
Oracle® Documaker

Programmer ’s Guide

12.6.3

Part number: F28172-01

March 2020

Start

Copyright © 2010, 2020, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

CONTENTS

Source Libraries ..8

Release 12.5 SDK Content ...8

Global (common) Directories ...9
Platform Specific Directories ..9
Library Directories ..10

Libraries ...10

Naming Conventions ..10

Building Libraries ...12

Overview ..12

Software Used for PC Platforms ...12

Compiler, Linker, Librarian, Resource Compiler12
Heap Management ..13

Software Used for UNIX Libraries ...13

Compiler and Linker ...13
Make ..13
SQL Dynamic Library ...13
Documaker Utilities ..14

Building a Library for PC Platforms ...15

CUSLIB ..15
CSTLIB ..15
Switches and Settings ..15

Building a Library for the UNIX/Linux Platforms16

Switches and Settings ..16
Configuring Make ...17
Documaker Directories ..18
Syntax of makefile and master.unix ...18
Comments ..19
Variable Lists ...19
Required Settings in makefile ..20
Adding Custom Code to a Library Make22

System Basics ...24

Commonly used System Data Types ..24

VMMHANDLE ..24
FAPPARM and FSIPARM ..24
FAPPFN ...25

FAP Object Message Handlers ...25

FAPHANDLER Prototype ..25

Virtual Memory ..26

Linked Lists ..26
Dynamic Arrays ..31
Hashed Tables ...33
Cache Management ...35

Customizing the System ..36

Generating PDF417 Barcodes ..36

Print ...36

Print Callback Functions ..36
Support for Docusave ..37
Support for OnDemand ..39

Customizing Batch Processing ...40

CUSLIB ...40

Base Rules ...40
Image Rules ...41
Field Rules ...42
Making a new field rule ..42
Recipient Rules ..42

Upgrading CUSLIB to a New Release ..43

Upgrading CUSLIB from Release 10.3 or earlier43
Problems you may experience ...46

Customizing Documaker Desktop ...49

Remote Access Library (RACLib and RacCo)49

Writing Custom Code ..49

CSTLIB ..49

Defining Custom Functions ...49

Defining Custom Functions for Cross-Platforms50

MENU Procedures ..51

Menu Resource Format ...51
Menu Keywords ...52
Menu Item IDs ..56
Menu Procedure Prototype ..56
Menu Replacement ..57

AFE Procedure Hooks ...57

INI Options ...58
Hook Prototypes ..58
INI Settings ..59
Functions and Hooks ...60

Transactions ..61

INI Definition ..61

DAL Functions and Procedures ..62

INI Registration ..62
DAL Function Prototype ...63

Edit Functions ..64

Prototypes ..64
Pre-Edit Functions ...65
Post-Edit Functions ..65

Image Functions ..65

Prototypes ..65
Open Functions ..66
Close Functions ...66

Export Formats ..66

Import Formats ..66

Document Set Procedures ..67

INI Settings ..68
Functions ...68

Timed Service Functions ...68

History ..69
INI Settings ..70
Example Registrations ...73
Multiple Platforms ..74
Timed Service Function Prototype ...74
Messages ...75
Considerations ...76
Timing Example ...77

Function and Hook Reference ...78

AddComment ..78

AFE Append Record Hook ..78

AFERetriB4AppendgToLstHook ..78

AFE Archive List Hook ..79

AFERetDisplLstHook ...79

AFE Archive Record Selected Hook ...80

AFERetriOkButtonHook ...80

AFE Check Form Set Data Hook ..81

CheckUserEntry ...81

AFE Complete Form Set Hook ..82

Complete ..82

AFE Entry Form Set Hook ...84

EntryFormset ...84

AFE Form Selection Buttons Hook ..85

BUTTONx ..85

AFE Initialization Hook ..87

Init ..87

AFE Parse Command Line Hook ..88

Parse ..88

AFE Post Edit Hook ...88

PostEdit ..88

AFE Pre Edit Hook ..89

PreEdit ...89

AFE Termination Hook ..90

Term ...90

AFE Window Procedure Hook ...90

WindowProc ...90

AFEArchive2WipKeys ...91

Archive2WIP ..91

AFESecurityFunc ..92

Security ..92

AFEWip2Archive ...94

Wip2Archive ...94

AFEWip2ArchiveRecord ..95

Archive ...95

AppIdxRec ...96

CUSGetArcIdxName ...96

IndexName ...96

DSDefAppendBuffer ..97

Append ...97

DSDefCloseBuffer ...98

Close ..98

DSDefCreateBuffer ...99

Create ..99

DSDefFirstBuffer ...99

First ..99

DSDefNextBuffer ...100

Next ..100

DSDefOpenBuffer ...101

Open ..101

LBYCARRetrieveFile ...102

RetrieveFile ..102

LBYCARRetrieveMemFile ...103

RetrieveMemFile ..103

LBYCARSaveFile ..103

SaveFile ...103

LBYCO COM ...104

LBYCO COM ...104

LMGLBYCheckin ...104

CheckIn ..104

LMGLBYCheckout ...105

CheckOut ...105

LMGLBYInit ...106

Init ..106

LMGLBYReInit ..106

ReInit ..106

LMGLBYSelect ..107

Select ...107

LMGLBYTerm ...107

Term ...107

LMGLBYUnlock ...108

Unlock ..108

LMGLBYView ..108

View ...108

TMRTimers ..109

TMRInit ..110

TMRTerm ..110

TMRSetAppData ...110

TMRAppData ...110

TMRSetHwnd ..110

TMRHwnd ...111

TMRSetHab ...111

TMRHab ..111

TMRIsDesktopUp ..111

TMRIsDialogUp ...111

TMRTimerTest1 ..111

TMRTimerTest2 ..111

TMRTimerTest3 ..111

TRNAutoKeyIDUsrFunc ..112

AutoKeyID ..112

TRNSetBannerFormInfo ..114

Set Banner Information ..114

Source Libraries

8

Source Libraries

Release 12.5 SDK Content
The source is installed into a base directory of \DocumakerSDK. Contained within
you will find the base source directory tree of \rel125. Other and files and directories
of \DocumakerSDK are needed for the installation and un-installation.

The SDK contains binary files of release 12.5. Both debugging and release versions of these
files are provided. Additionally, two custom library projects are provided that enable you to
customize the system. The CUSLIB can be built and modified in order to customize batch
processing. The CSTLIB is used for customizing the workstation. Since you will be writing
custom rules, the source files to RULLIB are provided for reference and source code
debugging.

This table shows some of its directories for Window and UNIX/Linux systems:

.\DocumakerSDK drive or base directory file system location

.\rel121 Release Number

.\rps100 Rules processor base source

.\inc Global include files.

.\3rdinc Third party include files.

.\CUSLIB Custom library for batch processing

.\c cross-platform C source files for CUSLIB

.\h Include files for CUSLIB

.\libname||exename cross-platform source library or executable
directory (e.g: RULLIB)

.\c cross-platform C and C++ source files

.\h cross-platform include files made for this library

Windows Platform Specific Directories

.\w32dll Windows build directory for a Dynamically Linked
Library and its objects (contains makefile.prg).

.\w32lib .Windows import and static library files.

.\w32bin Windows debug binary files.

.\shipw32 Windows ship binary files.

.\CSTLIB Custom library for Workstation

CSTLIB.sln

CSTLIB.vcproj

.\c C source files for CSTLIB

Source Libraries

9

Global (common) Directories

The Documaker source is written to be compiled for many different target operating
systems. For the most part, there is one set of source for the platforms. Libraries have
their own source tree under the base library subdirectory (RPS100). Unique source
and include files for a library are made and maintained in each library's subdirectory.
When a library wants to expose some of its functionality to others, the relevant
include files are copied to a global include directory (\INC). The files in the \INC
directory are merely a copy of the source files that are maintained in the library
subdirectory. These files are copied automatically with the build process.

Platform Specific Directories

Include Directory

Each PC operating system has its own include directory. This directory is used for
platform specific include files. These files are generally from third parties. For
example, the Windows 32-bit platform has some SQL include files in its W32INC
directory.

.\h C include files for CSTLIB

.\w32dll Binary output directory for CSTLIB

UNIX/Linux Platform Directories

./unix UNIX/Linux build input directory containing
common UNIX/Linux gmake makefile

./unixinc UNIX/Linux global include files.

./unix UNIX/Linux build supporting scripts.

Linux Platform Specific Directories

./linux Linux build directory for libraries and executables
which contains the source objects, dependency
file and linked targets.

(source objects dates are adjusted to the source
code module’s C/C++ file date after compile and
targets are set to latest modification date of the
source code modules and headers).

./lnxinc Linux global include files from third parties.

./lnxlib Linux static library files.

./lnxbin Linux debug binary files.

./shiplnx Linux ship binary files (lnxbin binaries with debug
symbols and information removed using strip).

Source Libraries

10

Import Library Directory

Each PC operating system has its own import library directory. This directory is
where libraries get the files to link from other libraries. Both DLL import libraries
and static libraries such as FSILIB are copied to this subdirectory for the target
platform.

Binary Directory

Each PC operating system has its own binary directory. This directory is where the
debug version of the libraries is copied for the target platform.

Ship Directory

Each PC operating system has its own ship files directory. This directory is where
the non-debug version of the libraries is copied for the target platform.

Library Directories

The subdirectory name should reflect the library name. Each library will have a
subdirectory tree for source files, include files, and targets. The source file
subdirectory is named ‚ÄúC‚Äù, the header file subdirectory is name ‚ÄúH‚Äù, and
the targets are named by a three-letter acronym for the environment and a three letter
acronym for the target file type.

Libraries

Naming Conventions

File names are generally created from abbreviations using the following syntax:

On Windows:

[Library][Environment][Library Qualifier][.Extension]

On UNIX/Linux:

Static: lib[Abbreviation].a
DSO: lib[Abbreviation][.unix_linux_extension]
EXE: [ExeTargetName]

Documaker library file names are constructed from the library abbreviation and an
abbreviation for the target environment, and in some cases, an editor or library
qualifier is necessary. Here are examples of LIB, DLL, and EXE names:

Library Target Name Description

FSIW32.LIB Core static library for Windows 32-bit binaries

libfsi.so Core static library for UNIX/Linux 32-bit binaries

VMMW32.DLL Dynamic Loaded Library (DLL) of VMMLIB for Windows 32-bit
(a.k.a Dynamic Link Library)

VMMW32.LIB Import library of VMMLIB for Windows 32-bit

Source Libraries

11

[Library] Component

Libraries should have a name that describes the function of the library and a two- or
three-character abbreviation for that name. Here are examples of some currently
established library names:

[Environment] names

Environment names should have a name that describes the target platform in a two-
or three-character abbreviation. Here are examples of environment names:

[Library Qualifier] Component

Here are examples of qualifiers:

[.Extension] Component

Here are examples of extensions:

libvmm.so Dynamically Shared Object (DSO) of VMMLIB for Linux 32-bit

CUSW32.DLL DLL of CUSLIB for Windows 32-bit

libcus.so DSO of CUSLIB for Linux 32-bit

GENDAW32.EXE GenData executable for Windows 32-bit

Gendata GenData executable for Linux 32-bit

Library Description

FAP Forms Automation Platform

AFP Advanced Function Print

VMM Virtual Memory Management

GUI Graphical User Interface

WIP Work In Progress

Environment Description

Win32 Windows 32-bit

Qualifier Description

M Windows 32-bit

HX Heap expander

C7 Microsoft C 7.0

Library Target Name Description

Source Libraries

12

Building Libraries

Overview

Documaker source is compiled for many operating systems. Only one set of source
code is maintained for these many different target platforms. Source is maintained
and built on the PC and uploaded to other non-PC platforms after successful
completion of PC builds. The code has conditional compilation where necessary to
handle the different operating systems. The core libraries isolate platform
dependencies so libraries built upon these core ones rarely have to deal directly with
conditional compilation in their own code.

Software Used for PC Platforms

Compiler, Linker, Librarian, Resource Compiler

The Windows platforms use the Microsoft Visual Studio 2008 C++ compiler.

Microsoft Visual Studio 2008 C++ build requires the use of Windows uses Manifest
files. Input manifest files are provided in the \rp100 source tree. Manifests are XML
files that accompany and describe side-by-side assemblies or isolated applications.
Isolated applications and side-by-side assemblies provide a solution that reduces
DLL versioning conflicts. They enable applications to safely share assemblies. For
more information on manifest files, see http://msdn.microsoft.com/en-us/library/
aa374029(VS.85).aspx

When this software is required

If the libraries need to be re-compiled, you will need to get the compiler.

Extension Description

.LIB A library. Can be a static linked library or an import library for a
DLL on Windows 32-bit

.DLL Dynamically Loaded Library or Dynamic Link Library for
Windows 32-bit

.EXE Executable for Windows 32-bit

.a Static library for Windows 32-bit

.so Dynamically Shared Object (DSO) for UNIX/Linux systems

Software Version Operating System Vendor Information

Microsoft Visual Studio 2008 Windows 32-bit Microsoft Corporation
www.microsoft.com

http://www.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com
Microsoft Visual Studio 2008 C++ build requires the use of Windows uses Manifest files. Input manifest files are provided in the 	p100 source tree. Manifests are XML files that accompany and describe side-by-side assemblies or isolated applications. Isolated applications and side-by-side assemblies provide a solution that reduces DLL versioning conflicts. They enable applications to safely share assemblies. For more information on manifest files, see http://msdn.microsoft.com/en-us/library/aa374029(VS.85).aspx
Microsoft Visual Studio 2008 C++ build requires the use of Windows uses Manifest files. Input manifest files are provided in the 	p100 source tree. Manifests are XML files that accompany and describe side-by-side assemblies or isolated applications. Isolated applications and side-by-side assemblies provide a solution that reduces DLL versioning conflicts. They enable applications to safely share assemblies. For more information on manifest files, see http://msdn.microsoft.com/en-us/library/aa374029(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa374029(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa374029(VS.85).aspx

Source Libraries

13

Using other software

It is possible to use other software to compile and link system code. Oracle, however,
does not recommend doing so. Generally:

‚Ä¢If you have a version of the Microsoft software that is later than the version
used by Oracle, then Documaker libraries should be able to be linked
without the need to recompile them.

‚Ä¢If you have another vendor's software, it is quite probable that you will need
to re-compile the Documaker libraries with your software unless the
compiler supports setting that will generate code compatible with our
libraries.

Heap Management

SmartHeap

SmartHeap is the memory manager used by executable programs and is linked in to
provide increased performance.

Software Used for UNIX Libraries

Compiler and Linker

Make

UNIX/Linux gmake utility

SQL Dynamic Library

The dynamic SQL library allows access to file systems via SQL statements. This
SQL interface is contained within Documaker. Other Documaker modules access
dynamic SQL functions via DBLIB, which in turn calls DB2LIB, ORALIB, or
SQLLIB.

Software Version Operating System
Vendor
Information

GNU C/C++ compiler:gcc-3.3.5-5 v3.3.5 or
higher, gcc-c++3.3.5-5 v3.3.5 or higher.
See the Documaker Server Installation Guide for
more information.

Linux

Software Version Operating System
Vendor
Information

DB2 software developer kit Version 8.1 All UNIX/Linux platforms IBM Corp. http://
www.ibm.com/

http://www.ibm.com

Source Libraries

14

When this software is required

SQL Dynamic Library is isolated in the library SQLIB, DB2 Embedded SQL is
isolated in the library DB2LIB, and Oracle Embedded SQL is isolated within the
library ORALIB. You do not need this software unless you are modifying or re-
compiling one of the listed libraries.

Documaker Utilities

These utilities are used in the Documaker build process. They are developed by
Oracle and are supplied with the source release.

ostype.sh

Returns the gmake OS variable automatically.

osversion.sh

Returns the gmake OSVER variable automatically.

syncfiles.sh

This utility synchronizes files and directories.

Syntax

syncfiles [-hHtTgGwWvVcCsSrR2nNaAdDxXuUfFmMoOpPbB] sourcefile
destinationdir

Options

-h (usage) IMPLEMENTED
-t (talk-verbose) IMPLEMENTED
-g (diagnostics) IMPLEMENTED
-w (wait)
-v (verify)
-s (subs)
-r (rof)
-2 (twoway)
-n (nocopy)
-a (attribs)
-d (delete destiniation)
-x (noexist)
-u (update)
-f (force)
-m (move)
-o (old)
-p (path)
-b (bell)

sourcefile: file to compare to same-named file in destination-dir

destination-dir: directory to look for sourcefile

Oracle software developer kit version 9.2
and 10.1

Oracle software developer kit
version 9.2 and 10.1

Oracle
Corporation
www.oracle.com

Software Version Operating System
Vendor
Information

www.oracle.com

Source Libraries

15

Building a Library for PC Platforms

CUSLIB

Use the \DocumakerSDK\rel125\rps100\CUSLIB.sln to build the custom rules
processor library.

CSTLIB

Use the \DocumakerSDK\rel125\rps100\CSTLIB.sln to build the custom
workstation library.

Switches and Settings

The switches and settings can be found in the project files provided for CUSLIB or
CSTLIB:

•\rel125\rps100\cuslib\cuslib.vcproj

•\rel125\rps100\cstlib\cstlib.vcproj

Windows 32-bit

Compile Switch Description

/nologo Suppress copyright message

/W3 Set warning level (default n=1)

/Z7 Enable old-style debug info

/Od Disable optimizations (default)

/Zp1 /Zp1

/J Default char type is unsigned

/D "WIN32" Define

/D "_WINDOWS" Define

/D WINVER=0x500 Define

/D _WIN32_IE=0x0500 Define

/D "_CRT_SECURE_NO_WARNINGS" Define

/D "_CRT_NONSTDC_NO_WARNINGS" Define

/D "CHKCMPVER" Define

/D _WIN32_WINNT=0x500 Define

/D _WIN32_WINDOWS=0x500 Define

/D "WIN32_LEAN_AND_MEAN" Define

Source Libraries

16

Building a Library for the UNIX/Linux Platforms

Switches and Settings

You can find the switches and settings in the master.unix file in the base directory ./
rel125/rps100/unix.

Using the gmake utility

If you do not have gmake (standard on Linux, part of the AIX 5L Linux Toolbox
package) and you want to set up a library to use the UNIX environment, create a
makefile for the library you want with all the dependencies, objects, and compiler,
and linker switches detailed by platform in the master.unix that are necessary to build
and use the standard UNIX make utility.

To find out the special settings for a library, examine the common ./unix/master.unix
file, such as

./rel125/rps100/unix/master.unix)

/MD Causes your application to use the multithread- and DLL-
specific version of the run-time library.

/we4700 Flags warning C4700 as an error

Link Switch Description

/NOLOGO Suppress startup banner

/MACHINE:I386 Specifies the target platform

/NODEFAULTLIB:LIBCMT Ignore specified library when resolving externals

/SUBSYSTEM:windows Tells the operating system how to run the .EXE file. The
WINDOWS subsystem applies to an application that does
not require a console, probably because it creates its own
windows for interaction with the user. If the variable
QUICKWIN is empty, then this setting is used.

/SUBSYSTEM:console Tells the operating system how to run the .EXE file. The
CONSOLE subsystem is for a Windows 32-bit character-
mode application. If the variable QUICKWIN is not empty,
this setting is used.

/DEF:$(TARGET).def Definition file

/DLL If DLL, then say so

/MD Causes your application to use the multithread- and DLL-
specific version of the run-time library.

/IMPLIB:$(TARGET).lib Create an import library for DLL

Compile Switch Description

Source Libraries

17

the common libraryname/unix/makefile file, such as

./rel125/rps100/cuslib/unix/makefile)

and the platform specific libraryname/platform/.depends file for that library, such as

./rel125/rps100/cuslib/aix/.depends)

This document explains settings and syntax of the makefile file and the master.unix
file that it includes. Refer to other areas of this document for more information on
those topics.

Configuring Make

Each Documaker library has an gmake makefile (named makefile) file common for
all UNIX/Linux platforms supported by that library. This makefile is read by a
"gmake makefile" utility that generates a .depends file that is used by the gmake
utility.

This makefile has all the source files found in the library's “c” directory, their
dependencies, special compile instructions, special link instructions, and file
distribution instructions. The batch build process automatically calls the gmake
makefile utility to generate a new platform directory and a .depends file if one does
not exist.

The makefile is the road map for the library. It is set up so you can easily define the
components of a library without having to get involved in all the details. The
makefile includes by reference the common master.unix file that defines the specific
instructions used to do the actual build. The master.unix file uses the values defined
in the individual libraries' makefile to build the library for the platform requested.

The Documaker make process lets you override your C/C++ environment, compile
directory, and certain file locations, without having to change the master.unix file.
Environment variables are used to define many of the components used in the make
process. To override defaults, just define the environment variable before running
gmake.

Variables

Variables can be set before running gmake. These variables can be set in the
master.unix file if they apply across libraries. If you want settings for only a
particular library, add the setting to the library’s makefile before the include of the
master.unix file. They will be pre-pended to the variables setting in the master.unix
file.

Variable Description

CFLAGS Additional C Compiler flags

CXXFLAGS Additional C++ Compiler flags

EXE_FLAGS Executable linker flags

DSO_FLAGS DSO linker flags

SYSINC System Include file “-I” added to CFLAGS and CXXFLAGS, only the first one will
get a “-I”

Source Libraries

18

Documaker Directories
The Documaker directory variables for compiler/linker and supporting utilities are defaulted
so it may not be necessary to set these variables. To override the defaults, you must modify
the master.unix file – which is not recommended.

Syntax of makefile and master.unix

A brief description of some of the syntax will be covered here. If you do not have
gmake, this information should help you read these files to make settings in your
environment. If you do have gmake, you can find out more about this in the gmake
documentation.

SYSINCS Multiple System Include files, “-I” and other needed compile options have to be
fully specified and are added to the CFLAGS and CXXFLAGS

EXTRAINC Extra non-system #includes only the first one will get “-I”

POSTSYSINC System Include file “-I” added to the end of the CFLAGS and CXXFLAGS where
order is necessary, only the first one will get a “-I”

POSTSYSINCS Multiple System Include files, “-I” and other needed compile options have to be
fully specified and are added to the very end of the CFLAGS and CXXFLAGS
where order is required

POSTEXTRAINC Extra non-system #includes that get added to the end of the CFLAGS and
CXXFLAGS where order is necessary, only the first one will get “-I”

SYSLIBS System libraries to link in. Must be in the proper format for the linker usually using
–llibname where libname is the name part of libname.so or libname.a (for
example, libm.a is added by –lm). These will be searched for in the default
system libraries locations. Typical linkers search for the DSO first, e.g. libm.so
and then if not found a static version, libm.a.

EXTRALIBS Extra libraries to link in. Must be in the proper format for the linker (see SYSLIBS
above).

HCOPY Header files to be copied to the shared global include directory after successful
build of library or executable.

LDFLAGS Additional Linker flags

Variable Default

FSISYS = ../..

FSIINC = $(FSISYS)/unixinc

FSILIB = $(FSISYS)/platformlib (for example, aixlib for AIX 32-bit)

FSIBIN $(FSISYS)/platformbin (for example, lnxbin for Linux 32-bit)

FSISHIP $(FSISYS)/shipplatform (for example, spcbin for Sun SPARC 32-bit)

Variable Description

Source Libraries

19

Overview

The gmake syntax is similar to the C language syntax. For example, one equal sign
does an assignment, two equal signs do a comparison. Shell commands and
execution of external shell scripts are run by enclosed in a $(shell …) wrapper which
will spawn/run a child shell to process. Shell commands can also be run by prefixing
the shell command single line with a ‘@’ character. The master.unix variable
“SHELL” defines the default shell to use to process. Several predefined macros are
available in gmake, such as ifndef, ifdef,, ifeq, ifneq, else, and endif.

Comments

Comments begin with a pound sign on a line. The comments only apply to text
following the pound sign. They do not automatically span lines. Therefore, a pound
sign should be placed before each line of text that is a comment.

Here are some examples:

#!!!!!!! ASSIGN THE APPROPRIATE ANSWERS IN THIS SECTION UNTIL
#!!!!!!! YOU REACH STOP
RESULT = DLL # Choose DLL EXE or LIB

Branching Commands (ifdef, ifndef, ifeq, ifneqf, else, and endif)

gmake has syntax for if blocks. The ifdef, ifndef, ifeq, ifneq requires an endif to
complete the block. An else can also be used within the block. Here is an example of
an if block using all the if block commands:

ifdef OS
ifeq ($(OS),AIX) # If compiling for AIX

SYSINCS = -lm -lpthread
else

SYSINC = -lpthread
endif

endif

ifdef HCOPY
ifneq ($(HCOPY),) # if HCOPY is not empty

$(HEADERS.copy:) # run function at HEADERS.copy label
endif

endif

Variables

Variables can be defined at any time. Use the equal sign to assign a value to a
variable. The following is an example of setting up a variable called result:

RESULT = DLL # Choose DLL EXE or LIB

To access the value of a variable use a dollar sign followed by parentheses
surrounding the variable name. Here is an example:

ifeq ($(RESULT),LIB)
do something

endif

Variable Lists
To make a variable list use the plus then the equals sign. Here is an example:

FSILIBS = -lfsi
FSILIBS += -lvmm

Source Libraries

20

Required Settings in makefile

RESULT variable

The RESULT variable must be set in the library’s or executable’s makefile. This variable
tells the build process what type of target to make. RESULT can be set to DLL, LIB, or EXE.
Here is an example:

RESULT = DLL # Choose DLL EXE or LIB

TARGET variable

The TARGET variable must be set in the library’s or executable’s makefile. This
variable tells the build process what to name target file. The file name uses both the
TARGET and RESULT to make the name. If it is a LIB, on UNIX/Linux the final
target file produced will be libtarget.a (for instance, libcus.a). For a DLL (DSO), it
will be named libtarget.dso_extension typically the extension is “.so” (for instance,
libcus.so). For an EXE, it will be named target (for instance, genprint).

