
Oracle Utilities Testing Accelerator
User’s Guide for Cloud
Release 20B
F33208-01

July 2020

Oracle Utilities Testing Accelerator User’s Guide for Cloud, Release 20B

F33208-01

Copyright © 2019, 2020 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/
or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents - i
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Preface
Audience .. ii
Prerequisite Knowledge... ii
Abbreviations .. ii
Related Documents .. ii
Conventions... ii

Chapter 1
Overview .. 1-1

Introduction.. 1-2
Terminology ... 1-2
Application Architecture .. 1-3
Application Features ... 1-3
Supported Oracle Utilities Applications... 1-4

Chapter 2
Oracle Utilities Testing Accelerator Features ... 2-1

Administration ... 2-2
Components ... 2-2
Dashboard .. 2-2

Notifications... 2-2
Flows.. 2-3
Flow Sets ... 2-3
Tools .. 2-3

Chapter 3
Developing Metadata Driven Web Service Based Test Automation .. 3-1

Metadata Driven Automation Development Methodology.. 3-2
Planning .. 3-3
Design and Development .. 3-3
Test Execution... 3-3

Configuring the Automation Development Environment ... 3-3
Setting Up Flow and User Configuration Sets ... 3-4
Setting Up Application under Test... 3-4

Chapter 4
Oracle Utilities Testing Accelerator Administration... 4-1

Overview... 4-2
Administration Tab ... 4-2

Managing Releases .. 4-3
Managing Portfolios.. 4-3
Managing Products ... 4-4
Managing Modules .. 4-5

Contents

Contents - ii
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Custom Content Upgrade.. 4-5
Purging Flow Execution Data... 4-6

Chapter 5
Creating Components .. 5-1

Component Structure.. 5-2
Component Lifecycle .. 5-2

Locking/Unlocking Components... 5-3
Component Types ... 5-4

Web Service Based Components.. 5-4
REST Web Service Components.. 5-4

Creating Web Service Based Components .. 5-4
Creating a Component ... 5-5
Creating a Component Definition.. 5-5
Defining Default Data at Component Level .. 5-7
Setting Up Operation Name for a Web Service... 5-7
Using Runtime Variables in Components ... 5-8
file: prefix - csv file.. 5-8
Using Function Libraries.. 5-8
Resolving the Repeating Elements in Response XML.. 5-8
Adding Validations.. 5-9
Logging and Reporting... 5-10
Handling the List Elements ... 5-10

Creating REST Web Service Components .. 5-14
Creating a REST Service Component Definition .. 5-14
Entering Test Data for a REST Component.. 5-15

Copying Components ... 5-17

Chapter 6
 Creating Test Flows ... 6-1

Creating Flows ... 6-2
Creating Flows By Dragging-and-Dropping Components... 6-2
Adding Test Data in a Flow .. 6-2
Annotating Components in a Flow.. 6-4

Creating Scenarios ... 6-4
Creating Flow Modules... 6-5

Using Global Variables... 6-5
Flow Lifecycle .. 6-6
Locking/Unlocking Flows... 6-7
Copying Flows ... 6-7
Reordering Components in a Flow .. 6-8
Copying Test Data from One Component to Another in a Flow .. 6-8
Fetching Component Test Data from an Utilities Application ... 6-8
Bulk Replacing Component Test Data in Multiple Flows.. 6-10
Flow Subroutines .. 6-10
This figure shows the Edit Test Data screen for a subroutine that outputs a personId and accountId. New vari-

ables, personId and accountId are created and mapped to the outputs of the subroutine, which are gVarAccountId1 and gVarPer-
sonId1. Executing Subroutine in a Loop ... 6-12

Component Test Data Sets.. 6-13
Creating Reference Test Data for a Component ... 6-13
Loading Test Data from a Component Test Data Set .. 6-14
Flow Test Data Sets .. 6-14

Adding the Email Capabilities to Flows... 6-15
Support for Integration Flows... 6-15
Executing Test Flows.. 6-17

Executing Test Flows Using a Browser... 6-17
Iterative Flow Execution.. 6-18
Stopping Flow Execution on Validation Failure.. 6-18

Contents - iii
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Viewing Flow Execution Details .. 6-18
Viewing Flow Execution Summary Report .. 6-19
Conversational Test Data Management... 6-19

Chapter 7
Creating Test Flow Sets ... 7-1

Creating Flow Sets ... 7-2
Adding Flows to a Flow Set... 7-2
Deleting Flows from a Flow Set.. 7-2
Executing Flow Sets .. 7-2
Aborting Flow Set Execution .. 7-3
Exporting Flow Sets.. 7-3
Viewing Flow Set Execution History ... 7-3
Viewing Flow Set Execution Summary Report .. 7-3

Chapter 8
Development Accelerator Tools .. 8-1

Component Export Tool ... 8-2
Flow Export Tool.. 8-2
Component/ Flow Import Tool ... 8-2
Component Generation Tool .. 8-3

Chapter 9
Function Library Reference... 9-1

CLOUDLIB ... 9-2
OUTSPCORELIB .. 9-2
WSCOMMONLIB.. 9-7
WSVALIDATELIB .. 9-7

Chapter 10
Custom Libraries ... 10-1

Creating/Updating Custom Libraries... 10-2
Using Custom Library Functions.. 10-3

Appendix A
Web Service Component Keywords.. A-1

WS-SETWEBSERVICENAME.. A-2
WS-SETXMLELEMENT .. A-2
WS-SETXMLLISTELEMENT... A-2
WS-SETVARIABLE ... A-3
WS-SETVARIABLEFROMRESPONSE.. A-3
WS-SETTRANSACTIONTYPE .. A-3
WS-LOGMESSAGE ... A-3
WS-CREATEWSREQUEST... A-4
WS-PROCESSWSREQUEST ... A-4
WS-STARTPOLLWS .. A-4
WS-STOPPOLLWSIF... A-5

Appendix B
REST Component Keywords.. B-1

RS-SETREQUESTHEADER ... B-2
RS-SETENDPOINT... B-2
RS-ARGUMENT... B-2
RS-SETMETHOD... B-3
RS-PROCESSRESTREQUEST.. B-3

Appendix C
Setting Up Inbound Web Services.. C-1

Creating Inbound Web Services... C-2
Importing Inbound Web Services.. C-2

Contents - iv
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Searching Inbound Web Services... C-2

Appendix D
Generating Re-runnable Test Data ... D-1

Appendix E
Configuring Authentication for Web Service Requests.. E-1

 Preface - i
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Preface
Welcome to the Oracle Utilities Testing Accelerator User’s Guide for Cloud.

The guide explains how to use Oracle Utilities Testing Accelerator to automate the business test
flows for testing the Oracle Utilities’ applications.

This preface focuses on the following:

• Audience

• Prerequisite Knowledge

• Abbreviations

• Related Documents

• Conventions

Audience

Preface Preface - ii
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Audience
This guide is intended for Automation Developers, and Test Automation Engineers who automate
the business test flows for testing the Oracle Utilities’ applications.

Prerequisite Knowledge
The metadata driven automation development paradigm of Oracle Utilities Testing Accelerator
does not require any in-depth programming experience to develop scripts for testing. However,
good understanding and working knowledge of Oracle Utilities Application Framework and its
metadata based objects along with in-depth functional understanding of the application being
tested, is required. The advanced programming features available in the application require
experience with the programming concepts and groovy scripting language.

Abbreviations
The following abbreviations are used throughout this document:

Related Documents
For more information, refer to the following Oracle resources.

Release Notes
• Oracle Utilities Testing Accelerator Release Notes

User and Reference Guides
• Oracle Utilities Testing Accelerator Reference Guide for Core

• Oracle Utilities Testing Accelerator in Oracle Utilities Customer Cloud Service Enablement Guide

Conventions
The following text conventions are used in this document:

Term Expanded Form

UTA Oracle Utilities Testing Accelerator

CCS Oracle Utilities Customer Cloud Service

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Conventions

 Preface - iii
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Overview 1-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 1
Overview

This chapter introduces the Oracle Utilities Testing Accelerator application and provides an
overview of the application architecture and features.

• Introduction

• Terminology

• Application Architecture

• Application Features

• Supported Oracle Utilities Applications

Introduction

Overview 1-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Introduction
Oracle Utilities Testing Accelerator comprises test automation accelerators for the automated
testing of Oracle Utilities applications. It is a framework based on Java and Selenium for creating
the web services and user interface automation scripts.

Oracle Utilities Testing Accelerator enables you to create the automation scripts using keywords or
metadata, and without using any programming language. This saves the test automation
development effort and avoid programming the scripts manually.

The accelerators contain out-of-the-box delivered test components that can be used to build test
flows for the Oracle Utilities applications. You can extend the delivered components or create a
new component to build their customized test flows. Utilities’ application-specific sample test
flows are provided in the respective reference guides. For information about the reference guides
included in this release, refer to the Related Documents section in Preface.

Terminology
The different terms used in this document are as follows:

Term Description

Oracle Utilities Test Accelerator
(UTA)

Helps to build and maintain components and flows for
automated testing.

Keyword A pre-defined word used to define a specific step in a
test case.

Component Reusable automated test or part of a test.

A component is the building block of an automated test
flow. Each component is made up of a definition which
allows users to define a keyword and associate values
and parameters for the keyword.

Flow An automated test.

A flow comprises one or more components and/or
component sets that are called in a pre-determined
sequence.

