifier|expression>, <integer>);

Where
• <identifier|expression> is either an identifier or expression. If an identifier, it must have

been assigned earlier in the rate form.

• <integer> (Optional) is an integer expression or identifier. The possible expressions are 0, 1, 2,
3, and 6. If an identifier, it must have been assigned earlier in the rate form.

Format
Convert the value of TOTAL_CHARGES to a string with no comma.

$TOTAL_CHARGES = 10440;
TOTAL_CHARGES_STR = FLOAT2STRINGNC(TOTAL_CHARGES);

Result:

TOTAL_CHARGES_STR = “10440”
String Function Descriptions 12-3

String Functions
INSTR Function

Purpose
The INSTR Function returns the position (denoted with an integer) of the first occurrence of
string2 in string1.

Format
<identifier> = INSTR(<string1>, <string2>);

Where
• <string1> is a text string.

• <string2> is another text string; may consist of a single character.

Format
Find the first occurrence of “A” in the string “DATABASE”.

STR_POSITION_A = INSTR(“DATABASE”, “A”)
LABEL STR_POSITION_A “String Position of A”;

Result:

String Position of A: 2
12-4 Rules Language Reference Guide

String Functions
LEFT Function

Purpose
The LEFT Function returns the leftmost n characters of a string. If n is greater than the length of
the string, the entire string is returned (not padded).

Format
<identifier> = LEFT(<string>, <n>);

Where
• <string> is a text string.

• <n> is the number of characters.

Format
To reformat a bill date from a “mm/dd/yyyy” format to a “yyyy/mm” format.

BILLING_MONTH = " " + RIGHT(BILL_DATE,4) + "/" + LEFT(BILL_DATE,2);

If the value for BILL_DATE was 11/20/1997, BILLING_MONTH would return “1997/11”.
String Function Descriptions 12-5

String Functions
LEN Function

Purpose
The LEN Function returns the length of a string (an integer).

Format
<identifier> = LEN(<string>);

Where
• <string> is a text string.

Format
Find the length of the string “DATABASE”.

STR_LENGTH = LEN(“DATABASE”);
LABEL STR_LENGTH ‘String Length”;

Result:

String Length: 8

Find whether BILL_MONTH is between January and September (a string length of 6), or between October and
December (a string length of 7):

BILL_MONTH = " " + MONTH(BILL_PERIOD) + "/" + YEARSTR(BILL_PERIOD);
CHARACTER_COUNT = LEN(BILL_MONTH);
IF CHARACTER_COUNT = 6 THEN

/* BILL_MONTH is between Jan. and Sept. */
END IF;
IF CHARACTER_COUNT = 7 THEN

/* BILL_MONTH is between Oct. and Dec. */
END IF;
12-6 Rules Language Reference Guide

String Functions
LTRIM Function

Purpose
The LTRIM Function returns the string with leading spaces removed.

Format
<identifier> = LTRIM(<string>);

Where
• <string> is a text string.

Format
Trim the leading spaces off the string “ DATABASE”.

STR_TRIM = LTRIM(“ DATABASE”);
LABEL STR_TRIM “String”;

Result:

String: DATABASE
String Function Descriptions 12-7

String Functions
MID Function

Purpose
The MID Function returns a specified number of characters, beginning at a user-specified start
position.

Returns the part of the string beginning at start. If length is omitted or the length is greater than
the number of characters in the string, all characters from the start position to the end of the string
are returned.

Format
<identifier> = MID(<string>, <start>[, <length>]);

Where
• <string> is a text string.

• <start> is the start position in the string.

• <length> (Optional) is the number of characters to be returned.

Format
Find the first 5 characters of the string “DATABASE”.

FIRST_FIVE = MID(“DATABASE”, 1, 5)
LABEL FIRST_FIVE “First Five Characters”

Result:

First Five Characters: DATAB
12-8 Rules Language Reference Guide

String Functions
RIGHT Function

Purpose
The RIGHT Function returns the rightmost n characters of a string. If n is greater than the length
of the string, the entire string is returned (not padded).

Format
<identifier> = RIGHT(<string>, <n>);

Where
• <string> is a text string.

• <n> is the number of characters.

Format
To reformat a bill date from a “mm/dd/yyyy” format to a “yyyy/mm” format.

BILLING_MONTH = " " + RIGHT(BILL_DATE,4) + "/" + LEFT(BILL_DATE,2);

For example, if the value for BILL_DATE were 11/20/1997, then BILLING_MONTH would
return “1997/11”.
String Function Descriptions 12-9

String Functions
RTRIM Function

Purpose
The RTRIM Function returns the string with trailing spaces removed.

Format
<identifier> = RTRIM(<string>);

Where
• <string> is a text string.

Format
Trim the trailing spaces off the string “DATABASE ”.

STR_TRIM = RTRIM(“DATABASE ”);
LABEL STR_TRIM “String”;

Result:

String: DATABASE
12-10 Rules Language Reference Guide

String Functions
STRING Function

Purpose
The STRING Function converts the value of a constant or identifier to a string.

You can specify the number of characters in the string to be returned. Numbers are converted
with commas to mark the thousands.

Note: If you do not want the commas, such as for a year, use the STRINGNC Function on page
12-12 instead. Date/times are converted to the date/time display format.

Format
<identifier> = STRING(<identifier|constant>[, <length>]);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

• <length> (Optional) number of characters to be returned.

Format
Convert the constant 104040 to a string 5 characters long.

CONST_STR = STRING(‘104040’, 5);
LABEL CONST_STR “Constant to String”;

Result:

Constant to String: “10,404”
String Function Descriptions 12-11

String Functions
STRINGNC Function

Purpose
The STRINGNC Function is similar to the STRING Function on page 12-11 except that
STRINGNC converts numbers without commas to mark the thousands. This is desirable for
formatting years, for example.

Format
<identifier> = STRINGNC(<identifier|constant>, <length>);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

• <length> (Optional) the number of characters to be returned.

Format
To get the current bill year:

BILLING_YEAR= YEAR(BILL_PERIOD);
BILL_YEAR = STRINGNC(BILLING_YEAR);
LABEL BILL_YEAR “Bill Year”;

Result:

The above would return the year in BILL_PERIOD as a string with no comma:

Bill Year: “1998”
12-12 Rules Language Reference Guide

String Functions
TOLOWER Function

Purpose
The TOLOWER Function returns the string with all uppercase letters converted to lowercase, and
all other characters unchanged.

Format
<identifier> = TOLOWER(<string>);

Where
• <string> is a text string.

Format
LOWER_ID = TOLOWER(“DataBase”);
LABEL LOWER_ID “Lowercase ID”;

Result:

Lowercase ID: “database”
String Function Descriptions 12-13

String Functions
TOUPPER Function

Purpose
The TOUPPER Function returns the string with all lowercase letters converted to uppercase, and
all other characters unchanged.

Format
<identifier> = TOUPPER(<string>);

Where
• <string> is a text string.

Format
UPPER_ID = TOUPPER(“DataBase”);
LABEL UPPER_ID “Uppercase ID”;

Result:

Uppercase ID: “DATABASE”
12-14 Rules Language Reference Guide

String Functions
TRIM Function

Purpose
The TRIM Function returns the string with leading and trailing spaces removed.

Just as the LTRIM Function on page 12-7 removes leading spaces, and the RTRIM Function
on page 12-10 removes trailing spaces, TRIM removes both.

Format
<identifier> =TRIM (<string>);

Where
• <string> is a text string.

Format
TEST = “ TEST ”;
TRIM_TEST = TRIM (TEST);
LABEL TRIM_TEST “Trim Test”;

Result:

Trim Test: “TEST”
String Function Descriptions 12-15

String Functions
12-16 Rules Language Reference Guide

Chapter 13
Other Function Descriptions

This chapter describes “other” functions available with the Oracle Utilities Rules Language,
including:

• Database Functions

• Date/Time Functions

• Historical-Data Functions

• Internal Functions

• Season-Based Functions

• Term Functions

• Miscellaneous Functions
Other Function Descriptions 13-1

Database Functions
Database Functions
Database functions are used to obtain information about and perform operations on records in
the Oracle Utilities Data Repository.

ACCOUNTFACTOR Function

Purpose
The ACCOUNTFACTOR function returns a value that indicates whether a particular factor was
in effect for an account on the end date of the current bill period or user-specified historical bill
period.

This function enables you to selectively apply a factor to accounts—that is, to some accounts but
not others, even though the accounts are on the same rate code.

If you include this function in the rate form, the program automatically checks the Factor History
Table (ACCTFACTORHIST) to see if the specified factor was in effect for the account on the end
date of the specified bill period. If so, the function returns a value of 1; if not, it returns 0.

Format
<identifier>= ACCOUNTFACTOR(<factor_code|identifier>[,
<bill_period_previous>]);

Where
• <factor_code | identifier> specifies the factor to be found. You can specify a factor code that

is listed in the Factors Lookup Code Table, or an identifier that contains a factor code.

Factors are identified by the following key from the Factor Lookup Code Table:
“operating_company_code,jurisdiction_code,factor_code”. To
specify the desired factor, you need only specify the factor_code; the operating company and
jurisdiction are automatically assumed by the program to be that of the current account. For
example, to apply this function to a factor that has the lookup code “STATETAX”, you
would specify ACCOUNTFACTOR(“STATETAX”). To indicate that the factor is global
(applies across all operating companies and jurisdictions), use the convention “,,factorcode”.

You can also use a simple identifier that you assigned to a factor code elsewhere in the rate
form.

• <bill_period_previous> - (Optional) specifies the billing period. Use 0 to specify the current
bill period, 1 for the previous bill period, and so on (the higher the number, the further back
in time). If not supplied, the current bill period is used.

Example
Determine whether the ‘FACTOR_TAX_A’ factor was in effect for the current bill period.

FACTOR_CHECK = ACCOUNTFACTOR(“FACTOR_TAX_A”);
13-2 Rules Language Reference Guide

Database Functions
ARRAYUPPERBOUND Function

Purpose
The ARRAYUPPERBOUND function returns the upper bound of the array identifier. The upper
bound is the highest index of the array that has been assigned a value. Returns a scalar numeric
value.

Format
<identifier> = ARRAYUPPERBOUND(<array_identifier>);

Where
• <array_identifier> is an array identifier previously assigned in the rate form. See Array

Identifiers on page 4-20 in the Oracle Utilities Rules Language User’s Guide for more information
about using array identifiers.

Note: the array should NOT contain an identifier in the index position
(between the brackets [X])

Example
Return the upper bound of the #ARR [] array identifier.

#ARR [INDEX].ACCT = “1234”;
#ARR [INDEX].TYPE = “RES”;
#ARR [INDEX].STATUS = “ACTIVE”;
ARR_SIZE = ARRAYUPPERBOUND(#ARR []);
Other Function Descriptions 13-3

Database Functions
CALLSTOREDPROC Function

Purpose
The CALLSTOREDPROC function calls a stored procedure.

Rules for writing stored procedures to be called by the CALLSTORPROC function include:

• Stored procedure names should be 18 character or less, and should be qualified in the same
way as table names in the database are qualified.

• The COMMIT Statement is not allowed inside the stored procedure.

• The procedure must take at least one input parameter.

• The last parameter to the procedure must be an output-only parameter, and must be assigned
a value within the procedure.

Format
<identifier> = CALLSTOREDPROC(<identifier|expresssion>
[,<identifier|expresssion> ...]);

OR

<identifier> = CALLSTOREDPROC(<storedProcName>, <InputStem>,
<OutputStem>);

Where
• <identifier|expression> is an identifier or expression that is either the name of the stored

procedure or one of the parameters used by the stored procedure. The first parameter to this
function must be the stored procedure name. This can be followed by any number of
parameters that the stored procedure accepts. The last parameter specifies the return data
type; its actual value is ignored.

• To return a string, the last parameter must be empty double quotes (“”).

• To return an integer, the last parameter must be an integer (0).

• To return a float, the last parameter must be a float (0.0).

• To return a date, the last parameter must be a valid date (for example, 01/01/2000 or
BILL_START).

• <storedProcName> is the name of the stored procedure.

• <InputStem> is a stem identifier whose tail identifiers correspond to the input parameters
for the stored procedure. The first tail identifier MUST be named “P1”, the next “P2” and so
on.

• <OutputStem> is a stem identifier whose tail identifiers correspond to the output parameters
of the stored procedure. The first tail identifier MUST be named “P1”, the next “P2” and so
on.

Examples
Invoke a stored procedure named "RETURNCUSTOMERID" and return a string value. The stored procedure
is written with one input parameter (the ACCOUNTID) and one output parameter. The output parameter is
assigned a value within the procedure.

ACCT_ID = ACCOUNT.ACCOUNTID
CUSTOMERID = CALLSTOREDPROC("RETURNCUSTOMERID", ACCT_ID, "");

Invoke a stored procedure named "RETURNCUSTOMERINFO" and set a string value and an integer value
in CUSTOMERINFO.P1 and CUSTOMERINFO.P2 respectively. The stored procedure is written with two
input parameters (ACCOUNTINFO.P1 and ACCOUNTINFO.P2) and two output parameters
13-4 Rules Language Reference Guide

Database Functions
(CUSTOMERINFO.P1 and CUSTOMERINFO.P2). The output parameters are assigned values within the
procedure. The function returns CUSTOMERINFO.P1.

ACCOUNTINFO.P1 = "Account1";
ACCOUNTINFO.P2 = '01/01/2001';
CUSTOMERINFO.P1 = "";
CUSTOMERINFO.P2 = 1;
CUSTOMERID = CALLSTOREDPROC("RETURNCUSTOMERINFO", ACCOUNTINFO,
CUSTOMERINFO);

Notes for using Stem.Tail idenifiers
• The type of the output identifiers determine the type of the values passed back in them.

• The function will return the value of the first output parameter.

• The minimum requirement is that there should be at least one input and one output
parameter (P1).

• The stored procedure must be written in such a way that all the input parameters come first
followed by the output parameters.

• No In/Out parameters are allowed.
Other Function Descriptions 13-5

Database Functions
GETADOCONNECTION Function

Purpose
The GETADOCONNECTION function gets the ADO database connection used by the Rules
Language. This function obtains the ADO database connection used by the Rules Language and
makes it available to third-party components, such as COM objects created through use of the
CREATEOBJECT Function. This function returns the ADO database connection interface.

See COM Object Functions in Chapter 8: Working with COM Components in the Oracle
Utilities Rules Language User’s Guide for more information about using this statement.

Format
<identifier> = GETADOCONNECTION();

Example
Invoke the “Execute Query” method of a LSDB DataSource COM object.

OBJECT = CREATEOBJECT (“LSDB.DataSource”);
CON = GETADOCONNECTION ();
RES = OBJECT->ExecuteQuery(CON, XML_QUERY);
13-6 Rules Language Reference Guide

Database Functions
GETCONNECT Function

Purpose
The GETCONNECT function returns the data source used to log on to the Oracle Utilities
application.

This function does not require parameters. It retrieves the appropriate information based on the
current user: the connection string used to log on to the Oracle Utilities application.

Format
<identifier> = GETCONNECT ();

Example
USER_INFO_CONNECT = GETCONNECT();
LABEL USER_INFO_CONNECT “Data Source”;
Other Function Descriptions 13-7

Database Functions
GETDATASOURCE Function

Purpose
The GETDATASOURCE function returns a variant (COM object) that contains the current
database connection used by the Rules Language.

This function obtains the database connection used by the Rules Language and makes it available
to third-party components, such as COM objects created through use of the CREATEOBJECT
Function.

See COM Object Functions in Chapter 8: Working with COM Components in the Oracle
Utilities Rules Language User’s Guide for more information about using this statement.

Format
<identifier> = GETDATASOURCE();

Example
Get the current database connection.

DS = GETDATASOURCE ();

Notes
This function returns the database connection as a COM object, which can be converted into an
XML string using the following syntax:

DS = GETDATASOURCE ();
DS_XML = DS->XML;

Example
Invoke the “ExecuteQuery” method of an LSDB DataSource COM object.

OBJECT = CREATEOBJECT ("LSDB.DataSource");
DS = GETDATASOURCE ();
DS_XML = DS->XML;
RES = OBJECT->ExecuteQuery(DS_XML, XML_QUERY);
13-8 Rules Language Reference Guide

Database Functions
GETQUALIFIER Function

Purpose
The GETQUALIFIER function gets the qualifier for the current database connection used by the
Rules Language.

This function obtains the qualifier for the current database connection used by the Rules
Language.

Format
<identifier> = GETQUALIFIER();

Example
Get the qualifier for the current database connection.

QUAL = GETQUALIFIER();
Other Function Descriptions 13-9

Database Functions
GETUSERID Function

Purpose
The GETUSERID function returns the user id used to log on to the Oracle Utilities application.

This function does not require parameters. It retrieves the appropriate information based on the
current user: the user id used to log on to the Oracle Utilities application.

Format
<identifier> = GETUSERID ();

Example
USER_ID_INFO = GETUSERID();
LABEL USER_ID_INFO “User ID”;

Result:

User ID: jqsmith
13-10 Rules Language Reference Guide

Database Functions
HASVALUE Function

Purpose
The HASVALUE function determines whether an identifier has a value in the database, has been
assigned a value in the rate form, or has no value.

If the identifier has a value in the database, it is assigned that value. If the identifier does not have
a value in the database, the function returns a code to indicate its status:

0 - the identifier does not have a value in the database, and it has not been assigned a value in
the rate form. Also, any interval data handle with a value of 0

1 - value set during data loading

2 - value set via ASSIGNMENT Statement in rate form

3 - value set in NOVALUE Statement in rate form.

Format
<identifier> = HASVALUE(<identifier>);

Where
• <identifier> can be any identifier, including database identifiers.

Note: When specifying an array identifier, you must include an index for the
array. See Array Identifiers on page 4-20 for more information about array
identifiers.

Example
Determine if the identifier “MY_HNDL” has a value in the database.

MY_HNDL_VAL = HASVALUE(MY_HNDL);

Determine if the array identifier “#MY_ARRAY” has a value in the database.

MY_ARRAY_VAL = HASVALUE(#MY_ARRAY[1]);
Other Function Descriptions 13-11

Database Functions
LISTCOUNT Function

Purpose
The LISTCOUNT function returns the number of items in a list.

The list must be a Table.Column list (see the Data Manager User’s Guide for more information about
Table. Column lists). The function returns 0 if there are no items in the list, or if an error occurred
when the list query was run.

Format
<identifier> = LISTCOUNT(<identifier|literal>);

Where
• <identifier|literal> is an identifier or literal whose string value is the name of a Table.Column

list.

Example
Return the number of items in the “ACCT_CHAN” list.

NUM_ITEM = LISTCOUNT("ACCT_CHAN");
13-12 Rules Language Reference Guide

Database Functions
LISTOP Function

Purpose
The LISTOP function performs column functions — AVG, COUNT, MAX, MIN, or SUM — on
a Table.Column list.

Returns the result of applying the operation (column function) to a table-column list. The
operation must be “AVG”, “COUNT”, “MAX”, “MIN”, or “SUM” (see a SQL Reference guide
for definitions of these functions). Multiple operations can be listed. If the list is not correct, the
same record may appear in the result set more than once. If this occurs, the repeated value will
contribute to the result more than once. The optional ‘DISTINCT’ parameter cannot correct this,
because DISTINCT applies to values, not records. See LSTRFRSH.EXE in Chapter Eight:
Working with Lists and Queries in the Data Manager User’s Guide for more information.

Format
<identifier> = LISTOP(<identifier|list_name>, <operation>
[,<operation> ...][, <distinct>]);

Where
• <identifier|list_name> is the name of a Table.Column list.

• <operation> is one of: “AVG”, “COUNT”, “MAX”, “MIN”, or “SUM.” This can also be the
result of another function or operation whose result is a string equal to one of the above
values. The column must be numeric if the operation is “AVG” or “SUM.”

• <distinct> (Optional) determines whether the function applies to all of the values on the table-
column, or only distinct (unique) values. If used, this should be string with a value of
“DISTINCT” (all other values are ignored). This parameter may be a string that evaluates to
“DISTINCT”.

Example
Return the number of distinct values in the FACTOR_VALUES list (comprised of values in the VAL
(VALUE) column of the FACTORVALUE Table that are >=0 and <= 150).

DISTINCT_COUNT = LISTOP(“FACTOR_VALUES”, “COUNT”, “DISTINCT”);
LABEL DISTINCT_COUNT “Number of Distinct Values”;

Result:

Number of Distinct Values: 26
Other Function Descriptions 13-13

Database Functions
LISTUPDATE Function

Purpose
The LISTUPDATE function updates one or more column values of every record in a
Table.Column list.

The list must be a full record list, or a list of the primary keys in a table. This function requires
selecting the ‘Automatically save/approve each page if it is OK’ Save option on the Advanced
dialog in Trial Bill, or the -k (Save Results) switch if using RUNRS.EXE. Returns the number of
rows updated.

Format
<identifier> = LISTUPDATE(<identifier|list_name>, <column_name>,
<value>);

OR

<identifier> = LISTUPDATE(<identifier|list_name>, <stem_identifier>);

Where
• <identifier|list_name> is the name of a table-column list.

• <column_name> is the name of the column to be updated.

• <value> is the value to which each column is updated.

• <stem_identifier> is a stem identifier whose corresponding tail identifiers are column names.
Each stem.tail identifier should be assigned to the value to which the column is to be updated.

Note: The LISTUPDATE function cannot update columns whose values are lookups from
another table. Also, this function only updates records in the specified list, and does not affect any
related records or data.

Examples
Update the Effective Date (STARTTIME) column in the MARCH_ACCOUNTS list (comprised of values
in the Effective Date (STARTTIME) column of the Account Table that are >=02/28/1999 and <= 03/
02/1999) to 03/01/1999.

UPDATE_EFFECTIVE_DATE = LISTUPDATE(MARCH_ACCOUNTS, STARTTIME,
03/01/1999);

Update the Effective Date (STARTTIME) and Stop Time (STOPTIME) columns in the
MARCH_ACCOUNTS list.

NEW_DATES.STARTTIME = ‘03/01/1999’;
NEW_DATES.STOPTIME = ‘03/31/1999’;
UPDATE_EFFECTIVE_DATES = LISTUPDATE(MARCH_ACCOUNTS, NEW_DATES);
13-14 Rules Language Reference Guide

Database Functions
LISTVALUE Function

Purpose
The LISTVALUE function returns the first element in a Table.Column list or Query list.

Returns the first element in a table-column list. If the list targets a UID, the full record is returned.
Otherwise, just a value is returned.

Format
<identifier> = LISTVALUE(<identifier|list_name>);

Where
• <identifier|list_name> is the name of a table-column or query list. See Lists on page 7-63 in

the Oracle Utilities Energy Information Platform User’s Guide for more information about query
lists.

Note: Query lists created using the Lists function of the Energy Information
Platform user interface cannot be selected using the Rules Language Elements
Editor.

Example
Return the first value in the FACTOR_VALUES list (comprised of values in the VAL (VALUE) column of
the FACTORVALUE Table that are >=0 and <= 150).

FIRST_VALUE = LISTVALUE(FACTOR_VALUES);
LABEL FIRST_VALUE “First Value in List”;

Result:

First Value in List: 1
Other Function Descriptions 13-15

Database Functions
PRORATEFACTOR Function

Purpose
The PRORATEFACTOR function prorates a factor over a user-specified time period. It returns
the value of a factor prorated over the time from the start time of START_BILL_ PERIOD
through the stop time of END_BILL_PERIOD. This prorates over several periods; the individual
periods’ values are determined according to the corresponding PRORATEMETHOD in the
FACTORVALUE Table.

Format
<identifier> = PRORATEFACTOR(<database_code>,
<start_bill_period_previous>, <end_bill_period_previous>);

Where
• <database_code> specifies the factor to be found; format is “factorcode”.

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded, using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 (the current period). The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for details about specifying bill period parameters.

Example
Prorate the “TAX” factor over the last three bill periods, including the current bill period.

FCTR_PRORATE = PRORATEFACTOR(“TAX”, 0, 2);
13-16 Rules Language Reference Guide

Database Functions
RSPRORATE Function

Purpose
The RSPRORATE function prorates a value based on the time that the rate schedule is in effect in
the bill period. This function is for use with new accounts.

This function prorates a user-selected identifier or constant for the portion of the time that the
rate schedule is in effect in the bill period, using the formula:

value * (RS_EFFECTIVE_STOP – RS_EFFECTIVE_START) / (BILL_ STOP – BILL_START).

The result is always less than or equal to the original value.

Note: This function is intended for prorating charges for a new account whose bill covers less
than a full bill period. For accounts switching rates in a bill period, factor prorating is
recommended. See the description of the For Each x in Factor Statement on page 3-8.

Format
<identifier> = RSPRORATE(<identifier|constant>);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

Example
Prorate the value of KWH for the account.

KWH_PRORATE = RSPRORATE(KWH);
Other Function Descriptions 13-17

Database Functions
SETBINPATH Function

Purpose
The SETBINPATH returns the path to the LODESTAR bin directory.

This function returns the path to a file in the LODESTAR bin directory. The function returns a
fully qualified file name.

Format
<identifier> = SETBINPATH(<identifier|expression>);

Where
• <identifier|expression> is an identifier or expression that evaluates to a string that is a file

name. If “ ” is provided, the function returns the name of the application executing the Rules
Language.

Example
Return the path to the LODESTAR\Bin directory.

BIN_PATH = SETBINPATH(“datamgr.exe”);

Return the name of the program executing the Rules Language .

BIN_PATH_EXE = SETBINPATH(“”);

Result:

BIN_PATH_EXE = “C:\LODESTAR\Bin\datamgr”
13-18 Rules Language Reference Guide

Database Functions
SETDBMONITOR Function

Purpose
The SETDBMONITOR function turns the Database Monitor on or off.

This function turns the Database Monitor (used with early versions of the Oracle Utilities
Transaction Management) on or off. The function returns the previous state of the database
monitor 0 = off, 1 = on.

Format
<identifier> = SETDBMONITOR(<identifier|expression>);

Where
• <identifier|expression> is an identifier or expression that evaluates to zero or one. If one,

database monitoring is turned on, if zero database monitoring is turned off.

Example
Turn on the Database Monitor.

DBMON_ON = SETDBMONITOR(“1”);
Other Function Descriptions 13-19

Database Functions
WQ_OPEN Function

Purpose
The WQ_OPEN function opens a work queue item.

This function opens a work queue item record in the Work Queue Open Item table used by the
Work Queues functionality. The function returns an XML document containing the opened work
queue item.

Format
<identifier> = WQ_OPEN(<stem_identifier>);

Where
• <stem_identifier> is a stem identifier or expression that evaluates to a stem identifier. The

corresponding tail identifiers provide the values for the work queue item. Available tail
identifiers include:

• TYPE (used for WQTYPECODE): The work queue item type. The type defines a
number of attributes for the work queue item. Required.

• QUEUE (used for WQQUEUECODE): The work queue. If not supplied, the default
queue for the TYPE is used.

• PRODUCT (used for PRODUCTCODE): The Oracle Utilities product associated with
the work queue item. If supplied, the PRODUCT must have a corresponding record in
the LODESTAR Product table. If not supplied, the default product for the TYPE is
used.

• PRIORITYLEVEL: The priority level for the work queue item. If not supplied, the
default PRIORITYLEVEL for the TYPE is used.

• WORKBYTIME: Optional. The time by which the item is expected to be resolved. If
not supplied, it is calculated from the Default Work By Hours values of the TYPE.

• ASSIGNEDTOUSERID: The User Id of the user to which the item is assigned. This
value will change each time the item is unassigned, reassigned, resolved, approved,
rejected, or closed. If supplied, the User ID must have a corresponding record in the
Users table in the Security database.

• PROCESSNAME: The business process associated with the work queue item. If
supplied, the PRODUCT must have a corresponding record in the Business Process
table. If not supplied, the default process for the TYPE is used.

In addition to these, any custom parameters may be specified. See the Oracle Utilities Energy
Information Platform Configuration Guide for more information about custom parameters.

Example
Open an ERROR type work queue item in the “QUEUE_1” work queue.

ERROR.TYPE = “ERROR”;
ERROR.QUEUE = “QUEUE_1”;
ERROR.PRODUCT = “BX”;
ERROR.ASSIGNEDTOUSERID = “lou_p”;
OPEN_ERROR_WQ = WQ_OPEN(ERROR);
13-20 Rules Language Reference Guide

Date/Time Functions
Date/Time Functions
Date/Time functions are used to obtain date and time related information from the Oracle
Utilities Data Repository, and to perform date and time related operations.