Here is an example:

TARGET = CUS # base name

MASTERPRG variable

The MASTERPRG variable must be set in the library’s or executable’s makefile.
This variable tells the build process what file to include as the master gmake file.
Almost all the libraries have the same setting for MASTERPRG in their makefile
file. Here is an example:

MASTERPRG=../../unix/master.unix

Other Settings

All other settings are optional or a default value is supplied. This list shows you the
settings usually set in the library makefile.

Sample MAKEFILE.PRG

Here's the makefile for CUSLIB:

File : Makefile for cuslib (generic for all UNIX)
Module : make-utility
Purpose : make DSO library from *.c and *.h files.
Synopsis : gmake [update || all || clean || libcus.so ...]
#
Change Log :
05/17/01 - sjs tree structure changes
#

Variable Description

VERSRC If there is a library version file for this library, then the file name (without
extension) should be set for this variable. The library version module will always
compile.

FSILIBS List of Documaker libraries to link. Enter the file name and extension.

HCOPY List of header files to copy to the global INC directory. Include the file name and
extension.

Source Libraries

21

###

--
settings
#!!!!!!! ASSIGN THE APPROPRIATE ANSWERS IN THIS SECTION UNTIL
#!!!!!!! YOU REACH STOP
RESULT = DLL

--
Program names
#
TARGET = cus

--
Library Version Module to always compile
- No extension please.
#
VERSRC = cusversn

--
FSI Libraries used for this program
- Do not enter a path, (FSILIB) will be added automatically
- Remember we have at least two platforms for many projects
FSILIBS = -lfsi
FSILIBS += -lvmm
FSILIBS += -lini
FSILIBS += -lfap
FSILIBS += -lrp
FSILIBS += -lglb
FSILIBS += -lrcb
FSILIBS += -lgvm
FSILIBS += -lds
FSILIBS += -ldb
FSILIBS += -ldal
FSILIBS += -lgenh
FSILIBS += -lasc
FSILIBS += -lrul
FSILIBS += -lutl
FSILIBS += -lprt
FSILIBS += -llog
FSILIBS += -lrul
FSILIBS += -ldxm

--
Header files to copy
Assign each file that should be copied to the INC directory
- path (LOCINC) will be used so don't assign a path.
HCOPY = cuslib.h
HCOPY += cusmulti.h
--
Additional CFLAGS files to copy
Assign any additional defines or special compiler
flags that are needed. Make them OS specific if
necessary:
e.g.:
ifeq ($(OS),SPARC)
CFLAGS += -D _XML_SUPPORT_ #Ansi C flags
CXXFLAGS += -D _XML_SUPPORT_ #C++ flags
endif #!!!!!! STOP
#CFLAGS +=
#CXXFLAGS +=
#!!!!!! IN MOST CASES YOU WILL NOT HAVE TO MAKE ANY CHANGES BELOW THIS
LINE
#!!!!!!

Source Libraries

22

--
makedepend and GNU Make automatically maintains HDRS, OBJS
and SRCS macros.
The HDRS and SRCS macro are not explicitly used in this makefile
but you may have a need for them elsewhere (e.g. for revision
control).
#
get source and object by like extensions i.e. *.c *.o

ifndef SRCS
EXTHDRS =
HDRS =
SRCS =
OBJS =
endif

MASTERPRG=../../unix/master.unix

include $(MASTERPRG)

Running a Library Build

To build a library, you must change directory to the libraries “UNIX” directory. In
that directory the makefile file for the library will be found.

To run MAKE type:

For example, to build the Unix/Linux version of CUSLIB you would:

1. cd /home/mydir/rel125/rps100/cuslib/unix

2. gmake update

Adding Custom Code to a Library Make

Adding Libraries to Link

Documaker Library

Documaker libraries to link are defined in the FSILIBS variable in the makefile for
a library. To make modifications, you must edit the makefile for that library
changing/adding to the FSILIBS variable. Once the change has been made, you can
run gmake. A new .depends file is generated before the build proceeds with the
platforms specific and software dependencies (similar to the MKMF Opus command
does separately) in a platform directory under the library (for instance, linux).

External Library

To add external libraries to a library link set the EXTRALIBS variable in the
makefile. To make modifications, you must edit the makefile for that library
changing or adding the EXTRALIBS variable. The following example adds the
headers, library search directory, and links in the libdb2.so if found. If not found
libdb2.a is searched for and added:

Commands Description

gmake update Builds only new or changed objects that have changed

gmake all Builds all objects

Source Libraries

23

The EXTRAINC += /usr/lpp/db2_08_01/include
EXTRALIB += /usr/lpp/db2_08_01/lib
EXTRALIBS += -ldb2

Custom Flags and Variables

You can customize a library build by setting any of the following variables in the
makefile.

Adding source files to a library

You can add your own source files to a library. The library directory structure will
look like this:

./libname Source library directory (for example: CUSLIB)

./c C and C++ source files

./h Include files made for this library

./unix generic UNIX/Linux makefile location.

./linux platform specific DSO, static library or executable objects

and target (created automatically if doesn’t exist. Contains

the generated .depends file)

To add your new source:

1.Copy your new header files to the “h” directory (lowercase name and UNIX text
format required)

2.Copy your new source files to the “c” directory (lowercase name and UNIX text
format required)

3.Go to the build directory “./unix”

4.Run “gmake update”.

Variable Description

CFLAGS C Compiler flags to add

CXXFLAGS C++ Compiler flags to add

EXTRAINC Extra #includes only the first one will get “-I”

EXTRALIB Extra library path to search for EXTRALIBS, only first one will get a “-L”

EXTRALIBS Extra libraries to link

SYSINC Additional System #includes only the first one will get “-I”

SYSLIB Additional library path to search for SYSLIBS, only first one will get a “-L”

SYSLIBS Additional System libraries to link

HCOPY Header files to be copied

LDFLAGS Additional Linker flags

System Basics

24

System Basics
This section covers general customizations that can be done for batch rules
processing or for Documaker Desktop. Refer to the sections Customizing Batch
Processing or Customizing Documaker Desktop for specifics.

Commonly used System Data Types

VMMHANDLE

A VMMHANDLE is a virtual memory handle that in many environments merely
resolves to a standard pointer reference. The definition for VMMHANDLE is found
in FSI.H.

FAPPARM and FSIPARM

The variable type FAPPARM is defined in UTL.H as a redefinition of FSIPARM.

#define FAPPARM FSIPARM

The FSIPARM definition is found in FSI.H. A FSIPARM needs to be a variable that
can handle several variable types that may need to be passed to the handler. For most
environments, a DWORD is sufficient storage space and for others, a structure
definition is required and takes the following form:

typedef FSIPARMTYPE _FSIPARM
{

VMMHANDLE vmmh;
VOID FAR *ptr;
FAPPFN fn;
DWORD dw;
WORD w;
BYTE b;

} FSIPARM;
Macros have been provided to access the different variable types passed as a
FAPPARM/FSIPARM. You should use these macros to access variable so that your custom
code will always work if changes are made to the FSIPARM definitions for your platform.
FAPPARM2VMMH(p1) // Access a VMMHANDLE
FAPPARM2PTR(p1) // Access a void pointer (void *)
FAPPARM2PFN(p1) // Access a function pointer
FAPPARM2DWORD(p1) // Access a DWORD
FAPPARM2WORD(p1) // Access a WORD
FAPPARM2BYTE(p1) // Access a BYTE
FAPPARMDEF // Default parameter value (0) 24
FAPPARMVMMH(p1) // Pass a VMMHANDLE
FAPPARMPTR(p1) // Pass a void pointer (void *)
FAPPARMPFN(p1) // Pass a function pointer
FAPPARMDW(p1) // Pass a DWORD
FAPPARMW(p1) // Pass a WORD
FAPPARMB(p1) // Pass a BYTE

Example

DWORD _VMMAPI MyFieldHandler(VMMHANDLE fieldH, DWORD msg, FAPPARM p1,
FAPPARM p2)
{

FAPWINDOW * fw;

System Basics

25

. . .
switch (msg) {
case FAP_MSGATTRIBUTES:

fw = (FAPWINDOW*) FAPPARM2PTR(p1); // Access the pointer
FAPSendObjectMessage(fieldH, FAP_MSGSELECT,

FAPPARMPTR(fw), // Pass a pointer
FAPPARMDEF); // Pass a default value

break;
. . .
}
return(OrigFieldHandler(fieldH,msg,p1,p2));

}

FAPPFN

A FAPPFN is a pointer to a void function. The FAPPFN definition is found in FSI.H.

typedef void (_VMMAPIPTR FAPPFN)(void);
If the value represents some other function prototype, an appropriate cast will be required to
call the procedure or assign it to another variable.

FAP Object Message Handlers
Each FAPOBJECT (defined in FAPFORM.H and structures defined in FAPDEF.H)
has a registered message handler that acts similar to the way window procedures
handle messages for a window. The registered message handler for an object reacts
to messages sent within the system to perform the requested task for the object. You
can install your own object message handler to intercept messages and perform your
customizations. The handlers conform to the FAPHANDLER prototype.

FAPHANDLER Prototype

This prototype is defined in FAPFORM.H and takes the following form:

typedef DWORD (_VMMAPIPTR FAPHANDLER)(VMMHANDLE objectH, DWORD msgno,
FAPPARM p1, FAPPARM p2);

Example

FAPHANDLER OrigFieldHandler; // Need to keep original handler
. . .

Name Description

ObjectH Represents a VMMHANDLE to a FAPOBJECT.

Msgno Contains the specific message number being passed to the function. Each type
of message used by FAPOBJECTs must be unique. There is a list of pre-defined
messages in FAPFORM.H, but this list may be extended by defining your own
messages with FAP_MSGUSER + n, where n represents some number greater
than zero.

p1 May contain values to be used by the functions and are specific to the message
number being passed.

p2 May contain values to be used by the functions and are specific to the message
number being passed.

System Basics

26

OrigFieldHandler = FAPSetObjectHandler(FAP_OBJFIELD,
MyFieldHandler);
// Set my field handler and save the original
. . .
// After I am through I will restore the original handler
FAPSetObjectHandler(FAP_OBJFIELD, OrigFieldHandler);
. . .
//---
DWORD _VMMAPI MyFieldHandler(VMMHANDLE fieldH, DWORD msg, FAPPARM p1,
FAPPARM p2)
{

FAPWINDOW * fw;
. . .
switch (msg) {
case FAP_MSGATTRIBUTES:

fw = (FAPWINDOW*) FAPPARM2PTR(p1); // Access the pointer
FAPSendObjectMessage(fieldH, FAP_MSGSELECT,

FAPPARMPTR(fw), // Pass a pointer
FAPPARMDEF); // Pass a default value

break;
. . .

}
return(OrigFieldHandler(fieldH,msg,p1,p2)); // Call the original

}

Virtual Memory
The Virtual Memory Management library (VMM) offers a set of functions for
managing a large amount of data using a limited amount of conventional memory.
Data is managed in structures: doubly linked lists (ordered and unordered), hashed
symbol tables, data caches, and dynamic arrays. The system uses the memory
management functionality that VmmLib provides so you need to become familiar
with this library to manipulate things within the system.

Linked Lists

Doubly linked list routines create and manage chains of variable-length records in
virtual memory. A list consists of a list descriptor and a chain of variable-length
elements. Each element contains data and is preceded by an element header.

The doubly linked list data structure is a valuable, general-purpose method for
managing a related set of data, particularly when:

•The number of data elements in not known in advance.

•The allocated space for the data elements does not need to be contiguous.

•The size and structure of a data element may vary.

•The makeup of the data set is volatile (lots of additions and deletions.)

•The data set has an order that must be maintained as elements are inserted or
deleted.

System Basics

27

Handles

Each descriptor or element is identified by a handle. A handle, represented by the
data type VMMHANDLE, contains a value that uniquely identifies a given list or
element. The content of a handle is managed by library functions. Do not attempt to
directly manipulate the contents of a handle.

Implementations prior to version 8.0 used a four-byte unsigned long integer as a
handle (version 8.0 and up uses a far void pointer), but applications should not rely
on this. Always use the sizeof directive to compute the size of a handle. Currently, if
it is necessary to "printf" a handle, use %lu, %ld, %lx, or %lp.

List Descriptors

A list descriptor "describes" a virtual doubly linked list. List descriptors are allocated
in virtual memory and contain the following information:

•The handle of the list itself.

•The handle of the first element in the list. To obtain, use VMMFirstElem.

•The handle of the last element in the list. To obtain, use VMMLastElem.

•The number of elements currently stored in the list. To obtain, use VMMCountList.

•The total number of elements that has been added to (or inserted into) the list. To
obtain, use VMMTotAddList.

•The offset of key data within an element data record. To obtain, use
VMMKeyOffset.

•The number of key components. To obtain, use VMMKeyCount.

•The key comparison function. To obtain, use VMMKeyCompare.

•The type of the list:

•VMMLST_NORMAL = 0,

•VMMLST_ORDERED = 1,

•VMMLST_HASHSYM = 2,

•VMMLST_FROZEN = 3.

•To obtain, use VMMListType.

•The number of hash buckets. To obtain, use VMMHashBuckets.

•The handle of the hash bucket table (or the frozen-list handle table). To obtain, use
VMMHashTable.

•List descriptors are identified by a handle. The content of a list descriptor is
managed by library functions. Do not attempt to directly address or manipulate
the content of a list descriptor.

Elements

An element contains data that has been inserted into a list. An element can be up to
64K in length.

System Basics

28

For DOS and Heap Expander: An element can be up to about 16K in length.
Although as much as 32 megabytes of data can be stored, the number of elements
that a list can contain is limited by available conventional memory. (There is a
physical hardware limit of 64K handles, and the actual limit is much less.)

Elements are allocated in virtual memory and consist of the data and a set of control
information (called an element header) which includes the following:

The handle of the list itself. In this way, each element "knows" the list to which it
belongs. To obtain, use VMMElemList.

The handle of the next element in the list. To obtain, use VMMNextElem.

The handle of the previous element in the list. To obtain, use VMMPrevElem.

The length of the element (the number of bytes of data stored in the element.) To
obtain, use VMMElemLength.

The hash bucket number of the element, or if it is a frozen list, the element index. To
obtain, use VMMHashBucket.

Elements are identified by a handle. The content of an element header is managed by
library functions. Do not attempt to directly access or manipulate the content of an
element header.

Creating a List

Before a list can be used, it must be created. The create process will assign a handle
which is used to identify the list in subsequent call to library functions. To create a
list, use VMMCreateList.

Destroying a List

When a list is no longer needed, its allocated memory can be released by destroying
the list. Once a list has been destroyed, its handle is no longer valid. To be used again,
the list must be recreated. To destroy a list, use VMMDestroyList. Destroying a list
also releases the memory used by any elements in the list, and any memory used to
create a hashed symbol table for the list.

Inserting Elements

Elements are added to a list via an insertion process. Every element points both
forward and backward. To insert a new element, an existing element must be
identified as an insertion point. An element designated as an insertion point will
become the next element in the chain following the new element about to be inserted.

For example, suppose a list contains elements A, B, and D. Assume we wish to insert
element C between B and D. To accomplish the insert correctly, we must name D as
the insertion point element.

In some linked list schemes, the first element points backward to NULL and the last
element points forward to NULL. In the VMM library, the list descriptor is actually
part of the chain. When a list is empty, the first and last elements point to the list
itself. When elements are added, the first element points backward to the list, and the
last element points forward to the list. Therefore, to insert an element at the end of
the list, the list descriptor itself is named as the insertion point element.

System Basics

29

To add an element to the end of a list, use VMMAppendElem. To insert an element
at the front of a list, use VMMPushElem. To insert an element into any position in a
list, use VMMInsertElem. To insert an element into the proper position in an ordered
list, use VMMInsOrdElem.

Deleting Elements

Any element can be deleted from a list. When an element is deleted from somewhere
in the middle, the forward and backward pointers of the elements before and after it
are corrected to take up the slack. Once deleted, the space allocated to an element is
returned to the resource pool. To delete an individual element, use
VMMDeleteElem. To delete the first element in a list, use VMMPopElem. To delete
all of the elements in a list, use VMMFreeList. To free all elements in a list and
destroy the list itself, use VMMDestroyList.

Navigating a Linked List

Linked lists can be sequentially processed (forward or backward) from any point in
the list. All that is needed is the handle of the element at which to begin. Forward
navigation is accomplished using VMMNextElem. Backward navigation is managed
with VMMPrevElem. Both functions return a handle. This handle can be used to
retrieve the element.

The end of the list has been reached when the handle of an element is the same as the
handle of the list (because the list descriptor itself is part of the chain.)

There are several ways to get a starting point. Most library functions return an
element handle. Any handle can be used as a starting point. Typically, however, most
sequential processing starts at the beginning and goes forward to the end. For

In addition, as shown earlier, a more efficient (but not so straightforward) method
makes use of the fact that the last element in a list is the element prior to the list
descriptor. Once understood, use this as the preferred form:

for (elemH = listH;
(elemH = VMMPrevElem(elemH) != listH;) {
// etc.

Sometimes it is desirable to view a list as an unbroken circle without the list
descriptor to get in the way. The functions VMMNextCircElem and
VMMPrevCircElem are similar to the above except that the handle of the list
descriptor is never returned. In this case, the assumption is that some mechanism
other than the end of the list will be used to determine when to stop processing.

Accessing Elements

Elements are retrieved via VMMGetElem, and stored via VMMPutElem.

Ordered Lists

An ordered linked list is one that is kept in an ascending order according to values in
a key position in the record area of the elements.

System Basics

30

The information necessary to establish a key for an ordered linked list can be set with
VMMKeyOrdList. Once the key information has been defined, elements can be
added in order using VMMInsOrdElem. Elements can be retrieved from an ordered
list using VMMLocateOrdElem. Both functions make use of the lower level utility
function VMMFindOrdElem.

In some cases, building an ordered list is one means of accomplishing a sort. To
specifically sort a list, use VMMSortOrdList, which will use the key information
established by VMMKeyOrdList and use a lower level function VMMQSort.

Frozen Lists

Versions 9.0 and above provide support for "frozen" lists, to help improve overall
system performance. A frozen list is an ordered list that has been marked as "frozen"
and then optimized internally for faster access. The assumption is that once a list is
stable, i.e., no longer needs to be modified, a snapshot of the state of the list can be
taken and saved. This snapshot process is called "freezing" the list. When a list is
frozen, a table of handles is created which provides easy indexing to any element in
the list. Functions that locate elements in ordered lists by key or index operate at
dramatically faster rates. The time required to freeze a list is generally negligible
next to the time it would otherwise take to locate elements in a normal, non-frozen
ordered list. If a frozen list is subsequently modified, VMMLIB will automatically
"unfreeze" the list, and then it becomes simply an ordered list once more.

A list can be explicitly frozen and unfrozen with VMMFreezeList and
VMMUnfreezeList. The function VMMSortOrdList implicitly freezes an ordered
list automatically.

Node-linked lists

A node-linked list is one that is lists within lists thus creating a collection. A tree is
created by using the node functions.

Each of the nodes named parent above are elements in a list. They have children that
are elements in their own list. Each child itself could be a parent with children.

System Basics

31

Using a List as a Queue

You can use a linked list a queue. Queues are processed FIFO, or "first in first out."
New elements are put into the queue by always inserting them at the end using
VMMAppendElem. The front of the queue is the element returned by
VMMFirstElem. When that element has been processed, it can be deleted with
VMMDeleteElem, which will then return the next element.

Using a List as a Stack

A linked list can also be used as a stack. Stacks are processed LIFO, or "last in first
out." New elements are pushed onto the stack by inserting them at the beginning.
This process is simplified by using VMMPushElem. Once processed, the top of stack
is deleted (or popped off) using VMMPopElem. Any element can be floated to the
top of the stack by using VMMFloatElem. Any element can be sunk to the bottom
of the stack by using VMMSinkElem. Any element can be moved to any other
position in the list using VMMMoveElem.

Dynamic Arrays

The Dynamic Array functions build on top of the same lower level virtual memory
functions used by the linked list functions. A dynamic array trades some of the
flexibility of the linked list in exchange for less overhead and a greater number of
possible elements.

Dynamic arrays should be used instead of linked lists when:

•The array metaphor seems a better fit.

•The elements are relatively short and fixed in length.

•Elements do not need to be inserted or deleted, but rather can be simply pigeonholed
into a slot via an index.

The VMMARRAY Structure

Dynamic arrays are identified by a VMMARRAY structure. The address of the
structure is passed to the manipulation functions. Handles are only used internally.
Any given element can be retrieved via an index. To support more than 64K
elements, indexes are declared ulong (unsigned long). The contents of the
VMMARRAY structure may be examined, but only library functions should be
allowed to modify the variables.

Initializing an Array

Arrays are initialized via VMMInitArray. At initialization time, the element length
and a blocking type number are used to compute a block size and a blocking factor.
Elements are stored in blocks of virtual memory. Handle overhead is reduced by
maximizing the number of elements stored per block. Block types are numbers that
represent the approximate size of the block. For example, a block type of 2 represents
a block size of about 2K bytes. Valid block types are 1, 2, 4, 8, and 16. Restricting
to these block sizes ensures the best use will be made of the 16K virtual page.

System Basics

32

Conventional Memory Usage

Dynamic arrays allocate an array block of handles in conventional memory. If
conventional memory is not available, an attempt to add a dynamic array block will
fail. If this happens, a function pointer is examined. By default, VMM will invoke
its own dynamic array "out of conventional memory" function which will display the
message "VMMDefNoFreeMem:nnnn" (where nnnn is the amount of memory
requested), and exit the program. As the program exits, the virtual memory system
will be terminated.

A different "no free memory" function may be installed, or the function can be
completely disabled, at any time.

Array bounds checking

At initialization time, a maximum number of elements can be specified. If the
maximum elements parameter is set to zero (use the equate VMMNO_BOUNDS),
an array's size is limited only by the amount of conventional memory available to
keep track of the virtual handles and pages. If a non-zero value is specified,
representing the maximum number of elements that can be accessed, array bounds
checking is enabled.

If bounds checking is enabled, each time an array is accessed, the index will be
validated. If the maximum is exceeded, a function pointer is examined. If the pointer
is not zero (VMMBADINDEX or NULL), a "bad index function" is invoked. By
default, VMM will invoke its own bad index function that will display the message
“VMMDefBadIndex:nnnnnn” (where nnnnnn is the invalid index), and exit the
program. As the program exits, the virtual memory system will be terminated.

A different bad index function may be installed, or the function can be completely
disabled, at any time. For example:

VMMSetBadIndex((VMMBADINDEX)NULL);

Will disable the bad index function. In this case, arrays with maximum elements
specified will be bounds checked, but all invalid indexes will be mapped to the
highest valid index. An application can install its own bad index function as follows:

void *_VMMAPI MyBadIndexFunc(VMMARRAY *array, ulong index,void
*rec);

. . .
VMMSetBadIndex(MyBadIndexFunc);

Freeing an Array

Individual elements of an array cannot be freed. All of an array's elements are freed
at once using VMMFreeArray.

Once freed, an array can be used again without re-initializing. The previously set
values for the element length, blocking factor, and upper bounds are preserved. If a
new geometry for the array is desired, the array should be re-initialized with
VMMInitArray using new values.

System Basics

33

Accessing an Array Element

Array elements are accessed via an index using VMMGetArray, VMMPutArray, and
VMMArrayPtr. These functions return a temporary pointer to the element. A
temporary pointer may be NULL if the out-of-memory function is disabled and
memory was exhausted while attempting to allocate a block to contain the element.
If not NULL, a temporary pointer is valid until the next call to any VMM library
function. The same warnings about temporary pointers that were expressed in the
section on “Accessing Elements” for linked lists, also applies to dynamic arrays.

Hashed Tables

A symbol table is a collection of data elements that are accessed by name. Typically,
the list is large, the order of the elements in the list is not important, and the time to
retrieve an element by symbol name must be as short as possible.

VMM hashed symbol tables use an efficient hashing algorithm on a variable length
null-terminated string to produce an integer value. This integer value (called a bucket
number) is used as an index into an array of VMMHANDLEs. Each handle in the
array (called a bucket) is the first element in a list of elements that share the same
bucket number. This much smaller list can quickly be searched for the desired
element. By reducing the number of compare operations, and eliminating most of the
movement through the list, the time to access an element by key is dramatically
reduced.