Flow Test Data A test data set specific for a given flow.

Databank Container of test data used by an automated test flow.

The databank is defined using comma separated values
(.csv) in a text file. (generated and used internally by
UTA)

All components and flows in Oracle Utilities Testing Accelerator are organized into hierarchy
for better manageability. The hierarchy is:

Release > Portfolio > Product > Module

Release Represents the highest level of hierarchy.

There is one release per an Oracle Utilities Testing
Accelerator version, and it contains one or more
portfolios.

Application Architecture

Overview 1-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

For information about these terms, refer to Chapter 2: Oracle Utilities Testing Accelerator
Features.

Application Architecture
The following diagram depicts the high-level architecture of Oracle Utilities Testing Accelerator.

Components are defined using metadata in Oracle Utilities Testing Accelerator. Using these
components a flow can be assembled and executed.

Application Features
The features available in this Oracle Utilities Testing Accelerator release are the dashboard,
components, flows, various tools, and administration.

For more information about these features and their significance, refer to Chapter 2: Oracle
Utilities Testing Accelerator Features.

Portfolio Represents a product family consisting of one or more
related products.

A portfolio contains one or more products.

Product Represents an Oracle Utilities application.

For example: CCS

A product contains one or more modules.

Module Represents an Oracle Utilities application functional
area. For example: Billing in CCS

A module contains one or more components that are
used to automate a specific functional area in an Oracle
Utilities application.

Flow Module Represents a group of flows typically a group of related
flows meant to test a functional area.

Term Description

Supported Oracle Utilities Applications

Overview 1-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Supported Oracle Utilities Applications
This table lists the Oracle Utilities’ applications supporting this Oracle Utilities Testing
Accelerator v20B release.

Product Version

Oracle Utilities Customer Cloud Service 20B

Oracle Utilities Meter Solution Cloud Service 20B

Oracle Utilities Work and Asset Cloud Service 20B

Oracle Utilities Operational Device Cloud Service 20B

Oracle Utilities Testing Accelerator Features 1-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 2
Oracle Utilities Testing Accelerator Features

This chapter describes the features available in this Oracle Utilities Testing Accelerator release:

• Administration

• Components

• Dashboard

• Flows

• Flow Sets

• Tools

Administration

Oracle Utilities Testing Accelerator Features 2-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Administration
The Administration tab allows the users with Administrator role to do the following:

• Create/edit release, portfolio, product and modules

Components
The Components page displays all the available components imported/created in the application.
On this page, you can do the following:

• Create a new component

• Define/update the definition of a component

• Submit the component for approval

• Accept/reject the approval based on the state of the component

For more information about components, refer to Chapter 6: Creating Components.

Dashboard
This is the Home page of the application and displays the following information:

• Notifications assigned to your role

• Statistics about the number of custom components/flows in the application

• Total number of custom components vs total number of approved custom components

• Total number of custom flows vs total number of approved custom flows

Notifications
The Dashboard page displays notifications of interest to the user currently logged in and also
some basic analytics on the total number of components and flows in Oracle Utilities Testing
Accelerator and a breakdown of those based on their lifecycle state.

On the Dashboard page, you can do the following:

• Click the bell icon to navigate directly to the Notifications page.

• Click List All to display a popup with all the unread notifications applicable to the current
user.

• Click the Refresh icon to populate the notification area with all the latest notifications
generated.

Any event of interest in the application triggers a notification that is sent to one or more users.
Events could be either of the following:

• Creating/updating any hierarchy related entity (for example: Release/Portfolio/Product/
Module)

• Change in lifecycle state of a component/flow (for example: submitting a component for
approval/rejection, etc.)

The different types of notifications are as follows:

• FYI Notifications - For informational purpose only, and are generated when the following
are performed:

• A component/flow for all users is created.

• A release/portfolio/product/module for an administrator is created.

Flows

Oracle Utilities Testing Accelerator Features 2-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• A user for an administrator is created.

• A flow/component for approval for a developer is submitted.

Click an FYI notification for more information about the event and also mark the notification
as ‘read’. Once an FYI notification is read, it is removed from the notification area.

• ToDo Notifications - For a component/flow when submitted for approval by an approver/
administrator. They require some action from the user. They are displayed in the
Notification area for users with Approver/Administrator role.

A ToDo notification displays detailed information about the respective event. It also allows
users to take appropriate action as applicable. (for example: Reject, Revert to Approve,
Approve, or Send to in progress (Flow)). Click the Read column to mark a ToDo notification
as ‘read’.

Flows
This page displays all the available flows imported/created in the application. On this page, you
can do the following:

• Create a new flow

• Define the flow structure

• Submit the flow for approval

• Accept/reject the approval based on the state of the flow

For more details, refer to the Creating Flows section in Chapter 5: Creating Test Flows.

Flow Sets
This page displays all the available flow sets imported/created in the application. You can do the
following:

• Create a new flow set

• Define/manage a flow set

Tools
This feature provides access to various tools that allow you to import/export components and
flows in the application. web service components are automatically generated by specifying the
WSDL URL end point of the web service that the component makes a call to in the Oracle
Utilities applications, such as Oracle Utilities Customer Care and Billing or Oracle Utilities
Customer To Meter.

For more details, refer to Chapter 8: Development Accelerator Tools.

Developing Metadata Driven Web Service Based Test Automation 3-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 3
Developing Metadata Driven Web Service Based

Test Automation

The Oracle Utilities Testing Accelerator components, and flows are organized in a tree hierarchy.
This hierarchy compartmentalizes these for different Oracle Utilities applications.

This chapter is intended primarily for automation developers and testers. It describes the
metadata-driven automation development methodology and the set up of automation
development environment.

• Metadata Driven Automation Development Methodology

• Configuring the Automation Development Environment

Metadata Driven Automation Development Methodology

Developing Metadata Driven Web Service Based Test Automation 3-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Metadata Driven Automation Development Methodology
This section describes the metadata-driven automation development methodology that enables a
test automation engineer to create test automation flows for an Oracle Utilities application.

An application has to be tested for its base functionality and extensions or customization. For this,
you can create granular tests or larger end-to-end business test flows. Irrespective of the test
design techniques, these tests can be used for regression testing the application in case of upgrades
or customization to ensure that the existing functionality is not broken.

Typically, automation development is a time consuming exercise and teams have challenges in
knowing and implementing the industry best practices and automation tools that work best for
their product technology stack, helping them be successful in their efforts. Few of such challenges
are:

• Selecting an automation tool

• Creating the automation framework

• Identifying the automation development methodology

• Ensuring the automated tests are updated for new releases

• Ensuring the coverage levels are up to date

• Configuration management of automated test programs

The metadata-driven automation development methodology provides solutions to such
challenges.

For the Oracle Utilities applications built on Oracle Utilities Application Framework, web service
based automated testing is proven to be more robust, maintainable, and faster to develop and
execute. Oracle Utilities Testing Accelerator comprises web services and UI based components
that enable creation and execution of test flows.

The following sections provide the test automation development phases in which an automated
test flow is created.

• Planning

• Design and Development

• Test Execution

Planning

Developing Metadata Driven Web Service Based Test Automation 3-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Planning
To plan an automated test flow, identify the business test flow to be automated and the
components required for the flow. If necessary, create custom components or extend the delivered
components.

For details about how to extend the components, refer to the Copying Components section in
Chapter 6: Creating Components.

Design and Development
A flow design explains the order in which the components will be used to interact with each other
in the flow. It also defines the test data combinations to use.

To design and develop an automated test flow, follow these steps:

1. Create/extend the required components that are identified in planning phase.

2. Create a test flow in Oracle Utilities Testing Accelerator that maps to the identified business
test flow in the application.

For details about how to create a test flow, refer to the Creating Flows section in Chapter 5:
Creating Test Flows.

For information about delivered sample flows to understand the flow creation, refer to the
Sample Work Flows chapter in the respective product-specific reference guides. For a list of
reference guides available in this release, refer to the Related Documents section in Preface.

3. Drag and drop the required components into the flow.

4. Add the test data for the flow.

The test data can be modified at the runtime using the standard Oracle Utilities Testing
Accelerator databanks. For more details, refer to the Test Data Management section in
Chapter 5: Creating Test Flows.

5. Assemble and generate the script for the test flow.

6. Download the test script.

Test Execution
To execute the automated test flow, execute the script in Oracle Utilities Testing Accelerator.

To use another data set to execute the script, change the databanks in the generated scripts project
and execute the script. For more details, refer to the Executing Test Flows section in Chapter 5:
Creating Test Flows.

The components and test flows developed using this approach are stored and version controlled
in the Oracle Utilities Testing Accelerator database. It takes care of the challenges in configuration
management of automated tests.

Configuring the Automation Development Environment
The steps involved to set up the development environment for Oracle Utilities Testing Accelerator
are as follows:

• Step 1: Setting Up Flow and User Configuration Sets

• Step 2: Setting Up Application under Test

Setting Up Flow and User Configuration Sets

Developing Metadata Driven Web Service Based Test Automation 3-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Setting Up Flow and User Configuration Sets
Before a flow can be executed, appropriate flow and user configuration sets have be to created.
These hold the user credentials for authentication of the user to access the Oracle Utilities SaaS
service being tested.

Setting Up Application under Test
For the test flows to be able to communicate with the Oracle Utilities SaaS service, corresponding
Inbound Web Services should exist in the Oracle Utilities SaaS service. Each of the Utilities SaaS
service content (components/flows) pack comes with an ImportBundles flow in the Pre-
Requisites module under the corresponding flow tree structure. This flow containing all the
requisite Inbound Web Services should to be executed to setup the application under test.

