
Oracle Utilities Energy Information
Platform
Rules Language User’s Guide

Release 1.6.1.23 for Windows

E18202-24

December 2018

(Revised July 2019)

Oracle Utilities Rules Language/Rules Language User’s Guide, Volume 1, Release 1.6.1.23 for Windows

E18202-24

Copyright © 1999, 2018 Oracle and/or its affiliates. All rights reserved.

Primary Author: Lou Prosperi

Contributor: Steve Pratt

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
“commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/
or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

NOTIFICATION OF THIRD-PARTY LICENSES

Oracle Utilities software contains third party, open source components as identified below. Third- party license
terms and other third-party required notices are provided below.

License: Apache 1.1

Module: xercesImpl.jar, xalan.jar

Copyright © 1999-2000 The Apache Software Foundation. All rights reserved.

Use of xercesImpl and xalan within the product is governed by the following (Apache 1.1):

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other materials provided with the
distribution. (3) The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: “This product includes software developed by the Apache Software Foundation
(http://www.apache.org/) .” Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear. (4) Neither the component name nor Apache
Software Foundation may be used to endorse or promote products derived from the software without specific
prior written permission. (5) Products derived from the software may not be called “Apache”, nor may
“Apache” appear in their name, without prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License: Paul Johnston

Modules: md5.js

Copyright (C) Paul Johnston 1999 - 2002

Use of these modules within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other materials provided with the
distribution. (3) Neither the component name nor the names of the copyright holders and contributors may be
used to endorse or promote products derived from the software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

License: Tom Wu

Module: jsbn library

Copyright © 2003-2005 Tom Wu. All rights reserved

Use of this module within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other materials provided with the
distribution.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TOM
WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Contents
Contents

What’s New
New Features in the Oracle Utilities Rules Language User’s Guide.. 1-i

New Features for Release 1.6.0.0 .. 1-i

Chapter 1
Introducing the Oracle Utilities Rules Language ... 1-1

What is the Oracle Utilities Rules Language?... 1-2
What Data is Used to Perform Calculations? .. 1-3

Rate Forms .. 1-4
Rate Form Building Blocks .. 1-4
Rate Form Types.. 1-5
Rate Form Versions... 1-5
Sample Rate Form ... 1-6
Writing and Editing Rate Forms ... 1-6
Running Rate Forms ... 1-6

Factors and Overrides ... 1-7
Factors ... 1-7
Overrides ... 1-7

Cancel/Rebill Rider.. 1-8

Chapter 2
Using the Rules Language Editor .. 2-1

The Rules Language Editor .. 2-2
Adding, Modifying, and Deleting Statements .. 2-4
Using the Rules Language Elements Editor... 2-6

Rules Language Element Types... 2-6
Working with the Rules Language Elements Editor .. 2-9

Saving a Completed Rate Form ... 2-10
Printing a Rate Form.. 2-10
Other Tools for Writing Rate Forms .. 2-11

The Rules Language Text Editor... 2-11
The Rate Wizard... 2-13

Chapter 3
How Rate Forms are Processed ... 3-1

Overall Execution Process.. 3-2
Which Rate Form? ... 3-3
Shared Symbol Table... 3-3

Saving Data from a Rate Schedule... 3-4
Types of Data ... 3-4
Related Bill Pages ... 3-4
Requirements .. 3-5
Transactions.. 3-5
Postponed Saves... 3-5
i

ii
Two Phase Commit ... 3-5

Chapter 4
Identifiers, Constants, and Expressions... 4-1

Identifiers... 4-2
Revenue Identifiers .. 4-4
Bill Determinant Identifiers.. 4-5
Database Identifiers ... 4-5
Interval Data Handles ... 4-6
Time-of-Use Handles .. 4-6
Factor Identifiers.. 4-7
Override Identifiers ... 4-8
Bill History Predefined Identifiers... 4-9
Other Predefined Identifiers .. 4-10
Assignable Predefined Identifiers .. 4-11
Reserved Identifiers ... 4-13
Record Identifiers (stem.component) ... 4-14
Rate Schedule Environment Identifiers ... 4-16
Report Options Identifiers ... 4-19
Array Identifiers ... 4-20

Constants ... 4-23
Expressions ... 4-24

String Expressions ... 4-24
Date Expressions ... 4-25
Arithmetic Expressions... 4-26

Chapter 5
Statements Overview... 5-1

General Statements .. 5-2
Control Statements... 5-2
Revenue Computation Statements .. 5-4
Report Statements .. 5-4
Miscellaneous Statements.. 5-5
Financial Management Statements .. 5-6
WorkFlow Manager Statements ... 5-7
XML Statements... 5-7

Chapter 6
Rules Language Functions Overview... 6-1

Interval Data Functions... 6-2
Enhanced Interval Data Functions ... 6-6

Meter Value Functions .. 6-8
Math Functions... 6-9
String Functions.. 6-11
Other Functions ... 6-12

Database Functions ... 6-12
Date/Time Functions ... 6-14
Historical Data Functions... 6-16
Internal Functions.. 6-17
Season-Based Functions ... 6-18
Oracle Utilities Receivables Component Functions... 6-18
XML/Document Object Management Functions ... 6-18
Term Functions.. 6-20
Miscellaneous Functions... 6-21

Rules for Using Functions .. 6-23
Functions and Identifiers.. 6-23

About Identifiers .. 6-23
About Parameters .. 6-24

Chapter 7
Working with Interval Data .. 7-1

Interval Data Functions Overview .. 7-2
Interval Data Function Errors ... 7-2
Types of Interval Data Handles... 7-3
Interval Data Function Parameters ... 7-3
Combining and Comparing Interval Data Handles.. 7-6

Timezones and DST .. 7-7
Timezone Support ... 7-7
DST Support in the US... 7-11

Unit-of-Measure Rates and Quantities.. 7-12
UOM Categories .. 7-12
UOM Mapping ... 7-12
Mapping Data ... 7-13
Rules Language Functions.. 7-14

Loading Interval Data.. 7-15
INTDLOAD Functions ... 7-15
INTDLOADEX Functions ... 7-19
Loading Overlapping Cuts ... 7-20
Loading Partial Intervals ... 7-21
Notes On Loading Interval Data .. 7-23

Creating Interval Data Masks ... 7-24
Overview ... 7-24
Interval Data Mask Functions.. 7-24
Interval Data Mask Operator Rules .. 7-25

Other Interval Data Operations... 7-26
Interval Data Functions .. 7-26
Scalar and Block Operations .. 7-29

Working with Enhanced/Generic Interval Data... 7-30
Deriving Billing Determinants and Values from Interval Data .. 7-36

Overview ... 7-36
Bill Determinants ... 7-36
Other Values... 7-37

Examples of Working with Interval Data... 7-38
Loading Interval Data ... 7-38
Time-of-Use Periods ... 7-38
Override Masks .. 7-39
Time-of-Use and Overrides ... 7-39
Calculating Coincident and Non-Coincident Peaks ... 7-40

Chapter 8
Working with COM Components... 8-1

Overview.. 8-2
Working with COM Objects .. 8-3

Creating COM Objects ... 8-3
COM Expressions.. 8-3
COM Object Functions .. 8-5
COM Error Handling.. 8-6

VARIANT Data Type ... 8-7
Rules Language and VARIANT Types .. 8-7

Examples.. 8-10

Appendix A
iii

iv
Setting Up Rate Form Records and Rate Codes .. A-1
Adding a Rate Form Record.. A-2
Adding Rate Codes.. A-4
Creating a New Rate Form Version ... A-5
Importing and Exporting Rate Forms in Batch Mode.. A-6

Index

What’s New
New Features in the Oracle Utilities Rules

Language User’s Guide

This chapter outlines the new features of the 1.6.0.0 release of the Oracle Utilities Rules Language
that are documented in this guide.

New Features for Release 1.6.0.0

Feature Description For more information, refer to...

Term-Based Rules Language
Functions

This release includes new Rules Language
functions to retrieve and save terms and
term details to and from the Oracle
Utilities Data Repository.

Term Functions on page 13-74 in the
Oracle Utilities Rules Language Reference
Guide

See Term Functions on page 6-20 for
an overview of these functions.

Query Lists Query lists are structured query language
(SQL) queries that can be used by Oracle
Utilities Rules Language to access records
stored in the Oracle Utilities Data
Repository. Query lists are created using
the Lists function available through the
Energy Information Platform user
interface.

Query Lists on page 7-66 in the Oracle
Utilities Energy Information Platform User’s
Guide

The following statements and
functions have been enhanced to
support query lists:
• For Each x In List Statement

on page 3-10 in the Oracle Utilities
Rules Language Reference Guide

• LISTVALUE Function on page
13-15 in the Oracle Utilities Rules
Language Reference Guide

Support for Oracle Business
Intelligence Publisher

This release includes support for
publishing reports using Oracle Business
Intelligence Publisher 10.1.3.4. The
CREATEREPORT Rules Language
function has been enhanced to support
initiation of Oracle BI Publisher reports.

CREATEREPORT Function on
page 13-106 in the Oracle Utilities Rules
Language Reference Guide
i

ii

Chapter 1
Introducing the Oracle Utilities Rules Language

The Oracle Utilities Rules Language User’s Guide describes how to work with the Oracle Utilities Rules
Language. This includes:

• An overview of the Rules Language and how it’s used by Oracle Utilities products (this
chapter)

• A description of the tools used to work with the Rules Language (Chapter 2: Using the
Rules Language Editor)

• A description of how the Rules Language is processed by Oracle Utilities products (Chapter
3: How Rate Forms are Processed)

• Descriptions of the basic building blocks of the Rules Language (Chapter 4: Identifiers,
Constants, and Expressions)

• An overview of the individual statements and functions available in the Rules Language
(Chapter 5: Statements Overview, and Chapter 6: Rules Language Functions
Overview)

Detailed information about the statements and functions available in the Rules Language is in the
Oracle Utilities Rules Language Reference Guide.
Introducing the Oracle Utilities Rules Language 1-1

What is the Oracle Utilities Rules Language?
What is the Oracle Utilities Rules Language?
The Oracle Utilities Rules Language is used to write sets of instructions (or statements) used by
Oracle Utilities products to define various types of calculations and operations, such as:

• How to compute and report customer bills, trial pricing, or trial revenues (using Oracle
Utilities Billing Component, Oracle Utilities Quotations Management, or Oracle Utilities Rate
Management)

• How to perform load profiling and settlement (using the Oracle Utilities Load Profiling and
Settlement)

These sets of instructions and statements are called rate forms.

Rate forms describe operations and calculations, and can also define the conditions under which
specific operations and calculations should be performed (for example, based on rate codes,
seasons, and/or customer characteristics). In addition, rate forms can provide instructions needed
to report results, for outputting results in an electronic format that’s compatible with a Customer
Information System (CIS) or printer, and for saving the results of the calculations back to the
Oracle Utilities Data Repository.

The language statements used in Rules Language are based on programming language statements,
and are extremely powerful and flexible, enabling you to describe virtually any type of calculation,
from simple to complex, and traditional to highly innovative. Many Rules Language statements use
terminology and structures specific to the utility market, making them easy to learn and use.

The Rules Language’s computational ability is based on simple mathematical expressions. The
Rules Language also includes a range of special functions that provide access to customer interval
data, historical billing determinant values, seasonal information, and utility-specific capabilities.
These features include:

• Selection statements that execute different groups of statements based on specified
conditions

• If-then-else statements that support complex logical expressions

• Statements that assign a label to an identifier so that reports will display the label instead of
the identifier name

• The ability to override standard calculations for special events, such as backups or
interruptions

• Special identifiers that accumulate values for monthly and grand summaries

• Predefined identifiers that contain customer and bill period data

• Two types of block statements that support an unlimited number of blocks and prices.
1-2 Rules Language User’s Guide

What is the Oracle Utilities Rules Language?
Writing Rules Language Statements and Scripts
Oracle Utilities provides three tools for constructing Rules Language statements:

• The Rules Language Editor

• The Rules Language Text Editor

• The Rate Wizard

All of these are described in Chapter 2: Using the Rules Language Editor. Oracle Utilities
recommends using the Rules Language Editor because its graphical user interface simplifies the
rate form creation. Instead of typing each statement, you can pick from a series of statement
“templates” and fill in the blanks. This eliminates unnecessary typing and ensures that statements
are constructed with the correct syntax.

What Data is Used to Perform Calculations?
The Rules Language enables you to specify, via rate forms, how various computations should be
performed. The rate forms include references to the appropriate data in the Oracle Utilities Data
Repository, which enables the Oracle Utilities products to perform these calculations.

For this reason, you need to understand how and where this data is stored. The following is a brief
overview. A more complete description is provided in the Data Manager's User Guide.

Usage Data
Account usage data is stored in the Bill History Table and the Bill History Value Table. For each
account, there are Bill History records for the current bill period, as well as past (historical)
periods. Each bill history record is keyed by account ID and bill month (month and year), and
contains the start and stop date of the bill period, and the billing determinant values for the
period.

For billing purposes, all determinants in an account are billed, and the resulting revenues are added
together to form the bill. Determinants are not added across accounts. This is the basic definition
of an account: a unit whose determinants are computed and billed together.

Interval Data
In addition to billing determinant values stored in the Bill History tables, customer bills can
include charges based on interval data. Interval data (or time- series data) measures customer
demand or other quantities at regular intervals (such as every 5, 15, 30, or 60 minutes). You can
derive billing determinants from this data, and incorporate them in bill calculations or revenue
analyses, using the various interval data functions included in the Rules Language (see Chapter
Nine: Interval Data Functions in the Oracle Utilities Rules Language Reference Guide).

.
Introducing the Oracle Utilities Rules Language 1-3

Rate Forms
Rate Forms
A rate form is a set of instructions (or statements) you provide to one of the Oracle Utilities
products to define specific calculations and operations. The following section describes the types
of statements used in creating rate forms, the various types of rate forms, and how to write, edit,
and run a rate form.

Rate Form Building Blocks
The Rules Language is designed to enable you to describe any type of calculation.

Statements
The basic building blocks of the language are statements. You combine the statements into a rate
form. The Rules Language consists of several types of statements, each with its own purpose and
rules for use. The statements are composed of identifiers, constants, and expressions.

• Identifiers are variables used in Rules Language statements. They are the equivalent of variables
in programming languages and algebra, with some added features designed specifically for use
with Oracle Utilities products.

• Constants are values that don’t change. The Rules Language supports several types of
constants, including numbers, text strings, dates, and interval data recorder,channel references.

• Expressions in statements describe an operation to be performed between variables and
constants (variable/variable, variable/constant, or constant/constant). The Rules Language
supports three types of expressions: string, date, and arithmetic.

See Chapter 5: Statements Overview for more information about Rules Language statements.
See Chapter 4: Identifiers, Constants, and Expressions for more information about
identifiers, constants, and expressions.

Functions
The Oracle Utilities Rules Language includes an extensive library of functions designed for use in
rate forms. These functions provide for arithmetic calculations, reporting and other general-
purpose functions, and utility-specific calculations such as billing and rate analysis. Functions are
used in Assignment statements (see Chapter 5: Statements Overview), which assign an identifier
to the result of the given function. For example, an Assignment Statement could assign the
‘HOURS_PER_MONTH’ identifier to the result of the MONTHHOURS function (see the
MONTHHOURS Function on page 13-35 in the Oracle Utilities Rules Language Reference Guide).
1-4 Rules Language User’s Guide

Rate Forms
Rate Form Types
The three types of rate forms you can create using the Oracle Utilities Rules Language are rate
schedules, contracts, and riders.

• A rate schedule is the most common type of rate form. It describes a set of calculations and/
or operations to be performed by one of the Oracle Utilities products. Rate schedules are the
only type of rate form that can be used as input to Oracle Utilities products. They can include
one or more riders and/or contracts. When used with Oracle Utilities Billing Component or
Oracle Utilities Rate Management, rate schedules describe the bill calculations for a class of
customers. In other words, a rate schedule is the Rules Language form of a rate tariff. When used as
input to one of these products, rate schedules compute revenue from billing determinants.

• A contract is a set of Rules Language statements that applies to a single account. Contracts
cannot be used as input to billing or analysis programs; they must be included in rate
schedules.

• The term “rider” refers to any sub-form or subroutine. A common calculation that can be
used in several rate schedules or contracts can be put it in a rider. For example, a rider could
contain a common determinant extraction script that creates time-of-use determinants from
interval data. A rider by itself cannot be used as input to billing or analysis programs, but can
include one or more riders and/or contracts.

See the description of the INCLUDE Statement in Chapter 4: Identifiers, Constants, and
Expressions for more information about restrictions on the rate form versions that can be
included in other rate forms.

Important note: You must include a “CANCEL/REBILL” rider in every rate schedule that will
be used for Oracle Utilities Billing Component applications, if Oracle Utilities Billing Component
will be used to cancel bills. This rider tells Oracle Utilities Billing Component how to process
cancelled bills. See Cancel/Rebill Rider on page 1-8 for more information.

Rate Form Versions
Rate forms are created using the Rules Language Editor. Whenever changes are made to a rate
form, you should save the rate form as new version. This preserves the current and previous
version of the rate form for future reference or reuse.

You can create and save three types, or versions, of a rate form:

• Current - This is the version of the rate form now in effect. For any rate form, there can only
be one Current version at a time.

• Historical - Historical versions are previous versions of a rate forms. Whenever a rate form
is changed, the previous ‘Current’ version becomes a Historical version of that rate form.
There can be any number of Historical versions of a rate form.

• Trial - Trial versions are used for trial analysis only. These are convenient when you are first
learning how to create rate forms, and when running trial calculations based on potential
changes to a rate form.

Before you can create any version, you must first set up a Rate Form record. The Rate Form
record is the parent record that makes it possible to keep track of all of its versions (from the
database perspective, its “child” records). See Appendix A: Setting Up Rate Form Records and
Rate Codes for more information.
Introducing the Oracle Utilities Rules Language 1-5

Rate Forms
Sample Rate Form
The following sample rate form is a simple rate schedule used with Oracle Utilities Billing
Component for a straight-line meter rate with a customer charge.

Note: Text in a rate form that is located between the /* */ symbols contains
comments; these do not affect processing.

/* Residential rate 1 */
/* Customer charge */
$CUST_CHARGE = $5.00;
/* Compute simple energy charge */
ALL KWH CHARGE $0.05 INTO $KWH_CHARGE;
/* Total */
$EFFECTIVE_REVENUE = $CUST_CHARGE + $KWH_CHARGE;

Writing and Editing Rate Forms
The process of creating rate forms with the Rules Language Editor includes:

1. Set up the parent record

2. Define the version

3. Write the Rules Language statements.

To bill an account using a rate form, you must also create a rate code record and an account rate
code history record to link the account to the rate schedule. The mechanics of performing these
steps are described in the Data Manager User’s Guide. The remainder of this guide focuses on the
features and applications of the Rules Language.

Running Rate Forms
You “run” a completed rate form by using it as input to one of the Oracle Utilities products. To
run a rate form, the user selects a customer/account ID or list, a date range, and one or more rate
schedules. For billing calculations performed using Oracle Utilities Billing Component, the user
also selects a bill month. More information about running rate forms can be found in the
appropriate Oracle Utilities documentation, including the Oracle Utilities Billing Component and
Oracle Utilities Rate Management User’s Guides.
1-6 Rules Language User’s Guide

Factors and Overrides
Factors and Overrides
Values that vary over time and special events are handled by the Rules Language Factor and
Override features, respectively.

Factors
Using factors is an efficient way to deal with values that are used widely in rate forms but are
expected to change over time. Instead of using the actual value in the rate form, which would
require you to update every occurrence when the value changed, you can reference the item in the
rate form using a variable called a factor name.

Factors work as follows. The charge or other value is assigned a name in the Factor Table in the
Oracle Utilities Data Repository. The current and historical values associated with the factor name,
along with the values’ effective dates and prorate methods, are stored in the Factor Value Table.
When the value for the factor changes, you enter the new value in the Factor Value Table. See the
Data Manager’s User Guide for information on how to enter and update data in the Oracle Utilities
Data Repository. See Factor Identifiers on page 4-7 for more information about using Factor
Identifiers in the Rules Language.

When the application reads the factor name in the rate form, it automatically finds the correct
value for the analysis or billing period in the database tables.

Overrides
Special events, such as charging accounts at a different rate during interruptions or backups,
require the use of overrides to perform different calculations based on these special events or
occurrences. You can store the dates of these periods, and their associated values, in the Oracle
Utilities Data Repository. For more information about overrides and their application, see
Chapter Four: Setting Global Defaults and Applying Settings to Accounts, Rate Codes,
and Rate Schedules in the Oracle Utilities Billing Component User’s Guide. See Override Identifiers
on page 4-8 for more information about using Override identifiers in the Rules Language.

Rate Schedule Z

Tax A

Factor Table
Tax A
Tax B
Tax C
etc.

Factor Value Table
Tax A 1997-04-01 46.00
Tax A 1996-06-01 45.00
Tax A 1995-01-15 43.00
Tax B 1997-01-02 6.00
Tax B 1995-06-01 5.00
Tax C 1996-01-01 10.00
Tax C 1996-06-01 9.00

Rate Schedule X

Tax A

In Oracle Utilities Data Repository
Introducing the Oracle Utilities Rules Language 1-7

Cancel/Rebill Rider
Cancel/Rebill Rider
The Oracle Utilities Rules Language enables you to specify how Oracle Utilities Billing
Component processes bills that are cancelled and rebilled. For example, you can have the system
update information (such as the Bill Code and Bill Time) in the Oracle Utilities Data Repository to
record the event, or you can specify that the Cancel or Rebill transaction records be issued to CIS
without changes to the Oracle Utilities database. Because the instructions specified in the rate
schedule, not “hardcoded” in the system, you can specify whatever processing is appropriate to
your utility’s practices.

When Oracle Utilities Billing Component processes an account's bill, it assigns one of the
following values to the predefined identifier “BILL_TYPE”: “TRIAL”, “CANCEL/REBILL”,
“ADJUSTMENT”, “CANCEL”, “REBILL”, “CURRENT”, or “FINAL”. You can incorporate
this identifier and values into the required rider to direct how the bills are processed.

In addition, the CISFORMT.TXT file includes a CANCEL section (the contents of this section,
along with the rest of the file, are utility-specific—see your System Administrator for details). Your
rider must create a record whose components match the field names specified in this section.

Note: If you want to issue transaction records for the cancel/rebills, but you do
not want to update the Oracle Utilities Data Repository, you must create a
dummy stem identifier for the CIS records, as shown below.

Important Note
If Oracle Utilities Billing Component is used to process cancelled bills, you must create a rider
that defines how the system processes cancelled bills, and you must include it in every rate
schedule.

Example
Following is a sample CANCEL/REBILL rider:

/* CANCEL and CANCEL/REBILL Rider */
IF ((BILL_TYPE = "CANCEL") OR (BILL_TYPE = "CANCEL/REBILL"))
THEN

/* Process all the CISACCOUNTs here. */
/* */
/* ... */
/* */
/* Force CANCEL_CIS_REC to be a stem identifier. */
CANCEL_CIS_REC.DUMMY = 0;
/* Write CIS Record, format based on the CANCEL section */
SAVE CANCEL_CIS_REC to CIS SECTION "CANCEL";
CLEAR CANCEL_CIS_REC;
/* */
/* All done if CANCEL */
/* */

IF (BILL_TYPE = "CANCEL")
THEN

/* Set total revenue to zero.*/
$EFFECTIVE_REVENUE = $0.00;
/* Stop */
DONE:
END IF:

END IF;
1-8 Rules Language User’s Guide

Chapter 2
Using the Rules Language Editor

This chapter explains how to use the Rules Language Editor to assemble Rules Language
statements and other elements into a rate form script. This includes:

• The Rules Language Editor

• Adding, Modifying, and Deleting Statements

• Using the Rules Language Elements Editor

• Saving a Completed Rate Form

• Other Tools for Writing Rate Forms

The instructions on using the Rules Language Editor to create and modify rate form scripts
assume that you have already created the prerequisite Rate Form records in the Oracle Utilities
Data Repository, as described in detail in Appendix A: Setting Up Rate Form Records and
Rate Codes.

The Rules Language Editor is a component of Data Manager. To use it, begin at the Data Manager
desktop (if you are unfamiliar with how to start Data Manager, see the Data Manager User's Guide).
Using the Rules Language Editor 2-1

The Rules Language Editor
The Rules Language Editor
How you open the Rules Language Editor depends upon whether you are creating a new version
of a rate form, or editing an existing version.

How to open a new rate form version:

1. From the Data Manager desktop, select File-›New-›[rate form type] Version. You can use
the editor to write all three types of rate forms:

Rate Schedule: A set of Rules Language statements that calculates charges for a rate class or
an account. A rate schedule is the only type of rate form that can be used as input to the
analysis or billing programs.

Contract: A set of Rules Language statements that applies to a single account. (A contract
alone cannot be used as input to a billing or analysis program. It must be included in a rate
schedule.)

Rider: A set of Rules Language statements that can be included in rate schedules or in other
riders. A rider is typically used to write standardized routines, such as saving data to the
database or writing transaction records, that you’ll use in many rate schedules. A rider can
also be a tariff rider.

When you’ve specified the type of rate form you want to write, the New [Rate Form]
Version dialog box appears.

2. Select the appropriate Operating Company and Jurisdiction for the rate form you wish to
open.

The list of currently available Rate Form records appears in the list box. If the desired rate
form title does not appear in the list box, it may belong to an operating company/jurisdiction
pair other than you one you specified. If you have not created the rate form record in the
Oracle Utilities Data Repository, see Appendix A: Setting Up Rate Form Records and
Rate Codes.

3. Highlight the desired Rate Form in the list box.

4. For a current or historical version, enter its start date (but no version number). See Rate
Form Versions on page 1-5 for more information. For a trial version, enter a version number
(but no start date).

If you are creating a trial rate schedule and plan to include a trial contract in it, specify a
version number between 9000-9999 (inclusive) for both the rate schedule and the contract.
Otherwise, the system will automatically include the current version of the contract instead of
the trial version.

The difference between historical and current versions is that the current version has the
most recent start date. Current versions are for billing. Current, trial, and historical versions
can be used for analysis. You can create virtually any number of trial or historical versions, but
there can be only one current version.

5. Click OK. The descriptive “header” information you just input is saved to the database, and
an empty Rules Language Editor window opens. You can now create a rate form script using
the statements and elements described in later chapters of this guide. The remainder of this
chapter describes the use of the Editor to create and modify the statements. See Adding,
Modifying, and Deleting Statements for more information.
2-2 Rules Language User’s Guide

The Rules Language Editor
6. Optional. If you want to import the contents of a previously exported rate form (*.prg) into
the new rate form, click Import. The File Import New Rate Schedule Version dialog opens.

Navigate to the appropriate file and click Open. A Rules Language Editor window will open,
displaying the contents of the imported rate form. If there is an error importing a rate form
and you fix the rate form without closing the New Rate Form dialog, when you click on
Import, the previous file name will be remembered.

How to open an existing rate form version:

1. At the Data Manager desktop, select File-›Open-›[rate form type] Version. The Open
[Rate Form] Version dialog box appears.

2. Select the Operating Company and Jurisdiction your rate form belongs to. The list of
currently available Rate Form records appears in the list box. If the desired rate form title
does not appear in the list box, it may belong to an operating company/jurisdiction pair other
than you one you specified.

3. Highlight the desired Rate Form in the list box.

A list of the versions that were previously created and stored for the selected rate form
appears in the middle list box. You can “filter” this using the Type checkboxes: check the
types you want to see in the list, and uncheck those that you don’t.

The Locked checkbox indicates that the selected rate form is locked and cannot be edited
(though they can be opened).

When you highlight a version in the middle list box, the text of the rate form script appears in
the lower box. This view is read-only. The rate form cannot be edited in this view.

4. Optional. If you want to export the contents of the selected rate form to a file, click Export.
The File Export Rate Form As dialog opens.

Navigate to the desired destination directory, type in the desired filename, and click Save.

5. In the middle list box, highlight the version you wish to edit and click Open. The Rules
Language Editor window opens. You can now update the rate form script using any of the
methods described in this chapter.

If you assigned color-coding to specific statements, the keywords for those statements appear
in the designated colors. See Rules Language Settings on page 2-18 in the Data Manager
User’s Guide for more information about color-coding Rules Language Statements.

If you selected the Display Line Numbers option on the Rate Analysis tab of the Default
Options dialog, each line in the rate form begins with a line number and colon. See Rate
Analysis Options on page 2-11 in the Data Manager User’s Guide for more information.

Note: You can open multiple rate forms (of the same type) at the same time by
pressing the Shift or Ctrl key while selecting the rate forms. The selected rate
forms will open in separate Rules Language Editor windows.

Note: Only one copy of a single rate form can be opened at any one time. If
you attempt to open a rate form that is currently being edited by another user, a
warning dialog will appear on the screen informing you that the rate form is
locked.
Using the Rules Language Editor 2-3

Adding, Modifying, and Deleting Statements
Adding, Modifying, and Deleting Statements
Opening the Rules Language Editor accesses the variety of available tools for creating, modifying,
and deleting statements.

Note: The maximum number of characters possible in a rate form using
Windows 98 is 32,000.

Working with the Rules Language Editor
Rules Language statements and other editor functions can be accessed either from the
Statements menu or by selecting a line in the Rules Language Editor and clicking the right
mouse button. If you select a line on the Rules Language Editor and click the right mouse
button, a menu containing the Cut, Copy, Paste, and Undo functions from the Edit Menu, and
the contents of the Statements Menu, opens. You can select options from this menu, or from the
Menu Bar menus. If you select the Text Editor option, the cursor will be on the line you selected
in the Rules Language Editor.

How to add a statement to a rate form:

1. Select Statements-›[statement type].

A template for the selected statement type appears. Complete it as desired. For detailed
information about a specific statement type, see Chapter 6: Rules Language Functions
Overview and the corresponding chapter in the Oracle Utilities Rules Language Reference Guide.

You can type the elements into the fields, or you can use a second editing tool, called the
Rules Language Elements editor, to pick them. To open the Rules Language Elements
editor, position the mouse pointer in any template field and click the right mouse button. See
Using the Rules Language Elements Editor on page 2-6 for more information.

Note: The Rules Language requires the use of straight quotes (" "). If copying/pasting text
from other editors, take note of any non-straight quotes (“ ”) and correct as needed.

2. When you have completed the template, click OK. Your statement appears in the Editor
window.

How to delete a statement from a rate form:

1. Highlight the statement.

2. Select Edit-›Delete, or click the right mouse button and select Delete.

New statement
2-4 Rules Language User’s Guide

Adding, Modifying, and Deleting Statements
How to insert a statement between existing lines:

1. Highlight the line in the script that's above the desired position of the new statement.

2. Select Statements-›[statement type]. The template for the selected statement type appears.
For detailed information about a specific statement type, see Chapter 6: Rules Language
Functions Overview and the corresponding chapter in the Oracle Utilities Rules Language
Reference Guide.

3. When you have completed the template, click OK. Your statement appears in the Editor
window.

How to move a statement within a rate form:

1. Highlight the statement you wish to move.

2. Select Edit-›Cut, or click the right mouse button and select Cut.

3. Highlight the line above the desired position for the statement.

4. Select Edit-›Paste, or click the right mouse button and select Paste.

 How to copy lines from another rate form:

1. Open the rate form that contains the lines you want to copy, and the rate form you want to
copy those lines to. You will have two Editor windows open on your desktop.

2. Highlight the lines you wish to copy.

3. Select Edit-›Copy, or click the right mouse button and select Copy.

4. In the first window, highlight the line above the desired position for the copied statements.

5. Select Edit-›Paste, or click the right mouse button and select Paste.

6. Close the second window by clicking on the Close (X) button in the upper right corner.

How to view an INCLUDEd rate form:

1. Open the rate form that contains the INCLUDE statement.

2. Highlight the line that contains the INCLUDE statement.

3. Click the right mouse button and select Open Rider.

4. The INCLUDEd rate form opens in a new Rules Language Editor.
Using the Rules Language Editor 2-5

Using the Rules Language Elements Editor
Using the Rules Language Elements Editor
An additional editing tool, the Rules Language Elements editor, is built into the Rules
Language Editor. This tool helps you construct statements correctly and efficiently by enabling
you pick any of the Rules Language elements from menus instead of typing them manually. It is a
“smart” editor that tailors the list of choices presented to you based on the type of statement, or
the portion of the statement, that you're constructing.

This section describes the Rules Language Elements Editor, including:

• Rules Language Element Types

• Working with the Rules Language Elements Editor

Rules Language Element Types
The Rules Language Elements Editor lists the different Rules Language Element types in the
Element Types box. When you select an Element Type, the available elements of that type appear
in the lower box of the editor. The available element types include:

• Revenue Identifiers: Revenue identifiers established in the open rate form. The pre-supplied
$EFFECTIVE_REVENUE is always included in this list. See Revenue Identifiers on page
4-4 for more information.

• Bill Determinant Identifiers: Bill determinant identifiers as defined in the Bill
Determinants table. See Bill Determinant Identifiers on page 4-5 for more information.

• Database Identifiers: Available database identifiers. See Database Identifiers on page 4-5
for more information.

• Interval Data Handles: Interval data handles in the open rate form. See Interval Data
Handles on page 4-6 for more information.

• Time-of-Use Handles: Time-of-use interval data handles in the open rate form. See Time-
of-Use Handles on page 4-6 for more information.

• Other Identifiers: Other identifiers established in the open rate form. See Identifiers on
page 4-2 for more information.

• Identifiers as Factor Value Key: Identifiers established in the open rate form used as the
key for a factor identifier. When inserted into the rate form, these appear in the
FACTOR[<identifier>].VALUE format. See Factor Identifiers on page 4-7 for more
information.

• Identifiers as Override Value Key: Identifiers established in the open rate form used as the
key for an override identifier. When inserted into the rate form, these appear in the
OVERRIDE[<identifier>].VALUE format. See Override Identifiers on page 4-8 for more
information.

• Identifiers as Override String Key: Identifiers established in the open rate form used as the
key for a override identifier. When inserted into the rate form, these appear in the
OVERRIDE[<identifier>].STRVAL format. See Override Identifiers on page 4-8 for more
information.

• Factor Value Identifiers (All): Factors from the Factor table used in a factor identifier.
When inserted into the rate form, these appear in the FACTOR[<factor_code>].VALUE
format. See Factor Identifiers on page 4-7 for more information.

• Factor Value Identifiers (Rate Form): Factors from the Factor table used in a factor
identifier that have the same Operating Company and Jurisdiction as the open rate form.
When inserted into the rate form, these appear in the FACTOR[<factor_code>].VALUE
format. See Factor Identifiers on page 4-7 for more information.
2-6 Rules Language User’s Guide

Using the Rules Language Elements Editor
• Charge Factor Value Identifiers (All): Factors from the Factor table used in a factor
identifier that have a Unit-of-Measure of 79 (Dollars). When inserted into the rate form, these
appear in the FACTOR[<factor_code>].VALUE format. See Factor Identifiers on page 4-7
for more information.

• Charge Factor Value Identifiers (Rate Form): Factors from the Factor table used in a
factor identifier that have the same Operating Company and Jurisdiction as the open rate
form and that have a Unit-of-Measure of 79 (Dollars). When inserted into the rate form,
these appear in the FACTOR[<factor_code>].VALUE format. See Factor Identifiers on
page 4-7 for more information.

• Override Float Value Identifiers: Overrides from the Override table used in an override
identifier. When inserted into the rate form, these appear in the
OVERRIDE[<identifier>].VALUE format. See Override Identifiers on page 4-8 for more
information.

• Override String Value Identifiers: Overrides from the Override table used in an override
identifier. When inserted into the rate form, these appear in the
OVERRIDE[<identifier>].STRVAL format. See Override Identifiers on page 4-8 for more
information.

• Interval Data/Meter Value Functions: Interval Data (INTD) and Meter Value (MV)
functions. See Interval Data Functions on page 6-2 for a list of available Interval Data
functions. See Meter Value Functions on page 6-8 for a list of available Meter Value
functions.

• Interval Data Function Parameters: Parameters used by Interval Data functions. See
Interval Data Functions on page 6-2 for a list of available Interval Data functions.

• Interval Data Attributes: Attributes of interval data handles. See Interval Data Reference
Values and Attributes on page 7-3 for more information.