Initializing a hashed symbol table

Any linked list can become a hashed symbol table if it has a null-terminated string
field that can be used as a key. As usual, a list is created with VMMCreateList. It can
be converted to a hashed symbol table at any time after that by calling
VMMInitHashList. If the list already contains elements when VMMInitHashList is
called, the elements are converted and any duplicates are eliminated.

Freeing a hashed symbol table

When a hashed symbol table is initialized with VMMInitHashList, an array of
VMMHANDLEs is created. This array is known as the hash bucket table. The size
of the bucket table is determined by the numBuckets parameter passed to
VMMInitHashList. In addition, at initialization type, the internal type of the list is
set to VMMLST_HASHSYM (2). If the list is no longer needed, it can be destroyed
with VMMDestroyList. If the list needs to stay around, but no longer needs to be
used as a hashed symbol table, the virtual memory used by the bucket table can be
released by calling VMMFreeHashList. This also resets the list type to either
VMMLST_NORMAL (0), or VMMLST_ORDERED (1).

System Basics

34

Inserting elements into a hashed symbol table

Once a hashed symbol table has been initialized, elements can be inserted via
VMMInsertHashElem. The internal hashing algorithm determines the bucket to
which the new element belongs. If that bucket is empty, the element is appended to
the list and its handle is assigned to that bucket. If the bucket already has one or more
elements, the new element is inserted into the list next to those elements. Each
element in the hashed symbol table has recorded in its element header the number of
the bucket to which it is assigned. The list of elements that belong to that bucket is
searched sequentially. When an element is found that does not belong to that bucket,
the element is inserted ahead of it. If a duplicate symbol entry is found, the new
element overlays the existing element.

Deleting elements from a hashed symbol table

Deleting elements from a hashed symbol table

Locating elements in a hashed symbol table

The handle of an element can be retrieved by key from a hashed symbol table with
VMMLocateHashElem. This function uses a lower level function
VMMFindHashElem that searches a specified bucket.

Updating elements in a hashed symbol table

Once the handle of an element is obtained, the data of the element can be accessed
with VMMGetElem, VMMElemPtr, and modified with VMMPutElem and
VMMPutElem. If, however, any change is made to the data of an element that affects
either the value of the key field, or the size of the element, the element must be
updated with VMMUpdateHashElem. Changing the size of the element will require
a new handle for the element. Changing the key value will more than likely affect
the bucket number of the element. In either case, if VMMUpdateHashElem is not
used, the integrity of the list could be compromised.

Comparing ordered lists, frozen lists, and hashed symbol tables

The following charts help illustrate the performance comparisons between the three
types of lists that support keyed access.

The statistics show the relative speed of the list search algorithms. (Note that to get
meaningful numbers, the number of calls had to be increased as the key size was
reduced.)

Key length of 1000 bytes. 100,000 calls.

Key length of 100 bytes. 300,000 calls.

Elements 10 100 500 1000

Hash list 23 27 36 36

Frozen list 15 30 44 51

Ordered list 15 35 64 95

System Basics

35

Key length of 50 bytes. 300,000 calls.

Key length of 10 bytes. 500,000 calls.

Cache Management

A cache is a collection of data elements that are pooled for possible reuse. Cache
support is implemented via hash tables and dynamic arrays.

Elements 10 100 500 1000

Hash list 9 10 13 13

Frozen list 9 17 17 18

Ordered list 9 18 48 86

Elements 10 100 500 1000

Hash list 6 7 8 8

Frozen list 6 9 11 13

Ordered list 6 14 43 77

Elements 10 100 500 1000

Hash list 7 8 9 10

Frozen list 9 13 15 16

Ordered list 9 19 60 124

Customizing the System

36

Customizing the System

Generating PDF417 Barcodes
Documaker Server lets you create PDF417 barcodes that can contain any type of
information. For instance, this capability makes your Documaker Server system
compatible with the New York State Insurance Department’s (NYSID) regulation
that requires barcodes on driver ID cards.

Prior to version 11.2, the PDF417 capability was distributed as an add-on product
and was only available via a separate license. This capability and the rules required
to use it were incorporated into Documaker Server install version 11.2.

Prior to version 11.2, the PDF417 add-on included the PDF417 fonts and these FXR
files:

• PDF417_2.FXR

• PDF417.FXR

The REL121.FXR file includes the PDF417 font references found in these two
PDF417 FXR files. Prior to version 11.2, you would use the PDF417_2.FXR file
when your primary printer was an AFP 240 DPI printer. You would use the
PDF417.FXR file in all other cases. The two PDF417 FXR files shared the same two
font IDs (0912 and 1216) for the two sizes of PDF417 barcodes.

The 0912 and 1216 font IDs from PDF417.FXR (used for 300 DPI printing) are
included in the REL121.FXR file.

The 0912 and 1216 font IDs from PDF417_2.FXR (only used if your primary printer
is an AFP 240 DPI printer) are included in the REL121.FXR file as font IDs 0911
and 1215 to avoid conflicts with the 0912 and 1216 font IDs used for 300 DPI
printing.

For more information on creating PDF417 barcodes, see Implementing PDF417
Barcodes

Print

Print Callback Functions

The print callback function prototypes are found in the PRTLIB.H file. There is a
function prototype macro clbck_func_def. The defines are as follows:

#define clbck_func_def(fname) \
DWORD _VMMAPI fname(VMMHANDLE formsetH, \

DWORD msg, \
FAPPARM p1, \
FAPPARM p2)

Customizing the System

37

Support for Docusave

Docusave can archive AFP and Metacode print streams. To produce print streams
that can be archived by Docusave, the print streams must be in a
Docusave-compatible format and must contain special records used to index the
archive. The OutMode option in the Metacode or AFP print control group will cause
the Metacode or AFP print stream to be written in a Docusave-compatible format.
There are two Docusave-compatible formats that are supported, “MRG2” and
“MRG4”.

For example,

< PRTType:AFP >
OutMode = MRG4

< PRTType:MET >
OutMode = MRG2

When OutMode is set to “MRG4”, print stream records will have a 4-byte sequence
that precedes them defining their length. Records will be grouped into blocks and
there may be one or more records within a “block”. Both records and blocks have a
4-byte sequence that precedes them defining their length. These length indicators are
formed by taking the high-order byte of length followed by the low-order byte of
length followed by two bytes of zeros. Thus, the maximum number that can be
displayed is a 16-bit quantity. The value in each includes the length of the structure
itself. A one-byte data record in its own block would have 5 for the record length and
9 for the block length. The following shows what a 3-byte record would look like:
Byte Offset Value (

Byte Offset Value (Hex) Meaning

0 00 Block length High-Order

1 0B Block length Low-Order

2 00 Always 0

3 00 Always 0

4 00 Record length High-Order

5 07 Record length Low-Order

6 00 Always 0

7 00 Always 0

8 31 ‘1’

9 32 ‘2’

10 33 ‘3’

Customizing the System

38

“MRG2” uses a subset of the above blocking scheme. It consists a two-byte record
length preceding each record. Again, the value contains the length of the header
itself. It was designed for the PC type of system where the low-order byte of length
is first followed by the high-order value. The example record above would look like
this:

In addition to using OutMode to produce the print streams in a Docusave-compatible
format, special records must be included in the print streams to index the archive.
These special records are written into the print stream as comment records. A DAL
script can be used to add these comment records into the print stream. A
DocuSaveScript option in the Metacode or AFP print control group will cause a
DAL script to be executed at the times when Docusave comments can be added to
the print streams. To add Docusave comments to an AFP print stream, you would
need to add the DocuSaveScript option, containing the name of a DAL script to
execute.

For example,

< PrtType:AFP >
DocuSaveScript = Docusave.DAL
OutMode = MRG4

Additional DAL functions have been added to assist in creating archive keys to use
with Docusave.

Byte Offset Value (Hex) Meaning

0 05 Record length Low Order

1 00 Record Length High Order

2 31 ‘1’

3 32 ‘2’

4 33 ‘3’

Function Description

AddComment Adds a comment string to the print stream

AppIdxRec Gets an archive record based on APPIDX.DFD and Trigger2Archive INI
settings

HaveGVM Verifies if a GVM variable exists

SetGVM Updates the contents of a GVM variable

GVM Gets the contents of a GVM variable

MajorVersion Gets the system’s major version number

MinorVersion Gets the system’s minor version number

PrinterClass Gets the type of print being produced

Customizing the System

39

Support for OnDemand

OnDemand is part of an IBM suite of products that provide high performance
document capture, indexing, storage, retrieval and presentation of AFP data streams.
To enable a Documaker Server-produced AFP print stream to be archived by
OnDemand, you will need to define a new INI setting and provide a DAL script that
produces the archive keys to use.

In the printer control group set up for AFP printing (usually PrtType:AFP), add an
the OnDemandScript option with the name of a DAL script you want the system to
execute.

For example,

< PrtType:AFP >
OnDemandScript = OnDemand.DAL

Additional DAL functions have been added to CUSLIB to assist in creating archive
keys to use with OnDemand.

PrinterGroup Gets the name of the print group being used

Print_It Debug tool to print a string to the console

Function Description

AddComment Adds a comment string to the print stream

AppIdxRec Gets an archive record based on APPIDX.DFD and Trigger2Archive INI
settings

HaveGVM Verifies if a GVM variable exists

SetGVM Updates the contents of a GVM variable

GVM Gets the contents of a GVM variable

MajorVersion Gets the system’s major version number

MinorVersion Gets the system’s minor version number

PrinterClass Gets the type of print being produced

PrinterGroup Gets the name of the print group being used

Print_It Debug tool to print a string to the console

Function Description

Customizing Batch Processing

40

Customizing Batch Processing

CUSLIB
The CUSLIB library is where you should make customizations for a batch system.
For more information on processing rules, refer to the Documaker Administration
Guide and the Rules Reference.

Base Rules

Base rules are stored in the Job Definition Table (AFGJOB.JDT). This file is used to
define job level (level 1) and form set level (level 2) rules.

Job level rules (level 1)

Job level rules are global rules used to apply procedures prior to and following the
processing of all transactions in a given set. Most of these rules are designed to
initialize processing; open and close necessary data files; allocate or release
resources used during processing; and other specialized functions do exist.

Form set level rules (level 2)

These rules are also known as transaction rules. Such rules are designed to manage
and manipulate the behavior of form sets. Form set level rules typically affect the
form set as a whole. These rules are responsible for the following:

•includes functions that initialize or reinitialize resources between transactions

•determines which transactions to include or exclude from the run

•controls the creation of the form set

•controls what happens to the form set after the transaction has completed

Prototypes

The base rule prototypes are found in the RPLIB.H file. There is a typdef of
base_func and a rule prototype macro base_func_def. The defines are as follows:

typedef DWORD (_VMMAPIPTR base_func) (RPS *pRPS, WORD msg);
/* Base rule function prototype macro...*/
#define base_func_def(fname) DWORD _VMMAPI fname(RPS *pRPS, WORD

msg)

The RPS structure passed by address as a parameter is also defined in the RPLIB.H
header file.

Making a new base rule

When adding a base rule, you need to add it to the base rules list in CUSJDT.H and
the custom rules array in CUSREG.H. The array lets you define a name by which
you wish to identify the rule and the rule function that will be executed when that
name is invoked. The registered name is the name you will use in the AFGJOB.JDT
file. Usually the rule names are the same, or similar to, the actual function name, but
this is not a requirement.

http://docs.oracle.com/cd/F28172_01/DocumakerStandard_ag_12.6.3.pdf
http://docs.oracle.com/cd/F28172_01/DocumakerStandard_ag_12.6.3.pdf
http://docs.oracle.com/cd/F28171_01/RR/Index.html

Customizing Batch Processing

41

For example, in CUSJDT.H to add a function named MyNewBaseFunc you would
add:

base_func_def(MyNewBaseFunc);

Then add the MyNewBaseFunc to the array in CUSREG.H:

/* String-to-Pointer array of custom rules... */
BaseFuncSym aBaseCustomRuleParms EMPTY() =
{

{"MyNewBaseFunc", MyNewBaseFunc},
{"CUSRegisterBitmapLoaders", CUSRegisterBitmapLoaders},
{"\0",

};

Beginning with release 11.0, most of these functions have been moved into the base
system.

Image Rules

These rules define actions to perform on single images within a form, based on a
specific transaction. Image level rules typically affect the how an image is added to
a given form. For instance, such rules might determine where the image will be
placed (its origin) on a given form; what size it will have; and the propagation of field
data once the image has completed processing.

Image level rules are stored in the Data Definition Table (DDT files).

Prototypes

The image rule prototypes are found in the RPLIB.H file. There is a typdef of
image_func and a rule prototype macro image_func_def. The defines are as follows:

/* Image rule function definition...*/
typedef DWORD (_VMMAPIPTR image_func) (RPS *pRPS, WORD msg);

/* Image rule function prototype macro...*/
#define image_func_def(fname) DWORD _VMMAPI fname(RPS *pRPS, WORD

msg)

The RPS structure passed by address as a parameter is also defined in the RPLIB.H
header file.

Making a new image rule

When adding an image rule, you need to add it to the image rules list in CUSJDT.H
and the custom rules array in CUSFDT.H. The array lets you define a name to
register the rule as and the rule function name. The registered name is the name you
will use in the DDT file. Usually these names are the same as the actual function
name.

For example, in CUSJDT.H to add a function named MyNewImageFunc you would
add:

image_func_def (MyNewImageFunc);

Then add the MyNewImageFunc to the array in CUSFDT.H:

/* String-to-Pointer array of custom rules... */
ImageFuncSym aImageCustomRuleParms EMPTY() =
{

{"MyNewImageFunc", MyNewImageFunc},

Customizing Batch Processing

42

{"\0", NULL}
};

Field Rules

These rules define actions to perform on the variable fields in an image. Field level
rules provide mapping, masking, and formatting information for each variable field
on a form.

Prototypes

The field rule prototypes are found in the RPLIB.H file. There is a typdef of
field_func and a rule prototype macro field_func_def. The defines are as follows:

/* Field rule function definition...*/
typedef DWORD (_VMMAPIPTR field_func) (RPS *pRPS, WORD msg);

/* Field rule function prototype macro...*/
#define field_func_def(fname) DWORD _VMMAPI fname(RPS *pRPS, WORD

msg)

The RPS structure passed by address as a parameter is also defined in the RPLIB.H
header file.

Making a new field rule

When adding a field rule, you need to add it to the field rules list in CUSJDT.H and
the custom rules array in CUSREG.H. The array lets you define a name to register
the rule as and the rule function name. The registered name is the name you will use
in the DDT file. Usually these names are the same as the actual function name.

For example, in CUSJDT.H to add a function named MyNewFieldFunc you would
add:

field_func_def (MyNewFieldFunc);

Then add the MyNewFieldFunc to the array in CUSREG.H:

/* String-to-Pointer array of custom rules... */
FieldFuncSym aFieldCustomRuleParms EMPTY() =
{

{"MyNewFieldFunc", MyNewFieldFunc},
{"\0", NULL}

};

Recipient Rules

Prototypes

The recipient rule prototypes are found in the RPLIB.H file. There is a typdef of
rcp_func and a rule prototype macro recip_func_def. The defines are as follows:

/* Recipient rule function definition...*/
typedef DWORD (_VMMAPIPTR rcp_func) (RPS *pRPS, RECIP_TBL_ENTRY

*current_entry, int *RecsFound);

/* Recipient rule function prototype macro...*/
#define recip_func_def(fname) \

DWORD _VMMAPI fname (RPS *pRPS, RECIP_TBL_ENTRY
*current_entry, \int *RecsFound)

Customizing Batch Processing

43

The RPS structure passed by address as a parameter is also defined in the RPLIB.H
header file.

Making a new recipient rule

When adding a recipient rule, you need to add it to the recipient rules list in
CUSLIB.H and the custom rules array in CUSRCP.H. The array lets you define a
name to register the rule as and the rule function name. Usually these names are the
same as the actual function name.

For example, in CUSLIB.H to add a function named MyNewRecipFunc you would
add:

recip_func_def (MyNewRecipFunc);

Then add the MyNewRecipFunc to the array in CUSRCP.H:

/* String-to-Pointer array of custom rules... */
RcpFuncSym aRcpCustomRuleParms EMPTY() =
{

/* Insert Rules (see also prototypes in cuslib.h)...*/
{"MyNewRecipFunc", MyNewRecipFunc},
{"\0", NULL}

};

Upgrading CUSLIB to a New Release
If you are upgrading your Documaker software from an earlier release, you will need
to rebuild your CUSLIB library if it contains custom code added for your
organization.

There are a variety of system changes may require you to alter to the CUSLIB source
code. For example, changes in the ‘C’ compiler used, changes in the Documaker
code, or changes in the third-party code used in Documaker.

Before you start to upgrade your CUSLIB code, it is highly recommended that you
make a backup of your existing CUSLIB code.

CUSLIB source filenames that ship with Documaker begin with the letters “CUS”
(such as CUSARC.C). Use a different naming convention to name the source files
that contain your customized code. This makes it easier to identify which source files
contain your customized code during an upgrade.

To make upgrading your CUSLIB easier, avoid modifying the source files that ships
with CUSLIB. Instead, create new source files within CUSLIB for your
customization code.

Upgrading CUSLIB from Release 10.3 or earlier

In Documaker versions 10.3 and earlier, the example rules shipped in CUSLIB were
often used by customers as a part of their systems.

Beginning in Documaker version 11.0, these rules were migrated into Documaker
base code. As a result, the source code that ships in CUSLIB was greatly reduced.

CUSLIB Source Files in version 10.3:

Customizing Batch Processing

44

File name Data Time File size

cusarc.c 04/17/1996 4:13:18 pm 4137

cusbannr.c 11/16/2000 5:49:50 pm 1767

cusbat.c 07/03/2001 3:48:48 pm 41966

cusbitmp.c 01/09/2003 9:29:04 am 2669

cuscallb.c 06/07/2005 8:51:54 am 90218

cuscomnt.c 05/14/2002 10:47:16 am 8261

cusddt.c 07/15/2003 11:15:30 am 31718

cusdebug.c 10/13/2001 3:36:10 pm 35210

cusfdt.c 02/23/2005 7:59:34 am 73632

cusfield.c 08/20/1998 10:49:12 am 39036

cusfld.c 07/03/2001 3:50:46 pm 18209

cusfunc.c 04/06/2000 3:57:14 pm 15704

cusgetrc.c 05/09/2002 4:38:14 pm 55250

cusimg.c 03/24/2003 5:24:26 pm 40196

cusjdt.c 07/06/2001 11:36:42 am 54279

cusjdt2.c 05/22/2002 1:48:48 pm 8661

cusmail.c 05/12/2003 12:02:36 pm 14676

cusmulti.c 07/22/1999 1:31:14 pm 42291

cusomr.c 02/23/2005 8:00:08 am 30435

cusparm.c 08/04/1998 3:28:36 pm 9863

cusprint.c 03/18/2005 12:01:44 pm 254035

cusrcp.c 04/14/2000 3:15:52 pm 807

cusreg.c 06/14/1999 8:52:42 am 8393

cusrunru.c 09/09/2002 9:37:10 am 5136

custerm.c 09/19/2000 8:49:48 am 259

cusversn.c 12/13/2004 10:52:26 am 743

Customizing Batch Processing

45

CUSLIB Source Files in version 12.5

File name Data Time File size

cusafp.h 08/27/1998 4:13:58 pm 6023

cuscallb.h 11/16/2001 9:10:38 am 1432

cusddt.h 10/19/2001 12:07:52 pm 932

cusfdt.h 08/22/2002 9:00:58 am 1181

cusjdt.h 02/24/2003 10:41:44 am 1929

cuslib.h 08/26/2002 1:08:44 pm 7303

cusmulti.h 03/09/1998 10:20:58 am 1561

cusparm.h 07/31/1998 11:44:02 am 779

cusprt.h 08/19/2002 10:07:20 am 4237

cusrcp.h 04/14/2000 3:16:18 pm 686

cusreg.h 02/24/2003 10:42:04 am 5316

File name Data Time File size

cusarc.c 04/17/1996 3:13:18 pm 4137

cusbannr.c 11/16/2000 4:49:50 pm 1767

cusbat.c 10/25/2004 11:04:48 am 1848

cusbitmp.c 11/04/2005 12:05:42 pm 2959

cuscallb.c 11/04/2005 12:27:30 pm 5116

cuscomnt.c 10/26/2004 10:57:14 am 852

cusfunc.c 07/06/2005 10:55:34 am 4873

cusjdt.c 10/25/2004 3:28:20 pm 2049

cusmail.c 10/25/2004 2:22:18 pm 1792

cusmulti.c 10/25/2004 3:29:18 pm 4106

cusomr.c 06/14/2005 3:06:02 pm 7036

cusreg.c 10/27/2004 4:50:54 pm 5010

cusrunru.c 10/25/2004 3:50:32 pm 752

custerm.c 10/21/2004 4:43:48 pm 259

Customizing Batch Processing

46

If your organization’s custom code did not include any changes to the Documaker
CUSLIB source files, you can begin by copying your organization’s custom source
modules into the current CUSLIB source library. Then simply recreate your make
file to include all of the CUSLIB source modules and rebuild your CUSLIB library.

Problems you may experience

As previously mentioned, there are be a variety of system changes that may require
you to alter your CUSLIB source code for it to build correctly.

The following will document some of the problems you may encounter and the
changes you may need to make to build your CUSLIB library.

The #define for TEXT has been removed.
Change any TEXT references to use BYTE.
For example, change the following variable declaration

TEXT name IM(FIELDNAMESIZE+1);

to

BYTE NameDIM(FIELDNAMESIZE+1);

The #define for OBJ_BITMAP has been changed to OBJ_BITMAP_FILE.
Change any OBJ_BITMAP references to OBJ_BITMAP_FILE.
For example, change the following variable declaration

filter |= OBJ_BITMAP;

to

filter |= OBJ_BITMAP_FILE;

Remove #defines for OBJ_NOTE and OBJ_GDLINE, which no longer have
independent definitions.

Remove #defines for FAP_BEGCOLUMN, FAP_BEGPAGE, FAP_ODDPAGE,
FAP_EVENPAGE, which no longer have independent definitions.

Remove #define for EFFECTS_BASELINE, which no longer has an independent
definition.

Numerous FAPBOX structure elements have been moved into a new structure,
FAPBOX_DCD. Here are the new FAPBOX and FAPBOX_DCD structures as of
version 12.5:

/*
* Box structure
*/

cusversn.c 12/14/2001 11:34:02 am 659

cuscallb.h 11/04/2005 7:51:22 am 565

cusjdt.h 10/04/2004 10:03:48 am 703

cuslib.h 10/28/2004 10:34:54 am 6923

cusmulti.h 11/30/2004 12:52:06 pm 920

cusreg.h 10/22/2004 4:59:28 pm 1648

File name Data Time File size

Customizing Batch Processing

47

typedef PACKED struct {
LONG lineCount; /* number of borders around box */
LONG topBoxWidth; /* Width of each side of box. */
LONG leftBoxWidth; /* Zero in the widths indicates */
LONG bottomBoxWidth; /* that side of box isn't drawn. */
LONG rightBoxWidth;
LONG topBoxGap; /* Gap between boxes. */
LONG leftBoxGap;
LONG bottomBoxGap;
LONG rightBoxGap;
LONG topBoxStyle; /* Line style for each side of box. */
LONG leftBoxStyle;
LONG bottomBoxStyle;
LONG rightBoxStyle;

} FAPBOX_DCD;

typedef PACKED struct {
FAPDESC desc; /* descriptor */
FAPRECT cord; /* Cord. Rect. */
FAPCOLOR color; /* Color Index */
char name DIM(BOXNAMESIZE+1); /* name of box object */
LONG flag; /* Attributes flag */
LONG type; /* Box Type */
LONG pat; /* Box Pat. */
LONG v_th; /* Vertical Line Thickness */
LONG h_th; /* Horizontal Line Thickness */
LONG gap; /* Gap to text */
LONG effects; /* Special effects */
LONG options; /* options */
LONG bdrFlags; /* state flags, incollection etc.*/
VMMHANDLE boxlH; /* printable things for borders*/
FAPBOX_DCD *extraDCD; /* extra information */

} FAPBOX;

Several CUSLIB rules were moved into base Documaker code and removed from the
cusjdt.h and cusreg.h files. If you have modified any of these rules and still want to
use the modified rules in your CUSLIB source, add these rules back into your
cusjdt.h and cusreg.h files.

For example, assume you have customized the BatchByPageCount rule. You would
need to add the BatchByPageCount rule back into cusjdt.h as shown below:

/***
====== BASE FUNCTION PROTOTYPES (RULES) ============== - CUSJDT.C
**//*
Insert in alphabetic order (see also array in cusjdt.h)...*/
base_func_def(BatchByPageCount);
base_func_def(CUSRegisterBitmapLoaders);

And you would need to add the BatchByPageCount rule back into cusreg.h as shown
below:

/* String-to-Pointer array of custom rules... */
BaseFuncSym aBaseCustomRuleParms EMPTY() =
{
/* Insert in alphabetic order (see also prototypes in cusjdt.h)..*/
{"BatchByPageCount", BatchByPageCount},
{"CUSRegisterBitmapLoaders", CUSRegisterBitmapLoaders},
{"\0", NULL}};

Customizing Batch Processing

48

In this example, you may run into additional problems since a number of related
structures have been moved into base. For example, you may encounter duplicate
definitions for the PRINTER_INFO, RECIP_INFO, PRTREC_INFO,
BATCHINFO, PRTFILEINFO, and RULPRTINFO structures. If you have not
modified these structure definitions, you can simply remove these definitions from
your custom code and use the base definitions for these structures.