For more details about the flows and components, refer to the corresponding Oracle Utilities SaaS
Service Oracle Utilities Testing Accelerator component reference guide.

Oracle Utilities Testing Accelerator Administration 4-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 4
Oracle Utilities Testing Accelerator

Administration

This chapter introduces the Administration feature in Oracle Utilities Testing Accelerator. It
focuses on the following:

• Overview

• Administration Tab

Overview

Oracle Utilities Testing Accelerator Administration 4-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Overview
The Administration feature in Oracle Utilities Testing Accelerator allows the users with
Administrator role to do the following:

• Create/edit release, portfolio, product, and modules

• Upgrade CM content (flows) from one version of an Oracle Utilities application to a later
version.

For example: From Oracle Utilities Customer Cloud Service 19B to Oracle Utilities Customer
Cloud Service 19C

• Add custom function libraries to Oracle Utilities Testing Accelerator

• Purging old flow execution logs/results

Administration Tab
The Administration tab in the Oracle Utilities Testing Accelerator application allows users with
Administrator role to perform the following actions:

• Managing Releases

• Managing Portfolios

• Managing Products

• Managing Modules

• Custom Content Upgrade

• Purging Flow Execution Data

The following diagram shows the organization of components and flows as per hierarchy in the
Oracle Utilities Testing Accelerator application.

Managing Releases

Oracle Utilities Testing Accelerator Administration 4-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Managing Releases
A release represents the highest level of hierarchy. There is one release per an Oracle Utilities
Testing Accelerator version, and it contains one or more portfolios.

Creating a Release
To create a release:

1. On the Administration tab, click Releases in the left pane.

2. In the Create Release window, enter the release name and its description.

3. Click Save.

Updating a Release
Note that you can only edit a custom release.

To update an existing release:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the release to be updated.

3. From the Context menu, click Update Release.

4. Enter the modified description and click Update.

Deleting a Release
Note that you can only delete an empty release.

To delete an existing release:

1. On the Components tab, expand the Component tree.

2. Select and right-click the release to be updated.

3. From the Context menu, click Delete Release (context menu option only appears if the
release is empty).

Managing Portfolios
A portfolio represents a product family consisting of one or more related products. It contains
one or more products.

Creating a Portfolio
To create a portfolio:

1. On the Administration tab, click Portfolios in the left pane.

2. In the Create Portfolio window, enter the portfolio name and its description.

3. Click Save.

Updating a Portfolio
Note that you can only edit a custom portfolio.

To update an existing portfolio:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the portfolio to be updated.

3. From the Context menu, click Update Portfolio.

4. Enter the modified description and click Update.

Managing Products

Oracle Utilities Testing Accelerator Administration 4-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Deleting a Portfolio
Note that you can only delete an empty portfolio.

To delete an existing portfolio:

1. On the Components tab, expand the Component tree.

2. Select and right-click the portfolio to be deleted.

3. From the Context menu, click Delete Portfolio (context menu option only appears if the
Portfolio is empty).

Managing Products
A product represents an Oracle Utilities application. A product contains one or more modules.

For example: CCB

Creating a Product
To create a new product:

1. On the Administration tab, click Products in the left pane.

2. In the Create Product window, enter the product name and its description.

3. Click Save.

Alternatively, you can create a new product.

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the portfolio under which the product has to be created. From the
Context menu, click Create Product.

3. Enter the new product name and its description.

4. Click Save.

Updating a Product
Note that you can only edit a custom product.

To update an existing product:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the product name to be updated. From the Context menu, click
Update Product.

3. Enter the modified description and click Update.

Deleting a Product
Note that you can only delete an empty product.

To delete an existing product:

1. On the Components tab, expand the Component tree.

2. Select and right-click the product name to be deleted.

3. From the Context menu, click Delete Product (context menu option only appears if the
product is empty).

Managing Modules

Oracle Utilities Testing Accelerator Administration 4-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Managing Modules
A module represents an Oracle Utilities application functional area. For example: Billing in CCS

Note: Modules created through the Administration section only apply to the
component tree hierarchy. Flow modules should be created and managed
through the flow hierarchy tree structure.

Creating a Module
To create a new module:

1. On the Administration tab, click Modules in the left pane.

2. In the Create Module window, enter the module name and its description.

3. Click Save.

Alternatively, you can create a module.

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the product under which the module has to be created.

3. From the Context menu, click Create Module.

4. Enter the new module name and its description.

5. Click Save.

Updating a Module
Note that you can only edit a custom module.

To update an existing module:

1. On the Components (or Flows) tab, expand the Component (or Flow) tree.

2. Select and right-click the module name to be updated.

3. From the Context menu, click Update Module.

4. Enter the modified description and click Update.

Deleting a Module
Note that you can only delete an empty module.

To delete an existing module:

1. On the Components tab, expand the Component tree.

2. Select and right-click the module name to be deleted.

3. From the Context menu, click Delete Module (context menu option only appears if the
module is empty).

Custom Content Upgrade
Oracle Utilities SaaS service's/application's version specific Oracle Utilities Testing Accelerator
test components are released with each of the Oracle Utilities SaaS major version updates, such as
20B, 20C, etc. The custom content upgrade process allows custom flows to be automatically
upgraded to the latest component pack version that correspond to the latest version of Oracle
Utilities SaaS service/application.

Example: Flows may have been built using components from Oracle Utilities Customer Cloud
Service 20A version. When a new version say Oracle Utilities Customer Cloud Service 20B is
released, a corresponding set of components for 20B are also released as part of UTA. Using the

Purging Flow Execution Data

Oracle Utilities Testing Accelerator Administration 4-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

CM Content Upgrade option in the administration, the flows can be automatically upgraded to
use the components from the latest 20B version instead of components from 20A version.

This ensures that the flows are using the components that correspond to the latest release of
Oracle Utilities SaaS service.

Executing the CM Content Upgrade Process
To upgrade an existing set of flows:

1. Select a Release Name.

2. Select the Product Family under which the flows exist.

3. From the From Product field select the product version under which the flows exit.

4. From the To Product field select the product version to which the flows should be upgraded.

5. If only a subset of flows have to be upgraded, provide a “Tag” corresponding to these flows
(the tag that has been specified in the flows header). “%” can also be used.

6. If the destination product version already has a set of flows, these can either be overwritten
during the upgrade or skipped from being upgraded. It applies only to the flows in the
destination product that have the same name as the flows from the source product. Select
either “Override” or “Skip” based on the requirement.

7. Click Upgrade.

The upgrade process should run to completion with appropriate messages displayed.

Note:

• For a flow to be picked up by the upgrade process, the flow header should have
a tag specified.

• If a custom component has been created and used in the flows being upgraded,
the upgrade process checks for the custom component name to start with
“CM”. If the name doesn't start with CM, the upgrade process copies the
custom component across and prefixed “CM” to the component name. All
references to this component in flows will be updated accordingly to remain
intact. Ensure that the flow works fine. But, if the name starts with “CM”, the
upgrade process simply copies the custom component across from the source
to the destination product.

• The test data defined in the flows in the source product will remain intact in the
destination product flows.

Purging Flow Execution Data
When the flow execution logs and flow execution history entries accumulate, it impacts the
performance/usability. An administrator can decide to purge some of the existing flow execution
data for maintenance purposes. The flow execution can be purged by specifying the cut-off date
for purging entries; the data older than the specified date will be purged.

• Flow Execution Logs - Allows purging of all the flow execution log files that meet the
specified criteria.

• Flow Execution History - Allows purging of flow execution history that helps in keeping
the Flow Execution History page more manageable.

Creating Components 5-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 5
Creating Components

The Oracle Utilities Testing Accelerator components, component sets, and flows are organized in
a tree hierarchy. The hierarchy is organized as follows:

Oracle Utilities Testing Accelerator Release > Portfolio> Product > Module > Components

This chapter describes the component hierarchy and also the steps to create different types of
components in Oracle Utilities Testing Accelerator.

• Component Structure

• Component Lifecycle

• Component Types

• Creating Web Service Based ComponentsCreating REST Web Service Components

• Copying Components

Component Structure

Creating Components 5-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Component Structure
The following figure shows the high-level component structure.

Component Lifecycle
The component lifecycle begins once a component is created in Oracle Utilities Testing
Accelerator. It can exist in one of the several possible lifecycle states as shown in the following
diagram.

Locking/Unlocking Components

Creating Components 5-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The state of a component determines the actions that can be performed on the component. The
following table summarizes the component states, and the possible actions and roles that can take
the actions.

Locking/Unlocking Components
A component is/can be locked in the following scenarios:

• To prevent any other users from editing the component until the component definition is
complete.

• By default when the component is submitted for approval.

• When moved to the ‘In Progress’ state, the component gets locked. You can then unlock and
edit it as needed.

Click the icon to lock/unlock a component in the Oracle Utilities Testing Accelerator
application.

Tip: After a component is moved to ‘Approved’ status, it gets unlocked automatically.