• Math Functions: Math functions. See Math Functions on page 6-9 for a list of available
Math functions.

• String Functions: String functions. See String Functions on page 6-11 for a list of available
string functions.

• Other Functions: All other functions. See Other Functions on page 6-12 for a list of
available other functions.

• Stored Procedure Names: Stored procedures in the Oracle Utilities Data Repository. These
are used by the CALLSTOREDPROC Function on page 13-4 in the Oracle Utilities Rules
Language Reference Guide. When inserted into the rate form, these appear as a string.

• Function Parameters: Parameters used by Rules Language functions. See About
Parameters on page 6-24 for more information.

• IDATTR Attributes: Attributes available through use of the IDATTR Function on page
13-59 in the Oracle Utilities Rules Language Reference Guide. When inserted into the rate form,
these appear as a string.

• LSRS Environment (Get): Rate Schedule Environment Identifiers that can be read. See
Rate Schedule Environment Identifiers on page 4-16 for more information.

• LSRS Environment (Set): Rate Schedule Environment Identifiers that can be set. See Rate
Schedule Environment Identifiers on page 4-16 for more information.

• LSRPT Options: Report Options Identifiers. See Report Options Identifiers on page 4-19
for more information.

• Table-Column Lists: Table-column lists stored in the Oracle Utilities Data Repository.
When inserted into the rate form, these appear as a string. See Chapter 8: Working with
Lists and Queries in the Data Manager User’s Guide for more information.
Using the Rules Language Editor 2-7

Using the Rules Language Elements Editor
• Table-Column Channel Lists: Table-column lists based on the Channel and/or Channel
History tables in the Oracle Utilities Data Repository. When inserted into the rate form, these
appear as a string. See Chapter 8: Working with Lists and Queries in the Data Manager
User’s Guide for more information.

• Factor Codes (All): Factor codes from the Factor table. When inserted into the rate form,
these appear as a string.

• Factor Codes (Rate Form): Factor codes from the Factor table that have the same
Operating Company and Jurisdiction as the open rate form. When inserted into the rate
form, these appear as a string.

• Override Codes: Override codes from the Override table. When inserted into the rate form,
these appear as a string.

• UOM Codes: Unit-of-Measure (UOM) codes from the UOM table. When inserted into the
rate form, these appear as a string.

• End Use Codes: End Use codes from the End Uses table. When inserted into the rate form,
these appear as a string.

• Service Codes: Service codes from the Service table. When inserted into the rate form, these
appear as a string.

• Aggregation Group Names: Aggregation groups defined in the Aggregation Group table.
When inserted into the rate form, these appear as a string.

• Tables: Tables in the Oracle Utilities Data Repository. When inserted into the rate form,
these appear as a string.

• Time-of-Use Schedules: Time-of-Use schedules stored in the Oracle Utilities Data
Repository. When inserted into the rate form, these appear as a string. See Time-of-Use
Schedules on page 7-8 in the Data Manager User’s Guide for more information.

• Time-of-Use Periods: Time-of-Use periods stored in the Oracle Utilities Data Repository.
When inserted into the rate form, these appear as a string. See Time-of-Use Schedules on
page 7-8 in the Data Manager User’s Guide for more information.

• Season Schedules: Season schedules stored in the Oracle Utilities Data Repository. When
inserted into the rate form, these appear as a string. See Season Schedules on page 7-7 in the
Data Manager User’s Guide for more information.

• Season Periods: Season periods stored in the Oracle Utilities Data Repository. When
inserted into the rate form, these appear as a string. See Season Schedules on page 7-7 in the
Data Manager User’s Guide for more information.

• Holiday Lists: Holiday lists stored in the Oracle Utilities Data Repository. When inserted
into the rate form, these appear as a string. See Holidays on page 7-6 in the Data Manager
User’s Guide for more information.

• Save to CIS Section Names: Section names of the sections of the CISFORMT.TXT file
stored in the C:\LODESTAR\CFG directory. When inserted into the rate form, these
appear as a string. See Creating a CIS Transaction Record Output File on page 9-1 in the
Oracle Utilities Energy Information Platform Configuration Guide for more information.

• Distribution Nodes: Distribution nodes from the Distribution Node table. When inserted
into the rate form, these appear as a string.

• Account/Customer Lists: Account/customer lists stored in the Oracle Utilities Data
Repository. When inserted into the rate form, these appear as a string. See Chapter 8:
Working with Lists and Queries in the Data Manager User’s Guide for more information.
2-8 Rules Language User’s Guide

Using the Rules Language Elements Editor
Working with the Rules Language Elements Editor
This section describes how you work with the Rules Language Elements Editor.

How to open the Rules Language Elements Editor:

1. In any statement template, position the mouse pointer in the field you wish to complete. Click
the right mouse button. The Rules Language Elements editor appears. The list box on the top
of the Editor displays all of the Rules Language element types that you might use to complete
the template field you’re in.

2. Highlight the desired element type in the upper list box. The list box on the bottom displays
all of the elements in the highlighted category.

3. Highlight the desired element in the lower box; it appears in the field above the list box.

4. Click OK. The element appears in the template.

How to select a parameter:

Some elements include other elements that you must specify. For functions, you will usually
specify one or more parameters. You can use the Rules Language Elements editor to specify these
elements.

1. In the template, highlight the parameter you want to select an element for. Include the caret
symbols (< >) on either side.

2. With the mouse pointer still positioned in the field, click the right mouse button. The Rules
Language Elements Editor opens with the appropriate category for this parameter
highlighted in the upper list box.

3. Highlight the desired parameter in the lower list box and click OK. Your selection appears in
the template.

See Chapter 4: Identifiers, Constants, and Expressions for more information about
function parameters.
Using the Rules Language Editor 2-9

Saving a Completed Rate Form
Saving a Completed Rate Form
How to save a new rate form version script:

1. Select File-›Save. The message “Rate Schedule Version Saved” appears in the lower left
corner of the Data Manager screen.

Each time a rate form is saved, a “Saved by” comment is included as the first line in the rate
form. This comment contains the name, date, and time of the last person to save the rate
form. This comment is in the format “Saved by <name> on <date and time>”. Comments
are added every time the rate form is saved, which provides a history of the changes. The
comments will begin with the // delimiter to make the comment a one-line comment (as
opposed to a multi-line comment). These regular comments that can be edited and deleted by
the user.

Note: “Saved by” comments can be included at the bottom of the rate form instead of the
top by selecting the “Display ‘Saved by’ comments at end” option on the Rate Analysis tab of
the Default Options dialog. See Rate Analysis Options on page 2-11 in the Data Manager
User’s Guide for more information.

How to save a modified rate form version script as a new version:

1. Select File-›Save As and complete the dialog box that appears.

Important Note

Before you can bill an account using a rate schedule, you must create a rate code record
for the rate schedule, and an account rate code history record for the account. These two
records link the rate schedule to the account. See the Oracle Utilities Billing Component
User's Guide for instructions.

Printing a Rate Form
How to Print a Saved Rate Form:

1. Open the rate form you wish to print using the Rules Language Editor.

2. Select File-›Print. Note that this option prints only the text currently displayed in the Rules
Language Editor. It does NOT print the contents of INCULDEd riders/contracts.

3. Optional. Select one of the Statements-›View options. The rate form will appear in a report
window with a comment that includes the rate form name (including Operating Company
code, Jurisdiction code, Rate Form Code, and version), followed by “as of” and the date and
time. This allows the printout of the report to include a date/time stamp, as well as any
INCLUDEd riders/contracts.
2-10 Rules Language User’s Guide

Other Tools for Writing Rate Forms
Other Tools for Writing Rate Forms
This section describes the other tools available for writing rate form scripts; The Rules
Language Text Editor and The Rate Wizard.

The Rules Language Text Editor
The Rules Language Text Editor allows you to edit the rate form script just as you would edit
any text document, using a text editor or word processing application.

Note: The Rules Language Text Editor is designed for use by experienced
users. If you’re just learning to write rate forms, use the Rules Language Editor
until you become familiar with the syntax and structure of rate forms.

To open the Rules Language Text Editor, open an existing rate form or create a new rate form.
When a rate form is open in the Rules Language Editor select Statements-›Text Editor, or
double-click on the ‘===Top of Schedule===’ or ‘===Bottom of Schedule===’ lines in the
Rules Language Editor. Either method opens the Rules Language Text Editor window.

Menus and Commands
The Rules Language Text Editor provides menus and options for editing rate form scripts. The
menus are accessible from the Menu bar, or by clicking the right mouse button.

File Menu
Validate - This option validates the rate form. If there is an error in the rate form, a ‘Validate
Error’ dialog will open, with the line containing the error highlighted.

Update and Close - This option validates and saves the rate form, and closes the Rules
Language Text Editor. If there is an error in the rate form, a ‘Validate Error’ dialog will open,
with the line containing the error highlighted.

Update and Save - This option validates and saves the rate form. If there is an error in the
rate form, a ‘Validate Error’ dialog will open, with the line containing the error highlighted.

Close - This option closes the Rules Language Text Editor. If you haven't saved your work,
you will be prompted to do so.

Edit Menu
Undo - This option undoes the last action. The maximum number of Undos allowed is
defined on the Rate Analysis tab of the Default Options dialog.

Redo - This option redoes the last action undone.

Cut - This option cuts the selected text and places it on the Clipboard.

Copy - This option copies the selected text to the Clipboard.

Paste - This option pastes the contents of the Clipboard.

Note: The maximum number of characters that can be copied or pasted into
the Rules Language Text Editor is approximately 32,000. Copying/pasting
more characters may lead to errors.

Note: The Rules Language requires the use of straight quotes (" "). If copying/
pasting text from other editors, take note of any non-straight quotes (“ ”) and
correct as needed.

Find - This option allows you to search for a word or words in the rate form. When you
select this option or press F3, the Find dialog opens.

Enter the word or words you wish to find and click OK.

Find Next - This option finds the next instance of the word or words last entered in the Find
dialog.
Using the Rules Language Editor 2-11

Other Tools for Writing Rate Forms
Find Previous - This option finds the previous instance of the word or words last entered in
the Find Dialog.

Go To - This option opens the Go To tab on the Find dialog, allowing you to go to a specific
line in the rate form.

Replace - This option allows you to find a word or words in the rate form and replace them.
When you select this option, the Replace dialog opens.

Fixed Font - This option changes the text to a fixed font size.

Rules-Language-Elements
This option opens the Rules Language Elements Editor.

Help
This option opens the Data Manager Online Help.
2-12 Rules Language User’s Guide

Other Tools for Writing Rate Forms
The Rate Wizard
The Rate Wizard is a training tool to help you understand the steps involved in writing rate form
statements. Use it to create statements based on Bill Determinants, as well as other charges, by
making selections on a number of dialog boxes (similar to wizards found in other Windows
applications).

The Rate Wizard doesn’t create finished rate forms. After you save and close the rate form, you’ll
need to go back and edit it using either the Rules Language Editor or The Rules Language
Text Editor.

How To Use the Rate Wizard to Write Rate Form Statements:

1. Select File-›New-›Rate Wizard. The Rate Wizard window opens.

2. On the Pick Determinants tab, select the determinant (or one of the determinants) you
want to use in your rate form, and click Next. The Data Source dialog box opens.

3. Select the appropriate data source for the determinant you’re billing (‘From Interval Data’ or
‘Scalar Data’) and click Next. If you select ‘From Interval Data,’ the TOU dialog appears. If
you select ‘Scalar Data,’ the Ratchet dialog opens.

4. Select the appropriate type of interval data and click Next. If you select RTP, the RTP dialog
opens. If you select TOU, the Select Period dialog opens. If you select Other, the Ratchet
dialog opens. Each of these dialogs is described below.

5. If you selected RTP, select the appropriate Usage Data, Pricing Data, and Customer Base
Line for your rate form using the drop-down lists. When you’ve filled in the dialog, click
Finish. This returns you to the opening Rate Wizard window. From there you can select
another determinant or other charge to bill, or close and save the rate form.

6. If you selected TOU, select the desired TOU schedule from the drop-down list, and the
specific TOU period that applies to the rate form statement you’re writing. Click Next. The
Select Period dialog opens.

7. The Ratchet dialog opens after you complete the Select Period dialog, or if you selected
‘Scalar Data’ in the Data Source dialog. Select Yes or No based on whether the calculation
requires ratchet data.

8. If you select Yes, the Do Ratchet dialog opens. Enter the number of historic months to use,
the minimum contract (if any), and whether the current month determinant should be used,
and click Next.

9. If you select No on the Ratchet dialog (or if you completed the Do Ratchet dialog), the Set
Price dialog opens.

10. Select the charge type: Block Charge or Flat Charge.

If you select Block Charge, the BLOCK Statement template opens. See Block Statements
on page 4-4 in the Oracle Utilities Rules Language Reference Guide for information about filling in
the template. After you’ve filled out the template, click Finish to return to the Pick
Determinants tab.

If you select Flat Charge, the ALL Statement template opens. See All Statement on page 4-
2 in the Oracle Utilities Rules Language Reference Guide) for information about filling in the
template. After you’ve filled out the template, click Finish to return to the Pick
Determinants tab.

If you have other determinants to bill, follow the above procedure for each determinant. If
you have other charges to include in your rate form, click on the Other Charges tab and
enter them, as described in Step 11 below.

11. The Other Charges tab allows you to add additional statements based on other charges, such
as a flat customer charge, to your rate form. To add a charge using this window, enter the
Identifier in the left box (located below the Add/Update button), enter the value associated
Using the Rules Language Editor 2-13

Other Tools for Writing Rate Forms
with the identifier in the right box, and click Add/Update. This adds the statement to the
Enter other charges and set their prices one at a time box in the center of the tab. See
Chapter 4: Identifiers, Constants, and Expressions for more information about
Identifiers.

12. To edit an existing statement, highlight the statement, make any desired changes in the left
and right boxes, and click Add/Update. To delete an existing statement, highlight the
statement and click Delete.

If you have other charges to bill, follow the above procedure for each. If you have
determinants to include in your rate form, click on the Pick Determinants tab and follow
the procedure outlined in steps 1 through 10 above.

13. If you’re done with your rate form, click the Save & Close button. The Save Rate Form
Version As dialog opens. Save the rate form as described under Saving a Completed Rate
Form on page 2-10.
2-14 Rules Language User’s Guide

Chapter 3
How Rate Forms are Processed

Rate forms must be designed correctly to get the proper results, and the execution process is
where the results are determined. When a rate form is processed, it is referred to as a ‘run.’

This chapter describes how rate forms are processed, including:

• Overall Execution Process

• Saving Data from a Rate Schedule
How Rate Forms are Processed 3-1

Overall Execution Process
Overall Execution Process
The rate form execution process is essentially the same for all types of rate schedule runs: the user
selects a customer/account ID or list, a date range, and one or more rate schedules. For billing
calculations performed using Oracle Utilities Billing Component, the user also selects a bill month.
Then, the following steps are performed:

Note: Some of the steps outlined below apply only to specific products. For
these steps, the appropriate product is shown in parentheses.

1. The appropriate rate schedules or contacts are loaded. All INCLUDEd rate forms are loaded,
and the INCLUDE statements are replaced in the rate form by the INCLUDEd rate forms.
The result is a “completed” rate form with no INCLUDE statements.

2. Each rate form is validated and compiled. Compilation converts the text of the rate form into
a format the program can execute efficiently. Part of this format is the Symbol Table. The
Symbol Table contains all the identifiers (and related information) used in the rate form.
During this step, the DETERMINANT, REVENUE and LABEL statements in the rate
forms are processed, and their corresponding labels are put in the Symbol Table (because
they cannot change during a run).

3. A list of determinants used in historical or season functions is extracted from the Symbol
Table. This allows retrieval of historical data for only those determinants that need it.

4. The values of SEASON_SCHEDULE_NAME and HOLIDAY _NAME identifiers are
extracted from the Symbol Table. If they are assigned in an Assignment Statement, the value
is assigned at compile time, rather than at run time. This makes the names available before
execution of the rate form, so the appropriate schedules can be loaded and verified.

If all of the above steps are successful, processing may begin.

5. (Oracle Utilities Rate Management only) Depending on the type of analysis, either all months
for an account (Customer Impact), or all accounts for a month (Customer Revenue) are
processed.

6. The corresponding bill history record for the supplied account and bill month is read from
the Oracle Utilities Data Repository. Determinant and input values are loaded into the
Symbol Table, and historical values are read and loaded for the determinants that need them.

7. The names of all database identifiers are retrieved, and the value of each one is read from the
Oracle Utilities Data Repository and stored in the Symbol Table.

8. (Oracle Utilities Billing Component/Oracle Utilities Rate Management only) The rate code to
be used is found. The hierarchy of decisions that determine the rate code used is:

a. If the rate code is supplied as user input, the input value is used.

b. If not supplied and the rate schedule is the account’s rate schedule, the “real” rate code is
used.

b. If another rate schedule, use inter-schedule mapping, if one exists.

b. Use the “real” rate code.

9. The rate form is processed. Any errors are reported.

10. (Oracle Utilities Rate Management only) The Symbol Table is accumulated. This means that
the just-computed values of the determinant and revenue identifiers are added to their
previously computed values.

11. The Symbol Table is summarized. All identifiers to be reported (including determinant,
revenue, input, and other identifiers) are put into a standard format that external report
writers can process.

12. The Symbol Table is reset, and all computed values and flags are set to zero.
3-2 Rules Language User’s Guide

Overall Execution Process
13. The next account (when using Oracle Utilities Billing Component) or account and month
(when using Oracle Utilities Rate Management) is processed. Return to Step 6.

Which Rate Form?
An important consideration in processing rate forms for billing calculations and/or rate analyses is
which rate form is to be used in a particular bill month. For rate forms processed through RUNRS
or Trial Bill/Calculation, the rate schedule or contract is specified (by the user or in an INCLUDE
Statement) and used as-is. Otherwise, the version picked depends on the product and type of
analysis.

Oracle Utilities Billing Component
For Oracle Utilities Billing Component, the version of each rate form in effect on the stop date of
the account’s bill period is used. In this case, each customer’s completed rate form is created
individually. All INCLUDEd rate forms must have a version effective on the stop date, or an error
will occur.

Oracle Utilities Rate Management
For Customer and Bill Frequency Revenues with the “Use historical schedule versions” flag set,
the rule is that, for each month selected, a rate form is created that INCLUDEs the versions
effective at the beginning of the month. In this case there is one completed rate form per month.

For all other Oracle Utilities Rate Management analyses, the specified contract or rate schedule
version is used. For any INCLUDEd rate forms, the version effective on the first day of the
analysis bill period is used. In this case there is one completed rate form for the whole analysis.

Shared Symbol Table
Each run reloads and re-uses the same Symbol Table. If several rate forms are created for an initial
contract or rate schedule, their compiled format shares a common Symbol Table. This is necessary
so that the accumulate step above (Step 10) accumulates across multiple rate forms. This means
that the HOLIDAY_NAME and SEASON_SCHEDULE_NAME values and identifier labels are
also shared. The value of these will be that of the latest rate form to assign them. If the current
version is present, these will be set to its values.
How Rate Forms are Processed 3-3

Saving Data from a Rate Schedule
Saving Data from a Rate Schedule
Saving data from a rate schedule via Oracle Utilities Billing Component includes:

• An overview of the types of data that can be saved from a rate schedule

• An overview of how bill pages/rate schedule runs are related

• A description of the requirements for saving data from a rate schedule

• A description of how transactions are processed, and the specific types of data that can be
saved via a “Postponed Save” (after user approval)

• A description of a solution for saving all types of data from a rate schedule.

Types of Data
The types of data that can be saved from a rate schedule include:

• Relational Database Records (can be added, updated, or deleted)

• Interval Data Cuts (can be saved or deleted)

• Financial Charges

• Billing Determinants

• Relational Database Column Updates (via the LISTUPDATE function)

• CIS Records.

In addition, account notes may need to be written during a bill calculation.

Related Bill Pages
In all billing modes (Automatic, Approval Required, Current/Final, Bill Correction, and Trial Bill/
Report) related bill pages and/or rate schedule runs are grouped. One bill page represents one bill
history record processed by one rate schedule. Bill pages are related and grouped when:

a. They are all for accounts that have the same summary customer

b. They are for the same account, with the same scheduled read date. These are done in a
nested loop. The outer loop is by bill history record, the inner is by rate schedule.

b. They are for all bill periods to be corrected (for Bill Correction only).

Oracle Utilities Billing Component includes an option to allow for approval of all pages that were
error-free.
3-4 Rules Language User’s Guide

Saving Data from a Rate Schedule
Requirements
Requirements that affect how data can be saved include:

1. All changes a rate schedule makes to either database (Data Repository or Interval Database)
must be available to later, related rate schedule runs.

2. The user must have the capability of approving or rejecting ALL saves, except in Automatic
billing mode.

3. For Automatic and Approval Required billing, account notes may be written during the billing
process.

4. Interval data saves and deletes should be made only after user approval (see Step 2, above).

Transactions
All changes to the relational database take place in the context of a transaction. All changes within
a transaction are committed together, or all are rolled back (removed) together. In all billing
modes, all related rate schedules are run in a single transaction that is started before the first rate
schedule in the group is run. After the last rate schedule in the group is run, there are several
options:

1. If there were any errors, roll back all saves.

2. If the user will approve the group later, roll back the changes and redo them when approved.

3. When using RUNRS or Automatic Billing, commit the saves, then write out CIS records.

These options do not include saving interval data stored in the Oracle Utilities Data Repository.

Postponed Saves
To support user approval, some of the data to be saved is stored in the report data structure (the
in-memory copy of the report). Data stored there includes:

• Relational Database records

• Billing Determinants

• CIS records.

No other types of saved data are stored for user approval. All other data must be committed after
a run or group of runs.

Note: When the SAVE TO TABLE statement runs, records are usually written
- temporarily - to the relational database to verify the correctness of the record.
See the configuration parameter NO_TEMP_SAVE for the exception.

Note that interval data, XML data, and financial charge updates stored in the Oracle Utilities Data
Repository are not exempt from the relational database commits. To save them (do a commit), all
other database changes will also be committed. This contradicts the requirement for user approval
of saves.

Two Phase Commit
The solution is:

1. All billing modes have additional approval choices:

a. Automatically save/approve group of related pages if there are no errors

b. Automatically save/approve each page if there are no errors.

Either of these options will approve the bill and commit all saves if there are no errors.
How Rate Forms are Processed 3-5

Saving Data from a Rate Schedule
3. If the rate schedule(s) are expected to save/delete interval data in the relational database, use
the LISTUPDATE function, or possibly modify financial data that the user will want to
approve, the user must:

a. Run the bill with Enable user approve/reject of saves

b. If there are no errors, approve the bill. The bill will be rerun (in the same billing mode)
with Automatic Approval. This second run will generate the same results, and save all the
data.
3-6 Rules Language User’s Guide

Chapter 4
Identifiers, Constants, and Expressions

This chapter describes in detail the elements that you use when composing Rules Language
statements, including:

• Identifiers

• Constants

• Expressions

Specific information concerning the types of statements and function available with the Rules
Language can be found in the Oracle Utilities Rules Language Reference Guide.
Identifiers, Constants, and Expressions 4-1

Identifiers
Identifiers
Identifiers are variables used in Rules Language statements. They are equivalent to variables in
other programming languages and algebra, but with some additional features specifically for
billing and rate analysis.

As in many programming languages, you can assign a value to an identifier by putting it on the left
side of an ASSIGNMENT Statement (Assignment Statement on page 2-2 in the Oracle Utilities
Rules Language Reference Guide). When you have assigned its value, you can use the identifier as an
argument in other statements. These are called simple identifiers.

Several types of identifiers are unique to the Rules Language. Each of these has its own application
and rules for use. For example, some identifiers have preassigned names that are automatically
recognized by Oracle Utilities Billing Component and Oracle Utilities Rate Management. When
you use those predefined identifiers as an argument in a statement, the programs automatically
load the correct value for the current account and bill period, or for the current rate form.

There are also classes of identifiers that have special status in the system; specifically, Revenue and
Bill Determinant identifiers. They are automatically eligible for reporting and saving.

The following sections contain detailed information about each of the special identifiers used in
the Rules Language, including:

• Revenue Identifiers

• Bill Determinant Identifiers

• Database Identifiers

• Interval Data Handles

• Time-of-Use Handles

• Factor Identifiers

• Override Identifiers

• Bill History Predefined Identifiers

• Other Predefined Identifiers

• Assignable Predefined Identifiers

• Record Identifiers (stem.component)

• Rate Schedule Environment Identifiers

• Report Options Identifiers

• Array Identifiers

Note: The maximum character length for any type of identifier is 259 characters. Attempting to
create or assign values with character lengths in excess of 259 characters will result in an error.
4-2 Rules Language User’s Guide

Identifiers
Indirect Identifiers
You can use “indirection” to reference an identifier. An “at” sign (@) before an identifier tells the
program to reference the identifier whose name is the value of this identifier. For example:

Y = 1;

and

X = "Y";
@X = 1;

both set Y to 1.

Indirection is used in FOR EACH loops.

For example:

FOR EACH FCTCODE IN SET "KWH_CHARGE", "KW_CHARGE"
FULL_FCT_CODE = RS_OPCO_CODE + "_" + RS_JURIS_CODE + "_" + FCTCODE;
@FCTCODE = FACTOR[FULL_FCT_CODE].VAL;
END FOR;

This assigns values to the KWH_CHARGE and KW_CHARGE identifiers, based on the current
rate schedule.

Note that the values for Billing Determinants are retrieved from the database before a rate schedule
is run. Usually only the determinants used in the rate schedule are retrieved, so if you reference a
determinant only through indirection it will not be loaded. To load all determinants for each
account, check Retrieve all Account Determinants on the Billing tab in CIS Billing Options. See
the Oracle Utilities Billing Component User’s Guide for more information about setting CIS billing
options.

It is an error to reference a nonexistent identifier through indirection. However, there is one
exception: if the reference is alone on the right side of an assignment statement, the left side will
remain unassigned.

If a nonexistent identifier is assigned a value through indirection, the identifier will be created.

Multiple Indirect Identifiers
You can use multiple @ signs to do several levels of indirection simultaneously. (However, it may
be an error, if intermediate identifiers do not exist or have no value.) You can use multiple
indirection to iterate through an array of saved names. For example:

/* This part is inside a loop */
/* Get a common name for processing a cut */
SAVE_NAME = BUS_LOCATION + "_" + HNDL.CHANNEL;
@SAVE_NAME = HNDL;
/* Process using @SAVE_NAME */
...
/* Save the SAVE_NAME */
I = I + 1;
X = "ID_" + I;
@X = SAVE_NAME;
...
/* Iterate through the saved handles to get the grand total */
FOR EACH J IN NUMBER I
X = "ID_" + J;
/* @X is the SAVE_NAME */
/* @@X is the handle */
TOTAL = TOTAL + INTDVALUE(@@X, "TOTAL");
END FOR;
Identifiers, Constants, and Expressions 4-3

Identifiers
A Note About Data Loading
The initial value of an identifier is 0 (zero), or “” in the case of a string (two double quotes
together indicate a blank string value). If an identifier has not been assigned a value or is NULL
and it is used in an expression, the expression uses the value zero or “”, depending on the other
type in the expression.

Revenue Identifiers
Revenue identifiers in the Oracle Utilities Rules Language are assigned to an account’s charges for
the bill period being processed. For example, you might assign the customer charge to the revenue
identifier ‘$CUST_CHARGE’, the demand charge to ‘$DEMAND_CHARGE’, and a minimum
charge to ‘$MIN_CHARGE’. The values assigned to Revenue identifiers are automatically printed
in the bill reports, if the Billing Expert Print Detail Option is set to “Normal” or “All”; see the
Oracle Utilities Billing Component User's Guide. There are two ways to create a revenue identifier:

• When you introduce the identifier in your rate form using an ASSIGNMENT Statement, use
a dollar-sign ($) as its initial character. For example, $CUST_CHARGE = 5.00; This
approach has the added value of making revenue identifiers “stand out” in the rate form
when you or other users read it.

• Use a simple identifier in the ASSIGNMENT Statement. Then apply a REVENUE
Statement (see Revenue Statement on page 5-10 in the Oracle Utilities Rules Language Reference
Guide) to it. For example:

BILL_KW = MAX(5,KW);
REVENUE BILL_KW “Demand Charge”;

Using the REVENUE Statement allows you to add a descriptive label to appear in reports (in
the first example, the charge would be labelled $CUST_CHARGE; in the second, Demand
Charge). This can also be done using the LABEL Statement (page 5-6 in the Oracle Utilities
Rules Language Reference Guide).

Oracle Utilities Billing Component bill reports automatically display the account’s values for any
revenue identifiers included in the rate form (this section appears at the bottom of the report).
The revenue identifiers are listed in the report in the same order as in the rate form. This is
important to remember when writing a rate form. If you wish the report to display the identifiers
in a different order than they appear in the rate form, you can specify that order in a rider to the
rate form. For instance, you could create a standard “revenue” rider that lists all of the revenue
identifiers used by your utility, in the order that you want for the bill reports. You would then
include that rider in all rate schedules via an INCLUDE Statement (see Include Statement on
page 3-23 in the Oracle Utilities Rules Language Reference Guide).

$EFFECTIVE_REVENUE and the Bill Total
There must be one revenue identifier in a rate form that represents the total bill for the account.
The predefined identifier $EFFECTIVE_REVENUE is included for this purpose. The system
recognizes that the value assigned to this identifier is the account's bill total, and automatically
prints the value in the account’s bill report, no matter what Oracle Utilities Billing Component
print detail option is in effect. If you prefer to use another identifier to represent the bill total, you
must specify it to the system using the TOTAL keyword in a REVENUE Statement
(see Revenue Statement on page 5-10 in the Oracle Utilities Rules Language Reference Guide). You
must specify a TOTAL clause in every rate schedule for which you want an identifier other than
$EFFECTIVE_REVENUE for the bill total.
4-4 Rules Language User’s Guide

Identifiers
Bill Determinant Identifiers
Bill determinants (also referred to as “billing determinants” or simply “determinants”) are
measures of an account’s energy consumption for the bill period, and other values that are used to
compute charges. Bill determinant values are assigned to bill determinant identifiers.

Bill determinant values are stored in the Bill History Table, the Bill History Value Table, and the
Meter Value Table. The Bill History Table stores bill determinants that are used for the majority of
your customers. The Bill History Value Table stores bill determinants used for a minority of
customers (this is done to optimize system performance). The Meter Value Table stores bill
determinant values for billing entities other than accounts; e.g., channels, channel groups, or (at
some installations) CIS accounts.

Note: When used in a rate form, it is an error to assign anything but a number
(float) to a bill determinant identifier.

Bill determinants have their own set of identifiers, which your utility defines in the
BILLDETERMINANT Lookup Table. When these identifiers are defined, you can take
advantage of their special properties in the following ways:

• You can calculate a bill determinant value in the rate form (such as from interval data) and
assign the results to one of the recognized bill determinant identifiers. You can then use
SAVE statements to write that value to the Data Repository (the system automatically puts it
in the appropriate table), and to a transaction record for your CIS.

• You can use a bill determinant identifier to get information from the database for processing
in the rate form. If you use a bill determinant identifier that is stored in the Bill History Table
or Bill History Value Table as an argument in a statement, the billing program automatically
gives it the value for the current account for the current bill period. (You can also use any of
the Historical Data functions to get bill determinant values for historical periods, and the
Meter Value functions to get values from the Meter Value Table. See the Oracle Utilities Rules
Language Reference Manual.)

Note: Bill determinant values for periods before the current bill period are referred to in this
manual as “historical determinants.”

Database Identifiers
A Database identifier is used to retrieve a value from a specified field in a specified table in the
Data Repository. You cannot assign values to Database identifiers; you can only use them in
comparisons, or on the right side of an ASSIGNMENT Statement. The formats for database
identifiers are:

table[key].column

and

table.column

TABLE is the name of the desired table in the Oracle Utilities Data Repository; COLUMN is the
name of the desired column in that table. KEY is a string constant or identifier that specifies the
key of the desired row in the table. The returned value is the contents of the column for the
specified row.

The second format (without the key) is only for application to the ACCOUNT and CUSTOMER
tables, because the programs automatically assume the key for the account or customer whose bill
is currently being processed.

Note: The Rules Language Elements Editor displays only some of the
Table.Columns for the Account and Customer tables when you select
‘Database Identifiers’, because those are used most often. However, you can
apply this technique to any tables and columns in the database.
Identifiers, Constants, and Expressions 4-5

Identifiers
Appendix A: Oracle Utilities Data Repository Database Schema in the Oracle Utilities Energy
Information Platform Configuration Guide provides a diagram of the entire Oracle Utilities Data
Repository. Table names are denoted in all caps, and keys are underlined.

Note: If the key consists of multiple components, you must create a text string with each
component separated by a comma, and assign the string to an identifier. You can then use the
identifier as the key. See String Expressions on page 4-24 for more information. For example, to
store the UOM for a particular channel in the Channel History Table, do the following:

CHHIST_ID = "1701,1,01/01/1997 02:00:00"
CH_UOM = CHANNELHISTORY[CHHIST_ID].UOMCODE

The following example uses database identifiers for a column in the Account Table. In this case,
the key is not required. If you want to base a portion of a rate on the account’s SIC, you could use
the database identifier as follows:

IF ACCOUNT.SIC = "7900"
THEN INCLUDE "7900_RIDER";

ELSE
THEN INCLUDE "OTHER_RIDER";

END IF;

You can use Database identifiers as follows to determine whether a field in the database has a
value (again, the second approach works only for the ACCOUNT or CUSTOMER tables):

table[key].EXISTS

table.EXISTS

If the database has a value in the specified field, the identifier gets a value of 1: if not, 0.

For example, to process the account in a certain way if it has a value in the Meter Value Table, you
could use the following two statements to set this up (in the example below, the dots [....] are
placeholders to indicate that other statements would follow. Do not use the dots in the rate form).

mv_id = account.accountid + "," + readdate + "," + "kwh," + "1701,1";
if (meter value[mv_id].exists) then
....
/* process meter value record*/

You can also use the HASVALUE function (see HASVALUE Function on page 13-11 in the
Oracle Utilities Rules Language Reference Guide) to accomplish the same thing.

Note: For non-customer analysis, such as bill frequency revenue, all database
identifiers with default keys have value 0 or, if strings, value "", and the
HASVALUE function always returns zero for them.

Interval Data Handles
An interval data handle is a convention you use to recognize a reference to interval data. If the
right side of the statement is a constant (‘recorder,channel’), function, or expression that loads or
computes an interval data cut, it is recommended that you assign the result to an “interval data
handle.” You could use the suffix _HNDL or the prefix CUT_; for example, KWH_HNDL,
KVAR_HNDL, CUT_ R1234. This convention has no meaning to the applications, but Oracle
Utilities strongly recommends that you use a consistent approach to identify interval data
references. When you have assigned data to the handle, you can use the handle as an argument in
another statement or function.

Time-of-Use Handles
As with the Interval Data Handles, if the result is a time-of-use cut (e.g., is the result of the
INTDCREATETOUPERIOD Function), it’s recommended that you use an easily recognized
identifier, such as TOU_HNDL, as a reference to a time-of-use cut.
4-6 Rules Language User’s Guide

Identifiers
Factor Identifiers
Factor identifiers are database identifiers that enable you to get a specific and useful value: the
value for the factor that was in effect at a given time. The actual value returned is based on the
PRORATEMETHOD value (Prorate flag) in effect on the Effective Date, as follows:

• If the Prorate flag is NULL or 'N', the value in effect on the Bill Stop Date is used.

• If the Prorate flag is 'E', the value in effect on the Effective Date (or date in the factor code)
is used.

• If the Prorate flag is 'Y', the factor value will be prorated based on the number of days in the
billing period and the effective dates of the values.

The prorate period can be modified using the FACTOR_START_DATE and
FACTOR_STOP_DATE identifiers. If they are set and the Prorate flag is not 'E', the value is
either retrieved for the FACTOR_STOP_DATE ('N' or NULL), or is prorated between the two
dates ('Y').

The Factor identifier formats are:

FACTOR[“opcocode,juriscode,factorcode”].VALUE

FACTOR[“factorcode”].VALUE

FACTOR[identifier].VALUE

Where:

• opcocode,juriscode,factorcode is the record key for the desired factor in the Factor Table. If this is a
global factor (without operating company or jurisdiction) the code value must be
“,,factorcode”. This full-key format is required only if the operating company and jurisdiction
for the desired factor are different from that for the current rate form, or if they are or null.