BILLINGHOURS Function

Purpose
The BILLINGHOURS returns number of hours in one or more user-specified billing periods.

This function returns the number of hours in one or more billing periods for an account. One
value is returned (that is, the total for all specified billing periods, rather than one value for each) as
a scalar numeric value.

Format
<identifier> = BILLINGHOURS(<start_bill_period_previous>,
<end_bill_period_previous>);

Where
• <start_bill_period_previous>, <end_bill_period_previous> specifies the desired billing

periods. 0 specifies the current bill period, 1 the previous bill period, and so on (the higher
the number, the further back in time). If you omit both start- and stop-periods, the function
returns the number of hours in the current period. See Start and End Bill Period
Parameters under Rules for Using Functions in Chapter 6: Rules Language Functions
Overview of the Oracle Utilities Rules Language User’s Guide for details about specifying bill
period parameters.

Examples
Get the total number of hours in the last three bill periods, including the current bill period:

BH = BILLINGHOURS(0, 2);

Get the total number of hours in the previous bill period:

BH = BILLINGHOURS(1);

Get the number of hours in the current bill period:

BH = BILLINGHOURS;
Other Function Descriptions 13-21

Date/Time Functions
DATE Function

Purpose
The DATE function converts a date expressed as a string value into a format that the programs
recognize as a date.

This function converts a date expressed in a text string or as a number into a format that the
programs recognize as a date.

Formats
<identifier_date> = DATE(<date_identifier|date_constant>);
<identifier_date> = DATE(<number>, “GMT”);
<identifier_date> = DATE(<number>, <input offset>, <return offset>);
<identifier_date> = DATE(<year>,<month>,<day>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START), a constant in the format ‘mm/dd/yyyy’, ‘mm/dd/yyyy
hh:mm’, ‘yyyy-mm-dd’ , or ‘yyyy-mm-dd hh:mm’, or an identifier or constant that contains a
value that is the number of seconds since 01/01/1970 00:00:00 GMT. If a number is
provided as the only parameter, the date is converted to the local timezone.

• <number> is the number of seconds since 01/01/1970 00:00:00 GMT.

• “GMT” is a keyword that indicates that the date returned is represented as the date/time in
GMT. That is, the date returned is not converted to the local timezone.

• <input offset> is the number of hours added or subtracted from the <number> parameter,
represented as “GMT +/- X”, where X is the number of hours added (+) or subtracted (-).
For example, “GMT+5” would add 5 hours to the <number> parameter. This parameter
should be used if the <number> parameter is based on different timezone than GMT. If this
parameter is included, the <return offset> parameter is required.

• <return offset> is the timezone that the returned date is to be converted to, represented as
“GMT +/- X”, where X is the number of hours plus (+) or minus (-) GMT 0. For example,
Eastern Standard Time would be represented as “GMT-5”. This parameter is required if the
<input offset> parameter is used.

• <year> is either an identifier or a constant that contains a 4-digit year.

• <month> is either an identifier or a constant that contains a 2-digit month.

• <day> is either an identifier or a constant that contains a 2-digit day.

Example
The first four statements below assign a date constant to a date identifier. The last two statements
apply the DATE function to convert the data type for the assigned values from STRING to
DATE.

DTSTRG = "05/01/1997";
YRSTRG = "1997";
MOSTRG = "05";
DYSTRG = "01";
DATE1 = DATE(DTSTRG);
LABEL DATE1 “Date 1”
DATE2 = DATE(YRSTRG, MOSTRG, DYSTRG);
LABEL DATE2 “Date 2”;

Result:

Date 1: 05/01/1997
Date 2: 05/01/1997
13-22 Rules Language Reference Guide

Date/Time Functions
DATEFROMFLOAT Function

Purpose
The DATEFROMFLOAT function converts a float value to a date/time.

This function converts a float value into a format that the programs understand as a date,
inverting the DATETOFLOAT Function on page 13-26. Returns a date.

Format
<identifier_float> = DATEFROMFLOAT(<identifier|float_expression>);

Where
• <identifier|float_expression> is either an identifier that contains a float value, or a float

expression.

Example
Convert the float value assigned to the FLOAT identifier into a date.

FLOAT = 134264872460
FLOAT_DATE = DATEFROMFLOAT(FLOAT);

Result:

FLOAT_DATE = 11/07/2000 21:56:12
Other Function Descriptions 13-23

Date/Time Functions
DATETIMEFROMSTRING Function

Purpose
The DATETIMEFROMSTRING function converts a string value into a format that the
programs understand as a date, inverting the DATETIMETOSTRING Function on page 13-
25. Returns a date/time.

Format
<identifier> = DATETIMEFROMSTRING(<date/time string>, <date/time
format string>);

Where
• <date/time string> is a string value that evaluates to a date and time in the same format as

the <date/time string format string> parameter.

• <date/time format string> is valid date/time format. These include: “MM/dd/yyyy
HH:mm:ss”, “dd/MM/yyyy HH:mm:ss”, “yyyy/MM/dd HH:mm:ss”, “MM/dd/yy
HH:mm:ss”, “dd/MM/yy HH:mm:ss”, “yy/MM/dd HH:mm:ss”. Where “MM” = Month,
“dd” = Day, “yy” or “yyyy” = Year, “HH” = Hour, “mm” = Minutes, “ss” = seconds. Only
the above formats are supported.

Example
Convert the string value assigned to the STRING identifier into a date.

STRING = “11/07/2000 21:56:12”
STRING_DATE = DATETIMEFROMSTRING(STRING, "MM/dd/yyyy HH:mm:ss");

Result:

STRING_DATE = 11/07/2000 21:56:12
13-24 Rules Language Reference Guide

Date/Time Functions
DATETIMETOSTRING Function

Purpose
The DATETIMETOSTRING function converts a date/time value into a string. Returns a string.

Format
<identifier> = DATETIMETOSTRING(<date_identifier|expression>, <date/
time format string>);

Where
• <date_identifier|expression> is a date identifier or expression.

• <date/time format string> is valid date/time format. These include: “MM/dd/yyyy
HH:mm:ss”, “dd/MM/yyyy HH:mm:ss”, “yyyy/MM/dd HH:mm:ss”, “MM/dd/yy
HH:mm:ss”, “dd/MM/yy HH:mm:ss”, “yy/MM/dd HH:mm:ss”. Where “MM” = Month,
“dd” = Day, “yy or yyyy” = Year, “HH” = Hour, “mm” = Minutes, “ss” = seconds. Other
formats can also be used. The slash (“/”) can be substituted for another character such as “-”.
“MMMM” will return the full month name. “MMM” returns the abbreviated month name.
Day formats work the same as month formats.

Note: Only the six formats specified above can be converted back into a Date/Time using
the DATETIMEFROMSTRING Function if needed.

Example
Convert the date value assigned to the DATE_TIME identifier into a string.

DATE_TIME = CURRENT_DATE
DATE_STRING = DATETIMETOSTRING(DATE_TIME, "MM/dd/yyyy HH:mm:ss");

Result:

DATE_STRING = “11/07/2000 21:56:12”
Other Function Descriptions 13-25

Date/Time Functions
DATETOFLOAT Function

Purpose
The DATETOFLOAT function converts a date to a floating point number that can be stored as a
determinant. It converts a date into a format that the programs understand as a floating point
number. The float value is ((((((((((year * 16) + month) * 32) + day) * 32) + hour) * 64) + minute)
* 64) + seconds). Returns a float.

Format
<identifier_date> = DATETOFLOAT(<identifier|date_expression>);

Where
• <identifier|date_expression> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date expression in the format ‘mm/dd/yyyy’, ‘mm/
dd/yyyy hh:mm’, ‘yyyy-mm-dd’ , or ‘yyyy-mm-dd hh:mm’.

Example
Convert the current date into a float.

DATE_FLOAT = DATETOFLOAT(CURRENT_DATE);

Result:

DATE_FLOAT = 134264872540
13-26 Rules Language Reference Guide

Date/Time Functions
DAY Function

Purpose
The DAY function returns the number of the day of the month: 1–31.

Finds the number of the day in the month for a specified date identifier (such as BILL_STOP), or
for a user-specified date.

Format
<identifier> = DAY(<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the format ‘mm/dd/yyyy’. If you
include a time, it will be ignored.

Example
Add a surcharge if BILL_STOP falls in the first half of the month.

BILL_DATE = “05/15/1999”
MDAY = DAY(BILL_DATE);

/* Add high surcharge for use in beginning of the month */
IF (MDAY <= 15) THEN

$SURCHARGE = $10;
ELSE

$SURCHARGE = $5;
END IF;
Other Function Descriptions 13-27

Date/Time Functions
DAYDIFF Function

Purpose
The DAYDIFF function returns number of days separating two dates.

The result of DAYDIFF is the first date minus the second date, in number of days. The result can
be positive or negative. The difference between the same day is 0. The time of day is ignored
(midnight of both dates is used). The result is not rounded, and may differ from the value of
NUMDAYS. (NUMDAYS is a predefined identifier that automatically contains the number of
days between the specified BILL_START and BILL_STOP for the billing period, rounded to the
nearest day.)

Format
<identifier> = DAYDIFF(<date_identifier|date_constant>,
<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the form ‘mm/dd/yyyy’.

Example
Determine how many days are between the account's first and second peaks:

PEAK1_DATE = “01/01/1999”
PEAK2_DATE = “01/15/1999”
NDAYS = DAYDIFF(PEAK2_DATE, PEAK1_DATE);

Result:

NDays = 14
13-28 Rules Language Reference Guide

Date/Time Functions
DAYNAME Function

Purpose
The DAYNAME function returns the name of the day of the week, expressed as a text string
(upper and lower case, initial capital letter); for example, “Sunday,” “Monday,” etc.

Format
<identifier> = DAYNAME(<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the form ‘mm/dd/yyyy’.

Example
Get the day of the week on which the READ_DATE occurred.

DAY = DAYNAME(READ_DATE);
Other Function Descriptions 13-29

Date/Time Functions
DBDATETIME Function

Purpose
The DBDATETIME function converts a date or time value into a string that is suitable for use in
a database record key. See Database Identifiers on page 4-5 in the Oracle Utilities Rules Language
User’s Guide for information about keys. The format of the returned string will match the format
that is required by your database software.

Format
<identifier> = DBDATETIME(<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the format ‘mm/dd/yyyy’.

Examples
Convert the BILL_START date to a string.

DBDT = DBDATETIME(BILL_START);

Convert the date ‘11/11/1997’ to a string.

DBDT = DBDATETIME(‘11/11/1997’);

DBDT may now be used in a Table.Column query where start date is part of the key to the desired record.
13-30 Rules Language Reference Guide

Date/Time Functions
HOUR Function

Purpose
The HOUR function finds the number of the hour in the day (0 through 23) for a specified date
identifier (such BILL_STOP), or for a user-specified date.

Format
<identifier> = HOUR(<date_identifier|expression>);

Where
• <date_identifier|expression> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START), or a date constant in the format
‘mm/dd/yyyy hh:mm:ss’. If the parameter is an identifier, it must have been assigned a date
value.

Example
Return the number of the hour for the date/time constant: ‘10/27/1997 10:30:45’.

HOUR = HOUR(‘10/27/1997 10:30:45’);
LABEL HOUR “Read Time Hour”;

Result:

Read Time Hour: 10
Other Function Descriptions 13-31

Date/Time Functions
MINUTE Function

Purpose
The MINUTE function finds the number of the minute in the hour (0 through 59) for a specified
date identifier (such BILL_STOP), or for a user-specified date.

Format
<identifier> = MINUTE(<date_identifier|expression>);

Where
• <date_identifier|expression> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the format
 ‘mm/dd/yyyy hh:mm:ss’. If the parameter is an identifier, it must have been assigned a date
value.

Example
Return the number of the minute for the date/time constant: ‘10/27/1997 10:30:45’.

MINUTE = MINUTE(‘10/27/1997 10:30:45’);
LABEL MINUTE “Read Time Minute”;

Result:

Read Time Minute: 30
13-32 Rules Language Reference Guide

Date/Time Functions
MONTH Function

Purpose
The MONTH function returns number of the month: January is 1, December is 12.

Format
<identifier> = MONTH(<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD and BILL_START) or a constant in the form ‘mm/dd/yyyy’.

Example
Add a surcharge for the month of August (8):

BILL_STOP = “08/30/1999”
M = MONTH(BILL_STOP);

IF (M = 8) THEN
$SURCHARGE = $10;

ELSE
$SURCHARGE = $0

END IF;
Other Function Descriptions 13-33

Date/Time Functions
MONTHDIFF Function

Purpose
The MONTHDIFF function returns the number of months separating two dates (first date minus
second date).

The result is the number of months separating the two dates, ignoring the day in the month. The
months are subtracted and added to the difference of the years multiplied by 12.

Format
<identifier> = MONTHDIFF(<date_identifier|date_constant>,
<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD and BILL_START) or a constant in the form
‘mm/dd/yyyy’.

Example
Apply a 20% discount to the first year, 10% to the second year. (The year is determined by the number of months
between the BILL_STOP date and the SERVICE_START_DATE date.)

SERVICE_START_DATE = ’06/15/1995';

MDIFF = MONTHDIFF(BILL_STOP, SERVICE_START_DATE);

/* Compute discount, 20% first year, 10% second year */
IF (MDIFF <= 12) THEN

DISCOUNT = .20;
ELSE

IF (MDIFF <= 24) THEN
DISCOUNT = .10;

ELSE
DISCOUNT = 0;
END IF;

END IF;

$EFFECTIVE_REVENUE = $NET_BILL * (1 - DISCOUNT);
13-34 Rules Language Reference Guide

Date/Time Functions
MONTHHOURS Function

Purpose
The MONTHHOURS function returns the number of hours in one or more calendar months. It
is identical to the BILLINGHOURS Function on page 13-21, except that it applies to calendar
months rather than billing periods.

Format
<identifier> = MONTHHOURS(<start_month_previous>,
<end_month_previous>);

Where
• <start_month_previous>, <end_month_previous> 0 specifies the current month, 1 the

previous month, and so on (the higher the number, the further back in time). The default
end_month_previous is the same as the start_month_previous. If neither is supplied, 0 is
assumed for both. For example, to get the number of hours in the last three months, you
would specify: ‘MONTHHOURS(0, 2)’.

If you specify just one month, the function will return the number of hours in that month; for
example, MONTHHOURS(2). If you leave off both start and end months, the function will
return the number of hours in the current month.

Example
Change the default 730 to the correct number of hours for this month.

HOURS_PER_MONTH = MONTHHOURS();
Other Function Descriptions 13-35

Date/Time Functions
MONTHNAME Function

Purpose
The MONTHNAME function returns the name of the month of the year, expressed as a text
string (“February”, etc.).

Format
<identifier> = MONTHNAME(<date_identifier|date_constant>;

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the form ‘mm/dd/yyyy’.

Example
Return the name of the month for the date ‘10/27/1997’.

MONTH_NAME = MONTHNAME(‘10/27/1997’)
LABEL MONTH_NAME “Month Name”;

Result:

Month Name: October
13-36 Rules Language Reference Guide

Date/Time Functions
ROUNDDATE Function

Purpose
The ROUNDDATE function rounds date to nearest specified unit. It returns a date rounded back
to the nearest unit—HOUR, DAY, WEEK, MONTH, or YEAR. It can be rounded to the exact
time, one second before it, or to the end of the period.

Format
<identifier> = ROUNDDATE(<date_identifier|date_constant>, <day>,
<time>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD and BILL_START) or a constant in one of three forms: ‘mm/dd/yyyy’,
‘mm/dd/yyyy hh:mm’, or ‘mm/dd/yyyy hh:mm:ss’.

• <day> is a string constant or identifier that contains a day of the week or other rounding
value. Valid days are “Saturday,” “Sunday,” “Monday,” “Tuesday,” “Wednesday,” “Thursday,”
and “Friday”. Day names are case insensitive, and only the first three letters are actually
checked. In addition, the following can be used: “HOUR”, “DAY”, “WEEK”, “MONTH”,
or “YEAR”. These must be completely spelled out.

Note: “Mon” is Monday, not Month. A week is from Sunday midnight through the following
Saturday.

• <time> is a string or time constant or identifier that contains the rounding time. Valid values
are “START” (0 minutes, 0 seconds—the default), “END” (the rounded value plus one
period minus one second) or a time constant of the form ‘hh:mm:ss’ or ‘hh:mm’. The latter
two explicitly specify the hour, minute, and second (ss is 0 in ‘hh:mm’).

Note: “END” means the end of the period—end of day, or week, month. The others apply
to the beginning of the period. The other allowed value is “1SEC-” (one second before
rounded date).

Example
Get calendar day-based start and stop times.

BILL_START_ROUND = ROUNDDATE (BILL_START, "DAY");
BILL_STOP_ROUND = ROUNDDATE (BILL_STOP, "DAY", "1SEC-");
Other Function Descriptions 13-37

Date/Time Functions
SAMEWEEKDAYLASTYEAR Function

Purpose
The SAMEWEEKDAYLASTYEAR function returns the closest date from a year before the
supplied date that is on the same day of the week.

Format
<identifier> = SAMEWEEKDAYLASTYEAR(<date_identifier>);

Where
• <date_identifier> is an identifier that contains a date (such as BILL_PERIOD or

BILL_START) or a date constant in the format
‘mm/dd/yyyy’.

Example
Find the closest date from the last year to the BILL_START and BILL_STOP dates that are on the same days
of the week.

HIST_START_DATE = SAMEWEEKDAYLASTYEAR(BILL_START);
HIST_STOP_DATE = SAMEWEEKDAYLASTYEAR(BILL_STOP);
13-38 Rules Language Reference Guide

Date/Time Functions
SECOND Function

Purpose
The SECOND function finds the number of the second in the hour (0 through 59) for a specified
date identifier (such BILL_STOP), or for a user-specified date.

Format
<identifier> = SECOND(<date_identifier|expression>);

Where
• <date_identifier|expression> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the format
‘mm/dd/yyyy hh:mm:ss’. If the parameter is an identifier, it must have been assigned a date
value.

Example
Return the number of the second for the date/time constant: 10/27/1997 10:30:45.

SECOND = SECOND(‘10/27/1997 10:30:45’);
LABEL SECOND “Read Time Second”;

Result:

Read Time Second: 45
Other Function Descriptions 13-39

Date/Time Functions
WEEKDAY Function

Purpose
The WEEKDAY function returns the day of the week from Sunday (Sunday=0, Monday=1, ...,
Saturday=6) expressed as a scalar integer value.

Format
<identifier> = WEEKDAY(<date_identifier|expression>);

Where
• <date_identifier|expression> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the format
‘mm/dd/yyyy’. If the parameter is an identifier, it must have been assigned a date value. The
parameter can also be a date expression.

Example
Return the name of the weekday for the date 10/27/1997.

WEEKDAY = WEEKDAY(‘10/27/1997’);
LABEL WEEKDAY “Weekday”;

Result:

Weekday: 1 (Monday)
13-40 Rules Language Reference Guide

Date/Time Functions
WEEKDIFF Function

Purpose
The WEEKDIFF function returns the number of weeks separating two dates (first date minus
second date). The result ignores the day of the week—both dates are rounded down to Sunday,
subtracted to get the number of days difference, which is divided by 7 to get the number of weeks
difference.

Format
<identifier> = WEEKDIFF(<date_identifier|date_constant>,
<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD and BILL_START) or a constant in the format ‘mm/dd/yyyy’.

Example
Compute the number of weeks in a bill period:

NUMWK = WEEKDIFF(BILL_STOP, BILL_START);
Other Function Descriptions 13-41

Date/Time Functions
YEAR Function

Purpose
The YEAR function returns the number of the year in a date — all four digits.

Format
<identifier> = YEAR(<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD and BILL_START) or a constant in the form ‘mm/dd/yyyy’.

Example
Label the current year “Year of this Bill”.

Y = YEAR(BILL_START);
LABEL Y "Year of this Bill";
13-42 Rules Language Reference Guide

Date/Time Functions
YEARDAY Function

Purpose
The YEARDAY function returns the number of days of the year since January 1, based on a date
identifier or date string: 0 through 364 (365 for leap years). January 1 is 0. Returns a scalar integer
value.

Format
<identifier> = YEARDAY(<date_identifier|expression>);

Where
• <date_identifier|expression> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a date constant in the format
‘mm/dd/yyyy’. If the parameter is an identifier, it must have been assigned a date value. The
parameter can also be a date expression.

Example
Return the number of the yearday for the date 10/27/1997.

YEARDAY = YEARDAY(‘10/27/1997’);
LABEL YEARDAY “Yearday”;

Result:

Yearday: 299
Other Function Descriptions 13-43

Date/Time Functions
YEARSTR Function

Purpose
Like the YEAR Function on page 13-42, the YEARSTR function returns the number without
the comma to mark the thousands.

Format
<identifier> = YEARSTR(<date_identifier|date_constant>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD and BILL_START) or a constant in the form
‘mm/dd/yyyy’.

Example
Get the current bill month with the year:

BILLING_MONTH= MONTH(BILL_PERIOD);
BILLING_YEAR= YEARSTR(BILL_PERIOD);
BILL_MONTH = " " + BILLING_MONTH + "/" + BILLING_YEAR;

If BILL_PERIOD is 10/18/1997, then BILL_MONTH returns “10/1997”.
13-44 Rules Language Reference Guide

Historical-Data Functions
Historical-Data Functions
Historical-Data functions are used to obtain information about and perform operations on
historical data stored in the Oracle Utilities Data Repository.

In many of the historical functions, the last two parameters are <start_month_previous>,
<end_month_previous>. For these parameters, 0 signifies the current bill period, 1 the previous
bill period, and so on (the higher the number, the further back in time). The end month must be
greater than or equal to the start month. These are optional, though start month must be specified
if end month is. The default start month is 0 or the current month. The default end month is the
start month. If these two parameters are omitted the value is computed over the current month
only. See Start and End Bill Period Parameters under Rules for Using Functions in Chapter
6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s Guide for
additional details about specifying bill period parameters.

There are many situations where an error is possible. In Oracle Utilities Rate Management and the
Trial Calculation functions in Oracle Utilities Billing Component and Data Manager, zero is
returned if values are missing or NULL. For example, in Oracle Utilities Rate Management if the
start or stop month is greater than the number of months of bill history data available, their time is
set to one second before the last bill start.

The determinant referencing rules in actual bill calculations in Oracle Utilities Billing Component
are more strict:

• If the start month to historical functions is one and there is only the current value, zero is
returned. However, if the start month is greater than one and greater than the number of
historical values, it is an error.

• If the stop month is greater than the number of historical values, it is set to the last period
with data.

• If all values between the start and stop months, inclusive, are missing or NULL, and there are
values after the stop month, it is an error.

The above rules do not apply to the HASVALUE Function and the HISTCOUNT Function.

Historical Values
Historical functions retrieve values from historical determinants and dates. The maximum number
of values for a determinant or date retrieved from the database is 1200 values. The maximum
number of values for a computed determinant or date is 36 values.
Other Function Descriptions 13-45

Historical-Data Functions
COMPSUM Function

Purpose
The COMPSUM totals values for a historical identifier over specified bill periods.

Format
<identifier> = COMPSUM(<historical_identifier>,
<start_bill_period_previous>, <end_bill_period_previous>);

Where
• <historical_identifier> is an identifier containing historical determinant values (computed, or

loaded from the Oracle Utilities Data Repository).

• <start_bill_period_previous>, <end_bill_period_previous> 0 signifies the current bill
period, 1 the previous bill period, and so on (the higher the number, the further back in time).
If you omit both start and end periods, the value will be computed over the current month
only. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for additional details about specifying bill period parameters.

Example
Compute an average for KWH over the past 12 bill periods (excluding the current):

CS = COMPSUM(KWH, 1, 12);
AVE_KWH = CS/12;
13-46 Rules Language Reference Guide

Historical-Data Functions
HISTCOUNT Function

Purpose
The HISTCOUNT function returns a count of the historical values, typically loaded by another
function in the rate form. You can optionally exclude zero values from the count.

Any historical function, as well as the DETERMINANT Statement, can load historical values for
up to 36 bill periods. If there are no historical functions or a DETERMINANT Statement present
in the rate form to load historical values, the HISTCOUNT function returns a count of 1
(indicating just the current bill period).

Format
<identifier> =
HISTCOUNT(<historical_identifier|date_identifier>,<type>);

Where
• <historical_identifier> is the identifier containing historical values (computed, or loaded

from the Oracle Utilities database).

• <date_identifier> is one of BILL_PERIOD, BILL_START, or BILL_STOP.

• <type> (Optional) is either “ALL” or “NON_ZERO”. “NON_ZERO” excludes zero values
from the count. “ALL” is the default. It is used only with determinant IDs.

Examples
Return a count of the number of historic, nonzero kWh values loaded.

NUMKW = HISTCOUNT(KWH,“NON_ZERO”);

Count the number of kWh values loaded for the account (excluding that for the current bill period).

X = HISTCOUNT(KWH, "NON_ZERO") - 1;
TOTAL_KWH = COMPSUM(1,X)

The value returned then becomes a parameter in the COMPSUM function, which would sum the values for all bill
periods loaded, excluding the current bill period.
Other Function Descriptions 13-47

Historical-Data Functions
HISTMAX Function

Purpose
The HISTMAX function compares two or more sets of historical values and/or constants, and
returns the greater of each value in the comparison.

You can specify any number of historical determinants and/or constants as parameters, but you
must specify at least two parameters. Any of the parameters can be a determinant with historical
values.

The result is a determinant with historical values. (The result contains the same number of values
as the parameter with the most historical values.) Each value in the result is the greatest value
among those compared. The program compares each value in a set of historical determinants with
the corresponding values in other historical determinants, or with the scalar value for a parameter
that is not a historical determinant. If the number of historical values differs in two parameters,
zeros are used as fillers for the missing values in the parameter with fewer values.

Format
<determinant_identifier> = HISTMAX(<identifier|constant>,
<identifier|constant>, ...);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

Example
Get the maximum of the on-peak peak and the off-peak peak for each bill period:

MAX_ON_OFF_KWH = HISTMAX(PKKWH, OPKWH);

Result:

If the values for PKKWH for the last three bill periods were 502, 712, and 499, and for OPKWH they were
652, 519, and 700, the result of the sample statement shown above would be:

MAX_ON_OFF_KWH = 652, 712, 700
13-48 Rules Language Reference Guide

Historical-Data Functions
HISTMIN Function

Purpose
The HISTMIN function compares two or more sets of historical values and/or constants, and
returns the smallest of each value in the comparison.

This function is the same as HISTMAX, except that it finds the minimum of the corresponding
elements of the parameters.

Format
<determinant_identifier> = HISTMIN(<identifier|constant>,
<identifier|constant>, ...);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

Example
Get the minimum of the on-peak peak and the off-peak peak for each bill period:

MIN_ON_OFF_KWH = HISTMIN(PKKWH, OPKWH);

Result:

If the values for PKKWH for the last three bill periods were 502, 712, and 499, and for OPKWH they were
652, 519, and 700, the result of the sample statement shown above would be:

MIN_ON_OFF_KWH = 502, 519, 499
Other Function Descriptions 13-49

Historical-Data Functions
HISTMINNZ Function

Purpose
The HISTMINNZ function compares two or more sets of historical values and/or constants, and
returns the smallest of each nonzero value in the comparison.

This function is the same as HISTMIN, except that it finds the nonzero minimum of the
corresponding elements of the parameters.

Format
<determinant_identifier> = HISTMINNZ(<identifier|constant>,
<identifier|constant>, ...);

Where
• <identifier|constant> is either an identifier that contains a floating-point number (such as a

determinant identifier) or a floating-point constant.

Example
Get the nonzero minimum of the on-peak peak and the off-peak peak for each bill period:

MIN_ON_OFF_KWH = HISTMINNZ(PKKWH, OPKWH);

Result
If the values for PKKWH for the last four bill periods were 100, 50, 101, and 70, and for OPKWH they were
80, 0, 0, and 90, the result of the sample statement shown above would be:

MIN_ON_OFF_KWH = 80, 50, 101, 70
13-50 Rules Language Reference Guide

Historical-Data Functions
HISTVALUE Function

Purpose
The HISTVALUE function returns a specified historical determinant value for a specified bill
period.