The recip_func_def macro has changed from this in version 10.3:

#define recip_func_def(fname) \
DWORD _VMMAPI fname (void *pVoidRPS, DSRECIP *current_entry, \
int *RecsFound)

to the following in version 12.5:

#define recip_func_def(fname) \
DWORD _VMMAPI fname (RPS_PTR pRPS, DSRECIP *current_entry, \
int *RecsFound)

RPS_PTR is defined as:

#define RPS_PTR RPS *

The RCBSendToManBatch function has changed from this in version 10.3:

void _VMMAPI RCBSendToManBatch(void);

to the following in version 12.5:

void _VMMAPI RCBSendToManBatch(BOOL bForceWarning);

RCBSendToManBatch() now requires a Boolean parameter that determines whether
you want to output the warning about diverting the transaction to the manual batch.
All base calls were changed to pass FALSE as the parameter.

The functions, FSISplitPath, FSIMakePath, FSISplitDir, FSIMakeDir, will generate
a warning such as:

warning C4995: 'FSISplitPath': name was marked as #pragma
deprecated

The following functions replace their non-secure counterparts.

The new functions contain extra “NumberOfElements” parameters for each
destination character buffer.

void _VMMAPI FSISplitPath_s(char *path, char *drive,
 size_t driveNumberOfElements,
 char *dir,
 size_t dirNumberOfElements,
 char *fname,
 size_t fnameNumberOfElements,
 char *ext,
 size_t extNumberOfElements);

void _VMMAPI FSIMakePath_s(char *path,
 size_t pathNumberOfElements,
 char *drive,
 char *dir,
 char *fname,
 char *ext);

void _VMMAPI FSISplitDir_s(char *path,
 char *dir,
 size_t dirNumberOfElements,
 char *subdir,
 size_t subdirNumberOfElements);

void _VMMAPI FSIMakeDir_s(char *path,
size_t pathNumberOfElements,
char *dir, char *subdir);

Customizing Documaker Desktop

49

Customizing Documaker Desktop
No program can be all things to all people therefore customizations are inevitable.
The infrastructure of Documaker Desktop is designed in such a way that much of the
functionality is handled through replaceable functions. This makes it possible to add,
alter, or substitute functionality easily without having to change the base system.
Another benefit of this replaceable functionality design is that it helps to ensure there
is an upgrade path for customers with custom code. Isolating custom code from the
base implementation allows new features to be added to the product without losing
(or interfering) with the changes made for a specific customer’s installation.

Documaker Desktop is designed to support several different types of external
procedures. This document will cover the standard method of extending
functionality by use of the remote access library, menu procedures, DAL procedures,
and hook procedures. The purpose of this document is to reveal and define the
external hooks provided in the libraries, not to explain or insinuate the way any hook
should be used.

Remote Access Library (RACLib and RacCo)
The Remote Access Library (RACLib) was created to give non-Documaker
applications the ability to start, stop, and control (to some degree) Documaker
Desktop. The library provides API functions that can be called from any computer
language that can interface to C functions in a DLL. In addition, an ActiveX
component (RacCo) is provided for Windows. Refer to the Remote Access Library
document for details.

Writing Custom Code
For more information on Documaker Desktop, refer to the Documaker Desktop
Administration Guide, the Documaker Desktop User Guide, and the DAL
Reference.

CSTLIB
The CSTLIB library is where you should make code customizations for Documaker
Desktop. This library is reserved for processing customizations and comes with
sample functions. You can use and build upon these functions for customer
installations.

Defining Custom Functions
Most of the external functions that are recognized within Documaker Desktop are
defined via INI options, although some are defined within the menu resource. These
definitions are covered in detail later in this document.

http://docs.oracle.com/cd/E57338_01/dm_book.pdf

Customizing Documaker Desktop

50

Many of the function references that you can place in the INI or menu resource
require a specific definition or syntax. However, all external definitions have one
format option in common. The common element is the method used to identify a
DLL name and an exported function name to call. This element is shown as:

DLL->FuncName

The DLL name comes first and the function name is separated by use of the “->”
characters.

Case is important when defining the exported function name. Generally, the name
should be typed in the same case manner that is used to define the function in the
.DEF (export definition) file for the DLL. If the DLL is linked without
case-sensitivity, it may be necessary to use all uppercase to define the function name.
All Documaker DLLs are linked with case sensitivity.

If the named function cannot be located in the specified DLL, a Documaker style
(and on some platforms and operating system) message box will appear revealing the
error. In this event, the two most likely problems are the spelling of the function
name in the INI file or the function was not included in the .DEF file for the DLL.

Defining Custom Functions for Cross-Platforms
Most of the programs and DLLs provided with Documaker are compiled and used
on several different operating systems -- Windows 32-bit. With this in mind, Oracle
has designed the applications in a manner that allows the sharing of resources
between these environments.

Because, it is sometimes desirable to have the executable programs for more than
one operating system in the same location, Documaker has unique OS specific
names for its DLLs. For instance: VMMOS2.DLL, VMMWIN.DLL, and
VMMW32.DLL are all names of the “same” DLL compiled for different
environments.

With this naming convention, it is necessary to support a method of defining external
procedures using the DLL->FuncName method that can be used for all platforms
without requiring separate INI or menu resources. This is accomplished via a name
substitution group that can be included in the INI file.

Separate INI control groups are recognized by WIN32 for defining substitute DLL
names. These control groups are named OS2SUBS, WINDOWSUBS, and
WINDOW32SUBS. Since OS/2 was the original operating system for most
Documaker products, the OS/2 names are considered the key or primary name and,
as such, should be used when defining external function references.

Consider the following example that identifies a hook procedure recognized by AFE.

< AFEProcedures >
PreEdit = TRNOS2->TRNPreEdit
< WindowSubs >
TRNOS2 = TRNWIN.DLL
< Window32Subs >

Note Changes in version 12.5 may cause DAL and INI files to be written out using UTF-8
encoding.

Customizing Documaker Desktop

51

TRNOS2 = TRNW32.DLL

In this example, the first group identifies a hook procedure that is called in a specific
situation. Since only one DLL name can be used in the definition, multiple platforms
must be handled using the substitution group. In this example, alternate names are
defined for Windows and for WIN32.

When a Documaker program decides to load and query the specified hook, the DLL
name is used as a search key within that operating system’s substitution group. If an
entry is located in that group, the newly found name is used instead of the one
specified for the hook procedure. If an entry is not found, the original name will be
used. In this example, OS/2 would use the name TRNOS2 because no [OS2SUBS]
key was defined by that name; Windows would use the name TRNWIN.DLL taken
from [WINDOWSUBS]; and WIN32 would use the name TRNW32.DLL taken
from [WINDOW32SUBS].

All “base” DLL names, provided with Documaker, have been pre-registered in
both the WINDOWSUBS and WINDOW32SUBS INI control groups. The
above example is used to merely demonstrate the type of INI changes required
accessing DLLs not provided in a base release.

To help the Windows’ environment to distinguish what module to load, it is
often necessary to include the DLL extension on the names provided for
substitution. All base DLLs are pre-registered in this fashion.

MENU Procedures
A menu procedure is one of simplest methods of extending the AFE application or
the DDS workbench. As the name implies, a menu procedure is called when the user
selects a menu item.

Menu Resource Format

Documaker Desktop reads an external file to create its menu. This file is identified
by the INI option:

[MENU]
FILE = path\file name

Where path\file name specifies a menu resource file. The value associated with FILE
should contain the file name (with a path specified if necessary) that identifies the
external menu resource. By default, AFE INI files ship with a menu file named as
MEN.RES or MENU.RES.

Each line of the menu resource file begins with a keyword. A keyword determines
how the rest of the menu resource line (statement) will be interpreted. All statement
elements required to define a menu resource line are separated by a space. Extra
white space and blank lines are ignored.

The definition of the menu resource file also contains security information. You can
disable menu items for users who do not possess a sufficient security rating.

Customizing Documaker Desktop

52

Menu Keywords

BEGIN and END

Example:

POPUP "&File" 251 "System menu"
BEGIN

MENUITEM "&New" 260 "AFEOS2->AFECreate" "New document" 9
SEPARATOR
MENUITEM "E&xit" 50000 "NULL" "Exit application"

END

These keywords do not have parameters and they must be used in matched pairs. All
MENU and POPUP statements require a BEGIN and END to enclose the items that
belong to those groups.

Old menu resource files may also contain the following obsolete keywords.
PRODUCT1 was a second product name line. PRODUCT2 was generally used
as a copyright notice. Moreover, POPUPBUTTON defined a menu level button
for OS/2 versions.

BITMAP

This keyword defines the bitmap that displays in the background of the window.

Syntax:

BITMAP bitmapname.bmp

Example:

BITMAP collagem.bmp

BUTTON

Each BUTTON statement defines a new button that is subordinate to the BUTTON
or SUBBUTTON that contains the statement. This statement defines the text to
appear and the function to call when selected.

Syntax:

BUTTON “item” ### “DLL->FuncName” “description” #

Examples:

BUTTON "Formset" "fdt.bmp" 4836 "FDTOS2->FDTEdit" "Run Formset
Editor"

BUTTON "Image" "img.bmp" 4837 "IMGOS2->IMGEdit" "Run Image Editor"

“item” represents the text that will appear on the client area button.

The element ### represents a unique numerical value to associate with the menu
item. Generally, client buttons are associated with menu items. If this is the case,
then the menu item and function should match that put in your menu definition.

A standard definition used by Documaker Desktop to identify an external DLL and
an exported function to call is expected as the next parameter. The string “NULL”
can only be used if the function is an internally recognized menu item.

The DLL function indicator must conform to the format shown in the example. The
DLL name comes first and the function name is separated by the “->” characters.
Case is usually important when defining the exported function name.

Customizing Documaker Desktop

53

A “description” parameter is next and may be “NULL” to indicate that no
description is defined or necessary.

Security level is the last element of the BUTTON statement. The value may range
from 0 to 9, where 0 is the highest (supervisor) level and 9 is the lowest (anybody)
level. The security level will default to 9 if this parameter is omitted.

BUTTONS

A BUTTONS statement must be followed by the BEGIN keyword. Each BUTTONS
grouping must be closed with an END keyword. Only the first BUTTONS statement
group is loaded from the resource file.

Example:

BUTTONS
BEGIN
BUTTON "Formset" "fdt.bmp" 4836 "FDTOS2->FDTEdit" "Run Form Set

Editor"
BUTTON "Image" "img.bmp" 4837 "IMGOS2->IMGEdit" "Run Image Editor"
END

MENU

This keyword defines the title of the menu or program and the title must be enclosed
in quotes.

Syntax:

MENU “program window title”

Example:

MENU "Processing System"

A MENU statement must be followed by the BEGIN keyword. Each MENU
grouping must be closed with an END keyword. Only the first MENU statement
group is loaded from the resource file.

MENUITEM

Each MENUI TEM statement defines a new menu item that is subordinate to the
menu or sub-menu that contains the statement. This statement defines the text to
appear and the function to call when selected.

Syntax:

MENUITEM “item” ### “DLL->FuncName” “description” #

Examples:

MENUITEM "&New" 260 "AFEOS2->AFECreate" "New document" 9 MENUITEM
"E&xit" 50000 "NULL" "Exit application"

“item” represents the text that will appear on the parent MENU or POPUP that
contains the statement. Ampersand (&) is used to indicate the “accelerator” letter for
the menu item. This letter will be underlined by the operating system.

The element ### represents a unique numerical value to associate with the menu
item.

A standard definition used by Documaker Desktop to identify an external DLL and
an exported function to call is expected as the next parameter. The string “NULL”
can only be used if the function is an internally recognized menu item.

Customizing Documaker Desktop

54

The DLL function indicator must conform to the format shown in the example. The
DLL name comes first and the function name is separated by the “->” characters.
Case is usually important when defining the exported function name.

A “description” parameter is next and may be “NULL” to indicate that no
description is defined or necessary.

Security level is the last element of the MENUITEM statement. The value may range
from 0 to 9, where 0 is the highest (supervisor) level and 9 is the lowest (anybody)
level. The security level will default to 9 if this parameter is omitted.

POPUP

Each POPUP statement defines a new sub-menu that is subordinate to the menu or
sub-menu that contains the statement.

Syntax:

POPUP “item” ### “description”

Example:

POPUP "&File" 251 "System menu"

The first string (enclosed in quotes) will be shown on the parent menu. The next
element is a unique number to associate with the menu item. Finally, a short
description of the menu item (enclosed in quotes) completes the line. The string
“NULL” may be used for the description to indicate that no description is necessary
or available.

The first string can include an ampersand (&) to indicate the following letter is the
“accelerator” letter for the menu item. This letter will be underlined by the operating
system.

Like MENU, the POPUP statement must be followed by a BEGIN keyword and is
closed with an END keyword.

A POPUP statement that has the MENU statement as its parent is called a top-level
popup. Top level popups will normally be seen on the program’s menu bar at all
times.

Sub-level popup are permitted. This means that a POPUP statement may be included
within another POPUP statement’s BEGIN and END grouping. It is possible to build
a long descending chain of menu popups, if that is required.

If the all items contained within the BEGIN and END grouping are disabled due
to security values, then the POPUP item will be disabled on its parent menu.

SEPARATOR

No parameters are required on this statement. This keyword will cause a line to
appear between the previous menu item and the next item read.

Example:

MENUITEM "&New" 260 "AFEOS2->AFECreate" "New document" 9 SEPARATOR
MENUITEM "E&xit" 50000 "NULL" "Exit application"

Customizing Documaker Desktop

55

SUBUTTON

Each SUBBUTTON statement defines a new sub-menu that is subordinate to the
BUTTONS or SUBBUTTON that contains the statement. A SUBBUTTON
statement must be followed by the BEGIN keyword. Each SUBBUTTON grouping
must be closed with an END keyword.

Syntax:

SUBUTTON “item” ### “description” #

Examples:

SUBBUTTON "Resources" "res.bmp" 1 "Resource Programs"
BEGIN
BUTTON "Fonts" "fxr.bmp" 4842 "FXROS2->FXREdit" "Run Font editor"
BUTTON "Logos" "lgo.bmp" 4843 "LGOOS2->LGOEdit" "Run Logo editor"
END

The first string (enclosed in quotes) will be shown on the client area's push button.
The next element is a unique number to associate with the menu item. Finally, a short
description of the menu item (enclosed in quotes) completes the line. The string
“NULL” may be used for the description to indicate that no description is necessary
or available.

Like BUTTON, the SUBBUTTON statement must be followed by a BEGIN
keyword and is closed with an END keyword.

SUBBUTTONs are very similar to POPUPs in menus. They cannot have a function
associated with them, but when the user clicks on one, the set of buttons specified
under it appears. Two functions are available for backing up in the hierarchy of
buttons: FWMShowPrevButtons and FWMShowMainButtons, which back up one
level and return to the first/main level, respectively. (See the example, above.)

The IDs assigned to buttons can be duplicates of menu items, or unique. If a button
has a duplicate ID, the function associated with the menu item will be called when
the button it pressed.

As a side effect of this enhancement, TOOLBAR items now have to go outside
any BEGIN/END pair. (They originally went inside the BEGIN/END for the
menu.)

For a program to fully support these buttons, it should have the following call in
the WM_SIZE case of its client window proc (This will re-center the buttons
when the window is resized.):

FWMPositionButtons (hwnd, VMMNULLHANDLE);

For SUBBUTTONs, it's probably safest to assign unique Ids, not the same ID as
the parallel menu item.

The buttons are about 20% of the window size, and approximately square.

Placement: You can use SEPARATOR to start a new row of buttons. Each row
is centered horizontally, and the whole group of buttons is centered vertically.

TOOL

The TOOL statement defines a button for a tool bar that will be displayed under the
title bar. The TOOL statement items have to go outside any BEGIN/END pair.

Customizing Documaker Desktop

56

Syntax:

TOOL bitmap offset, menu ID, button state, button type

Example:

TOOL 0 0 NULL SEPARATOR
TOOL 0 260 ENABLED BUTTON
TOOL 1 261 ENABLED BUTTON
TOOL 2 110 ENABLED BUTTON

Menu Item IDs

Menu IDs are grouped into several categories.

Any value not contained within these ranges is assumed to be active at all times.
When assigning an ID to a new menu item, it will be important to determine which
range to use or avoid. Each menu item must be unique.

Menu Procedure Prototype

All menu procedures called by Documaker Desktop must conform to the following
prototype.

int _VMMAPI funcname(HAB hab, HWND mainhwnd, VMMHANDLE menuH);

The parameters passed to the service function have the following meanings:

HANDLE hab is the program’s anchor block or instance handle. The distinction
depends upon whether the program is running on an OS/2 or Windows platform.
Within the Documaker programming environment, both definitions serve the same
purpose.

HWND mainhwnd will be the window handle of the application that contains the
menu.

ID Range Description

100 - 200 Reserved for AFE procedures that are active while a form set is open but deactivated when
no form set is open. The macro AFEISGFEID() will return TRUE or FALSE if a specified ID
falls within this range.

100 - 150 A sub-category of the first range. These menu items are only activated while a form set is
open that was not retrieved from an archive. The macro AFEISGFEARCID() will return
TRUE or FALSE whether a specified ID falls within this range.

201 - 300 Reserved for AFE procedures that are active while a form set is not open but deactivated
when a form set is open. The macro AFEISNONGFEID() will return TRUE or FALSE
whether a specific ID falls within this range.

1000-1199 Reserved for GFE (the base Entry module) procedures that are active while a form set is
open. These are disabled if a form set is not open. The macro GFEISGFEID() will return
TRUE or FALSE whether a specific ID falls within this range. Since many of these IDs are
automatically recognized by the base system without requiring the “DLL->Function”
definition, do not add custom menu items in this range.

Customizing Documaker Desktop

57

VMMHANDLE menuH is the VMMHANDLE of the menu item's structure
element. Each menu item has a structure definition created when the menu resource
file is read. In general, it is not wise to manipulate the structure elements in the called
function. Several macros/functions will return useful information from the structure,
however the following two are especially useful within AFE.

PAFEDATA pdata = (PAFEDATA)FWMItemvPtr(menuH);

FWMItemvPtr() will return any pointer associated with the menu item. In AFE, this
will return a pointer to the AFEDATA structure.

The AFEDATA structure is defined in AFELIB.H. This structure contains most (if
not all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works,
you should be careful when you manipulate data within this structure.

ULONG id = FWMItemId(menuH);

FWMItemId() will return the unique identifier (ID) of the menu item. This ID can be
used to enable or disable the menu item or used to determine its position within the
menu.

In most cases, the return value of a menu procedure is ignored, but in general, it is a
good idea to return whether the function succeeded (a zero value) or failed (a
non-zero value).

Menu Replacement

FWMLoadNewMenu function

The FWMLoadNewMenu function that can be called from a menu resource to switch
the menu. The name of the new menu file should be specified in the optional message
area to the right of a menu-item definition.

Example:

MENUITEM "Conversion" 42 "GUIOS2->FWMLoadNewMenu" "conv.res"

AFE Procedure Hooks
In programming terms, a hook is a method of gaining (or giving) control at or over
a particular event during an application’s execution. A hook procedure is a program
function that is called by an activated hook.

A hook procedure is installed (and the hook activated) by assigning a value to a hook
option in the INI file. Each hook provided in AFE is designed to give access to a
specific situation.

Although hooks are registered via the INI file, not all hooks procedures have the
same programming requirements. In many cases, different hooks require entirely
different procedure prototypes. Additionally, some are expected to return certain
values to indicate success or failure.

Note Changes in version 12.5 may cause DAL and INI files to be written out using UTF-8
encoding.

Customizing Documaker Desktop

58

INI Options

Most hooks within the AFE Entry module are defined via INI options. Although
some hooks require specific definitions that differ from others, all hooks registered
by INI have one format option in common. The common element is the
DLL->FunctionName reference to identify a DLL name and an exported function
name to call.

Since each hook does not expect the same INI option syntax, the specific registration
requirements will be included in the hook description provided in this document.

Hook Prototypes

Not all hooks require the same function prototype; however, most use one of several
basic prototypes. Within the hook descriptions provided in this document, the
prototype requirements will be identified. If a special prototype is used, it will be
defined in the hook description.

FAPUSER

This prototype definition can be found in the header file fapuser.h. The prototype
takes the following form.

typedef FAPDW (FAPAPIPTR FAPUSERPROC)(FAPDW dwMessage,
 FAPDW dwFAPHab,
 FAPDW dwFAPHwnd,
 FAPDW dwObjectIdentifier,
 FAPDW dwObjectType,
 FAPDW dwInputFlag1,
 FAPDW dwInputFlag2,
 FAPDW dwInputFlag3,
 char FAR * lpszObjectName,
 char FAR * lpszFormatType,
 char FAR * lpszFormat,
 char FAR * lpszEditData,
 char FAR * lpszInputBuffer,
 char FAR * lpszOutputBuffer,
FAPDW dwOutputBufferMaxSize,
FAPDW FAR * lpdwOutputFlag1,
FAPDW FAR * lpdwOutputFlag2,

 FAPDW FAR * lpdwOutputFlag3);

Since this is a common prototype, it is also generic. The large number or parameters
evolved over time to ensure that enough basic information could be passed to each
function to perform its task. Since the prototype serves as a generic definition, the
specific value referenced (or contained) by each parameter may differ with each
hook procedure. In fact, it is common for parameters to be omitted or unavailable,
indicated by values set to NULL or zero.

The description of each hook procedure that uses the FAPUSER prototype will
include the definition and expected use of the parameters that the hook supplies.

TSTOS2->UserTest is a test function exported from the specified DLL that conforms
to the FAPUSER prototype. In many cases, this function may be used to test that a
hook is activating properly by displaying a window containing some of the
information passed to the function. However, please note that this function has no
idea what it should do with any messages passed to it and always return SUCCESS.

Customizing Documaker Desktop

59

FAPHANDLER

Generally, this prototype is used by hook functions related to Documaker object
message handling. Exceptions to this rule will be noted in the specific hook
description. This prototype is defined in FAPFORM.H and takes the following form:

typedef DWORD (VMMAPIPTR FAPHANDLER)(VMMHANDLE objectH,
DWORD msgno,
FAPPARM p1,
FAPPARM p2);

The objectH parameter usually represents a VMMHANDLE to a FAPOBJECT.
Each FAPOBJECT (defined in FAPFORM.H and structures defined in FAPDEF.H)
has a registered message handler that acts similar to the way window procedures
handle messages for a window. In some cases, hooks are used to replace these
handlers overriding the default functionality and in other cases, only subsets of an
object's messages are passed to a specific hook procedure.

The msgno parameter contains the specific message number being passed to the
function. Each type of message used by FAPOBJECTs must be unique. There is a
list of pre-defined messages in FAPFORM.H, but this list may be extended by
defining your own messages with FAP_MSGUSER + n, where n represents some
number greater than zero.

The remaining parameters may contain values to be used by the functions and are
specific to the message number being passed. The variable type FAPPARM is a
redefinition of the union FSIPARM that contains several variable types that might
be received. FSIPARM is defined in FSI.H and takes the following form:

typedef FSIPARMTYPE _FSIPARM
{

VMMHANDLE vmmh;
VOID FAR *ptr;
FAPPFN fn;
DWORD dw;
WORD w;
BYTE b;

Included in the union definition are references for VMMHANDLEs and FAPPFNs.
A FAPPFN is a pointer to a void function. If the value represents some other function
prototype, an appropriate cast will be required to call the procedure or assign it to
another variable.} FSIPARM;

INI Settings
< AfeProcedures >
AFERetDisplLstHook = AFEOS2->AFERetDisplayList
AFERetriB4AppendgToLstHook = DLL->FunctionName
AFERetriOkButtonHook = DLL->FunctionName
Archive = AFEOS2->AFEWip2ArchiveRecord
Archive2WIP = AFEOS2->AFEArchive2WipKeys
AutoKeyID = TRNOS2->TRNAutoKeyIDUsrFunc
BannerProc = TRNOS2->TRNSetBannerFormInfo
BUTTON1 = TRNOS2->TRNAutoNextKey BUTTON2 = AFEOS2->AFEPersonalEdit

BUTTON3 = TSTOS2->UserTest
CheckUserEntry = DLL->FuncName
Complete = DLL->FuncName
EntryFormset = DLL->FuncName
IndexName = CUSOS2->CUSGetArcIdxName
Init = DLL->FuncName
Parse = DLL->FuncName

Customizing Documaker Desktop

60

PostEdit = DLL->FuncName
PreEdit = DLL->FuncName
Term = DLL->FuncName
WindowProc = DLL->FuncName
Security = AFEOS2->AFESecurityFunc
Wip2Archive = AFEOS2->AFEWip2ArchiveKeys

Functions and Hooks

Function/Hook Result

AFE Append Record Hook This hook will be called immediately before a new record is added to the static
list, after the OK button on the Retrieve window is pressed.