Note: You can also use the ACCOUNTFACTOR function to determine
whether a factor value was effect for the account on the last day of an historic
bill period, as well as the current. The HASVALUE function can also be used
with a factor to determine if it has a value.

• factorcode can be specified as defined in the Factor Table, if the desired factor belongs to the
same operating company and jurisdiction as the rate form. For example,
FACTOR(“STATETAX”).VALUE would return the value for the state tax that was in effect
on the account’s bill stop date. In addition, a specific effective date for the factor value may be
specified as "...factorcode:<date>" where <date> is a date value in either of the usual date
formats. When a date is supplied it is used as the effective date in retrieving the factor.

Note: Because the factor codes have a data type of varchar (which means that
they are text strings), you must enclose them in double quotes. You can pick a
factor code by opening the Rules Language Elements Editor, then selecting
Factor Codes under Element Types.

• identifier can be used if you’ve assigned the factor code or factor key to an identifier earlier in
the rate form. This is useful when building a factor code on the fly based on account
information. For example

FACTOR_NAME = “KWH_CHARGE”

$KWH_CHARGE = FACTOR[FACTOR_NAME].VALUE

In this example, the first line assigns the identifier ‘FACTOR_NAME’ to
“KWH_CHARGE”. The second line assigns the revenue identifier ‘$KWH_CHARGE’ to
the “KWH_CHARGE” value in the Factor Value Table.
Identifiers, Constants, and Expressions 4-7

Identifiers
Override Identifiers
Overrides keep track of special events that occur at the account level, such as interruptions,
curtailments, or special services.

Override identifiers are a special type of database identifier. They enable you to get values stored
in the Override History Table (ACCTOVERRIDEHIST). There are two override identifiers. One
retrieves the override’s float value (VALUE), and the other retrieves its string value (STRVAL).
“VALUE” is a number that represents the override’s magnitude, and is used when creating an
override mask (see the INTDCREATEOVERRIDEDAYMASK Function on page 9-16 in the
Oracle Utilities Rules Language Reference Guide). “STRVAL” is utility specific: it can be a note or a
qualifier. The override whose values are returned when you use one of these identifiers in a rate
form is the most recent entry in the Override History Table (ACCTOVERRIDEHISTORY) that
belongs to the current account, with the specified override code, and that overlaps the bill stop
date. If there is no such override record in the Override History Table, VALUE and STRVAL are
both set to NULL. This can be changed so that they are set to 0 and "" respectively, using the
configuration file keyword OVERRIDE_NULL_VAL_IS_ZERO (see Chapter 2:
Configuration Files in the Oracle Utilities Energy Information Platform Configuration Guide).

The formats for Override identifiers are:

OVERRIDE["override_code"].VALUE

OVERRIDE["account_id:override_code"].VALUE

OVERRIDE[identifier].VALUE

OVERRIDE["override_code"].STRVAL

OVERRIDE["account_id:override_code"].STRVAL

OVERRIDE[identifier].STRVAL

Where:

• override_code is the override’s code, as defined in the Override Lookup Table. For example,
OVERRIDE(“INTERRUPT”).VALUE would return the value to be used when creating an
interval data mask for the INTERRUPT override.

Note: Because the override codes have a data type of varchar (which means
that they are text strings), you must enclose them in double quotes. You can
pick an override code by opening the Rules Language Elements Editor and
selecting Override Codes under Element Types.

• account_id can be used if you’ve assigned the override code to one account in the database but
wish to reference that override for a different account. This allows you to set up “global”
override codes associated to a default account and reference them when processing any
account.

• identifier can be used if you’ve assigned the override_code (or the combination of an
account_id and override_code) to an identifier earlier in the rate form. This is used in
building an override code on the fly based on account information. For example:

OVERRIDE_NAME = “INTERRUPT_CHARGE”

INTERRUPTION_CHARGE = OVERRIDE[OVERRIDE_NAME].VALUE

In the example, the first line assigns the identifier ‘OVERRIDE_NAME’ to
“INTERRUPT_CHARGE”. The second line assigns the identifier
‘INTERRUPTION_CHARGE’ to the “INTERRUPT_CHARGE” value in the Override
History Table.
4-8 Rules Language User’s Guide

Identifiers
Overrides Applied to Channels, Channel Groups
Overrides can keep track of special events that occur at levels other than the account level, such as
a meter level; for example, interruptions, curtailments, or special services.

These override records are stored in the ACCTNAMEOVERRIDEHIST Table. You can get
these values using the identifier format:

OVERRIDE[“override_code,name”].VALUE

OVERRIDE[“override_code,name”].STRVAL

Where:

• override_code is the override’s code, as defined in the Override Lookup Table.

• name is the name of the channel, channel group, or CIS account specified in the Name column
in the ACCTNAMEOVVERIDEHIST Table.

Bill History Predefined Identifiers
Bill History Predefined identifiers are used on the right side of ASSIGNMENT statements, or in
any other statement or function, and contain values from the Bill History Table for the current
account for the current bill period. The five predefined Bill History identifiers are:

To get historical values for any of these identifiers except NUMDAYS, apply the HISTVALUE
function (see HISTVALUE Function on page 13-51 in the Oracle Utilities Rules Language Reference
Guide) to them.

About Other Values from the Bill History or Bill History Value Tables: To get non-bill
determinant values from the Bill History Table or the Bill History Values Table, use the following
convention:

BILLHISTORY[key].column

Where:

• column is the column name in either the Bill History Table or the Bill History Value Table

• key is the record key for the desired row in the desired table. You supply a key only when you
want to get a value for an account other than the one whose bill is currently being computed.

Identifier Description

BILL_PERIOD The first day in the bill month.

BILL_START The first day (with time) of the account bill period.

BILL_STOP The last day (with time) of the account bill period.

READ_DATE The READDATE in the Bill History record. If Null, defaults to
BILL_STOP.

NUMDAYS The number of days in the bill period (BILL_STOP - BILL_START,
rounded to the nearest day).
Identifiers, Constants, and Expressions 4-9

Identifiers
Other Predefined Identifiers
The following identifiers are automatically assigned the appropriate values by the analysis
programs. You can use these values on the right side of an ASSIGNMENT Statement, and in any
other statement type or function.

Identifier Description

AUXILIARY_DEMAND Set as a result of the MAXKW function to indicate
which kW was chosen.

CURRENT_DATE The current system (i.e. today’s) date.

RATE_CODE For Oracle Utilities Billing Component, the link to
the rate schedule that the account is on. For Oracle
Utilities Rate Management, the link to the rate
schedule that the account is on, unless redefined by
Interschedule Mapping (see the Oracle Utilities Rate
Management User’s Guide).

RATE_SCHEDULE_CODE The code of the rate schedule being executed.

REPORT_GUID The Global Unique ID (GUID) of all Rules
Language Reports (Report Type: LSRate) and Billing
Component billing processes (Report Type: PLBX)
executed via the Report Framework. This includes
Automatic Billing, Approval Required Billing,
Current/Final Bill, and Bill Correction when
executed from the web user interface.

RS_EFFECTIVE_START In billing applications, this is either the
BILL_START or the rate schedule’s effective start
(as defined in the Rate Code History Table for the
account), whichever is later. In rate analysis
applications, this is the same as BILL_START.

RS_EFFECTIVE_STOP In billing applications, this is either the BILL_STOP
or the rate schedule's effective stop (as defined in the
Rate Code History Table for the account), whichever
is earlier. In rate analysis applications, this is the
same as BILL_STOP.

RS_JURIS_CODE The rate schedule’s (not rider’s) jurisdiction code.

RS_OPCO_CODE The rate schedule’s (not rider’s) operating company
code.
4-10 Rules Language User’s Guide

Identifiers
Assignable Predefined Identifiers
The system automatically assigns default values to the following identifiers. However, you can
override these defaults by supplying a different value for them using an ASSIGNMENT
Statement. Each of these may appear only once on the left of an ASSIGNMENT Statement in a
rate schedule, and must be assigned a constant. The value is assigned at compile time, and may be
used before analysis begins.

Identifier Description

BILL_PERIOD_SELECT Determines how a season is assigned to a bill period.
Its default value of 0 means the system checks the
BILL_STOP date against the season dates. If set to
1, the system uses the BILL_START date. If set to 2,
the system uses the BILL_PERIOD (bill month)
date. If set to 3, the system uses the Scheduled Read
Date. If set to 4, the system uses the Governing
Date. For example, to specify to use the season
period that contains the start date of the bill period,
put the following ASSIGNMENT Statement in your
schedule:
BILL_PERIOD_SELECT = 1;

BILL_TYPE This identifier can have the following values: TRIAL,
CANCEL/REBILL, ADJUSTMENT, CANCEL,
REBILL, CURRENT, or FINAL. This value is set
by the system when the account's bill is processed. It
is evaluated by the Rules Language (in the required
“Cancel” rider) to determine what transaction
records the program writes for the bill. See Cancel/
Rebill Rider on page 1-8 for more information.

HOURS_PER_MONTH The default value is 730. To apply a different value,
use an ASSIGNMENT Statement. Specifically, set
HOURS_PER_MONTH equal to either a desired
constant value, or to the results of the
BILLINGHOURS or MONTHHOURS functions
(see BILLINGHOURS Function on page 13-21
and MONTHHOURS Function on page 13-35,
respectively, in the Oracle Utilities Rules Language
Reference Guide). For example, to specify the actual
number of hours in the current billing period for the
account, include the following ASSIGNMENT
Statement in your schedule:
HOURS_PER_MONTH = BILLINGHOURS();

INTD_ERROR_STOP If 1, stop on interval data error; if 0, don’t stop. If
you don’t specify a value for INTD_ERROR_STOP
in the schedule, the program uses the default, which
is the setting specified by Tools-
›Options-›Error Handling. See the Data Manager
User’s Guide for information about Options.

REBILL_REASON The Rebill Reason Code for the selected Rebill
Reason when processing CANCEL/REBILL or
REBILL bill corrections.
Identifiers, Constants, and Expressions 4-11

Identifiers
REBILL_REASON_NAME The Rebill Reason Name for the selected Rebill
Reason when processing CANCEL/REBILL or
REBILL bill corrections.

SEASON_SCHEDULE_NAME The name of the season schedule to use when
determining seasons. The default is the value
specified by Tools-›Options-›Rate Analysis. (See
the Data Manager User’s Guide for information about
Options.)

Identifier Description
4-12 Rules Language User’s Guide

Identifiers
Reserved Identifiers
Reserved identifiers are identifiers that have a specific use, and cannot be used for any other
purpose. These identifiers are used to trigger specific operations or functions within the rate
schedule in which they appear.

Identifier Description

LS_SAVE_PROFILE_FILENAME Specifies the path and file name of a text
file that contains the Rules Language
Profile of the rate schedule in which this
identifier appears. See Rules Language
Profiling on page 14-2 in the Oracle Utilities
Energy Information Platform Configuration
Guide for more information about using
this identifier.

NOTE: This identifier should only be used
when troubleshooting Rules Language
performance issues or other problems, as
creating the code profile will have a
negative impact on performance.

COM_ERROR_STOP Specifies error handling behavior in the
event of an error in a COM method
invoked by the Rules Language. Available
settings include:
0 - Use the STOP_ON_COM_ERROR
configuration parameter. See
LODESTAR.CFG on page 2-2 in the
Oracle Utilities Energy Information Platform
Configuration Guide for more information
about this parameter.
1 - Ignore the error and set value of
LASTCOMERROR identifier.
2 - Stop Rules Language processing.

LASTCOMERROR Error code for the most recent COM error.
Automatically populated when
COM_ERROR_STOP is set to 1, or when
the STOP_ON_COM_ERROR
configuration parameter is not present in
the LODESTAR.CFG file. Can be used
with the IF THEN statement to perform
specific processing in the event of a COM
error.

LASTCOMERRORTEXT Error description for the most recent
COM error. Automatically populated when
the LASTCOMERROR identifier is
populated.
Identifiers, Constants, and Expressions 4-13

Identifiers
Record Identifiers (stem.component)
Some identifiers and functions return a record containing a number of values, rather than a single
value. For example, when you apply one of the INTDLOADxxx functions (see Chapter 6: Rules
Language Functions Overview) to load an interval data cut, the analysis programs automatically
calculate summary values about the cut, such as the total energy in the cut or the average of all
non-missing interval values in the cut. When you apply the FOR EACH x in LIST Statement (see
For Each x In List Statement on page 3-10 in the Oracle Utilities Rules Language Reference Guide),
the program gets the entire record from the Data Repository Table for each item in the list.

In all cases, the program stores these records in memory while the rate form processes. That
enables you can report or apply calculations to any of the individual values in the temporary
record. You specify these values using the following identifier convention:

stem.component

Where:

• stem is the name of the record. You assigned this name in the function or statement that
loaded or created the record. For example, in the INTDLOAD function (see INTDLOAD
Functions on page 9-29 in the Oracle Utilities Rules Language Reference Guide), it is the identifier
you assigned on the left side of the equal sign in the ASSIGNMENT Statement. In the FOR
EACH x statements, it is the identifier that you supplied for the x.

• component is the name of the field in the temporary record. If the temporary record is a row
from a Data Repository (as in the FOR EACH x statements), it is the name of the column in
the database. If the record is computed (as in the INTDLOAD functions), it is an assigned
name. To find column names, select Browse-›Database Schema from the Data Manager
File Menu. The assigned names are listed in the description of the INTDLOAD function (see
INTDLOAD Functions on page 9-29 in the Oracle Utilities Rules Language Reference Guide).

For example, the following statements would list the total energy from an interval data cut (based
on recorder,channel ‘1700,1’) on a Billing Report:

INT_HNDL = INTDLOAD(‘1700,1’);
TOTAL_ENERGY = INT_NHDL.ENERGY;
LABEL TOTAL_ENERGY “Total Energy”;

Saving Database Records
You can also use the stem.component convention to save values to the Data Repository tables.
The following example illustrates use of the stem.component convention to save values to the
Meter Value Table (specifically, the BILLDETERMCODE and VAL columns in the Meter Value
Table). The energy value that the system computed for the interval data cut referred to by the
handle INT_HNDL will be stored in the VAL column, and the bill determinant code “1” will be
stored in the BILLDETERMCODE column:

/* Save each kWh to the Meter Value record */
MV.VAL = INT_HNDL.ENERGY:
MV.BILLDETERMCODE = "1";
SAVE MV TO TABLE METERVALUE;

Assigning One Stem to Another
You can also assign one stem and its corresponding components to another stem. For example,
suppose you had the following stem and components identified in a rate schedule:

BH.VALUE1 = “VAL1”;
BH.VALUE2 = “VAL2”;

To assign this stem and its components to another stem, you simply assign the old stem to the new
stem as follows:

AH = BH;
4-14 Rules Language User’s Guide

Identifiers
The “AH” stem would now include the “VALUE1” and “VALUE2” components, along with any
other components assigned to it.

Writing Temporary Values to Interval Data Handles
You can also use the stem.component convention to write temporary values to an interval data
handle in memory. In this case the “stem” is the handle (identifier) assigned to the handle earlier in
the rate form, and the “component” is one of the following:

For example, to set the descriptor for an interval data handle (‘SCALED_HNDL’) to “Hourly
KWH”, you could do the following:

KWH_HNDL = INTDLOADUOM("01");
SCALED_HNDL = INTDSCALE(KWH_HNDL,"HOUR","TOTAL");
SCALED_HNDL.DESCRIPTOR = "HOURLY KWH";
SAVE SCALED_HNDL TO CHANNEL '1701,1';

Note: if you want to save the values to the database, you must apply a SAVE
Statement (see Save Statements on page 6-3 in the Oracle Utilities Rules
Language Reference Guide).

Component Description

RECORDER Sets the recorder ID in the handle

CHANNEL Sets the channel number in the handle

DESCRIPTOR Sets the 80-character description in the handle

UOM Sets the unit-of-measure code for the handle

STATUSCODE Sets the status code of each non-missing interval to the specified
value.
Identifiers, Constants, and Expressions 4-15

Identifiers
Rate Schedule Environment Identifiers
Many billing options affect the bill calculation before a rate schedule is used. For example, the
Effective Date options help determine which rate schedule to use, as well as how many rate
schedules to run. The Check options (see Defining Default Billing Options in the Oracle Utilities
Billing Component User’s Guide) help determine whether to even attempt to bill an account, long
before their account's rate schedule is loaded.

This section addresses the options that affect bill calculation as the rate schedule is loaded and after
the rate schedule is loaded.

The code that runs rate schedules is called the Rate Schedule Environment. Its parameters are
determined by settings in the configuration file (see Chapter 2: Configuration Files in the Oracle
Utilities Energy Information Platform Configuration Guide), user and global options, and by command
line parameters and user selections set before running the rate schedule. Some of these parameters
can be accessed and set from within the rate schedule itself (and its included riders and contracts).
Note that these only apply if the rate schedule is loaded and run; they do not apply to actions
taken before the rate schedule is loaded.

Using LSRSENV Identifiers
To access a parameter, use an identifier of the form LSRSENV.attribute. All such identifiers can
be “read,” but only some can be assigned. When one of these identifiers is read, the actual
parameter value is retrieved and stored in the identifier. When one is set, its value is set first, then
the corresponding parameter is set.

To assign an integer to an LSRSENV identifier, assign 1 to turn it on. Assign 0 to turn if off. Any
other value is an error. For example, to turn on the ALLOWINTDREASSIGN parameter:

LSRSENV.ALLOWINTDREASSIGN = 1

Available LSRSENV Identifiers
The available LSRSENV identifiers and their meanings are:

LSRSENV.ACCTNOTE_SAVE_ERRORS: If on, Saves are enabled, and if there is an error
while running the rate schedule, the error message will be saved in the ACCOUNTNOTE Table.
This applies to all billing modes. If this is not set on, the account note will be written according to
the billing rules for Automatic and Approval Required Billing. If this would be set on but an error
occurs before running the rate schedule (preventing the rate schedule from running), this setting
has no effect.

0 - Do not force saves of errors in ACCOUNTNOTE table.
1 - Force saves of errors in ACCOUNTNOTE table.

LSRSENV.ACCTNOTE_SAVE_WARNINGS: If on, Saves are enabled, and if there is a
warning while running the rate schedule, all such warning messages may be saved in the
ACCOUNTNOTE table. They will be saved if 1) there was also an error; 2) the billing mode is
Automatic Billing; or 3) one of the Automatic Commit save modes is selected. If this is not set on,
the account note will be written according to the billing rules for Automatic Billing. If this would
be set on but a warning occurs before running (preventing the rate schedule from running), this
setting has no effect.

0 - Do not force saves of warnings in ACCOUNTNOTE table.
1 - Force saves of warnings in ACCOUNTNOTE table.

LSRSENV.ALLOWINTDREASSIGN: Based on configuration file parameter
ALLOWINTDREASSIGN. Has an integer value. Can be set.

0 - Flag is off or not set.
1 - Flag is set on.
4-16 Rules Language User’s Guide

Identifiers
LSRSENV.CISFORMT_FILENAME: The string that this is set to will be used as the CIS
control (CISFORMT.TXT) file for the currently executing rate schedule. This setting overrides
any other settings for this file.

LSRSENV.COMMIT: Based on user selection or Save command line parameter. Has an integer
value. Cannot be set.

0 - No save or no auto commit.
1 - Database commit after run if all OK.

LSRSENV.DIRECT_WRITE_CIS: Based on configuration file parameter
DIRECT_WRITE_CIS. Has an integer value. Can be set.

0 - Flag is off or not set.
1 - Flag is set on.

LSRSENV.ESTIMATE: Default is on for Oracle Utilities Rate Management, off for Oracle
Utilities Billing Component. Has an integer value. Can be set.

0 - Do not estimate
1 - Estimate

LSRSENV.FACTOR_VALUE_NOTYPE: Enables the user to use a Factor identifier (i.e.
FACTOR[key].VALUE) without having to call the FACTORINEFFECT function to determine if
the factor exists, and thereby improving performance. If needed, the HASVALUE() function can
be used to test the return value. See Factor Identifiers on page 4-7 for more information about
using Factor identifiers.

0 - Not set
1 - FACTOR[key].VALUE identifiers will return a Null value if the
factor does not exist

LSRSENV.INIT_TYPE: Equals a constant that indicates the environment the analysis is
running in. Values are:

0 - Run from a command line executable
1 - Run from a client/server application
2 - Run from a web application
3 - Run as a COM object

LSRSENV.INVOICENAME: The string that this is set to will be used as the INVOICENAME
(from the Invoice Number table) for invoices generated by Oracle Utilities Billing Component
instead of the default specified in the LODESTAR.CFG file. See Invoice Numbering in
Chapter 4: Billing Rules and Definitions in the Oracle Utilities Billing Component Installation and
Configuration Guide, Volume 1 for more information about Invoice Numbering.

LSRSENV.LINE_NUMBER: Equals the line number of the statement it is in, in the compiled
rate schedule. Cannot be set.

LSRSENV.LISTVALUE_NOTYPE: If on and the LISTVALUE function retrieves no
elements, LISTVALUE returns a NULL value (when assigned to an identifier the HASVALUE
function will return zero). If off (default) and the LISTVALUE function retrieves no elements,
LISTVALUE returns an empty string. This applies to all billing modes.

0 - Return empty string if LISTVALUE function retrieve no elements.
1 - Return no value if LISTVALUE function retrieve no elements.

LSRSENV.MISSING_INDIRECT_ID_IS_NOTYPE: It is usually an error to reference (for
example, in an expression) an indirect identifier that does not exist. If this flag is on and an indirect
identifier does not exist, its return value will be set to "none". This enables it to be used in
expressions.

0 - Flag is off or not set.
1 - Flag is set on.
Identifiers, Constants, and Expressions 4-17

Identifiers
LSRSENV.NO_INTERVAL_DATA: Set to 1 for the Bill Frequency Revenue, Typical Bill, and
Crossing Point Oracle Utilities Rate Management Analyses, and if the Do Not Use Interval Data
option is set on the Check Options tab of the Default Billing Options dialog. Has an integer value.
Can be set.

0 - Interval data can be used
1 - Interval data cannot be used

LSRSENV.NO_TEMP_SAVE: Based on configuration file parameter NO_TEMP_SAVE. Set
to not try to save records temporarily. Only used if saves are off. Default is to try to save and
report errors. Has an integer value. Can be set.

0 - Try to save records even if save is not enabled.
1 - Do not try to save records if save is not enabled.

LSRSENV.OVERRIDE_NULL_VAL_IS_ZERO: Based on configuration file parameter
OVERRIDE_NULL_VAL_IS_ZERO. Has an integer value. Can be set.

0 - Flag is off or not set - Account OVERRIDE value of NULL stays NULL.
1 - Flag is set on - Account OVERRIDE value of NULL is set to zero.

LSRSENV.SAVE: Based on user selection or Save command line parameter. Has an integer
value. Cannot be set.

0 - No save allowed (RateExpert default)
1 - Saves enabled
4-18 Rules Language User’s Guide

Identifiers
Report Options Identifiers
Report Options are normally set by a user when running an analysis or creating a report. Report
Options Identifiers (LSRPTOPTS) allow some of these options to set within a rate form.

Using LSRPTOPTS Identifiers
To access a parameter, use an identifier of the form LSRPTOPTS.attribute. All such identifiers can
be read or assigned. When one of these is read the actual parameter value is retrieved and stored in
the identifier. When one is set, its value is set first, then the corresponding parameter is set.

To assign an integer to an LSRPTOPTS identifier, assign 1 to turn it on. Assign zero to turn if off.
Any other value will be an error. For example, to turn on the REPORTS_ONLY parameter:

LSRPTOPTS.REPORTS_ONLY = 1

Available LSRPTOPTS Identifiers
The available LSPRTOPTS identifiers and their meanings are:

LSRPTOPTS.TITLE: The string that this is set to will be used as the page title, replacing the
one automatically generated. If set to "" automatic generation will be re-enabled.

LSRPTOPTS.OPTIONAL_TITLE_1: The string that this is set to will be used as the first
optional title, under the page title. If set to “” there will be no optional title 1. This corresponds to
the Optional Title 1 in Report Options.

LSRPTOPTS.OPTIONAL_TITLE_2: The string that this is set to will be used as the second
optional title, under the page title. If set to “” there will be no optional title 2. This matches the
Optional Title 2 in Report Options.

LSRPTOPTS.OPTIONAL_TITLE_3: The string that this is set to will be used as the third
optional title, under the page title. If set to “” there will be no optional title 3. This corresponds to
the Optional Title 3 in Report Options.

LSRPTOPTS.BILLING_UNITS_LABEL: The string that this is set to will be used as the
Label for the Billing Units column in the Bill Calculation Results section of a bill report. If set to
blank “” there will be no Billing Units column in the report. Used only with billing analyses.

LSRPTOPTS.DISTRIBUTION_LABEL: The string that this is set to will be used as the
Label for the Distribution column in the Bill Calculation Results section of a bill report. If set to
blank “” there will be no Distribution column in the report. Used only with billing analyses.

LSRPTOPTS.CHARGE_RATE_LABEL: The string that this is set to will be used as the
Label for the Charge Rate column in the Bill Calculation Results section of a bill report. If set to
blank “” there will be no Charge Rate column in the report. Used only with billing analyses.

LSRPTOPTS.REVENUE_LABEL: The string that this is set to will be used as the Label for
the Revenue column in the Bill Calculation Results section of a bill report. If set to blank “”
Revenue will be label for revenue column in the report. Used only with billing analyses.

LSRPTOPTS.REPORTS_ONLY: If on then turns on SKIP_PAGE_1 and turns off the
display of everything except the title line and lines generated by using the REPORT statement.

0 - Display usual data.
1 - Display only the results of REPORT statements.

LSRPTOPTS.SKIP_PAGE_1: - If on, skips creating the first page on an analysis that contains
its input values.

0 - Display inputs as page 1.
1 - Do not display inputs as page 1.

LSRPTOPTS.WRITE_TO_FILE: - The generated report will be written to the file whose
name is the string that this is set to. This must include a fully qualified path and file name.
Identifiers, Constants, and Expressions 4-19

Identifiers
Array Identifiers
Array identifiers are used to store series of data elements of the same data type. For example, you
could create an array of integers, an array of characters, or an array of interval data references.
Array identifiers store single-dimension arrays only.

Using Array Identifiers
Array identifiers use the following format:

#<identifier>[<index>]

where:

• <identifier> is the name of the array identifier.

• <index> is the index for the array identifier.

Example:
#INTD_FILE[1] = INTDOPEN("bxayv6.lse");

Rules for Creating Array Identifiers
The rules for creating array identifiers are as follows:

• Array identifiers must begin with a pound sign(“#”)

• The array index must be between open and close brackets.

• The array index must evaluate to an integer type.

• The array index is 1-based.

• Valid index values are 1 to 2147483647 when setting an array element, although the upper
bound will probably be much smaller because of the memory needed. When retrieving an
array element, valid index values are 1 to the highest index value used when setting the array
elements.

• The only time an array index is not required is when clearing the whole array (through use of
the Clear Statement).

• Array identifiers should be released as soon as they are no longer needed in the rate schedule.
This frees memory and can improve performance.

• When running a rate schedule containing an array identifier using the Trial Calculation
function, the right hand pane does not show every value in the array, but shows the last
referenced value for that array identifier.

• When retrieving interval data handles from an array identifier, always use a different identifier
name than the one used when loading.

• When retrieving an array element, if the index is not an integer type or the index is out of
bounds, the user will get one of the appropriate run time errors, "Array index is not an
INTEGER type" or "Array index value is out of range". There is a Rate Schedule
Environment variable "LSRSENV.MISSING_ARRAY_ID_OR_INDEX_IS_NOTYPE"
that can be set so that instead of receiving the above error message a NULL value will be
returned instead. The ARRAYUPPERBOUND Function on page 13-3 of the Oracle
Utilities Rules Language Reference Guide can be used to return the upper bound of an array
identifier.

• If a rate schedule uses CLEAR on an element in an array, Clear frees up memory for that
element. Therefore, after CLEAR #my_array[93], HASVALUE(#my_array[93]) will return 0.
If a rate schedule uses CLEAR on the array variable, CLEAR frees all memory associated
with the array and allows that variable to be used again as an array or non-array variable.
4-20 Rules Language User’s Guide

Identifiers
• The data elements in arrays can have the following data types: "NONE", "FLOAT",
"STRING", "INTEGER", "DATE", "INTDATA HANDLE", "TOU HANDLE",
"TABLE VALUES" and "DATABASE VALUES".

• An uninitialized legal index element will have the type "NOTYPE" or "NONE" such that
HASVALUE(#my_array[X]) of uninitialized element X returns 0.

• It is a run-time error to use an identifier as an array identifier and a non-array identifier while
running a rate schedule without first using the CLEAR statement. For example, you cannot
use #ASD[3] = 3; and ASD = 1; without a CLEAR ASD[]; before the second assignment.
For another example, you cannot use ASD = 1; and #ASD[3] = 1; without a CLEAR ASD;
before the second assignment. The error message for the preceding error is "Can not use the
same identifier name to represent an array identifier and non-array identifier at the same
time."

Examples
// Create an array of integers
FOR EACH X IN NUMBER 10

#ASD[X] = X + 3;
#ASD[X +11] = X + 1;

END FOR;
Y = #ASD[1];
Z = #ASD[3];
CLEAR #ASD[];

// Create an array of Interval Data Handles
#INTD_FILE[1] = INTDOPEN("bxayv6.lse");
#INTD_FILE[2] = INTDOPEN("spring.lse");
#INTD_FILE[3] = INTDOPEN("fmayv154.lse");
WV_COUNT = INTDRECCOUNT(#INTD_FILE[2]);
FOR EACH I IN NUMBER WV_COUNT

#HNDL[1] = INTDREADFIRST(#INTD_FILE[1]);
#HNDL[2] = INTDREADFIRST(#INTD_FILE[2]);
HNDL3 = INTDREADFIRST(#INTD_FILE[3]);
CLEAR #HNDL[1];
CLEAR #HNDL[2];
CLEAR HNDL3;
IF I = 1
THEN

#HNDL[1] = INTDREADFIRST(#INTD_FILE[1]);
#HNDL[2] = INTDREADFIRST(#INTD_FILE[2]);
HNDL3 = INTDREADFIRST(#INTD_FILE[3]);

ELSE
#HNDL[1] = INTDREADNEXT(#INTD_FILE[1]);
#HNDL[2] = INTDREADNEXT(#INTD_FILE[2]);
HNDL3 = INTDREADNEXT(#INTD_FILE[3]);

END IF;
CURRENT_RECORDER3 = HNDL3.CUSTID;
CURRENT_RECORDER = #HNDL[2].CUSTID;
CURRENT_CHANNEL3 = HNDL3.CHANNEL;
CURRENT_CHANNEL = #HNDL[2].CHANNEL;

END FOR;
//Load 10k Interval Data Handles
FOR EACH REC IN LIST CHAN1_ALL

NUM_HNDLS = NUM_HNDLS + 1;
HNDL_NAME = REC.RECORDERID + ",1";
#HNDL[NUM_HNDLS] = INTDLOADDATES(HNDL_NAME , '05/01/1993 00:00:00'
, '05/31/1993 23:59:59');
$GET_FIRST_TOTAL = GET_FIRST_TOTAL + #HNDL [NUM_HNDLS]. TOTAL;

END FOR;

//Retrieve 10 Interval Data Handles
Identifiers, Constants, and Expressions 4-21

Identifiers
FOR EACH X IN NUMBER NUM_HNDLS
MYHNDL = #HNDL[X];
GET_TOTAL = GET_TOTAL + MYHNDL.TOTAL;

END FOR;
CLEAR HNDL, NUM_HNDLS,MYHNDL;
$EFFECTIVE_REVENUE = GET_TOTAL;

Indirect Array Identifiers
You can use “indirection” to reference an array identifier. Array identifiers have the following
syntax:

#<identifier>[<index>]

Indirect array identifiers will have a similar syntax, except that the identifier is replaced with an
indirect identifier:

#@<identifier>[<index>]

For example:

#Y[1] = 1;

and

X = "Y";
#@X[1] = 1;

will both set the first element of Y to 1.

For more information about indirect identifiers, see Indirect Identifiers on page 4-3.

You can also indirectly reference an array of stem.tail identifiers. You would use the following
stem.tail syntax to reference an array directly:

#<stem_identifier>[<index>].<tail>

You would reference the array indirectly using the normal array syntax used above:

#@<identifier>[<index>]

but the indirect identifier points to the <stem_identifier>.<tail>

For example:

#Y[1].A = 1;

and

X = "Y.A";
#@X[1] = 1;

will both set Y[1].A to 1.

For more information about stem.tail identifiers, see Record Identifiers (stem.component) on
page 4-14.
4-22 Rules Language User’s Guide

Constants
Constants
A constant is a value that doesn’t change. The Rules Language supports the following types of
constants:

• Numbers: Numbers can be represented as integers or decimal numbers. Values for charges
can begin with a dollar sign ($) for easier reading.

• Text Strings: A string constant is any set of characters (except a double quote) surrounded
by double quotes.

• Dates: Date are represented as either ‘mm/dd/yyyy’ or ‘yyyy/mm/dd’ (International
format). These are the only two date formats supported by the Rules Language. Date
constants can also include a time: ‘mm/dd/yyyy hh:mm:ss’. If you do not include a time,
midnight (00:00:00) is assumed. A date constant can be used as a function parameter, or in a
logical comparison.

All date to string conversions are converted into International format when read by the Rules
Language by default unless otherwise specified (using the DATETIMETOSTRING
Function).

• Recorder, channel: A specific recorder and channel are indicated by ‘recorder,channel’ (with
no space before or after the comma). The recorder is any combination of uppercase letters
and digits, and the channel is any integer (0-9). When the constant on the right side of the
equal sign is ‘recorder,channel’, the interval data for the current bill period is loaded and a
reference to it is assigned to the identifier. The identifier is then an “interval data identifier.”
(If data outside the current bill period is needed, use the INTDLOAD Function on page 9-
34 in the Oracle Utilities Rules Language Reference Guide.)

Note: You can use ‘recorder,channel’ in an expression in the same way you
would use an identifier that has been assigned to an interval data cut, as
described in Operator Rules in the next section.

Note: You can assign a channel number between 10 and 99 by using the
CHANNEL10 configuration file keyword (see Chapter 2: Configuration
Files in the Oracle Utilities Energy Information Platform Configuration Guide).
Identifiers, Constants, and Expressions 4-23

Expressions
Expressions
Expressions within statements describe an operation to be performed between variables and
constants (variable/variable, variable/constant, or constant/constant) The Rules Language
supports the following types of expressions:

• String Expressions

• Date Expressions

• Arithmetic Expressions

String Expressions
String expressions describe operations between strings. The only operator applicable to string
expressions is ‘+’ (plus), which tells the application to concatenate the right side of the ‘+’ to the
end of the left side. For example:

S1 = “This is ”;
S2 = S1 + “a ” + “test.”;

Then S2 contains “This is a test.”

The expression on the right side of the equal sign can include a string, number, date, or
‘recorder,channel’ identifier. Integer number conversion is used to convert numbers to strings
(floating point numbers are truncated). Date/times are converted to “mm/dd/yyyy”, with
“hh:mm:ss” appended if the time is not midnight. The string value of a ‘recorder,channel’ is
“recorder,channel”.

For example:

S1 = “Today’s date is ”;
S2 = CURRENT_DATE + “.”;
LABEL S1 + S2;

If today was January 1, 1999, the following line would appear in the report:

Today's date is 01/01/1999.

String expressions are often used to create names for items to be written to or retrieved from the
database. The following example of retrieves the factor value for the Energy Charge:

FACTOR_NAME = RS_OPCO_CODE + “,” + RS_JURIS_CODE + ",KWHCHG";
$ENERGY_CHG = KWH * FACTOR[FACTOR_NAME].VALUE;

If the operating company code was “GPCO” and the jurisdiction was “MN”, the identifier
FACTOR_NAME would contain “GPCO,MN,KWHCHG”. This is a global energy charge factor
for the operating company, jurisdiction GPCO, MN.

To include a double quote in a string, use two double quotes.