Format
<identifier> = HISTVALUE(<historical_identifier|date_identifier>,
<bill_period_previous>);

Where
• <historical_identifier> is an identifier containing historical values loaded from the Oracle

Utilities database, or computed in the rate form.

• <date_identifier> is one of BILL_PERIOD, BILL_START, or BILL_STOP.

• <bill_period_previous> is the desired bill period. Use 0 to specify the current bill period, 1
for the previous bill period, and so on (the higher the number, the further back in time).

Example
Get the KWH value for the previous December (based on monthly bill periods with February as the current month).

DEC_KWH = HISTVALUE(KWH, 2);
Other Function Descriptions 13-51

Historical-Data Functions
MAXNRANGE Function

Purpose
The MAXNRANGE function returns the account's nth maximum value for the specified bill
determinant over the specified date range. This is the same as the MAXRANGE Function on
page 13-53, except that the nth maximum is returned. The return value is 0 if n is less than 1 or
greater than the number of historic values.

Format
<identifier> = MAXNRANGE(<n>, <historical_identifier>,
<start_bill_period_previous>, <end_bill_period_previous>);

Where
• <n> is an identifier or integer constant that indicates which peak to find; e.g., first, second,

third, etc.

• <historical_identifier> is a determinant identifier that contains historical values (computed,
or loaded from the Oracle Utilities database).

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 (the current period). The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for additional details about specifying bill period parameters.

Example
Get the 3rd maximum historic demand from the last 12 bill periods:

THIRD_RATCH_KW = MAXRANGE(3, KW, 1, 12);
13-52 Rules Language Reference Guide

Historical-Data Functions
MAXRANGE Function

Purpose
The MAXRANGE function returns the account's maximum value for the specified bill
determinant over the specified date range.

Format
<identifier> = MAXRANGE(historical_identifier>,
<start_bill_period_previous>, <end_bill_period_previous>);

Where
• <historical_identifier> is a determinant identifier that contains historical values (computed,

or loaded from the Oracle Utilities database).

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded, using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 (the current period). The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for additional details about specifying bill period parameters.

Example
Get the maximum historic demand from the last 12 bill periods:

RATCH_KW = MAXRANGE(KW, 1, 12);
Other Function Descriptions 13-53

Historical-Data Functions
MINRANGE Function

Purpose
The MINRANGE function finds the minimum of the specified billing determinant between the
start bill period specified through the end bill period specified (inclusive).

Format
<identifier> = MINRANGE(<historical_identifier>,
<start_bill_period_previous>, <end_bill_period_previous>);

Where
• <historical_identifier> is the identifier for a determinant containing historical values

(computed or loaded from the Oracle Utilities database).

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded, using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 (the current period). The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for additional details about specifying bill period parameters.

Example
Get the minimum historical demand for the last 12 months.

MIN_KW_DEMAND = MINRANGE(KW, 1, 12);
13-54 Rules Language Reference Guide

Internal Functions
Internal Functions
Internal functions compute different types of values from billing determinant records stored in
the Oracle Utilities Data Repository.

COMPIKVA Function

Purpose
The COMPIKVA function computes the inverse of kVA.

IKVA stands for inverse kVA. This function returns square root of kVA squared, minus rkva_kw
squared, where rkva_kw is either rkVA or kW. If rkva_kw is rkVA, the result of the function is kW;
if rkva_kw is kW, the result is rkVA. Returns zero if rkva_kw is greater than kVA. This function
returns a scalar numeric value.

Format
<identifier> = COMPIKVA(<kva>, <rkva_kw>);

Where
• <kva> is either an identifier that contains a floating-point number (such as the KVA bill

determinant identifier) or a floating-point constant.

• <rkva_kw> is either an identifier that contains a floating-point number (such as the KW
determinant identifier) or a floating-point constant.

Examples
Get RKVA from KVA and KW:

RKVA = COMPIKVA (KVA, KW);

Get KW from KVA and RKVA:

KW = COMPIKVA (KVA, RKVA);
Other Function Descriptions 13-55

Internal Functions
COMPKVA Function

Purpose
The COMPKVA function computes kVA.

This function returns the square root of the sum of the squares, computing kVA from kVAR and
kW. This function returns a scalar numeric value.

Format
<identifier> = COMPKVA(<kvar>, <kw>);

Where
• <kvar> is either an identifier that contains a floating-point number (such as the kVAR bill

determinant identifier) or a floating-point constant.

• <kw> is either an identifier that contains a floating-point number (such as the kW bill
determinant identifier) or a floating-point constant.

Example
Get kVA from kVAR and kW.

KVA = COMPKVA(KVAR, KW);
13-56 Rules Language Reference Guide

Internal Functions
COMPKVARHFROMKQKW Function

Purpose
The COMPKVARHFROMKQKW function computes kVARh from kQh and kWh.

This function returns the value of (2*kQh - kWh)/sqrt(3), computing kVARh from kQh and kWh.
This function returns a scalar numeric value.

Format
<identifier> = COMPKVARHFROMKQKW(<kQh>, <kWh>)

Where
• <kQh> is either an identifier that contains a floating-point number (such as the kQh bill

determinant identifier) or a floating-point constant.

• <kWh> is either an identifier that contains a floating-point number (such as the kWh bill
determinant identifier) or a floating-point constant.

Example
Get kVARh from kQh and kWh.

KVARH = COMPKVARHFROMKQKW(KQH, KWH);
Other Function Descriptions 13-57

Internal Functions
COMPLF Function

Purpose
The COMPLF function computes load factor using the formula: ((kWh/
HOURS_PER_MONTH)/kW). Returns a scalar numeric value.

Format
<identifier> = COMPLF(<kWh>, <kW>);

Where
• <kWh> is either an identifier that contains a floating-point number (usually a bill

determinant identifier representing an energy value) or a floating-point constant.

• <kW> is either an identifier that contains a floating-point number (usually a bill determinant
identifier representing a demand value) or a floating-point constant.

Example
Get Load Factor based on kWh and kW.

LF = COMPLF(KWH, KW);

Note about HOURS_PER_MONTH: The function automatically uses the actual number of
hours in the current billing period for the account. To specify a particular number of hours in the
rate schedule, use the predefined identifier HOURS_PER_MONTH in an Assignment
Statement to set HOURS_PER_MONTH equal to a desired constant value that represents the
number of hours.
13-58 Rules Language Reference Guide

Internal Functions
IDATTR Function

Purpose
The IDATTR function returns an attribute value for a selected identifier.

All identifiers have a set of attributes that define how you can use them in rate forms (“type,”
“datatype,” “label,” and so on.) IDATTR returns the value stored for a selected attribute
associated with a specified identifier.

Format
<identifier> = IDATTR(<identifier>, <attribute>);

Where
• <identifier> is any identifier.

• <attribute > is any one of the attribute names listed below (“TYPE”, “DATATYPE”, etc.).

Revenue identifiers used in ALL or BLOCK statements have additional values that can be
returned via this function. These are:.

Attribute_Name Values that can be returned

“TYPE” “TEMP”, “DETERMN”, “DBASE”, “INPUT”, “REVENUE”,
“INTDATA”, “REPORT”

“DATATYPE” “NONE”, “FLOAT”, “STRING”, “INTEGER”, “DATE”,
“HANDLE”

“LABEL” Assigned label of the identifier; if no label, the name of the
identifier.

“SET” 0 (Not set)
1 (Set via initial input)
2 (Set via initial assignment (ASSIGNMENT, ALL, BLOCK, or
other statements)
3 Set via NOVALUE Statement
4 Database value equal to NULL

“FIXED” 0 (cannot be changed in computation)
1 (can be changed in computation).

“TOTAL” 0 (not the TOTAL revenue identifier)
1 (is the TOTAL revenue identifier).

“HISTCOUNT” Number of values, current plus historical. 0 if not set.

“STATUSCODE” Applies only to bill determinant identifiers that have an associated
Status Code column in the Bill History Table (e.g., KWH). Returns
the status code stored in the column if it exists; otherwise, returns
“”.

Revenue Identifiers* Value Returned

“CHARGE” The value for a charge from an ALL or BLOCK statement.

“USAGE” The number of billing units from an ALL or BLOCK
statement.

“BDNAME” The name of the billing determinant used in an ALL or
BLOCK statement.
Other Function Descriptions 13-59

Internal Functions
*Return 0 or “” if the revenue identifier is or was not assigned via an ALL or BLOCK
statement.

Example
Find the “DATATYPE” of the KW identifier.

KW_DATATYPE = IDATTR(KW, “DATATYPE”);
13-60 Rules Language Reference Guide

Internal Functions
FLAG Function

Purpose
The FLAG function returns the setting for analysis flags.

The two flags currently supported are SAVE and INTD. The function returns 1 if the flag is on, 0
if it is off. The SAVE flag indicates that data—determinants, interval data, etc.—will be saved. It is
off in all Oracle Utilities Rate Management analyses. The INTD flag indicates that interval data
operations are performed. It is off for Bill Frequency and Typical Bill calculations.

Format
<identifier> = FLAG(<“SAVE”|"INTD">);

Where
• <“SAVE”> returns 1 if SAVEs are enabled; else, returns 0.

• <“INTD”> returns 1 if interval data functions are enabled; else, returns 0.

Example
Are interval data functions enabled?

INTD_ENABLE = FLAG(“INTD”);
Other Function Descriptions 13-61

Internal Functions
LF2KW Function

Purpose
The LF2KW function computes kW from kWh and load factor.

Computes kW using the formula ((kWh/HOURS_PER_MONTH) / lf). It is the inverse of the
LF2KWH Function on page 13-63.

Format
<identifier> = LF2KW(<lf>, <kwh>);

Where
• <lf> is either an identifier that contains a floating-point number or a floating-point constant.

• <kwh> is either an identifier that contains a floating-point number (usually a determinant
identifier representing an energy value) or a floating-point constant.

Example
Get kW, given load factor and kWh:

KW = LF2KW(LOADFCTR, KWH);

Note about HOURS_PER_MONTH: The function automatically uses the actual number of
hours in the current billing period for the account. To specify a particular number of hours in the
rate schedule, use the predefined identifier HOURS_PER_MONTH in an Assignment
Statement to set HOURS_PER_MONTH equal to a desired constant value that represents the
number of hours.
13-62 Rules Language Reference Guide

Internal Functions
LF2KWH Function

Purpose
The LF2KWH function computes kWh from kW and load factor.

Computes kWh using the formula ((lf * kW) * HOURS_PER_MONTH).

Format
<identifier> = LF2KWH(<lf>, <kw>);

Where
• <lf> is either an identifier that contains a floating-point number or a floating-point constant.

• <kw> is either an identifier that contains a floating-point number (usually a determinant
identifier representing a demand value) or a floating-point constant.

Typically, the value for load factor <lf> is a constant specified in a contract.

Example
If the contract called for a 35% load factor, you would supply:

CONTRACT_KWH = LF2KWH(.35, KW);

Note about HOURS_PER_MONTH: The function automatically uses the actual number of
hours in the current billing period for the account. To specify a particular number of hours in the
rate schedule, use the predefined identifier HOURS_PER_MONTH in an Assignment
Statement to set HOURS_PER_MONTH equal to a desired constant value that represents the
number of hours.
Other Function Descriptions 13-63

Internal Functions
MAXKW Function

Purpose
The MAXKW function sets a value for the special identifier AUXILIARY_DEMAND.

This function indicates which determinant was used to compute a customer’s bill. It sets the value
of the special identifier AUXILIARY_DEMAND. A value of 1 means that the kW determinant
was used to compute the bill; 2 means contract kW, 3 means historical kW, and 4 means a
minimum was used. Its value is 0 if not set. These values appear on reports. The return value is the
same as if the MAX Function on page 11-22 was used.

Format
<identifier> = MAXKW(KW, CKW, HKW, <min_kw>);

Where
• kW, CkW, HkW supply the determinant metered kW for the first parameter, contract kW for

the second, and historical kW for the third, as shown. Alternative values or variables are not
allowed for the first three parameters. If you do not want to use one of them, use 0.

• The fourth parameter <min_kw> is optional. Supply a constant or variable that represents
the minimum, if desired.

Example
Determine the determinant used to calculate the customer’s bill.

BILL_DETER = MAXKW(KW, CKW, HKW)
13-64 Rules Language Reference Guide

Internal Functions
POWERFACTOR Function

Purpose
The POWERFACTOR function returns the ratio of real power (kWh) to apparent power
(kVARh) for any given load and time.

Returns the value of 1/sqrt(1 + (kVARh/kWh)**2), computing the power factor from kVARh
and kWh. Returns a scalar numeric value.

Format
<identifier> = POWERFACTOR(<kVARh>, <kWh>)

Where
• <kVARh> is either an identifier that contains a floating-point number (such as the kVARh

bill determinant identifier) or a floating-point constant.

• <kWh> is either an identifier that contains a floating-point number (such as the kWh bill
determinant identifier) or a floating-point constant.

Example
Determine the ratio of real power to apparent power.

RP_RATIO = POWERFACTOR(KVARH, KWH)
Other Function Descriptions 13-65

Internal Functions
READING2USAGE Function

Purpose
The READING2USAGE function returns the computed usage of a selected billing determinant.

Returns the usage for a selected billing determinant computed as:
Usage = ((current identifier value - previous identifier value) * meter multiplier) + meter offset.
Returns a scalar numeric value.

Format
<identifier> = READING2USAGE(<determinant_identifier> [,
<meter_multiplier>[,<meter_offset>]])

Where
• <determinant_identifier> is a determinant identifier that contains a current value and at least

one historical value. If the current value is less than the previous value (meter rollover), the
first power of ten greater than the historical value is added to the current value. For example,
if the current value is 444 and the historical value is 1333, the function would add 10,000 (or
10 to the power of 4, which is the first power of ten greater than 1333) to the current value
before calculating the usage.

• <meter_multiplier> (Optional) is an appropriate meter multiplier value. The default value is
1.0.

• <meter_offset> (Optional) is an appropriate meter offset value. The default value is 0.0.

Example
Determine the usage of kWh, based on a meter multiplier of 100 and a meter offset of 2.

KWH_USAGE = READING2USAGE(KWH, 100, 2)
13-66 Rules Language Reference Guide

Season-Based Functions
Season-Based Functions
Season-based functions are used to obtain information about and perform operations on season
periods stored in the Oracle Utilities Data Repository.

AVGSEASON Function

Purpose
The AVGSEASON function finds the average value for a historical determinant over a specified
season period for a given account. It returns a scalar numeric value. Only the values that fall within
the season and (optionally) the specified bill periods are used in the averaging; because the periods
that make up a season are not necessarily consecutive, the values used in averaging may not always
be consecutive.

Format
<identifier> = AVGSEASON(<season_period_name>, <historical_identifier>,
<start_bill_period_previous>, <end_bill_period_previous>;

Where
• <season_period_name> is the name of a season period, as defined in a season schedule. The

season period must belong to the season schedule in effect. See “How to Specify a Season
Schedule,” below.

• <historical_identifier> is the identifier for a determinant containing historical values
(computed, or loaded from the Oracle Utilities Data Repository).

• <start_bill_period_previous>, <end_bill_period_previous> 0 indicates the current bill
period, 1 the previous bill period, and so on (the higher the number, the further back in time).
To get the average for the last three billing periods, including the current one, you would
specify: AVGSEASON(0, 2). If you omit both start and end, the value will be computed over
all values available. See Start and End Bill Period Parameters under Rules for Using
Functions in Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules
Language User’s Guide for additional details about specifying bill period parameters.

Example
Find the average kWh value for the SUMMER season using all available values.

SUMMER_AVE_KWH = AVGSEASON(“SUMMER”, KWH);

How to Specify a Season Schedule
Season schedules are stored in the Oracle Utilities Data Repository. You can view, create, or
modify a Season Schedule using Data Manager. See Season Schedules in Chapter 7:
Maintaining Data in the Data Manager User’s Guide for more information. Each season schedule
consists of two or more periods, such as “Summer” and “Winter”. Each period covers a specific
date range, such as 04/01/1998 through 09/30/1998.

When you run a billing or analysis program using a rate form that includes a season reference, you
must specify which season schedule in the database to apply.

There are two ways to do this:

• Specify a season schedule by selecting Tools-›Options-›Rate Analysis, then making your
selection under Default Season Schedule.

• Specify it in the rate form by assigning the season schedule name to the special identifier
SEASON_SCHEDULE_NAME. For example, if the database contained a season schedule
called SEASON1, you could include the following Assignment Statement near the beginning
of your rate form:
Other Function Descriptions 13-67

Season-Based Functions
SEASON_SCHEDULE_NAME = SEASON1;

The season schedule specified via Options is the default. A season schedule specified in a rate
form overrides the Options value.

Oracle Utilities Billing Component and Oracle Utilities Rate Management use the bill period’s
stop date to determine which season period the bill period belongs to (that’s the default). To
specify a different date, apply the BILL_PERIOD_SELECT identifier (for more information
about BILL_PERIOD_SELECT, see the Oracle Utilities Rules Language User’s Guide).
13-68 Rules Language Reference Guide

Season-Based Functions
MAXSEASON Function

Purpose
The MAXSEASON function finds the maximum value for a historical determinant during a
specified season period for an account. It returns a scalar numeric value. Only the values that fall
within the season and (optionally) the specified bill periods are used in the evaluation; because the
periods that make up a season are not necessarily consecutive, the values used may not always be
consecutive.

Format
<identifier> = MAXSEASON(<season_period_name>,
<historical_identifier>, <start_bill_period_previous>,
<end_bill_period_previous>);

Where
• <season_period_name> is the name of a season period, as defined in a season schedule. The

season period must belong to the season schedule in effect. See How to Specify a Season
Schedule on page 13-67, under the description for the AVGSEASON function, for
important details about season schedules.

• <historical_identifier> is a determinant identifier that contains historical values (computed,
or loaded from the Oracle Utilities database).

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 (the current period). The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for additional details about specifying bill period parameters.

Example
Find the maximum kWh value for the SUMMER season for the last three bill periods, including the current one.

SUMMER_MAX_KWH = MAXSEASON(“SUMMER”, KWH, 0, 2);
Other Function Descriptions 13-69

Season-Based Functions
MINSEASON Function

Purpose
The MINSEASON function finds the minimum historical value of the specified billing
determinant for the bill periods in the season, from the start bill period specified through the end
bill period specified, inclusive.

Format
<identifier> = MINSEASON(<season_period_name>,
<historical_identifier>, <start_bill_period_previous>,
<end_bill_period_previous>);

Where
• <season_period_name> is the name of a season period, as defined in a season schedule. The

season period must belong to the season schedule in effect. See “Specifying a Season
Schedule,” under the description for the AVGSEASON function, for important details about
the Season Schedules.

• <historical_identifier> is the identifier for a determinant containing historical values
(computed, or loaded from the Oracle Utilities database).

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded, using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 (the current period). The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for additional details about specifying bill period parameters.

Example
Find the minimum kWh value for the SUMMER season for the last three bill periods, including the current one.

SUMMER_MIN_KWH = MINSEASON(“SUMMER”, KWH, 0, 2);
13-70 Rules Language Reference Guide

Season-Based Functions
MONTHLYMERGE Function

Purpose
The MONTHLYMERGE function combines all values in each bill month according to type.

This is used when there are multiple bill periods in a bill month, and values for the bill months are
needed. Returns a set of historical values, one per bill month. After the result has been assigned to
an identifier, the identifier can be used in the MAXRANGE Function on page 13-53 or the
SEASONVALUE Function on page 13-72.

Format
<identifier> = MONTHLYMERGE(<determinant_identifier|date_identifier>,
<type>)

Where
• <determinant_identifier> is an identifier containing determinant values (computed, or loaded

from the Oracle Utilities Data Repository).

• <date_identifier> is an identifier that contains a date (such as BILL_PERIOD or
BILL_START). Must be an identifier assigned a date value.

• <type> is one of the following: “TOTAL”, “AVERAGE”, “AVG”, “MAXIMUM”, “MAX”,
“START”, or “END”. Only “START” and “END” apply to date identifiers. If the type is
TOTAL, the values in the same bill month are added; if MAXIMUM, the maximum is taken.

Example
Return the total of the kWh for all bill history records within the billing month:

MERGE_MONTH_TOTAL = MONTHLYMERGE (KWH, “TOTAL”)
Other Function Descriptions 13-71

Season-Based Functions
SEASONVALUE Function

Purpose
The SEASONVALUE function returns a new value for a billing determinant based on the portion
of the current billing period that falls within a specified season schedule.

This function prorates the bill determinant value based the portion of the current billing period
that falls within a specified season schedule.

Format
<identifier> = SEASONVALUE(<season_period_name>,
<historical_identifier>, <type>);

Where
• <season_period_name> is the name of a season period, as defined in a season schedule. The

season period must belong to the season schedule in effect. See How to Specify a Season
Schedule on page 13-67, under the description for the AVGSEASON function, for
important details about the season schedules.

• <historical_identifier> is a determinant identifier that contains historical values (computed,
or loaded from the Oracle Utilities database).

• <type> is a string that determines how much of the current bill period is in the season. The
options are “BILL_START”, “BILL_STOP”, and “PRORATE”. “PRORATE” is the
default. The first two return 0 if the BILL_START or BILL_STOP date (respectively) are not
in the season; if they are, the full determinant values are returned. If the type is PRORATE,
the value is prorated based on the proportion of days in the current bill period in the season.
The value returned may vary from 0 (if the whole bill period is outside the season) to the full
determinant value (if the whole bill period is within the season).

Example
Find the prorated kWh value for the current bill period that falls within the SUMMER season.

SUMMER_PRORATE_KWH = SEASONVALUE(“SUMMER”, KWH, “PRORATE”);
13-72 Rules Language Reference Guide

Season-Based Functions
SUMSEASON Function

Purpose
The SUMSEASON function sums the maximum monthly values in a season. Similar to the
MAXSEASON Function on page 13-69, except the determinant is totaled so that the result is a
scalar numeric value.

Format
<identifier> = SUMSEASON(<season_period_name>,
<historical_identifier>, <start_bill_period_previous>,
<end_bill_period_previous>);

Where
• <season_period_name> is the name of a season period, as defined in a season schedule. The

season period must belong to the season schedule in effect. See How to Specify a Season
Schedule on page 13-67, under the description for the AVGSEASON function, for details
about the season schedules.

• <historical_identifier> is a determinant identifier that contains historical values (computed,
or loaded from the Oracle Utilities database).

• <start_bill_period_previous>, <end_bill_period_previous> specifies the bill periods to be
loaded, using the following convention: 0 is the current bill period, 1 is the previous bill
period, and so on (the higher the number, the further back in time). The
end_bill_period_previous must be greater than or equal to the start_bill_period_previous.
The default start_bill_period_previous is 0 (the current period). The default
end_bill_period_previous is the last period of data available for the account. If you specify a
start but no end, the default end is the last period of data for that determinant stored for the
account. See Start and End Bill Period Parameters under Rules for Using Functions in
Chapter 6: Rules Language Functions Overview of the Oracle Utilities Rules Language User’s
Guide for additional details about specifying bill period parameters.

Example
Find the sum of the maximum KWH value for the SUMMER season for the last three bill periods, including the
current bill period.

MAXTOTAL_SUMMER_KWH = SUMSEASON(“SUMMER”, KWH, 0, 2);
Other Function Descriptions 13-73

Term Functions
Term Functions

Term functions are used to retrieve and save terms and term details to and from the Oracle
Utilities Data Repository.

Term Function Tail Identifiers
Term functions use the following tail identiers for database columns:

*Any of the following tables used to store terms:

• LSCMCONTRACTTERM (Contract Terms)

• LSCMCONITEMTERM, LSCMCONITEMPRDTERM, LSCMCONITEMDTLS
(Contract Item Terms)

Tail Identifier Table Field

CONTRACTID LSCMCONTRACT CONTRACTID

REVISION LSCMCONTRACT REVISION

ACCOUNTID ACCOUNT ACCOUNTID

SERVICEPOINT LSSERVICEPOINT SERVICEPOINTID

MARKETID LSMARKET MARKETID

SERVICETYPE LSSERIVICETYPE SERVICETYPE

PRODUCTID LSCMPRODUCT PRODUCTID

PRODUCTSTART LSCMPRODUCT STARTTIME

PRODUCTSTOP LSCMPRODUCT STOPTIME

GROUPID LSCMCONITEMGROUP GROUPID

TERMTYPE LSTERMTYPE TERMTYPECODE

TERMCATEGORY LSTERMCATEGORY TERMCATEGORYCODE

TERMSTART LSTERM STARTTIME

TERMSTOP LSTERM STOPTIME

STARTTIME Term Table* STARTTIME

STOPTIME Term Table* STOPTIME

VAL Term Table* VAL

VALNUM Term Table* VALNUM

VALDATE Term Table* VALDATE

ISSTANDARD LSCMCONTRACTTERM ISSTANDARD

ISREQUIRED LSCMCONTRACTTERM ISREQUIRED

ISCALCULATED LSCMCONTRACTTERM ISCALCULATED

PERIOD LSCMCONITEMDTLS PERIOD
13-74 Rules Language Reference Guide

Term Functions
• LSCMCONITEMGROUPPRDTERM (Contract Group Terms)

LOADCONTRACTTERM Function

Purpose
The LOADCONTRACTTERM function loads a single contract term from the Contract Terms
table in the Oracle Utilities Data Repository. The function returns a stem identifier containing the
retrieved term.

Format
<output_stem> = LOADCONTRACTTERM(<input_stem>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the term to

retrieve:

• CONTRACTID: The contract ID of the contract for the term to be retrieved

• REVISION: The revision number of the contract for the term to be retrieved

• TERMTYPE: The term type for the term to be retrieved

• TERMCATEGORY: The term category for the term to be retrieved

• STARTTIME: The start time of the term to be retrieved

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <output_stem> is a stem identifier with following tail identifiers representing columns from
the Contract Term table:

• CONTRACTID: The contract ID of the contract for the retrieved term

• REVISION: The revision number of the contract for the retrieved term

• TERMSTART: The start time of the term

• TERMSTOP: The stop time of the term

• TERMTYPE: The term type for the retrieved term

• TERMCATEGORY: The term category for the retrieved term

• STARTTIME: The start time of the retrieved term

• STOPTIME: The stop time of the retrieved term

• VAL: The text value of the retrieved term

• VALNUM: The numeric value of the retrieved term

• VALDATE: The date value of the retrieved term

• ISSTANDARD: The Is Standard flag of the retrieved term

• ISREQUIRED: The Is Required flag of the retrieved term

• ISCALCULATED: The Is Calculated flag of the retrieved term

• Any custom columns on the Contract Term table. The tail identifier used will be the
same as the custom column name.

• ERRORRETURN: Return code of the function call. An error occurs if no term record is
found, if multiple terms records are found, or if a custom column on the Contract Term
Other Function Descriptions 13-75

Term Functions
table has the same name as one of the pre-defined tail identifiers (see Term Function
Tail Identifiers on page 13-74). Return codes are as follows:

• 0 - Success

• 1 - No Record Found

• 2 - Multiple Records Found

• 3 - Column name conflict with pre-defined tail

Note: Any errors returned will also appear on the output report.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a value for a column is NULL, the tail identifier will be
cleared if it already exists. If the tail identifier that corresponds to a NULL column value does
not already exist, it will not be created.

Example
Retrieve the MARGIN,CONTRACT term with a start date of 01/01/2008 00:00:00 for contact
“Customer_Pricing_01”, revision 1.

LOAD_TERM.CONTRACTID = "Customer_Pricing_01";
LOAD_TERM.REVISION = "1";
LOAD_TERM.TERMTYPE = "MARGIN";
LOAD_TERM.TERMCATEGORY = "CONTRACT";
LOAD_TERM.STARTTIME = "01/01/2008 00:00:00";
CONTRACT_TERM_DTLS = LOADCONTRACTTERM(LOAD_TERM);

This function would return the following tail identifiers for the “CONTRACT_TERM_DTLS”
stem identifier:

Tail Identifiers Value

CONTRACTID "Customer_Pricing_01"

REVISION "1"

TERMSTART "01/01/2006 00:00:00"

TERMSTOP NULL

TERMTYPE "MARGIN"

TERMCATEGORY "CONTRACT"

STARTTIME "01/01/2006 00:00:00"

STOPTIME NULL

VAL NULL

VALNUM "5"

VALDATE NULL

ISSTANDARD "Yes"

ISREQUIRED "Yes"

ISCALCULATED "No"
13-76 Rules Language Reference Guide

Term Functions
LOADCONTRACTTERMALL Function

Purpose
The LOADCONTRACTTERMALL function loads all contract terms for a specified contract
from the Contract Terms table in the Oracle Utilities Data Repository. This function creates one
or more stem identifiers containing the retrieved terms. The function returns zero if successful,
and returns an integer (1, 2, 3, or 4) if an error occurs.