Component
Lifecycle State

Permitted
Actions Role Resultant State (after

action)

In Progress Submit for
Approval

Developer
Approver
Administrator

Pending Approval

Approve Approver
Administrator

Approved

Save Developer
Approver
Administrator

In Progress

Pending Approval Send to In
Progress / Reject

Approver
Administrator

In Progress

Approve Approver
Administrator

Approved

Revert to
Approved

Approver
Administrator

Approved (Reverts to
Previous Approved
version of the component)

Save Developer
Approver
Administrator

Pending Approval

Approved Send to In
Progress

Developer
Approver
Administrator

In Progress

Submit for
Approval

Developer
Approver
Administrator

Pending Approval

Approve (save
and approve)

Approver
Administrator

Approved

Component Types

Creating Components 5-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Component Types
Ensure the component is created under the required hierarchy level.

Oracle Utilities Testing Accelerator supports the following types of components:

• Web Service Based ComponentsREST Web Service Components

Web Service Based Components
A web service based component represents an Inbound Web Service/Business Object/Business
Service in Oracle Utilities Customer Cloud Service.

A distinguishing feature of the web service component is that its component type is defined as
“WS” and the keywords used in defining it are specific to a web service request.

For information about web service specific keywords, refer to Appendix A: Web Service
Component Keywords.

REST Web Service Components
A REST web service component represents a REST interface in Oracle Utilities Customer Cloud
Service application.

A distinguishing feature of the REST based component is that its component type is defined as
“REST” and the keywords used in defining the component are specific to a REST web service.

For information about REST-specific keywords, refer to Appendix C: REST Component
Keywords.

Creating Web Service Based Components
You can create web service based components in either of the following ways:

• Using the Component Generation Tool feature in Oracle Utilities Testing Accelerator.

For detailed instructions about the Component Generation Tool, refer to the Component
Generation Tool section in Chapter 8: Development Accelerator Tools.

• Create the component manually.

This section focuses on the following:

• Creating a Component

• Creating a Component Definition

• Defining Default Data at Component Level

• Setting Up Operation Name for a Web Service

• Using Runtime Variables in Components

• Using Function Libraries

• Resolving the Repeating Elements in Response XML

• Adding Validations

• Logging and Reporting

• Handling the List Elements

Creating a Component

Creating Components 5-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating a Component
To create a web service based component manually, follow these steps:

1. Navigate to the component tree where the component has to be created.

2. Right-click the feature (release/product/module) in the component tree.

Note: Create a new feature folder if it is not found in the delivered tree
structure.

Creating a Component

3. Select Create Component.

Note: The component name must be prefixed with ‘CM’ and the Tags field
should have a CM tag for every component. The tagging enables porting the
custom components to latest Oracle Utilities Testing Accelerator release.

4. Enter the component name in the Component field.

Note: For information about extending components, refer to the Copying
Components section.

5. Select Web Service in the ComponentType drop-down list.

6. Enter a description in the Description field.

7. Click Attach Code to add the metadata. The Component window is displayed.

8. Create component definitions.

9. Click Save & Unlock to save and create the component.

Creating a Component Definition
A component consists of several component definition lines. Each component definition line
comprises a keyword, object, display name, attribute values, default data, function name, and
output parameters.

The following list describes each entity in a component definition:

• Keyword: Defines the action to be performed by the component line. Example: WS-
SETVARIABLEFROM RESPONSE, WS-VALIDATE, etc

• Object: The name of the function library whose functions may be used for defining a
component.

• Display Name: Description of the component line that is made visible to the user while
entering test data against the component line in a flow.

Creating a Component Definition

Creating Components 5-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Attribute Values: The xpath of the component's element as defined in the Oracle Utilities
Enterprise application.

• Default Data: The default data that may be used while providing test data for a component
in a flow.

• Function Name: The name of the function that is used as a plugin to perform actions such
as generating randomized test data or performing validation on web service response values.

• Output Parameters: If a function returns an output, the output can be stored in a variable
which is defined against the Output Parameters field. This variable can be used across
components in a flow to pass test data from one component to another.

• Tooltip: The information presented as a tool tip during the flow creation.

The following figure shows the Component page with the available component definitions.

 Component Definition Page
Add the required component definition lines using the Keyword drop-down list to define the web
services based component.

For a list of keywords used to define the web service based components, refer to Appendix A:
Web Service Component Keywords.

The following example shows different component lines created for the CM-MobileWorker
component.

1. Select SETAPPTYPE in the Keyword drop-down list to define the component type.

2. Select WS in the Object drop-down list to denote that it is a web service based component.

3. Select the WS-SETWEBSERVICENAME keyword to allow for the web service name to be
set for this component in a flow.

4. Select the WS-SETTRANSACTIONTYPE keyword to allow for the transaction type of the
web service call to be set for this component, in a flow.

Note: The final script of a component is web service call to create, update, and
delete.

Defining Default Data at Component Level

Creating Components 5-7
Oracle Utilities Testing Accelerator User’s Guide for Cloud

5. Select the WS-LOGMESSAGE keyword to log comments in component step as part of a
flow execution. This helps in better understanding of the Flow execution results in which the
component is used.

6. Select the WS-SETXMLELEMENT keyword to allow test data to be set against a specific
element of request XML.

Consider the CM-MobileWorker component in Oracle Utilities Mobile Workforce
Management. This component maps to the MobileWorker business object. It includes
elements, such as:

<mobileWorkerType />
<contractorId />

7. Select the WS-SETXMLLISTELEMENT keyword to allow multiple sets of test data to be set
against the list element of request XML. The list element is ‘skills’.

Note: The schema of a web service/business object/business service can be
complex (the schema has group elements which in turn may have group
elements within them).

For instructions about how to handle such scenarios, refer to the Handling the
List Elements section.

Defining Default Data at Component Level
In Oracle Utilities Testing Accelerator the test data is maintained at component level for quick and
easy use at the flow level.

In each component definition line the “Default Data” column is available to hold the default data.
Using this field, default test data can be populated in the component. While using a component
with default data in a flow, the default data can easily be copied from component to flow using the
“Set Default Data” option available on the Flow Test Data window.

Even after the default data is populated in the flow test data, data elements in the test data entry
page can still be edited, if required. This helps to build the flow faster for cases where
administration and master test data are pre-determined.

Data Flow

Setting Up Operation Name for a Web Service
An operation name determines the action to be taken while executing a web service request. This
is dictated by the operation name of the web service in Oracle Utilities Application Framework
based applications. The value for the WS-SETTRANSACTIONTYPE keyword is specified while
adding the test data for the flow. If designed so, the same component can be used to add record,
update record, or delete record operations.

Using Runtime Variables in Components

Creating Components 5-8
Oracle Utilities Testing Accelerator User’s Guide for Cloud

For example: To create a new mobile worker, or to update or delete an existing mobile worker, set
up the transaction type for appropriate the instance of the component in the flow.

Using Runtime Variables in Components
In some cases, few elements from the response component execution have to be passed as inputs
to another component’s request XML. To achieve this, store the output of first component in the
global variable by using the FUNCTIONCALL keyword along with the library rSVALIDATELIB
and the function getElementValue. This function requires Xpath of the response element whose
value is to be stored. It should be specified in the Attribute Values column. The global variable
which holds this value in the script is defined in the Output Parameter column. For information
about how a dependent component reads such global variables, refer to the Using Global
Variables section.

file: prefix - csv file
Any attribute value containing a csv filename as value should be prefixed with “file:” to allow
Oracle Utilities Testing Accelerator to process it correctly. For example: If a component contains
an attribute name inputFile for which “InputData.csv” is the value, ensure to prefix the filename
with “file:”. The value of “inputFile” should be “file:InputData.csv”.

Using Function Libraries
This section explains how to use the function libraries shipped with this Oracle Utilities Testing
Accelerator release and create new help libraries.

Function libraries shipped with Oracle Utilities Testing Accelerator can be accessed in the
Component window using the FUNCTIONCALL key word and specifying the library name in
the Object column and the function name in the Function Name column. Define the variable
name in the Output Parameters field to store the return value of the function.

Function parameters can be provided while entering test data for the component in a flow. For
more details, refer to the Test Data Management section in Chapter 5: Creating Test Flows.

For a list of libraries and functions available in Oracle Utilities Testing Accelerator, refer to
Chapter 9: Function Library Reference.

Resolving the Repeating Elements in Response XML
If the response XML has repeating elements, the value embedded within the repeating elements is
retrieved as follows.

<ContactDetails>
<Phone> 123-456-7890 </Phone>
<Phone>234-567-8901 </Phone>
<email> joe@oracle.com </email>
</ContactDetails>

1. Use the WS-SETVARIABLEFROMRESPONSE keyword to retrieve the response of the
web service invocation into the global variable. gVar1 is defined in the Output Parameter
column.

The keyword resolves all occurrences of the Phone element and stores all values in the gVar1
variable separated by comma. gVar1 will be set to “123-456-7890,234-567-8901”.

2. Use the FUNCTIONCALL keyword to call the setVariableValueUsingListIndex function
available in the OUTSPCORE library.

The keyword retrieves the value(s) based on the parameters passed. Parameters passed are
global variables storing the values (gVar1 and index).

Adding Validations

Creating Components 5-9
Oracle Utilities Testing Accelerator User’s Guide for Cloud

For more information, refer to the Chapter 9: Function Library Reference.

Adding Validations
The different ways in which you can add validations are:

• Using the FUNCTIONCALL keyword

To validate the response, use the FUNCTIONCALL keyword to validate the content; in
particular, the Xpath of response XML.

Select the wSVALIDATELIB function library from the Object drop-down list. Select the
function to be called from the Function Name drop-down list.