That is, the string:

"version=""1.0"""

would return the string:

version="1.0"
4-24 Rules Language User’s Guide

Expressions
Date Expressions
Date expressions describe operations performed on date identifiers. The two types of operations
that can be used with dates are addition and subtraction. A date identifier or constant must be on
the left side of the operator. The right side may be a number or a time constant. If a number, it
specifies a number of seconds (a date is stored as the number of seconds since January 1, 1970). If
it is a time constant, it must be in one of these forms:

Addition

Addition can only be used to add a number or constant to a date identifier or constant. For
example, to get the date for the day one week in the future from the current date, you could use
the following:

NEXT_WEEK_DATE = CURRENT_DATE + ‘7 DAYS’

Subtraction
Subtraction can be used between a date identifier and a number, a constant, or another date
identifier. For example, to get the date for the day 2 weeks before the current date, you could use
the following:

LAST_WEEK_DATE = CURRENT_DATE - ‘2 WEEKS’

Two dates can be subtracted—the result is the number of seconds between them. Dates can be
compared, but they cannot be added, multiplied, or divided together.

Time Constant Description

‘hh:mm:ss’ Hours, minutes, and seconds

‘hh:mm’ Hours and minutes

‘n DAYS’ n is a number specifying the number of days

‘n WEEKS’ n is a number specifying the number of weeks.
Identifiers, Constants, and Expressions 4-25

Expressions
Arithmetic Expressions
Arithmetic expressions describe mathematical operations between variables and constants. The
Rules Language supports the standard arithmetic expressions. The following are guidelines for
using operators, operation precedence, and operator rules.

Operators
You use the following operators to combine constants and identifiers into expressions:

Precedence
If you include more than one operator in an expression, the program evaluates the computations
according to the following hierarchy:

For example:

3 + 2 * 5 equals 13
3 + (2 * 5) also equals 13, but
(3 + 2) * 5 equals 25

Assignment Operators Description

= Assigns the value(s) on the right side of the equal sign to the
identifier on the left side.

=+ Positive assignment; used when a negative value is
unacceptable. Assigns the results of the expression on the
right side of the equal sign to the identifier on the left side,
unless the result is less than zero, in which case zero is used.

Arithmetic Operators Description

+ Addition

- Subtraction

* Multiplication

/ Division

Precedence Operator

1 ()

2 * (Multiplication),/ (Division)

3 + (Addition),- (Subtraction)
4-26 Rules Language User’s Guide

Expressions
Operator Rules
All the mathematical operators, as well as some functions, can have interval data identifiers,
determinant identifiers, simple identifiers, and numeric constants as arguments. The functions and
expressions will return an interval data cut or a determinant, as appropriate. A math operator can
have one of three data types on each side: interval data, determinant (possibly with historical data),
and scalar numbers. Scalar refers to a single value that completely specifies a quantity, such as a bill
determinant value (in contrast to interval data cuts, which consist of many values). The general
computation rules for arithmetic expressions are:

a. The operations should do what you expect; left operand value(s) are operated on by right
operand value(s). The following makes this explicit.

b. Division by zero equals zero. Missing data has value zero.

b. If the result is interval data, it has the same “structure” (start and stop date, IPH, number
of intervals, etc.) as the left operand. If the left operand is not interval data, the result has
the same “structure” as the right side interval data.

b. If the result is a determinant, it has the same “structure” (number of historical values) as
the left operand.

b. If a determinant has a current month value and at least one historical month value, it is
assumed to be a historical determinant. If it is missing a month in a historical operation
or function, the missing value is set to zero. If the determinant has only the current
month value and no historical data, the current month value is used throughout.

b. If “=+” is used, it applies to all values computed, including interval values and
determinant historical values.

Specific Computation Rules
The following table defines the operations for all possible combinations (the Result type is
determined by the Left and Right operand types).

Specific computation rules for these combinations are:

a. Each interval value is the corresponding left value operated on by the corresponding
right value (missing right values are assumed to be zero). Type ‘a’ computations can be
performed using the INTDBLOCKOP Function on page 9-4 and
INTDBLOCKOPNA Function on page 9-6 in the Oracle Utilities Rules Language
Reference Guide).

b. Each interval value is the corresponding left value operated on by the determinant’s
current month value. The right operand could also be the determinant’s historical value
(if present) that corresponds to the interval’s date and time.

Rule Result = Left Operand Right Operand

a) Interval Data Interval Data Interval Data

b) Interval Data Interval Data Determinant

c) Interval Data Interval Data Scalar

d) Interval Data Determinant Interval Data

e) Determinant Determinant Determinant

f) Determinant Determinant Scalar

g) Interval Data Scalar Interval Data

h) Scalar Scalar Determinant

i) Scalar Scalar Scalar
Identifiers, Constants, and Expressions 4-27

Expressions
b. Each interval value is the corresponding left value operated on by the scalar.

b. Each interval value is the determinant’s current month value operated on by the
corresponding right value. The left operand could also be the determinant’s historical
value (if present) that corresponds to the interval’s date and time.

b. Each result value (current month and historical values) is the corresponding left value
operated on by the corresponding right value, as determined by rule 3 above.

b. Each result value (current month and historical values) is the corresponding left value
operated on by the scalar.

b. Each interval value is the scalar operated on by the corresponding right value.

b. The result value is the scalar operated on by the determinant’s current month value.

b. The result value is the left scalar operated on by the right scalar.

Interval Data Mask Operator Rules
If the operation is between two interval data cuts (as in a) above) and the right one is a mask, the
following rules apply:

a. If the left cut is also a mask, the result is a mask and the math operations are:

b. If the left cut is a simple interval data cut, the result is a similar cut and the math
operations are:

Operation Rule

+ A union (“OR”) of the masks; the value is ‘1’ if either
corresponding value is ‘1’; otherwise it is ‘0’.

- The value is ‘1’ if the left value was ‘1’ and the right is ‘0’;
otherwise, it is ‘0’ (it removes “on” intervals in the right mask from
the left mask).

*,/ An “AND” of the masks; the value is ‘1’ if both corresponding
values are ‘1’; otherwise it is ‘0’.

Operation Rule

+,*,/ The value is the left value if right is ‘1’; otherwise it is ‘0’ (it leaves
only “on” intervals in the right mask in the cut).

- The value is the left value if right is ‘0’; otherwise it is ‘0’ (it
removes “on” intervals in the right mask from the cut).
4-28 Rules Language User’s Guide

Expressions
Computing Load Factor in Masked Cuts
The INTDVALUE “LF” (load factor) is computed as the total / number of non-9 status code
values / maximum. In a masked cut, the masked out intervals usually have a non-9 status code;
their zero value produces an incorrect load factor, where the load factor for only the masked on
values is to be computed. To correct this, you can use the Rules Language to compute the correct
load factor.

Assume that KWH_HNDL is an interval data reference, and we want to compute the load factor
for the intervals that were in either STANDBY or MAINTENANCE periods. This is done by:

/* Create mask for the STANDYBY and MAINTENANCE periods */
STBY_MASK = INTDCREATEOVERRIDEMASK(KWH_HNDL, "STANDBY", "MASK");
MAIN_MASK = INTDCREATEOVERRIDEMASK(KWH_HNDL, "MAINTENANCE", "MASK");
/* Create a mask of the union of the two periods */
BOTH_MASK = STBY_MASK + MAIN_MASK;
/* Get the KWH values in either one of these periods */
BOTH_HNDL = KWH_HNDL * BOTH_MASK;
/* Compute the load factor, using the non-zero count from the mask to
compute the average */
LF = (KWH_HNDL.TOTAL / BOTH_MASK.COUNT_NZ) / KWH_HNDL.ABS_MAXIMUM;

This example demonstrates using the mask count to compute the average for the intervals of
interest:

AVERAGE = KWH_HNDL.TOTAL / BOTH_MASK.COUNT_NZ.
Identifiers, Constants, and Expressions 4-29

Expressions
4-30 Rules Language User’s Guide

Chapter 5
Statements Overview

This chapter provides an overview of the statements available in the Oracle Utilities Rules
Language, including:

• General Statements

• Control Statements

• Revenue Computation Statements

• Report Statements

• Miscellaneous Statements

• Financial Management Statements

• WorkFlow Manager Statements

• XML Statements

Statements are the building blocks of rate forms. Some statement types are specifically for rate
computations and reporting, and they reflect the terms and concepts found in actual rate tariffs.
Others are less rigidly defined, providing additional flexibility to structure and calculate virtually
any type of rate, no matter how innovative or complex.

Note: When reading about and using statements, you may find it helpful to
keep in mind that a rate form tells the program how to calculate and report
charges for one account at a time. For example, when you specify a bill
determinant, the billing program automatically gets the value for the current bill
period for the account that's being billed (unless you tell it otherwise). The
analysis programs can report usage and trial revenue for one customer, a group
of customers, or a bill frequency table, but the schedule you create is the same,
regardless.
Statements Overview 5-1

General Statements
General Statements
General statements are used throughout rate forms in a number of different ways.

Note: Parenthetical page numbers refer to the Oracle Utilities Rules Language Reference Guide.

Assignment Statement (page 2-2)
Assigns a value to an identifier. The value can be a constant, the result of an arithmetic operation
on variables and constants, or the result of one of the Rules Language functions. Applications for
the ASSIGNMENT Statement include assigning a charge, loading interval data for the current
period, performing block operations on cuts, etc.

Comment Statement (page 2-5)
Annotates your rate form with explanations or reminders. They have no meaning to the program.

Control Statements
Control statements control the order and way in which rate forms are processed.

Abort Statement (page 3-2)
Used with IF-THEN-ELSE to stop processing an account's bill when a condition you specify is
met (or not met), and to issue an explanatory message on page 1 of the bill report.

Call Statement (page 3-3)
Used to dynamically execute one rate form while in another. Within a rate schedule, you can call
riders and contracts. Within a rider, you can call other riders. See Rate Form Types on page 1-5
for more information.

Done Statement (page 3-5)
Stops processing an account's bill (successfully) when a specified condition occurs.

For Each Statements (page 3-7)
Directs the program to repeat a set of statements for each item in a set of items. The set of
statements can be a list of items that was retrieved from a table in the Oracle Utilities Data
Repository according to a user-specified query, the overrides or factor values that applied to the
account during the bill period, a series of numbers, the weeks in a user-specified period, or a set of
unlike items that you specify in the statement. There are several different types of FOR EACH
statements.
5-2 Rules Language User’s Guide

General Statements
If-Then-Else Statement (page 3-21)
Directs the program to evaluate a condition and take action based on whether or not the condition
was met. You could use it to assign a discount or penalty if an account's value for kWh exceeded a
certain value.

Include Statement (page 3-23)
The INCLUDE Statement is used to execute one rate form while in another. Within a rate
schedule, you can include riders and contracts. You can include a rider within another rider. See
Rate Form Types on page 1-5 for more information.

Note: If it becomes necessary to include individual sections of a contract at
different points in the rate schedule, use the Section option in the INCLUDE
Statement.

Leave For Statement (page 3-25)
Directs the program to exit the nearest enclosing FOR EACH Statement.

Leave Rider Statement (page 3-25)
Directs the program to terminate an INCLUDEd or CALLed rider or contract.

Next For Statement (page 3-25)
Directs the program to skip the remaining statements in the enclosing FOR EACH Statement.

Novalue Statement (page 3-26)
Assigns a value to an identifier that would otherwise be null; for example, to supply a value when
an account's record field is empty.

Section Statement (page 3-27)
Defines a section in a contract.

Select Bill_Period Statement (page 3-28)
Makes it possible to specify different pricing options for different seasons within a single rate
form.

Select Expression Statement (page 3-31)
Makes it possible to specify different actions depending on the value of an identifier or expression.

Select Rate_Code Statement (page 3-33)
Makes it possible to specify different pricing options for a number of rate codes within a single
rate form.

Warn Statement (page 3-35)
Similar to ABORT, the WARN Statement is used with IF-THEN-ELSE to issue a warning
message in the bill report when a condition you specify is met (or not met). Unlike ABORT, it
does not stop processing. It calls the billing analyst's attention to a potential problem. Oracle
Utilities Billing Component displays up to 50 warning messages per report.

.
Statements Overview 5-3

Revenue Computation Statements
Revenue Computation Statements
Revenue Computation statements are used to compute revenue based on bill determinants, unit
charges, and other factors.

All Statement (page 4-2)
Assigns a unit price to a bill determinant, and reports the unit price, the number of units the
account consumed during the bill period, and the total charge for it.

Block Statements (page 4-4)
Defines the block units and unit charges for any type of block rate. It reports the total charge to
the account for the block rate, and (optionally) the account's usage and charges for each individual
block in the rate.

Unbilled and Ignore Statements (page 4-9)

UNBILLED
Reports the account’s usage for a bill determinant for which there is no charge. In some situations,
even though the determinant isn’t used to calculate the current bill, it’s still useful to report. The
UNBILLED Statement is typically applied to a determinant that was part of an IGNORE
Statement.

IGNORE
Excludes a charge from the account’s bill. It is typically used within an IF-THEN-ELSE Statement
(page 3-21) to ignore a charge under certain conditions, such as when a usage-based charge is less
than a set minimum charge.

Report Statements
Report statements are used with the Print Detail options to identify the values that appear in
reports, and how they are labelled.

Clear Statement (page 5-2)
Resets the values of Rules Language identifiers to Null. You might use this statement if your rate
schedule has either SAVE or FOR EACH statements that involve stem.component identifiers (see
Record Identifiers (stem.component) on page 4-14 for more information).

Determinant Statement (page 5-4)
Substitutes a user-defined descriptive label in reports for the bill determinant identifier used in the
rate form.

Label Statement (page 5-6)
Label statements are similar to DETERMINANT and REVENUE statements, except that they
can be used to label non-revenue and non-determinant identifiers. If the Print Detail option in
effect for the account is “All,” the value assigned to a labeled identifier is displayed in the reports.
This is useful for reporting the results of intermediate calculations, or for displaying specific values
of interest.

Remove Statement (page 5-7)
Removes the values of Rules Language identifiers from the Shared Symbol table. Used to free
memory and resources.
5-4 Rules Language User’s Guide

Revenue Computation Statements
Report Statement (page 5-8)
Used to label and report values for identifiers (including stem.components) that may be assigned
different values during the rate form’s execution by the billing or analysis program. While the
LABEL, DETERMINANT, and REVENUE statements report whatever value is assigned to
their identifier when the rate form is done executing, a REPORT Statement writes out a value
each time it is executed. For example, if you nest a REPORT Statement inside a FOR EACH
Statement, the statement will report its values for every pass of the FOR EACH loop. If you nest
a LABEL inside a FOR EACH loop, only the value for the last pass of the loop will appear in the
report.

Revenue Statement (page 5-10)
Replaces the revenue identifier in the rate form with a more descriptive label in bill reports. You
can also use it to make a simple identifier a revenue identifier, even if it has no leading $. (Revenue
Identifiers are a special class of identifiers used for charges, and whose values are automatically
printed in bill reports when the “All” or “Normal” Print Detail option is in effect.) In addition,
you can use the optional TOTAL clause in a REVENUE Statement to substitute an identifier of
your choosing for the pre-defined identifier for the bill total ($EFFECTIVE_REVENUE).

Miscellaneous Statements

Delete Statement (page 6-2)
Used to remove a record from the database.

Save Statements (page 6-3)
Saves bill determinant values, records, or interval data cuts that were created during the bill
calculations to the Oracle Utilities database. You also use the SAVE Statement to write computed
values to the transaction records, so that they can be passed to CIS or a bill printer.

There are several versions of the Save Statement:

• Save As: Saves a single value for a bill determinant identifier to the Bill History Table or the
Bill History Value Table.

• Save To Table: Saves values to a specified table in the Oracle Utilities Data Repository.

• Save To Channel: Saves interval data to a specified recorder,channel ID in the Oracle
Utilities Data Repository.

• Save To CIS: Saves billing/calculation results to a CIS output file.

• Save To XML: Saves data to in XML format.

• Save to Staging: Saves interval data to a specified recorder,channel ID in either the Interval
Data Staging (LSINTDSTAGING) or Interval Data Reporting (LSRFINTDHEADER and
LSRFINTDVALUES) tables in the Oracle Utilities Data Repository.

• Save Commit: Commits database changes due to Save To Table, Save To Channel, and the
LISTUPDATE function.

• Save Rollback: Removes database changes due to Save To Table, Save To Channel, and the
LISTUPDATE function.
Statements Overview 5-5

Financial Management Statements
Financial Management Statements
Financial Management statements are used with the Oracle Utilities Receivables Component
(Oracle Utilities Receivables Component) to Oracle Utilities Billing Component to post and/or
cancel charges, statements, and bills.

Post Charge Or Credit Statement (page 7-7)
Posts a charge or credit as a single transaction.

Post Tax Statement (page 7-9)
Posts a tax charge or credit transaction for a specified account.

Post Installment Statement (page 7-11)
Posts a non-deferred charge transaction related to a previously created installment plan against a
specified account.

Post Statement Statement (page 7-13)
Posts a single statement transaction against an account.

Post Bill Statement (page 7-15)
Posts a bill transaction against an account.

Post Payment Statement (page 7-17)
Posts a payment transaction against an account.

Post Adjustment Statement (page 7-19)
Posts an adjustment transaction against an account.

Post Refund Statement (page 7-21)
Posts a refund transaction against an account.

Post Writeoff Statement (page 7-23)
Used to write off an account.

Post Deposit Statement (page 7-25)
Posts a deposit charge transaction against an account.

Post Deposit Interest Statement (page 7-27)
Used to post deposit interest as a single transaction.

Post Deposit Application Statement (page 7-29)
Applies a deposit as a single transaction.

Cancel Transaction Statement (page 7-31)
Cancels a single transaction.
5-6 Rules Language User’s Guide

WorkFlow Manager Statements
WorkFlow Manager Statements
WorkFlow Manager statements are used with WorkFlow Manager to start, suspend, resume, and
terminate processes, and to post process events.

Process Start Statement (page 8-3)
Starts a new process instance.

Process Suspend Statement (page 8-5)
Suspends an existing running process instance.

Process Resume Statement (page 8-7)
Resumes an existing suspended process instance.

Process Terminate Statement (page 8-9)
Terminates an existing process instance.

Process Event Statement (page 8-11)
Posts an activity event.

XML Statements
XML statements are used to work with XML files and documents.

Identifier Statement (p. B-4)
Used to define identifiers before they are used.

OPTIONS Statement (p. B-5)
Used to specify that the case of identifiers remain as entered.

XML_ELEMENT Statement (p. B-6)
Used to map an XML format to Rules Language identifiers.

FOR EACH x IN XML_ELEMENT_OF 0 Statement (p. B-8)
Used to repeat a set of nested statements for each element defined in an XML structure.

XML_OP Statement (p. B-9)
Used to perform an operation on one or more XML elements.
Statements Overview 5-7

WorkFlow Manager Statements
5-8 Rules Language User’s Guide

Chapter 6
Rules Language Functions Overview

This chapter contains an overview of the functions available with the Oracle Utilities Rules
Language, and rules for how functions are used in rate forms.

The Oracle Utilities Rules Language includes an extensive and powerful library of functions. Many
of these functions were created specifically for use in rate calculations, while others are general-
purpose functions that give you virtually unlimited flexibility in calculating and reporting revenue
and other information.

You can use these functions to perform calculations using a variety of data elements, including bill
determinants and interval data cuts. For example, you can compute KVA from kW and find the
maximum or minimum values from a group of selected values. You can also use the interval data
functions to compute bill determinant values from account- or channel-level interval data.

Rules Language functions are accessed by clicking the Functions button on the ASSIGNMENT
Statement template, or through the Rules Language Elements Editor described in Chapter 3:
How Rate Forms are Processed.

The first section of this chapter contains brief overviews of each function, including page
references for the complete description of each function in the following chapter. The functions
are grouped by category, in the same manner as they are grouped in the Rules Language
Elements Editor. The four main categories of functions are:

• Interval Data Functions

• Meter Value Functions

• Math Functions

• String Functions

• Other Functions

General rules for using all of the functions are provided in the section entitled Rules for Using
Functions on page 6-23.

Note: Parenthetical page numbers refer to the Oracle Utilities Rules Language Reference Guide.
Rules Language Functions Overview 6-1

Interval Data Functions
Interval Data Functions
The Interval Data functions were designed specifically for working with interval data. They get
data from the Interval Database according to your specifications, making it available for
calculations in the rate forms. In addition, all of the INTDLOADxxx functions automatically
calculate summary information about the handle, and put the values in a temporary record that is
also available for computations and reporting. The computed values are the result of adding,
averaging, or taking the maximum of the interval values in the handle. They include the total
energy represented by the handle, the peak value and time, and more. See the description of
INTDLOAD for specifics about these summary values.

A number of Interval Data functions can be used to create a variety of interval data “masks.” A
mask is a created handle in which the interval values that meet a user-specified condition are
distinguished from those that don’t. The interval values that meet the condition may be set to 1, to
their actual value, or to a value set in a parameter in the function (and all others to 0). In many
cases, you can also specify the reverse. The resulting mask handle can be used in any interval data
function or expression. Rules for using masks are described in Chapter 4: Identifiers,
Constants, and Expressions.

INTDADDATTRIBUTE Function (page 9-2)
Adds a user-defined attribute to an interval data handle.

INTDADDVMSG Function (page 9-3)
Adds a validation message to an interval data handle.

INTDBLOCKOP Function (page 9-4)
Performs a block operation on the interval data values of one handle using the corresponding
values of another handle. Available operations are add, subtract, multiply, divide, find maximum,
find minimum, calculate kVa, and calculate ikVa.

INTDBLOCKOPNA Function (page 9-6)
Performs a block operation on the interval data values of one handle using the corresponding
values of another handle. This is similar to the INTDBLOCKOP function, but allows use of non-
aligned interval data cuts.

INTDCLOSE Function (page 9-8)
Closes an interval data file that was opened using the INTDOPEN function.

INTDCOUNT Function (page 9-9)
Counts the number of intervals in the handle. This function includes a variety of options for
“filtering” the type of intervals to be counted; e.g., missing, non-missing, etc.

INTDCOUNTSTATUSCODE Function (page 9-10)
Counts the number of intervals in an interval data handle that match a specified status code.

INTDCREATEDAYMASK Function (page 9-12)
Creates a mask of values consisting of 0 or 1. The interval value in the new handle is 1 for the
entire day if the original handle has a 0 value for any interval during that day, or 0 if the original has
all nonzero values for the corresponding day. You can also specify the reverse.

INTDCREATEFACTORMASK Function (page 9-13)
Creates a mask of values in which each interval is set to the factor value in effect at that time.

INTDCREATEHANDLE Function (page 9-14)
Creates an interval data handle based on user-specified start time, stop time, and SPI.
6-2 Rules Language User’s Guide

Interval Data Functions
INTDCREATEMASK Function (page 9-15)
Creates a mask of values consisting of 0 or 1. The interval value in the new handle is 1 if the
corresponding value in the original handle is 0, or 0 if the original has a nonzero value. You can
also specify the reverse.

INTDCREATEOVERRIDEDAYMASK Function (page 9-16)
Creates a mask of values for the effective period for an override, with each override period
automatically extended to start and end at midnight (or the day start).

INTDCREATEOVERRIDEMASK Function (page 9-17)
Creates a mask of values for the override’s effective period.

INTDCREATESTATUSCODEMASK Function (page 9-18)
Creates a handle whose interval values are based on comparison of status codes.

INTDCREATETOUPERIOD Function (page 9-19)
Creates a handle whose interval values that fall within a user-specified time of use period are
distinguished from those that fall outside the period. The interval values in the period may be set
to 1 (and all others to 0), or to their actual value (and all others to 0). You can also specify the
reverse. The resulting “mask” handle can be used in TOU computations.

INTDDELETE Function (page 9-21)
Deletes one or more cuts from the Oracle Utilities Data Repository.

INTDDIPTEST Function (p. 9 - 22)
Examines an interval data handle for dips.

INTDEXPORT Function (page 9-23)
Exports data in a handle to a file.

INTDGETERRORCODE Function (page 9-25)
Returns the error code from the last interval data function call.

INTDGETERRORMESSAGE Function (page 9-26)
Returns an error message from the last function to use a specified interval data reference.

INTDISEQUAL Function (page 9-27)
Compares two cuts to determine if they are to be considered equal.

INTDJOIN Function (page 9-28)
Merges two interval data cuts into one, based on user-specified criteria.

INTDLOAD Function (page 9-34)
Loads and totalizes all interval data for a user-specified bill determinant for the current bill period.

INTDLOADACTUALCUT Function (page 9-35)
Loads a specific interval data cut.

INTDLOADDATES Function (page 9-36)
Loads and totalizes all interval data for a user-specified bill determinant over a user-specified date
range.

INTDLOADHIST Function (page 9-38)
Loads and totalizes all interval data for a user-specified bill determinant for a user-specified set of
historical bill periods (including the current one, if desired).
Rules Language Functions Overview 6-3

Interval Data Functions
INTDLOADLIST Function (page 9-39)
Loads and totalizes the interval data for all channels in a Table.Column channel list, for the current
bill period.

INTDLOADLISTDATES Function (page 9-40)
Loads and totalizes the interval data for all channels in a Table.Column channel list, over a user-
specified date range.

INTDLOADLISTENERGY Function (page 9-41)
Loads and totalizes the interval data for all channels (or all channels in a list) that are billed and
record kW or kWh. This function uses the handle start and stop times instead of the bill period
start and stop.

INTDLOADLISTHIST Function (page 9-42)
Loads and totalizes the interval data for all channels in a Table.Column channel list, for a user-
specified set of historical bill periods (including the current period, if desired).

INTDLOADRELATEDCHANNEL Function (page 9-43)
Loads interval data for a specified recorder channel.

INTDLOADSP Function (page 9-44)
Loads and totalizes all interval data for channels belonging to an Aggregation Group.

INTDLOADSTAGING Function (page 9-46)
Loads interval data from the Interval Data Staging tables (LSINTDSTAGING) for a user-
specified date range.

INTDLOADUOM Function (page 9-47)
Loads and totalizes all interval data for a specified UOM and (optionally) end use for the current
bill period.

INTDLOADUOMDATES Function (page 9-48)
Loads and totalizes interval data for a specified UOM and (optionally) end use over a user-
specified date range.

INTDLOADUOMHIST Function (page 9-49)
Loads and totalizes interval data for a specified UOM and (optionally) end use for a user-specified
set of historical bill periods (including the current one, if desired).

INTDLOADVERSION Function (page 9-50)
Loads interval data from the Interval Data Version Tables (LSCHVERSION and
LSCDVERSION) for a specified versioned cut.

INTDOPEN Function (page 9-51)
Opens an interval data file in read-only, write-only, or read/write mode.

INTDREADFIRST Function (page 9-52)
Returns a reference to the first record in an Interval Database.

INTDREADNEXT Function (page 9-53)
Returns a reference to the next record in an Interval Database.

INTDRECCOUNT Function (page 9-54)
Returns the number of records in an Interval Database.
6-4 Rules Language User’s Guide

Interval Data Functions
INTDRELEASE Function (page 9-55)
Releases the interval data reference before completion of the rate form, to free computing
resources.

INTDREPLACE Function (page 9-56)
Replaces a range of intervals in a loaded interval data handle with a previously loaded handle.

INTDROLLAVG Function (page 9-57)
Calculates the rolling average (or total) of interval values in a handle.

INTDROLLPEAK Function (page 9-58)
Calculates the rolling peak of interval values in a handle.

INTDSCALAROP Function (page 9-59)
Performs a scalar operation on each interval in the handle.

INTDSCALE Function (page 9-61)
Aggregates values in an existing handle according to user-specified parameters, such as to 15
minutes, 30 minutes, 60 minutes, hours, days, weeks, months, etc.

INTDSETATTRIBUTE Function (page 9-63)
Sets attributes of a specified data handle.

INTDSETDSTPARTICIPANT Function (page 9-65)
Changes the DST Participant flag for a previously-loaded interval data handle, and optionally
adjusts the handle’s Start Time and Stop Time as needed.

INTDSETSTRING Function (page 9-66)
Sets the status codes of all non-missing intervals in an existing handle.

INTDSETVALUE Function (page 9-67)
Sets an interval value of the interval data handle.

INTDSETVALUESTATUS Function (page 9-68)
Changes the status code and/or value of intervals in a handle.

INTDSHIFTSTARTTIME Function (page 9-70)
Shifts the start time of an interval data handle.

INTDSMOOTH Function (page 9-71)
Smooths gaps in interval data.

INTDSORT Function (page 9-72)
Sorts the values in an interval data handle.

INTDSPIKETEST Function (p. 9 - 73)
Examines an interval data handle for spikes.

INTDSUBSET Function (page 9-74)
Returns a subset of specified interval data.

INTDTOU Function (page 9-75)
Takes a handle that you've previously loaded and creates a handle for a specified Time-of-Use
Schedule and Holiday List. The intervals within the periods keep their actual recorded values;
those outside are set to 0. (Internally, the function creates as many cuts as there are periods in the
TOU schedule, but you work with them as though there is just one.)
Rules Language Functions Overview 6-5

Interval Data Functions
INTDTOURELEASE Function (page 9-76)
Releases the Time of Use reference that was set with INTDTOU before completion of the rate
form, to free computing resources.

INTDTOUVALUE Function (page 9-77)
Computes a user-specified summary value for a TOU handle that was created with the
INTDTOU function. Possible values include “ENERGY” (total energy in TOU period),
“AVERAGE” (average for all non-missing interval values in the TOU period), “MAXIMUM”
(peak value in the TOU period), or any of several others.

INTDUPDATESTATS Function (page 9-78)
Updates statistics for an interval data handle operated on the INTDREPLACE function.

INTDVALUE Function (page 9-79)
Computes a user-specified summary value for an interval data handle, such as “ENERGY” (total
energy in handle), “AVERAGE” (average for all non-missing interval values), “MAXIMUM”
(peak value in the handle), or any of several others.

STDEV Function (page 9-84)
Returns the standard deviation for a previously loaded interval data handle.

Enhanced Interval Data Functions
The following interval data functions work with interval data stored in Enhanced Interval Data
tables, such as the Meter Data Channel Cut table used by the Oracle Utilities Meter Data
Management application.

INTDDELETEEX Function (page 9-86)
Deletes an interval data cut from a specified Enhanced Interval Data table.

INTDGETATTREXALL Function (page 9-87)
Gets multiple custom and parent attributes of a specified enhanced interval data handle.

INTDLOADEXACTUAL Function (page 9-88)
Loads a specific interval data cut from a specified Enhanced Interval Data table.

INTDLOADEXCUT Function (page 9-89)
Loads a specific interval data cut from an Enhanced Interval Data Versioning table.

INTDLOADEXDATES Function (page 9-90)
Loads interval data for a user-specified date range from a specified Enhanced Interval Data table.

INTDLOADEX Function (page 9-93)
Loads and totalizes all of an account’s interval data for a user-specified determinant for the current
bill period from a specified Enhanced Interval Data table.

INTDLOADEXLIST Function (page 9-94)
Totalizes the interval data stored in an enhanced interval data table for the current bill period for
all parent records in a list.

INTDLOADEXLISTDATES Function (page 9-95)
Totalizes the interval data stored in an enhanced interval data table for all parent records in a list
over a specified time range.

INTDLOADEXRELATEDCHANNEL Function (page 9-96)
Loads the interval data for the related meter specified in the Oracle Utilities Meter Data
Management Meter table from a specified Enhanced Interval Data table.
6-6 Rules Language User’s Guide

Interval Data Functions
INTDSAVEEX Function (page 9-97)
Saves an interval data handle to a specified Enhanced Interval Data table.

INTDSAVEEXP Function (page 9-99)
Saves an interval data handle and its parent to specified Enhanced Interval Data tables.

INTDSETATTREX Function (page 9-101)
Sets an attribute of a specified enhanced interval data handle.

INTDSETATTREXALL Function (page 9-102)
Sets multiple custom and parent attributes of a specified enhanced interval data handle.

INTDVALUEEX Function (page 9-103)
Returns an attribute of a specified enhanced interval data handle.
Rules Language Functions Overview 6-7

Meter Value Functions
Meter Value Functions
The Meter Value functions load data from the Meter Value Table. The Meter Value Table stores
bill determinant values for entities in the billing hierarchy other than accounts—that is, individual
channels, channel groups, or CIS accounts. You can use the Meter Value functions to load a single
bill determinant value, to add all values for the same determinant, or to retrieve historical bill
determinant values for any of these entities.

Each determinant value is loaded as part of a temporary record that includes other information
about that bill determinant value. Specifically, this includes the scheduled read date, earliest start
time among totaled values, the latest stop time among totaled values, and a string value (which
values are loaded depends on the function). Each record identifier may have historical values. See
the description of MVLOAD for specifics about these summary values.

MVLOAD Function (page 10-2)
Loads meter value(s) for the specified billing determinant and (optionally) billing entity (CIS
account, channel group, or recorder/channel).

MVLOADACCT Function (page 10-4)
Loads and totalizes the meter values for all records belonging to an account for the current bill
period. The “account” is usually the SYSTEM account, which stores the monthly peak time and
value for the entire operating company.

MVLOADACCTDATES Function (page 10-5)
Loads and totalizes the meter values for all records belonging to an account for a user-specified
date range. The “account” is usually the SYSTEM account, which stores the monthly peak time
and value for the entire operating company.

MVLOADACCTHIST Function (page 10-6)
Loads and totalizes the meter values for all records belonging to an account for a user-specified set
of historical bill periods (including the current one, if desired). The “account” is usually the
SYSTEM account, which stores the monthly peak time and value for the entire operating
company.

MVLOADDATES Function (page 10-8)
Loads meter value(s) for the specified billing determinant and (optionally) billing entity (CIS
account, channel group, or recorder/channel) for a user-specified date range.

MVLOADHIST Function (page 10-9)
Loads meter value(s) for the specified billing determinant and (optionally) billing entity (CIS
account, channel group, or recorder/channel) for a user-specified set of historical bill periods
(including the current one, if desired).

MVLOADLIST Function (page 10-10)
Loads and totalizes the meter values for all entities in a Table.Column list (CIS accounts, channel
groups, or recorder/channels) for the current bill period.

MVLOADLISTDATES Function (page 10-11)
Loads and totalizes the meter values for all entities in a Table.Column list (CIS accounts, channel
groups, or recorder/channels) over a user-specified date range.

MVLOADLISTHIST Function (page 10-12)
Loads and totalizes the meter values for all entities in a Table.Column list (CIS accounts, channel
groups, or recorder/channels) for a user-specified set of historical bill periods (including the
current one, if desired).
6-8 Rules Language User’s Guide

Math Functions
Math Functions
Math functions perform various mathematical operations on input values, and return the result of
those operations.

ACOS Function (page 11-2)
Returns the arccosine value of an input value.

ASIN Function (page 11-3)
Returns the acrsine value of an input value.

ATAN Function (page 11-4)
Returns the arctangent value of an input value.

ATAN2 Function (page 11-5)
Returns the arctangent value of the result of the division of the first input value by the second
input value.

BITAND Function (page 11-6)
Returns an integer that is the result of a bitand operation on two supplied integer values.

CEIL Function (page 11-7)
Computes the smallest integer greater than or equal to a specified value.

COS Function (page 11-8)
Returns the cosine value of an input value.

COSECANT Function (page 11-9)
Returns the cosecant (1/sin) value of an input value. On an error, returns zero (0).

COSH Function (page 11-10)
Returns the hyperbolic cosine value of an input value.

COTANGENT Function (page 11-11)
Returns the cotangent (1/tan) value of an input value. On an error, returns zero (0).

DIVQUOT Function (page 11-12)
Returns the integral quotient of the result of dividing the first input value by the second input
value.

DIVREM Function (page 11-13)
Returns the integral remainder of the result of dividing the first input value by the second input
value.

EXP Function (page 11-14)
Returns the exponential value of an input value on success or zero (0) on overflow (input >
709.782712893) and underflow (input < -708.396418532264).

FABS Function (page 11-15)
Returns the absolute value of an input value.

FLOOR Function (page 11-16)
Computes the largest integer less than or equal to a specified value.

FMOD Function (page 11-17)
Returns the remainder of the first input value divided by the second input value.
Rules Language Functions Overview 6-9

Math Functions
FREXPM Function (page 11-18)
Breaks down an input value into a mantissa (m) and an exponent (n), and returns m.