AFE Archive List Hook This function is primarily responsible for retrieving records from the archive
database and adding them to a static list that will be displayed for archive
retrieval.

AFE Archive Record
Selected Hook

This hook will be called immediately after the OK button from the Retrieve
window is pressed.

AFE Check Form Set Data
Hook

This hook is called before a new WIP entry can be created to allow the function
to check form set data.

AFE Complete Form Set
Hook

This hook is called at three points in the Complete action taken by the user thus
allowing customized features to be added to Complete.

AFE Entry Form Set Hook A form set appears on the user’s screen and a series of functions are performed.
For instance, the form set is filtered by removing any forms that are not selected
and Required forms are checked for inclusion. This hook was created to allow
customization within this process.

AFE Form Selection
Buttons Hook

Buttons on Form Selection window.

AFE Initialization Hook This hook is called any time the INI settings are loaded. Usually this occurs when
the program starts and when master resources are changed.

AFE Parse Command Line
Hook

This hook is called to allow the command line parameters to be parsed and used
in custom code rather than base code.

AFE Post Edit Hook This hook is called before a form set is saved (unloaded), assigned to another
user, completed, or deleted.

AFE Pre Edit Hook This hook is called after a form set has been loaded successfully and before the
Entry module can begin.

AFE Termination Hook This hook is called when the Entry module is exiting.

AFE Window Procedure
Hook

This hook is designed to let a custom function intercept messages that arrive at
the main application's window procedure.

AFEArchive2WipKeys Translates the archive Key1, Key2, and KeyID fields into the corresponding WIP
fields.

AFESecurityFunc Verifies a user has access rights to enter the program

AFEWip2Archive Translates the WIP Key1, Key2, and KeyID fields into the corresponding Archive
fields.AppIdxRec

Customizing Documaker Desktop

61

Transactions
Form sets may be created with different requirements. One way of delineating the
purpose of a form set is by identifying it with a Transaction Type. Several different
transaction types are supported by the base system including, “New Business”,
“Renewal”, “Quote” and “Endorsement”. Each of these transaction types will
change (or specify) certain criteria about the form set selection process. The
Documaker Desktop Administration Guide details customizing WIP transaction
code.

INI Definition

Any number of transaction types may be defined by the user. Each may have a
special custom function or they may share the same custom function. The following
example demonstrates two transaction registrations.

< Transactions >
01 = ;NB;New Business;TRNOS2->TRNNew;
02 = ;QU;Quote;TRNOS2->TRNNew;

The left side of the equation is used only to delineate each item. The right size of the
definition includes the transaction code (2 characters); followed by the transaction
type name; followed by the standard definition for DLL and function name.

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more
information on the FAPHANDLER prototype, see the FAPHANDLER section. You
can use these parameters:

AFEWip2ArchiveRecord Creates the archive index record from a WIP record.

AppIdxRec

Use this function to get an
archive record based on
APPIDX.DFD and
Trigger2Archive INI
settings.

Syntax:

AppIdxRec ()

Example:

Comment = AppIdxRec()
AddComment(Comment)

CUSGetArcIdxName

Use this function to get an archive record based on APPIDX.DFD and
Trigger2Archive INI settings.

CUSGetArcIdxName Gets the archive index name of a specific WIP record.

TRNAutoKeyIDUsrFunc Auto-Fill Key ID on Form Selection window.

TRNSetBannerFormInfo Set banner page information.

Function/Hook Result

http://docs.oracle.com/cd/E57338_01/dms_book.pdf

Customizing Documaker Desktop

62

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

A custom transaction function should use care when manipulating the form set
passed as a parameter. In most cases, the user is working with the Form Selection
window when this hook is called.

DAL Functions and Procedures
The Document Automation Language (DAL) is a scripting language that enhances
form data collection during form entry or during the execution of the Documaker
batch processing. Through DAL, it is possible to access and change the values
contained within form fields. A DAL calculation may perform mathematical
operations, call functions, create variables, or even call other DAL calculations.

DAL is also extensible. Through installable script language functions and
procedures, it is possible to create new or replace existing DAL functions and
procedures.

This document will explain some of the steps necessary to install DAL procedures,
but for a complete explanation about programming for DAL, you should refer to the
DAL Reference.

INI Registration

It is possible to create and register additional procedures and functions for DAL.
Once registered, DAL will automatically call a routine each time a script reference
to the routine’s name is encountered. It is actually possible to override an existing
built-in routine by registering another one with the same name.

Although there is an internal API that can be called to register DAL routines, INI
registration is also supported by the AFE Entry module.

< DALFunctions >

Parameter Description

ObjectH The handle of the current form set.

Msgno A requested operation message number. Currently, only the FAP_MSGINIT message is
sent.

p1 Is a union. p1.ptr will be NULL or contain a pointer to a BOOL variable type. If a valid pointer
is passed, the custom function should set the BOOL to TRUE if the form set should enforce
a unique KeyID, otherwise it should be set to FALSE. (Some applications allow duplicate
keys on certain transaction types.)

p2 Is a union. p2.ptr is a pointer the TRANSREC structure associated with the form set. This
structure is defined in AFELIB.H. By examining this structure for the transaction name, it is
possible to have several transactions share the same custom function.

Note Changes in version 12.5 may cause DAL and INI files to be written out using UTF-8
encoding.

Customizing Documaker Desktop

63

KeyWord = DLL->FuncName1
KeyWord2 = DLL->FuncName2

The example above demonstrates INI registration of two DAL functions. Any
number of functions can be registered in this manner.

The value to the left of the equal sign represents the DAL “verb”, or keyword, that
will be used in DAL scripts when the specified function should be called. Valid DAL
keywords may not contain a space. Some special symbols are permitted but not
mathematical symbols or parentheses. Case is not important on DAL keywords.

After the equal sign, the standard DLL->FuncName convention is used to name a
DLL to load and an exported function to call. Remember that case is usually
important when naming DLL exported functions.

The routines named in these INI options are registered after the internal “built-in”
functions. When a keyword is registered a second time, the latter registration will
override the first. This makes it possible to substitute your own functionality for
internally defined DAL functions and procedures.

DAL Function Prototype

There are very few requirements for creating built-in functions or procedures. First,
a routine must conform to this prototype:

DALERR_CODE _VMMAPI function(DALMODETYPE mode);

This prototype defines the procedure as being exported and of type _VMMAPI. The
return type, DALERR_CODE, is a long value that will represent one of the internal
error numbers.

The parameter, DALMODETYPE, is an enumerated value that identifies how the
routine was called. A value of DALMODE_FUNCTION indicates a return value is
expected and DALMODE_PROCEDURE means no return value is expected.
Generally, a routine is created to be either a function or procedure. A function returns
a value, while a procedure does not. The language syntax requires that values
returned by functions be used as parameters to other routines or acted upon by
operators. Conversely, procedures must be “stand-alone” statements and cannot be
used as function parameters or other expressions. This distinction is necessary to
help prevent possible errors by users (Re. script writers).

It is possible to write a routine that can serve as both a function and procedure. In
this event, the mode parameter should be checked near the end of the routine to
determine whether to push a result onto the DAL stack. If called as a function, this
result is returned to be used in the calling expression.

A routine should return DALERR_SUCCESS to indicate a successful completion.
Any other value is interpreted as the error number to send to the currently registered
error handler.

Specific requirements and information on building DAL functions and procedures is
covered in a separate document detailing the DAL Reference.

Customizing Documaker Desktop

64

Edit Functions
By assigning edit functions to a variable field, you can have the system execute specific
functions before (pre-edit) or after (post-edit) a data entry user enters data into the field or
both.

Prototypes

The edit function must follow the FAPUSERPROC prototype can be found in the
FAPUSER.H file. The FAPUSERPROC is a generic function prototype used by the
system. The following function prototype is true for edit functions:

FAPDW FAPAPI EditProc(FAPDW msg, // FAP_MSGPREEDIT/FAP_MSGPOSTEDIT
 FAPDW dwFAPHab, // Anchor block
 FAPDW dwFAPHwnd, /* Window handle of client
 FAPDW fieldH, /* Field handle */
 FAPDW FAPObjType, /* Value is FAP_OBJFIELD
 FAPDW flag, /* FAPFIELD.flag = FFLAG_* values

defined in FAPFORM.H. */
 FAPDW Required, /* FAPFIELD.required */
 FAPDW Scope, /* FAPFIELD.scope =

 SCOPE_LOCAL_IMAGE
SCOPE_GLOBAL_FORM
SCOPE_GLOBAL_FORMSET */

 char FAR * Name, /* FAPFIELD.name */
 char FAR * FEType, /* FAPFIELD.fetype[0] =

C Custom
x Alphanumeric
k Int'l Alphanumeric
a Alphabetic
a Alphabetic

X Uppercase Alphanumeric
K Int'l Uppercase Alphanumeric

A Uppercase Alphabetic
I Int'l Uppercase Alphabetic

n Numeric
y (Y)es or (N)o
m X or space
d Date format
t Table only
M Multi-line text
B Bar code
T Time format
&FAPFIELD.fetype[1] =
language. If null then

neutral. Otherwise is a
UTL_LOCALE_* value defined

In UTLFMT.H. */
 char FAR * Format, /* FAPFIELD.format */
 char FAR * EditData, /* Data defined by your

 custom edit function.
 This value is
 supplied by the user
 at form composition
 time on the field
 properties edit tab's
 data prompt. */

char FAR * inBuf, // PPS Entry buffer (same as out)
char FAR * outBuf, // PPS Entry buffer (same as in)
FAPDW outBufSize, // PPS Entry buffer size
FAPDW FAR * outFlg1, // Not used
FAPDW FAR * outFlg2, // Not used
FAPDW FAR * outFlg3);// Not used

Customizing Documaker Desktop

65

Pre-Edit Functions

When you assign a pre-edit function to a variable field, the system executes that
function before the user enters new information in the field. For example, you can
assign a pre-edit procedure that inserts default information into the field. For a
pre-edit function, the message sent is FAP_MSGPREEDIT.

Post-Edit Functions

The system applies post-edit functions after the data entry user finishes entering data
in the field. For example, you might assign a post-edit procedure to tell the system
to create a cover letter using the name and address entered into the variable field. For
a post-edit function, the message sent is FAP_MSGPOSTEDIT.

Image Functions
By assigning image functions to an image, you can have the system execute specific
functions when an image is opened, closed, or both.

Prototypes

The image function must follow the FAPUSERPROC prototype that can be found in
the FAPUSER.H file. The FAPUSERPROC is a generic function prototype used by
the system. The following function prototype is true for image functions:

FAPDW FAPAPI ImageProc(FAPDW msg, // FAP_MSGOPEN/FAP_MSGCLOSE
FAPDW dwFAPHab, // Anchor block

FAPDW dwFAPHwnd, // Window handle of client
FAPDW imageH, // Image handle
FAPDW FAPObjType, // Value is FAP_OBJIMAGE
FAPDW dwInputFlag1, // Not used
FAPDW dwInputFlag2, // Not used
FAPDW dwInputFlag3, // Not used
char FAR * Name, // IMAGENAME(imageH)
char FAR * FEType, // Not used
char FAR * Format, // Not used
char FAR * EditData, /* Data defined by your

custom image function.
This value is supplied
by the user at form
composition time on the
image properties edit
tab’s data prompt. */

char FAR * inBuf, // Not used
char FAR * outBuf, // Not used
FAPDW outBufSize, // Not used
FAPDW FAR * outFlg1, // Not used
FAPDW FAR * outFlg2, // Not used
FAPDW FAR * outFlg3);// Not used

Customizing Documaker Desktop

66

Open Functions

When you assign an open function to an image, the system executes that function
when that image gets a FAP_MSGOPEN message. The image will broadcast the
FAP_MSGOPEN to all of its children then call the custom open function. For
example, you can assign an open procedure that inserts default information into
several fields on an image.

Close Functions

When you assign a close function to an image, the system executes that function
when that image gets a FAP_MSGCLOSE message. The image will call the custom
close function then broadcast the FAP_MSGCLOSE to all of its children.

Export Formats
A list of available export formats can be defined in the INI file. If more than one
method is supported, the program will prompt the user to select the method that
should be used.

No default values are assumed, however the standard function, TRNExport(), may
be activated in the base system.

INI Definition

Any number of export methods may be defined by the user.

< ExportFormats > 01 = ;xx;Export;
TRNOS2->TRNExport;

The left side of the equation is used only to delineate each item. The first place holder
on the right size of the definition not used. The second is the export method name
and is followed by the standard definition for DLL and function name.

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more
information on the FAPHANDLER prototype, see the FAPHANDLER section. You
can use these parameters:

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

A custom transaction function should use care when manipulating the form set
passed as a parameter. In most cases, the user is engaged with the Complete Form
Set window when this hook is called.

Import Formats
A list of available import formats can be defined in the INI file. If more than one
import method is supported, the program will prompt the user to select the import
method that should be used.

No default values are assumed, however two standard functions may be activated in
the base system: TRNImport() and TRNSelImport().

Customizing Documaker Desktop

67

INI Definition

Any number of import methods may be defined by the user. The following example
demonstrates two import method registrations.

< ImportFormats >
01 = ;xx;Standard;TRNOS2->TRNImport;
02 = ;yy;Selective;TRNOS2->TRNSelImport;

The left side of the equation is used only to delineate each item. The first place holder
on the right size of the definition not used. The second is the import method name
and is followed by the standard definition for DLL and function name.

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more
information on the FAPHANDLER prototype, see the FAPHANDLER section. You
can use these parameters:

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

A custom transaction function should use care when manipulating the form set
passed as a parameter. In most cases, the user is engaged with the Form Selection
window when this hook is called.

Document Set Procedures
The documents set files read and write code can be replaced through INI options that
specify what function to call when certain operations are requested.

Documents set files include the NA, POL and PKG files. Default functionality is
provided for reading and writing these files as ordinarily DOS files if another INI
option is not provided. These functions can be overridden to achieve an alternate
method of reading and writing this information.

Parameter Description

ObjectH The handle of the current form set.

msgno A requested operation message number. Currently, only the FAP_MSGINIT message is
sent.

p1 Is a union. p1.ptr will be a pointer the AFEDATA structure used by AFE. This structure
contains most (if not all) of the global data necessary to manipulate the form sets in use by
the Entry module. Even if you are familiar with AFELIB and how the Entry module works,
you should use care when manipulating the data within this structure.

p2 Is a union. p2.dw is a HWND value of the window that initiated the call.

Customizing Documaker Desktop

68

INI Settings

Two separate group definitions are used to distinguish between document files in
archive mode and non-archive mode. This was designed in a manner to assist those
that might require their archived information to be retrieved from another location or
in different manner than WIP files. The WIP control group is named
AFEDSProcedures while the archive control group is named
AFEDSArchiveProcedures.

< AFEDSProcedures >
APPEND = DSOS2->DSDefAppendBuffer
CLOSE = DSOS2->DSDefCloseBuffer
CREATE = DSOS2->DSDefCreateBuffer
FIRST = DSOS2->DSDefFirstBuffer
NEXT = DSOS2->DSDefNextBuffer
OPEN = DSOS2->DSDefOpenBuffer
< AFEDSArchiveProcedures > APPEND = DSOS2->DSDefAppendBuffer
CLOSE = DSOS2->DSDefCloseBuffer
CREATE = DSOS2->DSDefCreateBuffer
FIRST = DSOS2->DSDefFirstBuffer
NEXT = DSOS2->DSDefNextBuffer
OPEN = DSOS2->DSDefOpenBuffer

Functions

Timed Service Functions
TMRLIB (Timer library) is a base library used to register and call service functions
at specified time intervals. The Timer library was designed to work with most of the
desktop applications created with Documaker, especially Documaker Desktop. This
document will specifically focus on the use of TMRLIB within Documaker Desktop
while identifying areas that may differ when used by other programs.

AFEMAIN is the starting point for most Processing System programs. The
AFEDATA structure, used by AFELIB, is supplied as a parameter to any timed
functions registered by this program. Control over many aspects of the program’s
environment is available, including any currently selected form set and WIP record,
with access to the current AFEDATA structure.

Function Result

DSDefAppendBuffer Appends a buffer of data to the current file.

DSDefCloseBuffer Closes the current file.

DSDefCreateBuffer This hook is called to create a new or truncate an existing file for writing.

DSDefFirstBuffer Return the first buffer of data from the current file.

DSDefNextBuffer Return the next buffer of data from the current file.

DSDefOpenBuffer Opens an existing file.

Customizing Documaker Desktop

69

Other programs may use TMRLIB that do not use an AFEDATA structure. These
programs can register an application specific pointer (to any type of data) that will
be passed to registered timed functions. In theory, these functions will know what
that data pointer references and how to use it.

Several Documaker libraries are referenced by TMRLIB, but the interaction with
these is designed to be limited preventing dependence upon any particular version of
our products. Although TMRLIB was not created until version 9.0, it should be
possible to use TMRLIB in prior versions of the software (recompiling may be
necessary). Registered service functions should do their own version checking of
system libraries or other libraries when a specific functionality is required.

History

On occasion, the Professional Services Group has been required to provide an
interface between the Documaker Desktop system and an external program/event.
Usually, this interface involved writing a daemon program to periodically check for
these “events” and react when they were detected. The daemon programs either used
an operating system timer or simply polled (in a loop) waiting for a specific event to
occur.

Historically, Documaker daemon programs start Documaker Desktop with
command line parameters identifying what must be done. Once the task completes,
the user must exit Documaker Desktop to reactivate the daemon program that then
waits for another event.

Implementing a solution using this method did not lend itself to base support. To
become a useful base feature, we needed to remove the requirement for the daemon
program and simply make Documaker Desktop wait for the necessary event to occur.
This eliminates starting and exiting the program repeatedly which is extremely time
consuming. In some cases, program startup delay might allow other workstations
waiting to act on the same event (such as a file appearing in an import subdirectory)
to conflict over the task.

Another objection to the daemon program method is that it usually requires making
changes to Documaker Desktop (AFEMAIN.EXE). Typically, these changes
involved customizing the parameter list handling to call the necessary operations. By
changing a base program in this manner, users cannot readily upgrade when newer
version becomes available.

Finally, if the event or task that requires a response must occur within Documaker
Desktop itself, this daemon program approach cannot easily provide a solution.

Goals

The primary goal of TMRLIB is to make it possible to implement the functionality
of the daemon program without changing AFEMAIN.EXE or even writing that third
program.

The skeletal framework is built around “timed” calls to service functions rather than
simple polling. This will allow the program to continue to run and check for required
events as a background operation.

Customizing Documaker Desktop

70

Since base support cannot anticipate what type or number of events each customer
might require, these service functions will be registered via entries in the INI file.
This should not require any modifications to base libraries or programs under normal
circumstances.

In addition, a filtering capability is included to allow the registration of a service
function to indicate what “state” the program should be in before being called. State
will encompass whether a form set is loaded or not and whether the user is engaged
in open windows or menus.

Finally, this implementation should make it possible to maintain the customer’s
upgrade path with minimal effort.

Timed vs. Timer

To avoid confusion, those functions called by this library will be referred to as
“service” functions -- not timers.

True timers are a limited resource on most operating systems (OS). Because of this
fact, all service functions that are registered and called by this library will share a
single timer. Multiple service functions sharing the same time interval requirement
will be called in the sequence order that they occur when retrieving INI file options.

INI Settings

Timed service functions must be registered. Registration is accomplished by adding
lines to an INI group that conforms to the following prototype.

[TIMERFUNCS]
REF = ;STATE;URGENCY;SECONDS;DLLNAME->FuncName;\DATA

The semicolons (;) are a required part of each registration statement. The DATA
element is optional. If you include it, precede it with a backslash (\).

REF

REF is simply a placeholder to distinguish each entry under the INI group,
TIMERFUNCS. Each registered function should have a different REF value. The
actual value is not used by TMRLIB. In most cases, you may wish to use simple
ASCII numbering, such as 01=, 02=, 03=, and so on, to distinguish each service
function line.

Although the REF value is not used by TMRLIB, remember that INI files are sorted
when loaded. If the sequence of the service functions is important, the REF values
should be established in a manner that will not be changed when sorted.

Note Changes in version 12.5 may cause DAL and INI files to be written out using UTF-8
encoding.

Customizing Documaker Desktop

71

STATE

The first Placeholder STATE is a mode or state of program flag. The STATE (in
combination with URGENCY) indicates at what point during processing it is valid
to call the service function. This indicator only applies to service function calls
triggered by the timer. Initialization and termination affects all registered service
functions regardless of the setting indicated on the registration line.

This valid values for this flag and their meanings are:

•0= Desktop closed (No form set is currently loaded or in view)

•X 1= Desktop open (A form set is currently loaded and in view)

•X 2= Call any time (Use with caution)

The desktop is considered “opened” when a form set is currently being viewed
and/or entry is active, otherwise the desktop is considered “closed”.

The desktop is considered opened when any form contained within the current
form set, (retrieved by FAPFormset) has a FAPWINDOW associated with it.

If a service function should only be called when the desktop is closed, assign ‘0’ as
the STATE. Note however, even if the desktop is closed, service function registered
at STATE level 0 will not be called if the URGENCY requirement is not satisfied.
In Documaker Desktop, STATE level 0 might be used to implement features like
automatic import, or automatic WIP edit.

Use STATE level 1 when a service function should only be called while the desktop
is opened. (Remember, this means that a FAPWINDOW is associated with a form in
the current form set.) Note however, service functions are not called if the
URGENCY requirement is not satisfied. In Documaker Desktop, STATE level 1
might be used to implement a feature like auto-save to WIP.

STATE level 2 should be used with discretion. Any service function using STATE
level 2 will be called whether the desktop is opened or closed as long as the
URGENCY requirement is satisfied. Service functions registered as STATE level 2
should probably not attempt to alter current forms or change the form set
management. Doing so might cause the program to crash and burn.

Since STATE level 2 is active whether the desktop is opened or closed, this setting
should only be used to implement features that do not hinder user operations and do
not rely upon form set management.

URGENCY

Once the STATE setting has been satisfied, the URGENCY flag will be evaluated.
URGENCY represents how “timely” the call to the service function should be
enforced. This setting may skip or delay the call if the user is engaged with an open
window or menu. This indicator only applies to service function calls triggered by
the timer. Initialization and termination calls all registered service functions
regardless of the setting indicated on the registration line.

This valid values for this flag and their meanings are:

•X 0 = Not Urgent (okay to bypass if window or menu is open)

•X 1 = Rush (call as soon as possible after window or menu is not open)

Customizing Documaker Desktop

72

•X 2 = Urgent (call even if window or menu is open ¡V use with caution)

TMRLIB subclasses the main window of the application and looks for messages
that indicate the menu is active. In addition, all child windows associated with
the application window are scanned to determine if any of them are windows.
These two tasks are used to determine when URGENCY should be enforced.

A setting of zero (0) indicates that the call to the service function should be skipped
if a window or menu controlled by the program is open. Skipping the call means that
the service function will not activate again until the registered time interval's next
elapses.

URGENCY setting equal to one (1) will call the service function if no window or
menu is active. However, this setting will delay the call, rather than skip it, if a
window or menu is open.

Delayed service functions are evaluated approximately every second (based upon the
system timer) to determine when the call can safely go through. Delaying the call
means the interval between when the call finally goes through and the next standard
interval registered with the function may be reduced.

Also note, however, that time interval is not accumulated. If the delay causes the
function to miss two or three time intervals, it will only be called once when the
URGENCY is finally satisfied.

Use URGENCY level 2 with discretion. This setting will call the service function
without regard for whether a window or menu is active. Service functions registered
with an URGENCY level 2 should probably not attempt to alter current forms or
change the form set management. Doing so might cause the program to crash and
burn.

Since the user might be interacting with a window, this setting should only be used
to implement features that do not affect or hinder user operations. In addition, these
functions should probably not open windows. Imagine the user’s frustration, if while
completing the Print window, the program suddenly switches to another task or
window.

SECONDS

The SECONDS placeholder is a time-out value that designates (in seconds) how
often the service function should be called. SECONDS can be any value from 1 to
32767. (The maximum value exceeds nine hours). Any line that contains a
SECONDS value equal to zero (0) will be skipped.

Although, the time-out value is designated in seconds, the actual time is only
approximated. This is covered in more detail later in this document.

Internally, two “time” values are maintained. One of these values is used exclusively
to test when STATE level 2 functions should be called. Remember, STATE level 2
functions are called whether the desktop is opened or closed.

STATE levels 0 and 1 use a second time value maintained by TMRLIB. Only those
functions satisfied by the current STATE flag (desktop opened or closed) will be
called when the proper time interval has elapsed. When the desktop is opened or
closed, the second time value is reset to zero. This guarantees that the time interval
associated with a function must elapse before being called when the desktop state
changes.

Customizing Documaker Desktop

73

Calling a service function too frequently may slow program performance.

DLLNAME->FuncName

The placeholder, DLLNAME->FuncName, is the standard FSI method used to
identify a DLL to load and an exported function to call. DLLNAME should be a
valid DLL name and FuncName much match a name that can be “queried” from that
DLL. Only functions named in a DLLs export list can be referenced by TMRLIB.

As mentioned previously, the function identified by this option must conform to the
FAPHANDLER function prototype.