Format
<error_code> = LOADCONTRACTTERMALL(<input_stem>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the contract from

which to retrieve the terms:

• CONTRACTID: The contract ID of the contract for the term to be retrieved

• REVISION: The revision number of the contract for the term to be retrieved

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <error_code> is the return code of the function call. An error occurs if no term record is
found, if multiple terms records are found, if a custom column on the Contract Term table
has the same name as one of the pre-defined tail identifiers (see Term Function Tail
Identifiers on page 13-74), or if the 64-character Rules Language identifier length is
exceeded. Return codes are as follows:

• 0 - Success

• 1 - No Record Found

• 2 - Multiple Records Found

• 3 - Column name conflict with pre-defined tail

• 4 - Identifier 64-character limit exceeded

Note: Any errors returned will also appear on the output report.

Stem Identifiers: This function creates one or more stem identifiers that contain the retrieved
terms. The stem identifiers are created by concatenating the table name prefix ("CONT"), an
underscore, the Term Type Code, an underscore, and the Category Code. For example, the stem
identifier for contract terms of type "MARGIN" of category "CONTRACT" would be as follows:

CONT_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier will be created by concatenating the table
name prefix, an underscore, and the Term Type Code. For example, the stem identifier for
contract terms of type "MARGIN" with a Null category would be as follows:

CONT_MARGIN

Stem identifiers are made into array identifiers if there are multiple values of STARTTIME (in the
term table) for the same term for the specified contract.

Tail Identifiers: Each stem identifier has the following tail identifiers:

• TERMSTART: The start time of the term

• TERMSTOP: The stop time of the term

• STARTTIME: The start time of the retrieved term
Other Function Descriptions 13-77

Term Functions
• STOPTIME: The stop time of the retrieved term

• VAL: The text value of the retrieved term

• VALNUM: The numeric value of the retrieved term

• VALDATE: The date value of the retrieved term

• ISSTANDARD: The Is Standard flag of the retrieved term

• ISREQUIRED: The Is Required flag of the retrieved term

• ISCALCULATED: The Is Calculated flag of the retrieved term

• Any custom columns on the Contract Term table. The tail identifier used will be the same as
the custom column name.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns that
correspond to these identifiers. If a value for a column is NULL, the tail identifier will be cleared if
it already exists. If the tail identifier that corresponds to a NULL column value does not already
exist, it will not be created.

Example
Retrieve all terms for contact “Customer_Pricing_01”, revision 1.

LOAD_ALL_TERMS.CONTRACTID = "Customer_Pricing_01";
LOAD_ALL_TERMS.REVISION = "1";
ALL_CONTRACT_TERM = LOADCONTRACTTERMALL(LOAD_ALL_TERMS);

This function would return a number of stem identifiers, one for each combination of Term Type
and Category. For example:

CONT_MARGIN_CONTRACT
CONT_DEPOSITAMOUNT_CONTRACT
CONT_EFFECTIVEPRICESFROM_CONTRACT
CONT_ONPEAKMARGIN_PRODUCT
CONT_OFFPEAKMARGIN_PRODUCT
CONT_CUST_CHARGE_TYPE_PRODUCT
...

Each of these stem identifiers would contain the above listed tail identifiers.

If there were multiple Start Time values for the same term, these stem identifiers would be array
identifiers, each with an upper bound equal to the number of term records returned.
13-78 Rules Language Reference Guide

Term Functions
LOADGROUPTERM Function

Purpose
The LOADGROUPTERM function loads a single contract group term from the Contract Item
Group Terms table in the Oracle Utilities Data Repository. The function returns a stem identifier
containing the retrieved term.

Format
<output_stem> = LOADGROUPTERM(<input_stem>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the term to

retrieve:

• CONTRACTID: The contract ID of the contract for the term to be retrieved

• REVISION: The revision number of the contract for the term to be retrieved

• TERMTYPE: The term type for the term to be retrieved

• TERMCATEGORY: The term category for the term to be retrieved

• STARTTIME: The start time of the term to be retrieved

• PRODUCTID: The Product ID for the contract item group

• PRODUCTSTART: The Product start time for the contract item group

• PRODUCTSTOP: The Product stop time for the contract item group

• GROUPID: The Group ID for the contract item group

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <output_stem> is a stem identifier with following tail identifiers representing columns from
the Contract Item Group Product Term table:

• CONTRACTID: The contract ID of the contract for the retrieved term

• REVISION: The revision number of the contract for the retrieved term

• TERMSTART: The start time of the term

• TERMSTOP: The stop time of the term

• TERMTYPE: The term type for the retrieved term

• TERMCATEGORY: The term category for the retrieved term

• PRODUCTID: The Product ID for the contract item group

• PRODUCTSTART: The Product start time for the contract item group

• PRODUCTSTOP: The Product stop time for the contract item group

• GROUPID: The Group ID for the contract item group

• STARTTIME: The start time of the retrieved term

• STOPTIME: The stop time of the retrieved term

• VAL: The text value of the retrieved term

• VALNUM: The numeric value of the retrieved term

• VALDATE: The date value of the retrieved term
Other Function Descriptions 13-79

Term Functions
• Any custom columns on the Contract Item Group Product Term table. The tail identifier
used will be the same as the custom column name.

• ERRORRETURN: Return code of the function call. An error occurs if no term record is
found, if multiple terms records are found, or if a custom column on the Contract Term
table has the same name as one of the pre-defined tail identifiers (see Term Function
Tail Identifiers on page 13-74). Return codes are as follows:

• 0 - Success

• 1 - No Record Found

• 2 - Multiple Records Found

• 3 - Column name conflict with pre-defined tail

Note: Any errors returned will also appear on the output report.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a value for a column is NULL, the tail identifier will be
cleared if it already exists. If the tail identifier that corresponds to a NULL column value does
not already exist, it will not be created.

Example
Retrieve the DEPOSITAMOUNT,CONTRACT group term with a start date of 01/01/2008 00:00:00 for
contact “Customer_Pricing_01”, revision 1, for group “GROUP_01” and Product
“GENERAL_SERVICE” (for 01/01/2007 00:00:00 through 12/31/2010 23:59:59).

LOAD_GROUP_TERM.CONTRACTID = "Customer_Pricing_01";
LOAD_GROUP_TERM.REVISION = "1";
LOAD_GROUP_TERM.TERMTYPE = "DEPOSITAMOUNT";
LOAD_GROUP_TERM.TERMCATEGORY = "CONTRACT";
LOAD_GROUP_TERM.STARTTIME = "01/01/2008 00:00:00";
LOAD_GROUP_TERM.PRODUCTID = "GENERAL_SERVICE";
LOAD_GROUP_TERM.PRODUCTSTART = "01/01/2007 00:00:00";
LOAD_GROUP_TERM.PRODUCTSTOP = "12/31/2010 23:59:59";
LOAD_GROUP_TERM.GROUPIP = "GROUP_01";
GROUP_TERM_DTLS = LOADCONTRACTTERM(LOAD_GROUP_TERM);

This function would return the following tail identifiers for the “GROUP_TERM_DTLS” stem
identifier:

Tail Identifiers Value

CONTRACTID "Customer_Pricing_01"

REVISION "1"

TERMSTART "01/01/2006 00:00:00"

TERMSTOP NULL

TERMTYPE "DEPOSITAMOUNT"

TERMCATEGORY "CONTRACT"

PRODUCTID "GENERAL_SERVICE"

PRODUCTSTART "01/01/2007 00:00:00"

PRODUCTSTOP "12/31/2010 23:59:59"

GROUPID "GROUP_01"
13-80 Rules Language Reference Guide

Term Functions
STARTTIME "01/01/2006 00:00:00"

STOPTIME NULL

VAL NULL

VALNUM "100"

VALDATE NULL

Tail Identifiers Value
Other Function Descriptions 13-81

Term Functions
LOADGROUPTERMALL Function

Purpose
The LOADGROUPTERMALL function loads all contract group terms for a specified contract
and group from the Contract Item Group Terms table in the Oracle Utilities Data Repository.
This function creates one or more stem identifiers containing the retrieved terms. The function
returns zero if successful, and returns an integer (1, 2, 3, or 4) if an error occurs.

Format
<error_code> = LOADGROUPTERMALL(<input_stem>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the contract from

which to retrieve the terms:

• CONTRACTID: The contract ID of the contract for the term to be retrieved

• REVISION: The revision number of the contract for the term to be retrieved

• PRODUCTID: The Product ID for the contract item group

• PRODUCTSTART: The Product start time for the contract item group

• PRODUCTSTOP: The Product stop time for the contract item group

• GROUPID: The Group ID for the contract item group

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <error_code> is the return code of the function call. An error occurs if no term record is
found, if multiple terms records are found, if a custom column on the Contract Term table
has the same name as one of the pre-defined tail identifiers (see Term Function Tail
Identifiers on page 13-74), or if the 64-character Rules Language identifier length is
exceeded. Return codes are as follows:

• 0 - Success

• 1 - No Record Found

• 2 - Multiple Records Found

• 3 - Column name conflict with pre-defined tail

• 4 - Identifier 64-character limit exceeded

Note: Any errors returned will also appear on the output report.

Stem Identifiers: This function creates one or more stem identifiers that contain the retrieved
terms. The stem identifiers are created by concatenating the table name prefix ("GRUP"), an
underscore, the Term Type Code, an underscore, and the Category Code. For example, the stem
identifier for contract terms of type "MARGIN" of category "CONTRACT" would be as follows:

GRUP_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier will be created by concatenating the table
name prefix, an underscore, and the Term Type Code. For example, the stem identifier for
contract terms of type "MARGIN" with a Null category would be as follows:

GRUP_MARGIN

Stem identifiers are made into array identifiers if there are multiple values of STARTTIME (in the
term table) for the same term for the specified contract.
13-82 Rules Language Reference Guide

Term Functions
Tail Identifiers: Each stem identifier has the following tail identifiers:

• TERMSTART: The start time of the term

• TERMSTOP: The stop time of the term

• STARTTIME: The start time of the retrieved term

• STOPTIME: The stop time of the retrieved term

• VAL: The text value of the retrieved term

• VALNUM: The numeric value of the retrieved term

• VALDATE: The date value of the retrieved term

• Any custom columns on the Contract Term table. The tail identifier used will be the same as
the custom column name.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns that
correspond to these identifiers. If a value for a column is NULL, the tail identifier will be cleared if
it already exists. If the tail identifier that corresponds to a NULL column value does not already
exist, it will not be created.

Example
Retrieve all group terms for contact “Customer_Pricing_01”, revision 1 for group “GROUP_01” and Product
“GENERAL_SERVICE” (for 01/01/2007 00:00:00 through 12/31/2010 23:59:59).

LOAD_ALL_GROUP_TERMS.CONTRACTID = "Customer_Pricing_01";
LOAD_ALL_GROUP_TERMS.REVISION = "1";
LOAD_ALL_GROUP_TERMS.PRODUCTID = "GENERAL_SERVICE";
LOAD_ALL_GROUP_TERMS.PRODUCTSTART = "01/01/2007 00:00:00";
LOAD_ALL_GROUP_TERMS.PRODUCTSTOP = "12/31/2010 23:59:59";
LOAD_ALL_GROUP_TERMS.GROUPIP = "GROUP_01";
ALL_CONTRACT_GROUP_TERM = LOADGROUPTERMALL(LOAD_ALL_GROUP_TERMS);

This function would return a number of stem identifiers, one for each combination of Term Type
and Category. For example:

GRUP_MARGIN_CONTRACT
GRUP_DEPOSITAMOUNT_CONTRACT
GRUP_EFFECTIVEPRICESFROM_CONTRACT
GRUP_ONPEAKMARGIN_PRODUCT
GRUP_OFFPEAKMARGIN_PRODUCT
GRUP_CUST_CHARGE_TYPE_PRODUCT
...

Each of these stem identifiers would contain the above listed tail identifiers.

If there were multiple Start Time values for the same term, these stem identifiers would be array
identifiers, each with an upper bound equal to the number of term records returned.
Other Function Descriptions 13-83

Term Functions
LOADITEMTERM Function

Purpose
The LOADITEMTERM function loads a single contract item term from the Oracle Utilities Data
Repository. This function can retrieve terms from the Contract Item Term table, the Contract
Item Product Term table, or the Contract Item Details table. The function returns a stem
identifier containing the retrieved term.

Format
<output_stem> = LOADITEMTERM(<input_stem>, <table>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the term to

retrieve:

• CONTRACTID: The contract ID of the contract for the term to be retrieved

• REVISION: The revision number of the contract for the term to be retrieved

• TERMTYPE: The term type for the term to be retrieved

• TERMCATEGORY: The term category for the term to be retrieved

• STARTTIME: The start time of the term to be retrieved

• ACCOUNTID: The Account ID for the contract item (if applicable)

• PRODUCTID: The Product ID for the contract item (if applicable)

• PRODUCTSTART: The Product start time for the contract item (if applicable)

• PRODUCTSTOP: The Product stop time for the contract item (if applicable)

• SERVICEPOINT: The Service Point ID for the contract item (if applicable)

• MARKETID: The Market ID related to the Service Point ID for the contract item (if
applicable)

• SERVICETYPE: The service type related to the Service Point ID for the contract item
(if applicable)

• STOPTIME: The stop time of the term to be retrieved. This tail only applies when
retrieving term details from Contract Item Details table.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <table> is a string that specifies the table from which the term details are to be retrieved:

• "ITEM": retrieve the term details from the Contract Item Term table

• "PRODUCT": retrieve the term details from the Contract Item Product Term table

• "DETAILS" retrieve the term details from the Contract Item Details table

• <output_stem> is a stem identifier with following tail identifiers representing columns from
the specified table:

• CONTRACTID: The contract ID of the contract for the retrieved term

• REVISION: The revision number of the contract for the retrieved term

• TERMSTART: The start time of the term

• TERMSTOP: The stop time of the term

• TERMTYPE: The term type for the retrieved term
13-84 Rules Language Reference Guide

Term Functions
• TERMCATEGORY: The term category for the retrieved term

• ACCOUNTID: The Account ID for the contract item

• PRODUCTID: The Product ID for the contract item

• PRODUCTSTART: The Product start time for the contract item

• PRODUCTSTOP: The Product stop time for the contract item

• SERVICEPOINT: The Service Point ID for the contract item

• MARKETID: The Market ID related to the Service Point ID for the contract item

• SERVICETYPE: The service type related to the Service Point ID for the contract item

• STARTTIME: The start time of the retrieved term

• STOPTIME: The stop time of the retrieved term

• VAL: The text value of the retrieved term

• VALNUM: The numeric value of the retrieved term

• VALDATE: The date value of the retrieved term

• PERIOD: The period for the retrieved term. This tail is only returned when retrieving
terms from the Contract Item Details table.

• Any custom columns on the specified table. The tail identifier used will be the same as
the custom column name.

• ERRORRETURN: Return code of the function call. An error occurs if no term record is
found, if multiple terms records are found, or if a custom column on the specified table
has the same name as one of the pre-defined tail identifiers (see Term Function Tail
Identifiers on page 13-74). Return codes are as follows:

• 0 - Success

• 1 - No Record Found

• 2 - Multiple Records Found

• 3 - Column name conflict with pre-defined tail

Note: Any errors returned will also appear on the output report.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a value for a column is NULL, the tail identifier will be
cleared if it already exists. If the tail identifier that corresponds to a NULL column value does
not already exist, it will not be created.

Example
Retrieve the MARGIN,CONTRACT term with a start date of 01/01/2008 00:00:00 for contact
“Customer_Pricing_01”, revision 1, for Account “ACCT_01” and Product “STANDARD_SERVICE”
(for 01/01/2007 00:00:00 through 12/31/2010 23:59:59) from the Contract Item Terms table.

LOAD_ITEM_TERM.CONTRACTID = "Customer_Pricing_01";
LOAD_ITEM_TERM.REVISION = "1";
LOAD_ITEM_TERM.TERMTYPE = "MARGIN";
LOAD_ITEM_TERM.TERMCATEGORY = "CONTRACT";
LOAD_ITEM_TERM.STARTTIME = "01/01/2008 00:00:00";
LOAD_ITEM_TERM.ACCOUNTID = "ACCT_01";
LOAD_ITEM_TERM.PRODUCTID = "STANDARD_SERVICE";
LOAD_ITEM_TERM.PRODUCTSTART = "01/01/2007 00:00:00";
LOAD_ITEM_TERM.PRODUCTSTOP = "12/31/2010 23:59:59";
ITEM_TERM_DTLS = LOADCONTRACTTERM(LOAD_ITEM_TERM, "ITEM");
Other Function Descriptions 13-85

Term Functions
This function would return the following tail identifiers for the “ITEM_TERM_DTLS” stem
identifier:

Tail Identifiers Value

CONTRACTID "Customer_Pricing_01"

REVISION "1"

TERMSTART "01/01/2006 00:00:00"

TERMSTOP NULL

TERMTYPE "MARGIN"

TERMCATEGORY "CONTRACT"

ACCOUNTID "ACCT_01"

PRODUCTID "STANDARD_SERVICE"

PRODUCTSTART "01/01/2007 00:00:00"

PRODUCTSTOP "12/31/2010 23:59:59"

STARTTIME "01/01/2006 00:00:00"

STOPTIME NULL

VAL NULL

VALNUM "5"

VALDATE NULL
13-86 Rules Language Reference Guide

Term Functions
LOADITEMTERMALL Function

Purpose
The LOADITEMTERMALL function loads all contract item terms for a specified contract,
contract item, or contract item product from the Oracle Utilities Data Repository. This function
can retrieve terms from the Contract Item Term table, the Contract Item Product Term table, or
the Contract Item Details table. This function creates one or more stem identifiers containing the
retrieved terms. The function returns zero if successful, and returns an integer (1, 2, 3, or 4) if an
error occurs.

Format
<error_code> = LOADITEMTERMALL(<input_stem>, <table>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the terms to

retrieve:

• CONTRACTID: The contract ID of the contract for the term to be retrieved

• REVISION: The revision number of the contract for the term to be retrieved

• ACCOUNTID: The Account ID for the contract item (if applicable)

• PRODUCTID: The Product ID for the contract item (if applicable)

• PRODUCTSTART: The Product start time for the contract item (if applicable)

• PRODUCTSTOP: The Product stop time for the contract item (if applicable)

• SERVICEPOINT: The Service Point ID for the contract item (if applicable)

• MARKETID: The Market ID related to the Service Point ID for the contract item (if
applicable)

• SERVICETYPE: The service type related to the Service Point ID for the contract item
(if applicable)

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <table> is a string that specifies the table from which the term details are to be retrieved:

• "ITEM": retrieve the term details from the Contract Item Term table

• "PRODUCT": retrieve the term details from the Contract Item Product Term table

• "DETAILS" retrieve the term details from the Contract Item Details table

• <error_code> is the return code of the function call. An error occurs if no term record is
found, if multiple terms records are found, if a custom column on the Contract Term table
has the same name as one of the pre-defined tail identifiers (see Term Function Tail
Identifiers on page 13-74), or if the 64-character Rules Language identifier length is
exceeded. Return codes are as follows:

• 0 - Success

• 1 - No Record Found

• 2 - Multiple Records Found

• 3 - Column name conflict with pre-defined tail

• 4 - Identifier 64-character limit exceeded

Note: Any errors returned will also appear on the output report.
Other Function Descriptions 13-87

Term Functions
Stem Identifiers: This function creates one or more stem identifiers that contain the retrieved
terms.

• For terms retrieved from the Contract Item Term table, stem identifiers are created by
concatenating the table name prefix ("ITEM"), an underscore, the Term Type Code, an
underscore, and the Category Code. For example, the stem identifier for contract terms of
type "MARGIN" of category "CONTRACT" would be as follows:

ITEM_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier will be created by concatenating the table
name prefix, an underscore, and the Term Type Code. For example, the stem identifier for
contract terms of type "MARGIN" with a Null category would be as follows:

ITEM_MARGIN

• For terms retrieved from the Contract Item Product Term table, stem identifiers are
created by concatenating the table name prefix ("IPRD"), an underscore, the Term Type
Code, an underscore, and the Category Code. For example, the stem identifier for contract
terms of type "MARGIN" of category "CONTRACT" would be as follows:

IPRD_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier will be created by concatenating the table
name prefix, an underscore, and the Term Type Code. For example, the stem identifier for
contract terms of type "MARGIN" with a Null category would be as follows:

IPRD_MARGIN

• For terms retrieved from the Contract Item Details table, stem identifiers are created by
concatenating the table name prefix ("DTLS"), an underscore, the Term Type Code, an
underscore, and the Category Code. For example, the stem identifier for contract terms of
type "MARGIN" of category "CONTRACT" would be as follows:

DTLS_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier will be created by concatenating the table
name prefix, an underscore, and the Term Type Code. For example, the stem identifier for
contract terms of type "MARGIN" with a Null category would be as follows:

DTLS_MARGIN

Stem identifiers are made into array identifiers if there are multiple values of STARTTIME (in the
term table) for the same term for the specified contract.

Tail Identifiers: Each stem identifier has the following tail identifiers:

• TERMSTART: The start time of the term

• TERMSTOP: The stop time of the term

• STARTTIME: The start time of the retrieved term

• STOPTIME: The stop time of the retrieved term

• VAL: The text value of the retrieved term

• VALNUM: The numeric value of the retrieved term

• VALDATE: The date value of the retrieved term

• PERIOD: The period for the retrieved term. This tail is only returned when retrieving terms
from the Contract Item Details table.

• Any custom columns on the specified table. The tail identifier used will be the same as the
custom column name.
13-88 Rules Language Reference Guide

Term Functions
See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns that
correspond to these identifiers. If a value for a column is NULL, the tail identifier will be cleared if
it already exists. If the tail identifier that corresponds to a NULL column value does not already
exist, it will not be created.

Example
Retrieve all item terms for contact “Customer_Pricing_01”, revision 1 for Account “ACCT_01” and Product
“STANDARD_SERVICE” (for 01/01/2007 00:00:00 through 12/31/2010 23:59:59) from the
Contract Item Terms table.

LOAD_ALL_ITEM_TERMS.CONTRACTID = "Customer_Pricing_01";
LOAD_ALL_ITEM_TERMS.REVISION = "1";
LOAD_ALL_ITEM_TERMS.ACCOUNTID = "ACCT_01";
LOAD_ALL_ITEM_TERMS.PRODUCTID = "STANDARD_SERVICE";
LOAD_ALL_ITEM_TERMS.PRODUCTSTART = "01/01/2007 00:00:00";
LOAD_ALL_ITEM_TERMS.PRODUCTSTOP = "12/31/2010 23:59:59";
ALL_CONTRACT_ITEM_TERMS = LOADITEMTERMALL(LOAD_ALL_ITEM_TERMS,
"ITEM");

This function would return a number of stem identifiers, one for each combination of Term Type
and Category. For example:

ITEM_MARGIN_CONTRACT
ITEM_DEPOSITAMOUNT_CONTRACT
ITEM_EFFECTIVEPRICESFROM_CONTRACT
ITEM_ONPEAKMARGIN_PRODUCT
ITEM_OFFPEAKMARGIN_PRODUCT
ITEM_CUST_CHARGE_TYPE_PRODUCT
...

Each of these stem identifiers would contain the above listed tail identifiers.

If there were multiple Start Time values for the same term, these stem identifiers would be array
identifiers, each with an upper bound equal to the number of term records returned.
Other Function Descriptions 13-89

Term Functions
SAVECONTRACTTERM Function

Purpose
The SAVECONTRACTTERM function saves a single contract term to the Contract Term table
in the Oracle Utilities Data Repository. The function returns zero (0) if successful, and 1 if an
error occurs.

Format
<return_code> = SAVECONTRACTTERM(<input_stem>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the term to save:

• CONTRACTID: The contract ID of the contract for the term to be saved

• REVISION: The revision number of the contract for the term to be saved

• TERMSTART: The start time of the term to be saved

• TERMSTOP: The stop time of the term to be saved

• TERMTYPE: The term type for the term to be saved

• TERMCATEGORY: The term category for the term to be saved

• STARTTIME: The start time of the term to be saved

• STOPTIME: The stop time of the term to be saved

• VAL: The text value of the term to be saved

• VALNUM: The numeric value of the term to be saved

• VALDATE: The date value of the term to be saved

• ISSTANDARD: The Is Standard flag of the term to be saved

• ISREQUIRED: The Is Required flag of the term to be saved

• ISCALCULATED: The Is Calculated flag of the term to be saved

• Any custom columns on the Contract Term table. The tail identifier used will be the
same as the custom column name.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <return_code> is the return code of the function call. An error occurs if the term record
cannot be saved. Return codes are as follows:

• 0 - Success

• 1 - Record could not be saved

Note: Any errors returned will also appear on the output report.
13-90 Rules Language Reference Guide

Term Functions
Example
Save the MARGIN,CONTRACT term with a start date of 01/01/2008 00:00:00 for contact
“Customer_Pricing_01”, revision 1 with a numeric value of 10.

SAVE_TERM.CONTRACTID = "Customer_Pricing_01";
SAVE_TERM.REVISION = "1";
SAVE_TERM.TERMTYPE = "MARGIN";
SAVE_TERM.TERMCATEGORY = "CONTRACT";
SAVE_TERM.STARTTIME = "01/01/2008 00:00:00";
SAVE_TERM.STOPTIME = NULL;
SAVE_TERM.VAL = NULL;
SAVE_TERM.VALNUM = "10";
SAVE_TERM.VALDATE = NULL;
SAVE_TERM.ISSTANDARD = "Yes";
SAVE_TERM.ISREQUIRED = "Yes";
SAVE_TERM.ISCALCULATED = "No";
SAVE_TERM_RETURN = SAVECONTRACTTERM(SAVE_TERM);
Other Function Descriptions 13-91

Term Functions
SAVECONTRACTTERMALL Function

Purpose
The SAVECONTRACTTERMALL function saves all contract terms for a specified contract to
the Contract Term table in the Oracle Utilities Data Repository. The function returns zero (0) if
successful, and 1 if an error occurs.

Format
<return_code> = SAVECONTRACTTERMALL(<input_stem>[, <clear_flag>]);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the contract for

which terms are to be saved:

• CONTRACTID: The contract ID of the contract for the term to be saved

• REVISION: The revision number of the contract for the term to be saved

• <clear_flag> is an optional flag that specifies whether or not to clear all stem and tail
identifiers associated with the specified contract. A value of "Y" indicates that all stem and tail
identifiers be cleared. Any other value indicates that stem and tail identifiers should NOT be
cleared.

• <return_code> is the return code of the function call. An error occurs if the term record
cannot be saved. Return codes are as follows:

• 0 - Success

• 1 - Record could not be saved

Note: Any errors returned will also appear on the output report.

Example
Save all terms for contact “Customer_Pricing_01”, revision 1 to the Contract Terms table, and clear all associated
stem and tail identifiers.

SAVE_ALL_TERMS.CONTRACTID = "Customer_Pricing_01";
SAVE_ALL_TERMS.REVISION = "1";
SAVE_ALL_TERMS_RETURN = SAVECONTRACTTERMALL(SAVE_ALL_TERMS, "Y");

Notes
This function saves one or more stem identifiers (and their corresponding tail identifiers) that
contain previously created or retrieved contract terms (see LOADCONTRACTTERMALL
Function on page 13-77) based on the contract specified in the function call.

The stem identifiers to be saved are the concatenation of the table name prefix ("CONT"), an
underscore, the Term Type Code, an underscore, and the Category Code. For example, the stem
identifier for contract terms of type "MARGIN" of category "CONTRACT" would be as follows:

CONT_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier is the concatenation of the table name prefix,
an underscore, and the Term Type Code. For example, the stem identifier for contract terms of
type "MARGIN" with a Null category would be as follows:

CONT_MARGIN

Note: Because the CONTRACTID and REVISION can be different than the
contract used to initially create the stem identifiers, not all of the identifiers
initially loaded will necessarily be saved.
13-92 Rules Language Reference Guide

Term Functions
SAVEGROUPTERM Function

Purpose
The SAVEGROUPTERM function saves a single contract item group term to the Contract Item
Group Term table in the Oracle Utilities Data Repository. The function returns zero (0) if
successful, and 1 if an error occurs.