For a complete reference of the validation function library, refer to Chapter 9: Function
Library Reference.

• Using flow-level validations

Validations can be added before and after the existing flow. The same flow can be reused with
different or no validations before (pre-level validations) and after (post-level validations).

For more information about the flow-level validations, refer to the Flow-Level Validations
section.

Flow-Level Validations
Note that this feature is available only for web service based components.

Apart from being able to define validations at the component level, you can also define validations
at a flow level as follows:

1. Navigate to the component in the flow.

2. Right-click and select Edit Test Data from the context menu.

3. On the Test Data page, click Pre Validations or Post Validations to specify validations that
need to be performed either before sending the request or after the response is received from
a Utilities application.

Note: In addition to adding validations in the pre-validations section, function
calls can be made to generate (randomization) test data and stored in variables.
These variables can then be used to set test data against component elements.

The post validation section can be used to add functions that retrieve and store
any values from the response that can be used further down the flow, as test
data in other components.

Logging and Reporting

Creating Components 5-10
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Logging and Reporting
Oracle Utilities Testing Accelerator provides the following types of logging and reporting:

• Test execution log file: The test execution logs are created in the Logs folder and separate
logs are generated for each flowand can be viewed using the "View Logs" button on the
execution results page in the workbench.

• Email report in HTML format: The test execution email provides brief information about
the overall test execution. It comprises the following:

• Test step

• Test data

• Result (Pass/Fail)

The Email report is generated and sent to the email ids defined in the flow or user configuration
sets. If no email ids are provided in the configuration, then the email is not sent. This applies to
both flows and flow set executions.

Handling the List Elements
The list elements of a schema should be defined using the keyword WS-
SETXMLLISTELEMENT.

Consider the following partial schema. Note that the node usageDetails has a usagePeriods list
element which in turn has another list element serviceQty and other non-list nodes (leaf nodes)
(such as startDateTime, standardStartDateTime, endDateTime, etc.,). The list node serviceQty
has non-list nodes such as seq, uom, tou, etc.

Handling the List Elements

Creating Components 5-11
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Sample Partial Schema

Handling the List Elements

Creating Components 5-12
Oracle Utilities Testing Accelerator User’s Guide for Cloud

To define this schema in the component, consider the non-list nodes and enter a row for each of
them, with the keyword as WS-SETXMLLISTELEMENT and Attribute value as the full xpath of
the element, making sure to enter the appropriate Display names.

Defining Schema

Note: If any of the list nodes repeat (serviceQty occurrs thrice inside
usagePeriods, which in turn occurrs twice in usageDetais), do not define the
elements multiple times in the component definition. The number of
occurrences can be controlled in the test data (as defined in the Entering Test
Data section).

Entering Test Data
On the test data page, each of the list nodes (usageDetails, usagePeriods and serviceQty for
example) has an Add button next to them and are expandable. Expand the list node to view the
children of that particular node.

For example: Expand usageDetails to view usagePeriods, and expand usagePeriods to view
serviceQty, startDateTime, standardStartDateTime, etc.

Initially only one instance exists for all the list nodes. To add more nodes, click Add next to the
desired element.

For example: To have two instances of usagePeriods inside usageDetails, click Add next to
usagePeriods. There will be two usagePeriods nodes inside usageDetials, each of which will have
the same content.

To view three serviceQty nodes in the first usagePeriods node and four in the second one:

1. Expand the first usagePeriods and add three serviceQty nodes.

2. Expand the second usagePeriods and add four serviceQty nodes.

The complete structure of the final schema is ready. You can add data to all the leaf nodes.

Handling the List Elements

Creating Components 5-13
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Entering Test Data

Creating REST Web Service Components

Creating Components 5-14
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating REST Web Service Components
To create REST web service based component:

1. Login to the application.

2. Navigate to the Components menu.

3. In the left pane, navigate to the module where the new component needs to be added.

4. Right-click the component and select Create Component.

5. On the Create Component page, select the component type as REST SERVICE.

6. Fill in the required fields and click Save.

7. Click Attach Code to save the component and edit it.

This section focuses on the following:

• Creating a REST Service Component Definition

• Entering Test Data for a REST Component

Creating a REST Service Component Definition
A component consists of several component definition lines. Each component definition line
comprises a keyword, object, display name, attribute values, default data, function name, and
output parameters.

The following list describes each entity in a component definition:

• Keyword: The step to be performed.

For example: RS-SETREQUESTHEADER, RS-SETENDPOING, RS-
PROCESSREQUEST, etc

• Object: The Oracle Utilities Testing Accelerator function library name from where the
function is called.

• Display Name: The component definition.

• Attribute Values: The web service XML tag name used as variable to store its value.

• Default Data: The default data used in the component definition.

• Function Name: The function name called from the library.

• Output Parameters: The output in the form of a variable.

For more options, refer to Appendix E: Generating Re-runnable Test Data.

• Tooltip: The data presented as a tool tip during the flow creation.

Entering Test Data for a REST Component

Creating Components 5-15
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The following figure shows the Component page with the available component definitions.

Add the required component definition lines using the Keyword drop-down list to define the
REST web service based component.

For a list of keywords used to define the REST web service based components, refer to Appendix
C: REST Component Keywords.

The following example shows different component lines that can be created

1. Select SETAPPTYPE in the Keyword drop-down list to define the application type.

2. Select RS in the Object drop-down list to denote that it is a web services based component.

3. Select the WS-LOGMESSAGE keyword to log comments in component definition. This
helps in debugging the script code for that component.

4. Select RS-SETREQUESTHEADER keyword to specify any headers that need to be
passed to the REST end point.

5. Select RS-SETMETHOD keyword to specify whether the REST end point needs to be
invoked using a GET/POST call.

6. Select RS-PROCESSRESTREQUEST keyword to specify processing of the response
from the REST end point.

7. Add more component definition lines as needed and select appropriate keywords based on
the REST web service that the component represents.

8. Click Save.

Entering Test Data for a REST Component
To enter test data for a REST component:

1. Navigate to the Flows menu.

2. On the left pane, right-click the flow and select Create/Update Flow Structure.

Entering Test Data for a REST Component

Creating Components 5-16
Oracle Utilities Testing Accelerator User’s Guide for Cloud

3. On the Flow Definition page, right-click the REST component and select Edit Test Data.

4. Add any pre-validation and post-validation functions by specifying the library and function
details in the Pre Validations and Post Validations tabs.

The REST request body can be any of the following:

• Form Data - Key pair values

• RAW Data - Raw text that would be sent out as body

• Binary - Attach a file that contains the request that would be sent as request to REST end
point

Copying Components

Creating Components 5-17
Oracle Utilities Testing Accelerator User’s Guide for Cloud

 Form Data

 RAW Data

 Binary

Copying Components
The components delivered can be customized; however, modifying the existing components is not
a good practice.

A component can be extended by making its copy and saving it with a different name prefixed and
tagged by CM, and then adding or modifying the metadata or key words as follows:

1. Right-click an existing component and select Copy Component.

2. Select and right-click a module.

3. From the context menu, select Paste Component.

If the component name already exists in the module, a prompt is displayed to provide a new
name to the component.

4. Click Save as New Component.

The component is copied successfully.

Creating Test Flows 6-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 6
 Creating Test Flows

Test flows are actual business tests executed on the application under test. The flows are
assembled in Oracle Utilities Testing Accelerator by using predetermined components and are
updated with data to guide the flow execution.

A test flow consists of one or more scenarios, which in turn consist of one or more components.

This chapter describes the steps to create a flow, including:

• Creating Flows

• Creating Scenarios

• Creating Flow Modules

• Adding the Email Capabilities to Flows

• Support for Integration Flows

• Executing Test FlowsEncrypting Passwords

Creating Flows

Creating Test Flows 6-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating Flows
A flow simulates a business process that needs to be tested. Flows may be synonymous with test
cases or test scenarios based on how test automation strategy is developed. Each flow may have
one or more test scenarios. You can create a flow by dragging and dropping components into a
default scenario under the flow.

Creating Flows By Dragging-and-Dropping Components
Before creating a flow, identify the components required to create the flow.

Note: The components delivered with Oracle Utilities Testing Accelerator may
have to be extended or new components have to be created.

To create a flow:

1. Navigate to the product in the flow tree to create the flow.

2. Right-click the product and select Create Flow.

3. In the Create Flow pane, enter the Flow Name, Flow Type, Tags, and Description.

4. Save in either of the following ways:

• Save: Saves the flow and redirects to the Search Flow page.

• Create Structure: Creates the flow with a default scenario and redirects to the Flow
Structure page.

For information about adding scenarios to a flow, refer to the Creating Scenarios section.

5. Expand the flow tree. The flow contains a default scenario with the same name as the flow
name.

6. In the sequence defined by the business scenario being tested, drag and drop the components
from the Approved Components pane to the Flow Creation pane.

Note: Flow definition can be modified(components added or removed) only if the flow is in
“In Progress” state.

The test data needs to be entered at the component step level while defining a flow.

Adding Test Data in a Flow
To add data to a component in a flow:

1. In the flow tree structure, right-click the component and select Edit Test Data.

2. Enter the test data in the Test Data page. The WebService Test Data page has 3 sections.

a. Pre Validations

Adding Test Data in a Flow

Creating Test Flows 6-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Click New Row to add new rows. The Pre Validations section is used to add functions
in the components that may be specific to the flow being developed.