\DATA

This registration member is optional. DATA should only be declared if the service
function requires it. There is no format requirements established for the data line
other than it must begin with a backslash (\).

Function specific DATA is attached, as a string of ASCII characters, to the
FSITIMERREC structure associated with the registration line. It is the service
functions responsibility to verify the existence or validity of the line.

The leading backslash will not appear in the data member of the structure

Example Registrations

Theoretically, there is no limit to the number of functions that you can register. Each
can have it's own values for each of the registration parameters.

The more service functions that are registered, the greater the possibility that
program performance will be adversely affected.

[TIMERFUNCS]
A=;0;0;60;TMROS2->TMRTimerTest1;
02=;1;1;30;TMROS2->TMRTimerTest2;
CHECK=;2;2;300;TMROS2->TMRTimerTest3;

This example registers three timed service functions. None of them has specified any
function specific data to associate with the service function record.

TMRTimerTest1 will be called approximately every 60 seconds while the desktop is
closed and the user is not engaged in a window or menu selection. If a window or
menu is open at the timed interval, the function will be skipped until the next
60-second interval elapses.

TMRTimerTest2 will be called approximately every 30 seconds while the desktop is
open and the user is not engaged in a window or menu selection. However, if a
window or menu is open, the function will be delayed (not skipped) until the window
or menu closes.

Approximately each second skipped functions are re-evaluated. When the program
is satisfied that a window or menu is no longer open, the call will be made, regardless
of whether the current time matches the registered interval. If multiple intervals
elapse during the delay, only one call will be made to the function. Once a successful
call has been made, the testing for this function’s time interval returns to normal.

TMRTimerTest3 will be called approximately every five minutes whether the
desktop is opened or closed and without regard to whether the user is engaged in a
window.

Customizing Documaker Desktop

74

As mentioned in the discussion of the last topic, the semicolons (;) are essential to
distinguish the parts of the registration line. If a line cannot be parsed correctly, an
error message will be displayed and the line skipped.

Each of these registration lines has a different REF values -- “A=”, “02=”, and
“CHECK=”. These names are used simply to illustrate that the values are not
important as long as they are unique. You could just as easily use “A=”, “B=”, “C=”
or “1=”, “2=”, “3=”.

Also, note that after loading the INI file into memory the actual order of the list will
be ‘02’, then ‘A’ and finally ‘CHECK’ because INI files are sorted during loading.
In this example, each function is independent of the others and the sorted order does
not affect the program.

In this example, all three functions are in the same DLL, namely TMROS2, but this
is not a requirement.

This example also demonstrates functions registered at STATE levels 0, 1 and 2 and
URGENCY levels 0, 1, and 2. This is not a requirement. STATE levels and
URGENCY levels can be mixed and matched to meet the service functions’
requirements.

If necessary, you can register multiple service functions at the same STATE and
URGENCY level -- even with the same time interval. Unless the DATA area is used
by the service function to distinguish what action to take, it is not usually wise to
register the same DLLName->FuncName more than once.

Multiple Platforms

Remember [WINDOWSUBS] or [WINDOW32SUBS] entries may have to be added
if the INI file is used by workstations operating on more than one platform. For
instance, suppose a function is located in MINEOS2.DLL for OS/2 and
MINEWIN.DLL for Windows. The correct INI entries might look like this:

[TIMERFUNCS]
01=;0;0;60;MINEOS2->MyFunction;
[WINDOWSUBS]
MINEOS2 = MINEWIN.DLL

Before attempting to load MINEOS2, all FSI programs will substitute the
appropriate name from the [WINDOWSUBS] group. Establishing an INI file in this
manner will make it usable by each supported environment. The same method is
used for WIN32 programs using [WINDOW32SUBS].

Adding entries under [WINDOWSUBS] or [WINDOW32SUBS] is not usually
necessary if the DLL that is being called is a FSI “base” DLL. The appropriate names
for these DLLs for each platform are pre-registered for you.

Timed Service Function Prototype

All service functions called by TMRLIB must conform to the FAPHANDLER
function prototype. For more information on the FAPHANDLER prototype, see the
FAPHANDLER section. This prototype takes the following form:

typedef DWORD (_VMMAPIPTR FAPHANDLER)(VMMHANDLE memH,
 DWORD msgno,
 FAPPARM p1,
 FAPPARM p2);

Customizing Documaker Desktop

75

Please note that this prototype is being used for convenience. The internal structures
maintained for service functions are not true FAPOBJECTs and do not receive
“broadcast” messages as other FAPOBJECTs do. This prototype contains the
necessary parameters for service functions and we did not deem it necessary to make
a new prototype name.

Your function definition should look something like the following (taken from
TMRLIB).

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result. A
non-successful return to the FAP_MSGINIT message will result in the service
function being disabled.

Messages

As shown in the prototype section, there are three distinct messages passed to time
service functions.

While the service function is being called, all other actions in the program are
suspended. The function must return to allow processing to continue. Failure to
return will cause the program to appear “dead”.

Parameter Description

VMMHANDLE
tmrH

This variable will be the service function’s VMMHANDLE in the timer list. This handle is
not a descendant of FAPOBJECT. The handle references the FSITIMERREC structure
that defines the service function being called. Normally you will not need to address this
structure unless the function requires implementation specific “data”, which is an
element in the structure. To reference this structure it will be necessary to include
TMRLIB.H.

DWORD msg The requested operation message number. The following FAP messages are passed
in the message parameter for the following operations.

FAP_MSGINIT This message is sent to service functions to perform initialization (if
required).

FAP _MSGTERMINATE This message is sent to indicate that service functions should
release all memory and resources that may be in use.

FAP_MSGRUN This message is sent when it is time for the service function to executes
its task.

FAPPARM p1 This variable contains the handle of the main (client) window. Use (HWND)p1.dw to
retrieve this value. Note, the HWND cast is necessary because a window handle is a
32-bit value under Windows 32-bit, but only a 16-bit value under Windows. Using the
cast will eliminate compiler warnings.

FAPPARM p2 This variable contains a pointer to program specific data. The pointer can be retrieved
by referencing this parameter as p2.ptr.

In Documaker Desktop, this pointer will be the AFEDATA structure. This value can be
retrieved in the following manner.

PAFEDATA pdata = (PAFEDATA)p2.ptr;

The AFEDATA structure is defined in AFELIB.H. This structure contains most (if not all)
of the global data necessary to manipulate the form sets in use by the Entry module.
Even if you are familiar with AFELIB and how the Entry module works, you should use
care in manipulating the data within this structure.

Customizing Documaker Desktop

76

FAP_MSGINIT

This message is sent to all registered service functions at the time TMRLIB is
initialized -- regardless of the current STATE or URGENCY variables.

If a value other than SUCCESS (0) is returned, the function is removed from the
timer list and will not be called again.

Receiving this message is an indication that any initialization steps required to set up
the function for timed callback may be performed. Initialization steps might include
allocating memory, loading INI settings, variable initializations, and so on.

If SUCCESS is returned, the service function will be called each time the SECONDS
values have elapsed and the STATE and URGENCY flags are satisfied.

FAP_MSGTERMINATE

This message is sent to all registered service functions (that returned SUCCESS
during initialization) when TMRLIB is terminated. This may be due to program exit
or due to some action (user or program) requesting that timers be terminated. Each
function is called regardless of the STATE or URGENCY settings.

The value returned by the service function in response to this message is ignored.

Receiving this message is an indication that any termination steps required to end the
service function’s operation be performed. Termination steps might include closing
files, freeing used memory or resources, closing windows, and so on.

After termination, it is possible for the service function to be called again with
FAP_MSGINIT to re-initialize the service function.

FAP_MSGRUN

Upon receipt of this message, the service function can perform the action for which
it was designed. The value returned from the service function is ignored.

Receiving this message is an indication that the STATE and URGENCY values
associated with the service function have been satisfied and the appropriate time
(SECONDS) has elapsed.

Those functions that use URGENCY level 1 may have been delayed. This can be
detected (if necessary) by checking the “activate” structure member associated with
the service function.

Considerations

Time is relative.

There is no assurance -- even when using a true OS timer -- that your function will
be called on a precisely timed basis. This means that you should not expect to
estimate how much time has elapsed simply based upon the time interval registered
with the service function. If you need time information, you should use a clock
function that returns the actual time-of-day.

The primary reason you cannot depend upon a precise time is that OS timers rely
upon OS messages. If a program function spends excessive time doing a task without
checking the program’s message loop, the timer message will be delayed.

Customizing Documaker Desktop

77

Keep this last point in mind. If your service functions take a long time to operate, it
may interfere with the normal operation of the program. By returning quickly, you
help to ensure that other functions, waiting on an “event” or message, will have their
turn to act.

TMRLIB creates an actual OS timer that is activated approximately once each
second. When the timer message is received, the service function list is checked to
determine whether each function needs to be called using the current desktop state
and the registered time interval (SECONDS) as filters. In addition, any service
function that has been delayed -- due to an URGENCY state -- will be evaluated.

This STATE and URGENCY variables are intended to give writers of service
functions some assurance that the manipulation of the form set (or potential form set)
is safe and that the program is in a state that will allow the function to perform safely.

URGENCY level 2, however, remains active at all times. Service functions
registered with this level may be called whether the user is actively engaged with
menu options or windows. Be careful when writing a level 2 service function.

In addition to the possible delay caused by supporting STATE and URGENCY
levels, service functions are called in a sequential fashion. If it is determined that
more than one function needs to be called during a timer message, each service
function must complete (and return) before the next can be called.

The number of service functions registered and the length of time it takes for each to
complete its task can adversely affect program performance.

Timing Example
[TIMERFUNCS]
01=;0;0;30;MINEOS2->TMRTimerTest1;
02=;1;0;60;MINEOS2->TMRTimerTest2;

The following analysis uses the example registrations shown above. These examples
use URGENCY level 0 which means that the service functions can be skipped
(entirely) if the open window and menu test fails.

If the user has not opened the desktop and is not engaged in a menu option window,
the function TMRTimerTest1 will be called approximately every 30 seconds. As
long as the desktop remains closed, the second function will not be called.

Now, assume 25 seconds pass without opening a form set. The user then opens the
Form Selection window, spends 10 seconds mulling it over and finally cancels the
window. Because the window was opened when the 30-second time interval
occurred, the service function was not called. It will be another 25 seconds before the
next evaluation is made to determine whether to run the function.

While the desktop is opened, the first service function will not be called. However,
the countdown for the second service function will be activated. Approximately each
60 seconds (if a menu or window is not active), the second function will be called.

If after 59 seconds the user opens the Print window -- fiddles around for two seconds
and then cancels -- it will take another 59 seconds before the second service function
is checked again. On the other hand, if only 50 seconds have elapsed, the user opens
the Print window for 9 seconds and then cancels. The 60-second timer will be able
to execute the function TMRTimerTest2.

Function and Hook Reference

78

Function and Hook Reference

AddComment
Use this function to add a comment to the print stream. Products like Oracle’s
Docusave and IBM’s OnDemand use comments in the print stream as an archive
key. The AddComment DAL function should only be called from a script loaded via
the DocuSaveScript option specified in the AFP or Metacode printer control group.
Calling AddComment from GenData will result in an INTERNAL ERROR being
returned from DAL.

Syntax:

AddComment (Comment, Convert)

Example:

Here are some examples:

AddComment(‘This is an example’)
AddComment(@('INSURED NAME',,, GROUPNAME()))

AFE Append Record Hook

AFERetriB4AppendgToLstHook

This hook will be called immediately before a new record is added to the static list,
after the OK button on the Retrieve window is pressed. The hook is expected to
return a SUCCESS (O) or a FAILURE (a non-zero number). A FAILURE will cause
the record not to be added to the list and a SUCCESS will cause the record to be
added to the list. The type definition and prototype for this hook are listed below.

Type Definition

typedef int (_VMMAPIPTR AFERETRIOKBUTTONHOOK)(GUIHWND
hwnd,PAFEDATA pdata);

Syntax

extern int _VMMAPI AnyFunctionName(GUIHWND hwnd, PAFEDATA pdata);

Parameter Description

Comment A string to be written as a comment in the print stream

Convert (Optional)

0 means convert string to EBCDIC (default)

1 means convert string to ASCII

2 means do not convert string

For Docusave, you will always want EBCDIC comments.

Function and Hook Reference

79

INI Definition
< AfeProcedures >
AFERetriB4AppendgToLstHook = DLL->FunctionName

The (DLL) is the DLL where the function hook is. The (FunctionName) is the
function name of the hook. For more information on this subject, read the section
above on: “How does Documaker Desktop locate external procedures”.

Important Information

To avoid memory errors, the memory location allocated for the WIP record should
not be freed. That process will be taken care off after returning from the hook.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

AFE Archive List Hook

AFERetDisplLstHook

This hook will replace the AFERetDisplayList() function. The replaced function is
primarily responsible for retrieving records from the archive database and adds them
to a static list. The prototype and type definition of this function is listed below.

Type Definition

typedef int (_VMMAPIPTR AFERETRIDISPLHOOK)(GUIHWND hwnd,
PAFEDATA pdata,
VMMHANDLE AppListH,

BOOL bFirst);

Syntax

extern int _VMMAPI AnyFunctionName(GUIHWND hwnd,
PAFEDATA pdata,

VMMHANDLE AppListH,
BOOL bFirst);

Parameter Description

hwnd The handle to the window which calls the function AFERetDisplayList.

pdata A pointer to the AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. The values entered into Key1, Key2 and KeyID on the Retrieve
window are stored in the WIP record structure that is a member of the pdata
structure (pdata->WIP). The search on the database is base on those values.

Parameter Description

Hwnd The handle to the window which calls the function AFERetDisplayList.

Function and Hook Reference

80

INI Definition

< AfeProcedures >
AfeRetDisplLstHook = DLL->FunctionName

The (DLL) is the DLL where the function hook is. The (FunctionName) is the
function name of the hook. For more information on this subject, read the section
above on: “How does Documaker Desktop locate external procedures”.

Important Information

To avoid memory errors, the memory location allocated for the WIP record should
not be freed. That process will take place after returning from the hook.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

AFE Archive Record Selected Hook

AFERetriOkButtonHook

This hook will be called immediately after the OK button from the Retrieve window
is pressed. The hook is expected to return a SUCCESS (O) or a FAILURE (a
non-zero number). A FAILURE will cause the process to return to the window, and
a SUCCESS will cause the process to continue normally. The type definition and
prototype for this hook are listed below.

Type Definition

typedef int (_VMMAPIPTR AFERETRIOKBUTTONHOOK)(GUIHWND hwnd,
PAFEDATA pdata);

Syntax

extern int _VMMAPI AnyFunctionName(GUIHWND hwnd, PAFEDATA
pdata);

Pdata A pointer to the AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. The values entered into Key1, Key2 and KeyID on the Retrieve
window are stored in the WIP record structure that is a member of the pdata
structure (pdata->WIP). The search on the database is base on those values.

AppListH A static pointer. This pointer points to the list of records display at the Retrieve
window. To avoid a memory leak, AppListH should be destroyed every time a
new list is built.

Bfirs Serves as a guild to the previous parameter. Since this function can be called
more than one time to build a list, (bFirst), a Boolean, tells the function when it is
been called for the first time during the process of building the current list.

Parameter Description

hwnd The handle to the window which calls the function AFERetDisplayList.

Parameter Description

Function and Hook Reference

81

INI Definition

< AfeProcedures >
AfeRetDisplLstHook = DLL->FunctionName

The (DLL) is the DLL where the function hook is. The (FunctionName) is the
function name of the hook. For more information on this subject, read the section
above on: “How does Documaker Desktop locate external procedures”.

Important Information

To avoid memory errors, the memory location allocated for the WIP record should
not be freed. That process will take place after returning from the hook.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

AFE Check Form Set Data Hook

CheckUserEntry

This hook is called before a new WIP entry can be created. No default value is
assumed for this option.

INI Definition

< AfeProcedures >
AfeRetDisplLstHook = DLL->FunctionName

Syntax

int _VMMAPI func(HWND hwnd, char *Key1, char *Key2, char *KeyID, char
*Desc, VMMHANDLE formsetH, PAFEDATA pdata);

pdata A pointer to the AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. The values entered into Key1, Key2 and KeyID on the Retrieve
window are stored in the WIP record structure that is a member of the pdata
structure (pdata->WIP). The search on the database is base on those values.

Parameter Description

hwnd The handle to the Form Selection window or zero.

Key1 A pointer to a NULL terminated string that represents the Key1 value.

Key2 A pointer to a NULL terminated string that represents the Key2 value.

KeyID A pointer to a NULL terminated string that represents the KeyID value.

Desc A pointer to a NULL terminated string that represents the WIP description.

FormsetH A handle to the current form set.

Parameter Description

Function and Hook Reference

82

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result. A
non-successful return prevents the WIP from being created.

AFE Complete Form Set Hook

Complete

Support for this hook began in July, 1996. There is no default for this option.

When the user takes the “Complete” action, this is an indication that the form set
should be examined for valid entries. Upon a successful field check, the Complete
Form Set window appears, this lets the user print, export, and archive the form set.

This hook is called at three points in this process. This lets the system add the
customized features to Complete.

INI Definition

< AfeProcedures >
AfeRetDisplLstHook = DLL->FunctionName

Syntax

This function must conform to the FAPUSER prototype. For more information on
the FAPUSER prototype, see the FAPUSER section. You can use these parameters:

Pdata A pointer to the AFEDATA structure used by AFE. This structure contains most (if not
all) of the global data necessary to manipulate the form sets in use by the Entry module.
Even if you are familiar with AFELIB and how the Entry module works, you should use
care when manipulating the data within this structure.

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are passed
in the dwMessage parameter for the following operations, and should be handled
accordingly in a custom procedure. Please note that although FAP message numbers
are being used, there is no FAPOBJECT that initiates or receives the action.
FAP_MSGINIT This message is sent before any internal verification of the form set data
and before the Complete window appears.

FAP _MSGRUN This message is sent after the user has pressed OK on the Complete
window and before the default functionality is executed.

FAP_MSGTERMINATE This message is sent after the Complete window has been
removed and the user chose OK.

DwFAPHab The program’s anchor block or instance handle. The distinction depends upon whether
the program is running on an OS/2 or Windows platform. Within the Documaker
programming environment, both definitions serve the same purpose.

DwFAPHwnd A handle to the currently open window. Only on the message, FAP_MSGRUN, will this
handle represent the Complete window.

DwObjectIdentif
ier

Not used.

Parameter Description

Function and Hook Reference

83

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether
each operation succeeded.

In response to the message, FAP_MSGINIT, a non-successful return will cause the
complete function to return unsuccessful. The custom function should tell the user
what error occurred and what to do next.

In response to the message, FAP_MSGRUN, a non-successful return will not
execute the default functionality associated with the OK action and the window will
remain active. It is possible for a custom function to remove the window manually
if so desired.

DwObjectType Not used.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID A pointer to a NULL terminated string that contains the user ID of the current operator.

LpszTranCode A pointer to a NULL terminated string that contains the Transaction Code associated
with the WIP record.

lpszKey1 A pointer to a NULL terminated string that contains the Key1 field value associated with
the WIP record.

lpszKey2 A pointer to a NULL terminated string that contains the Key2 field value associated with
the WIP record. Note that in a multi-select situation (PPS) only the first Key2 value is
provided.

LpszInputBuffer A pointer to a NULL terminated string that contains the current KeyID field value
associated with the WIP record.

LpszKeyID A pointer to a text buffer that should receive the output KeyID from this function. If this
value is NULL, no output string is expected. On input, a non-NULL value will represent
the last KeyID returned from your hook procedure. A difference between the input
KeyID and the one represented in this string means that the user changed the original
KeyID.

DwOutputBuffer
MaxSize

Not used.

PAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most (if
not all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

LpdwOutputFla
g2

Not used.

LpdwOutputFla
g3

Not used.

Parameter Description

Function and Hook Reference

84

The response to the message FAP_MSGTERMINATE does not affect the
completion process in any way, as it is sent after the default functionality has
executed.

AFE Entry Form Set Hook

EntryFormset

Support for this hook began in April, 1996. No default INI value is assumed for this
option.

A form set appears on the user’s screen and a series of functions are performed. For
instance, the form set is filtered by removing any forms that are not selected and
“Required” forms are checked for inclusion. This hook was created to allow
customization within this process.

Three calls (with separate messages) are made to the hook each time a form set is
loaded.

INI Definition

< AfeProcedures >
AfeRetDisplLstHook = DLL->FunctionName

Syntax

This function must conform to the FAPUSER prototype. For more information on
the FAPUSER prototype, see the FAPUSER section. You can use these parameters:

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are passed
in the dwMessage parameter for the following operations, and should be handled
accordingly in a custom procedure. Please note that although FAP message numbers
are being used, there is no FAPOBJECT that initiates or receives the action.
FAP_MSGINIT This message is sent before any internal verification of the form set data
and before the Complete window appears.

FAP _MSGRUN This message is sent after the user has pressed OK on the Complete
window and before the default functionality is executed.

FAP_MSGTERMINATE This message is sent after the Complete window has been
removed and the user chose OK.

DwFAPHab Not used.

DwFAPHwnd Not used.

DwFormsetH Handle of the current form set.

DwObjectType Not used.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID Not used.

Function and Hook Reference

85

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether
each operation succeeded. For each message, a non-successful return prevents the
form set from being displayed.

AFE Form Selection Buttons Hook

BUTTONx

Supported after July 1996, three buttons can be activated on the Form Selection
window when associated with custom functions. No default INI value is assumed for
these buttons. Any button that does not have a registered function is hidden from
view when the Form Selection window appears.

These buttons may be used for any activity related to form selection. Two standard
procedures are provided in the base product that may be used. TRNAutoNextKey()
will remove any existing KeyID and request a new KeyID from the AutoKeyID
function. AFEPersonalEdit() will activate the “Personal Form Selection” window
and allow the user to specify a subset of forms to display as a personal Key1-Key2
combination.

INI Definition

< AFEProcedures >
BUTTON1 = TRNOS2->TRNAutoNextKey
BUTTON2 = AFEOS2->AFEPersonalEdit
BUTTON3 = TSTOS2->UserTest

Note that you do not have to define any or all of these buttons. You may activate
BUTTON3 without activating buttons 1 or 2, and so on.

Syntax

LpszTranCode Not used.

lpszKey1 Not used.

lpszKey2 Not used.

PAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most (if
not all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

LpszOutputBuffer Not used.

DwOutputBuffer
MaxSize

Not used.

LpdwOutputFlag1 Not used.

LpdwOutputFlag2 Not used.

LpdwOutputFlag3 Not used.

Parameter Description

Function and Hook Reference

86

This function must conform to the FAPUSER prototype. For more information on
the FAPUSER prototype, see the FAPUSER section. You can use these parameters:

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are passed
in the dwMessage parameter for the following operations, and should be handled
accordingly in a custom procedure. Please note that although FAP message numbers
are being used, there is no FAPOBJECT that initiates or receives the action.
FAP_MSGINIT This message is sent before any internal verification of the form set data
and before the Complete window appears.

FAP _MSGRUN This message is sent after the user has pressed OK on the Complete
window and before the default functionality is executed.

FAP_MSGTERMINATE This message is sent after the Complete window has been
removed and the user chose OK.

DwFAPHab The program’s anchor block or instance handle. The distinction depends upon whether
the program is running on an OS/2 or Windows platform. Within the Documaker
programming environment, both definitions serve the same purpose.

DwFAPHwnd A handle to the currently open window. Only on the message, FAP_MSGRUN, will this
handle represent the Complete window.

DwChildID The ID of a child control on the window that initiated the call or zero if no child ID is
available.

DwObjectType Not used.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID A pointer to a NULL terminated string that contains the user ID of the current operator.

LpszTranCode A pointer to a NULL terminated string that contains the Transaction Code associated
with the WIP record.

lpszKey1 A pointer to a NULL terminated string that contains the Key1 field value associated with
the WIP record.

lpszKey2 A pointer to a NULL terminated string that contains the Key2 field value associated with
the WIP record. Note that in a multi-select situation (PPS) only the first Key2 value is
provided.

LpszKeyID A pointer to a NULL terminated string that contains the current KeyID field value
associated with the WIP record.

LpszOrigKeyID A pointer to a NULL terminated string that contains the original KeyID. A difference
between the input KeyID and the one represented in this string means that the user
changed the original KeyID. No output string is expected from the custom function.

DwOutputBuffer
MaxSize

Represents the maximum size of the output buffer for the previous parameter. however,
any value copied to the char FAR *lpszOutputBuffer is ignored.

PAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most (if
not all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

Function and Hook Reference

87

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded. In response to the message FAP_MSGINIT, a non-successful
return will cause the button to be hidden from view and deactivated.

The parameters provided to this hook function includes all the current WIP
information required to understand how the user constructed (or is constructing) the
form set. A custom function may or may not use the information provided.

AFE Initialization Hook

Init

This hook is called any time the INI settings are loaded. Usually this occurs at the
program start and when master resources change. There is no default for this option.

INI Definition

< AFEProcedures >
Init = DLL->FuncName

Syntax

int _VMMAPI func(HAB hab, PAFEDATA pdata);

Remarks

The function should return SUCCESS (0) or FAIL (not zero) to indicate the result of
the operation.