Format
<return_code> = SAVEGROUPTERM(<input_stem>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the term to save:

• CONTRACTID: The contract ID of the contract for the term to be saved

• REVISION: The revision number of the contract for the term to be saved

• TERMSTART: The start time of the term to be saved

• TERMSTOP: The stop time of the term to be saved

• TERMTYPE: The term type for the term to be saved

• TERMCATEGORY: The term category for the term to be saved

• PRODUCTID: The Product ID for the contract item group

• PRODUCTSTART: The Product start time for the contract item group

• PRODUCTSTOP: The Product stop time for the contract item group

• GROUPID: The Group ID for the contract item group

• STARTTIME: The start time of the term to be saved

• STOPTIME: The stop time of the term to be saved

• VAL: The text value of the term to be saved

• VALNUM: The numeric value of the term to be saved

• VALDATE: The date value of the term to be saved

• Any custom columns on the specified table. The tail identifier used will be the same as
the custom column name.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <return_code> is the return code of the function call. An error occurs if the term record
cannot be saved. Return codes are as follows:

• 0 - Success

• 1 - Record could not be saved

Note: Any errors returned will also appear on the output report.
Other Function Descriptions 13-93

Term Functions
Example
Save the DEPOSITAMOUNT,CONTRACT group term with a start date of 01/01/2008 00:00:00 for
contact “Customer_Pricing_01”, revision 1 with a numeric value of 100, for group “GROUP_01” and Product
“GENERAL_SERVICE” (for 01/01/2007 00:00:00 through 12/31/2010 23:59:59) to the Contract
Item Group Terms table.

SAVE_GROUP_TERM.CONTRACTID = "Customer_Pricing_01";
SAVE_GROUP_TERM.REVISION = "1";
SAVE_GROUP_TERM.TERMTYPE = "DEPOSITAMOUNT";
SAVE_GROUP_TERM.TERMCATEGORY = "CONTRACT";
SAVE_GROUP_TERM.GROUPID = "GROUP_01";
SAVE_GROUP_TERM.PRODUCTID = "GENERAL_SERVICE";
SAVE_GROUP_TERM.PRODUCTSTART = "01/01/2007 00:00:00";
SAVE_GROUP_TERM.PRODUCTSTOP = "12/31/2010 23:59:59";
SAVE_GROUP_TERM.STARTTIME = "01/01/2008 00:00:00";
SAVE_GROUP_TERM.STOPTIME = NULL;
SAVE_GROUP_TERM.VAL = NULL;
SAVE_GROUP_TERM.VALNUM = "100";
SAVE_GROUP_TERM.VALDATE = NULL;
SAVE_GROUP_TERM_RETURN = SAVEGROUPTERM(SAVE_GROUP_TERM);
13-94 Rules Language Reference Guide

Term Functions
SAVEGROUPTERMALL Function

Purpose
The SAVEGROUPTERMALL function saves all contract group terms for a specified contract to
the Contract Item Group Term table in the Oracle Utilities Data Repository. The function returns
zero (0) if successful, and 1 if an error occurs.

Format
<return_code> = SAVEGROUPTERMALL(<input_stem>[, <clear_flag>]);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the contract

group for which terms are to be saved:

• CONTRACTID: The contract ID of the contract for the term to be saved

• REVISION: The revision number of the contract for the term to be saved

• PRODUCTID: The Product ID for the contract item group

• PRODUCTSTART: The Product start time for the contract item group

• PRODUCTSTOP: The Product stop time for the contract item group

• GROUPID: The Group ID for the contract item group

• <clear_flag> is an optional flag that specifies whether or not to clear all stem and tail
identifiers associated with the specified contract group. A value of "Y" indicates that all stem
and tail identifiers be cleared. Any other value indicates that stem and tail identifiers should
NOT be cleared.

• <return_code> is the return code of the function call. An error occurs if the term record
cannot be saved. Return codes are as follows:

• 0 - Success

• 1 - Record could not be saved

Note: Any errors returned will also appear on the output report.

Example
Save all group terms for contact “Customer_Pricing_01”, revision 1, for group “GROUP_01” and Product
“GENERAL_SERVICE” (for 01/01/2007 00:00:00 through 12/31/2010 23:59:59) to the Contract
Item Group Terms table, and clear all associated stem and tail identifiers.

SAVE_GROUP_TERMS.CONTRACTID = "Customer_Pricing_01";
SAVE_GROUP_TERMS.REVISION = "1";
SAVE_GROUP_TERMS.PRODUCTID = "GENERAL_SERVICE";
SAVE_GROUP_TERMS.PRODUCTSTART = "01/01/2007 00:00:00";
SAVE_GROUP_TERMS.PRODUCTSTOP = "12/31/2010 23:59:59";
SAVE_GROUP_TERMS.GROUPID = "GROUP_01";
SAVE_GROUP_TERMS_RETURN = SAVECGROUPTERMALL(SAVE_GROUP_TERMS, "Y");
Other Function Descriptions 13-95

Term Functions
Notes
This function saves one or more stem identifiers (and their corresponding tail identifiers) that
contain previously created or retrieved group terms (see LOADGROUPTERMALL Function
on page 13-82) based on the contract group specified in the function call.

The stem identifiers to be saved are the concatenation of the table name prefix ("GRUP"), an
underscore, the Term Type Code, an underscore, and the Category Code. For example, the stem
identifier for contract terms of type "MARGIN" of category "CONTRACT" would be as follows:

GRUP_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier is the concatenation of the table name prefix,
an underscore, and the Term Type Code. For example, the stem identifier for contract terms of
type "MARGIN" with a Null category would be as follows:

GRUP_MARGIN

Note: Because the CONTRACTID and REVISION can be different than the
contract used to initially create the identifiers, not all of the identifiers initially
loaded will necessarily be saved.
13-96 Rules Language Reference Guide

Term Functions
SAVEITEMTERM Function

Purpose
The SAVEITEMTERM function saves a single contract item term to the Oracle Utilities Data
Repository. This function can save terms to the Contract Item Term table, the Contract Item
Product Term table, or the Contract Item Details table. The function returns zero (0) if successful,
and 1 if an error occurs.

Format
<return_code> = SAVEITEMTERM(<input_stem>, <table>);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the term to save:

• CONTRACTID: The contract ID of the contract for the term to be saved

• REVISION: The revision number of the contract for the term to be saved

• TERMSTART: The start time of the term to be saved

• TERMSTOP: The stop time of the term to be saved

• TERMTYPE: The term type for the term to be saved

• TERMCATEGORY: The term category for the term to be saved

• ACCOUNTID: The Account ID for the contract item

• PRODUCTID: The Product ID for the contract item

• PRODUCTSTART: The Product start time for the contract item

• PRODUCTSTOP: The Product stop time for the contract item

• SERVICEPOINT: The Service Point ID for the contract item

• MARKETID: The Market ID related to the Service Point ID for the contract item

• SERVICETYPE: The service type related to the Service Point ID for the contract item

• STARTTIME: The start time of the term to be saved

• STOPTIME: The stop time of the term to be saved

• VAL: The text value of the term to be saved

• VALNUM: The numeric value of the term to be saved

• VALDATE: The date value of the term to be saved

• PERIOD: The period for term to be saved. This tail is only returned when saving terms
to the Contract Item Details table.

• Any custom columns on the specified table. The tail identifier used will be the same as
the custom column name.

See Term Function Tail Identifiers on page 13-74 for a list of the database table-columns
that correspond to these identifiers. If a tail identifier is missing or has previously been
cleared (via the CLEAR statement), a NULL value will be used.

• <table> is a string that specifies the table from to the term details are to be saved:

• "ITEM": save the term to the Contract Item Term table

• "PRODUCT": save the term to the Contract Item Product Term table

• "DETAILS": save the term to the Contract Item Details table
Other Function Descriptions 13-97

Term Functions
• <return_code> is the return code of the function call. An error occurs if the term record
cannot be saved. Return codes are as follows:

• 0 - Success

• 1 - Record could not be saved

Note: Any errors returned will also appear on the output report.

Example
Save the MARGIN,CONTRACT item term with a start date of 01/01/2008 00:00:00 for contact
“Customer_Pricing_01”, revision 1 with a numeric value of 10, for Account “ACCT_01” and Product
“STANDARD_SERVICE” (for 01/01/2007 00:00:00 through 12/31/2010 23:59:59) to the Contract
Item Terms table.

SAVE_ITEM_TERM.CONTRACTID = "Customer_Pricing_01";
SAVE_ITEM_TERM.REVISION = "1";
SAVE_ITEM_TERM.TERMTYPE = "MARGIN";
SAVE_ITEM_TERM.TERMCATEGORY = "CONTRACT";
SAVE_ITEM_TERM.ACCOUNTID = "ACCT_01";
SAVE_ITEM_TERM.PRODUCTID = "STANDARD_SERVICE";
SAVE_ITEM_TERM.PRODUCTSTART = "01/01/2007 00:00:00";
SAVE_ITEM_TERM.PRODUCTSTOP = "12/31/2010 23:59:59";
SAVE_ITEM_TERM.STARTTIME = "01/01/2008 00:00:00";
SAVE_ITEM_TERM.STOPTIME = NULL;
SAVE_ITEM_TERM.VAL = NULL;
SAVE_ITEM_TERM.VALNUM = "10";
SAVE_ITEM_TERM.VALDATE = NULL;
SAVE_ITEM_TERM_RETURN = SAVEITEMTERM(SAVE_ITEM_TERM,"ITEM");
13-98 Rules Language Reference Guide

Term Functions
SAVEITEMTERMALL Function

Purpose
The SAVEITEMTERMALL function saves all contract item terms for a specified contract to the
Oracle Utilities Data Repository. This function can save terms to the Contract Item Term table,
the Contract Item Product Term table, or the Contract Item Details table. The function returns
zero (0) if successful, and 1 if an error occurs.

Format
<return_code> = SAVEITEMTERMALL(<input_stem>, <table>[,
<clear_flag>]);

Where
• <input_stem> is a stem identifier with following tail identifiers that specify the contract and

contract item for which terms are to be saved:

• CONTRACTID: The contract ID of the contract for the term to be saved

• REVISION: The revision number of the contract for the term to be saved

• ACCOUNTID: The Account ID for the contract item

• PRODUCTID: The Product ID for the contract item

• PRODUCTSTART: The Product start time for the contract item

• PRODUCTSTOP: The Product stop time for the contract item

• SERVICEPOINT: The Service Point ID for the contract item

• MARKETID: The Market ID related to the Service Point ID for the contract item

• SERVICETYPE: The service type related to the Service Point ID for the contract item

• <table> is a string that specifies the table to which the term details are to be saved:

• "ITEM": save the term to the Contract Item Term table

• "PRODUCT": save the term to the Contract Item Product Term table

• "DETAILS": save the term to the Contract Item Details table

• <clear_flag> is an optional flag that specifies whether or not to clear all stem and tail
identifiers associated with the specified contract. A value of "Y" indicates that all stem and tail
identifiers be cleared. Any other value indicates that stem and tail identifiers should NOT be
cleared.

• <return_code> is the return code of the function call. An error occurs if the term record
cannot be saved. Return codes are as follows:

• 0 - Success

• 1 - Record could not be saved

Note: Any errors returned will also appear on the output report.

Example
Save all terms for contact “Customer_Pricing_01”, revision 1 to the Contract Terms table, and clear all associated
stem and tail identifiers.

SAVE_ALL_TERMS.CONTRACTID = "Customer_Pricing_01";
SAVE_ALL_TERMS.REVISION = "1";
SAVE_ALL_TERMS_RETURN = SAVECONTRACTTERMALL(SAVE_ALL_TERMS, "ITEM",
"Y");
Other Function Descriptions 13-99

Term Functions
Notes
This function saves one or more stem identifiers (and their corresponding tail identifiers) that
contain previously created or retrieved contract item terms (see LOADITEMTERMALL
Function on page 13-87) based on the contract and contract item specified in the function call.

Note: Because the CONTRACTID and REVISION can be different than the
contract used to initially create the identifiers, not all of the identifiers initially
loaded will necessarily be saved.

• For terms to be saved to the Contract Item Term table, stem identifiers are the
concatenation of the table name prefix ("ITEM"), an underscore, the Term Type Code, an
underscore, and the Category Code. For example, the stem identifier for contract terms of
type "MARGIN" of category "CONTRACT" would be as follows:

ITEM_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier is the concatenation of the table name
prefix, an underscore, and the Term Type Code. For example, the stem identifier for contract
terms of type "MARGIN" with a Null category would be as follows:

ITEM_MARGIN

• For terms to be saved to the Contract Item Product Term table, stem identifiers are the
concatenation of the table name prefix ("IPRD"), an underscore, the Term Type Code, an
underscore, and the Category Code. For example, the stem identifier for contract terms of
type "MARGIN" of category "CONTRACT" would be as follows:

IPRD_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier is the concatenation of the table name
prefix, an underscore, and the Term Type Code. For example, the stem identifier for contract
terms of type "MARGIN" with a Null category would be as follows:

IPRD_MARGIN

• For terms to be saved to the Contract Item Details table, stem identifiers are the
concatenation of the table name prefix ("DTLS"), an underscore, the Term Type Code, an
underscore, and the Category Code. For example, the stem identifier for contract terms of
type "MARGIN" of category "CONTRACT" would be as follows:

DTLS_MARGIN_CONTRACT

If the Category Code is null, then the stem identifier is the concatenation of the table name
prefix, an underscore, and the Term Type Code. For example, the stem identifier for contract
terms of type "MARGIN" with a Null category would be as follows:

DTLS_MARGIN
13-100 Rules Language Reference Guide

Miscellaneous Functions
Miscellaneous Functions

ACCTREADDATES Function

Purpose
The ACCTREADDATES function returns read dates for the specified account.

The first value returned (HISTVALUE(0)) is the first read date on or after the BILL_STOP.
Subsequent read dates are the ones before the BILL_STOP, with most recent first.

Format
<identifier> = ACCTREADDATES(<account_id>)

Where
<account_id> is the account id number from the Oracle Utilities Data Repository.

Example
Return a list of read dates for account # 800001

READ_DATES = ACCTREADDATES(“800001”)
Other Function Descriptions 13-101

Miscellaneous Functions
ACCTTABLELOAD Function

Purpose
The ACCTTABLELOAD function returns all specified records within specified date range.

Database records returned contain the STARTTIME and STOPTIME, as well as VAL and
STRVAL if in the table. A record is in effect if the account is related to the record key through the
table any time between the supplied dates. If there are no records, returns 0.

Format
<identifier> = ACCTTABLELOAD(<table_name>, <record_key>, <startdate>,
<stopdate>)

Where
• <table_name> is one of: “ACCTRIDERHIST”, “ACCTRATECODEHIST”,

“ACCTOVERRIDEHIST”, “ACCTNAMEOVERHIST”, or “ACCTFACTORHIST”.

• <record_key> is a string that is the non-account and non-start time part of a record's key.

• <startdate> is a date constant that is the start of the date range the records are taken from.

• <stopdate> is a date constant that is the end of the date range the records are taken from.

Example
Return the records from the ACCTRIDERHIST Table that have a record key of ‘SPECIAL_RIDER’.

RH = ACCTTABLELLOAD("ACCTRIDERHIST", "SPECIAL_RIDER");
13-102 Rules Language Reference Guide

Miscellaneous Functions
CONFIGADD Function

Purpose
The CONFIGADD function adds the value of parameters within a configuration file to the
internal configuration settings.

The values in the configuration file are added to the internal configuration settings. The values in
the next CONFIGADD replace any previous CONFIGADD. See LODESTAR.CFG on page 2-
2 in Chapter 2: Configuration Files in the Oracle Utilities Energy Information Platform Configuration
Guide for details on creating a LODESTAR.CFG configuration file.

Format
<identifier> = CONFIGADD(<identifier|expression>);

Where
• <identifier|expression> is a string that is a fully qualified path and file name.

Example
Add the parameters in LODESTAR.CFG to the internal configuration settings.

CONFIG = CONFIGADD(“C:\LODESTAR\USER\LODESTAR.CFG”);
Other Function Descriptions 13-103

Miscellaneous Functions
CONFIGGET Function

Purpose
The CONFIGGET function returns the value of a configuration file parameter from the
LODESTAR.CFG configuration file. See LODESTAR.CFG on page 2-2 in Chapter 2:
Configuration Files in the Oracle Utilities Energy Information Platform Configuration Guide for details
on creating a LODESTAR.CFG configuration file.

Format
<identifier> = CONFIGGET(<identifier|expression>);

Where
• <identifier|expression> is a string that is a configuration file parameter.

Example
Get the string value of the ‘CISFILENAME’ parameter.

CONFIGPARAM = CONFIGGET(”CISFILENAME”);
13-104 Rules Language Reference Guide

Miscellaneous Functions
CREATEOBJECT Function

Purpose
The CREATEOBJECT function creates a COM object, based on the object’s ProgID.

This function creates a COM object. Once created, the properties and methods of the COM
object are available to the Rules Language using COM expressions. The function returns a
reference to the COM object which can be used in COM expressions.

See Working with COM Objects in Chapter 8: Working with COM Components in the Oracle
Utilities Rules Language User’s Guide for more information about using this function.

Format
<identifier> = CREATEOBJECT(<ProgID>);

Where
• <ProgID> is a string that contains the ProgID of the COM object to be created.

Example
Create a DOMDocument COM object.

OBJECT = CREATEOBJECT (“MSXML.DOMDocument”);
Other Function Descriptions 13-105

Miscellaneous Functions
CREATEREPORT Function

Purpose
The CREATEREPORT function generates a report (including Oracle BI Publisher reports) based
on parameters passed from the Rules Language. Returns the GUID (global unique identifier) that
uniquely identifies the report instance created by the function.

Format
<identifier> = CREATEREPORT(<stem_identifier>, <input_parameters>);

Where
• <stem_identifier> is a stem identifier with the following structure:

• <STEM>.RPTTYPE is a string which specifies the Report Type of the report to be
generated. Can be one of the following:

• Oracle BI Publisher Reports (“BIPublisher”)

• Oracle Utilities Rules Language Reports (“LSRate”)

• <STEM>.RPTNAME is a string that specifies the Report Name. This is the name from
the Report Templates table.

• <STEM>.USERID is a string that specifies the User ID for the user generating the
report. The default value is the application's user id. To obtain the current user ID, you
can also use the GETUSERID Function.

• <STEM>.TITLE is an optional string specifying the title for the report. For Crystal
Reports, this is the title that will appear in the Report Title column on the View Reports
screen in the Energy Information Platform user interface.

• <STEM>.INPUTPARAMS is a string or XML document that contains input
parameters. Note: The INPUTPARAMS tail must be used when passing parameters to
reports such as Oracle Utilities Rules Language reports.

• <STEM>.ISSHARED an optional string that specifies if the report is to be shared. Can
be “Y” (shared) or “N” (not shared, default).

• <STEM>.AUTO_SAVE is a flag that designates if saves should be enabled when
executing a Rules Language report. Setting this to “false” disables all saves. Setting this to
“true” is required when saving interval data.

• <STEM>.CUSTOMINPUT is an optional string that contains custom input used by the
report.

• <input_parameters> is a stem identifier or an identifier containing an XML document
containing input parameters used by the report. If the <stem_identifier> does not contain an
INPUTPARAMS tail, this second parameter will be used as report input parameters. Note:
This second parameter can be used only with Crystal Reports.
13-106 Rules Language Reference Guide

Miscellaneous Functions
Working with Input Parameters
If supplied, the INPUTPARAMS stem will be transformed into XML with the following
structure:

<CRParameters>
<CRParameter ParameterFieldName= "Tail name" CurrentValue= "Tail value"/>

</CRParameters>

where:

• "Tail Name" is the tail name (in quotes)

• "Tail Value" is the tail value (in quotes)

When specifying a Table.Column value, use the following naming convention:

INPUTPARAMS.<TABLE>__<COLUMN>

In this case, two underscores separate <TABLE> from <COLUMN>,which will be converted to
<TABLE>.<COLUMN>

Example:

INPUTPARAMS.RECORDER = "1700";
INPUTPARAMS.CHANNEL = 1;
INPUTPARAMS.STARTTIME = "03/08/2004 00:00:00";
INPUTPARAMS.STOPTIME = "03/09/2004 23:59:59";
INPUTPARAMS.LSCHANNELCUTHEADER__STARTTIME = "03/08/2004 00:00:00";
INPUTPARAMS.LSCHANNELCUTHEADER__STOPTIME="03/09/2004 00:00:00";
INPUTPARAMS.LSCHANNELCUTHEADER__RECORDER = "1700";
INPUTPARAMS.LSCHANNELCUTHEADER__CHANNEL ="1";
INPUTPARAMS.PARAM_NAME1 = "PARAM_VALUE1";
INPUTPARAMS.PARAM_NAME2= "PARAM_VALUE2";
INPUTPARAMS.PARAM_NAME3= "PARAM_VALUE3";

would be converted into the following input parameters XML:

<CRParameters>
<CRParameter ParameterFieldName="RECORDERID" CurrentValue="1700"/>
<CRParameter ParameterFieldName="CHANNEL" CurrentValue="1"/>
<CRParameter ParameterFieldName="LSCHANNELCUTHEADER.STARTTIME"

CurrentValue="03/08/2004 00:00:00"/>
<CRParameter ParameterFieldName= "PARAM_NAME1" CurrentValue="PARAM_VALUE1"/>

.

.
</CRParameters>

Examples
Run the Account Notes report (Oracle BI Publisher).

//Set up Input Parameters
INPUTPARAMS.ACCOUNT__ACCOUNTID = "800001";
INPUTPARAMS.ACCTNOTETYPE__ACCTNOTETYPECODE = "EXCEPTION";
INPUTPARAMS.RESOLVED= "Y";
//Set up Report Parameters
STEM.RPTTYPE = "BIPublisher";
STEM.RPTNAME = "Account Notes";
STEM.TITLE = "Account Notes Report";
STEM.ISSHARED = "Y";
//Run Report
GUID_1 = CREATEREPORT (STEM, INPUTPARAMS);
Other Function Descriptions 13-107

Miscellaneous Functions
Run the Account Notes report (Crystal Report).

//Set up Input Parameters
INPUTPARAMS.ACCOUNT__ACCOUNTID = “800001”;
INPUTPARAMS.ACCTNOTETYPE__ACCTNOTETYPECODE = “EXCEPTION”;
INPUTPARAMS.RESOLVED= “Y”;
//Set up Report Parameters
STEM.RPTTYPE = “Crystal”;
STEM.RPTNAME = “Account Notes”;
STEM.TITLE = “Account Notes Report”;
STEM.ISSHARED = “Y”;
//Run Report
GUID_1 = CREATEREPORT (STEM, INPUTPARAMS);

Run a Rules Language Report (Save Interval Data to Staging).

//Set up Input Parameters
INPUTPARAMS.RECORDERID = “RECORDER1”;
INPUTPARAMS.CHANNELNUM = “1”;
INPUTPARAMS.STARTTIME= “01/01/2008 00:00:00”;
INPUTPARAMS.STOPTIME= “01/31/2008 23:59:59”;

//Set up Report Parameters
STEM.RPTTYPE = “LSRate”;
STEM.RPTNAME = “Save Interval Data to Staging”;
STEM.TITLE = “Interval Data Save - 10011”;
STEM.AUTO_SAVE = “true”;
STEM.ISSHARED = “Y”;
STEM.USERID = GETUSERID();
//Run Report
GUID_1 = CREATEREPORT (STEM, INPUTPARAMS);

Note
This function executes in all modes, and is not disabled if saves are disabled. Also, if used with
Oracle Utilities Billing Component, this function executes upon when the rate schedule is
processed, and even if the bill report is rejected.

To override this default behavior, you can use an IF THEN statement and the
LSRSENV.COMMIT Rate Schedule Environment identifier to make sure the rate schedule being
processed is in “commit” mode (that is, saves are enabled), as follows:

Run the Account Notes report if in “commit” mode.

//Set up Input Parameters
INPUTPARAMS.ACCOUNT__ACCOUNTID = “800001”;
INPUTPARAMS.ACCTNOTETYPE__ACCTNOTETYPECODE = “EXCEPTION”;
INPUTPARAMS.RESOLVED= “Y”;
//Set up Report Parameters
STEM.RPTTYPE = “Crystal”;
STEM.RPTNAME = “Account Notes”;
STEM.TITLE = “Account Notes Report”;
STEM.ISSHARED = “Y”;
//Verify “commit” mode
IF LSRSENV.COMMIT = 1

THEN
//Run Report
GUID_1 = CREATEREPORT (STEM, INPUTPARAMS);

END IF;
13-108 Rules Language Reference Guide

Miscellaneous Functions
EMAILCLIENT Function

Purpose
The EMAILCLIENT function sends an email to a specified recipient or group. This can be used
to send an email notice, or to send a file created by the Rules Language or other application (such
as a report). The message is sent when the EMAILCLIENT statement is executed in the rate
schedule. Sending email to contacts and groups requires that the specified contact(s) or group(s)
be previously defined in the Oracle Utilities Data Repository. Returns 0 if successful. See Return
Codes on page 13-111 for details concerning error-based return codes.

Format
<identifier> = EMAILCLIENT(<stem_identifier>);

Where
• <stem_identifier> is a stem identifier or expression that evaluates to a stem identifier. The

corresponding tail identifiers provide the values for the email to be sent. Available tail
identifiers include:

• MAILTO_*: an email address stored in the TO field.

• MAILCC_*: an email address stored in the CC field.

• MAILBCC_*: an email address stored in the BCC field.

• CONTACT_TO_LASTNAME_*: Last Name contact attribute (TO).

• CONTACT_TO_FIRSTNAME_*: First Name contact attribute (TO).

• CONTACT_TO_MIDDLENAME_*: Middle Name contact attribute (TO).

• CONTACT_TO_SUFFIX_*: Suffix Name contact attribute (TO).

• CONTACT_TO_TITLE_*: Title Name contact attribute (TO).

• CONTACT_TO_UNIQUEID_*: Unique identifier contact attribute (TO).

• CONTACT_TO_OWNERID_*: Owner identifier contact attribute (TO).

• CONTACT_CC_LASTNAME_*: Last Name contact attribute (CC).

• CONTACT_CC_FIRSTNAME_*: First Name contact attribute (CC).

• CONTACT_CC_MIDDLENAME_*: Middle Name contact attribute (CC).

• CONTACT_CC_SUFFIX_*: Suffix Name contact attribute (CC).

• CONTACT_CC_TITLE_*: Title Name contact attribute (CC).

• CONTACT_CC_UNIQUEID_*: Unique identifier attribute (CC).

• CONTACT_CC_OWNERID_*: Owner identifier attribute (CC).

• CONTACT_BCC_LASTNAME_*: Last Name contact attribute (BCC).

• CONTACT_BCC_FIRSTNAME_*: First Name contact attribute (BCC).

• CONTACT_BCC_MIDDLENAME_*: Middle Name contact attribute (BCC).

• CONTACT_BCC_SUFFIX_*: Suffix Name contact attribute (BCC).

• CONTACT_BCC_TITLE_*: Title Name contact attribute (BCC).

• CONTACT_BCC_UNIQUEID_*: Unique identifier contact attribute (BCC).

• CONTACT_BCC_OWNERID_*: Owner identifier contact attribute (BCC).

• GROUP_TO_NAME_*: a group name attribute stored in the TO field.

• GROUP_TO_OWNERID_*: the owner identifier attribute for the TO field.
Other Function Descriptions 13-109

Miscellaneous Functions
• GROUP_CC_NAME_*: a group name attribute stored in the CC field.

• GROUP_CC_OWNERID_*: the owner identifier attribute for the CC field.

• GROUP_BCC_NAME_*: a group name attribute stored in the BCC field.

• GROUP_BCC_OWNERID_*: the owner identifier attribute for the BCC field.

• SUBJECT: the subject of the email.

• TEXT: the body of the email. Note that the buffer size of the text is limited to 64k. If the
amount of text to be sent is greater than 64k, then sending an attachment can be used.

• FILE_*: path and file name of file attachment.

• GUID_*: a report identifier found in the LSRFRPTINSTANCE table. Translates to a
file stored on the file system.

• IMPORT_*: path and file name of a text file (*.txt) to be imported into the body of the
email. Note that the buffer size of the text is limited to 64k.