Example: A function to generate random test data such as name, social security number
or mobile number, for creating a person using C1-PersonAdd component.

The OP Variable Name holds the name of the custom variable into which the function
output gets stored. This variable can be used as test data in Test Data section. The
function inputs have to be specified against the Value1, Value2 through to Value 6
columns based on the number of input parameters of the function.

b. Test Data

The data corresponding to each of the elements in the component can be specified in the
Test Data GUI.

• The test data pertaining to a component line can be specified against the Value 1
column. The keyword defines what the component lines does and the Caption/
Name columns specify the details of the component line in context of the keyword.

• If the element is a repeatable group or list element, the “ADD” button under the
“Add” column is used to add multiple repetition of the list elements.

• To select variables as inputs to the test data, the drop-down button under the
column, select “Value 1” for each row and appropriate variable.

• The default data column holds a set of default test data that can be used in the
component. The default data can be copied across to the test data field, “Value 1”
by clicking Set Default Data.

• Validations/functions defined in the component can be enabled or disabled by
selecting the Enable checkbox in the first column. The checkbox only appears for
rows to which this feature is applicable.

c. Post Validations

The Post Validations section is used to add verification functions post the base
validations. Each of the component comes with a base set of validations and these can be
disabled or enabled in the Test Data GUI. And, if more of these verifications are added
based on the flow specific requirements or if a specific set of values have to be retrieved
from the response of the component execution, use the Post Validations section.

The post validations section allows users to add any number of functions to the
component in a flow. These will be specific to the component's instance in that flow.
These will not apply to the component when used in other flows.

Annotating Components in a Flow

Creating Test Flows 6-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Only function calls can be added in the Post Validations section. For more details, refer
to the Flow-Level Validations section in Chapter 5: Creating Components.

3. To add data for a component in a flow, in the flow tree structure, right-click the component
and select Edit Test Data. For more details, refer to the Flow-Level Validations section in
Chapter 5: Creating Components.

Note: If the test data includes the double quotes character (“ “), it needs to be escaped with
another double quote character. Example: To enter My “Test Data”, enter it as My “”Test
Data””.

4. Click Save & Close to return to the Flow Creation page.

Annotating Components in a Flow
Annotations can be added for each component step to describe the purpose of each of the steps
in an Oracle Utility Testing Accelerator test flow. This helps in understanding the functional
aspects of the flow just by looking at the flow tree structure.

To add an annotation right click a component step in the flow definition. Select Update
Component Description and enter the description. The description replaces the default display
of the component name in the flow step.

This figure shows a flow without and with annotations.

Creating Scenarios
To create a scenario:

1. Navigate to the flow to be modified.

2. Select Create/Update Flow Structure.

3. Select and right-click the flow or a scenario inside the flow. You can create a scenario from the
Flow menu or from the Scenario menu.

Creating Flow Modules

Creating Test Flows 6-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

4. Click Add Scenario from the Flow menu.

Alternatively, click Add Scenario Above/Add Scenario Below from the Scenario menu.

5. Enter the new scenario name.

6. Click Go.

Creating Flow Modules
Related flows can be grouped into a flow module. By default, each product has a “Default”
module under which all flows are created unless they are explicitly created under a named module.

To create a flow module:

1. Navigate to Flow menu > product under which the flow module should be created.

2. Right-click the product and click Create Flow Module to create a new flow module.

To create a flow under a flow module:

1. Navigate to Flow menu > product and flow module under which the new flow should be
created.

2. Right-click the flow module and click Create Flow to create a new flow under the selected
flow module.

To move an existing flow to a flow module:

1. Navigate to Flow menu > flow that should be moved to a flow module.

2. Right-click the flow and click Move to Flow Module.

3. Select the target flow module.

4. Click Move.

Using Global Variables
This section explains the usage of global variables to pass data across components.

In a simple test flow, add a new person in Oracle Utilities Customer Care and Billing and add a
customer contact for that person. The C1-CustomerContactAdd component is a dependent
component and during runtime needs the ID of the person, created using C1-PersonAdd
component within the same flow.

To add component references to a dependent component (C1-CustomerContactAdd):

1. In the Edit Test Data GUI of the C1-CustomerContactAdd component, find the
component line that requires the personId as input.

2. Against the personId row, click the "Value 1" drop-down list. This lists all variables that are
exposed by the preceding components; in this case, the personId exposed by the C1-
PersonAdd component.

Flow Lifecycle

Creating Test Flows 6-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

3. Select the personId variable from the drop down list and set it as test data against this
element.

Each of the base components expose one or more global variables that hold the output of the
component during execution. These global variables can be used to set the output of one
component as the input of another component.

These global variables are automatically suffixed with their occurrence number. If the C1-
PersonAdd component is used twice in the flow, there will be two variables (gVarPersonId1,
gVarPersonId2) one for each occurrence of the component, suffixed with it's occurrence number.
Custom global variables can be defined and exposed by the components through the Pre-
Validations and Post Validations sections. These variables are automatically prefixed with
“fvar_”, to differentiate them from the component's base global variables.

Flow Lifecycle
The flow lifecycle begins once a flow is created in Oracle Utilities Testing Accelerator. It can exist
in one of the several possible lifecycle states as shown in the following diagram.

Locking/Unlocking Flows

Creating Test Flows 6-7
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The state of a flow determines the actions that can be performed on the component. The
following table summarizes the component states, and the possible actions and roles that can take
the actions.

Locking/Unlocking Flows
A flow is/can be locked in the following scenarios:

• To prevent any other users from editing the flow until the flow is complete.

• By default when the flow is submitted for approval.

• If the flow is unlocked while in the ‘Pending Approval’ state, its state is changed back to ‘In
Progress’. However, if it is moved to ‘In Progress’ state from ‘Pending Approval’ state, it stays
locked until the user unlocks it.

Click the icon to lock/unlock a flow in the Oracle Utilities Testing Accelerator application.

Note that scripts can be generated only when the flow is in an “Approved” state.

Copying Flows
To copy a flow from one product to another product(s):

1. Login to the application.

2. Navigate to the Flows menu.

3. In the left navigation pane, expand the flow to be copied.

4. Right-click the flow to be copied and select Copy Flow.

5. Navigate to the product to which the flow needs to be copied.

6. Right-click the product and select Paste Flow.

7. In the pop-up window, enter the name for the new flow.

8. Click Paste flow.

Flow Lifecycle
State

Permitted
Actions Role Resultant State (after

action)

In Progress Submit for
Approval

Developer,
Approver,
Administrator

Pending Approval

Pending Approval Send to In
Progress

Developer,
Approver,
Administrator

In Progress

Unlock Developer,
Approver,
Administrator

In Progress

Approve Approver,
Administrator

Approved

Approved Send to In
Progress

Developer,
Approver,
Administrator

In Progress

Reordering Components in a Flow

Creating Test Flows 6-8
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Reordering Components in a Flow
Note that a flow needs to be “In progress” for components to be re-ordered. You cannot re-order
components in a flow that is locked by another user.

To change the sequence of components in a scenario:

1. Log into the application.

2. Navigate to the Flows menu.

3. In the left pane, right-click the flow for which components have to be reordered.

4. Select Create/update Flow Structure.

5. Reorder the components in any of the following ways:

• By drag-and-drop method

• Moving the components to a desired location using menu

6. Right-click the component to be moved and select Move Component.

7. Move the selected component in any of the following ways:

• Right-click another component in the flow and choose Paste Component Above.

• Right-click another component in the flow and choose Paste Component Below.

• Right-click a scenario in the flow and choose Paste Component Inside. This will move
the selected component to the first position in the scenario.

8. After reordering the components, click Save to save the modified flow.

The popup closes and the flow tree is refreshed to reflect the correct order of components.

Copying Test Data from One Component to Another in a Flow
To copy the test data from one instance of a component to another instance of the same
component within and across the scenario/flow:

1. Log into application and navigate to the Flows tab.

2. In the left navigation pane, right-click the flow and select Create/update Flow Structure.

3. Expand the flow.

4. Right-click a component from which you want copy the test data and select Copy Test Data.

5. Navigate to the component in the flow.

6. Right-click the component where you want to paste the test data and select Paste.

Fetching Component Test Data from an Utilities Application
Instead of manually entering the test data for a component, you can fetch the test data from a
Utilities application (such as Customer Care and Billing, Meter Data Management, etc.). Select the
User, Flow configuration and provide the web service name and the transaction/operation name
to access the WSDL and then provide values against required fields that are mandatory for the
specified operation. Oracle Utilities Testing Accelerator calls the WSDL with provided details and
fetches the response from web service and populates in the test data of the component.

To fetch the test data:

1. Navigate to the Flows tab.

2. Select and right-click the flow and then click Create/Update Flow Structure.

Fetching Component Test Data from an Utilities Application

Creating Test Flows 6-9
Oracle Utilities Testing Accelerator User’s Guide for Cloud

3. On the Flow Definition page, navigate to the component. Right-click and select Edit Test
Data.

4. On the Edit Test Data page, click Fetch Test Data.

5. On the Fetch Test Data page, enter in the web service name from which the test data has to
be retrieved, operation (typically READ operation) to invoke and necessary credentials and
any required info (for example: to retrieve data related to ToDoRole).

6. Enter the WSDL name, operation name, username, and password. Then, click Populate
Form to populate the form with all fields that the web service supports.

Alternatively, use the URL and user credentials from the Flow/User Configuration properties
file. Click Use Configuration Properties and select the appropriate flow/user configuration
from the respective drop-down menus.