FREXPN Function (page 11-19)
Breaks down an input value into a mantissa (m) and an exponent (n), and returns n.

LOG Function (page 11-20)
Returns the base e logarithm value of an input value.

LOG10 Function (page 11-21)
Returns the base 10 logarithm value of an input value.

MAX Function (page 11-22)
Returns the greater (greatest) value of two or more specified parameters.

MAXN Function (page 11-23)
Returns the nth greatest value among two or more specified parameters.

MIN Function (page 11-24)
Returns the lesser (least) value of two or more specified parameters.

MINNZ Function (page 11-25)
Returns the lesser (least) non-zero value of two or more specified parameters.

MODF Function (page 11-26)
Returns the signed fractional portion of an input value.

POW Function (page 11-27)
Returns the value of the first input value, raised to the power of the second input value.

ROUND Function (page 11-28)
Rounds a value to a user-specified number of decimal places.

ROUND2VALUE Function (page 11-29)
Rounds a value to the nearest multiple of another value.

ROUNDINT Function (page 11-30)
Rounds a value to the nearest n number of digits, where n is a user-specified number of places.

SECANT Function (page 11-31)
Returns the secant (1/cos) value of an input value. On an error, returns zero (0).

SIN Function (page 11-32)
Returns the sine value of an input value.

SINH Function (page 11-33)
Returns the hyperbolic sine value of an input value. If the result is too large, returns zero (0).

SQROOT Function (page 11-34)
Computes the square root of a non-negative input value.

TAN Function (page 11-35)
Returns the tangent value of an input value.

TANH Function (page 11-36)
Returns the hyperbolic tangent value of an input value.
6-10 Rules Language User’s Guide

String Functions
String Functions
String functions enable you to rearrange the characters in text strings (that is, values that have data
type STRING). You can use them to make bills and reports more readable. Note that the first
character in a string is always in position 1.

FLOAT2STRING Function (page 12-2)
Converts the value of an identifier to a string.

FLOAT2STRINGNC Function (page 12-3)
Converts the value of an identifier to a string, but without commas to mark the thousands.

INSTR Function (page 12-4)
Returns the position (denoted with an integer) of the first occurrence of one string (string2) in
another (string1).

LEFT Function (page 12-5)
Returns the leftmost n characters of a string. If n is greater than the length of the string, the entire
string is returned (not padded).

LEN Function (page 12-6)
Returns the length of a string (an integer).

LTRIM Function (page 12-7)
Returns the string with leading spaces removed.

MID Function (page 12-8)
Returns a specified number of characters, beginning at the user-specified start position.

RIGHT Function (page 12-9)
Returns the rightmost n characters of a string. If n is greater than the length of the string, the entire
string is returned (not padded).

RTRIM Function (page 12-10)
Returns the string with trailing spaces removed.

STRING Function (page 12-11)
Returns the value of an identifier, converted to a string. Numbers are converted with commas to
mark the thousands. Date/times are converted to the date/time display format.

STRINGNC Function (page 12-12)
Similar to the STRING function, except that STRINGNC converts numbers without commas to
mark the thousands. This is desirable for formatting years, for example.

TOLOWER Function (page 12-13)
Returns the string with all uppercase letters converted to lowercase, and all other characters
unchanged.

TOUPPER Function (page 12-14)
Returns the string with all lowercase letters converted to uppercase, and all other characters
unchanged.

TRIM Function (page 12-15)
Returns the string with leading and trailing spaces removed.
Rules Language Functions Overview 6-11

Other Functions
Other Functions
The Rules Language offers a wide variety of functions in addition to the Interval Data/Meter
Value, Math, and String functions. These other functions include:

• Database Functions

• Date/Time Functions

• Historical Data Functions

• Internal Functions

• Season-Based Functions

• Oracle Utilities Receivables Component Functions

• XML/Document Object Management Functions

• Term Functions

• Miscellaneous Functions

Database Functions
Database functions return information about identifiers and data in the Oracle Utilities Data
Repository.

ACCOUNTFACTOR Function (page 13-2)
Returns a value that indicates whether a factor applied to the account on the end date of the
specified time period.

ARRAYUPPERBOUND Function (page 13-3)
Returns the upper bound of an array identifier. The upper bound is the highest index of the array
that has been assigned a value. Returns a scalar numeric value.

CALLSTOREDPROC Function (page 13-4)
Calls a stored procedure.

GETADOCONNECTION Function (page 13-6)
Gets the ADO database connection used by the Rules Language.

GETCONNECT Function (page 13-7)
Returns a string that is the connection string used to log on to the Oracle Utilities application.

GETDATASOURCE Function (page 13-8)
Returns a variant (COM object) that contains the current database connection used by the Rules
Language.

GETQUALIFIER Function (page 13-9)
Gets the qualifier for the current database connection used by the Rules Language.

GETUSERID Function (page 13-10)
Returns a string that is the user id used to log on to the Oracle Utilities application.

HASVALUE Function (page 13-11)
Returns a value that indicates whether an identifier has a value in the database, has been assigned a
value in the rate form, or has no value.

LISTCOUNT Function (page 13-12)
Returns a count of the number of items in a Table.Column list.
6-12 Rules Language User’s Guide

Other Functions
LISTOP Function (page 13-13)
Performs column functions (AVG, COUNT, MAX< MIN or SUM) on a Table.Column list.

LISTUPDATE Function (page 13-14)
Updates the column value of every record in a Table.Column list.

LISTVALUE Function (page 13-15)
Returns the first element in a Table.Column list.

PRORATEFACTOR Function (page 13-16)
Prorates a factor over a user-specified time period, which may span multiple bill periods.

RSPRORATE Function (page 13-17)
Returns a prorated value based on the time that the rate schedule is in effect during the bill period.
This function is used primarily for new accounts.

SETBINPATH Function (page 13-18)
Returns the path to the LODESTAR\Bin directory.

SETDBMONITOR Function (page 13-19)
Turns the Oracle Utilities Transaction Management Database Monitor on or off.

WQ_OPEN Function (page 13-20)
Opens a work queue item record in the Work Queue Open Item table used by the Work Queues
application.
Rules Language Functions Overview 6-13

Other Functions
Date/Time Functions
Date/Time functions compute time related variables. For some of these functions, the special
identifier BILL_PERIOD represents the first day of the current bill period.

BILLINGHOURS Function (page 13-21)
Returns the number of hours in one or more user-specified billing periods.

DATE Function (page 13-22)
Converts a date with a datatype of STRING to one with a datatype of DATE.

DATEFROMFLOAT Function (page 13-23)
Converts a float value to a date/time.

DATETIMEFROMSTRING Function (page 13-24)
Converts a string value to a date/time.

DATETIMETOSTRING Function (page 13-25)
Converts a date/time value to a string.

DATETOFLOAT Function (page 13-26)
Converts a date to a floating point number that can be stored as a determinant.

DAY Function (page 13-27)
Returns the number of the day of the month (1 to 31) of a date identifier or date string.

DAYDIFF Function (page 13-28)
Returns the number of days between two dates.

DAYNAME Function (page 13-29)
Returns the name of the day of the week for a specified date or value assigned to a date identifier.

DBDATETIME Function (page 13-30)
Returns the value of a date/time as a string suitable for use in a database key. The format of the
string is database specific.

HOUR Function (page 13-31)
Returns the number of the hour (0 through 23) based on a date identifier or date string.

MINUTE Function (page 13-32)
Returns the number of the minute (0 through 59) based on a date identifier or date string.

MONTH Function (page 13-33)
Returns the number of the month (January is 1, December is 12) for a date identifier or date string.

MONTHDIFF Function (page 13-34)
Returns the number of months between two dates.

MONTHHOURS Function (page 13-35)
Returns the number of hours in one or more user-specified calendar months.

MONTHNAME Function (page 13-36)
Returns the name of the month of the year for a specified date or value assigned to a date
identifier.

ROUNDDATE Function (page 13-37)
Returns a date rounded back to the nearest hour, day, week, month, or year.
6-14 Rules Language User’s Guide

Other Functions
SAMEWEEKDAYLASTYEAR Function (page 13-38)
Returns the closest date from a year prior to the supplied date that is on the same day of the week.

SECOND Function (page 13-39)
Returns the number of the second (0 through 59) based on a date identifier or date string.

WEEKDAY Function (page 13-40)
Returns the name of the day of the week from Sunday (Sunday=0, Monday=1, ..., Saturday=6),
based on a date identifier or date string.

WEEKDIFF Function (page 13-41)
Returns the number of weeks between two dates.

YEAR Function (page 13-42)
Returns the number of the year in a date (all four digits), given a date identifier or date string.

YEARDAY Function (page 13-43)
Returns the number of days of the year since January 1, 0 - 365 (January 1 is 0), based on a date
identifier or date string.

YEARSTR Function (page 13-44)
Like the YEAR function, this function returns the name of the year without commas marking the
thousands.
Rules Language Functions Overview 6-15

Other Functions
Historical Data Functions
Many functions automatically return the bill determinant values for the current bill period.
However, some rates require access to values for past bill periods. The Historical Data
Functions on page 6-16 and Season-Based Functions on page 6-18 provide access to this
historical data in the Oracle Utilities Data Repository. Specifically, Historical Data functions
provide access to historical bill determinant values stored in the Bill History Table, the Bill History
Value Table, and the Meter Value Table.

In these functions, the first parameter (identifier) must always be the name of a bill determinant
stored in the Data Repository, or a retrieved METERVALUE record identifier. The parameter
represents all of the values from the past stored in the database, not just the current one. You can
specify the desired time period using the start and end bill period parameters described earlier in
this chapter.

Note: If the historical records in the database do not include a requested
period (as can happen with new or inactive customers, for example) the
program will assume that the period’s value is 0. If the specified start and end
periods are completely outside the range of the available data for the
determinant, the program will issue an error message in the bill report.

COMPSUM Function (page 13-46)
Totals values for a historical determinant over user-specified bill periods.

HISTCOUNT Function (page 13-47)
Returns the number of historic values loaded.

HISTMAX Function (page 13-48)
Compares two or more sets of historical values and/or constants, and returns the greater value in
each set.

HISTMIN Function (page 13-49)
Same as HISTMAX, except it finds the minimum of the corresponding values.

HISTMINNZ Function (page 13-50)
Same as HISTMIN, except it finds the nonzero minimum of the corresponding values.

HISTVALUE Function (page 13-51)
Returns the historic value for the specified bill period.

MAXNRANGE Function (page 13-52)
Finds the nth maximum of the historical determinant values between the start bill period specified
through the end bill period specified.

MAXRANGE Function (page 13-53)
Finds the maximum of the historical determinant values between the start bill period specified
through the end bill period specified.

MINRANGE Function (page 13-54)
Finds the minimum of the historical determinant values between the start bill period specified
through the end bill period specified.
6-16 Rules Language User’s Guide

Other Functions
Internal Functions
Internal functions compute a variety of values, such as kVA or the maximum of specified values.

COMPIKVA Function (page 13-55)
Computes rkVA from kVA and kW, or computes kW from kVA and rkVA.

COMPKVA Function (page 13-56)
Computes kVA from rkVA and kW.

COMPKVARHFROMKQKW Function (page 13-57)
Computes kVARH from kQh and kWh.

COMPLF Function (page 13-58)
Computes load factor.

IDATTR Function (page 13-59)
Returns the value of an attribute of an identifier.

FLAG Function (page 13-61)
Returns the setting for analysis flags.

LF2KW Function (page 13-62)
Computes kW from kWh and load factor.

LF2KWH Function (page 13-63)
Computes kWh from kW and load factor.

MAXKW Function (page 13-64)
Compares values for metered kW, contract kW, historical kW, and optionally minimum kW, and
assigns a value to the special identifier AUXILIARY_DEMAND based on the result.

POWERFACTOR Function (page 13-65)
Returns the ratio of real power (kWh) to apparent power (kVARH) for any given load and time.

READING2USAGE Function (page 13-66)
Returns the computed usage for a selected billing determinant.
Rules Language Functions Overview 6-17

Other Functions
Season-Based Functions
Season-Based functions support seasonal rates. Like the Historical Data functions, Season-Based
functions work with historical determinant values.

AVGSEASON Function (page 13-67)
Finds the average value of a selected bill determinant during a specified season period.

MAXSEASON Function (page 13-69)
Finds the maximum historical value of a selected bill determinant during a specified season period.

MINSEASON Function (page 13-70)
Finds the minimum historical value of a selected bill determinant during a specified season period.

MONTHLYMERGE Function (page 13-71)
Combines all values in each bill month according to type.

SEASONVALUE Function (page 13-72)
Finds the portion of the specified historical identifier for the current month in the specified
season.

SUMSEASON Function (page 13-73)
Finds the sum of the historical determinant values of a selected bill determinant during a specified
season period.

Oracle Utilities Receivables Component Functions

FMGETBILLINFO Function (page 7-34)
Obtains bill information for an account.

XML/Document Object Management Functions
XML/DOM functions are used to manipulate XML documents and files, and to set and retrieve
XML node values.

DOMDOCCREATE Function (p. B-13)
Creates an XML document with a root element node.

DOMDOCLOADFILE Function (p. B-14)
Loads and parses an XML file.

DOMDOCLOADXML Function (p. B-15)
Loads and parses an XML document.

DOMDOCSAVEFILE Function (p. B-16)
Saves an XML file based on a specified XML document.

DOMDOCGETROOT Function (p. B-17)
Retrieves the root node of an XML document.

DOMDOCADDPI Function (p. B-18)
Adds a processing instruction to an XML document.

DOMNODEGETNAME Function (p. B-19)
Retrieves the name of an XML node.
6-18 Rules Language User’s Guide

Other Functions
DOMNODEGETTYPE Function (p. B-20)
Retrieves the type of an XML node.

DOMNODEGETVALUE Function (p. B-21)
Retrieves the value of an XML node.

DOMNODEGETCHILDCT Function (p. B-22)
Retrieves the number of child nodes of an XML node.

DOMNODEGETFIRSTCHILD Function (p. B-23)
Retrieves the first child of an XML node, if any.

DOMNODEGETSIBLING Function (p. B-24)
Retrieves the next (right side) child of an XML node, if any.

DOMNODECREATECHILDELEMENT Function (p. B-25)
Creates a child node in an XML node.

DOMNODESETATTRIBUTE Function (p. B-26)
Sets the value of an attribute of an XML node.

DOMNODEGETCHILDELEMENTCT Function (p. B-27)
Retrieves the number of child nodes of an XML node that are elements.

DOMNODEGETFIRSTCHILDELEMENT Function (p. B-28)
Retrieves the first child of an XML node that is an element, if any.

DOMNODEGETSIBLINGELEMENT Function (p. B-29)
Retrieves the next (right side) child of an XML node that is an element, if any.

DOMNODEGETATTRIBUTECT Function (p. B-30)
Retrieves the number of attribute nodes of an XML node, if any.

DOMNODEGETATTRIBUTEI Function (p. B-31)
Retrieves the indexth attribute of an XML node, if any.

DOMNODEGETATTRIBUTEBYNAME Function (p. B-32)
Retrieves the attribute of an XML node with a specified name, if any.

DOMNODEGETBYNAME Function (p. B-33)
Retrieves the first node under a specified XML node with a specified name, if any.
Rules Language Functions Overview 6-19

Other Functions
Term Functions
Term functions retrieve and save terms used in contracts to and from the Oracle Utilities Data
Repository.

LOADCONTRACTTERM Function (page 13-75)
Loads a specified contract term from the Contract Terms table.

LOADCONTRACTTERMALL Function (page 13-77)
Load all contract terms for a specific contract from the Contract Terms table.

LOADGROUPTERM Function (page 13-79)
Loads a specified group term from the Contract Item Group Terms table.

LOADGROUPTERMALL Function (page 13-82)
Loads all group terms for a specified contract from the Contract Item Group Terms table.

LOADITEMTERM Function (page 13-84)
Loads a specified contract item term from either the Contract Item Terms table, Contract Item
Product Terms table, or Contract Item Details table.

LOADITEMTERMALL Function (page 13-87)
Loads all contract item terms for a specified contract and contract item from either the Contract
Item Terms table, Contract Item Product Terms table, or Contract Item Details table.

SAVECONTRACTTERM Function (page 13-90)
Saves a specified contract term to the Contract Terms table.

SAVECONTRACTTERMALL Function (page 13-92)
Saves all contract terms for a specified contract to the Contract Terms table.

SAVEGROUPTERM Function (page 13-93)
Saves a specified group term to the Contract Item Group Terms table.

SAVEGROUPTERMALL Function (page 13-95)
Saves all group terms for a specified contract and contract group to the Contract Item Group
Terms table.

SAVEITEMTERM Function (page 13-97)
Saves a specified contract item term to either the Contract Item Terms table, Contract Item
Product Terms table, or Contract Item Details table.

SAVEITEMTERMALL Function (page 13-99)
Saves all contract item terms for a specified contract and contract item to either the Contract Item
Terms table, Contract Item Product Terms table, or Contract Item Details table.
6-20 Rules Language User’s Guide

Other Functions
Miscellaneous Functions
The remaining functions are used for various purposes.

ACCTREADDATES Function (page 13-101)
Returns the read dates for a specified account.

ACCTTABLELOAD Function (page 13-102)
Returns all specified records within a specified date range.

CONFIGADD Function (page 13-103)
Adds the string value of parameters within a configuration file to the internal configuration
settings.

CONFIGGET Function (page 13-104)
Returns the string value of a configuration file parameter.

CREATEOBJECT Function (page 13-105)
Creates a COM object, based on the object’s ProgID.

CREATEREPORT Function (page 13-106)
Generates a report based on supplied parameters.

EMAILCLIENT Function (page 13-109)
Sends an email based on supplied parameters.

EXPBLKMDMUSAGE Function (page 13-112)
Exports usage for a specified account or service point over a specified date range to a Oracle
Utilities Meter Data (*.lsm) file.

EXPMDMUSAGE Function (page 13-114)
Exports a specified usage reading to a Oracle Utilities Meter Data (*.lsm) file.

EXPORT_USAGE Function (page 13-116)
Exports interval data associated to a supplied Account ID to a Microsoft Excel (*.xls) file.

FACTORINEFFECT Function (page 13-118)
Checks to determine if a specified factor has a factor value on a specified date. Returns 1 (true) or
0 (false).

GETUSERSPECIFIEDSTOP Function (page 13-119)
Gets the “User Specified Stop” date (if specified).

INEFFECT Function (page 13-120)
Indicates whether or not a specified tariff rider, rate code, or override was in effect for the account
on a specified date.

ISHOLIDAY Function (page 13-121)
Returns a value of 1 if the specified date is a holiday.

RUNRATE Function (page 13-122)
Executes a rate as a new process and continues current processing.

SAVE_PROFILE Function (page 13-123)
Saves a Rules Language code profile to a specified file.

SETREPORTTITLE Function (page 13-124)
Rules Language Functions Overview 6-21

Other Functions
Sets the report title for Rules Language reports.

USEREXIT Function (page 13-125)
Calls a user-written function for use in the rate form.

WAITFORRUNRATE Function (page 13-126)
Causes a rate to wait for rates created using the RUNRATE function.
6-22 Rules Language User’s Guide

Rules for Using Functions
Rules for Using Functions
This section explains the rules for using functions, including:

• Functions and Identifiers

• About Identifiers

• About Parameters

Functions and Identifiers
Most often, you assign the results of a function to an identifier using an ASSIGNMENT
Statement. You can also use a function anywhere you can use an expression. In the descriptions in
the following chapter, required keywords are shown in capital letters. Parameters you supply are
indicated inside < >. You don't supply the pointed brackets in the function; they are used here to
distinguish a parameter from other elements of the statement. The format of every function call is:

FUNCTION(<parameters>);

About Identifiers
You can assign many kinds of values to the identifier on the left side of the equal sign, depending
on the function. Some functions return a simple scalar numeric value that can be assigned to any
identifier except an interval data reference. Others return historical determinant values, and must
be assigned to a determinant identifier (Bill Determinant Identifiers on page 4-5). Many of the
interval data functions return an interval data reference that must be assigned to an interval data
handle (see Interval Data Handles on page 4-6).

Note: If you are unfamiliar with the concepts of identifiers, determinant
identifiers, and interval data references, see Chapter 4: Identifiers, Constants,
and Expressions.

In the detailed descriptions in the Oracle Utilities Rules Language Reference Guide, the types of
identifiers are noted, as follows:

• <identifier> - The function returns a scalar numeric value that you can assign to any identifier
except an interval data handle.

• <determinant_identifier> - The function returns a bill determinant value (including historical
values) that you can assign to a determinant identifier.

• <interval_data_handle|‘recorder,channel’> - The function returns an interval data handle
that you should assign to an interval data handle or specific recorder,channel constant.

Although it is allowed, a function name should not be used as an identifier.
Rules Language Functions Overview 6-23

Rules for Using Functions
About Parameters
Each function requires you to specify some parameters (noted inside pointed brackets < >).
Depending on the function you’re using, you can supply any of the following for each parameter:

• The name of a bill determinant (for example, kW or rkVA)

• a constant

• a locally-defined identifier that you assigned to the results of an expression or function
elsewhere in the rate form

• an expression that evaluates to the appropriate type of parameter.

Note: If you supply the name of a bill determinant, the current month’s value
will be used. If you want to use historical billing determinant values, see
Historical Data Functions on page 6-16.

Start and End Bill Period Parameters

In many of the functions described in this chapter, the last two parameters are
<start_bill_period_previous>, <end_bill_period_previous>. Use 0 to specify the current period,
1 for the previous, and so on (the higher the value, the further back in time). The end period that
you specify must be greater than or equal to the start period.

These parameters are optional, though you must specify a value for the start period if you
specified one for the end period. The default value for the start period is 0 (the current bill period).
The default for the end period is usually the last month of data stored for the determinant, but in
some cases the default may be the start period. In other words, if you omit these two parameters
altogether, the value is computed either over all values available, or just for the current month,
depending on what is appropriate for the particular function.

About missing historical data: In some cases, determinant values may not be available for all
requested bill periods, such as for a new account. If data is available for the newer periods but not
the older periods, the program automatically adjusts the end period to reflect the data available. If
the start period you specify is earlier than the end of the available data, the program returns an
error message in the bill report.

For example, suppose an account has data for the last six bill periods but nothing prior to that. If
the start and end bill period parameters in a function were (0,12), the program would automatically
adjust the end period parameter to 6 for processing that account. If the start and end bill period
parameters in the function were (7,12), the program would return an error message for that
account, because there was no data available for the account for any bill period in the specified
range.
6-24 Rules Language User’s Guide

Rules for Using Functions
Parameter Types

A parameter of a function can usually be either a constant or an identifier; though some function
parameters must be identifiers.

The parameter value type may be IDENTIFIER, INTEGER, FLOAT, STRING, or DATE.

• If the type is IDENTIFIER, then an identifier is required.

• An INTEGER has no decimal point.

• A FLOAT has a decimal point.

• A STRING is any set of characters enclosed in quotes (“ ”).

• A DATE is in the form ‘mm/dd/yyyy’ or ‘mm/dd/yyyy hh:mm’.

IDENTIFIER is used for database identifiers, determinant identifiers, interval data handles, and
Time of Use handles.

An INTEGER may be used if a FLOAT is required, but not vice versa. If the type is INTEGER,
FLOAT, STRING, or DATE, a constant of that type or an identifier assigned a value with that
type must be used as the parameter value. The different types of parameters are listed on the next
page.

There is one special case. When specifying parameters for some functions, you must choose from
a set of predefined options that are expressed as a text string. For example, to specify the <type>
parameter for the INTDCOUNT function (page 9-9), you must select from “EXCLUDE,”
“INCLUDE,” “NON-ZERO,” “ALL,” “HOURS,” or “DAYS.” You can supply any of these
parameters using the identifier name format—that is, without quote marks—as long as you do not
use the same set of characters on the left side of an ASSIGNMENT Statement elsewhere in the
rate form.

For example, the following statement is acceptable, assuming that the variable name EXCLUDE is
not assigned a value elsewhere in the rate form:

NUM_MISS = INTDCOUNT(KWH_HNDL, EXCLUDE);

The following is also acceptable, because EXCLUDE appears once as a STRING parameter and
once as a variable name:

NUM_MISS = INTDCOUNT(KWH_HNDL, “EXCLUDE”);
EXCLUDE = 1

The following is not acceptable:

NUM_MISS = INTDCOUNT(KWH_HNDL, EXCLUDE);
EXCLUDE = 1
Rules Language Functions Overview 6-25

Rules for Using Functions
Parameter Name Type Notes*

<contract_kw> FLOAT

<database_code> STRING (3)

<database_identifier > IDENTIFIER (1)

<date_identifier|date_constant> DATE

<determinant_identifier> IDENTIFIER (2)

<end_bill_period_previous> INTEGER

<end_use_code> STRING (3)

<historical_kw> FLOAT

<historical_identifier> FLOAT (5)

<holiday_name> STRING (3)

<identifier|constant> FLOAT (4)

<interval_data_handle> IDENTIFIER

<‘recorder,channel’> STRING

<kva> FLOAT

<kw> FLOAT

<kwh> FLOAT

<lf> FLOAT

<metered_kw> FLOAT

<min_kw> FLOAT

<bill_period_previous> INTEGER

<operation> STRING (3)

<period> STRING (3)

<places> INTEGER

<rkva> FLOAT

<rkva_kw> FLOAT

<schedule_name> STRING (3)

<season_name> STRING (3)

<scalar_value> FLOAT

<start_bill_period_previous> INTEGER

<tou_handle> IDENTIFIER

<type> STRING (3)

<uom_code> STRING (3)
6-26 Rules Language User’s Guide

Rules for Using Functions
*Notes:
1. Only for parameters that must be a database identifier of the form table[key].column or

FACTOR[key].VALUE.

2. Only for parameters that must be a determinant. These identifiers are automatically marked
as historical, and their historical values are loaded before the rate form executes.

3. Parameter can be any literal identifier or constant (see discussion on previous page). If the
parameter you supply is an identifier and you have not assigned it a string value elsewhere in
the rate form, the program uses the identifier name as a string value. If TOTAL=1 (or is
unassigned) and OP_NAME= “TOTAL”, then TOTAL, OP_NAME, and “TOTAL” all
have the same string value.

4. Parameter can be any numeric identifier or constant.

5. Can be any determinant or record identifier with historical values.
Rules Language Functions Overview 6-27

Rules for Using Functions
6-28 Rules Language User’s Guide

Chapter 7
Working with Interval Data

This chapter describes how you work with Interval Data using the Oracle Utilities Rules Language,
including:

• Interval Data Functions Overview

• Timezones and DST

• Unit-of-Measure Rates and Quantities

• Loading Interval Data

• Creating Interval Data Masks

• Other Interval Data Operations

• Working with Enhanced/Generic Interval Data

• Deriving Billing Determinants and Values from Interval Data

• Examples of Working with Interval Data
Working with Interval Data 7-1

Interval Data Functions Overview
Interval Data Functions Overview
The Oracle Utilities Rules Language interval data functions compute values from interval data cuts
stored in the Oracle Utilities Data Repository. Cuts are referenced in the Rules Language by
interval data identifiers, interval data reference or interval data handles.

Interval data functions return either a new interval data reference or a scalar value (though in some
case several values are computed at the same time). While most interval data functions use only
one interval data reference as input, some take one or more interval data references as input and
return either another reference or a value. The assigned interval data identifier may be the same as
one of the input identifiers.

Note: If you assign an interval data reference in an identifier directly to another
identifier, the interval data in memory is copied so that changes to one
identifier do not affect the other.

Interval data functions take a start and end month as optional input parameters. If the end month
is omitted it is the same as the start month, if the start month is omitted it is assumed to be zero
(the current billing period).

Interval Data Function Errors
If an error occurs in any interval data function there are several possible outcomes. These are
determined first by the value of the INTD_ERROR_STOP identifier (if present), then by the
value of the On Rules Language Interval Data Error option (set on the Error Handling tab
of the Default Options dialog. The choices are:

The On Rules Language Interval Data Error option is used only if there is no
INTD_ERROR_STOP value.

If an interval data reference is returned from a function, the user can check the return value, and if
it is zero (0), the interval data function failed. In addition, the INTDATA_ERROR identifier is set
by every interval data function call. This identifier is zero (0) if the function was successful, one (1)
if an error occurred. Also, the INTDGETERRORCODE Function can be used to get the
internal error code if there is an error, and the INTDGETERRORMESSAGE Function can be
used to get the error message if there is an error.

INTD_ERROR_STOP Option Result

<1 or >3 Ignore Return scalar integer 0

1 Error Stop with error message

2 Warning Issue warning message, return
scalar integer 0

3 Informational Issue informational message,
return scalar integer 0
7-2 Rules Language User’s Guide

Interval Data Functions Overview
Types of Interval Data Handles
There are two kinds of interval data handles: data handles and “masks”. Data handles contain
interval values, while masks consist of zeros and ones only. Operators and functions produce
different results depending on whether the handle contains data or a mask. See Interval Data
Mask Operator Rules on page 4-28 for more information.

A mask results from any interval data operation (except the INTDLOAD Functions) that
produces a handle with only zeros and ones. INTDLOAD Functions load data cuts from the
Data Repository. To convert a data handle to a mask, divide it by itself. The result has only zeros
(where the original was zero) and ones everywhere else, and is a mask.

An interval data reference returned from a function may represent a cut retrieved directly from a
database, or it may represent a computed handle. Computed handles are handles that comprise
several recorder,channels, or are the result of non-INTLDOADxxx functions that return an
interval data reference (such as the INTDBLOCKOP Function or the INTDSCALAROP
Function).

Interval Data Function Parameters
Several of the interval data functions accept “operation”, “type” or “attribute” parameters. You
can use several different types of strings (including full name, abbreviation, or symbol) to
represent the same operation. The following table lists the correspondences. All operations on a
line are equivalent. As function parameters, all should be enclosed in double quotes (omitted here).
The symbols are not listed below with the specific function parameters.

Interval Data Reference Values and Attributes
Along with the interval data, the Rules Language automatically computes a group of summary
values about each handle. These are the result of adding, averaging, or taking the maximum of the
interval values in the handle. This data is stored in memory until the program determines that the
rate form no longer needs it, or until you explicitly release it using the INTDRELEASE
Function. You can apply statements to this group of values by identifying them with the
convention <HNDL.ATTRIBUTE>, where HNDL is the interval data handle that you assigned
in the INDTLOAD statement (which automatically refers to the entire handle), and ATTRIBUTE
is the name of a particular attribute of the handle. For example, one of the computed summary
values is AVERAGE, which is the average of all non-missing values in the interval data record. If
you used the handle INT_MY_HNDL, you could retrieve the average value in using an
Assignment Statement as follows:

HNDL_AVG = INT_MY_HNDL.AVERAGE;

Full Name Abbreviation Symbol

MAXIMUM MAX >=

MIMIMUM MIN <=

TOTAL ADD +

AVERAGE AVG

AVERAGE_NZ AVG_NZ

ABSOLUTE ABS

SUBTRACT -

MULTIPLY *

DIVIDE_BY /
Working with Interval Data 7-3

Interval Data Functions Overview
Following is a list of values that are automatically loaded whenever you load an interval data cut
using one of the INTDLOAD Functions. They are the result of adding, averaging, or taking the
maximum of the interval values.

Value Description

TOTAL The sum of all interval values in the interval data handle.

ENERGY Total energy represented by the handle, computed properly for its
UOM according to the TOTAL flag in the UOM Table. The UOM
for the interval values must be either KW or KWH. If not, result is
0.

AVERAGE Average of all non-missing interval values.

AVERAGE_NZ Average of all nonzero interval values.

MAXIMUM Peak value (computed using actual values, not the absolute value of
the values).

MAXIMUMn Value of nth peak (e.g., MAXIMUM2 reports second highest peak.
For n, you may supply any value from 2 through 10).

KW_MAXIMUM The maximum KW value in the handle. If the UOM is KWH, the
actual maximum is multiplied by the IPH (intervals per hour) to
get this value.

ABS_MAXIMUM Peak value (computed using absolute maximum). “Absolute”
means the program converts negatives to positives and selects the
largest.

MAXDATE Date and time of the peak interval.

MAXDATEn Date and time of nth peak interval (e.g., MAXDATE2 reports the
date and time of second highest peak. For n, you may supply any
value from 2 through 10).

ABS_MAXDATE Date and time of peak interval (computed using
ABS_MAXIMUM).

MINIMUM Minimum interval value in the handle (computed using the actual
values, not the absolute value of the values).

MINIMUM_NZ Minimum of all nonzero values in the handle.

MINDATE Date and time that the minimum occurred.

LF Load factor (load factor=average interval/maximum interval
value) (computed using the absolute maximum).

STARTTIME Date and time of the start of the handle data.

STOPTIME Date and time of the end of the handle data.

COUNT Total number of intervals in the handle.

COUNT_NZ Total number of nonzero intervals in the handle.

IPH Intervals per hour.

SPI Seconds per interval.

UOM Unit of measure, denoted by a code (1 - 99).
7-4 Rules Language User’s Guide

Interval Data Functions Overview
In addition, some of these values may be set in the Rules Language using a statement of the form:

HNDL.ATTRIBUTE = <new_value>;

Attributes that can be used in this way are:

• UOM: Sets the Unit of Measure for the handle (numeric 1 - 99).

• RECORDER: Sets the Recorder ID for the handle.

• CHANNEL: Sets the Channel number for the handle.

• DESCRIPTOR: Sets the Description field for the handle

• STATUSCODE: Set all interval value status codes in the handle to the specified single
character.

• ORIGIN: Sets the Origin field for the handle to Metered, Profiled or Computed (“M”, “P”,
or “C”).

• PARENTKEY: Sets the Parent Key for the cut.

Note: The following functions set the ORIGIN to Computed and the TIMESTAMP to now:
INTDCREATEMASK Functions, INTDSCALE, INTDSCALAROP, INTDROLLAVG,
INTDROLLPEAK, INTDJOIN, INTDSMOOTH, INTDBLOCKOP, and
INTDSHIFTSTARTTIME. In addition the INTDLOAD Functions set these values if several
handles are added together. In any Computed handle, the following meter values are set to 0:
“START_READING”, “STOP_READING”, “METER_MULT”, “METER_OFFSET”, and
“READING_VALUE”.

DSTTOTAL Total of the interval values in the fall Daylight Savings Hour (the
2:00 hour in the last Sunday in October). If the handle does not
include this hour, the value is 0.

DSTENERGY Total of the interval values in the fall Daylight Savings Hour (the
2:00 hour in the last Sunday in October). If the handle does not
include this hour, the value is 0. The Unit of Measure for the
intervals must be KW or KWH; otherwise, the value returned is 0.

MULTIPLIER Pulse multiplier*.

OFFSET Pulse offset*.

RECORDER Recorder identifier. Used only with standard interval data tables.
When an interval data handle is computed, this is set to
“COMPUTED.”

CHANNEL Channel number. Used only with standard interval data tables.
When an interval data handle is computed, this is set to “0.”

RECORDERCHAN Recorder,channel. Used only with standard interval data tables.
When an interval data handle is computed, this is set to
“COMPUTED,0.”

PARENTKEY A string containing the identity of the parent of the handle. Used
only with enhanced interval data tables. When an interval data
handle is computed, this is set to “COMPUTED.”

Value Description
Working with Interval Data 7-5

Interval Data Functions Overview
Combining and Comparing Interval Data Handles
The following are some ways that handles can be combined or compared:

If HNDL contains a valid interval data handle, then

HNDL = HNDL;

will do nothing.

However, the statement

HNDL1 = HNDL2;

creates a whole new handle and copies the data, so freeing or changing either handle has no effect
on the other.

The statement

HNDL3 = HNDL1 + HNDL2;

where HNDL1 is valid and HNDL2 is zero will return HNDL1 for the + and - operators, a zero
handle for any other operator.

You can compare an interval data handle to zero. A zero handle is one that was created due to an
error, such as a load failing. The expression in the IF statement

HNDL = INTDLOAD(...);
IF HNDL <> 0 THEN

will return true if the HNDL has been assigned a valid handle, and false if the load failed.