• EMAILFROM: a required name that resolves to a single email address for where the
email came from.

*indicates that the tail uses a three digit number scheme to indicate multiple entries. Note that
if the field name is not unique, then the last entry made is used. Also, for contact and group
names this three digit number is used to relate all the common fields together.

Example
Send an email.

//Set up email attributes
EMAIL_XML.MAILTO_001 = "don_Ho@HoStarInternational.com";
EMAIL_XML.MAILCC_001 = "alex_Maker@HoStarInternational.com";
EMAIL_XML.CONTACT_TO_LASTNAME_001 = "Meister";
EMAIL_XML.CONTACT_TO_LASTNAME_002 = "Gordon";
EMAIL_XML.CONTACT_TO_FIRSTNAME_001 ="Burger";
EMAIL_XML.CONTACT_TO_TITLE_001 = "Mayor";
EMAIL_XML.CONTACT_TO_TITLE_002 = "Action Hero";
EMAIL_XML.GROUP_TO_GROUPNAME_001 = "HoSpecialGroup";
EMAIL_XML.GROUP_TO_OWNERID_001 = "SpecialName";
EMAIL_XML.SUBJECT = "The latest news on Performance Numbers!";
EMAIL_XML.TEXT = "Here are the latest numbers!";
EMAIL_XML.FILE_001 = "c:\HoStatusReport.xls";
EMAIL_XML.EMAILFROM = "MimiHo@HoStarInternational.com";
//Send email
EMAIL_STAT = EMAILCLIENT(EMAIL_XML);

Notes
The EMAILCLIENT function requires the presence of the LSRELAY.CFG.XML file in the
C:\LODESTAR\CFG directory on the executing computer. See LSRELAY.CFG.XML on page
2-34 in the Oracle Utilities Energy Information Platform Configuration Guide for more information about
this file.

This function executes in all modes, and is not disabled if saves are disabled. Also, if used with
Oracle Utilities Billing Component, this function executes upon when the rate schedule is
processed, and even if the bill report is rejected.

To override this default behavior, you can use an IF THEN statement and the
LSRSENV.COMMIT Rate Schedule Environment identifier to make sure the rate schedule being
processed is in “commit” mode (that is, saves are enabled), as follows:

Send an email if in “commit” mode.

//Set up email attributes
13-110 Rules Language Reference Guide

Miscellaneous Functions
EMAIL_XML.MAILTO_001 = "don_Ho@HoStarInternational.com";
EMAIL_XML.SUBJECT = "The latest news on Performance Numbers!";
EMAIL_XML.TEXT = "Here are the latest numbers!";
EMAIL_XML.FILE_001 = "c:\HoStatusReport.xls";
EMAIL_XML.MAILFROM = "MimiHo@HoStarInternational.com";
//Verify “commit” mode
IF LSRSENV.COMMIT = 1

THEN
//Send email
EMAIL_STAT = EMAILCLIENT(EMAIL_XML);

END IF;

Return Codes
The function returns a 0 (zero) if successful. If an error occurs, the return code provided by the
function indicates the nature of the error. The table below outlines the function’s return codes and
probable causes for each.

Code Description Probable Cause

-1 EMAIL_SERVER_CONNECTION_FAILED Unable to initialize the socket sub-system.
Unable to connect to the mail server. May
need to increase EMAIL_TIMEOUT.

-2 INVALID_EMAIL_ADDRESS Missing a valid 'Reply' address.
Missing a valid 'From' address.
An invalid address was encountered.

-3 EMAIL_SEND_FAILED Missing a valid 'From' address.
Missing a valid 'Recipient', 'CC' or 'BCC'
address.
Unable to send the email. May need to
increase EMAIL_TIMEOUT.

-4 ATTACHMENT_NOT_FOUND Attachment %s is missing. Make sure
GUID/path/file exists.

-5 AUTH_EMAIL_FAILED Unable to connect to the mail server. May
need to increase EMAIL_TIMEOUT.

-6 DISCONNECT_FAILED Disconnect failed. Socket not closed.

-99 (others) Missing configuration item %s.
Unable to locate a valid lsrelay.cfg.xml
configuration file.
Unable to locate PLBX report. Check
config file for report listing.
Other Function Descriptions 13-111

Miscellaneous Functions
EXPBLKMDMUSAGE Function

Purpose
The EXPBLKMDMUSAGE function exports usage for a specified account or service point over
a specified date range to a Oracle Utilities Meter Data (*.lsm) file. Usage exported with this
function can be consumption, interval, or time-of-use usage. Returns 0 if successful.

Format
<identifier> = EXPBLKMDMUSAGE(<stem_identifier>);

Where
• <stem_identifier> is a stem identifier or expression that evaluates to a stem identifier. The

corresponding tail identifiers provide the values for the usage to be exported. Available tail
identifiers include:

• ACCOUNTID: The Account ID that corresponds to the usage to export. If not
provided, SERVICEPOINTID is required.

• SERVICEPOINTID: The Service Point ID that corresponds to the usage to export. If
not provided, ACCOUNTID is required.

• CHANNELID: The Channel ID of the usage to export. If not provided, all usage for all
channels for the specified Account or Service Point will be exported.

• UOM: The Expected Unit of Measure of the usage to export. If not provided, all usage
for all UOMs for the specified Account or Service Point will be exported

• USAGETYPECODE (Required): The Usage Type Code of the usage to export.

• STARTDATE (Required): The start date of the usage to export

• STOPDATE (Required): The stop date of the usage to export

• USAGECATEGORY: The Usage Category (RAW, STAGING, or FINAL) of the usage
to export

• OUTPUTFILE (Required): The path and file name for the file to which the usage is
exported

Examples
Export all “FINAL” KWH (01) interval usage for January 2006 for account “ACCOUNT-5A”.

//Set up export parameters
MDM_READ.ACCOUNTID = "ACCOUNT-5A";
MDM_READ.UOM = "01";
MDM_READ.USAGETYPECODE = "INTERVAL";
MDM_READ.STARTDATE = "01/01/2006";
MDM_READ.STOPDATE = "01/31/2006 23:59:59";
MDM_READ.USAGECATEGORY = "FINAL";
MDM_READ.OUTPUTFILE = "C:\LODESTAR\USER\ACCOUNT-5A_USAGE.lsm";
//
//Export Reading
EXPORT = EXPBLKMDMUSAGE(MDM_READ);

Export all “FINAL” KWH (01) consumption usage for January 2006 for service point “SP-5B”.

//Set up export parameters
MDM_READ.SERVICEPOINTID = "SP-5B";
MDM_READ.UOM = "01";
MDM_READ.OUTPUTFILE = "C:\LODESTAR\USER\SP-5B_USAGE.lsm";
MDM_READ.STARTDATE = "01/01/2006";
MDM_READ.STOPDATE = "01/31/2006 23:59:59";
MDM_READ.USAGETYPECODE = "CONSUMPTION";
13-112 Rules Language Reference Guide

Miscellaneous Functions
MDM_READ.USAGECATEGORY = "FINAL";
//
//Export Reading
EXPORT = EXPBLKMDMUSAGE(MDM_READ);

Notes
This function executes in all modes, and is not disabled if saves are disabled. Also, if used with
Oracle Utilities Billing Component, this function executes upon when the rate schedule is
processed, and even if the bill report is rejected.

To override this default behavior, you can use an IF THEN statement and the
LSRSENV.COMMIT Rate Schedule Environment identifier to make sure the rate schedule being
processed is in “commit” mode (that is, saves are enabled), as follows:

Export usage if in “commit” mode.

//Set export attributes
//Set up export parameters
MDM_READ.SERVICEPOINTID = "SP-5B";
MDM_READ.UOM = "01";
MDM_READ.OUTPUTFILE = "C:\LODESTAR\USER\SP-5B_USAGE.lsm";
MDM_READ.STARTDATE = "01/01/2006";
MDM_READ.STOPDATE = "01/31/2006 23:59:59";
MDM_READ.USAGETYPECODE = "CONSUMPTION";
MDM_READ.USAGECATEGORY = "FINAL";
//Verify “commit” mode
IF LSRSENV.COMMIT = 1

THEN
//Export data
EXPORT = EXPBLKMDMUSAGE(MDM_READ);

END IF;
Other Function Descriptions 13-113

Miscellaneous Functions
EXPMDMUSAGE Function

Purpose
The EXPMDMUSAGE function exports a specified usage reading to a Oracle Utilities Meter
Data (*.lsm) file. Usage exported with this function can be consumption, interval, or time-of-use
usage. Returns 0 if successful.

Format
<identifier> = EXPMDMUSAGE(<stem_identifier>);

Where
• <stem_identifier> is a stem identifier or expression that evaluates to a stem identifier. The

corresponding tail identifiers provide the values for the usage reading to be exported.
Available tail identifiers include:

• METERID (Required): The Meter ID of the reading to export

• CHANNELID: The Channel ID of the reading to export. Required for interval readings.

• UOM (Required): The Expected Unit of Measure of the reading to export

• USAGETYPECODE (Required): The Usage Type Code of the reading to export

• STARTDATE (Required): The Start Read Time of the reading to export

• STOPDATE (Required): The Stop Read Time of the reading to export

• USAGECATEGORY (Required): The Usage Category (RAW, STAGING, or FINAL)
of the reading to export

• OUTPUTFILE (Required): The path and file name for the file to which the reading is
exported

Example
Export the January 1 - 31 (FINAL) reading for meter “METER-5A”, channel “1”, and UOM “01”
(KWH).

//Set up reading parameters
MDM_READ.METERID = "METER-5A";
MDM_READ.CHANNELID = "1";
MDM_READ.UOM = "01";
MDM_READ.USAGETYPECODE = "INTERVAL";
MDM_READ.STARTDATE = "01/01/2006";
MDM_READ.STOPDATE = "01/31/2006 23:59:59";
MDM_READ.USAGECATEGORY = "FINAL";
MDM_READ.OUTPUTFILE = "C:\LODESTAR\USER\MDM_USAGE.lsm";
//
//Export Reading
EXPORT = EXPMDMUSAGE(MDM_READ);

Notes
This function executes in all modes, and is not disabled if saves are disabled. Also, if used with
Oracle Utilities Billing Component, this function executes upon when the rate schedule is
processed, and even if the bill report is rejected.

To override this default behavior, you can use an IF THEN statement and the
LSRSENV.COMMIT Rate Schedule Environment identifier to make sure the rate schedule being
processed is in “commit” mode (that is, saves are enabled), as follows:

Export usage if in “commit” mode.

//Set export attributes
13-114 Rules Language Reference Guide

Miscellaneous Functions
//Set up export parameters
MDM_READ.METERID = "METER-5A";
MDM_READ.CHANNELID = "1";
MDM_READ.UOM = "01";
MDM_READ.USAGETYPECODE = "INTERVAL";
MDM_READ.STARTDATE = "01/01/2006";
MDM_READ.STOPDATE = "01/31/2006 23:59:59";
MDM_READ.USAGECATEGORY = "FINAL";
MDM_READ.OUTPUTFILE = "C:\LODESTAR\USER\MDM_USAGE.lsm";
//Verify “commit” mode
IF LSRSENV.COMMIT = 1

THEN
//Export data
EXPORT = EXPMDMUSAGE(MDM_READ);

END IF;
Other Function Descriptions 13-115

Miscellaneous Functions
EXPORT_USAGE Function

Purpose
The EXPORT_USAGE function exports interval data associated to a supplied Account ID to a
Microsoft Excel (*.xls) file. Interval data exported by this function must be associated to the
supplied Account ID in the Entity Interval Data table. This function provides access to the
Export Account Usage function of the Energy Information Platform from the Rules Language.
Returns 0 if successful.

Format
<identifier> = EXPORT_USAGE(<stem_identifier>);

Where
• <stem_identifier> is a stem identifier or expression that evaluates to a stem identifier. The

corresponding tail identifiers provide the values for the data to be exported. Available tail
identifiers include:

• PURPOSE (Required): Specifies which set of records for a given Account should be
used when there is more than one set of records in the Entity Interval Data table for a
given Account.

• ENTITYTYPE: The type of entity for which data is exported. ACCOUNT is default if
not supplied.

• ACCOUNTID (Required): The Account ID for which data is to be exported.

• SCALERESULTS : The manner in which the data is to be scaled (if needed). Can be one
of the following: AUTO (automatic), 5MIN, 10MIN, 15MIN, 20MIN, 30MIN, HOUR,
DAY, WEEK, MONTH, and YEAR. The default is AUTO (automatic).

• STARTTIME (Required): Start time for the start of the date range for which data will be
exported.

• STOPTIME (Required): Stop time for the stop of the date range for which data will be
exported.

• OUTPUTFILE: Path and file name to the file where the data will be exported.

• INTDLOCATION: Interval data location from which the data will be exported. The
default is the table LSCHANNELCUTHEADER table.

• INCLUDESTATUS: Indicates if any status codes present in the interval data will be
exported. Valid values include “TRUE” or “FALSE”.

Example
Export data for Account ID 80001 from 05/01/2005 through 05/31/2005 to a file called
“80001_Export.xls” to the C:\LODESTAR\USER directory.

ACCOUNT_ID = 800001;
STARTTIME = ‘05/01/2005 00:00:00’;
STOPTIME = ‘05/31/2005 23:59:59’;
//Set export attributes
STEM.PURPOSE = "USAGE";
STEM.ENTITYTYPE = ACCOUNT;
STEM.ACCOUNTID = ACCOUNT_ID;
STEM.SCALERESULTS = AUTO;
STEM.STARTTIME = STARTTIME;
STEM.STOPTIME = STOPTIME;
STEM.OUTPUTFILE ="C:\LODESTAR\USER\80001_EXPORT.XLS";
STEM.INCLUDESTATUS ="TRUE";
//Export data
13-116 Rules Language Reference Guide

Miscellaneous Functions
EXPORT = EXPORT_USAGE (STEM);

Notes
This function executes in all modes, and is not disabled if saves are disabled. Also, if used with
Oracle Utilities Billing Component, this function executes upon when the rate schedule is
processed, and even if the bill report is rejected.

To override this default behavior, you can use an IF THEN statement and the
LSRSENV.COMMIT Rate Schedule Environment identifier to make sure the rate schedule being
processed is in “commit” mode (that is, saves are enabled), as follows:

Export usage if in “commit” mode.

//Set export attributes
STEM.PURPOSE = "USAGE";
STEM.ENTITYTYPE = ACCOUNT;
STEM.ACCOUNTID = ACCOUNT_ID;
STEM.SCALERESULTS = AUTO;
STEM.STARTTIME = STARTTIME;
STEM.STOPTIME = STOPTIME;
STEM.OUTPUTFILE ="C:\LODESTAR\USER\80001_EXPORT.XLS";
STEM.INCLUDESTATUS ="TRUE";
//Verify “commit” mode
IF LSRSENV.COMMIT = 1

THEN
//Export data
EXPORT = EXPORT_USAGE (STEM);

END IF;
Other Function Descriptions 13-117

Miscellaneous Functions
FACTORINEFFECT Function

Purpose
The FACTORINEFFECT function checks to see if specified factor has a factor value on the
given date. Returns 1 (true) or 0 (false).

Returns 1 if there is a FACTORVALUE record related to the FACTOR record on the supplied
date, and has a non-null factor value whose start time is the first one on or before the supplied
date. Otherwise, returns 0. A supplied date overrides a date in the factor code. If neither date is
supplied, the bill period effective date is used.

Format
<identifier> = FACTORINEFFECT(<factor_code>, <date>)

Where
• <factor_code> is a string that is a key to a record in the FACTOR Table.

• <date> is a date string. If not supplied and the factor code does not have a date, the bill
period effective date is used.

Example
Return a 1 (true) if there is a factor value record for factor “CCA_17” on 01/10/93. If not, return a 0 (false):

IN_EFFECT = FACTORINEFFECT (“CCA_17”, “01/10/1993”)
13-118 Rules Language Reference Guide

Miscellaneous Functions
GETUSERSPECIFIEDSTOP Function

Purpose
The GETUSERSPECIFIEDSTOP function returns the “User Specified Stop” date (if supplied)
or NULL (if not supplied). This function returns the “User Specified Stop” date when processing
billing calculations using Current/Final Billing, or Trial Bill/Calculation. The function returns
NULL in all other billing modes.

Format
<identifier> = GETUSERSPECIFIEDSTOP();

Example
Get the user specified stop.

USERSPECSTOP = GETUSERSPECIFIEDSTOP();
IF HASVALUE(USERSPECSTOP)

THEN
LABEL USERSPECSTOP “User Specified Stop”;
ELSE
...
Other Function Descriptions 13-119

Miscellaneous Functions
INEFFECT Function

Purpose
The INEFFECT function indicates whether a specified tariff rider, rate code, or override was in
effect for the account on a particular date.

The function returns 1 if yes, 0 if no.

Format
<identifier> = INEFFECT(<table_name>, <record_key>,
<date_identifier|date_constant>);

Where
• <table_name> is one of:

• “ACCTRIDERHIST” (links tariff riders to accounts)

• “ACCTRATECODEHIST” (links rate code to accounts)

• “ACCTOVERRIDEHIST” (links overrides to accounts)

• “ACCTNAMEOVERHIST” (links overrides to accounts at the meter level)

• <record_key> is an identifier for the rider, rate code, or override, depending on the table
specified in the first parameter.

Note: The <record_key> is the part of the key that doesn't include the account number or
start time. For example, for a rate form it would be <“operating_company_code,
jurisdication_code,rate_form_code”>. See the example below.

• <date_identifier|date_constant> is either an identifier that contains a date (such as
BILL_PERIOD or BILL_START) or a date constant in the format ‘mm/dd/yyyy’ or ‘mm/
dd/yyyy hh:mm’.

Example
Return a value (0 or 1) to indicate whether or not the rate 1-GL was in effect for the current account on its bill start
date.

RC_INEF = INEFFECT(“ACCTRATECODEHIST”, “GECO,SF,1-GL”, BILL_START);
13-120 Rules Language Reference Guide

Miscellaneous Functions
ISHOLIDAY Function

Purpose
The ISHOLIDAY function returns a 1 if a specified date is in a specified holiday list; otherwise, it
returns a 0.

Format
<identifier> = ISHOLIDAY(<date_identifier|date_constant>,
<holiday_list_name>);

Where
• <date_identifier|date_constant> is either an identifier that contains a date (such as

BILL_PERIOD or BILL_START) or a constant in the format
‘mm/dd/yyyy’, ‘mm/dd/yyyy hh:mm’, ‘yyyy-mm-dd’, or ‘yyyy-mm-dd hh:mm’.

• <holiday_list_name> is the name of a list in the HOLIDAYLIST Table.

Example
Return a 1 if 02/14/1998 is in the holiday list “STANDARD_HOLIDAYS”. Otherwise, return a 0.

VDAY = ISHOLIDAY(02/14/1998, “STANDARD_HOLIDAYS”)
Other Function Descriptions 13-121

Miscellaneous Functions
RUNRATE Function

Purpose
The RUNRATE function executes a new rate, starting the rate as a new process and then continue
with its own execution. The parameters for the rate will be passed in as parameters to this
function. The UserID, Password, connect string, and Qualifier will default to the parent rate and
must not be passed in. Returns an integer value which can be used to wait for the spawned rate to
complete.

Format
<identifier> = RUNRATE(<parameter1>[,<parameter2>,...]);

Where
• <parameter1> is one of the parameters used by the rate being executed. The function can

accept the same parameters as the RUNRS command line program. See Executing Oracle
Utilities Rules Language Rate Schedules on page 8-41 of the Oracle Utilities Energy
Information Platform Configuration Guide for more information about RUNRS.

Example
Execute rate “CODE1”.

RATE_A = "-vOPCO1:JURIS1:CODE1";
START_A = "-s05/01/1993";
STOP_A = "-t05/31/1993 23:59:59";
RUN_A = RUNRATE (RATE_A, START_A, STOP_A);
13-122 Rules Language Reference Guide

Miscellaneous Functions
SAVE_PROFILE Function

Purpose
The SAVE_PROFILE function saves a Rules Language code profile to a specified file. It creates a
code profile for the rate schedule in which it’s used. This profile is similar to the profile available
when running the Trial Calculation function in Data Manager or Oracle Utilities Billing
Component. See Rules Language Profiling on page 14-2 in the Oracle Utilities Energy Information
Platform Configuration Guide for more information about using this function.

Format
<identifier> = SAVE_PROFILE(<path and file name>);

Where
• <path and file name> is the path and file name for the file that will contain the Rules

Language code profile.

Note: If the specified path does not exist, the rate schedule will run to completion, but the
Rules Language will generate a warning message and the code profile will not be created.

Example
Save a Rules Language code profile to a file called “CODE_PROFILE.TXT” in the
“C:\LODESTAR\LOG” directory.

CODE_PROFILE = SAVE_PROFILE("C:\LODESTAR\LOG\CODE_PROFILE.TXT");

NOTE: This function should only be used when troubleshooting Rules Language performance
issues or other problems, as creating the code profile will have a negative impact on performance.
Other Function Descriptions 13-123

Miscellaneous Functions
SETREPORTTITLE Function

Purpose
The SETREPORTTITLE function sets the report title for Rules Language reports run via the
Report Framework of the Oracle Utilities Energy Information Platform. The title set by this
function appears in the Report Title column on the View Reports screen.

Note: This function can be used in conjunction with Rules Language reports and Oracle Utilities
Billing Component billing processes.

Format
<identifier> = SETREPORTTITLE(<REPORT_TITLE>);

where:

<REPORT_TITLE> is an identifier or string literal that contains the report title for the current
running Rules Language report.

Example
Set the title for the current Rules Language report to “Validate 1700,1.”

RECORDERID = “1700”;
CHANNELNUM = “1”;
RECORDER_CHANNEL = RECORDERID + “,” + CHANNELNUM;
TITLE = “Validate ” + RECORDER_CHANNEL;
RPT_TITLE = SETREPORTTITLE(TITLE);
13-124 Rules Language Reference Guide

Miscellaneous Functions
USEREXIT Function

Purpose
The USEREXIT function calls a user-written function. Users may write their own functions for
use in rate forms. This function is used in a rate form to call the user-written function.

Format
<identifier> = USEREXIT(<dll_name>, <function_name>[,<arg1>...]);

Where
• <dll_name> is the name of a Dynamic Link Library (DLL) that contains the function. Do

not include the ‘.dll’ extension.

• <function_name> is the name of a function in the DLL.

• <arg#> are arguments to the function.

Example
Call a user-written function “POWERFACTOR” from the UMSEXMPL DLL.

LABEL PF "POWER FACTOR";
PF = USEREXIT("UMSEXMPL", "POWERFACTOR", KVARH, KWH);
Other Function Descriptions 13-125

Miscellaneous Functions
WAITFORRUNRATE Function

Purpose
The WAITFORRUNRATE function causes a rate to wait for rates created using the RUNRATE
function.

This function causes a currently running rate to wait for any rates that it had created using the
RUNRATE Function. This function takes zero (0) or more parameters, each of which must be
integer values returned by the RUNRATE function. If no parameters are provided, then this
function waits for all rates created by this rate, to complete. Return the number of rates that it
waited for.

Format
<identifier> = WAITFORRUNRATE(<parameter1>[,<parameter2>,...]);

Where
• <parameter1> is an integer value returned by the RUNRATE Function.

Example
Run rates CODE1 and CODE2 and wait for them to complete before continuing processing.

//Set up rate parameters
RATE_A = "-vOPCO1:JURIS1:CODE1";
START_A = "-s05/01/1993";
STOP_A = "-t05/31/1993 23:59:59";
RATE_B = "-vOPCO2:JURIS2:CODE2";
START_B = "-s05/01/1993";
STOP_B = "-t05/31/1993 23:59:59";
//Run Rates A + B
RUN_A = RUNRATE (RATE_A, START_A, STOP_A);
RUN_B = RUNRATE (RATE_B, START_B, STOP_B);
//Wait for Rates A+ B
WAIT = WAITFORRUNRATE (RUN_A, RUN_B);
13-126 Rules Language Reference Guide

Appendix A
Reserved Words

This appendix lists the “reserved words”—that is, words that have special meaning to the
programs and therefore can be used only as specified. This includes:

• Statement Keywords

• Function Keywords

• Interval Data Function Keywords

• Meter Value Function Keywords

• Predefined Identifiers

• Predefined, Assignable Identifiers
Reserved Words A-1

Statement Keywords
Statement Keywords
Statement keywords cannot be used as identifiers; the predefined identifiers can be used only as
described in this manual.

ABORT LEAVE

ADDITIONAL LIST

ALL NEXT

AND NOVALUE

AS OR

BLOCK OTHERWISE

CHANNEL OVERRIDE

CHARGE REPORT

CLEAR REVENUE

DETERMINANT SAVE

DONE SECTION

EACH SELECT

ELSE SET

END TABLE

FACTOR THEN

FIRST TO

FOR TOTAL

FROM UNBILLED

IF WARN

IGNORE WEEK

INCLUDE WHEN

INTO
A-2 Rules Language Reference Guide

Function Keywords
Function Keywords
Function keywords cannot be used as identifiers; the predefined identifiers can be used only as
described in this manual.

ACCOUNTFACTOR MAXKW

AVGSEASON MAXRANGE

BILLINGHOURS MAXSEASON

CEIL MIN

COMPIKVA MINNZ

COMPKVA MINRANGE

COMPLF MINSEASON

COMPSUM MONTH

DAY MONTHDIFF

DBDATETIME MONTHHOURS

FLAG PRORATEFACTOR

FLOOR ROUND

HASVALUE ROUND2VALUE

HISTCOUNT ROUNDDATE

HISTMAX RSPRORATE

HISTMIN SEASONVALUE

HISTMINNZ SQROOT

HISTVALUE STRING

IDATTR SUMSEASON

LF2KW USEREXIT

LF2KWH WEEKDIFF

LISTCOUNT YEAR

MAX YEARSTR

INTO WHEN
Reserved Words A-3

Function Keywords
Interval Data Function Keywords
Interval Data function keywords cannot be used as identifiers; the predefined identifiers can be
used only as described in this manual.

INTDBLOCKOP INTDLOADHISTLIST

INTDCOUNT INTDLOADUOM

INTDCREATEDAYMASK INDTLOADUOMDATES

INTDCREATEFACTORMASK INTDLOADUOMHIST

INTDCREATEMASK INTDRELEASE

INTDCREATEOVERRIDEDAYMASK INTDSCALAROP

INTDCREATEOVERRIDEMASK INTDSCALE

INDTCREATETOUPERIOD INTDSMOOTH

INTDEXPORT INTDTOU

INTDLOADDATES INTDTOURRELEASE

INTDLOADHIST INTDVALUE

INTDLOADLIST

INTDLOADLISTDATES
A-4 Rules Language Reference Guide

Function Keywords
Meter Value Function Keywords
Meter Value function keywords cannot be used as identifiers; the predefined identifiers can be
used only as described in this manual

MVLOAD

MVLOADDATES

MVLOADHIST

MVLOADLIST

MVLOADLISTDATES

MVLOADLISTHIST
Reserved Words A-5

Predefined Identifiers
Predefined Identifiers

Predefined, Assignable Identifiers

AUXILIARY_DEMAND RS_EFFECTIVE_STOP

BILL_PERIOD RS_JURIS_CODE

BILL_START RS_OPCO_CODE

BILL_STOP UIDACCOUNT

NUMDAYS RS_OPCO_CODE

RATE_CODE RS_JURIS_CODE

READ_DATE UIDACCOUNT

RS_EFFECTIVE_START

BILL_PERIOD_SELECT

HOURS_PER_MONTH

INTD_ERROR_STOP

SEASON_SCHEDULE_NAME
A-6 Rules Language Reference Guide

Appendix B
XML Statements and Functions

This chapter describes XML statements and functions provided by the Oracle Utilities Rules
Language, including:

• XML Overview

• XML Statements

• XML/Document Object Management Functions

• Using the XML Statements and Functions
XML Statements and Functions B-1

XML Overview
XML Overview
The Oracle Utilities Rules Language provides two mechanisms for processing XML: a declarative
approach using the XML_ELEMENT and XML_OP statements, and a functional approach using
the XML/Document Object Management functions.

The declarative approach allows the user to specify a known XML format and have the underlying
Rules Language processor assign values appropriately. This approach essentially "flattens" the
nested XML structure so that every element or sub-element is uniquely represented by one Rules
Language identifier.