Note: While creating an integration flow (a flow where components may send
requests to more than one environment) prefix the URLs with keywords that
can be used while specifying the WSDL to connect to.

Example: If a flow should connect to an Oracle Utilities Meter Data
Management instance apart from the Oracle Utilities Customer Cloud Service
instance, specify the three properties mentioned below either in the flow or
user configuration properties.

MDM=<MDM url>
MDM_gStrApplicationUserName=johnDoe
MDM_gStrApplicationUserPassword=enc(pj0TFjXMczsoyzmQ8GuXPt2PSyd
O7VCbR2jhxtkUH06Fuz+zmChpGSCr241KggFC6FwgMg==)

To fetch the test data for an Oracle Utilities Meter Data Management component:

1.Select the flow/user configuration file from the drop-down menu.

2.Enter the WSDL URL as shown below.

7. Provide the necessary key information to retrieve data (for example: in this case the
ToDoRole name) and then click Fetch Test Data.

8. After the data is retrieved from the target application, review/validate it. Click Save and
Close.

Bulk Replacing Component Test Data in Multiple Flows

Creating Test Flows 6-10
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Bulk Replacing Component Test Data in Multiple Flows
The Replace Test Data feature allows to replace/edit value of one or more elements of a
component in multiple flows, at once. If the component is used in multiple flows, select all or
specific flows in which the test data needs to be changed for the component. This feature allows
an easy way to change an existing test data value in several flows to a new value to reflect change in
test data setup.

• Access the option to replace component test data. Navigate to the Component menu and
right-click the component whose test data needs to be edited/replaced. Click Find
Component Usage.

• In the Find Component Usage interface, select the flows under which the component test
data needs to be replaced. Select the checkbox next to the flow name(s) and click Replace
Test Data.

• Click Add Row to add a row to choose the element of the component whose specified
existing test data value needs to be replaced with a new value. To replace the test data of
multiple elements of the component, add multiple rows that specify the xpath of the element
whose test data value needs to be replaced.

• Set an existing element value to blank or enter test data for component element whose
current test data value does not exist. Use #EMPTY as the value in appropriate field
(Existing Value/New Value).

• Specify a particular occurrence of an element in a group element. Indicate the index of the
element in the group. To replace the zip code of second address group element, specify
similar to /user/address[2]/zipCode and specify the Existing Value and New Value.

• Use wildcard "%" in the Existing Value field to indicate replacing of any existing value that
matches the pattern. Example: To replace a field value that contain anything that starts with a
“Building” to “Apartment 123” specify the Existing Value as “Building%” and New Value
as “Apartment 123”.

Flow Subroutines
A flow subroutine is a flow that can be included/used in other flows. It improves reuse of a flow.
For example: Many test cases expect a ‘V’ setup to be available before being able to verify some
business test cases. In this case, create a flow for ‘V’ setup and all other test case flows can reuse
this ‘V’ setup flow as a subroutine in their respective flows. Specify any variables/parameters that
the subroutine expects from the parent flow and also expose any variables/parameters that are
created in the subroutine. Right-click Edit Test Data on the flow subroutine component in the
flow.

Note: The default test data set of the subroutine is used when the subroutine is
executed as part of the parent flow.

• For a given flow test data set pertaining to the flow calling the subroutines, the test
data set of the subroutine can be selected in the subroutine's test data GUI. Right-
click the subroutine and select Edit Test Data.

• Only the variables defined in the default test data set of a subroutine flow can be
used as input or output of the subroutine. This is to ensure standardized API for the
subroutine.

Adding Subroutines to a Flow
To add an existing flow as a subroutine in a flow:

1. Right-click the scenario/component in the flow.

2. Select Add SubRoutine.

3. Specify the Release, Product Family, and Product to filter the flows.

Flow Subroutines

Creating Test Flows 6-11
Oracle Utilities Testing Accelerator User’s Guide for Cloud

4. From the Flows drop-down list (search-able), select the flow to be included.

5. Click Add to add it to the current flow as a subroutine.

Note: A flow cannot be added to itself as a subroutine. Ensure that nested
subroutines do not create a cyclic dependency.

Defining Input-Output Parameters of a Subroutine
To define input and output parameters for a subroutine:

1. Navigate to the Flows tab.

2. Right-click the flow name in the product and navigate to module > flow tree structure in the
left pane. Select Define Subroutine Interface.

3. Specify the parameters the subroutine expects from the calling flow and the parameters the
subroutine exposes to the calling flow.

Example: If the subroutine creates an Account, it expects a personId value to be provided for
it to create an Account. After an account is created, it returns the accountId. The subroutine
should be defined with one input variable “personId” and another output variable
“accountId”.

4. Add additional input/output variable.

a. Click Add IN/OUT Variable.

b. Enter the name and parameter type.

c. Click Save.

This figure shows a subroutine interface definition for a flow that creates both a person and
account and exposes personId and accountId as outputs, so they can be used by the calling
flow.

5. After a subroutine is added to a flow calling a subroutine, map the input or output variable(s)
of the subroutine.

a. Right-click the subroutine in the flow tree structure of the calling flow and select Edit
Test Data.

b. Map the input/output variable of the subroutine to a variable in the calling flow.

Example: The subroutine might be exposing accountId as the variable. To use the
exposed variable in the calling flow, create a new variable in the calling flow using Create

This figure shows the Edit Test Data screen for a subroutine that outputs a personId and accountId. New variables, personId and

Creating Test Flows 6-12
Oracle Utilities Testing Accelerator User’s Guide for Cloud

New Variable. Map the output accountId variable from the subroutine flow to the
newly created variable in the calling flow. This new variable can be used in the test data
GUI of any component that succeeds the subroutine in the calling flow.

This figure shows the Edit Test Data screen for a subroutine that outputs a personId and accountId. New variables, personId and
accountId are created and mapped to the outputs of the subroutine, which are gVarAccountId1 and gVarPersonId1.
Executing Subroutine in a Loop

A subroutine in a loop can be executed either a fixed number of times or until an exit condition is
satisfied. Example: If the subroutine creates a meter read, the user can loop the subroutine 24
times to create a meter read for every hour of a particular day.

Note: This feature only works with simple subroutines and not intended for
nested subroutines. The flow re-run feature will not work as intended if the
flow has a loop defined.

Specify the loop criteria and other details in the subroutine Test Data page. Click Loop
subroutine to enable Open Looping Interface to provide the criteria for executing the
subroutine in a loop.

Open Looping Interface provides the following options:

• Maximum Number of Iterations: Represents the maximum number of iterations that the
subroutine will be executed for, irrespective of the exit criteria specified. This is useful in
scenarios where the subroutine can wait but not execute indefinitely (either due to wrong test
data/unexpected application behavior). Use this option to execute the subroutine a fixed
number of times.

Example: If the subroutine creates a person entity in the application, specify the value 10 to
execute the subroutine for 10 times resulting in creation of 10 person entities in Oracle
Utilities Customer Cloud Service.

• Incrementor Type: Indicates if the loop incrementor would be a number or a date-time, user
can choose date as incrementor in case the subroutine creates meter reads for a meter and
user wants to execute the subroutine to create meter reads in a certain date range.

• Initial Number/Initial Date-Time: Based on the Incrementor Type selected, specify the
starting number or the starting date-time to be used.

• Increment Value: Based on the Incrementor Type selected, specify by how much the initial
number would be incremented by (either a number or in days, hours, minutes and seconds).

Component Test Data Sets

Creating Test Flows 6-13
Oracle Utilities Testing Accelerator User’s Guide for Cloud

• Exit Condition: The exit condition controls when the subroutine loop would end before the
Maximum Number of Iterations. Specify the exit condition as follows:

• Variable: Can be either based on a value of the incrementor variable or any OUT
variable of the subroutine.

• Condition: Specifies if the value of variable should be less than, greater than, equal to
etc. of the value that is specified for the Exit Condition.

• Value: The value that the variable is compared with using the condition specified above,
to check if the loop needs to be terminated or continued.

Example: Assuming that the Incrementor Type was number and Initial value was 1 and
Increment Value was 1 then the below values for the Exit Condition means that the
subroutine is looped until the Incrementor value is equal to 5.

Variable: “Incrementor” Condition: “equals to” Value: “5”

Note: To specify the exit condition value when using a date, the date format to
be specified is the same as the initial date format.

Component Test Data Sets
The component level test data sets allow to create test data sets specific to the component. These
can be thought of as master test data sets for a component.

Example: For a C1-PremiseAdd component in Oracle Utilities Customer Cloud Service, the
component level test data sets can be residential premise test data set and commercial premise test
data set. Every time the C1-PremiseAdd component is used in a flow, instead of filling up the test
data manually, the appropriate component test data set can be selected which automatically
populates the test data from the component test data set into the component's test data GUI in
the flow. This reduces a lot of work while providing test data in a flow.

Component test data sets save current test data of a component with a given name, which can later
be retrieved and auto-populated it into another instance of the component either in the same flow
or another flow.

Creating Reference Test Data for a Component
Save the current test data of a component for future use by saving it as a component test data set.
After saving the test data set, the component can be populated with the test data contained in a
Test Data Set. On the Edit Test Data page, select Test Data Set from the drop-down menu.

To create a test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used. Right-click and
select Create/Update Flow Structure to open the Flow Definition page.

3. Navigate to the component for which the test data set needs to be created. Right-click the
component and click Edit Test Data.