You can also compare interval data references by comparing the identifiers or using the
INTDISEQUAL Function. For example:

HNDL1 = INTDLOAD(...);
HNDL2 = INTDLOAD(...);
EQUAL = INTDISEQUAL (HNDL1, HNDL2)
IF EQUAL > 0

THEN ...
7-6 Rules Language User’s Guide

Timezones and DST
Timezones and DST
This section describes support for timezones and Daylight Savings Time (DST) in the Oracle
Utilities Rules Language, including:

• Timezone Support

• DST Support in the US

Timezone Support
The enhanced interval data format supports timezones, represented by a number that is the
number of 1/2 hours between GMT and the timezone, to the west. Thus EST has a timezone
value of 10, and Germany would have one of 46. There is the ability on interval data import to
specify the imported cut's timezone (see Importing Interval Data on page 3-5 of the Data
Manager User’s Guide). This results in start and stop time changes if the cut is from a different
timezone, otherwise it simply sets the timezone value. The table below lists all the timezones
supported by the Rules Language.

Timezone Codes

CODE NAME TIMEZONE DST

GMT Greenwich Mean Time 0 N

BST British Summer Time 47 N

BSTA British Summer Time - Adjusted 0 A

IST Irish Summer Time 47 N

ISTA Irish Summer Time - Adjusted 0 A

WET Western Europe Time 0 N

WEST Western Europe Summer Time 0 Y

WESTA Western Europe Summer Time - Adjusted 0 A

CET Central Europe Time 46 N

CEST Central Europe Summer Time 46 Y

CESTA Central Europe Summer Time - Adjusted 46 A

EET Eastern Europe Time 44 N

EEST Eastern Europe Summer Time 44 Y

EESTA Eastern Europe Summer Time - Adjusted 44 A

MSK Moscow Time 42 N

MSD Moscow Summer Time 42 Y

MSDA Moscow Summer Time - Adjusted 42 A

AST Atlantic Standard Time 8 N

ADT Atlantic Daylight Time 8 Y

ADTA Atlantic Daylight Time - Adjusted 8 A

EST Eastern Standard Time 10 N
Working with Interval Data 7-7

Timezones and DST
EDT Eastern Daylight Time 10 Y

EDTA Eastern Daylight Time - Adjusted 10 A

CST Central Standard Time 12 N

CDT Central Daylight Time 12 Y

CDTA Central Daylight Time - Adjusted 12 A

MST Mountain Standard Time 14 N

MDT Mountain Daylight Time 14 Y

MDTA Mountain Daylight Time - Adjusted 14 A

PST Pacific Standard Time 16 N

PDT Pacific Daylight Time 16 Y

PDTA Pacific Daylight Time - Adjusted 16 A

UTC-12 Universal Time Coordinated - 12 hours 24 N

UTC-12D Universal Time Coordinated - 12 hours (DST) 24 Y

UTC-12DA Universal Time Coordinated - 12 hours (24 Hr
Adjusted)

24 A

UTC-11 Universal Time Coordinated - 11 hours 22 N

UTC-11D Universal Time Coordinated - 11 hours (DST) 22 Y

UTC-11DA Universal Time Coordinated - 11 hours (24 Hr
Adjusted)

22 A

UTC-10 Universal Time Coordinated - 10 hours 20 N

UTC-10D Universal Time Coordinated - 10 hours (DST) 20 Y

UTC-10DA Universal Time Coordinated - 10 hours (24 Hr
Adjusted)

20 A

UTC-9 Universal Time Coordinated - 9 hours 18 N

UTC-9D Universal Time Coordinated - 9 hours (DST) 18 Y

UTC-9DA Universal Time Coordinated - 9 hours (24 Hr
Adjusted)

18 A

UTC-8 Universal Time Coordinated - 8 hours 16 N

UTC-8D Universal Time Coordinated - 8 hours (DST) 16 Y

UTC-8DA Universal Time Coordinated - 8 hours (24 Hr
Adjusted)

16 A

UTC-7 Universal Time Coordinated - 7 hours 14 N

UTC-7D Universal Time Coordinated - 7 hours (DST) 14 Y

UTC-7DA Universal Time Coordinated - 7 hours (24 Hr
Adjusted)

14 A

CODE NAME TIMEZONE DST
7-8 Rules Language User’s Guide

Timezones and DST
UTC-6 Universal Time Coordinated - 6 hours 12 N

UTC-6D Universal Time Coordinated - 6 hours (DST) 12 Y

UTC-6DA Universal Time Coordinated - 6 hours (24 Hr
Adjusted)

12 A

UTC-5 Universal Time Coordinated - 5 hours 10 N

UTC-5D Universal Time Coordinated - 5 hours (DST) 10 Y

UTC-5DA Universal Time Coordinated - 5 hours (24 Hr
Adjusted)

10 A

UTC-4 Universal Time Coordinated - 4 hours 8 N

UTC-4D Universal Time Coordinated - 4 hours (DST) 8 Y

UTC-4DA Universal Time Coordinated - 4 hours (24 Hr
Adjusted)

8 A

UTC-3 Universal Time Coordinated - 3 hours 6 N

UTC-3D Universal Time Coordinated - 3 hours (DST) 6 Y

UTC-3DA Universal Time Coordinated - 3 hours (24 Hr
Adjusted)

6 A

UTC-2 Universal Time Coordinated - 2 hours 4 N

UTC-2D Universal Time Coordinated - 2 hours (DST) 4 Y

UTC-2DA Universal Time Coordinated - 2 hours (24 Hr
Adjusted)

4 A

UTC-1 Universal Time Coordinated - 1 hour 2 N

UTC-1D Universal Time Coordinated - 1 hour (DST) 2 Y

UTC-1DA Universal Time Coordinated - 1 hour (24 Hr
Adjusted)

 2 A

UTC Universal Time Coordinated 0 N

UTCD Universal Time Coordinated (DST) 0 Y

UTCDA Universal Time Coordinated (24 Hr Adjusted) 0 A

UTC+1 Universal Time Coordinated + 1 hour 46 N

UTC+1D Universal Time Coordinated + 1 hour (DST) 46 Y

UTC+1DA Universal Time Coordinated + 1 hour (24 Hr
Adjusted)

46 A

UTC+2 Universal Time Coordinated + 2 hours 44 N

UTC+2D Universal Time Coordinated + 2 hours (DST) 44 Y

UTC+2DA Universal Time Coordinated + 2 hours (24 Hr
Adjusted)

44 A

UTC+3 Universal Time Coordinated + 3 hours 42 N

CODE NAME TIMEZONE DST
Working with Interval Data 7-9

Timezones and DST
UTC+3D Universal Time Coordinated + 3 hours (DST) 42 Y

UTC+3DA Universal Time Coordinated + 3 hours (24 Hr
Adjusted)

42 A

UTC+4 Universal Time Coordinated + 4 hours 40 N

UTC+4D Universal Time Coordinated + 4 hours (DST) 40 Y

UTC+4DA Universal Time Coordinated + 4 hours (24 Hr
Adjusted)

40 A

UTC+5 Universal Time Coordinated + 5 hours 38 N

UTC+5D Universal Time Coordinated + 5 hours (DST) 38 Y

UTC+5DA Universal Time Coordinated + 5 hours (24 Hr
Adjusted)

38 A

UTC+6 Universal Time Coordinated + 6 hours 36 N

UTC+6D Universal Time Coordinated + 6 hours (DST) 36 Y

UTC+6DA Universal Time Coordinated + 6 hours (24 Hr
Adjusted)

36 A

UTC+7 Universal Time Coordinated + 7 hours 34 N

UTC+7D Universal Time Coordinated + 7 hours (DST) 34 Y

UTC+7DA Universal Time Coordinated + 7 hours (24 Hr
Adjusted)

34 A

UTC+8 Universal Time Coordinated + 8 hours 32 N

UTC+8D Universal Time Coordinated + 8 hours (DST) 32 Y

UTC+8DA Universal Time Coordinated + 8 hours (24 Hr
Adjusted)

32 A

UTC+9 Universal Time Coordinated + 9 hours 30 N

UTC+9D Universal Time Coordinated + 9 hours (DST) 30 Y

UTC+9DA Universal Time Coordinated + 9 hours (24 Hr
Adjusted)

30 A

UTC+10 Universal Time Coordinated + 10 hours 28 N

UTC+10D Universal Time Coordinated + 10 hours (DST) 28 Y

UTC+10DA Universal Time Coordinated + 10 hours (24 Hr
Adjusted)

28 A

UTC+11 Universal Time Coordinated + 11 hours 26 N

UTC+11D Universal Time Coordinated + 11 hours (DST) 26 Y

UTC+11DA Universal Time Coordinated + 11 hours (24 Hr
Adjusted)

26 A

CODE NAME TIMEZONE DST
7-10 Rules Language User’s Guide

Timezones and DST
DST Support in the US
Daylight Savings Time (DST) changes the clock the users see; for instance in the United States, the
clock goes straight from 1:59:59AM to 3:00:00AM on the Spring DST day, and there are two
1:00:00AM hours in the Fall DST day. These are called “DST transitions”. Standard time has no
adjustments: every day is 24 hours. Interval data usage is measured by meters with internal clocks
that may or may not adjust for DST, and as the interval data is processed it may or may not be
“adjusted” to 24 hour days. Thus the start and stop times of a cut of interval data may be in one of
several states:

• The cut times are on standard time, and that matches the user's time.

• The cut times are on standard time and overlap the Spring DST day, when the user goes on
DST. In this case, the cut stop time (the time from the meter of the last interval) is one hour
before the time the user would indicate. For example, the cut stop is 8:59:59AM, but the user
sees the last interval ending at 9:59:59AM.

• The cut times are on standard time and overlap the Fall DST day, when the user goes off
DST. In this case, the cut start time (the time from the meter of the first interval) is one hour
before the time the user would indicate. For example, the cut start is 8:00:00AM, but the user
sees the first interval starting at 9:00:00AM.

• The cut times are on standard time and fall entirely within the user's DST period. In this case
all cut times are one hour before the time the user would indicate.

• The cut times reflect DST - one hour less in the Spring, one hour more in the Fall, and
changes as the user changes. All cut and interval times match what the user sees.

• The cut times reflect DST - one hour less in the Spring, one hour more in the Fall, and the
user stays on Standard time.

• The cut is a DST cut adjusted to 24 hours per day. If the cut overlaps the April transition,
intervals with zero value and missing status is inserted to make up the hour, if the cut overlaps
the October transition, corresponding intervals are averaged to get one hour from the two
1:00AM hours.

Oracle Utilities Billing Component supports interval data reads where the meter's clock is set
differently from the account's clock. This occurs because the meter is set to Standard time, while
the account may be on Daylight Savings Time. In addition, 3rd party data may come in where its
times are based on a timezone different form the account's that uses the data. It is also possible
that one account may have two meters that are in different timezones.

When Oracle Utilities Billing Component reports a date and time that is based on interval data
(such as the date and time of a maximum), the date and time is reported as seen by the account,
and not by the meter.

When Oracle Utilities Billing Component computes a real time price by multiplying the price data
(possibly from a 3rd party) by the usage data, the corresponding intervals are aligned such that the
price corresponds to the usage in the same real time.

All interval data is stored with the time adjusted to match the accounts that use it. An option on
the interval data import dialog and command line (see Importing Interval Data on page 3-5 on
the Data Manager User’s Guide) allows the user to specify the timezone of the input file and the
timezone of its target accounts.

Important Note
When loading or creating cuts whose Start Time is within the Fall DST transition hour (01:00:00
through 01:59:59 in the United States), the second of the repeated hours is used as the start of the
cut. This applies to ALL INTDxxx Rules Language functions.
Working with Interval Data 7-11

Unit-of-Measure Rates and Quantities
Unit-of-Measure Rates and Quantities
This section describes how different types of Units-of-Measure (UOMs) are supported in the
Oracle Utilities Rules Language, including:

• UOM Categories

• UOM Mapping

• Mapping Data

• Rules Language Functions

UOM Categories
There are three categories of interval data UOMs: those that measure a rate, those that measure a
quantity, and those that measure something else. For example:

• kW and GPM measure rates (the flow of energy per hour or gallons per minute),

• kWh and Gallons measure quantities (energy used or gallons)

• Temperature is something else.

In the UOM table in the Oracle Utilities Data Repository, rate UOMs have an AGGREGATE
value of 'A' (average), while quantity UOMs have an AGGREGATE value of 'T' (total).

Many UOMs come in complementary pairs, one is the measure of a quantity and the other is a
measure of the rate (quantity per time unit). It is possible to convert one to the other, and to
express maximums and total of one in terms of the other.

UOM Mapping
Oracle Utilities has defined the mappings for the standard UOMs described in the Oracle Utilities
Load Analysis documentation. The mapping must relate the rate UOM, the quantity UOM, and
the time unit, where rate = quantity/time unit. The time unit will be measured in seconds. From
the example above:

Interval Data Cut Conversion
The user may wish to convert a cut of one UOM into either its rate UOM or its quantity UOM. If
a cut whose UOM is a quantity is converted to a quantity UOM, it is unchanged, and similarly for
a rate to rate conversion. If a conversion is attempted on a UOM that is a “something else” UOM
and is not mapped, it will be unchanged.

The following two cut conversions are supported in the Rules Language. When a cut is converted
its UOM must also be changed.

Quantity to Rate
If a quantity UOM is converted to its complementary rate UOM, each value is divided by the
seconds per interval and then multiplied by the seconds per time unit:

Rate = (Quantity per interval / seconds per interval) * seconds per time unit

If there is more than one rate UOM for the quantity UOM, the rate with the largest time unit will
be used.

Rate Quantity Time Unit (Seconds)

KW KWh 3600

GPM Gallons 60
7-12 Rules Language User’s Guide

Unit-of-Measure Rates and Quantities
Rate to Quantity
If a rate UOM is converted to its complementary quantity UOM, each value is divided by the
seconds per time unit and then multiplied by the seconds per interval:

Quantity per interval = (Rate / seconds per time unit) * seconds per interval

Interval Data Value Conversion
There are several values derived from a cut that can also be converted from one UOM to another.
The two of interest are the maximums and the total (for rate to quantity - the rate total is not
needed). Both of these are converted using the formulas above. It is also possible to retrieve the
cut maximums as either a rate or a quantity and the total as a quantity.

Mapping Data
An internal, hard-coded table contains the mapping information. It contains three fields per
“record”:

• UOMCODERATE (VARCHAR(64)): Reference to UOM table. This is the key.

• UOMCODEQUANTITY (VARCHAR(64)): Reference to UOM table.

• SECONDSPERUNITINTEGER - Not NULL

There can be only one quantity for a given rate, however, several rates may correspond to the same
quantity. This mapping does not support time units greater than a day.

The current mappings are:

UOM Code - Rate UOM Code - Quantity Seconds Per Unit

02 01 3600

22 03 3600

23 04 3600

52 51 3600

72 53 3600

73 54 3600

60 69 60

63 70 60

64 70 1

77 70 3600

82 81 3600

84 83 3600
Working with Interval Data 7-13

Unit-of-Measure Rates and Quantities
Rules Language Functions
A number of interval data functions in the Rules Language can be used to convert UOM rates and
quantities.

INTDVALUE
The INTDVALUE Function supports the following attributes:

• QUANTITY_TOTAL: Total converted to quantity if rate UOM, else total

• QUANTITY_MAX#: Maximum converted to quantity if rate UOM, else maximum. # is 1 -
10, or omitted, and follows the same rules as in MAXIMUM#.

• RATE_MAX#: Maximum converted to rate if quantity UOM, else maximum. # is 1 - 10, or
omitted, and follows the same rules as in MAXIMUM#.

QUANTITY_TOTAL is the same as ENERGY for UOMs 01 and 02. RATE_MAX is the same
as KW_MAXIMUM for the same UOMs. MAX, QUANTITY_MAX and RATE_MAX are all
equal for UOMs that to not appear in the UOMRATEQUANTITY table.

These attributes are also available in the usual HNDL.ATTRIBUTE form. See Interval Data
Reference Values and Attributes on page 7-3 for more information.

INTDSCALAROP
The INTDSCALAROP Function supports two operations: QUANTITY and RATE. Neither
will use the scalar value parameter. If the operation is QUANTITY the handle will be converted to
its quantity UOM, if the parameter is RATE it will be converted to its rate UOM. If the handle's
UOM is not mapped or is the same as the operation UOM, the handle will be copied unchanged.

Interval Data Browser
The interval data browser (see Browsing Interval Data in the Interval Database on page 6-7
on the Data Manager User’s Guide) displays additional information related to the UOM of a cut, if
the cut's UOM is stored in the Oracle Utilities Data Repository. The UOM information shown
may include:

• UOM Code, Name and Unit: These values as they appear in the database.

• UOM Aggregate: The default operation when scaling or aggregating data within one cut (A
(Average), M (Maximum) or T (Total).

• UOM Totalize: The default operation when performing an INTDLOADUOM that
“combines” several channels (A (Average), M (Maximum) or T (Total).

• UOM Rate/Quantity: As defined via the UOMRATEQUANTITY table (Q (Quantity), R
(Rate) or O (Other).

• UOM Related UOM Code: If the UOM is a Rate this will be the corresponding Quantity
UOM, and vice versa.

• UOM Seconds Per Unit: If the UOM is a Rate this will be seconds per unit quantity.
7-14 Rules Language User’s Guide

Loading Interval Data
Loading Interval Data
This section describes loading interval data in the Rules Language, including:

• INTDLOAD Functions

• Loading Overlapping Cuts

• Loading Partial Intervals

• Notes On Loading Interval Data

INTDLOAD Functions
The INTDLOAD Functions are used to load standard interval data for use in calculations in the
Rules Language. For instance, you might load an interval data cut that represents an account’s
usage for the current bill period in order to derive the billing determinants used in calculating that
account’s bill.

There are many different INTDLOAD Functions, each used for different purposes. The table
below outlines how and when each is used. Full descriptions of these functions can be found in
Chapter 9: Interval Data Function Descriptions in the Oracle Utilities Rules Language Reference
Guide.

To load data based on this: Use:

A specified bill determinant or
recorder,channel for the current
bill period

INTDLOAD Function on page 9-34

A specific interval data cut, based
on recorder,channel, and start
time

INTDLOADACTUALCUT Function on page 9-35

A specified bill determinant or
recorder,channel over a specified
date range

INTDLOADDATES Function on page 9-36

A specified bill determinant or
recorder,channel for a specified
number of historical bill periods

INTDLOADHIST Function on page 9-38

A list of recorder,channels INTDLOADLIST Function on page 9-39

A list of recorder,channels over a
specified date range

INTDLOADLISTDATES Function on page 9-40

All recorder,channels (or a list of
recorder,channels) that are billed
and record kW or kWh

INTDLOADLISTENERGY Function on page 9-41

A list of recorder,channels for a
specified number of historical bill
periods

INTDLOADLISTHIST Function on page 9-42

A specified recorder,channel INTDLOADRELATEDCHANNEL Function on
page 9-43

All channels belonging to an
Aggregation Group

INTDLOADSP Function on page 9-44
Working with Interval Data 7-15

Loading Interval Data
Note: Page numbers in the table refer to the Oracle Utilities Rules Language Reference Guide.

About Cut Start and Stop Times
This applies to all INTDLOADxxx functions, except INTDLOADLISTENERGY. The functions use
the cuts whose start and stop time are closest to the bill period start and stop time, as specified for
the billing cycle code that applies to the account. If the account itself has a start or stop time, that
takes precedence. If the account’s channels (or the list’s channels for INTDLOADLIST) have
different start and stop times, the program automatically applies the earliest start and the earliest
stop among the channels.

Accessing Multiple Interval Databases from the same Rate Schedule
You can load interval data from more than one interval data source in the same rate schedule using
either INTDOPEN or INTDLOADxxx. When interval data has been opened or loaded in the
rate form, you can use other functions as normal on the data.

Using INTDOPEN:
The INTDLOAD Function enables you to open multiple Interval Data Databases from a single
rate form.

Using INTDLOADxxx functions:
To load interval data from a rate form, use the following format:

<interval_data_reference> = INTDLOADxxx(“<file and path name to interval
database>;<determinant_identifier|recorder,channel>”);

Where:

• <file and path name to interval database> is a string containing the absolute path and file
name of the Interval Database, followed by a semi-colon, and the
<determinant_identifier|recorder,channel>. The string can have no spaces, but can name
any supported file type. The interval database file can be in any of the following formats:

• Enhanced Oracle Utilities Input/Output Format (*.lse)

• Oracle Utilities Standard Format (*.inp)

• Oracle Utilities Comma Separated Format (*.csv)

• Oracle Utilities Standard XML Format (*.xml)

This applies to all INTDLOADxxx functions.

Example: Your Interval Data Options (see the Data Manager User’s Guide) are set to retrieve
interval data from: c:\lodestar\user\getwell.lse. Another interval data file is located at:

A recorder,channel for a specified
start and stop time [from the
Interval Data Staging tables)

INTDLOADSTAGING Function on page 9-46

A specified Unit-of-Measure
(UOM) for the current bill period

INTDLOADUOM Function on page 9-47

A specified Unit-of-Measure
(UOM) over a specified date
range

INTDLOADUOMDATES Function on page 9-48

A specified Unit-of-Measure
(UOM) for a specified number of
historical bill periods

INTDLOADUOMHIST Function on page 9-49

To load data based on this: Use:
7-16 Rules Language User’s Guide

Loading Interval Data
d:\lodestar\user\getwell2.lse, and you need to load data from that file also. You could load
interval data from the second file with the following statement:

HNDL_2 = INTDLOAD (“d:\lodestar\user\getwell2.lse;1700,1”);

Another example might look like this:

// Load test data for the current bill period
CUTNAME = "d:\comndata\testfile.lse;RECORDER_TEST,1";
HNDL = INTDLOAD(CUTNAME);

Loading Interval Data from Relational Database Tables
You can also load interval data from multiple relational database tables in the Oracle Utilities Data
Repository using the following functions:

• INTDLOAD Function

• INTDLOADDATES Function

• INTDLOADHIST Function

• INTDLOADLIST Function

• INTDLOADLISTHIST Function

• INTDLOADLISTDATES Function

To load interval data from the relational database, use the following format:

<interval_data_reference> = INTDLOADxxx(“[QUAL/<alternate_qualifier>;]RDB/
<alternate_table>;<recorder,channel>”);

Where:

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded.

• When an alternate qualifier is specified, all database calls for the function will be directed
at the specified qualifier, with one exception. In the case of INTDLOADLISTxxx()
functions, the list query alone will be fetched from the original qualifier.

• The meta-data of the alternate qualifier must be the same as the original qualifier.

• When using an alternate qualifier and processing in the context of an Account (such as
when running billing via Oracle Utilities Billing Component), the account must be
present in both the qualifiers.

• <alternate_table> is a string containing the name of a table with the same schema as the
LSCHANNELCUTHEADER table. The name of this table must begin with the letters
“LSC”. Also, this table must have two child tables, one with column VALUESCODES and
one with column SEQUENCE, and which have the same schema as the
LSCHANNELCUTDATA and LSCHANNELCUTEDITS tables, respectively. This table
must also have one parent table, the CHANNEL table, which in turn also has one parent
table, the RECORDER table.

• <recorder,channel> is an identifier for a particular recorder-ID, channel-number in the
Interval Database.

For example:

// Header data is stored in LSCHANNELHEADERVERS table
CUTNAME = "RDB/LSCHANNELHEADERVERS;RECORDER_TEST,1";
HNDL = INTDLOADDATES(CUTNAME, BILL_START, BILL_STOP);
Working with Interval Data 7-17

Loading Interval Data
Saving Data

You can also save data to an alternate qualifier and/or table using the SAVE TO CHANNEL
statement, using the following format:

SAVE <HNDL> TO CHANNEL “[QUAL/<alternate_qualifier>;]RDB/
<alternate_table>;<recorder,channel>”);

Where:

• <HNDL> is the interval data handle you wish to save.

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded (see above).

• <alternate_table> is a string containing the name of a table with the same schema as the
LSCHANNELCUTHEADER table. The name of this table must begin with the letters
“LSC” (see above).

• <recorder,channel> is an identifier the recorder-ID, channel-number you wish to save the
data to.

For example:

// Load data from LSCHVERS table
HNDL = INTDLOADDATES(“RDB/LSCHVERS;TEST,1”, BILL_START, BILL_STOP);
// Save data to LSCHVERS2 table in PRICING qualifier
SAVE HNDL TO CHANNEL "QUAL/PRICING;RDB/LSCHVERS2;TEST,1";

Deleting Data

You can also delete interval data from an alternate qualifier and/or table using the
INTDDELETE Function, using the following format:

<interval_data_reference> = INTDDELETE(“[QUAL/<alternate_qualifier>;]RDB/
<alternate_table>;<recorder,channel>”);

Where:

• <alternate_qualifier> is a string containing the name of a alternate database qualifier
containing the interval data to be loaded (see above).

• <alternate_table> is a string containing the name of a table with the same schema as the
LSCHANNELCUTHEADER table. The name of this table must begin with the letters
“LSC” (see above).

• <recorder,channel> is an identifier the recorder-ID, channel-number you wish to delete.

For example:

// Save data to LSCHVERS2 table in PRICING qualifier
SAVE HNDL TO CHANNEL "QUAL/PRICING;RDB/LSCHVERS2;TEST,1";
// Delete cut “Test,1” from LSCHVERS table
DEL_HNDL = INTDDELETE(“RDB/LSCHVERS;TEST,1”, BILL_START, BILL_STOP);
7-18 Rules Language User’s Guide

Loading Interval Data
INTDLOADEX Functions
The INTDLOADEX functions are used to load interval data for use in calculations in the Rules
Language from Enhanced Interval Data table. For instance, you might load an interval data cut
that represents an account’s usage for the current bill period in order to derive the billing
determinants used in calculating that account’s bill.

There are many different INTDLOADEX functions, each used for different purposes. The table
below outlines how and when each is used. Full descriptions of these functions can be found in
Chapter 9: Interval Data Function Descriptions in the Oracle Utilities Rules Language Reference
Guide.

See Working with Enhanced/Generic Interval Data on page 7-30 for more information about
working with interval data stored in enhanced/generic interval data tables.

To load data based on this: Use:

A specific interval data cut from a
specified Enhanced Interval Data
table

INTDLOADEXACTUAL Function on page 9-88

A specific interval data cut from
an Enhanced Interval Data
Versioning table

INTDLOADEXCUT Function on page 9-89

A user-specified date range from a
specified Enhanced Interval Data
table.

INTDLOADEXDATES Function on page 9-90

A specified bill determinant for
the current bill period from a
specified Enhanced Interval Data
table

INTDLOADEX Function on page 9-93

A list of parent records with
related interval data in a specified
Enhanced Interval Data table

INTDLOADEXLIST Function on page 9-94

A list of parent records for a user-
specified date range with related
interval data in a specified
Enhanced Interval Data table

INTDLOADEXLISTDATES Function on page 9-95

Interval data for the related meter
specified in the Oracle Utilities
Meter Data Management Meter
table from a specified Enhanced
Interval Data table

INTDLOADEXRELATEDCHANNEL Function
on page 9-96
Working with Interval Data 7-19

Loading Interval Data
Loading Overlapping Cuts
On occasion, cuts belonging to the same recorder,channel stored in the Oracle Utilities Data
Repository may overlap. That is, the start time of one cut is earlier than the stop time of another
cut. When interval data functions load cuts from the database, they combine overlapping cuts that
fall within the specified start and stop times and create a handle that comprises portions of all the
overlapping cuts. Where overlaps occur, the Rules Language uses the cut with the latest Start
Time.

For example suppose the following three cuts for the same recorder,channel (‘1700,1’) were stored
in the database with the same timestamp:

Cut A

• Start Time: 01/01/2000 00:00:00

• Stop Time: 01/15/2000 23:59:50

Cut B

• Start Time: 01/10/2000 00:00:00

• Stop Time: 01/31/2000 23:59:50

Cut C

• Start Time: 01/13/2000 00:00:00

• Stop Time: 01/25/2000 23:59:59

If you load this recorder,channel for the entire month of January 2000 using the
INTDLOADDATES Function, as follows:

HNDL = INTDLOADDATES (‘1700,1’, “01/01/2000 00:00:00”, “01/31/2000
23:59:59”);

the handle returned would comprise:

1. 01/01/2000 00:00:00 through 01/09/2000 23:59:59 from Cut A

01/01 01/15

01/10 01/31

01/13 01/25

A

B

C

01/01 01/15

01/10 01/31

01/13 01/25

A

B

C

1 2 3 4
7-20 Rules Language User’s Guide

Loading Interval Data
2. 01/10/2000 00:00:00 through 01/12/2000 23:59:59 from Cut B

3. 01/13/2000 00:00:00 through 01/25/2000 23:59:59 from Cut C

4. 01/26/2000 00:00:00 through 01/31/2000 23:59:59 from Cut B

Loading Overlapping Cuts Based on Timestamp
By default, the Rules Language uses only the start time to select which cut to load. However, the
Rules Language can also load cuts based on a combination of the latest Start Time and latest
Timestamp. To enable this option, include the following parameter in the LODESTAR.CFG file:

INTDJOINTIMESTAMP

See LODESTAR.CFG on page 2-2 of the Oracle Utilities Energy Information Platform Configuration
Guide for more information about the LODESTAR.CFG file.

For example, if Cut B in the previous example had a timestamp later than cuts A and C and you
load this recorder,channel for the entire month of January 2000 using the INTDLOADDATES
Function, as follows:

HNDL = INTDLOADDATES (‘1700,1’, “01/01/2000 00:00:00”, “01/31/2000
23:59:59”);

the handle returned would comprise:

1. 01/01/2000 00:00:00 through 01/09/2000 23:59:59 from Cut A

2. 01/10/2000 00:00:00 through 01/31/2000 23:59:59 from Cut B

In this case, because Cut B has a later timestamp than Cut C, the Rules Language loads it and
ignores Cut C entirely.

Loading Partial Intervals
Partial intervals refer to situations where an interval data start and/or end cut boundary does not
land on an even 15, 30, or 60 minute boundary. This is because the stop time is the time the meter
was read. For example, a partial interval cut may end at 12:41 instead of 12:30 or 12:45.

Data Manager Loading/Extraction
The interval data import utilities (see Importing Interval Data on page 3-5 on the Data Manager
User’s Guide) allow a partial interval cut to be loaded into the interval data database as is, without
adjusting the cut boundaries. For example: an interval data cut which has a start and end read of
07/01/98 01:28– 07/30/98 12:41 is loaded and stored with the same exact reads.

The interval data import utilities also allow a partial interval cut to be extracted from the interval
data database as is, without adjusting the cut boundaries.

01/01 01/15

01/10 01/31

01/13 01/25

A

B

C

1 2
Working with Interval Data 7-21

Loading Interval Data
The interval data browser (see Browsing Interval Data in the Interval Database on page 6-7
on the Data Manager User’s Guide) displays the partial interval data cut information as is, without
adjust the boundaries or meter readings.

Oracle Utilities Billing Component Calculation Process
Though partial interval cuts are loaded into the interval data database as is, Oracle Utilities Rules
Language calculation processes still use full intervals in processing. Assume the following interval
data cut is involved in calculation:

• Start Reading: 3425

• Stop Reading: 5678

• Start Time: 02/01/1998 00:41

• Stop Time: 03/02/1998 06:24

Oracle Utilities Billing Component should follow its current rules for determining the start and
end of the bill period, except,

• If the bill period end date/time happens to land on a partial interval, the bill period end will
become the previous whole interval. In the case above, the bill period end time will be 03/
02/1998 06:15 for 15 minute intervals and 06:00 for 30 minute intervals. This applies to
aggregated handles as well.

• If it is the first billing for the account, and the billing period start date/time happens to land
on a partial interval, Oracle Utilities Billing Component sets the bill period start date/time to
the previous whole interval. In the example above, the bill period start date/time will be 02/
01/1998 00:30. This applies to aggregated handles as well.

The interval data functions that reference interval values with the adjusted bill period start date/
time recognize the first interval which starts (not ends) on 00:41, and assumes zeros for the
missing minutes from 00:30 to 00:41. This applies to the very first billing, since subsequent ones
use the left over partial data from the previous cut. In this example, assume that the previous cut
ends at 02/01/1998 00:40. Then its last interval would have been dropped from its billing, so must
be added into the next month's data.

If an interval data function returns a date/time for an interval, such as finding the MAX_KW, the
partial interval date/time will be returned, as it is stored in the interval data database. For example,
the MAX_KW function may return a value of 500 at date/time 02/15/98 12:41. This only applies
when the value is the first one. The start time of any other interval will be on an interval boundary.
7-22 Rules Language User’s Guide

Loading Interval Data
Notes On Loading Interval Data
• When one of the INTDLOAD Functions retrieves interval data from more than one cut, it

“joins” them together. The reading information will be kept only if the meter multipliers and
offsets match, and the stop reading of one cut is the same or one less than the start reading of
the next cut.

• For INTDLOAD Functions that use a date, the date and times are usually given from the
first second of an interval through the last second of an interval (intervals start on even SPI
or IPH boundaries, and end one second before the next interval). However, if the stop time
specified is the start second of an interval, only the data up through the previous interval is
loaded. For example:

INTDLOADDATES(KWH, "01/01/1999 8:00:00", "01/31/1999 8:00:00")

is the same as

INTDLOADDATES(KWH, "01/01/1999 8:00:00", "01/31/1999 7:59:59")

• Interval values that exceed a maximum, or fall between zero and a minimum, are set to the
maximum or minimum, respectively, and their status codes downgraded to 'L'. See the
INTDVALUEMAX and INTDVALUEMIN configuration parameters in Chapter 2:
Configuration Files in the Oracle Utilities Energy Information Platform Configuration Guide for
more information.

• When loading interval data with a Power Flow Direction (DC_FLOW) of R (Received),
interval values and totals are inverted (multiplied by negative 1 (-1)).
Working with Interval Data 7-23

Creating Interval Data Masks
Creating Interval Data Masks
This section describes how to create interval data masks using the Rules Language, including:

• Overview

• Interval Data Mask Functions

• Interval Data Mask Operator Rules

Overview
An interval data mask is a handle whose values are all zero or one, as opposed to a data handle
which may have any value. A zero value means the interval is excluded from the handle, a one
means it is included. Masks can be used to remove values from a data handle, or can be combined
with other masks to include or exclude additional intervals. Note that masks can be created by
mask functions (outlined below), by an interval data function that operates on an existing mask, or
by a divide operation that creates a handle with all zeros and ones.

Interval Data Mask Functions
The INTDCREATEMASK Functions are used to create interval data masks for use in
calculations in the Rules Language. For instance, you might create a mask that includes all intervals
that correspond to a specified time-of-use period or a override.

There are many different INTDCREATEMASK Functions, each used for different purposes.
The table below outlines how and when each is used. Full descriptions of these functions can be
found in Chapter 9: Interval Data Function Descriptions in the Oracle Utilities Rules Language
Reference Guide.

To create a mask where: Use:

Interval values in the new handle
are 1 for the entire day if the
original handle has a 0 value for
any interval during that day, or 0 if
the original has all non-zero
values for the corresponding day.

INTDCREATEDAYMASK Function on page 9-12

Interval values are set to the
factor value in effect at that time.

INTDCREATEFACTORMASK Function on page 9-
13

Interval values in the new handle
are 1 if the corresponding value in
the original handle is 0, or 0 if the
original has a non-zero value.

INTDCREATEMASK Function on page 9-15

Interval values are based on the
effective period for an override,
with each override period
automatically extended to start
and end at midnight (or the day
start).

INTDCREATEOVERRIDEDAYMASK Function
on page 9-16

Interval values are based on the
effective period for an override.

INTDCREATEOVERRIDEMASK Function on
page 9-17

Interval values are based on
comparison of status codes.

INTDCREATESTATUSCODEMASK Function on
page 9-18
7-24 Rules Language User’s Guide

Creating Interval Data Masks
Note: Page numbers in the table refer to the Oracle Utilities Rules Language Reference Guide.

These functions returns a mask if:

1. The operation is one of “MASK”, “REVERSE_MASK”, “ZERO”, “NON_ZERO” or
“MISSING”, or

2. The input interval data reference is a mask and the operation is one of the above, plus
“VALUE” and “REVERSE_VALUE”.

Otherwise an interval data handle is returned.