The functional approach gives the user more flexibility in handling an unknown format, but
requires detailed knowledge of Document Object Management (DOM).

XML Data Types
The two new data types introduced with these functions are XML Document and XML Node.
The same XML document or node may be assigned to several identifiers; care should be exercised
when using these functions, particularly the delete functionality.

The main uses of the XML document format are to load and save data, and to retrieve the root
element in the document. The root element is an XML node. You can retrieve the type and value
of a node and its siblings and, for nodes that are elements, its attributes and children. If a child
node is not actually in the XML document, the node and all its attributes will be cleared.

There are no operations allowed on an XML document. XML documents can only be used as a
parameter to one of the XML functions described in this appendix (see XML/Document
Object Management Functions on page B-12). The only operations allowed on a XML node
are comparison (= or <>) to zero. Otherwise, nodes must be used in one of the statements or
functions described in this appendix.
B-2 Rules Language Reference Guide

XML Overview
Using Stem.Tail XML Identifiers
If an XML node is assigned to an identifier that is a stem, its Stem.Tail identifiers with tails
NODENAME, NODETYPE and NODEVALUE are also assigned their corresponding values.
The Stem.Tail identifier with tail NODEPRESENT is assigned the integer 1. All other Stem.Tail
identifiers are assigned the value of the node's child whose name is the tail.

If a Stem.Tail identifier whose tail is NODEVALUE is assigned a value, and the stem is an XML
element with a node, the string representation of the value will be assigned as the node's value.

If an identifier that is an XML element with a node is assigned a value, the string representation of
the value will be assigned as the node's value. However, if you want to use the node's value in an
expression, you must use Stem.NODEVALUE.

If a Stem.Tail identifier whose tail is not NODEVALUE is assigned a value, and the stem is an
XML element with a node, the tail is assumed to be the name of an attribute of the node, and the
string representation of the value will be assigned as the value of this attribute.

To remove an attribute from a node, assign it an empty value:

// Remove the attribute Tail from the node STEM.
CLEAR X;
STEM.Tail = X;
XML Statements and Functions B-3

XML Statements
XML Statements
This section provides detailed explanations of the XML statements available in the Oracle Utilities
Rules Language. It also describes the formats and conventions used with statements in this
manual, and the format in which the statement descriptions are presented.

Identifier Statement

Purpose
The IDENTIFIER Statement is used to define identifiers before they are used.

The order in which identifiers appear in a rate from determines several things, such as the order in
which they appear in reports. In general, the earlier an identifer appears in a rate schedule, the
earlier it appears in the report. This statement lets you determine ordering without executing any
statements (the IDENTIFIER Statement has no run-time component; it only defines identifiers).

This statement can also be used to define a parent identifier before the identifier is used in the
XML_ELEMENT Statement on page B-6.

Format
IDENTIFIER statements have this format:

IDENTIFIER <identifier>, <identifier> ...;

Where:

• <identifier> is the identifier you wish to define.

To Create
The IDENTIFIER statement can only be created from the Rules Language Text Editor. See The
Rules Language Text Editor on page 2-11 in the Oracle Utilities Rules Language User’s Guide for
more information.

Example
Define the LS_INPUT identifier.

/* Predefine identifier */
IDENTIFIER LS_INPUT;

Notes
When using the IDENTIFIER statement to define XML element identifiers, the IDENTIFIER
statement should only be used to define the root element.
B-4 Rules Language Reference Guide

XML Statements
OPTIONS Statement

Purpose
The OPTIONS Statement is used to specify that the case (UPPER or lower) of identifiers should
remain as defined. If not present, all identifiers are converted to uppercase. If it is present the
name of an identifier remains exactly as typed. With this option, if two identifiers differ only in the
case of some of their letters, they are different identifiers.

This statement is useful when defining XML attributes and elements that may need to be either
lower-cased or mixed-case.

Format
OPTIONS statements have this format:

IDENTIFIER MIXED_CASE_IDENTIFIERS_UNIQUE;

Where:

• MIXED_CASE_IDENTIFIERS_UNIQUE indicates that the case of identifiers remain
unaltered.

To Create
The OPTIONS statement can only be created from the Rules Language Text Editor. See The
Rules Language Text Editor on page 2-11 in the Oracle Utilities Rules Language User’s Guide for
more information.

Example
Allow mixed case XML attributes

/* Allow mixed-case XML attributes */
OPTIONS MIXED_CASE_IDENTIFIERS_UNIQUE;

Notes
Use of the OPTIONS statement affects identifiers that appear after this statement in the rate
form. Identifiers that appear before it are uppercased.

All Oracle Utilities defined identifiers such as BILL_PERIOD, $EFFECTIVE_REVENUE,
determinant identifiers, and interval data attributes must all be entered in upper case if the
OPTIONS statement is used.
XML Statements and Functions B-5

XML Statements
XML_ELEMENT Statement

Purpose
The XML_ELEMENT Statement lets you map an XML format into Rules Language identifiers.
The XML format consists of elements and sub-elements, and this statement describes the
relationship between a sub-element and its parent. If the parent element is assigned, all its
attributes and children are automatically assigned their respective values, recursively. The defined
identifier can also be used in the FOR EACH x IN XML_ELEMENT_OF 0 Statement on
page B-8 to iterate over multiple sub-elements with the same name.

Format
XML_ELEMENT statements have this format:

XML_ELEMENT <identifier> NODENAME <symbol|literal> PARENT
<parent_identifier>;

Where:

• <identifier> is an identifier used to represent this child element of the parent. An identifier
may appear at most once here. Attributes of the element can be represented using the
identifier.attribute syntax.

• NODENAME is an optional keyword that allows you to define the node name of the
element.

• <symbol|literal> is a symbol or literal that exactly matches an element name (case sensitive).
There may be several identifiers with the same node name, but different parents.

• PARENT is an optional keyword that allows you to define the parent of the element.

• <parent_identifier> Optional; a previously defined identifier. When it is assigned, this
identifier is also set if its element is a child of the parent element. If there is no parent
assigned, the identifier is assumed to be the root element of the document.

To Create
The XML_ELEMENT Statement can only be created from the Rules Language Text Editor. See
The Rules Language Text Editor on page 2-11 of the Oracle Utilities Rules Language User’s Guide
for more information.
B-6 Rules Language Reference Guide

XML Statements
Example
Set the structure of the Oracle Utilities Import format.

/* Set the XML structure of the Oracle Utilities Import XML Format */
/* Set the root element */
IDENTIFIER LS_IMPORT;
/* Declare the child tree */
XML_ELEMENT LS_IMPORT NODENAME "LS_IMPORT";
XML_ELEMENT CUST_DATA NODENAME "CUSTOMER_DATA" PARENT LS_IMPORT;
XML_ELEMENT REC_GROUP NODENAME "RECORD_GROUP_TRANSACTION" PARENT
CUST_DATA;
/* Declare a record */
XML_ELEMENT LS_RECORD NODENAME "LODESTAR_RECORD" PARENT REC_GROUP;
XML_ELEMENT TABLE_ID NODENAME "TABLE" PARENT LS_RECORD;
XML_ELEMENT TABLE_NAME NODENAME "NAME" PARENT TABLE_ID;
/* Declare a column */
XML_ELEMENT LS_COLUMN NODENAME "COLUMN" PARENT TABLE_ID;
XML_ELEMENT COLUMN_NAME NODENAME "COLUMN_NAME" PARENT LS_COLUMN;
XML_ELEMENT COLUMN_VALUE NODENAME "COLUMN_VALUE" PARENT LS_COLUMN;

Notes
If a parent identifier is cleared using the Clear Statement, all its children and attribute identifiers
are also cleared, recursively. If an XML_ELEMENT identifier is assigned an XML node, all of its
unassigned parent elements will be created as needed, so that its entire parent structure is assigned.
The attributes of an element can be assigned any time after the element has been created.
XML Statements and Functions B-7

XML Statements
FOR EACH x IN XML_ELEMENT_OF 0 Statement

Purpose
The FOR EACH x IN XML_ELEMENT_OF 0 Statement repeats a set of nested statements for
each element defined in an XML structure. This statement iterates the nested statements over all
matching elements, one by one. Matching elements have the same element name and the same
parent element, as defined in the XML_ELEMENT Statement.

Format
FOR EACH x IN XML_ELEMENT_OF 0 statements have this format:

FOR EACH <xml_element_identifier> IN XML_ELEMENT_OF 0
<nested_statements>

END FOR;

Where:

• <xml_element_identifier> is an identifier that appears in the IDENTIFIER clause of an
XML_ELEMENT Statement.

To Create
The FOR EACH x IN XML_ELEMENT_OF 0 Statement can only be created from the Rules
Language Text Editor. See The Rules Language Text Editor on page 2-11 of the Oracle Utilities
Rules Language User’s Guide for more information.

Example
Perform a set of operations on each LODESTAR_RECORD element.

/* Set the XML structure of the Oracle Utilities Import XML Format */
FOR EACH LS_RECORD IN XML_ELEMENT_OF 0;

<operations>
END FOR

Notes
The 0 is required after XML_ELEMENT_OF.
B-8 Rules Language Reference Guide

XML Statements
XML_OP Statement

Purpose
The XML_OP Statement performs an operation on one or more XML elements (as defined using
the XML_ELEMENT Statement). Supported operations include CREATE, INSERT, COPY, and
DELETE.

Format
XML_OP statements have this format:

XML_OP <operation> <identifier> [,<identifier>...];

Where:

• <operation> is a literal or symbol that is one of the following:

• “CREATE” or CREATE: Creates this node as a child of its parent. Each identifier's
node is created, from left to right. If no parent node was specified in the
XML_ELEMENT statement, this node is assumed to be the root element of an XML
document. The document is created, with this identifier as its root. If the parent node
exists, the sub-element is created and attached to the parent. If a node with this name
already exists or the identifier is already assigned a node, a new node is still created. The
new node will be a sibling of the previous node if the parent is unchanged; otherwise, it
will be a new child of the parent node.

• “CREATE_ALL” or CREATE_ALL: Creates this node as a child of its parent, and
then creates all its children, recursively. Each identifier's node is created, from left to
right. If no parent node was specified in the XML_ELEMENT statement, this node is
assumed to be the root element of an XML document. The document is created, with
this identifier as its root. If the parent node exists, the sub-element is created and
attached to the parent. If a node with this name already exists or the identifier is already
assigned a node, a new node is still created. The new node will be a sibling of the
previous node if the parent is unchanged; otherwise, it will be a new child of the parent
node.

• “INSERT” or INSERT: Creates this node as a child of its parent, immediately after its
previous instance. The node must have a parent. If it has not been created, it is created
and appended to the end of the parent's nodes. Each identifier's node is created, from
left to right.

• “INSERT_ALL” or INSERT_ALL: Creates this node as a child of its parent,
immediately after its previous instance, and then creates its children, recursively. The
node must have a parent. If it has not been created, it is created and appended to the end
of the parent's nodes. Each identifier's node is created, from left to right.

• “INSERT_UNUSED” or INSERT_UNUSED: Creates this node as a child of its
parent, immediately after its previous instance, if the identifier's node does not have a
value or any attributes. The node must have a parent. If it has not been created, it is
created and appended to the end of the parent's nodes. If it was created and has a value
or attribute, a new node is created immediately after it. If it does not have a value or
attribute, the identifier is unchanged. Each identifier's node is created, from left to right.

• “INSERT_UNUSED_ALL” or INSERT_UNUSED_ALL: Same as
INSERT_UNUSED, except that if a new node is created, all its children are also created,
recursively.

• “DELETE” or DELETE: Removes this node as a child of its parent, then deletes it
and all its child nodes. Each identifier and all its children are cleared. Identifiers are
deleted from left to right. If the node does not have a parent, it is assumed to be the root
node. Its document and all related nodes are deleted. This operation should not be
XML Statements and Functions B-9

XML Statements
used if the node or one of its children has been assigned to more than one
identifier.

• <identifier> one or more identifiers that are XML elements (as defined by the
XML_ELEMENT Statement on page B-6).

To Create
The XML_OP Statement can only be created from the Rules Language Text Editor. See The
Rules Language Text Editor on page 2-11 of the Oracle Utilities Rules Language User’s Guide for
more information.
B-10 Rules Language Reference Guide

XML Statements
Example
Create an XML node called LS_IMPORT and insert a child node called LS_RECORD as a child of
LS_IMPORT.

/* Set the root element */
IDENTIFIER LS_IMPORT;
/* Declare the child tree */
XML_ELEMENT LS_IMPORT NODENAME "LS_IMPORT";
XML_ELEMENT CUST_DATA NODENAME "CUSTOMER_DATA" PARENT LS_IMPORT;
XML_ELEMENT REC_GROUP NODENAME "RECORD_GROUP_TRANSACTION" PARENT
CUST_DATA;
/* Declare a record */
XML_ELEMENT LS_RECORD NODENAME "LODESTAR_RECORD" PARENT REC_GROUP;

/* Create the LS_IMPORT XML node */
XML_OP CREATE LS_IMPORT;
/* Insert the child LS_RECORD node */
XML_OP INSERT LS_RECORD;
XML Statements and Functions B-11

XML/Document Object Management Functions
XML/Document Object Management Functions
The functions in this section manipulate an XML string, using Document Object Management
(DOM) functions.

Like all functions, you must assign the results of these functions to an identifier using an
Assignment Statement. The format is:

<identifier> = FUNCTION(<parameters>);

Where:
• <identifier> is a temporary, determinant, or interval data identifier. The function description

below indicates what each returns: a scalar numeric (should be assigned to a temporary
identifier), historical values (should be assigned to a determinant identifier), or an interval
data reference (should be assigned to an interval data identifier).

• FUNCTION is one of the functions described below.

• <parameters> are one or more expressions, identifiers, or constants, as described in each
function listed below.
B-12 Rules Language Reference Guide

XML/Document Object Management Functions
DOMDOCCREATE Function
Creates an XML document with a root element node.

This function creates an XML document with a specified root element node. Currently, any errors
are fatal. Returns an XML document.

Format:
<identifier> = DOMDOCCREATE(<identifier|string expression>);

Where:
• <identifier|string expression> is either an identifier or a string expression that evaluates to a

string that will be the root element name of the document.

Example:
Create an XML document with a root element name of LS_IMPORT.

LS_IMP_DOC = DOMDOCCREATE(LS_IMPORT);
XML Statements and Functions B-13

XML/Document Object Management Functions
DOMDOCLOADFILE Function
Loads and parses an XML file.

This function loads and parses an XML file, and returns the XML document contained in the file.
Currently, any errors are fatal. Returns an XML document.

Format:
<identifier> = DOMDOCLOADFILE(<identifier|string expression>);

Where:
• <identifier|string expression> is either an identifier or a string expression that evaluates to a

string that is name of a file containing XML. The default location of the file is the
C:\LODESTAR\User directory, but a full path can be specified.

Example:
Load an XML file named LS_IMPORT.XML.

LS_IMP_FILE = DOMDOCLOADFILE(“LS_IMPORT.XML”);
B-14 Rules Language Reference Guide

XML/Document Object Management Functions
DOMDOCLOADXML Function
Loads and parses an XML document.

This function loads and parses an XML document. Currently, any errors are fatal. Returns an
XML document.

Format:
<identifier> = DOMDOCLOADXML(<identifier|string expression>);

Where:
• <identifier|string expression> is either an identifier or a string expression that evaluates to a

string that is name of an XML document.

Example:
Load an XML document named LS_IMPORT.

LS_IMP_DOC = DOMDOCLOADXML(“LS_IMPORT”);
XML Statements and Functions B-15

XML/Document Object Management Functions
DOMDOCSAVEFILE Function
Saves an XML file based on a specified XML document.

This function creates an XML file based on a specified XML document. The document is written
out as XML to the specified file, replacing its contents. Returns the integer 0.

Format:
<identifier> = DOMDOCSAVEFILE(<xml_document_identifier>,
<identifier|string expression>);

Where:
• <xml_document_identifier> is an XML document identifier.

• <identifier|string expression> is either an identifier or a string expression that evaluates to a
string that is the name of a file that will contain XML. The default location of the file is the
C:\LODESTAR\User directory, but a full path can be specified.

Example:
Save an XML document called LS_IMPORT to a file called LS_IMPORT.XML.

LS_IMP_SAVE = DOMDOCSAVEFILE(LS_IMPORT, “LS_IMPORT.XML”);
B-16 Rules Language Reference Guide

XML/Document Object Management Functions
DOMDOCGETROOT Function
Retrieves the root node of an XML document.

This function retrieves the root node of a specified XML document. Returns an XML node.

Format:
<identifier> = DOMDOCGETROOT(<xml_document_identifier>);

Where:
• <xml_document_identifier> is an identifier that is an XML document.

Example:
Get the root node of the LS_DATA XML document.

LS_IMP_ROOT = DOMDOCGETROOT(LS_DATA);
XML Statements and Functions B-17

XML/Document Object Management Functions
DOMDOCADDPI Function
Adds a processing instruction to an XML document.

This function adds a processing instruction to an XML document. Returns an XML node.

Note: If using this function inside a FOR EACH in LIST statement, include
the USE_DOMDOCADDAPI_IN_LOOP = 1 keyword and value in the
LODESTAR.CFG file.

Format:
<identifier> = DOMDOCADDPI(<identifier|string expression>);

Where:
• <xml_node_identifier> is the root element of the XML document. The ‘PI’ is inserted

before it.

• <node_name> is a valid XML node name.

• <node_value> is a literal or string value in the form "attribute=""value"" attribute=""value""
..." (the double double-quotes will become single double-quotes).

Example:
Add a reference to an XSL style sheet

SS_OUT = DOMDOCADDPI(CUST_BILL, "xml-stylesheet", "type='text/xsl'
href='PSNH_BillReport.xsl'");
B-18 Rules Language Reference Guide

XML/Document Object Management Functions
DOMNODEGETNAME Function
Retrieves the name of an XML node.

This function retrieves the name of an XML node. Returns a string.

Format:
<identifier> = DOMNODEGETNAME(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the name of the LS_RECORD node.

LS_RECORD_NAME = DOMNODEGETNAME(LS_RECORD);
XML Statements and Functions B-19

XML/Document Object Management Functions
DOMNODEGETTYPE Function
Retrieves the type of an XML node.

This function retrieves the type of an XML node. Types may be "attribute", "element",
"comment", "text", Returns a string.

Format:
<identifier> = DOMNODEGETTYPE(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the node type for the LS_RECORD node.

LS_RECORD_NODE_TYPE = DOMNODEGETTYPE(LS_RECORD);
B-20 Rules Language Reference Guide

XML/Document Object Management Functions
DOMNODEGETVALUE Function
Retrieves the value of an XML node.

This function retrieves the value of an XML node. Returns a string.

Format:
<identifier> = DOMNODEGETVALUE(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the value of the LS_RECORD node.

LS_RECORD_VAL = DOMNODEGETVALUE(LS_RECORD);
XML Statements and Functions B-21

XML/Document Object Management Functions
DOMNODEGETCHILDCT Function
Retrieves the number of child nodes of an XML node.

This function retrieves the number of child nodes of an XML node (may be 0). Returns an integer.

Format:
<identifier> = DOMNODEGETCHILDCT(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the number of child nodes in the LS_RECORD node.

LS_RECORD_NUM_CHILDREN = DOMNODEGETCHILDCT(LS_RECORD);
B-22 Rules Language Reference Guide

XML/Document Object Management Functions
DOMNODEGETFIRSTCHILD Function
Retrieves the first child of an XML node, if any.

This function retrieves the first child of an XML node, if any. If there are no child nodes, returns
0. Returns an XML node.

Format:
<identifier> = DOMNODEGETFIRSTCHILD(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the first child node of the LS_RECORD node.

LS_RECORD_FIRSTCHILD = DOMNODEGETFIRSTCHILD(LS_RECORD);
XML Statements and Functions B-23

XML/Document Object Management Functions
DOMNODEGETSIBLING Function
Retrieves the next (right side) child of an XML node, if any.

This function retrieves the next child of an XML node, if any. If there is not another child, returns
0. Returns an XML node.

Format:
<identifier> = DOMNODEGETSIBLING(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the next child of the LS_RECORD node.

LS_RECORD_NEXTCHILD = DOMNODEGETSIBLING(LS_RECORD);
B-24 Rules Language Reference Guide

XML/Document Object Management Functions
DOMNODECREATECHILDELEMENT Function
Creates a child node in an XML node.

This function creates a child node in a specified XML node. The new element is appended as the
last child node of the specified node. Currently, any errors are fatal. Returns an XML node that is
the new element.

Format:
<identifier> = DOMNODECREATECHILDELEMENT(<xml_node_identifier>,
<identifier|string expression>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

• <identifier|string expression> is either an identifier or a string expression that evaluates to a
string that is the name of the new element.

Example:
Add a new child node called ARRANGEMENT to the LS_ACCOUNT node.

LS_RECORD_NEW_NODE = DOMNODECREATECHILDELEMENT(LS_ACCOUNT,
“ARRANGMENT”);
XML Statements and Functions B-25

XML/Document Object Management Functions
DOMNODESETATTRIBUTE Function
Sets the value of an attribute of an XML node.

This function sets the value of an attribute of a specified XML node. The attribute value is added
to the element if the attribute does not exist; otherwise, it replaces the attribute's value. Currently,
any errors are fatal. Returns the integer 0.

Format:
<identifier> = DOMNODESETATTRIBUTE(<xml_node_identifier>,
<identifier|string expression>, <identifier|string expression>);

Where:
• <xml_node_identifier> is an an XML node that is an element.

• <identifier|string expression> is either an identifier or a string expression that evaluates to a
string that is the name of the attribute.

• <identifier|string expression> is either an identifier or a string expression that evaluates to a
string that is the value of the attribute.

Example:
Set the value of the “Arrangement” attribute of the LS_ACCOUNT node to TRUE.

LS_RECORD_NEW_NODE = DOMNODESETATTRIBUTE(LS_ACCOUNT, “ARRANGEMENT”,
“TRUE”);
B-26 Rules Language Reference Guide

XML/Document Object Management Functions
DOMNODEGETCHILDELEMENTCT Function
Retrieves the number of child nodes of an XML node that are elements.

This function retrieves the number of child nodes of an XML node that are elements; this may be
0. Returns an integer.

Format:
<identifier> = DOMNODEGETCHILDELEMENTCT(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the number of child element nodes in the LS_RECORD node.

LS_RECORD_NUM_ELEM_CHILDREN = DOMNODEGETCHILDELEMENTCT(LS_RECORD);
XML Statements and Functions B-27

XML/Document Object Management Functions
DOMNODEGETFIRSTCHILDELEMENT Function
Retrieves the first child of an XML node that is an element, if any.

This function retrieves the first child of an XML node that is an element, if any. If there are no
child nodes, returns 0. Returns an XML node.

Format:
<identifier> = DOMNODEGETFIRSTCHILDELEMENT(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the first child element node of the LS_RECORD node.

LS_RECORD_FIRSTCHILD_ELEM = DOMNODEGETFIRSTCHILDELEMENT(LS_RECORD);
B-28 Rules Language Reference Guide

XML/Document Object Management Functions
DOMNODEGETSIBLINGELEMENT Function
Retrieves the next (right side) child of an XML node that is an element, if any.

This function retrieves the next child of an XML node that is an element, if any. If there is not
another child, returns 0. Returns an XML node.

Format:
<identifier> = DOMNODEGETSIBLINGELEMENT(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the next child element node of the LS_RECORD node.

LS_RECORD_NEXTCHILD = DOMNODEGETSIBLINGELEMENT(LS_RECORD);
XML Statements and Functions B-29

XML/Document Object Management Functions
DOMNODEGETATTRIBUTECT Function
Retrieves the number of attribute nodes of an XML node, if any.

This function retrieves the number of attribute nodes of an XML node; this may be 0. If the node
is not an attribute, returns 0. Returns an integer.

Format:
<identifier> = DOMNODEGETATTRIBUTECT(<xml_node_identifier>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

Example:
Get the number of attribute nodes in the LS_RECORD node.

LS_RECORD_ATT_NODES = DOMNODEGETATTRIBUTECT(LS_RECORD);
B-30 Rules Language Reference Guide

XML/Document Object Management Functions
DOMNODEGETATTRIBUTEI Function
Retrieves the index’th attribute an XML node, if any.

This function retrieves the index'th attribute of a specified XML node, if any. If there is no such
attribute, returns a NULL node. Returns an XML node.

Format:
<identifier> = DOMNODEGETATTRIBUTECT(<xml_node_identifier>, <index>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

• <index> an integer between 1 and the number of attributes in the node, inclusive.

Example:
Get the 4th attribute node in the LS_RECORD node.

LS_RECORD_ATTI_NODE_4 = DOMNODEGETATTRIBUTEI(LS_RECORD, 4);
XML Statements and Functions B-31

XML/Document Object Management Functions
DOMNODEGETATTRIBUTEBYNAME Function
Retrieves the attribute of an XML node with a specified name, if any.

This function retrieves the attribute of a specified XML node with this name, if any. If there is no
such attribute, returns a NULL node. Returns an XML node.

Format:
<identifier> = DOMNODEGETATTRIBUTEBYNAME(<xml_node_identifier>,
<name>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

• <name> is a string that is the name of an attribute in the XML node.

Example:
Get the attribute in the LS_ACCOUNT node with the name ARRANGEMENT.

LS_RECORD_ATT_ARRANGE = DOMNODEGETATTRIBUTEBYNAME(LS_RECORD,
“ARRANGEMENT”);
B-32 Rules Language Reference Guide

XML/Document Object Management Functions
DOMNODEGETBYNAME Function
Retrieves the first node under a specified XML node with a specified name, if any.

This function retrieves the first node under the specified node with the specified name. If there is
no such node, returns 0. Returns an XML node.

Format:
<identifier> = DOMNODEGETBYNAME(<xml_node_identifier>, <name>);

Where:
• <xml_node_identifier> is an identifier that is an XML node.

• <name> a string that is the name of an XML node.

Example:
Get the first node in the LS_ACCOUNT node with the name ARRANGEMENT.

LS_RECORD_FIRST_ARRANGE = DOMNODEGETBYNAME(LS_RECORD, “ARRANGEMENT”);
XML Statements and Functions B-33

Using the XML Statements and Functions
Using the XML Statements and Functions
The XML statements and functions described in this appendix allow you to obtain data values
from XML documents and files and assign those values to identifiers. These identifiers can be
used in Rules Language processing, and the results can be saved back to the XML structure for use
as output data.

You can also create XML documents and files and populate the nodes within documents and files
with appropriate data and values.

This section provides step-by-step descriptions for these operations.

Reading from XML Documents and Files
The steps for reading data from existing XML documents and files are:

1. Define the XML structure.

Defining the XML structure of the XML document or file defines the relationship between
the elements and nodes in the XML document or file. To do this, use the Identifier
Statement on page B-4 and the XML_ELEMENT Statement on page B-6 respectively.

2. Load the XML file or document.

Loading the XML document or file creates an XML document, and allows the Rules
Language to access the root element.

3. Get the root element of the XML document.

Getting the root element of the XML document enables the Rules Language to access the
XML elements and nodes. To do this, use the DOMDOCGETROOT Function on page B-
17. The identifier assigned to the result of the DOMDOCGETROOT function must be the
root element of the XML document.

4. Derive values from the XML, as specified in the XML structure.

Deriving the data values from the XML document is done using either Stem.Tail identifiers or
the DOM functions.
B-34 Rules Language Reference Guide

Using the XML Statements and Functions
Example
The following example shows how data can be extracted from an XML structure. In this example,
the XML structure is the context of an activity performed using the Oracle Utilities Billing
Component - Workflow Management product. With the following activity context:

<CONTEXT>
<ACCOUNTID>123</ACCOUNTID>
<PASTDUEAMT>90.00</PASTDUEAMT>
<OTHER />

</CONTEXT>

the following Rules Language statements could be used to extract data from the context.