This hook is called after loading INI values so variables in the AFEDATA structure
will reflect current settings.

Note that this function can be called more than once in a session. A custom function
that only wants to be called once should keep track of this fact or remove the INI
setting after being called the first time.

LpdwOutputFla
g2

Not used.

LpdwOutputFla
g3

Not used.

Parameter Description

hab The program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an OS/2 or Windows platform. Within the
Documaker programming environment, both definitions serve the same purpose.

Pdata A pointer to the AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. Even if you are familiar with AFELIB and how the Entry module
works, you should use care when manipulating the data within this structure.

Parameter Description

Function and Hook Reference

88

AFE Parse Command Line Hook

Parse

This hook is called to allow the command line parameters to be parsed and used in
custom code rather than base code. The actual values can be found in
AFEData->argv. With this hook, system values can be changed based on parameter
values.

INI Definition

< AFEProcedures >
Parse = DLL->FuncName

Syntax

DWORD _VMMAPI CUSParse(AFEDATA *AFEData);

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded.

A call to this function is an indication that Operations are reliant on command line
parameters being translated into values or actions.

The effects of the parsing are determined by the return value. Returning SUCCESS
will indicate that the program should continue. Returning FAIL will halt program
execution. For example, if a password is expected on the command line, program
execution can be halted when a password is not found by returning FAIL.

AFE Post Edit Hook

PostEdit

This hook is called before a form set is saved (unloaded), assigned to another user,
completed, or deleted. No default value is assigned to this option.

Although this function would appear to be the counterpart of the PREEDIT hook, it
can be called in many more circumstances. A custom function should check the
AFEDATA structure to determine in what mode the form set is being treated --
AFEACTION_UPDATE, AFEACTION_DELETE, or
AFEACTION_COMPLETE.

INI Definition

< AFEProcedures >
PostEdit = DLL->FuncName

Syntax

Parameter Description

AFEData Contains the current AFEDATA structure. This should contain all material that is
needed for information as well as values for changing.

Function and Hook Reference

89

Transaction functions must conform to the FAPHANDLER prototype. For more
information on the FAPHANDLER prototype, see the FAPHANDLER section. You
can use these parameters:

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.
However, only before the form set being saved will a non-successful return prevent
the action from being taken.

AFE Pre Edit Hook

PreEdit

This hook is called after a form set has been loaded successfully and before Entry
can begin. No default value is assumed for this option.

The AFEDATA structure should be queried to determine in what mode the form set
has been opened -- AFEACTION_CREATE, or AFEACTION_UPDATE.

INI Definition

< AFEProcedures >
PreEdit = DLL->FuncName

Syntax

Transaction functions must conform to the FAPHANDLER prototype. For more
information on the FAPHANDLER prototype, see the FAPHANDLER section. You
can use these parameters:

Parameter Description

ObjectH The handle of the current form set.

msgno A requested operation message number. Currently, only the
FAP_MSGPOSTEDIT message is sent.

p1 Is a union. p1.dwr will be the AFEDATA structure value action.

p2 Is a union. p2.ptr is a pointer to the AFEDATA structure used by AFE. This
structure contains most (if not all) of the global data necessary to manipulate the
form sets in use by the Entry module. Even if you are familiar with AFELIB and
how the Entry module works, you should use care when manipulating the data
within this structure.

Parameter Description

ObjectH The handle of the current form set.

msgno A requested operation message number. Currently, only the
FAP_MSGPOSTEDIT message is sent.

p1 Is a union. p1.dwr will be the AFEDATA structure value action.

Function and Hook Reference

90

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.
However, only before the form set being saved will a non-successful return prevent
the action from being taken.

AFE Termination Hook

Term

This hook is called when the Entry module is exiting. A custom function should
release any resources or memory that were allocated during program execution when
this hook is called. There is no default for this hook.

INI Definition

< AFEProcedures >
Term = DLL->FuncName

Syntax

int _VMMAPI func(HAB hab, PAFEDATA pdata);

Remarks

The return value from this call is ignored. This hook is called before releasing the
AFEDATA structure members.

AFE Window Procedure Hook

WindowProc

This hook is designed to let a custom function intercept messages that arrive at the
main application's window procedure. There is no default for this hook.

p2 Is a union. p2.ptr is a pointer to the AFEDATA structure used by AFE. This
structure contains most (if not all) of the global data necessary to manipulate the
form sets in use by the Entry module. Even if you are familiar with AFELIB and
how the Entry module works, you should use care when manipulating the data
within this structure.

Parameter Description

hab Is the program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an OS/2 or Windows platform. Within the
Documaker programming environment, both definitions serve the same purpose.

Pdata A pointer to the AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. Even if you are familiar with AFELIB and how the Entry module
works, you should use care when manipulating the data within this structure.

Parameter Description

Function and Hook Reference

91

A custom procedure has first use of incoming messages and can indicate whether the
default message handling should continue.

INI Definition

< AFEProcedures >
WindowProc = DLL->FuncName

Syntax

This function should conform to the WNDSUBPROC typedef prototype. This
definition is as follows:

DWORD _VMMAPI func(HWND hwnd, MMSG msg, MPARAM1 mp1,
MPARAM2 mp2, MRESULT *result, VOID *data);

Remarks

The function should return SUCCESS (0) if the custom function handled the
message and no further processing is to continue. A non-zero return means that
default processing should continue on the message.

When SUCCESS is returned the result assigned by the custom function will be
returned to the caller.

AFEArchive2WipKeys

Archive2WIP

In most instances, the archive file structures will be based upon the WIP file
structures in use by the program. Since the Entry module supports the ability to
customize archive files, two hooks are provided to translate the Key1, Key2, and
KeyID components typically used by the WIP and Archive/Retrieval system.

ARCHIVE2WIP is called to translate the archive Key1, Key2, and KeyID fields into
the corresponding WIP fields. Another hook, WIP2ARCHIVE, exists to translate in
the other direction.

Parameter Description

hwnd The window handle (usually) passed to the WNDPROC.

msg The window message indicator passed to the WNDPROC.

mp1 The first window parameter passed to the WNDPROC.

mp2 The second window parameter passed to the WNDPROC.

result A pointer to a long value that should contain the value to return if further
processing is not to continue.

data A pointer to the AFEDATA structure used by AFE. This structure contains most
(if not all) of the global data necessary to manipulate the form sets in use by the
Entry module. Even if you are familiar with AFELIB and how the Entry module
works, you should use care when manipulating the data within this structure.

Function and Hook Reference

92

There is no default for this hook, therefore you must register this function or archive
retrieval cannot be accomplished.

If a custom procedure is not provided for AFE, the procedure
AFEArchive2WipKeys() must be defined to perform this task.

INI Definition

< AFEProcedures >
Archive2WIP = AFEOS2->AFEArchive2WipKeys

Syntax

int _VMMAPI AFEArchive2WipKeys(char * inKey1,

char * inKey2,

char * inKeyId,

char * outKey1,

char * outKey2,

char * outKeyId);

The parameters of this function should be self-explanatory. The input versions of
Key1, Key2, and KeyID are represented in the first three parameters. The translated
versions of these fields should be copied to the corresponding out fields.

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

As the name should imply, this function should convert archive key field information
into WIP key field information.

AFESecurityFunc

Security

This hook is called to verify a user has access rights to enter the program and when
the user logs out of the program. The default function, AFESecurityFunc(), is used
if no security value is defined.

INI Definition

< AFEProcedures >

Parameter Description

inKey1 Input Key1 from Archive.

inKey2 Input Key2 from Archive.

InKeyID Input KeyID from Archive.

outKey1 outKey1

outKey2 Output Key2 for WIP. The inKey2 value should be translated into this field.

OutKeyID Output KeyID for WIP. The InKeyID value should be translated into this field.

Function and Hook Reference

93

Security = AFEOS2->AFESecurityFunc

Syntax

This function must conform to the FAPUSER prototype. For more information on
the FAPUSER prototype, see the FAPUSER section. You can use these parameters:

Remarks

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are passed
in the dwMessage parameter for the following operations, and should be handled
accordingly in a custom procedure.

FAP_MSGINIT This message indicates that a user wants to log into the program.

FAP _MSGTERMINATE This message indicates that a user wants to log out of the
program.

DwFAPHab Is the program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an OS/2 or Windows platform. Within the Documaker
programming environment, both definitions serve the same purpose.

DwFAPHwnd A handle to the currently open window.

DwObjectIdentifier Not used.

DwObjectType Not used.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID A pointer to a NULL terminated string that represents any known user ID. This value
may have been obtained as a parameter from the program’s command line or the result
of querying the value for the UserID option in the SignOn control group.

LpszFormatType Not used.

LpszFormat Not used.

LpszFileName A pointer to a NULL terminated string that represents a file name obtained by combining
the values for Path and File options in the UserInfo control group.

PAFEData A pointer the current AFEDATA structure used by AFE. This structure contains most (if
not all) of the global data necessary to manipulate the form sets in use by the Entry
module. Even if you are familiar with AFELIB and how the Entry module works, you
should use care when manipulating the data within this structure.

LpszOutputBuffer A pointer to a USERREC structure that should be filled by the custom function.

DwOutputBufferM
axSize

Is the size of the USERREC structure.

LpdwOutputFlag1 Not used.

LpdwOutputFlag2 Not used.

LpdwOutputFlag3 Not used.

Function and Hook Reference

94

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
requested operation succeeded.

On FAP_MSGINIT (logon), a non-successful return will prevent the user from
obtaining access to the program.

After a successful logon attempt, the “userlistH” member of the AFEDATA
structure is examined. This member is a VMM list containing all user records
(USERREC structures) that report to this current user (including this user).

If it has not been assigned data by the custom function, the user file is examined for
the data. If no user file is found, only the current user record is added to the reports
to list.

AFEWip2Archive

Wip2Archive

In most instances, the archive file structures will be based upon the WIP file
structures in use by the program. Since the Entry module supports the ability to
customize archive files, two hooks are provided to translate the Key1, Key2, and
KeyID components typically used by the WIP and Archive/Retrieval systems.

WIP2ARCHIVE is called to translate the Key1, Key2, and KeyID fields into the
corresponding archive key fields. Another hook, ARCHIVE2WIP, exists to translate
in the other direction.

There is no default for this hook, therefore you must register this function or archive
retrieval cannot be accomplished.

If a custom procedure is not provided for AFE, the procedure
AFEWip2ArchiveKeys() must be defined to perform this task.

INI Definition

< AFEProcedures >
Wip2Archive = AFEOS2->AFEWip2ArchiveKeys

Syntax

int _VMMAPI AFEWip2ArchiveKeys(char * inKey1,

char * inKey2,

char * inKeyId,

char * outKey1,

char * outKey2,

char * outKeyId);

The parameters of this function should be self-explanatory. The input versions of
Key1, Key2, and KeyID are represented in the first three parameters. The translated
versions of these fields should be copied to the corresponding out fields.

Parameter Description

inKey1 Input Key1 from Archive.

Function and Hook Reference

95

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate the result.
As the name should imply, this function should convert WIP key field information
into Archive key field information

AFEWip2ArchiveRecord

Archive

Since the Entry module supports custom Archive Index files, a hook is provided to
create the archive index record from a WIP record. No default INI definition is
assumed, therefore this function must be registered or archiving cannot be
accomplished.

If a custom procedure is not provided for AFE, the procedure
AFEWip2ArchiveRecord() must be defined to perform this task. This function uses
another INI group to map the fields from the WIP record to the fields of an archive
record.

INI Definition

< AFEProcedures >
Archive = AFEOS2->AFEWip2ArchiveRecord

Syntax

int _VMMAPI AFEWip2ArchiveKeys(PAFEDATA pdata,

VMMHANDLE wipdfdH,

void FAR *wiprec,

VMMHANDLE arcdfdH,

void FAR *arcrec);

inKey2 Input Key2 from Archive.

InKeyID Input KeyID from Archive.

outKey1 outKey1

outKey2 Output Key2 for WIP. The inKey2 value should be translated into this field.

OutKeyID Output KeyID for WIP. The InKeyID value should be translated into this field.

Parameter Description

Pdata A pointer the AFEDATA structure defined in AFELIB.H. This structure contains
most (if not all) of the global data necessary to manipulate the form sets in use
by the Entry module. Even if you are familiar with AFELIB and how the Entry
module works, you should use care when manipulating the data within this
structure.

Parameter Description

Function and Hook Reference

96

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

This function is called any time a WIP record is to be converted to an archive index
record. This function should limit its activities to that described since not all calls
will result in an actual archive file or index record being written or retrieved.

AppIdxRec
Use this function to get an archive record based on APPIDX.DFD and
Trigger2Archive INI settings.

Syntax:

AppIdxRec ()

Example:

Comment = AppIdxRec()
AddComment(Comment)

CUSGetArcIdxName

IndexName

This function is only supported in version 9.0 or greater of the Development
System/Docucreate.

The Entry module supports the ability to customize archive files. In addition to the
other hooks that support translation of information between the WIP and archive
systems, this hook is used to return the index file name used for archiving (or
retrieving) a specific WIP record.

There is no default for this function. A standard function, CUSGetArcIdxName(), is
provided as a basis for defining custom index names.

INI Definition

< AFEProcedures >
INDEXNAME = CUSOS2->CUSGetArcIdxName

Syntax

DWORD _VMMAPI CUSGetArcIdxName(VMMHANDLE dfdH,

void * record,

wipdfdH A handle to the data file definition (DFD) file that identifies all the fields and their
types used in a WIP record.

wiprec A record buffer that contains the current WIP information.

arcdfdH A handle to the DFD file that identifies all the fields and their types used in an
archive index record.

arcrec An index record buffer that is the destination of the converted information.

Parameter Description

Function and Hook Reference

97

char * outIdxName,

size_t stFileNameSz);

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

The custom procedure attached to this hook may used the WIP record passed or any
other information available to determine what index file name to return.

DSDefAppendBuffer

Append

This hook is called to append a buffer of data to the current file that was opened by
a call to Open or Create.

Document set files includes the NA, POL and PKG files. Default functionality is
provided for reading and writing these files as ordinarily DOS files if another INI
option is not provided. These functions can be overridden to achieve an alternate
method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between reading document files in
archive mode and non-archive mode. This was designed in a manner to assist those
that might require their archived information to be retrieved from another location or
in different manner than WIP files.

< AFEDSProcedures >
APPEND = DSOS2->DSDefAppendBuffer
< AFEDSArchiveProcedures >
APPEND = DSOS2->DSDefAppendBuffer

Syntax

DWORD _VMMAPI DSDefAppendBuffer(char *buffer, BOOL eof);

Parameter Description

DfdH A DB type handle to a DFD file that defines the data record.

Record A data buffer that contains current record information.

OutIdxName An output buffer that should receive the file name of an index file to use.

StFileNameSz The maximum size of the output field, outIdxName.

Parameter Description

Buffer Represents the NULL terminated text data that should be written.

eof Will be TRUE to indicate that buffered data should be “flushed” to make sure it is
written before CLOSE is called.

Function and Hook Reference

98

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded.

This function should write the data to the current file at the current offset. Since
DSLIB uses text information rather than binary, you must translate the information
if the specified file is not in that format.

You must determine what task to perform to write to the requested file. You must
also maintain a link to the current open file since no handle or pointer is provided as
a parameter.

DSDefCloseBuffer

Close

This hook is called to close the current file that was opened by a call to Open or
Create.

Generally, at the end of file use or if an error occurs after successfully opening the
specified file, DSLIB will call the registered CLOSE function.

Document set files includes the NA, POL and PKG files. Default functionality is
provided for reading and writing these files as ordinarily DOS files if another INI
option is not provided. These functions can be overridden to achieve an alternate
method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between closing document files in
archive mode and non-archive mode. This was designed in a manner to assist those
that might require their archived information to be retrieved from another location or
in different manner than WIP files.

< AFEDSProcedures >
CLOSE = DSOS2->DSDefAppendBuffer
< AFEDSArchiveProcedures >
CLOSE = DSOS2->DSDefAppendBuffer

Syntax

DWORD _VMMAPI DSDefCloseBuffer(void);

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded.

A call to this function is an indication that any currently open file be closed. You
must determine what task to perform to close the requested file. You must also
maintain a link to the current open file since no handle or pointer is provided as a
parameter.

Function and Hook Reference

99

DSDefCreateBuffer

Create

This hook is called to create a new or truncate an existing file for writing.

Document set files includes the NA, POL and PKG files. Default functionality is
provided for reading and writing these files as ordinarily DOS files if another INI
option is not provided. These functions can be overridden to achieve an alternate
method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between creating document files in
archive mode and non-archive mode. This was designed in a manner to assist those
that might require their archived information to be retrieved from another location or
in different manner than WIP files.

< AFEDSProcedures >
CREATE = DSOS2->DSDefAppendBuffer
< AFEDSArchiveProcedures >
CREATE = DSOS2->DSDefAppendBuffer

Syntax

DWORD _VMMAPI DSDefCreateBuffer(void);

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded.

A call to this function is an indication that the requested file should be opened for
writing. Nothing will be read from this file. You must determine what task to
perform to “create” the requested file. You must also determine what and how to
maintain a link to the current open file since no handle or pointer is returned to the
calling function.

Generally, at the end of file use or if an error occurs after successfully opening the
specified file, DSLIB will call the registered CLOSE function.

DSDefFirstBuffer

First

This hook is called to return the first buffer of data from the current file that was
opened by a call to Open.

Parameter Description

Filename The requested name of a file to create with any required path and extension
applied (if system defined).

Function and Hook Reference

100

Document set files includes the NA, POL and PKG files. Default functionality is
provided for reading and writing these files as ordinarily DOS files if another INI
option is not provided. These functions can be overridden to achieve an alternate
method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between reading document files in
archive mode and non-archive mode. This was designed in a manner to assist those
that might require their archived information to be retrieved from another location or
in different manner than WIP files.

< AFEDSProcedures >
FIRST = DSOS2->DSDefAppendBuffer
< AFEDSArchiveProcedures >
FIRST = DSOS2->DSDefAppendBuffer

Syntax

DWORD _VMMAPI DSDefFirstBuffer(char *buffer, size_t buffersize);

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded. A return value of FAIL is assumed to mean EOF, since the file
must have been opened successfully before making this call. Returning FAIL also
means that no data was placed in the buffer.

This hook function should seek to the beginning of the current file (if necessary) and
read the first buffersize bytes. Since DSLIB expects to receive text information
rather than binary, you must translate the information if the specified file is not in
that format. The buffer should be NULL terminated at the end of the text data that
was read.

You must determine what task to perform to seek and read the requested file. You
must also maintain a link to the current open file since no handle or pointer is
provided as a parameter.

DSDefNextBuffer

Next

This hook is called to return the next buffer of data from the current file that was
opened by a call to Open.

Document set files includes the NA, POL and PKG files. Default functionality is
provided for reading and writing these files as ordinarily DOS files if another INI
option is not provided. These functions can be overridden to achieve an alternate
method of reading and writing this information.

Parameter Description

Buffer Represents where the data should be placed after reading.

Buffersize Indicates the maximum size of buffer.

Function and Hook Reference

101

INI Definition

Two separate definitions are used to distinguish between reading document files in
archive mode and non-archive mode. This was designed in a manner to assist those
that might require their archived information to be retrieved from another location or
in different manner than WIP files.

< AFEDSProcedures >
NEXT = DSOS2->DSDefAppendBuffer
< AFEDSArchiveProcedures >
NEXT = DSOS2->DSDefAppendBuffer

Syntax

DWORD _VMMAPI DSDefNextBuffer(char *buffer, size_t buffersize);

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded. A return value of FAIL is assumed to mean EOF, since the file
must have been opened successfully before making this call. Returning FAIL also
means that no data was placed in the buffer.

This hook function should begin reading of the current file at the current offset and
read the next buffersize bytes. Since DSLIB expects to receive text information
rather than binary, you must translate the information if the specified file is not in
that format. The buffer should be NULL terminated at the end of the text data that
was read.

You must determine what task to perform to read the requested file. You must also
maintain a link to the current open file since no handle or pointer is provided as a
parameter.

DSDefOpenBuffer

Open

This hook is called to open an existing file for reading.

Document Set files includes the NA, POL and PKG files. Default functionality is
provided for reading and writing these files as ordinarily DOS files if another INI
option is not provided. These functions can be overridden to achieve an alternate
method of reading and writing this information.

INI Definition

Two separate definitions are used to distinguish between opening document files in
archive mode and non-archive mode. This was designed in a manner to assist those
that might require their archived information to be retrieved from another location or
in different manner than WIP files.

Parameter Description

Buffer Represents where the data should be placed after reading.

Buffersize Indicates the maximum size of buffer.

Function and Hook Reference

102

< AFEDSProcedures >
OPEN = DSOS2->DSDefAppendBuffer
< AFEDSArchiveProcedures >
OPEN = DSOS2->DSDefAppendBuffer

Syntax

DWORD _VMMAPI DSDefOpenBuffer(char *filename);

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded.

A call to this function is an indication that the requested file should be opened for
reading. Nothing is written to this file. You must determine what task to perform to
open the requested file. You must also determine what and how to maintain a link to
the current open file since no handle or pointer is returned to the calling function.

Generally, at the end of file use or if an error occurs after successfully opening the
specified file, DSLIB will call the registered CLOSE function.

LBYCARRetrieveFile

RetrieveFile

INI Definition

< VCS >
RetrieveFile = LBYOS2->LBYCARRetrieveFile

Syntax

LONG _VMMAPI LBYCARRetrieveFile(void * indexrec,

char *libname,

char *filename,

char *sequence);

Parameter Description

Filename The requested name of a file to open with any required path and extension
applied (if system defined).

Parameter Description

Indexrec An index record; use this to get version #, user ID, and so on, if any of this
information is needed.

libname Library to store file in.

filename File to save to or retrieve from.

sequence A key identifying the file being saved/retrieved. In Save, this can be set to
whatever key the lower level code returns. The key will be saved, and passed into
later calls to Retrieve.

Function and Hook Reference

103

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

LBYCARRetrieveMemFile

RetrieveMemFile

INI Definition

< VCS >
RetrieveMemFile = LBYOS2->LBYCARRetrieveMemFile

Syntax

LONG _VMMAPI LBYCARRetrieveMemFile(void * indexrec,

char *libname,

char *filename,

char *sequence);

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

LBYCARSaveFile

SaveFile

INI Definition

< VCS >
SaveFile = LBYOS2->LBYCARSaveFile

Syntax

LONG _VMMAPI LBYSaveFile(void *indexrec,

char *libname,

char *filename,

char *sequence);

Parameter Description

Indexrec An index record; use this to get version #, user ID, and so on, if any of this
information is needed.

libname Library to store file in.

filename File to save to or retrieve from.

sequence A key identifying the file being saved/retrieved. In Save, this can be set to
whatever key the lower level code returns. The key will be saved, and passed into
later calls to Retrieve.

Function and Hook Reference

104

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

LBYCO COM
The LBYCO COM object allows you to write your own application to manage
certain library situations.

The application which utilizes the COM interface is responsible for user
authentication and authorizes the library changes.

LBYCO COM

LMGLBYCheckin

CheckIn

Called when the user wants to put back changes.

INI Definition

< VCS >
Checkin = LMGOS2->LMGLBYCheckin

Syntax

LONG _VMMAPI LMGLBYCheckin(HWND hwnd,

char * type,

char * subtype,

char * filename);

Parameter Description

Indexrec An index record; use this to get version #, user ID, and so on, if any of this
information is needed.

libname Library to store file in.

filename File to save to or retrieve from.

sequence A key identifying the file being saved/retrieved. In Save, this can be set to
whatever key the lower level code returns. The key will be saved, and passed into
later calls to Retrieve.

Parameter Description

Hwnd An input parameter that is the parent/owner window handle.

type An input parameter

Function and Hook Reference

105

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

LMGLBYCheckout

CheckOut

Called when the user wants to get a writeable copy of a file and lock it.

INI Definition

< VCS >
Checkout = LMGOS2->LMGLBYCheckout

Syntax

LONG _VMMAPI LMGLBYCheckin(HWND hwnd,

char * type,

char * retfullname,

char * path

char * ext,

char * name,

char * pszBtn,

char * pszTitle);

Subtype An input parameter

Filename An input parameter

Parameter Description

Hwnd An input parameter that is the parent/owner window handle.

type An input parameter. The list of files will be filtered based on the file type given.
The type can be any LBY_TYPE_xxx define.

retfullname An input/output parameter.

If "retfullname" is provided and is not empty, it will be used as a file name to
extract the data into. If it is not provided or is an empty string, "path", "ext", and
the actual name of the file selected will be used to put together a full path/file
name for storing the record in.

If "retfullname" is provided, the resulting path/file name will be copied into it.

In other words, if you're supplying a temporary name in "retfullname", you could
pass in "name" to find out what the actual name of the file was.

path Optional input parameter.

ext Optional input parameter.

Parameter Description

Function and Hook Reference

106

Remarks

This function returns SUCFigure Figure CESS (0) or FAIL (non-zero) to indicate the
result.

LMGLBYInit

Init

This is called once, during program initiation.