Interval Data Mask Operator Rules
If an operation is between two interval data handles and the right one is a mask, the following
rules apply:

a. If the left handle is also a mask, the result is a mask and the math operations are:

b. If the left handle is a simple interval data handle, the result is a similar handle and the
math operations are:

Interval values that fall within a
user-specified time of use period
are distinguished from those that
fall outside the period. The
interval values in the period may
be set to 1 (and all others to 0), or
to their actual value (and all others
to 0). The resulting “mask” can be
used in TOU computations.

INTDCREATETOUPERIOD Function on page 9-
19

To create a mask where: Use:

Operation Rule

+ A union (“OR”) of the masks; the value is ‘1’ if either
corresponding value is ‘1’; otherwise it is ‘0’.

- The value is ‘1’ if the left value was ‘1’ and the right is ‘0’;
otherwise, it is ‘0’ (it removes “on” intervals in the right
mask from the left mask).

*,/ An “AND” of the masks; the value is ‘1’ if both
corresponding values are ‘1’; otherwise it is ‘0’.

Operation Rule

+,*,/ The value is the left value if right is ‘1’; otherwise it is ‘0’
(it leaves only “on” intervals in the right mask in the
handle).

- The value is the left value if right is ‘0’; otherwise it is ‘0’
(it removes “on” intervals in the right mask from the
handle).
Working with Interval Data 7-25

Other Interval Data Operations
Other Interval Data Operations
This section describes how you work with previously loaded interval data (handles and masks),
including:

• Interval Data Functions

• Scalar and Block Operations

Interval Data Functions
Interval data functions are used to perform specific operations on loaded interval data (handles
and masks). For example, you might need to scale an aggregated handle up or down when
performing a final settlement calculation using Oracle Utilities Load Profiling and Settlement.

There are many different interval data functions, each used for different purposes. The table
below outlines how and when each is used. Full descriptions of these functions can be found in
Chapter 9: Interval Data Function Descriptions in the Oracle Utilities Rules Language Reference
Guide.

If you want to: Use:

Add a user-defined attribute to an
interval data handle.

INTDADDATTRIBUTE Function on page 9-2

Add a validation message to an
interval data handle.

INTDADDVMSG Function on page 9-3

Perform a block operation on the
interval data values of one handle
using the corresponding values of
another handle.

INTDBLOCKOP Function on page 9-4

Perform a block operation on the
interval data values of one handle
using the corresponding values of
another handle. This is similar to
the INTDBLOCKOP function,
but allows use of non-aligned
interval data handles.

INTDBLOCKOPNA Function on page 9-6

Close an interval data file that was
opened using the INTDOPEN
function.

INTDCLOSE Function on page 9-8

Count the number of intervals in
the handle.

INTDCOUNT Function on page 9-9

Count the number of intervals in
an interval data handle that match
a specified status code.

INTDCOUNTSTATUSCODE Function on page 9-
10

Create an interval data handle
based on user-specified start time,
stop time, and SPI.

INTDCREATEHANDLE Function on page 9-14

Delete one or more cuts from the
Oracle Utilities Data Repository.

INTDDELETE Function on page 9-21
7-26 Rules Language User’s Guide

Other Interval Data Operations
Delete an interval data cut from a
specified Enhanced Interval Data
table.

INTDDELETEEX Function on page 9-86

Get multiple custom and parent
attributes of a specified enhanced
interval data handle.

INTDGETATTREXALL Function on page 9-87

Examine an interval data handle
for dips.

INTDDIPTEST Function on page 9-22

Export data in a handle to a file. INTDEXPORT Function on page 9-23

Compare two handles to
determine if they are considered
equal.

INTDISEQUAL Function on page 9-27

Get the error code from the last
interval data function call.

INTDGETERRORCODE Function on page 9-25

Get the error message from the
last interval data function to use a
specific interval data reference.

INTDGETERRORMESSAGE Function on page 9-
26

Merge two interval data handles
into one.

INTDJOIN Function on page 9-28

Open an interval data file. INTDOPEN Function on page 9-51

Get a reference to the first record
in an interval data file.

INTDREADFIRST Function on page 9-52

Get a reference to the next record
in an interval data file.

INTDREADNEXT Function on page 9-53

Get the number of records in an
interval data file.

INTDRECCOUNT Function on page 9-54

Release an interval data reference
before completion of the rate
form.

INTDRELEASE Function on page 9-55

Calculate the rolling average (or
total) of interval values in a
handle.

INTDROLLAVG Function on page 9-57

Calculate the rolling peak of
interval values in a handle.

INTDROLLPEAK Function on page 9-58

Save an interval data handle to a
specified Enhanced Interval Data
table.

INTDSAVEEX Function on page 9-97

Save an interval data handle and
its parent to specified Enhanced
Interval Data tables.

INTDSAVEEXP Function on page 9-99

Set an attribute of a specified
enhanced interval data handle

INTDSETATTREX Function on page 9-101

If you want to: Use:
Working with Interval Data 7-27

Other Interval Data Operations
Set multiple custom and parent
attributes of a specified enhanced
interval data handle.

INTDSETATTREXALL Function on page 9-102

Perform a scalar operation on
each interval in a handle.

INTDSCALAROP Function on page 9-59

Aggregate values in a handle
according to user-specified
criteria.

INTDSCALE Function on page 9-61

Set attributes of a specified
handle.

INTDSETATTRIBUTE Function on page 9-63

Changes the DST Participant flag
for a previously-loaded interval
data handle, and optionally adjusts
the handle’s Start Time and Stop
Time as needed.

INTDSETDSTPARTICIPANT Function on page 9-
65

Set the status codes of all non-
missing intervals in an existing
handle.

INTDSETSTRING Function on page 9-66

Set an interval value of an interval
data handle.

INTDSETVALUE Function on page 9-67

Change the status codes and/or
values of intervals in a handle.

INTDSETVALUESTATUS Function on page 9-68

Shift the start time of an interval
data handle.

INTDSHIFTSTARTTIME Function on page 9-70

Smooth gaps in an interval data
handle.

INTDSMOOTH Function on page 9-71

Sort the values in an interval data
handle.

INTDSORT Function on page 9-72

Examine an interval data handle
for spikes.

INTDSPIKETEST Function on page 9-73

Get a subset of an interval data
handle.

INTDSUBSET Function on page 9-74

Create a handle for a specified
Time-of-Use Schedule and
Holiday List from a previously
loaded cut.

INTDTOU Function on page 9-75

Release a Time of Use reference
set with INTDTOU before
completion of the rate form.

INTDTOURELEASE Function on page 9-76

Compute a user-specified
summary value for a TOU handle
that was created with the
INTDTOU function.

INTDTOUVALUE Function on page 9-77

If you want to: Use:
7-28 Rules Language User’s Guide

Other Interval Data Operations
Note: Page numbers in the table refer to the Oracle Utilities Rules Language Reference Guide.

Scalar and Block Operations
This section outlines the rules for determining the status code of a handle created through scalar
or block operations. When two handles are combined, the status code of each interval is based on
the corresponding two original status codes. The rules are:

1. If both codes are '9' the result has code '9', else

2. If only one codes is '9' the result has code '7', else

3. The result has the worse of the two codes based on the comparison order (from highest to
lowest): (space) A B C ... Z 0 1 2 ... 7 9

Compute a user-specified
summary value for an interval
data handle.

INTDVALUE Function on page 9-79

Get an attribute of a specified
enhanced interval data handle

INTDVALUEEX Function on page 9-103

If you want to: Use:
Working with Interval Data 7-29

Working with Enhanced/Generic Interval Data
Working with Enhanced/Generic Interval Data
Working with interval data stored in enhanced/generic interval data tables via the Oracle Utilities
Rules Language is done via a specific set of functions. These functions are documented in the
Enhanced Interval Data Functions section of Chapter 9: Interval Data Function
Descriptions in the Oracle Utilities Rules Language Reference Guide. This section outlines how you
load, save, and delete enhanced/generic interval data using Oracle Utilities Rules Language.

Common Parameters
The Rules Language functions used with enhanced/generic interval data use a specific set of
parameters that differ slightly from other interval data functions. These include:

• <parent_identity> - the identity of the parent record. This can be in the form of a string
that contains the identity or a database identifier that contains the identity. This is used by all
enhanced interval data functions.

• <parent_stem> - a stem identifier that contains the parent record, including all required
columns. Used by the INTDSAVEEXP function.

• <table_name> - the name of the interval data table in which the data is stored. This is used
by all enhanced interval data functions.

• <category> - the optional category code associated with the interval data. This can be in the
form of a string that contains the category or a database identifier that contains the category.
This is used by all enhanced interval data functions.

Loading Data from Enhanced/Generic Interval Data Tables
Loading data from enhanced/generic interval data tables can be performed using the following
functions.

• INTDLOADEX: loads and totalizes all interval data for a user-specified determinant or
parent record for the current bill period. See INTDLOADEX Function on page 9-93 in the
Oracle Utilities Rules Language Reference Guide for more information.

• INTDLOADEXACTUAL: loads a specific interval data cut for a given start time. See
INTDLOADEXACTUAL Function on page 9-88 in the Oracle Utilities Rules Language
Reference Guide for more information.

• INTDLOADEXCUT: loads a specified historical version of an interval data cut for a
specified parent. See INTDLOADEXCUT Function on page 9-89 in the Oracle Utilities
Rules Language Reference Guide for more information.

• INTDLOADEXDATES: loads interval data for a user-specified date range from a specified
Enhanced Interval Data table. See INTDLOADEXDATES Function on page 9-90 in the
Oracle Utilities Rules Language Reference Guide for more information.

• INTDLOADEXLIST: totalizes the interval data stored in an enhanced interval data table
for the current bill period for all parent records in a list. See INTDLOADEXLIST
Function on page 9-94 in the Oracle Utilities Rules Language Reference Guide for more
information.

• INTDLOADEXLISTDATES: totalizes the interval data stored in an enhanced interval
data table for all parent records in a list over a specified time range. See
INTDLOADEXLISTDATES Function on page 9-95 in the Oracle Utilities Rules Language
Reference Guide for more information.

• INTDLOADEXRELATEDCHANNEL: loads the interval data for the meter related to
the interval data reference’s meter through the MDM Meter table. Used with Oracle Utilities
Meter Data Management ONLY. See INTDLOADEXRELATEDCHANNEL Function
on page 9-96 in the Oracle Utilities Rules Language Reference Guide for more information.
7-30 Rules Language User’s Guide

Working with Enhanced/Generic Interval Data
Note: You can use the INTDLOADEX, INTDLOADEXACTUAL, and
INTDLOADEXDATES to load data from Staging tables. To load an enhanced interval data
handle from a Staging table, specify the name of the Staging table in the <table_name> parameter.

Example: Weather Data table - INTDLOADEXACTUAL
Load the interval data cut for weather station WS_01 in Austin, TX (AUSTIN) with a start time of 06/01/
2007 with a category of “FINAL” from the Weather Data (LSWEATHERDATA) table.

WEATHER_STATION = "WS_01,AUSTIN";
CATEGORY = "FINAL";
TABLE_NAME = "LSWEATHERDATA";
HNDL = INTDLOADEXACTUAL(WEATHER_STATION, CATEGORY, TABLE_NAME, "06/01/
2007");

Example: Weather Data table - INTDLOADEXDATES
Load the interval data cut for weather station WS_01 in Austin, TX (AUSTIN) with a category of “FINAL”
from the Weather Data (LSWEATHERDATA) table for the month of January 2007:

WEATHER_STATION = "WS_01,AUSTIN";
CATEGORY = "FINAL";
TABLE_NAME = "LSWEATHERDATA";
TEMP_HNDL = INTDLOADEXDATES(WEATHER_STATION, CATEGORY, TABLE_NAME,
‘01/01/2007’, ‘01/31/2007 23:59:59’);

OR

STARTDT = DATE('01/01/2007 00:00:00');
STOPDT = DATE('01/31/2007 23:59:59');
WEATHER_STATION = "WS_01,AUSTIN";
CATEGORY = "FINAL";
TABLE_NAME = "LSWEATHERDATA";
TEMP_HNDL = INTDLOADEXDATES(WEATHER_STATION, CATEGORY, TABLE_NAME,
STARTDT, STOPDT);

Note: Even if a category is not used, the <category> parameter is required
when using the INTDLOADEX functions. In this case, specify an empty string
("") for the <category>.

Working with Loaded Data
Once interval data stored in enhanced/generic interval data tables is loaded into memory in the
Rules Language, the data can be operated on via any operation applicable to interval data,
including other interval data functions (INTDBLOCKOP, INTDSCALAROP,
INTDSETATTRIBUTE, INTDSETVALUE, INTDVALUE, etc.), interval data expressions, and
other operations. Also, attributes of a loaded interval data handle can be set/obtained using a
<stem>.<tail> identifier, where the <stem> is the interval data handle identifier, and <tail> is the
interval data attribute to be obtained/set. For example, the following would return the SPI from
the MKT_HNDL loaded in the above example:

MKT_HNDL_SPI = MKT_HNDL.SPI;

In the case of attributes derived from optional columns (see Optional Columns on page 11-14 in
the Energy Information Platform Configuration Guide), the <tail> must be one of the Interval Data
Attributes listed in the Optional Columns table. For example, the following would obtain the Total
from the MKT_HNDL loaded in the above example:

TEMP_HNDL_TOTAL = TEMP_HNDL.TOTAL;

Note: Calculated values (such as Minimum, Maximum, Total, and others) are
calculated every time the interval data is loaded. Also, columns that store
calculated values are automatically updated when the interval data is saved to
the database.
Working with Interval Data 7-31

Working with Enhanced/Generic Interval Data
In the case of attributes derived from custom columns (see Custom Columns on page 11-16 in
the Energy Information Platform Configuration Guide), the <tail> must match the column name in the
interval data table. For example, the following would set the Minimum Interval Value from the
MKT_HNDL loaded in the above example to:

TEMP_HNDL_MIN_VAL = TEMP_HNDL.MIN;
TEMP_HNDL.MINIMUM = TEMP_HNDL_MIN_VAL;

Note: Values for custom columns are NOT automatically updated when the
interval data is edited and saved to the database. Custom attributes must be
explicitly updated via the Rules Language. However, values stored in custom
columns are loaded from the database when a handle is created in the Rules
Language.

Enhanced/generic interval data handles have two additional properties that can be set/obtained
via the Rules Language:

• PARENTKEY: a string that contains the identity of the handle’s parent

• CATEGORY: a string that contains the handle’s category

Both of these can be obtained using <stem>.<tail> identifiers, as well as with the INTDVALUE
(to get these properties from a handle). To set these properties, you must use the
INTDSETATTRIBUTE function.

Getting and Setting Custom and Parent Attributes
Retrieving and setting multiple custom and/or parent attributes can be performed using the
following functions

• INTDGETATTREXALL - Retrieves custom and parent attributes from an enhanced
interval data handle and assigns them to stem identifiers.

• INTDSETATTREXALL - Set multiple custom and parent attributes in an enhanced
interval data handle using stem identifiers.

Example: Retrieve custom and parent attributes
Report the C1 and C2 custom columns, and P1 and P2 parent columns in the #SAVE_AR array.

FOR EACH I IN NUMBER 100
CUSTOM.C1 = "C" + I;
CUSTOM.C2 = I;
PARENT.P1 = "Parent" + I;
PARENT.P2 = "Parent2_" + I;
RET = INTDSETATTREXALL (#SAVE_AR[I], CUSTOM, PARENT);

END FOR;

FOR EACH I IN NUMBER 100
RET = INTDGETATTREXALL (#SAVE_AR[I], CUSTOM, PARENT);
REPORT CUSTOM.C1;
REPORT CUSTOM.C2;
REPORT PARENT.P1;
REPORT PARENT.P2;

END FOR;

Example: Setting multiple custom and parent attributes
Set the C1 and C2 custom columns, and P1 and P2 parent columns in the #SAVE_AR array.

FOR EACH I IN NUMBER 100
CUSTOM.C1 = "C" + I;
CUSTOM.C2 = I;
PARENT.P1 = "Parent" + I;
PARENT.P2 = "Parent2_" + I;
RET = INTDSETATTREXALL (#SAVE_AR[I], CUSTOM, PARENT);

END FOR;
7-32 Rules Language User’s Guide

Working with Enhanced/Generic Interval Data
Saving Data to Enhanced/Generic Interval Data Tables
Saving interval data to enhanced/generic interval data tables can be performed using the following
functions:

• INTDSAVEEX - Saves an interval data handle. See INTDSAVEEX Function on page 9-
97 in the Oracle Utilities Rules Language Reference Guide for more information.

Note: To save an enhanced interval data handle to a Staging or Reporting table,
specify the name of the Staging or Reporting table in the <table_name>
parameter.

• INTDSAVEEXP - Saves an interval data handle and its parent. See INTDSAVEEXP
Function on page 9-99 in the Oracle Utilities Rules Language Reference Guide for more
information.

Note: When saving parent records using INTDSAVEEXP, you must use actual
UIDs when saving values for UID columns.

Example: Weather Data table - INTDSAVEEX
Save the interval data in TEMP_HNDL to Weather Station WS_01 in Austin, TX (AUSTIN) with a
category of “FINAL” to the Weather Data (LSWEATHERDATA) table.

WEATHER_STATION = "WS_01,AUSTIN";
CATEGORY = "FINAL";
TABLE_NAME = "LSWEATHERDATA";
SAVE_HNDL = INTDSAVEEX(WEATHER_STATION, CATEGORY, TABLE_NAME,
TEMP_HNDL);

Example: Weather Data table - INTDSAVEEX (Reporting Table)
Save the interval data in TEMP_HNDL to Weather Station WS_01 in Austin, TX (AUSTIN) with a
category of “FINAL” to the Weather Data Reporting table (used to report on interval data).

WEATHER_STATION = "WS_01,AUSTIN";
CATEGORY = "FINAL";
TABLE_NAME = "LSWEATHERDATARPT";
SAVE_HNDL = INTDSAVEEX(WEATHER_STATION, CATEGORY, TABLE_NAME,
TEMP_HNDL);

Example: Weather Data table - INTDSAVEEXP
Save the interval data in TEMP_HNDL to a new Weather Station (WS_02 in Dallas, TX) with a category of
“FINAL” to the Weather Station (LSWEATHERSTATION), and Weather Data
(LSWEATHERDATA) tables.

WEATHER_STATION.STATIONCODE = "WS_02";
WEATHER_STATION.JURISCODE = "DALLAS";
CATEGORY = "FINAL";
TABLE_NAME = "LSWEATHERDATA";
SAVE_HNDL = INTDSAVEEXP(WEATHER_STATION, CATEGORY, TABLE_NAME,
TEMP_HNDL);

Note: Even if a category is not used, the <category> parameter is required
when using the INTDSAVEEX function. In this case, specify an empty string
("") for the <category>.
Working with Interval Data 7-33

Working with Enhanced/Generic Interval Data
Bulk Saving Data to Enhanced/Generic Interval Data Tables
You can also save multiple interval data handles stored within an array identifier to enhanced/
generic interval data tables in a single function using either INTDSAVEEX or INTDSAVEEXP.

Bulk Saves using INTDSAVEEX
When performing bulk saves using the INTDSAVEEX function, enter the parameters as follows:

• Use an empty string ("") for the <parent> parameter. The parent identity of each handle is
derived from the array identifier that contains the handles to be saved.

• Use an empty string ("") for the <category> parameter. The category of each handle is
derived from the array identifier that contains the handles to be saved.

• Supply the table name as usual.

• Use an array identifier (#ARR[]) as the <hndl_array> parameter. This is an array identifier
that contains the interval data handles to be saved.

Example: Weather Data table - INTDSAVEEX - Bulk Saves
Load data for weather stations WS_1 through WS_30 in Texas (TEXAS) that have a category of
“INITIAL” for the month of June 2007 and save them to existing weather stations WST_1 through WST_30
with a category of “FINAL.”

TABLE_NAME = "LSWEATHERDATA";
START = DATE ('06/01/2007 00:00:00');
STOP = DATE ('06/30/2007 23:59:59');
FOR EACH REC IN LIST "GET_WS_DATA"

X = X + 1;
WS = REC.STATIONCODE;
JURIS = REC.JURISCODE;
WEATHER_STATION = WS + "," + JURIS;
#ARR[X] = INTDLOADEXDATES (WEATHER_STATION, "INITIAL", TABLE_NAME,

START, STOP);
WST = "WST_" + X;
PARENT_KEY = WST + "," + JURIS
CATEGORY = "FINAL";
SET_PK = INTDSETATTRIBUTE (#ARR[X], "PARENTKEY", PARENT_KEY);
SET_CAT = INTDSETATTRIBUTE (#ARR[X], "CATEGORY", CATEGORY);

END FOR;
SAVE_HNDL = INTDSAVEEX("", "", TABLE_NAME, #ARR[]);

Bulk Saves using INTDSAVEEXP
When performing bulk saves using the INTDSAVEEX function, enter the parameters as follows:

• Use an array identifier (#PK[]) for the <parent> parameter. This array must contain
<stem>.<tail> identifiers for the parent records.

• Use an array identifier (#CAT[]) or single category ("FINAL") for the <category> parameter.

• Supply the table name as usual.

• Use an array identifier (#ARR[]) as the <hndl_array> parameter. This is an array identifier
that contains the interval data handles to be saved.

Example: Weather Data table - INTDSAVEEXP - Bulk Saves
Load data for weather stations WS_1 through WS_30 in Texas (TEXAS) that have a category of
“INITIAL” for the month of June 2007 and save them to new weather stations WSN_1 through WSN_30
with a category of “FINAL.”

TABLE_NAME = "LSWEATHERDATA";
START = DATE ('06/01/2007 00:00:00');
STOP = DATE ('06/30/2007 23:59:59');
FOR EACH REC IN LIST "GET_WS_DATA"
7-34 Rules Language User’s Guide

Working with Enhanced/Generic Interval Data
X = X + 1;
WS = REC.STATIONCODE;
JURIS = REC.JURISCODE;
WEATHER_STATION = WS + "," + JURIS;
#ARR[X] = INTDLOADEXDATES (WEATHER_STATION, "INITIAL", TABLE_NAME,

START, STOP);
WSN = "WSN_" + X;
PARENT_KEY = WSN + "," + JURIS
#PAR[X] = PARENT_KEY;
CATEGORY = "FINAL";
SET_PK = INTDSETATTRIBUTE (#ARR[X], "PARENTKEY", PARENT_KEY);

END FOR;
SAVE_HNDL = INTDSAVEEXP(#PAR[], CATEGORY, TABLE_NAME, #ARR[]);

Deleting Data from Enhanced/Generic Interval Data Tables
Deleting interval data from enhanced/generic intervals is performed using the following function:

• INTDDELETEEX - Deletes an interval data cut. See INTDDELETEEX Function on
page 9-86 in the Oracle Utilities Rules Language Reference Guide for more information.

Example: Weather Data table - INTDDELETEEX
Delete the interval data for Weather Station WS_01 in Austin, TX (AUSTIN) with a start date of 01/01/
2007 with a with a category of “FINAL” from the Weather Data (LSWEATHERDATA) table.

STARTDT = DATE('01/01/2007 00:00:00');
WEATHER_STATION = "WS_01,AUSTIN";
CATEGORY = "FINAL";
TABLE_NAME = "LSWEATHERDATA";
SAVE_HNDL = INTDDELETEEX(WEATHER_STATION, CATEGORY, TABLE_NAME,
STARTDT);
Working with Interval Data 7-35

Deriving Billing Determinants and Values from Interval Data
Deriving Billing Determinants and Values from Interval Data
This section describes how to derive billing determinants from loaded interval data, including:

• Overview

• Bill Determinants

• Other Values

Overview
After interval data has been loaded, and operated on as appropriate (such as creating masks or
performing block/scalar operations), you can derive billing determinants and other values from
the data for use in other Rules Language calculations.

The format for deriving values from an interval data handle is:

<value> = HNDL.ATTRIBUTE;

where

• <value>: an identifier you assign to the value.

• HNDL: the interval data handle that you assigned in the INDTLOAD statement (which
automatically refers to the entire handle)

• ATTRIBUTE: the name of a particular attribute of the handle. See Interval Data
Reference Values and Attributes on page 7-3 for a list of values that can be derived from
interval data handles.

For example, one of the available values is TOTAL, which is the total of all the interval values in
the handle. If you used the handle HNDL, you could retrieve the total value in using an
Assignment Statement as follows:

HNDL_TOTAL = HNDL.TOTAL;

Bill Determinants
You derive bill determinants from interval data so that you can then use those determinants in
other Rules Language calculations. For example, if you were billing based on interval data, you
need the bill determinants in order to calculate charges.

There are three interval data attributes used in deriving bill determinants:

• TOTAL: The sum of all interval values in the interval data handle.

• ENERGY: Total energy represented by the handle, computed properly for its UOM
according to the TOTAL flag in the UOM Table. The UOM for the interval values must be
either KW or KWH. If not, result is 0.

• KW_MAXIMUM: The maximum KW value in the handle. If the UOM is KWH, the actual
maximum is multiplied by the IPH (intervals per hour) to get this value.

Of the three, TOTAL is most often used, as it represents the total of all the interval values in the
handle. KW_MAXIMUM can be used when calculating charges based on demand.

Example
If you loaded a cut that measures kWh, to derive the total KWH from the handle, you could use
the following statements:

HNDL = INTDLOAD (KWH);
HNDL_KWH = HNDL.TOTAL;

To derive the energy from the same handle, you could use the following statement:

HNDL_ENERGY = HNDL.ENERGY;
7-36 Rules Language User’s Guide

Deriving Billing Determinants and Values from Interval Data
To derive the maximum kW from the same handle, you could use the following statement:

HNDL_KW_MAX = HNDL.KW_MAXIMUM;

Other Values
You can derive other values in the same manner as bill determinants. Some examples include:

Start Time
HNDL_STARTTIME = HNDL.STARTTIME;

Stop Time
HNDL_STOPTIME = HNDL.STOPTIME;

Average
HNDL_AVG = HNDL.AVERAGE;

Unit-of-Measure
HNDL_UOM = HNDL.UOM;

Intervals Per Hour
HNDL_IPH = HNDL.IPH;

Load Factor
HNDL_LF = HNDL.LF;

Using Other Values
While not used directly in calculating charges, these others values can be used in determining
under which circumstances certain calculations should be performed. For example, suppose a
particular charge in a tariff were based on whether the average usage was above or below a
particular threshold (stored in the database as a Factor called “LOW_AVERAGE”), you would
derive the Average value and compare it the factor in order to determine which rate to use. The
following shows one way of doing this.

HNDL = INTDLOAD (KWH);
HNDL_AVG = HNDL.AVERAGE;
IF AVERAGE <= FACTOR[“LOW_AVERAGE”].VALUE

THEN
ALL KWH CHARGE FACTOR[“KWH_CHG_1”].VALUE;
ELSE
ALL KWH CHARGE FACTOR[“KWH_CHG_2”].VALUE;

END IF;
Working with Interval Data 7-37

Examples of Working with Interval Data
Examples of Working with Interval Data
This section includes some examples of working with interval data using the Rules Language,
including:

• Loading Interval Data

• Time-of-Use Periods

• Override Masks

• Time-of-Use and Overrides

• Calculating Coincident and Non-Coincident Peaks

Loading Interval Data
The following examples demonstrate a number of the different INTDLOAD Functions.

Bill Determinant
HNDL = INTDLOAD (KWH);

Bill Determinant and Date Range
HNDL = INTDLOADDATES(KWH, BILL_START, BILL_STOP);

Historical
HNDL = INTDLOADHIST(KWH, 1, 11);

List of Recorder,Channels
HNDL = INTDLOADLIST("ACCOUNT_CH");

UOM
HNDL = INTDLOADUOM("01");

Time-of-Use Periods
You use the INTDCREATETOUPERIOD Function to create time-of-use (TOU) periods,
such as on peak or off peak periods of usage. The following example creates On Peak and Off
Peak time-of-use periods based on a previously loaded interval data cut.

//Load KWH Handle
HNDL = INTDLOAD (KWH);

//Create On Peak KWH Handle
ON_PEAK_HNDL = INTDCREATETOUPERIOD(HNDL, "VALUE", "TOU1", "ON_PEAK",
"2000 HOLIDAYS");

//Create Off Peak KWH Handle
OFF_PEAK_HNDL = INTDCREATETOUPERIOD(HNDL, "VALUE", "TOU1", "OFF_PEAK",
"2000 HOLIDAYS");

//Derive On Peak KWH
ON_PEAK_KWH = ON_PEAK_HNDL.TOTAL;

//Derive Off Peak KWH
OFF_PEAK_KWH = OFF_PEAK_HNDL.TOTAL;

In the INTDCREATETOUPERIOD functions in this example:

• HNDL: is the interval data reference loaded in the INTDLOAD Function.

• VALUE: is an operation that sets the values that fall within the TOU period to the same
value as in HNDL, and sets all other values to zero.
7-38 Rules Language User’s Guide

Examples of Working with Interval Data
• TOU1: is the time-of-use schedule. See Time-of-Use Schedules on page 7-8 in the Data
Manager User’s Guide for more information about creating time-of-use periods.

• ON_PEAK/OFF_PEAK: is the time-of-use period.

• 2000 HOLIDAYS: is a holiday list used by the time-of-use schedule. See Holidays on page
7-6 in the Data Manager User’s Guide for more information about creating holiday lists.

Override Masks
Override masks are a type of interval data mask based on an override. You use the
INTDCREATEOVERRIDEMASK Function to an override mask. The following example
creates override masks for curtailment/non-curtailment periods based on a previously loaded
interval data cut.

//Load KWH Handle
HNDL = INTDLOAD (KWH);

//Create Curtailment KWH Handle
CURTAILMENT_HNDL = INTDCREATEOVERRIDEMASK(HNDL, "CURTAILMENT",
"VALUE");

//Create Non-Curtailment KWH Handle
NON_CURTAILMENT_HNDL = INTDCREATEOVERRIDEMASK(HNDL, "CURTAILMENT",
"REVERSE_VALUE");

//Derive Curtailment KWH
CURTAILMENT_KWH = CURTAILMENT_HNDL.TOTAL;

//Derive Non-Curtailment KWH
NON_CURTAILMENT_KWH = NON_CURTAILMENT_HNDL.TOTAL;

In the INTDCREATEOVERRIDEMASK functions in this example:

• HNDL: is the interval data reference loaded in the INTDLOAD Function.

• CURTAILMENT: is an override stored in the Oracle Utilities Data Repository.

• VALUE: is an operation that sets the values that fall within the curtailment period to the
same value as in HNDL, and sets all other values to zero.

• REVERSE_VALUE: is an operation that sets the values that fall outside the curtailment
period to the same value as in HNDL, and sets all other values to zero.

Time-of-Use and Overrides
You can also combine time-of-use periods and overrides, if for example an override were in effect
during both on peak and off peak times. The following example creates override masks for
curtailment/non-curtailment periods for both on peak and off peak periods.

//Load KWH Handle
HNDL = INTDLOAD (KWH);

//Create On Peak KWH Handle
ON_PEAK_HNDL = INTDCREATETOUPERIOD(HNDL, "VALUE", "TOU1", "ON_PEAK",
"2000 HOLIDAYS");

//Create On Peak Curtailment KWH Handle
ON_PEAK_CURTAILMENT_HNDL = INTDCREATEOVERRIDEMASK(ON_PEAK_HNDL,
"CURTAILMENT", "VALUE");

//Create On Peak Non-Curtailment KWH Handle
ON_PEAK_NON_CURTAILMENT_HNDL = INTDCREATEOVERRIDEMASK(ON_PEAK_HNDL,
"CURTAILMENT", "REVERSE_VALUE");

//Create Off Peak KWH Handle
Working with Interval Data 7-39

Examples of Working with Interval Data
OFF_PEAK_HNDL = INTDCREATETOUPERIOD(HNDL, "VALUE", "TOU1", "OFF_PEAK",
"2000 HOLIDAYS");

//Create Off Peak Curtailment KWH Handle
OFF_PEAK_CURTAILMENT_HNDL = INTDCREATEOVERRIDEMASK(OFF_PEAK_HNDL,
"CURTAILMENT", "VALUE");

//Create Off Peak Non-Curtailment KWH Handle
OFF_PEAK_NON_CURTAILMENT_HNDL = INTDCREATEOVERRIDEMASK(OFF_PEAK_HNDL ,
"CURTAILMENT", "REVERSE_VALUE");

//Derive On Peak Curtailment KWH
ON_PEAK_CURTAILMENT_KWH = ON_PEAK_CURTAILMENT_HNDL.TOTAL;

//Derive On Peak Non-Curtailment KWH
ON_PEAK_NON_CURTAILMENT_KWH = ON_PEAK_NON_CURTAILMENT_HNDL.TOTAL;

//Derive Off Peak Curtailment KWH
OFF_PEAK_CURTAILMENT_KWH = OFF_PEAK_CURTAILMENT_HNDL.TOTAL;

//Derive Off Peak Non-Curtailment KWH
OFF_PEAK_NON_CURTAILMENT_KWH = OFF_PEAK_NON_CURTAILMENT_HNDL.TOTAL;

In the INTDCREATETOUPERIOD functions in this example:

• HNDL: is the interval data reference loaded in the INTDLOAD Function.

• VALUE: is an operation that sets the values that fall within the TOU period to the same
value as in HNDL, and sets all other values to zero.

• TOU1: is the time-of-use schedule. See Time-of-Use Schedules on page 7-8 in the Data
Manager User’s Guide for more information about creating time-of-use periods.

• ON_PEAK/OFF_PEAK: is the time-of-use period.

• 2000 HOLIDAYS: is a holiday list used by the time-of-use schedule. See Holidays on page
7-6 in the Data Manager User’s Guide for more information about creating holiday lists.

In the INTDCREATEOVERRIDEMASK functions in this example:

• HNDL: is the interval data reference loaded in the INTDLOAD Function.

• CURTAILMENT: is an override stored in the Oracle Utilities Data Repository.

• VALUE: is an operation that sets the values that fall within the curtailment period to the
same value as in HNDL, and sets all other values to zero.

• REVERSE_VALUE: is an operation that sets the values that fall outside the curtailment
period to the same value as in HNDL, and sets all other values to zero.

Calculating Coincident and Non-Coincident Peaks
A coincident peak is the peak in an aggregated handle (a handle that comprises multiple handles
added together). By identifying the time of a coincident peak, you can also determine the value at
that time in the individual cuts that comprise the aggregated cut.

For example, suppose a customer has three accounts, each with interval data cuts for the same bill
period. If you load those cuts and add them together, you can use the time of the peak value of the
aggregated cut to determine the coincident peak for each account (the usage at the time of the
coincident peak).

The non-coincident peak for a cut is the maximum value of the cut.

Rate tariffs can include different charges based on coincident and non-coincident peaks. For
instance, the demand charge for an account might be based on a ratio between the aggregated
peak and the coincident peak for that account.
7-40 Rules Language User’s Guide

Examples of Working with Interval Data
The following is a simple example of calculating a coincident time from an aggregated cut and
then determining the coincident and non-coincident peaks for each of the individual cuts that
comprise the aggregated cut.

//Load and aggregate cuts
ACCT1_HNDL = INTDLOADDATES('A20991,1', BILL_START, BILL_STOP);
ACCT2_HNDL = INTDLOADDATES('A20992,1', BILL_START, BILL_STOP);
ACCT3_HNDL = INTDLOADDATES('A20993,1', BILL_START, BILL_STOP);

AGGREGATE_HNDL = ACCT1_HNDL + ACCT2_HNDL + ACCT3_HNDL;

/* Calculate Coincident Peak Time */
COINCIDENT_TIME = INTDVALUE(AGGREGATE_HNDL, "MAXDATE");

/* Clear Aggregate Handle */
DUMMY = INTDRELEASE(AGGREGATE_HNDL);

//Find Coincident and Non-Coincident Peaks for Account 1
ACCT1_NC_PEAK = INTDVALUE(ACCT1_HNDL, "MAX");
ACCT1_COINCIDENT_PEAK_INDEX = INTDVALUE(ACCT1_HNDL, "DATE_INDEX",
COINCIDENT_TIME);
ACCT1_COIN_PEAK = INTDVALUE(ACCT1_HNDL, "INDEX",
ACCT1_COINCIDENT_PEAK_INDEX);

//Find Coincident and Non-Coincident Peaks for Account 2
ACCT2_NC_PEAK = INTDVALUE(ACCT2_HNDL, "MAX");
ACCT2_COINCIDENT_PEAK_INDEX = INTDVALUE(ACCT2_HNDL, "DATE_INDEX",
COINCIDENT_TIME);
ACCT2_COIN_PEAK = INTDVALUE(ACCT2_HNDL, "INDEX",
ACCT2_COINCIDENT_PEAK_INDEX);

//Find Coincident and Non-Coincident Peaks for Account 3
ACCT3_NC_PEAK = INTDVALUE(ACCT3_HNDL, "MAX");
ACCT3_COINCIDENT_PEAK_INDEX = INTDVALUE(ACCT3_HNDL, "DATE_INDEX",
COINCIDENT_TIME);
ACCT3_COIN_PEAK = INTDVALUE(ACCT3_HNDL, "INDEX",
ACCT3_COINCIDENT_PEAK_INDEX);

In the INTDVALUE functions in this example:

• AGGREGATE_HNDL: is an aggregated interval data handle comprising the three
previously loaded handles (using the INTDLOADDATES Function).