/* Define the Context Structure */
IDENTIFIER CONTEXT;
XML_ELEMENT CONTEXT_ID NODENAME “CONTEXT”
XML_ELEMENT ACCOUNT_ID NODENAME “ACCOUNTID” PARENT CONTEXT
XML_ELEMENT PASTDUE_AMT NODENAME “PASTDUEAMT” PARENT CONTEXT
XML_ELEMENT OTHER_ID NODENAME “OTHER” PARENT CONTEXT
/* Load the XML document */
CONTEXT_DOC = DOMDOCLOADXML (RATE_SCHEDULE_INPUT_XML);
/* Obtain the Root Element */
CONTEXT = DOMDOCGETROOT (CONTEXT_DOC)
/* Get the Account ID */
ACCT_ID = ACCOUNT_ID.NODEVALUE;
/* Get the Past Due Amount */
PAST_DUE = PASTDUE_AMT.NODEVALUE;

Creating XML Documents and Files
The steps to create an XML document or file are:

1. Define the XML structure.

Defining the XML structure of the XML document or file defines the relationship between
the elements and nodes in the XML document or file. To do this, use the Identifier
Statement on page B-4 and the XML_ELEMENT Statement on page B-6 respectively.

2. Create the XML document.

Creating an XML document is performed using the CREATE operation of the XML_OP
Statement on page B-9. The XML element identifier created via the XML_OP statement
must be the root element of the XML document.

3. Create the nodes in the XML document, as specified in the XML structure.

Creating the nodes within the XML document is performed using either the CREATE or
INSERT operations of the XML_OP Statement on page B-9. The XML element identifier
created via the XML_OP Statement must be the node names of the XML document.

4. Set node values using Stem.Tail identifiers.

Setting the node values in the XML document can be done using either Stem.Tail identifiers
or the DOM functions.

5. Optional. Save the XML document to a file.

Use the DOMDOCSAVEFILE Function on page B-16 to save the XML document to a
file.

Example
The following example shows how an XML structure can be created using the Rules Language.
For this example, the XML structure is the context of an activity performed using the Oracle
Utilities Billing Component - Workflow Management product.

/* Define the Context Structure */
XML Statements and Functions B-35

Using the XML Statements and Functions
IDENTIFIER CONTEXT;
XML_ELEMENT CONTEXT_ID NODENAME “CONTEXT”
XML_ELEMENT ACCOUNT_ID NODENAME “ACCOUNTID” PARENT CONTEXT;
XML_ELEMENT PASTDUE_AMT NODENAME “PASTDUEAMT” PARENT CONTEXT;
XML_ELEMENT OTHER_ID NODENAME “OTHER” PARENT CONTEXT;
/* Create the document */
XML_OP CREATE CONTEXT_ID;
/* Create the document nodes and assign values */
XML_OP INSERT ACCOUNT_ID;
ACCOUNT_ID.NODEVALUE = “123”;
XML_OP INSERT PASTDUE_AMT;
PASTDUE_AMT.NODEVALUE = “90.00”;
XML_OP INSERT OTHER_ID;
OTHER_ID.ARRANGEMENT = “TRUE”;

The resulting XML structure would be:

<CONTEXT>
<ACCOUNTID>123</ACCOUNTID>
<PASTDUEAMT>90.00</PASTDUEAMT>
<OTHER ARRANGEMENT=‘TRUE’/>

</CONTEXT>

The following statement could be used to save the XML to a file.

CONTEXT_FILE = DOMDOCSAVEFILE (CONTEXT, "CONTEXT.XML");
B-36 Rules Language Reference Guide

Index
A
Abort statement 3-2
All statement 4-2
archive files, exporting overwritten records to 6-3
assignment statements 2-2

creating 2-3
attributes

budget plan 7-3
service plan 7-3
tail 7-2
transaction identifier 7-2, 8-2
user-defined 7-6

B
Bill History Table

loading historical values for determinants 5-4
saving values to 6-3

Bill History Value Table
saving values to 6-3

Bill History Values Table
loading historical values of determinants 5-4

Block statement 4-4
budget plan attribute 7-3

C
CALCULATE_LATEPAYMENT Function 7-33
Call statement 3-3
Cancel Transaction Statement 7-31
channels

saving interval data to 6-4
CIS

saving records to 6-4
Clear statement 5-2, 5-7
comment statements 2-5

creating 2-5
committing database changes 6-4
contract

definition 3-23
with Include statement 3-23

control statements 3-1
customer/account query 3-10, 3-15

D
data

reading from XML B-34
Delete statement 6-2
deprecated statements 7-36
Determinant statement 5-4
Document Object Management (DOM) B-2

functions B-12
DOM (Document Object Management) B-2

functions B-12
DOMDOCADDPI function B-18
DOMDOCCREATE function B-13
DOMDOCGETROOT function B-17
DOMDOCLOADFILE function B-14
DOMDOCLOADXML function B-15
DOMDOCSAVEFILE function B-16
DOMNODECREATECHILDELEMENT function B-25
DOMNODEGETATTRIBUTEBYNAME function B-32
DOMNODEGETATTRIBUTECT function B-30
DOMNODEGETATTRIBUTEI function B-31
DOMNODEGETCHILDCT function B-22
DOMNODEGETCHILDELEMENTCT function B-27
DOMNODEGETFIRSTCHILD function B-23
DOMNODEGETFIRSTCHILDELEMENT function B-28
DOMNODEGETSIBLING function B-24
DOMNODEGETSIBLINGELEMENT function B-29
DOMNODEGETVALUE function B-21
DOMNODESETATTRIBUTE function B-26
Done statement 3-5

E
exporting overwritten records 6-3

F
FACTORVALUE Table 9-13
FME statements

in Oracle Utilities Rules Language 7-1
FMGETBILLINFO function 7-34
For Each x in Channel statement 3-7
For Each x In COM IENUM statement 3-20
For Each x In CSV File statement 3-19
For Each x In Distribution Node statement 3-18
For Each x in Factor statement 3-8
For Each x In List statement 3-10, 3-15
For Each x In Number statement 3-12
For Each x In Override statement 3-13
For Each x In Set statement 3-16
Index-1

For Each x In Week statement 3-17
FOR EACH x IN XML_ELEMENT_OF 0 statement B-8
Functions

ACCOUNTFACTOR 13-2
ACCTREADDATES 13-101
ACOS 11-2
ASIN 11-3
ATAN 11-4
ATAN2 11-5
AVGSEASON 13-67
BILLINGHOURS 13-21
CEIL 11-7
COMPIKVA 13-55
COMPKVA 13-56
COMPKVARHFROMKQKW 13-57
COMPLF 13-58
COMPSUM 13-46
CONFIGGET 13-104
COS 11-8
COSECANT 11-9
COSH 11-10
COTANGENT 11-11
DATE 13-22
DAY 13-27
DAYDIFF 13-28
DAYNAME 13-29
DBDATETIME 13-30
DIVQUOT 11-12
DIVREM 11-13
EXP 11-14
FABS 11-15
FLAG 13-61
FLOAT2STRING 12-2
FLOAT2STRINGNC 12-3
FLOOR 11-16
FMOD 11-17
FREXPM 11-18
FREXPN 11-19
GETCONNECT 13-7
GETUSERID 13-10
HASVALUE 13-11
HISTCOUNT 13-47
HISTMAX 13-48
HISTMIN 13-49
HISTMINNZ 13-50
HISTVALUE 13-51
HOUR 13-31
IDATTR 13-59
INDLOADSP 9-44
INDLOADSTAGING 9-46
INEFFECT 13-120
INSTR 12-4
INTDBLOCKOP 9-4
INTDCOUNT 9-9, 9-10
INTDCREATEDAYMASK 9-12
INTDCREATEMASK 9-15
INTDCREATEOVERRIDEDAYMASK 9-16
INTDCREATEOVERRIDEMASK 9-17
INTDCREATESTATUSCODEMASK 9-18
INTDCREATETOUPERIOD 9-19
INTDEXPORT 9-23
INTDISEQUAL 9-27

INTDLOAD 9-34
INTDLOADDATES 9-36
INTDLOADHIST 9-38
INTDLOADLIST 9-39
INTDLOADLISTDATES 9-40
INTDLOADLISTENERGY 9-41
INTDLOADLISTHIST 9-42
INTDLOADRELATEDCHANNEL 9-43
INTDLOADSP 9-44
INTDLOADUOM 9-47
INTDLOADUOMDATES 9-48
INTDLOADUOMHIST 9-49
INTDRELEASE 9-55, 9-56
INTDREPLACE 9-56
INTDREPLACESTATS 9-78
INTDROLLAVG 9-57
INTDSCALAROP 9-59
INTDSCALE 9-61
INTDSETATTRIBUTE 9-63
INTDSETSTRING 9-66
INTDSETVALUE 9-67
INTDSETVALUESTATUS 9-68
INTDSHIFTSTARTTIME 9-70
INTDSMOOTH 9-71
INTDSORT 9-22, 9-72, 9-73
INTDSUBSET 9-74
INTDTOU 9-75
INTDTOURELEASE 9-76
INTDTOUVALUE 9-77
INTDVALUE 9-79
ISHOLIDAY 13-121
LEFT 12-5
LEN 12-6
LF2KW 13-62
LF2KWH 13-63
LISTCOUNT 13-12
LISTOP 13-13
LISTUPDATE 13-14
LISTVALUE 13-15
LOG 11-20
LOG10 11-21
LTRIM 12-7
MAX 11-22
MAXKW 13-64
MAXN 11-23
MAXNRANGE 13-52
MAXRANGE 13-53
MAXSEASON 13-69
MID 12-8
MIN 11-24
MINNZ 11-25
MINRANGE 13-54
MINSEASON 13-70
MINUTE 13-32
MINZ 11-25
MODF 11-26
MONTH 13-33
MONTHDIFF 13-34
MONTHHOURS 13-35
MONTHLYMERGE 13-71
MONTHNAME 13-36
MVLOAD 10-2
Index-2

MVLOADACCT 10-4
MVLOADACCTDATES 10-5
MVLOADACCTHIST 10-6
MVLOADDATES 10-8
MVLOADHIST 10-9
MVLOADLIST 10-10
MVLOADLISTDATES 10-11
MVLOADLISTHIST 10-12
POW 11-27
POWERFACTOR 13-65
PRORATEFACTOR 13-16
RIGHT 12-9
ROUND 11-28
ROUND2VALUE 11-29
ROUNDDATE 13-37
RSPRORATE 13-17
RTRIM 12-10
RUNRATE 13-122
SAMEWEEKDAYLASTYEAR 13-38
SEASONVALUE 13-72
SECANT 11-31
SECOND 13-39
SIN 11-32
SINH 11-33
SQROOT 11-34
STRING 12-11
STRINGNC 12-12
SUMSEASON 13-73
TAN 11-35
TANH 11-36
TOLOWER 12-13
TOUPPER 12-14
TRIM 12-15
USEREXIT 13-125
WAITFORRUNRATE 13-126
WEEKDAY 13-40
WEEKDIFF 13-41
YEAR 13-42
YEARDAY 13-43
YEARSTR 13-44

functions
CALCULATE_LATEPAYMENT 7-33
DOMDOCADDPI B-18
DOMDOCCREATE B-13
DOMDOCGETROOT B-17
DOMDOCLOADFILE B-14
DOMDOCLOADXML B-15
DOMDOCSAVEFILE B-16
DOMNODECREATECHILDELEMENT B-25
DOMNODEGETATTRIBUTEBYNAME B-32
DOMNODEGETATTRIBUTECT B-30
DOMNODEGETATTRIBUTEI B-31
DOMNODEGETCHILDCT B-22
DOMNODEGETCHILDELEMENTCT B-27
DOMNODEGETFIRSTCHILD B-23
DOMNODEGETFIRSTCHILDELEMENT B-28
DOMNODEGETSIBLING B-24
DOMNODEGETSIBLINGELEMENT B-29
DOMNODEGETVALUE B-21
DOMNODESETATTRIBUTE B-26
FMGETBILLINFO 7-34
FPROCESSAUTOPAYMENT 7-35

XML DOM B-12

I
identifier statement B-4
identifiers

setting values to null 5-2
stem.column_name 7-6
stem.component 3-10
stem.tail B-3

If-Then-Else statement 3-21
Ignore statement 4-9
Include statement 3-23
INTDBLOCKOPNA 9-6
interval data

saving to staging 6-4
interval data loading 2-3

L
Label statement 5-6
Leave For statement 3-25
Leave Rider statement 3-25

M
Meter Value data

Automatically computed summary values for 10-3

N
Next For statement 3-25
Novalue statement 3-26

O
OPTIONS statement B-5
overwriting records, and saving to archive file 6-3

P
Post Adjustment statement 7-19
Post Bill Statement 7-15
Post Budget Bill Charge statement 7-42

BUDGETPLAN attribute 7-3
Post Budget Bill Trueup statement 7-44

BUDGETPLAN attribute 7-3
Post Budget Service Charge statement 7-40

BUDGETPLAN attribute 7-3
SERVICEPLAN attribute 7-3

Post Charge Or Credit statement 7-7
Post Deferred Service Charge statement 7-38
Post Deposit Application Statement 7-29
Post Deposit statement 7-25
Post Installment Charge statement 7-46
Post Payment statement 7-17
Post Refund statement 7-21
Post Service Charge statement 7-36

SERVICEPLAN attribute 7-3
Post Statement statement 7-13

STATEMENTDATE attribute 7-3
Post Tax statement 7-9
Post Writeoff Statement 7-23
Process Event statement 8-11
Process Resume statement 8-7
Index-3

Process Start statement 8-3
Process Suspend statement 8-5
Process Terminate statement 8-9
PROCESSAUTOPAYMENT function 7-35

R
READING2USAGE 13-66
Receivables Component

Rules Language statements 7-2
Report statement 5-8
report statements 5-1
revenue computation statements 4-1
Revenue statement 5-10

Total clause 5-10
rider

definition 3-23
with Include statement 3-23

rolling back database changes 6-4
Rules Language

Financial Management statements 7-2
FME statements available in 7-1
statement format 1-2
Workflow Management statements 8-2
WorkFlow Manager statements available in 8-1
XML processing B-2
XML statements B-4

S
Save statements 6-3

save mode 6-3, 6-4
Section statement 3-27
Select Bill_Period statement 3-28
Select Expression statement 3-31
Select Rate_Code statement 3-33
service plan attribute 7-3
SQL, how to include in a rate form 3-11
statement format 1-2
statements

Abort 3-2
All 4-2
Block 4-4
Call 3-3
Cancel Transaction 7-31
Clear 5-2, 5-7
Delete 6-2
Determinant 5-4
Done 3-5
For Each x in Channel 3-7
For Each x In COM IENUM 3-20
For Each x In CSV File 3-19
For Each x In Distribution Node 3-18
For Each x in Factor 3-8
For Each x In List 3-10, 3-15
For Each x In Number 3-12
For Each x In Override 3-13
For Each x In Set 3-16
For Each x In Week 3-17
FOR EACH x IN XML_ELEMENT_OF 0 B-8
identifier B-4
If-Then-Else 3-21
Ignore 4-9

Include 3-23
Label 5-6
Leave For 3-25
Leave Rider 3-25
Next For 3-25
Novalue 3-26
OPTIONS B-5
Post Adjustment 7-19
Post Bill 7-15
Post Budget Bill Charge 7-3, 7-42
Post Budget Bill Trueup 7-3, 7-44
Post Budget Service Charge 7-3, 7-40
Post Charge Or Credit 7-7
Post Deferred Service Charge 7-38
Post Deposit 7-25
Post Deposit Application 7-29
Post Installment Charge 7-46
Post Payment 7-17
Post Refund 7-21
Post Service Charge 7-36
Post Statement 7-13
Post Tax 7-9
Post Writeoff 7-23
Process Event 8-11
Process Resume 8-7
Process Start 8-3
Process Suspend 8-5
Process Terminate 8-9
Receivables Component 7-2
Report 5-8
Revenue 5-10
Save 6-3
Section 3-27
Select Bill_Period 3-28
Select Expression 3-31
Select Rate_Code 3-33
Unbilled 4-9
Warn 3-35
XML_ELEMENT B-6
XML_OP B-9

stem.column_name identifiers 7-6
stem.component identifiers 3-10
Stem.components

reporting values 5-9
Using with MVLOADxxx functions 10-3

stem.tail identifiers B-3
stems, and components 3-10

T
table.column query 3-10, 3-15
tail attributes 7-2
Total clause, with Revenue statement 5-10
transaction identifier

attributes 7-2
transaction identifier attribute 8-2
Transaction Table 7-6

ZONE column 7-43

U
Unbilled statement 4-9
user-defined attributes, accessing in Rules Language 7-6
Index-4

W
Warn statement 3-35
Workflow Management

Rules Language statements 8-2
WorkFlow Manager statements 8-1
WQ_OPEN Function 13-20

X
XML

documents and files
creating B-35
reading from B-34

DOM functions B-12
Rules Language processing of B-2
saving records to 6-4
using statements and functions B-34

XML_ELEMENT statement B-2, B-6
XML_OP statement B-2, B-9
Index-5

Index-6

	Contents
	What’s New
	New Features in the Oracle Utilities Rules Language Reference Guide
	New Features for Release 1.6.0.0

	Chapter 1
	Overview
	Statement Format
	Conventions Used to Represent the Syntax of Statements
	Description Format

	Function Format

	Chapter 2
	General Statements
	General Statements
	Assignment Statement
	Comment Statement

	Chapter 3
	Control Statements
	Control Statements
	Abort Statement
	Call Statement
	Done Statement
	For Each Statements
	For Each x in Channel Statement
	For Each x in Factor Statement
	For Each x In List Statement
	For Each x In Number Statement
	For Each x In Override Statement
	For Each x In Recordlist Statement
	For Each x In Set Statement
	For Each x In Week Statement
	For Each x In Distribution Node Statement
	For Each x In CSV File Statement
	For Each x In COM IENUM Statement
	If-Then-Else Statement
	Include Statement
	Leave For Statement
	Leave Rider Statement
	Next For Statement
	Novalue Statement
	Section Statement
	Select Bill_Period Statement
	Select Expression Statement
	Select Rate_Code Statement
	Warn Statement

	Chapter 4
	Revenue Computation Statements
	Revenue Computation Statements
	All Statement
	Block Statements
	Unbilled and Ignore Statements

	Chapter 5
	Report Statements
	Report Statements
	Clear Statement
	Determinant Statement
	Label Statement
	Remove Statement
	Report Statement
	Revenue Statement

	Chapter 6
	Miscellaneous Statements
	Miscellaneous Statements
	Delete Statement
	Save Statements

	Chapter 7
	Financial Management Statements
	Using the Financial Management Statements
	Using User-Defined Attributes
	Post Charge Or Credit Statement
	Post Tax Statement
	Post Installment Statement
	Post Statement Statement
	Post Bill Statement
	Post Payment Statement
	Post Adjustment Statement
	Post Refund Statement
	Post Writeoff Statement
	Post Deposit Statement
	Post Deposit Interest Statement
	Post Deposit Application Statement
	Cancel Transaction Statement
	CALCULATE_LATEPAYMENT Function
	FMGETBILLINFO Function
	PROCESSAUTOPAYMENT Function

	Deprecated Statements
	Post Service Charge Statement
	Post Deferred Service Charge Statement
	Post Budget Service Charge Statement
	Post Budget Bill Charge Statement
	Post Budget Bill Trueup Statement
	Post Installment Charge Statement

	Chapter 8
	Workflow Management Statements
	Workflow Management Statements
	Using the Workflow Management Statements
	Process Start Statement
	Process Suspend Statement
	Process Resume Statement
	Process Terminate Statement
	Process Event Statement

	Chapter 9
	Interval Data Function Descriptions
	Interval Data Functions
	INTDADDATTRIBUTE Function
	INTDADDVMSG Function
	INTDBLOCKOP Function
	INTDBLOCKOPNA Function
	INTDCLOSE Function
	INTDCOUNT Function
	INTDCOUNTSTATUSCODE Function
	INTDCREATEMASK Functions
	INTDCREATEDAYMASK Function
	INTDCREATEFACTORMASK Function
	INTDCREATEHANDLE Function
	INTDCREATEMASK Function
	INTDCREATEOVERRIDEDAYMASK Function
	INTDCREATEOVERRIDEMASK Function
	INTDCREATESTATUSCODEMASK Function
	INTDCREATETOUPERIOD Function
	INTDDELETE Function
	INTDDIPTEST Function
	INTDEXPORT Function
	INTDGETERRORCODE Function
	INTDGETERRORMESSAGE Function
	INTDISEQUAL Function
	INTDJOIN Function
	INTDLOAD Functions
	INTDLOAD Function
	INTDLOADACTUALCUT Function
	INTDLOADDATES Function
	INTDLOADHIST Function
	INTDLOADLIST Function
	INTDLOADLISTDATES Function
	INTDLOADLISTENERGY Function
	INTDLOADLISTHIST Function
	INTDLOADRELATEDCHANNEL Function
	INTDLOADSP Function
	INTDLOADSTAGING Function
	INTDLOADUOM Function
	INTDLOADUOMDATES Function
	INTDLOADUOMHIST Function
	INTDLOADVERSION Function
	INTDOPEN Function
	INTDREADFIRST Function
	INTDREADNEXT Function
	INTDRECCOUNT Function
	INTDRELEASE Function
	INTDREPLACE Function
	INTDROLLAVG Function
	INTDROLLPEAK Function
	INTDSCALAROP Function
	INTDSCALE Function
	INTDSETATTRIBUTE Function
	INTDSETDSTPARTICIPANT Function
	INTDSETSTRING Function
	INTDSETVALUE Function
	INTDSETVALUESTATUS Function
	INTDSHIFTSTARTTIME Function
	INTDSMOOTH Function
	INTDSORT Function
	INTDSPIKETEST Function
	INTDSUBSET Function
	INTDTOU Function
	INTDTOURELEASE Function
	INTDTOUVALUE Function
	INTDUPDATESTATS Function
	INTDVALUE Function
	STDEV Function

	Enhanced Interval Data Functions
	Oracle Utilities Meter Data Management Interval Data
	INTDDELETEEX Function
	INTDGETATTREXALL Function
	INTDLOADEXACTUAL Function
	INTDLOADEXCUT Function
	INTDLOADEXDATES Function
	INTDLOADEX Function
	INTDLOADEXLIST Function
	INTDLOADEXLISTDATES Function
	INTDLOADEXRELATEDCHANNEL Function
	INTDSAVEEX Function
	INTDSAVEEXP Function
	INTDSETATTREX Function
	INTDSETATTREXALL Function
	INTDVALUEEX Function
	Enhanced Interval Data Functional Differences
	Interval Data Functions and Enhanced Interval Data Handles

	Chapter 10
	Meter Value Function Descriptions
	Meter Value Functions
	MVLOAD Function
	MVLOADACCT Function
	MVLOADACCTDATES Function
	MVLOADACCTHIST Function
	MVLOADDATES Function
	MVLOADHIST Function
	MVLOADLIST Function
	MVLOADLISTDATES Function
	MVLOADLISTHIST Function

	Chapter 11
	Math Function Descriptions
	Math Functions
	ACOS Function
	ASIN Function
	ATAN Function
	ATAN2 Function
	BITAND Function
	CEIL Function
	COS Function
	COSECANT Function
	COSH Function
	COTANGENT Function
	DIVQUOT Function
	DIVREM Function
	EXP Function
	FABS Function
	FLOOR Function
	FMOD Function
	FREXPM Function
	FREXPN Function
	LOG Function
	LOG10 Function
	MAX Function
	MAXN Function
	MIN Function
	MINNZ Function
	MODF Function
	POW Function
	ROUND Function
	ROUND2VALUE Function
	ROUNDINT Function
	SECANT Function
	SIN Function
	SINH Function
	SQROOT Function
	TAN Function
	TANH Function

	Chapter 12
	String Function Descriptions
	String Functions
	FLOAT2STRING Function
	FLOAT2STRINGNC Function
	INSTR Function
	LEFT Function
	LEN Function
	LTRIM Function
	MID Function
	RIGHT Function
	RTRIM Function
	STRING Function
	STRINGNC Function
	TOLOWER Function
	TOUPPER Function
	TRIM Function

	Chapter 13
	Other Function Descriptions
	Database Functions
	ACCOUNTFACTOR Function
	ARRAYUPPERBOUND Function
	CALLSTOREDPROC Function
	GETADOCONNECTION Function
	GETCONNECT Function
	GETDATASOURCE Function
	GETQUALIFIER Function
	GETUSERID Function
	HASVALUE Function
	LISTCOUNT Function
	LISTOP Function
	LISTUPDATE Function
	LISTVALUE Function
	PRORATEFACTOR Function
	RSPRORATE Function
	SETBINPATH Function
	SETDBMONITOR Function
	WQ_OPEN Function

	Date/Time Functions
	BILLINGHOURS Function
	DATE Function
	DATEFROMFLOAT Function
	DATETIMEFROMSTRING Function
	DATETIMETOSTRING Function
	DATETOFLOAT Function
	DAY Function
	DAYDIFF Function
	DAYNAME Function
	DBDATETIME Function
	HOUR Function
	MINUTE Function
	MONTH Function
	MONTHDIFF Function
	MONTHHOURS Function
	MONTHNAME Function
	ROUNDDATE Function
	SAMEWEEKDAYLASTYEAR Function
	SECOND Function
	WEEKDAY Function
	WEEKDIFF Function
	YEAR Function
	YEARDAY Function
	YEARSTR Function

	Historical-Data Functions
	COMPSUM Function
	HISTCOUNT Function
	HISTMAX Function
	HISTMIN Function
	HISTMINNZ Function
	HISTVALUE Function
	MAXNRANGE Function
	MAXRANGE Function
	MINRANGE Function

	Internal Functions
	COMPIKVA Function
	COMPKVA Function
	COMPKVARHFROMKQKW Function
	COMPLF Function
	IDATTR Function
	FLAG Function
	LF2KW Function
	LF2KWH Function
	MAXKW Function
	POWERFACTOR Function
	READING2USAGE Function

	Season-Based Functions
	AVGSEASON Function
	MAXSEASON Function
	MINSEASON Function
	MONTHLYMERGE Function
	SEASONVALUE Function
	SUMSEASON Function

	Term Functions
	Term Function Tail Identifiers
	LOADCONTRACTTERM Function
	LOADCONTRACTTERMALL Function
	LOADGROUPTERM Function
	LOADGROUPTERMALL Function
	LOADITEMTERM Function
	LOADITEMTERMALL Function
	SAVECONTRACTTERM Function
	SAVECONTRACTTERMALL Function
	SAVEGROUPTERM Function
	SAVEGROUPTERMALL Function
	SAVEITEMTERM Function
	SAVEITEMTERMALL Function

	Miscellaneous Functions
	ACCTREADDATES Function
	ACCTTABLELOAD Function
	CONFIGADD Function
	CONFIGGET Function
	CREATEOBJECT Function
	CREATEREPORT Function
	EMAILCLIENT Function
	EXPBLKMDMUSAGE Function
	EXPMDMUSAGE Function
	EXPORT_USAGE Function
	FACTORINEFFECT Function
	GETUSERSPECIFIEDSTOP Function
	INEFFECT Function
	ISHOLIDAY Function
	RUNRATE Function
	SAVE_PROFILE Function
	SETREPORTTITLE Function
	USEREXIT Function
	WAITFORRUNRATE Function

	Appendix A
	Reserved Words
	Statement Keywords
	Function Keywords
	Interval Data Function Keywords
	Meter Value Function Keywords

	Predefined Identifiers
	Predefined, Assignable Identifiers

	Appendix B
	XML Statements and Functions
	XML Overview
	XML Data Types
	Using Stem.Tail XML Identifiers

	XML Statements
	Identifier Statement
	OPTIONS Statement
	XML_ELEMENT Statement
	FOR EACH x IN XML_ELEMENT_OF 0 Statement
	XML_OP Statement

	XML/Document Object Management Functions
	DOMDOCCREATE Function
	DOMDOCLOADFILE Function
	DOMDOCLOADXML Function
	DOMDOCSAVEFILE Function
	DOMDOCGETROOT Function
	DOMDOCADDPI Function
	DOMNODEGETNAME Function
	DOMNODEGETTYPE Function
	DOMNODEGETVALUE Function
	DOMNODEGETCHILDCT Function
	DOMNODEGETFIRSTCHILD Function
	DOMNODEGETSIBLING Function
	DOMNODECREATECHILDELEMENT Function
	DOMNODESETATTRIBUTE Function
	DOMNODEGETCHILDELEMENTCT Function
	DOMNODEGETFIRSTCHILDELEMENT Function
	DOMNODEGETSIBLINGELEMENT Function
	DOMNODEGETATTRIBUTECT Function
	DOMNODEGETATTRIBUTEI Function
	DOMNODEGETATTRIBUTEBYNAME Function
	DOMNODEGETBYNAME Function

	Using the XML Statements and Functions
	Reading from XML Documents and Files
	Creating XML Documents and Files
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

	Index