INI Definition

< VCS >
Init = LMGOS2->LMGLBYInit

Syntax

LONG _VMMAPI LMGLBYInit (void);

There are no parameters for this function

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

LMGLBYReInit

ReInit

Called whenever the master-resource settings have changed. Gives the VCS code a
chance to reinitialize itself. (The LBY code needs to, because paths and file names
for the LBY databases may have changed.)

INI Definition

< VCS >
ReInit = LMGOS2->LMGLBYReInit

Syntax

LONG _VMMAPI LMGLBYReInit (void);

There are no parameters of this function

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

name An optional input/output parameter.

If "name" is provided, the name of the file will be copied into it.

pszBtn An input parameter for the text on button.

pszTitle An input parameter for the text in the title bar.

Parameter Description

Function and Hook Reference

107

LMGLBYSelect

Select

INI Definition

< VCS >
Select = LMGOS2->LMGLBYSelect

Syntax

LONG _VMMAPI LMGLBYSelect(HWND hwnd,

char * type,

char * retname,

char * pszBtn,

char * pszTitle,

USHORT id,

BOOL bAllVersions);

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

LMGLBYTerm

Term

This is called once, during program term.

INI Definition

< VCS >
Term = LMGOS2->LMGLBYTerm

Syntax

LONG _VMMAPI LMGLBYTerm (void);

There are no parameters for this function

Parameter Description

hwnd An input parameter that is the parent/owner window handle.

type An input parameter.

Retname An output parameter.

pszBtn An input parameter for the text on button.

pszTitle An input parameter for the text in the title bar.

id An input parameter for optional, ID of window

BAllVersions An input parameter. True to show "all ver" btn

Function and Hook Reference

108

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

LMGLBYUnlock

Unlock

Called when the user wants to cancel changes to a file and release it.

INI Definition

< VCS >
Unlock = LMGOS2->LMGLBYUnlock

Syntax

LONG _VMMAPI LMGLBYUnlock(HWND hwnd,

char * type,

char * subtype,

char * filename);

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

LMGLBYView

View

Called when the user wants to select a file and get a read-only copy of it.

INI Definition

< VCS >
View = LMGOS2->LMGLBYView

Syntax

LONG _VMMAPI LMGLBYView(HWND hwnd,

char * type,

char * retfullname,

char * path

Parameter Description

Hwnd An input parameter that is the parent/owner window handle.

type An input parameter

Subtype An input parameter

Filename An input parameter

Function and Hook Reference

109

char * ext,

char * name,

char * pszBtn,

char * pszTitle);

Remarks

This function returns SUCCESS (0) or FAIL (non-zero) to indicate the result.

TMRTimers
Programs that use a .RES file for menu definition can start and stop “automatic”
functions by adding a menu item to the .RES file, identifying the entry point function
of TMRLIB. This option could be chosen manually by the user or enable
automatically with the “Startup” menu ID defined in the INI file. Any menu ID value
designated in the INI executes when the program begins.

To add this option to an existing menu system, edit the proper “menu”.RES file and
add the following line:

MENUITEM “Timed functions”, 2001 “TMROS2->TMRTimers” “Start/Stop
auto-timer”

The menu item and description strings can say whatever you want. The menu ID
must not conflict with any other IDs.

Parameter Description

Hwnd An input parameter that is the parent/owner window handle.

type An input parameter. The list of files will be filtered based on the file type given.
The type can be any LBY_TYPE_xxx define.

retfullname An input/output parameter.

If "retfullname" is provided and is not empty, it will be used as a file name to
extract the data into. If it is not provided or is an empty string, "path", "ext", and
the actual name of the file selected will be used to put together a full path/file
name for storing the record in.

If "retfullname" is provided, the resulting path/file name will be copied into it.

In other words, if you're supplying a temporary name in "retfullname", you could
pass in "name" to find out what the actual name of the file was.

path Optional input parameter.

ext Optional input parameter.

name An optional input/output parameter.

If "name" is provided, the name of the file will be copied into it.

pszBtn An input parameter for the text on button.

pszTitle An input parameter for the text in the title bar.

Function and Hook Reference

110

Placement of this menu item among the other items is not important. However, you
probably place it “out of the way” since the users will probably not need access to
the option very frequently.

By default, TMRLIB will attempt to place a checkmark next to the menu item when
the timer is activated. Then checkmark will be removed when the timer is stopped.

Documaker Desktop automatically starts and stops timer functions beginning with
version 9.0, therefore this menu option will not be required in that environment.

TMRInit
This function attempts to initialize and all registered service functions. Each DLL is
loaded and the service functions queried. Those that load successfully will receive
the message FAP_MSGINIT. Parameters to this function provide the application
HAB (or HINSTANCE under Windows); the handle to the main application
windows; and a pointer to any application specific data that needs to be passed to all
service functions. Under PPS/Entry, the data pointer will address the AFEDATA
structure.

The function returns SUCCESS (0) if initializations complete without error.

TMRTerm
This function sends the FAP_MSGTERM message to all service functions. The OS
timer is disabled and then released.

After this call, service functions will no longer be called.

TMRSetAppData
This function stores the application specific data pointer for use by service functions.
Under Documaker Desktop, this pointer must reference the AFEDATA structure.

TMRAppData
This function returns the application specific data pointer for use by service
functions. Under Documaker Desktop, this pointer must reference the AFEDATA
structure.

TMRSetHwnd
This function stores the application's main window handle for use by service
functions.

Note Changes in version 12.5 may cause DAL and INI files to be written out using UTF-8
encoding.

Function and Hook Reference

111

TMRHwnd
This function returns the application's main window handle for use by service
functions.

TMRSetHab
This function stores the application HAB (or HINSTANCE for Windows) for use by
service functions.

TMRHab
This function returns the application HAB (or HINSTANCE for Windows) for use
by service functions.

TMRIsDesktopUp
FAPFormset() is used to retrieve the current form set. If there is a form set and a form
within that form set has a FAPWINDOW structure associated with it, this function
will return TRUE. Otherwise, the function returns FALSE.

TMRIsDialogUp
All child windows associated with the application main window (returned by
TMRHwnd()) are scanned to determine if a window is present. If a window is found,
TRUE is returned. Otherwise, the function returns FALSE.

The existence of a window usually means that the user is involved with data entry or
some other functionality.

TMRTimerTest1
This is a test function which you can use in any application to test the timer. The
function displays a window that includes information about internal settings.

TMRTimerTest2
This is a test function which you can use in any application to test the timer. The
function displays a window that includes information about internal settings.

TMRTimerTest3
This is a test function which you can use in any application to test the timer. The
function displays a window that includes information about internal settings.

Function and Hook Reference

112

TRNAutoKeyIDUsrFunc

AutoKeyID

This hook is called to provide, verify, or release KeyIDs for WIP transactions. This
optional feature must be enabled via INI settings. This feature first became available
in July 1996.

Custom versions of this function can return any value that satisfies the KeyID
requirements.

The standard function, TRNAutoKeyIDUsrFunc(), can be used to return sequential
numbers generated in a table via another function.

INI Definition

< AfeProcedures >
AutoKeyID = TRNOS2->TRNAutoKeyIDUsrFunc

Syntax

This function must conform to the FAPUSER prototype. For more information on
the FAPUSER prototype, see the FAPUSER section. You can use these parameters:

Parameter Description

DwMessage A message requesting a particular operation. The following FAP messages are
passed in the dwMessage parameter for the following operations, and should be
handled accordingly in a custom procedure. Please note that although FAP
message numbers are being used, there is no FAPOBJECT that initiates or
receives the action.

FAP_MSGNEXT

Get a new unused KeyID if the current one is not valid. This message is sent any
time the Form Selection window is (re)initialized.

FAP _MSGUPDATE

Release the KeyID. Its use was aborted. This message is sent if the Form
Selection window is canceled while creating a new form set or the form set is not
saved to WIP. This message will be sent if the WIP is deleted without archiving.
This message will also be sent any time the user manually changes the KeyID.
This might occur if WIP is edited and the KeyID is changed by user action.

FAP_MSGDELETE

Form set was archived. KeyID may be deleted. This message will only be sent
when the form set has been archived.

FAP_MSGSELECT

Verify that the current KeyID is valid for situation. This message is sent when the
OK action is taken on the Form Selection window. This message is also sent any
time the Transaction Code, Key1, or Key2 selections change. This should make
it possible for a custom function to generate specific Ids based upon this
information (if desired).

DwFAPHab The program’s anchor block or instance handle. The distinction depends upon
whether the program is running on an or Windows platform. Within the
Documaker programming environment, both definitions serve the same purpose.

DwFAPHwnd A handle to the currently open window. You should not assume a particular
window handle is being passed because this function can be called from multiple
locations within AFE.

Function and Hook Reference

113

Remarks

This function must return SUCCESS (0) or FAIL (non-zero) to indicate whether the
operation succeeded. Upon a successful return, the value contained in char FAR *
lpszOutputBuffer (if not NULL) will be copied as the new KeyID of choice.

The parameters provided to this function includes all the current WIP information
required to understand how the user constructed (or is constructing) the form set. A
custom function may or may not use the information provided.

dwChildID The ID of a child control on the window that initiated the call or zero if no child ID
is available.

DwObjectType Not used.

DwInputFlag1 Not used.

DwInputFlag2 Not used.

DwInputFlag3 Not used.

LpszUserID A pointer to a NULL terminated string that contains the user ID of the current
operator.

LpszTranCode A pointer to a NULL terminated string that contains the Transaction Code
associated with the WIP record.

lpszKey1 A pointer to a NULL terminated string that contains the Key1 field value
associated with the WIP record.

lpszKey2 A pointer to a NULL terminated string that contains the Key2 field value
associated with the WIP record. Note that in a multi-select situation (PPS) only
the first Key2 value is provided.

LpszInputBuffer A pointer to a NULL terminated string that contains the current KeyID field value
associated with the WIP record.

LpszKeyID A pointer to a text buffer that should receive the output KeyID from this function.
If this value is NULL, no output string is expected. On input, a non-NULL value
will represent the last KeyID returned from your hook procedure. A difference
between the input KeyID and the one represented in this string means that the
user changed the original KeyID.

DwOutputBufferMaxSize Represents the maximum size of the output buffer for the previous parameter.

pAFEData A pointer the current AFEDATA structure used by AFE. This structure contains
most (if not all) of the global data necessary to manipulate the form sets in use
by the Entry module. Even if you are familiar with AFELIB and how the Entry
module works, you should use care when manipulating the data within this
structure.

LpdwOutputFlag2 Not used.

LpdwOutputFlag3 Not used.

Parameter Description

Function and Hook Reference

114

TRNSetBannerFormInfo

Set Banner Information

If specified, a banner page is printed for every recipient in each form set. No default
INI option definition is assumed, therefore one must be provided to enable the
functionality.

The standard function, TRNSetBannerFormInfo(), is available for use and uses
additional INI groups and options to determine what is printed on the banner page.

In addition to filling the banner page, the standard function will search the remaining
form set and fill in the field information on any PULL forms defined. A PULL form
is a representation that an externally maintained form should be included in the form
set. When the form set is printed, a separate page is printed for each PULL form and
usually indicates what form should be replacing that page.

INI Definition

< AFEProcedures >
BannerProc = TRNOS2->TRNSetBannerFormInfo

Syntax

This function must conform to the FAPHANDLER prototype. For more information
on the FAPHANDLER prototype, see the FAPHANDLER section. You can use
these parameters:

Remarks

This function should return SUCCESS (0) or FAIL (non-zero) to indicate the result
of the operation.

Any information from any source may be placed on the banner form. Note that the
PULL form functionality should be performed if compatibility is to be maintained.

Parameter Description

ObjectH The handle of the form that represents the banner page.

msgno Message FAP_MSGINIT. Receiving this message means that all banner
information should be applied to the form handle passed.

p1 This parameter is passed as NULL and should not be used.

p2 This parameter is passed as NULL and should not be used.

Appendix A

Legal Notices

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Software Foundation (http://
www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

Apache Commons Math Copyright 2001-2008 The Apache Software Foundation

This product includes software translated from the odex Fortran routine developed by E. Hairer
and G. Wanner and distributed under the following license:

Copyright (c) 2004, Ernst Hairer

Apache License Version 2.0, January 2004 (http://www.apache.org/licenses/LICENSE-2.0)

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE VISIGOTH SOFTWARE SOCIETY OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Apache Commons Codec Copyright 2002-2009 The Apache Software Foundation
Copyright (C) 2002 Kevin Atkinson (kevina@gnu.org)

Apache Commons Pool
Copyright 2001-2011 The Apache Software Foundation

Apache Jakarta Commons Lang
Copyright 2001-2007 The Apache Software Foundation

Apache Jakarta Commons FileUpload

Copyright 2002-2006 The Apache Software Foundation

Apache Commons CLI
Copyright 2001-2009 The Apache Software Foundation

Apache Commons Collections
Copyright 2001-2008 The Apache Software Foundation

Apache Commons Logging
Copyright 2003-2013 The Apache Software Foundation

Barcode4J
Copyright 2002-2010 Jeremias Märki
Copyright 2005-2006 Dietmar Bürkle
Portions of this software were contributed under section 5 of the
Apache License. Contributors are listed under: (http://barcode4j.sourceforge.net/
contributors.html)
Copyright 2002-2010 The Apache Software Foundation

This product includes software distributed via the Berkeley Software Distribution (BSD) and
licensed for binary distribution under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software
is provided 'as-is', without any express or implied warranty. In no event will the authors be held
liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/
).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All
Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://
www.bluecreststudios.com).

Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project
Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OR GUARANTEES.
YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR

EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES
OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS
FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-
INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT,
USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER
ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project
Open License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OR GUARANTEES.
YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR
EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES
OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS
FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-
INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT,
USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER
ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open
License (http://www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OR GUARANTEES.
YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING COPYRIGHT
INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR
EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES
OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS
FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-
INFRINGEMENT, OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT,
USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER
ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all
accompanying material is copyright (c) 1998-1999 Erwin Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED
WARRANTY. USE IT AT YOUR OWN RISK! THE AUTHOR ACCEPTS NO LIABILITY
FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND
ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE

USE OR PERFORMANCE OF THIS SOFTWARE

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn
Randers-Pehrson (current maintainer), and others. (http://www.libpng.org)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc.
disclaim all warranties, expressed or implied, including, without limitation, the warranties of
merchantability and of fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary, or consequential
damages, which may result from the use of the PNG Reference Library, even if advised of the
possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE CRYPTIX FOUNDATION LIMITED OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANYIMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE
SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT,
SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains
material that is © 1994-2005 The Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree -
www.destroydrop.com/hjavascripts/tree/version 0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines
Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights
reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but
DISCLAIMS ALL WARRANTIES WITH REGARD TO IT, including all implied warranties
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In no event shall
University of Coimbra be liable for any special, indirect or consequential damages (or any
damages whatsoever) resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or
performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://
www.opensymphony.com/.)"

Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may
not match PANTONE-identified standards. Consult current PANTONE Color Publications for
accurate color. PANTONE(R) and other Pantone LLC trademarks are the property of Pantone
LLC. (C) Pantone LLC, 2011.

Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle
to distribute for use only in combination with Oracle Documaker. PANTONE Color Data and/
or Software shall not be copied onto another disk or into memory unless part of the execution
of Oracle Documaker.

This product includes software developed by Dave Gamble and distributed via

SourceForge.net (http://sourceforge.net/projects/cjson/)

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2009 Dave Gamble

This product includes software developed by the Zxing Project.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2013 Zxing Project (https://github.com/zxing/zxing)

This product includes software developed by the Wintertree software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

The Sentry Spelling-Checker Engine Copyright (c) 1993 Wintertree (https://wintertree-
software.com/dev/ssce/windows/index.html)

Freemarker Copyright (c) 2003 The Visigoth Software Society. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE VISIGOTH SOFTWARE SOCIETY OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO,PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the

Visigoth Software Society. For more information on the Visigoth Software Society, please see
http://www.visigoths.org/

Copyright (c) 2000,2002,2003 INRIA, France Telecom (http://asm.ow2.org/) All rights
reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright© 2001-2016 ej-technologies GmbH (https://www.ej-technologies.com/products/
install4j/overview.html) All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This component is distributed with the following third party components: (1) Third party
components licensed under EPL v1.0; (2) JARGS (Stephen Purcell); JDOM (Brett McLaughlin
& Jason Hunter); and (3) ORO (Apache Software Foundation). Please see EPL v1.0 and
applicable components (#2072, 2686, 2074) for restrictions/requirements.

Copyright 2001-2005 (C) MetaStuff, Ltd.(http://www.dom4j.org) All Rights Reserved.

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS "AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Little CMS Copyright (c) 1998-2011 (http://www.littlecms.com/) All Rights Reserved.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Marti Maria Saguer Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

 Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite
catholique de Louvain (UCL), Belgium

Copyright (c) 2002-2007, Professor Benoit Macq

Copyright (c) 2001-2003, David Janssens

Copyright (c) 2002-2003, Yannick Verschueren

Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe

Copyright (c) 2005, Herve Drolon, FreeImage Team

All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THEIMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

 Copyright (c) 2004-2013 QOS.ch (http://www.qos.ch/shop/index) All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright notice
and this permission notice shall be included in all copies or substantial portions of the
Software.

The Code Project Open License (CPOL) 1.02

Copyright © CodeProject, 1999-2016 (http://www.codeproject.com/info/cpol10.aspx) All
Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper

Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers (http://
expat.sourceforge.net/)

All Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2002-2010 Atsuhiko Yamanaka, JCraft,Inc(http://www.jcraft.com/jsch/) All
rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL JCRAFT,INC. OR ANY CONTRIBUTORS TO

THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OFLIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by Christian Bach and distributed via (http://
tablesorter.com/docs/)

All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2007 Christian Bach

This product includes software developed by Dmitry Baranovskiy and distributed via (https://
github.com/DmitryBaranovskiy)

All rights reserved.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright © 2008 Dmitry Baranovskiy.

This product includes software developed by John Resig and distributed via (http://jquery.com/
) All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND,EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Copyright (c) 2011 John Resig

Copyright (c) Monotype Imaging, Inc (http://www.monotype.com/) All rights reserved.

Monotype®, Albany®, Andale®, Cumberland®, Thorndale®, MT®, WorldType® is a
trademark of Monotype Imaging, Inc., registered in U.S. Patent and Trademark Office and
certain other jurisdictions.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

	Start
	Notice
	Contents
	Source Libraries
	Release 12.5 SDK Content
	Global (common) Directories
	Platform Specific Directories
	Include Directory
	Import Library Directory
	Binary Directory
	Ship Directory

	Library Directories

	Libraries
	Naming Conventions
	[Library] Component
	[Environment] names
	[Library Qualifier] Component
	[.Extension] Component

	Building Libraries
	Overview

	Software Used for PC Platforms
	Compiler, Linker, Librarian, Resource Compiler
	When this software is required
	Using other software

	Heap Management
	SmartHeap

	Software Used for UNIX Libraries
	Compiler and Linker
	Make
	SQL Dynamic Library
	When this software is required

	Documaker Utilities
	ostype.sh
	osversion.sh
	syncfiles.sh
	Syntax
	Options

	Building a Library for PC Platforms
	CUSLIB
	CSTLIB
	Switches and Settings
	Windows 32-bit

	Building a Library for the UNIX/Linux Platforms
	Switches and Settings
	Using the gmake utility

	Configuring Make
	Variables

	Documaker Directories
	Syntax of makefile and master.unix
	Overview

	Comments
	Branching Commands (ifdef, ifndef, ifeq, ifneqf, else, and endif)
	Variables

	Variable Lists
	Required Settings in makefile
	RESULT variable
	TARGET variable
	MASTERPRG variable
	Other Settings
	Sample MAKEFILE.PRG
	Running a Library Build

	Adding Custom Code to a Library Make
	Adding Libraries to Link
	Custom Flags and Variables
	Adding source files to a library

	System Basics
	Commonly used System Data Types
	VMMHANDLE
	FAPPARM and FSIPARM
	FAPPFN

	FAP Object Message Handlers
	FAPHANDLER Prototype

	Virtual Memory
	Linked Lists
	Handles
	List Descriptors
	Elements
	Creating a List
	Destroying a List
	Inserting Elements
	Deleting Elements
	Navigating a Linked List
	Accessing Elements
	Ordered Lists
	Frozen Lists
	Node-linked lists
	Using a List as a Queue
	Using a List as a Stack

	Dynamic Arrays
	The VMMARRAY Structure
	Initializing an Array
	Conventional Memory Usage
	Array bounds checking
	Freeing an Array
	Accessing an Array Element

	Hashed Tables
	Initializing a hashed symbol table
	Freeing a hashed symbol table
	Inserting elements into a hashed symbol table
	Deleting elements from a hashed symbol table
	Locating elements in a hashed symbol table
	Updating elements in a hashed symbol table
	Comparing ordered lists, frozen lists, and hashed symbol tables

	Cache Management

	Customizing the System
	Generating PDF417 Barcodes
	Print
	Print Callback Functions
	Support for Docusave
	Support for OnDemand

	Customizing Batch Processing
	CUSLIB
	Base Rules
	Job level rules (level 1)
	Form set level rules (level 2)
	Prototypes
	Making a new base rule

	Image Rules
	Prototypes
	Making a new image rule

	Field Rules
	Prototypes

	Making a new field rule
	Recipient Rules
	Prototypes
	Making a new recipient rule

	Upgrading CUSLIB to a New Release
	Upgrading CUSLIB from Release 10.3 or earlier
	Problems you may experience

	Customizing Documaker Desktop
	Remote Access Library (RACLib and RacCo)
	Writing Custom Code
	CSTLIB
	Defining Custom Functions
	Defining Custom Functions for Cross-Platforms
	MENU Procedures
	Menu Resource Format
	Menu Keywords
	BEGIN and END
	BITMAP
	BUTTON
	BUTTONS
	MENU
	MENUITEM
	POPUP
	SEPARATOR
	SUBUTTON
	TOOL

	Menu Item IDs
	Menu Procedure Prototype
	Menu Replacement
	FWMLoadNewMenu function

	AFE Procedure Hooks
	INI Options
	Hook Prototypes
	FAPUSER
	FAPHANDLER

	INI Settings
	Functions and Hooks

	Transactions
	INI Definition

	DAL Functions and Procedures
	INI Registration
	DAL Function Prototype

	Edit Functions
	Prototypes
	Pre-Edit Functions
	Post-Edit Functions

	Image Functions
	Prototypes
	Open Functions
	Close Functions

	Export Formats
	Import Formats
	INI Definition

	Document Set Procedures
	INI Settings
	Functions

	Timed Service Functions
	History
	Goals
	Timed vs. Timer

	INI Settings
	REF
	STATE
	URGENCY
	SECONDS
	DLLNAME->FuncName
	\DATA

	Example Registrations
	Multiple Platforms
	Timed Service Function Prototype
	Messages
	FAP_MSGINIT
	FAP_MSGTERMINATE
	FAP_MSGRUN

	Considerations
	Timing Example

	Function and Hook Reference
	AddComment
	AFE Append Record Hook
	AFERetriB4AppendgToLstHook
	Type Definition
	Important Information

	AFE Archive List Hook
	AFERetDisplLstHook
	Type Definition
	Important Information

	AFE Archive Record Selected Hook
	AFERetriOkButtonHook
	Type Definition
	Important Information

	AFE Check Form Set Data Hook
	CheckUserEntry

	AFE Complete Form Set Hook
	Complete

	AFE Entry Form Set Hook
	EntryFormset

	AFE Form Selection Buttons Hook
	BUTTONx

	AFE Initialization Hook
	Init

	AFE Parse Command Line Hook
	Parse

	AFE Post Edit Hook
	PostEdit

	AFE Pre Edit Hook
	PreEdit

	AFE Termination Hook
	Term

	AFE Window Procedure Hook
	WindowProc

	AFEArchive2WipKeys
	Archive2WIP

	AFESecurityFunc
	Security

	AFEWip2Archive
	Wip2Archive

	AFEWip2ArchiveRecord
	Archive

	AppIdxRec
	CUSGetArcIdxName
	IndexName

	DSDefAppendBuffer
	Append

	DSDefCloseBuffer
	Close

	DSDefCreateBuffer
	Create

	DSDefFirstBuffer
	First

	DSDefNextBuffer
	Next

	DSDefOpenBuffer
	Open

	LBYCARRetrieveFile
	RetrieveFile

	LBYCARRetrieveMemFile
	RetrieveMemFile

	LBYCARSaveFile
	SaveFile

	LBYCO COM
	LBYCO COM
	LMGLBYCheckin
	CheckIn

	LMGLBYCheckout
	CheckOut

	LMGLBYInit
	Init

	LMGLBYReInit
	ReInit

	LMGLBYSelect
	Select

	LMGLBYTerm
	Term

	LMGLBYUnlock
	Unlock

	LMGLBYView
	View

	TMRTimers
	TMRInit
	TMRTerm
	TMRSetAppData
	TMRAppData
	TMRSetHwnd
	TMRHwnd
	TMRSetHab
	TMRHab
	TMRIsDesktopUp
	TMRIsDialogUp
	TMRTimerTest1
	TMRTimerTest2
	TMRTimerTest3
	TRNAutoKeyIDUsrFunc
	AutoKeyID

	TRNSetBannerFormInfo
	Set Banner Information

	Legal Notices