• MAXDATE: is an operation that retrieves the date and time of the maximum value of the
aggregated handle.

• ACCTx_HNDL: is the interval data reference loaded in the corresponding
INTDLOADDATES Function.

• MAX: is an operation that retrieves the maximum value of the handle.

• DATE_INDEX: is an operation that retrieves the index that corresponds to
COINCIDENT_TIME.

• COINCIDENT_TIME: is an identifier equal to the date and time of the maximum value of
the aggregated handle (derived from MAXDATE).

• ACCTx_COINCIDENT_PEAK_INDEX: is an identifier equal to the index of the
coincident peak in the corresponding interval data handle (derived from DATE_INDEX).

• INDEX: is an operation that retrieves the index that corresponds to
ACCTx_COINCIDENT_PEAK_INDEX.

The above example uses hard-coded values for the individual handles and identifiers. The same
calculations could be performed more efficiently using a list of accounts or recorder,channels and
Working with Interval Data 7-41

Examples of Working with Interval Data
the For Each x In List Statement, and using Indirect Identifiers to determine the coincident
and non-coincident peaks An example of this approach is shown below.

Example using FOR EACH statements and Indirect Identifiers
//Load & aggregate usage data, and find & store time of coincident
peak.
//
FOR EACH ACCOUNT IN LIST GET_COINCIDENT_ACCOUNTS

RECORDER_ID = ACCOUNT + ",1";
AGGREGATED_LOAD_HNDL = AGGREGATED_LOAD_HNDL +

INTDLOADDATES(RECORDER_ID, START_DATE, STOP_DATE);
END FOR;
COINCIDENT_TIME = INTDVALUE(AGGREGATED_LOAD_HNDL, MAXDATE);
CLEAR AGGREGATED_LOAD_HNDL;

//For each account, find coincident & non-coincident peaks
//
FOR EACH ACCOUNT IN LIST GET_COINCIDENT_ACCOUNTS

RECORDER_ID = ACCOUNT + ",1";
ACCOUNT_LOAD_HNDL = INTDLOADDATES(RECORDER_ID, START_DATE,

STOP_DATE);
X = ACCOUNT + "_NC_PEAK";
@X = INTDVALUE(ACCOUNT_LOAD_HNDL , MAX);
COINCIDENT_PEAK_INDEX = INTDVALUE(ACCOUNT_LOAD_HNDL, "DATE_INDEX",

COINCIDENT_TIME);
X = ACCOUNT + "_COIN_PEAK";
@X = INTDVALUE(ACCOUNT_LOAD_HNDL, "INDEX", COINCIDENT_PEAK_INDEX);

END FOR;
7-42 Rules Language User’s Guide

Chapter 8
Working with COM Components

This chapter describes how you work with COM components using the Oracle Utilities Rules
Language, including:

• Overview

• Working with COM Objects

• Creating COM Objects

• COM Expressions

• COM Object Functions

• COM Error Handling

• VARIANT Data Type

• Examples
Working with COM Components 8-1

Overview
Overview
The Oracle Utilities Rules Language can be used to create COM objects and invoke methods
available from COM components. This allows users to create Rules Language logic to invoke
COM methods (including those available from COM interfaces) as part of their business
processing.
8-2 Rules Language User’s Guide

Working with COM Objects
Working with COM Objects
Working with COM objects in the Oracle Utilities Rules Language involves the following:

• Creating COM Objects

• COM Expressions

• COM Object Functions

• COM Error Handling

Creating COM Objects
The first step in using COM objects in the Oracle Utilities Rules Language is to create an instance
of the COM object you wish to work with. This is done via the CREATEOBJECT Function,
which creates a COM object based on the object’s program ID (ProgID).

The format of this function is as follows:

<identifier> = CREATEOBJECT(<ProgID>);

where:

• <ProgID> is a string that contains the ProgID of the COM object to be created.

Example: Create a DOMDocument COM object.

//Create a DOMDocument object
OBJECT = CREATEOBJECT (“MSXML.DOMDocument”);

For more information about this function, see the CREATEOBJECT Function on page 13-105
in the Oracle Utilities Rules Language Reference Guide.

COM Expressions
Once an instance of a COM object has been created by the CREATEOBJECT function, users can
get and set an object's properties, or to call an object's method(s) using a specific Rules Language
syntax.

Get Property
To obtain a property from a COM object created in the Rules Language, use the following syntax:

<identifier> = [object]->[property];

or

<identifier> = [object]->[property](<param1>|<expression>,
<param2>|<expression>);

where:

• [object] is the COM object created in the Rules Language.

• [property] is the property to be obtained from the object.

• <param> is a parameter required to obtain the property from the object. If multiple
parameters are required, they must be separated by a comma (“,”).

• <expression> is a Rules Language expression that evaluates to a parameter required to obtain
the property from the object.
Working with COM Components 8-3

Working with COM Objects
Set Property
To set a property in a COM object created in the Rules Language, use the following syntax:

[object]->[property] = <identifier | expression>;

where:

• [object] is the COM object created in the Rules Language.

• [property] is the property to be set in the object.

• <identifier> is an identifier that contains the value to which the property in the object is to be
set.

• <expression> is a Rules Language expression that evaluates to the value to which the
property in the object is to be set.

Invoking Methods
To invoke (or call) a method in a COM object created in the Rules Language, use the following
syntax:

[object]->[method]();

or

<identifier> = [object]->[method]();

or

<identifier> = [object]->[method](<param1>|<expression>,
<param2>|<expression>);

or

[object]->[method](<param1>|<expression>, <param2>|<expression>);

where:

• [object] is the COM object created in the Rules Language.

• [method] is the property to be invoked in the object. If the method does not require
parameters, empty parentheses (“()”)are still required.

• <param> is a parameter required to invoke the method. If multiple parameters are required,
they must be separated by a comma (“,”).

• <expression> is a Rules Language expression that evaluates to a parameter required to invoke
the method.
8-4 Rules Language User’s Guide

Working with COM Objects
COM Object Functions
The Rules Language also provides other functions for working with COM objects, and include the
following.

GETADOCONNECTION Function
The Rules Language uses an internal ADO database connection. This same database connection
may be required by some third-party COM components. The GETADOCONNECTION
Function can provide access to this connection.

The format of this function is as follows:

<identifier> = GETADOCONNECTION();

Example: obtain an ADO database connection to execute a query

//Invoke the “ExecuteQuery” method of an LSDB DataSource COM object.
OBJECT = CREATEOBJECT (“LSDB.DataSource”);
CON = GETADOCONNECTION ();
RES = OBJECT->ExecuteQuery(CON, XML_QUERY);

For more information about this function, see the GETADOCONNECTION Function on
page 13-6 in the Oracle Utilities Rules Language Reference Guide.

FOR EACH X IN IENUM Statement
The For Each x In COM IENUM Statement provides a method of executing statements for a
set of variants.

The following sample statements set the values of the “ACCOUNTID” nodes in an XML
document to the value of the “TEXT” property.

OBJECT = CREATEOBJECT (“MSXML.DOMDocument”);
XMLNODES = OBJECT->SELECTNODES (“//ACCOUNTID”);

FOR EACH X IN IENUM XMLNODES
ACCOUNTID = X->TEXT;

END FOR;

For more information about this statement, see the For Each x In COM IENUM Statement
on page 3-20 in the Oracle Utilities Rules Language Reference Guide.
Working with COM Components 8-5

Working with COM Objects
COM Error Handling
When using COM expressions and functions, the following reserved identifiers are created in the
Rules Language to aid in error handling. See Reserved Identifiers on page 4-13 for more
information about reserved identifiers.

COM_ERROR_STOP
Specifies error handling behavior in the event of an error in a COM method invoked by the Rules
Language. Available settings include:

• 0 - Use the STOP_ON_COM_ERROR configuration parameter. See LODESTAR.CFG on
page 2-2 in the Oracle Utilities Energy Information Platform Configuration Guide for more
information about this parameter.

• 1 - Ignore the error and set value of LASTCOMERROR identifier.

• 2 - Stop Rules Language processing.

LASTCOMERROR
The error code for the most recent COM error. This identifier is automatically populated when
COM_ERROR_STOP is set to 1, or when the STOP_ON_COM_ERROR configuration
parameter is not present in the LODESTAR.CFG file. This identifier can be used with the IF
THEN statement to perform specific processing in the event of a COM error.

LASTCOMERRORTEXT
The error description for the most recent COM error. This identifier is automatically populated
when the LASTCOMERROR identifier is populated.
8-6 Rules Language User’s Guide

VARIANT Data Type
VARIANT Data Type
This section provides technical details concerning the VARIANT data type and how it is used by
COM objects in the Rules Language.

The VARIANT data type encapsulates all simple (BSTR, INT, BOOL...) types and allows a COM
object's encapsulating (including IUnknown and IDispatch interfaces). The Rules Language has a
similar unionized type that encapsulates the types used by Rules Language. By encapsulating the
VARIANT type into the Rules Language type, the VARIANT type can be used in Rules Language.

Conversion from a Rules Language type to a VARIANT and vise versa is handled automatically by
the Rules Language.

The Trial Calculation module shows identifiers with the VARIANT type.

For the COM interfaces (IUnknown, IDispatch) the Edit ID dialog displays a type of
“VARIANT”, with the value set to the interface name, address and VT type.

For the other identifiers of type “VARIANT”, the Edit ID dialog displays only the VT type.

Mathematical expressions are not supported for the VARIANT type identifiers. Only the
following VT types can be used in logical expressions: VT_IDISPATCH, VT_IUNKNOWN,
VT_ERROR. These VT types can be compared with a NUMBER.

Example:

X = DOCELEMENT->SELECTSINGLENODE("//TEST");
If(X = 0) THEN
//print error
End if;

Rules Language and VARIANT Types
The following tables indicates how VARIANT types correspond to Rules Language data types.

VARIANT to Rules Language

Variant type RSCD type RSCL type

VT_EMPTY
VT_NULL

RSCD_NOTYPE RSCL_NONE

VT_I1
VT_I2
VT_I4
VT_BOOL
VT_UI1
VT_UI2
VT_UI4
VT_I8
VT_UI8
VT_INT
VT_UINT

RSCD_INTEGER RSCL_INTEGER

VT_R4
VT_R8
VT_CY
VT_DECIMAL

RSCD_FLOAT RSCL_FLOAT

VT_BSTR* RSCD_STRING RSCL_LITERAL

VT_DATE RSCD_DATE RSCL_DATE
Working with COM Components 8-7

VARIANT Data Type
* if length of string will be more than 260 symbols this string will be handled as VARIANT type.

VARIANT to Rules Language

VT_DISPATCH
VT_ERROR
VT_VARIANT
VT_UNKNOWN
VT_RECORD
VT_VOID
VT_HRESULT
VT_PTR
VT_SAFEARRAY
VT_CARRAY
VT_USERDEFINED
VT_BLOB
VT_STREAM
VT_STORAGE
VT_STREAMED_OBJECT
VT_STORED_OBJECT
VT_VERSIONED_STREAM
VT_BLOB_OBJECT
VT_CF
VT_CLSID
VT_VECTOR
VT_ARRAY
VT_BYREF
VT_BSTR_BLOB

RSCD_VARIANT RSCL_VARIANT

RSCD type RSCL type Variant type

RSCD_NOTYPE RSCL_NONE VT_EMPTY

RSCD_INTEGER RSCL_INTEGER VT_I4

RSCD_FLOAT RSCL_FLOAT VT_R4

RSCD_STRING RSCL_LITERAL VT_BSTR

RSCD_DATE RSCL_DATE VT_DATE
8-8 Rules Language User’s Guide

VARIANT Data Type
RSCD_VARIANT RSCL_VARIANT VT_DISPATCH
VT_ERROR
VT_VARIANT
VT_UNKNOWN
VT_RECORD
VT_VOID
VT_HRESULT
VT_PTR
VT_SAFEARRAY
VT_CARRAY
VT_USERDEFINED
VT_BLOB
VT_STREAM
VT_STORAGE
VT_STORED_OBJECT
VT_VERSIONED_STREAM
VT_BLOB_OBJECT
VT_CF
VT_CLSID
VT_VECTOR
VT_ARRAY
VT_BYREF
VT_BSTR_BLOB
Working with COM Components 8-9

Examples
Examples
This section provides additional examples of using COM objects in the Oracle Utilities Rules
Language.

Using Scripting.FileSystemObject
The following example creates a text file containing the line “Hello” using the File System Object.

FSO = CREATEOBJECT("Scripting.FileSystemObject");
TF = FSO->CreateTextFile("results.dat", 1);
TF->WriteLine("Hello");

Using LSDB.DataSource
The following example executes a query using the ExecuteQuery method of the
LSDB.DataSource COM object.

//Create new instance of the object
OBJLSDB = CREATEOBJECT("LSDB.DataSource");
//Call method with parameters
DATASOURCE = CreateObject("MSXML2.DOMDocument.4.0");
DATASOURCE->load("DataSource.xml");
X = DATASOURCE->XML;
//Create new instance of the object
EXECQUERY = CREATEOBJECT("MSXML2.DOMDocument.4.0");
EXECQUERY->load("Query.xml");
Y = EXECQUERY->XML;
QUERYOUT = OBJLSDB->ExecuteQuery(X,Y);
DOMREQUEST = CREATEOBJECT("MSXML2.DOMDocument.4.0");
DOMREQUEST->loadXML(QUERYOUT);
SAVE COMMIT;
8-10 Rules Language User’s Guide

Appendix A
Setting Up Rate Form Records and Rate Codes

This appendix explains how to create rate form records and rate codes. These records must exist
in the Oracle Utilities Data Repository before you can write rate forms using the Oracle Utilities
Rules Language. The Oracle Utilities Rules Language allows you to create and save three versions
of a rate form:

• Current—the version now in effect for your customers.

• Historical—the versions previously in effect.

• Trial—for trial analysis only.

Before you can create any version, you must first set up a Rate Form record. The Rate Form
record is the parent record that makes it possible to keep track of all of its versions (from the
database perspective, its “child” records.)

You must also set up descriptive records for rate codes that you wish to incorporate in rate
schedules.

This chapter explains how to set up the three types of records in the Oracle Utilities Data
Repository: rate forms, rate form versions, and rate codes. Writing the rate form scripts (encoding
the English language description of a rate form into a computer-usable format) is described in the
Rules Language User's Guide.
Setting Up Rate Form Records and Rate Codes A-1

Adding a Rate Form Record
Adding a Rate Form Record
Information is entered via the Browser.

How to create a rate form record:

1. Select File-›Browse-›Customer Database. The Browser window appears.

2. Click on the table icon for Rate Forms. A list of the existing rate form records appears on
the right side of the Browser window.

3. Select Records-›Insert New, or click the right mouse button and select Insert New. A data
entry form appears on the right side of the Browser.

4. Select an Operating Company for the rate form. Position the cursor in the field and click
the mouse button. Select a code from the list that appears—be sure to click in the first
column. When the desired selection is highlighted, press the ENTER key or click OK.

5. Select a Jurisdiction for the rate form. Select a code using the same method you used for
operating company.

6. Enter a Code for the rate form. This is a unique identifier (up to 64 characters) for the rate
form.

7. Select the Type of rate form

• Contract: A contract describes bill calculations that apply to a single customer. Contracts
are the only rate form type that allow use of a “Null” value for the Operating Company
and Jurisdiction codes.

• Rider: “Rider” is used here to refer to any sub-form. A sub-form is a set of statements
that you want to make available for use in several rate schedules. This could include tariff
riders, company-wide rules and regulations, or other common calculations such as a set
of statements that creates time-of-use billing determinants from interval data.

• Rate Schedule: A rate schedule describes the bill calculations for a class of customers.
In another way of looking at it, a rate schedule is the rules language form of a rate tariff. When
used as input to a Oracle Utilities program, rate schedules are used to compute revenue
from billing determinants.

See the Oracle Utilities Rules Language User's Guide for additional information about the
three types of rate forms.

8. Enter a Name or other description for the rate form. This name will help users recognize the
code in displays and reports. It can be up to 64 characters long.

9. Enter an optional Note, such as a description or comments, up to 254 characters.

10. Set the Billing Mode Flag for the rate form (used with Oracle Utilities Billing Component).

11. Set the Print Detail for the rate form. This specifies the level of information to be included
in reports and transaction records for the account (used with Oracle Utilities Billing Component).

12. Set the Full Day Bill flag for the rate form. This specifies whether the end of the bill period,
as recorded in the Bill History records for the accounts on this rate, is the last full 24-hour
period (ending at midnight) prior to the meter read date and time, or whether it is the actual
meter read date and time. If you specify Yes, the midnight of the last full day is stored; if you
specify No, the actual date and time are stored. Keep in mind that if you specify Yes, it is the
functions supplied in the rate schedule that determine which stop date and time is applied
when calculating energy and/or demand—the cut's actual stop date and time, or that stored
in the Bill History record. Also, any setting you supply for Full Day for the individual account
will override this setting (used with Oracle Utilities Billing Component).

13. Specify whether or not the rate form will be editable by setting the Editable column as
appropriate (Yes or No). Non-editable rate forms are considered “locked” and cannot be
A-2 Rules Language User’s Guide

Adding a Rate Form Record
edited or changed (and the same applies to Rate Form Version records and Rate Form
Version Text records for locked rate forms).

14. When you have completed the fields for this record, select Edit-›Add, or click the right
mouse button and select Add, to save it to the database.

If you are creating a rate schedule record, you may wish to now add its “child” rate code records
using the following instructions.
Setting Up Rate Form Records and Rate Codes A-3

Adding Rate Codes
Adding Rate Codes
Accounts are related to rate schedules through rate codes. For that reason, each rate schedule can
include the definition of several rate codes, but it must include at least one.

A rate code represents a subdivision of the class of accounts billed according to a rate schedule.
You could have a residential rate schedule, R, with two kinds of customers, each assigned a special
rate code: the first group of customers on rate code RH has hot water heating; the second group
on rate code RNH do not. RH customers will have an additional charge just for hot water heating.
To distinguish between the two groups, the Rules Language lets you access those rate codes within
a rate schedule script.

However, before you can do that, you must define the codes in the Oracle Utilities Data
Repository.

A Rate Code record must have a parent rate schedule Rate Form record. A rate schedule can have
an unlimited number of “child” rate codes associated with it, but it must have at least one.

How to add rate codes:

To create a Rate Code record, click the small plus sign next to the icon for its parent Rate Form
record in the Tree pane. Near the bottom of the expanded tree for the Rate Form record, you'll
see a table icon for Rate Code. Click on it, and select Records-›Insert New (or click the right
mouse button and select Add).

Most of the fields are automatically filled in using information from the parent record. There are
two remaining fields:

Code: Enter a unique identifier for the rate code. It can be up to 64 characters long.

Note: Optional description or comments, up to 254 characters.

When you have completed the fields for this record, select Edit-›Add, or click the right mouse
button and select Add, to save it to the database.
A-4 Rules Language User’s Guide

Creating a New Rate Form Version
Creating a New Rate Form Version
You can create three different versions of a rate form: Current, Trial, or Historical.

Each rate form version has an associated effective start date. Rate forms that have been
superseded (have earlier start-dates than another) are considered “historical.” The rate form
version with the latest start date is the “current” version.

In addition, you may want to test changes to a rate form without affecting the current or historical
versions. You can create a “trial” version, which has no date associated with it.

Many of the Oracle Utilities analyses have a simple option—select the rate forms based on the bill
month, or based on your selection. If you choose the bill month option, the analysis automatically
selects the correct current or historical version based on the bill month. Otherwise, you can select
a specific rate form, including any current, historical, or trial version.

How to create a new rate form version record via the Browser:

To use the Browser method, expand the tree for the parent Rate Form record. Click on the table
icon for Rate Form Versions, and select Records-›Insert New, or click the right mouse button
and select Insert New. Complete the fields as desired (see following section for description of the
fields). Finally, select Edit-›Add, or click the right mouse button and select Add.

How to create a new rate form version record:

1. Select File-›New-›Rate Schedule Version.

The New Rate Form Version dialog box appears.

2. Select the Operating Company and Jurisdiction to which your rate form belongs. The list
of currently available Rate Form records appears in the list box.

3. Highlight the desired Rate Form in the list box.

4. Your input in the remaining two fields depends upon which type of version you wish to
create. For a trial version, enter a version number (but no start date). For a current or
historical version, enter its start date (but no version number).

The difference between historical and current versions is that the current version has the
most recent start date.

You can create virtually any number of trial or historical versions, but there can be only one
current version. If you are creating a trial rate schedule and plan to include a trial contract in
it, specify a version number between 9000 - 9999, inclusive, for both rate forms. Otherwise,
the system will automatically include the current version of the contract.

5. Click OK. The record you just created is saved to the database, and a Rules Language Editor
window opens. You can now create a rate form script using any of the statements described in
the Oracle Utilities Rules Language User's Guide.
Setting Up Rate Form Records and Rate Codes A-5

Importing and Exporting Rate Forms in Batch Mode
Importing and Exporting Rate Forms in Batch Mode
In addition to setting up and creating rate forms, you can move a rate form from an older database
to a newer one, while verifying that the rate form follows all the rules that apply to the new
database. This is done using the RFIMPEXP.EXE command line program. As it validates the rate
form, RFIMPEXP also ensures that all associated riders, contracts, etc. are exported with it.

RFIMPEXP Command Syntax
RFIMPEXP uses the following syntax. Parameter switches are case insensitive; you can enter them
in either upper or lower case (-c or -C). If a parameter includes a space, you must enclose it in
quotes (for example, -f “11/01/1999 12:00:00”). In actual use, the command must be entered on
one line. Also, you must either change to the directory in which the program is stored (typically,
\LODESTAR\bin) before entering the command, or specify the path in the command. To view a
list of all parameters on-screen, type rfimpexp -? at the command prompt.

rfimpexp [-c connectstring [-q qualifier]] -ffile configfilename [-lcfg logging configuration filename]

The parameters explained above are only those that apply to all RFIMPEXP modes. Additional
modes are explained on the following pages.

Parameter Description

-c connectstring is database connection information for the Oracle Utilities Data
Repository. This parameter is required and must be in one of the following
formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:
• <data_source> is the Oracle TNS Name for the data source, from the

TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

• <user_id> is the user ID for the database connection

• <password> is the password for the supplied user ID.

-q qualifier is an optional database qualifier. The default is PWRLINE.

-ffile configfilename is the name of the configuration file that defines the working
environment of the Oracle Utilities software (e.g., directs the software where
to find and place the application data files and so on). If you do not supply
a value for configfilename, the system uses the default (LODESTAR.CFG).
For information about the contents of this configuration file, see the Oracle
Utilities Energy Information Platform Configuration Guide.

-lcfg logging configuration filename Name of an optional logging configuration file
that specifies where error and log messages are sent. If you omit this
parameter, the application creates a log file named RFIMPEXP.LOG in the
LOG directory.
A-6 Rules Language User’s Guide

Importing and Exporting Rate Forms in Batch Mode
Import Mode
These parameters are specific to Import Mode only:

The following are used to rename the rate form:

Note: Either version number or start date may be supplied, but not both.

Export Mode
These parameters are specific to Export Mode only

The following are used to identify the rate form to export (same rules as import):

Parameter Description

-i Rate form file, if supplied then it is read and saved. The values in its
first line are used for r, o, j, v, and ds, if they are not supplied.

-l Compile a new rate schedule.

-su Update rate form if it already exists.

Parameter Description

-rCODE CODE is rate form code (all CODEs must be in UPPERCASE).

-oCODE CODE is Operating Company code.

-jCODE CODE is Jurisdiction code.

-v### ### is version number - 1, 2, The default is 0.

-dsmm/dd/
yyyy

Start date for rate form version. The default is 0.

Parameter Description

-w Write (export) to this file.

-ssbiq Small comment, blank lines, and indentation. q is quick; other s options
are ignored, the text is written as-is.

-x Expand non-contract INCLUDE statements.

Parameter Description

-rCODE CODE is rate form code.

-oCODE CODE is Operating Company code.

-jCODE CODE is Jurisdiction code.

-v### ### is version number - 1, 2,The default is 0.

-dsmm/dd/
yyyy

Start date for rate form version. The default is 0.
Setting Up Rate Form Records and Rate Codes A-7

Importing and Exporting Rate Forms in Batch Mode
Dump Mode
Dump Mode overrides all other modes except Resave.

Global Compile/Resave Mode
This mode overrides all other modes.

Parameter Description

-dump Export all rate forms. They are put in the USER directory by default,
one rate form per file (unless -w used). Each file name is
OPCOCODE_JURISCODE_RSCODE_nn, where nn depends on the
version number and start date. The values for r, o, j, v, and ds (see
Export Mode) are coded in the first line in each file.

-w Files put in this directory (must exist).

-ssbiq Small comment, blank lines, and indentation. q is quick; other s options
are ignored, the text is written as-is.

-x Expand non-contract INCLUDE statements (ignored if -sq).

Parameter Description

-lcomp Reads each rate form and compiles it, without INCLUDE statements
(see the Oracle Utilities Rules Language User’s Guide for more information).
This is needed to verify the rate form using the latest Rules Language
syntax.

-lincl Reads each rate form and compiles it, with INCLUDE statements (see
the Oracle Utilities Rules Language User’s Guide for more information).
This is needed to verify the rate form using the latest Rules Language
syntax.

-lsave Reads each rate form, compiles it, and saves it back with new
formatting. This is needed for correct formatting in Single Step and to
verify the rate form using the latest Rules Language syntax. Use one (-
lcomp or -lsave) but not both.
A-8 Rules Language User’s Guide

Importing and Exporting Rate Forms in Batch Mode
Importing Groups of Rate Forms
The Import Mode of RFIMPEXP is used to import rate forms one at a time. You can also import
groups of rate forms. To import all the rate form files from a specific directory, run the following
command from the DOS command line:

for %%1 in (<path>*.prg) do rfimpexp -i%%1 ...

(... is userid, password, and connect string).

Where:

• <path> indicates the path to the directory where the exported rate form files (*.prg files) are
stored.

You must run this command from the “C:\LODESTAR\Bin” directory. If not, you must specify
the path to the RFIMPEXP program in the command line. For example, if your rate forms were
stored in the C:\LODESTAR\RATES directory, and the RFIMPEXP program was in the
C:\LODESTAR\APPS directory, the command line would be:

for %%1 in (C:\LODESTAR\RATES*.prg) do C:\LODESTAR\APPS\rfimpexp -i%%1 ...
Setting Up Rate Form Records and Rate Codes A-9

Importing and Exporting Rate Forms in Batch Mode
A-10 Rules Language User’s Guide

Index
Symbols
$EFFECTIVE_REVENUE 4-4

Numerics
1 4-24, 4-27

A
account

definition 1-3
Account Rate Code History Record 1-6
Assigned a name to a charge 1-7
Automatically finding correct values for billing periods 1-7

B
basic building blocks of The Rules Language 1-4
Bill Calculations 1-3
Bill calculations 1-5
Bill History Record

What it contains 1-3
Bill History records 1-3
Bill History Table

stores account usage data 1-3
stores bill determinant values 4-5

Bill History Value Table
stores account usage data 1-3
stores bill determinant values 4-5

Bill History Value table 1-3
BILL_TYPE 4-11
BILLDETERMINANT Lookup Table

defining bill determinant identifiers 4-5
Billing Mode flag A-2
billing modes 3-4
Bills

Outputting in an electronic format 1-2
Block statements

Forms of 1-2

C
CANCEL/REBILL rider

Definition of 1-5
CIS Billing Options

Billing Component 4-3
Class of customers 1-5

Constants 1-4, 4-23
Contract A-2

Creating 2-2
Definition of 1-5

contracts 1-5
creating a rate form 1-3
Current 1-5, A-1
Customer Bill charges 1-3
Customer demand 1-3

D
Definition of an account 1-3

F
Factor Name 1-7
Factor Name table 1-7
Factor Table

factor names 1-7
Factor Value Table

stores associated values 1-7
Factors 1-7
Factors and Overrides 1-7
Full Day Bill A-2
Functions 1-3
functions 1-4

G
Graphical user interface 1-3

H
Historical 1-5, A-1
Historical determinants 4-5
How to

add a statement to the rate form script 2-4
add rate codes A-4
copy lines from another rate form script. 2-5
create a new rate form version record via Data Manager

A-5
create a new rate form version record via the Browser A-5
create a rate form record A-2
delete a statement from the rate form script. 2-4
insert a statement between existing lines. 2-5
move a statement within the rate form script. 2-5
open the Rules Language Editor for an existing rate form
Index-1

version 2-3
open the Rules Language Elements Editor 2-9
save your rate form version script. 2-10
select a parameter

 2-9
how to

Compute a customer bill 1-3

I
Identifiers

Override 4-8
If-then-else statement 1-2
Interval data 1-3

Using stem.component to set header data 4-15

L
Language statements 1-2

Computational ability of 1-2
LODESTAR Rules Language

Features of 1-2

M
Meter Value Table

stores bill determinant values 4-5
Metered Billing Determinant Values

Where stored 1-3
middle list box 2-3

O
Operator rules

In arithmetic expressions 4-27
Other Tools for Writing Rate Forms 2-11
Overrides 1-7
Overriding standard charges 1-2

P
Parameters

Selecting with the Rules Language Elements Editor 2-9
Pre-defined identifiers 1-2
Print Detail A-2
Prorate flag 4-7

R
Rate Code Records 1-6
Rate Form 2-3
Rate form 1-4

Capabilities of 1-2
Rate Form record 1-5, A-1
Rate Form records 2-2
Rate Forms

Creating new 2-2
Editing an existing 2-3
Saving 2-10
Types, definition of 1-5

Rate Schedule
Creating 2-2
Definition of 1-5

rate schedules 1-5
Rate Tariff 1-5

Rate Wizard 2-13
Record identifiers 4-24
Revenue Analyses 1-3
Revenue identifiers 4-4
Rider

Creating 2-2
Definition of 1-5

riders 1-5
Rules Language Editor

How to use 2-1
Rules Language Elements Editor 6-1
Rules Language Elements editor 2-6
Rules Language Text Editor 2-11
Running a Rate Form 1-6

S
Sample Rate Form 1-6
Saving

Results of calculations back to the LODESTAR Databases 1-2
Selection statement 1-2
SFUNCALL 6-1
simple identifiers 4-2
Special functions of language statements 1-2
Special identifiers 1-2
Statements

Adding to a rate form 2-4
Copying from rate form into another 2-5
Deleting from a rate form 2-4
Inserting in a rate form 2-5

statements 1-4
Stem.components

Using to set cut header values 4-15
Storing

Values associated with overrides 1-7
Straight-line meter rate 1-6
Sub-form

Definition of 1-5
Symbol Table 3-2
Symbols

/* */ 1-6

T
templates 1-3
The Rules Language 1-4
Time of Use handles 4-6
Time Series Data 1-3
Trial 1-5, A-1
Trial revenues 1-2
types of statements 1-4

U
Usage data

Where it is stored 1-3
Using the Rules Language Editor 2-2

V
versions

where lists are stored 2-3
Index-2

W
What Customer Usage Data is Used to Calculate Charges? 1-3
What is the LODESTAR Rules Language? 1-2
Writing and Editing a Rate Form 1-6
Index-3

Index-4

	Contents
	What’s New
	New Features in the Oracle Utilities Rules Language User’s Guide
	New Features for Release 1.6.0.0

	Chapter 1
	Introducing the Oracle Utilities Rules Language
	What is the Oracle Utilities Rules Language?
	What Data is Used to Perform Calculations?

	Rate Forms
	Rate Form Building Blocks
	Rate Form Types
	Rate Form Versions
	Sample Rate Form
	Writing and Editing Rate Forms
	Running Rate Forms

	Factors and Overrides
	Factors
	Overrides

	Cancel/Rebill Rider

	Chapter 2
	Using the Rules Language Editor
	The Rules Language Editor
	Adding, Modifying, and Deleting Statements
	Using the Rules Language Elements Editor
	Rules Language Element Types
	Working with the Rules Language Elements Editor

	Saving a Completed Rate Form
	Printing a Rate Form
	Other Tools for Writing Rate Forms
	The Rules Language Text Editor
	The Rate Wizard

	Chapter 3
	How Rate Forms are Processed
	Overall Execution Process
	Which Rate Form?
	Shared Symbol Table

	Saving Data from a Rate Schedule
	Types of Data
	Related Bill Pages
	Requirements
	Transactions
	Postponed Saves
	Two Phase Commit

	Chapter 4
	Identifiers, Constants, and Expressions
	Identifiers
	Revenue Identifiers
	Bill Determinant Identifiers
	Database Identifiers
	Interval Data Handles
	Time-of-Use Handles
	Factor Identifiers
	Override Identifiers
	Bill History Predefined Identifiers
	Other Predefined Identifiers
	Assignable Predefined Identifiers
	Reserved Identifiers
	Record Identifiers (stem.component)
	Rate Schedule Environment Identifiers
	Report Options Identifiers
	Array Identifiers

	Constants
	Expressions
	String Expressions
	Date Expressions
	Arithmetic Expressions

	Chapter 5
	Statements Overview
	General Statements
	Control Statements
	Revenue Computation Statements
	Report Statements
	Miscellaneous Statements
	Financial Management Statements
	WorkFlow Manager Statements
	XML Statements

	Chapter 6
	Rules Language Functions Overview
	Interval Data Functions
	Enhanced Interval Data Functions

	Meter Value Functions
	Math Functions
	String Functions
	Other Functions
	Database Functions
	Date/Time Functions
	Historical Data Functions
	Internal Functions
	Season-Based Functions
	Oracle Utilities Receivables Component Functions
	XML/Document Object Management Functions
	Term Functions
	Miscellaneous Functions

	Rules for Using Functions
	Functions and Identifiers
	About Identifiers
	About Parameters

	Chapter 7
	Working with Interval Data
	Interval Data Functions Overview
	Interval Data Function Errors
	Types of Interval Data Handles
	Interval Data Function Parameters
	Combining and Comparing Interval Data Handles

	Timezones and DST
	Timezone Support
	DST Support in the US

	Unit-of-Measure Rates and Quantities
	UOM Categories
	UOM Mapping
	Mapping Data
	Rules Language Functions

	Loading Interval Data
	INTDLOAD Functions
	INTDLOADEX Functions
	Loading Overlapping Cuts
	Loading Partial Intervals
	Notes On Loading Interval Data

	Creating Interval Data Masks
	Overview
	Interval Data Mask Functions
	Interval Data Mask Operator Rules

	Other Interval Data Operations
	Interval Data Functions
	Scalar and Block Operations

	Working with Enhanced/Generic Interval Data
	Deriving Billing Determinants and Values from Interval Data
	Overview
	Bill Determinants
	Other Values

	Examples of Working with Interval Data
	Loading Interval Data
	Time-of-Use Periods
	Override Masks
	Time-of-Use and Overrides
	Calculating Coincident and Non-Coincident Peaks

	Chapter 8
	Working with COM Components
	Overview
	Working with COM Objects
	Creating COM Objects
	COM Expressions
	COM Object Functions
	COM Error Handling

	VARIANT Data Type
	Rules Language and VARIANT Types

	Examples

	Appendix A
	Setting Up Rate Form Records and Rate Codes
	Adding a Rate Form Record
	Adding Rate Codes
	Creating a New Rate Form Version
	Importing and Exporting Rate Forms in Batch Mode
	Symbols
	Numerics
	A
	B
	C
	D
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

	Index