4. Click Save As Test Data Set to save the test data of the component. Specify the name of the
test data set and click Save. Then, click OK to return to the Edit Test Data page.

Note: If a test data set with the same name already exists, the application asks
for confirmation to overwrite the test data.

Loading Test Data from a Component Test Data Set

Creating Test Flows 6-14
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Loading Test Data from a Component Test Data Set
To populate the test data from a given component test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used.

3. Right-click the flow and select Create/Update Flow Structure.

4. On the Flow Definition page, navigate to the component for which the test data set needs to
be created.

5. Right-click the component and then click Edit Test Data.

6. Select the test data set from the drop-down menu. The test data gets populated into the
component.

Flow Test Data Sets
Flow Test Data Sets allow users to create and manage multiple test data sets for the same flow.
These test data sets can be used for selective or iterative execution of the flow. This feature is
aimed at creating multiple sets of test data per flow and swap between these test data sets before
executing a flow.

The Flow Test Data sets store the data specified against all the components within the flow, as a
single data set. Users can copy the data set to create a new test data set and update it to reflect any
changes. This feature has been provided to enhance reusability where test cases which do not
differ in the flow structure, but only in the test data that is used, can be automated without having
to recreate a test automation flow.

For more information, see Iterative Flow Execution.

Creating Flow Test Data Sets
To create a flow test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow for which the test data set should be created.

3. Right-click and select Create/Update Flow Structure.

4. On the Flow Definition page, click Add under Flow Test Data Sets.

5. Specify the data set name and click Add.

6. Click Save As to save the test data of the flow.

7. Specify the name of the test data set and click OK.

Note: If a test data set with the same name already exists, the application asks
for confirmation to overwrite the test data.

8. If the flow definition includes a subroutine, select the test data set for the subroutine. Right-
click the subroutine and select Edit Test Data. Select the test data set from the Subroutine
Flow Test Data Set drop-down list.

9. To edit or add test data against a flow test data set, the corresponding flow test data set has to
be selected on the flow structure definition pane.

Adding the Email Capabilities to Flows

Creating Test Flows 6-15
Oracle Utilities Testing Accelerator User’s Guide for Cloud

10. Navigate to the Edit Test Data page of each component in the flow and update/add the test
data.

This figure shows flow test data sets option for the selected flow.

Loading Test Data from Flow Test Data Sets
To populate the test data from a given test data set:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, navigate to the flow in which the component is used.

3. Right-click the flow and select Create/Update Flow Structure.

4. On the Flow Definition page, select the test data set to be populated in the flow from the
Flow Test Data Sets drop-down list.

To edit or add test data against a flow test data set, the corresponding flow test data set has to
be selected on the flow structure definition pane. Navigate to the Edit Test Data page of
each component in the flow and update/add the test data.

5. If the flow definition includes a subroutine, select the test data set for the subroutine. Right-
click the subroutine and select Edit Test Data. Select the test data set from the Subroutine
Flow Test Data Set drop-down list.

Adding the Email Capabilities to Flows
The email capability allows the flow execution summary report to be e-mailed to the specified
email accounts. Specify the email account IDs to which the report needs to be sent in the flow
configuration set or the user configuration set. The email capability for a flow or flow set
execution is auto enabled if the user configuration set or flow configuration set has the email
property defined.

Note: The generateAndSendReport function in WSCOMMONLIB is
redundant and need not be included in the flow as the last step.

Support for Integration Flows
Support for integration flows allows users to create a single test flow that can interact with
multiple applications. Individual components in the flow can be configured to post web service
requests to different application URLs. The integration flow support includes support for
creation, management and execution of hybrid test flows, where Oracle Utilities Testing
Accelerator that is within Oracle Utilities Enterprise SaaS cloud service can have a test flow that
interacts with that cloud service and one or more Oracle Utilities enterprise applications that may
be at customer's premise/data center.

Support for Integration Flows

Creating Test Flows 6-16
Oracle Utilities Testing Accelerator User’s Guide for Cloud

By default, Oracle Utilities Testing Accelerator automatically constructs the web service end point
URL based on the web service name provided in the flow test data. This default URL executes test
flows against the Oracle Utilities Enterprise SaaS cloud service that it is part of. To configure a
component in a flow to post a request to a different application outside of the Oracle Utilities
Enterprise SaaS cloud, the following configuration needs to be added to either the flow
configuration set or the user configuration set.

Define the environment configuration properties pertaining to the on-premise Oracle
Utilities Enterprise application. Prefix them with a custom keyword. This keyword is used in
the component's test data in a flow to specify the application configuration context to a
component for execution.

Example: Oracle Utilities Customer Care and Billing is the on-premise application and the
custom keyword chosen is “CCB”. In the flow configuration set or user configuration set, use
the “Add Property” option and add the following properties:

CCB property holds the external web service end point URL prefixed with “@ext_pub@”,
up to but not including the web service name. If the web service end point URL for the
WSDL of person object in CCB is https:myccbserver.mycompany.com/webservices/
ATC1PersonAdd?WSDL, the CCB property should hold the value -
“@ext_pub@myccbserver.mycompany.com/webservices/”.

The properties CCB_gStrApplicationUserName and CCB_gStrApplicationUserPassword
hold the user name and password respectively for authenticating the user posting the web
service request to Oracle Utilities Customer Care and Billing.

The figure below shows a sample setup of environment configuration for integration flows.

The integration flow in Oracle Utilities Testing Accelerator may contain a mix of components
pertaining to the cloud service that it is part of and components pertaining to on-premise Oracle
Utilities Enterprise applications. To get a component in flow to post a request to the on-premise
Oracle Utilities Enterprise applications, the web service name in the component step's test data
should be prefixed with the keyword.

In the example where Oracle Utilities Customer Care and Billing is the on-premise application and
“CCB” is the keyword, the web service name for the C1-PersonAdd component's test data in the
integration flow should be specified as “CCB/ATC1PersonAdd”. This ensures that the C1-
PersonAdd component posts the request to Oracle Utilities Customer Care and Billing whose
configuration has been specified in the flow configuration set or user configuration set using the
keyword prefix “CCB”.

Property Name Property Value

CCB <CCB url>

CCB_gStrApplicationUserName <username>

CCB_gStrApplicationUserPassword <encryptedpassword>

Executing Test Flows

Creating Test Flows 6-17
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The figure below shows a sample usage of prefix keyword in component step’s test data, to specify
the application’s context.

During the integration flow execution, the flow configuration set and user configuration set that
have the required environment properties should be selected.

More than one such configuration can be set so that a test flow can interact with multiple
applications. Each application can have its own custom keyword which is used while specifying the
web service name in the component step's test data in a flow.

Executing Test Flows
This section focuses on executing a test flow.

• Executing Test Flows Using a Browser

• Iterative Flow Execution

• Stopping Flow Execution on Validation Failure

• Viewing Flow Execution Details

• Viewing Flow Execution Summary Report

• Debugging Flows using Conversational Test Data Management

Executing Test Flows Using a Browser
To execute a test flow using a browser:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, select the product to which the flow belongs. Right-click the test flow
and select Execute Flow.

Note: The test flow can be executed only if it is in either “Pending Approval”
or “Approved” state.

3. Select the Flow Configuration and User Configuration to be used to execute the test flow.

4. Click Execute to start the test flow execution.

Note: For more details about flow configuration and user configuration, refer
to the Runtime Configuration for Flow Execution section.

5. On the Flow Execution page, the execution details are displayed.

The tree shows each of the scenarios and components of the flow. Select a component in the
tree to display the corresponding request and response details. Click View Logs to view the
logs of the execution.

Iterative Flow Execution

Creating Test Flows 6-18
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Iterative Flow Execution
To execute a test flow using a browser:

1. Login to Oracle Utilities Testing Accelerator.

2. On the Flows menu, select the product to which the flow belongs.

3. Right-click the test flow and select Execute Flow.

Note: The test flow can be executed only if it is either in “Pending Approval”
or “Approved” state.

4. Select the Flow Configuration and User Configuration used to execute the test flow.

5. Select Iterative as the Flow Execution Type.

6. In the Number of Iterations field, specify the number of iterations to execute the flow.

7. If the flow has more than one flow test data set, specify more than one flow test data set to be
used during the iterative execution. Select the checkbox next to the flow test data set name.

Note: Based on the number of iterations and flow test data sets specified,
application will use test data sets for each of the iterations. For example: If
number of iterations is specified as 10 and two flow test data sets are selected,
the application executes the flow with first data set for first iteration and second
data set for second iteration, and switch back to first data set for 3rd iteration
and so on. At the end of 10 flow iterations, there would be total of 5 executions
of the flows with first data set and 5 executions of the flow with second data
set.

8. Click Execute to start the test flow execution.

Note: For more details about flow configuration and user configuration, see
Runtime Configuration for Flow Execution.

The execution details are displayed on the Flow Execution page.

The tree shows each of the scenarios and components of the flow. Select a component in the tree
to display the corresponding request and response details. Click View Logs to view the execution
logs.

Stopping Flow Execution on Validation Failure
By default, the flow execution continues until the last component in the flow even if there is a
validation failure for a component in the flow. This behavior can be changed to make the flow
execution stop when a validation fails by setting the property “continueExecutionOnFailure” in
the user or flow configuration to “false”.

Viewing Flow Execution Details
To view the execution details of a flow:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flow menu.

3. On the left pane, navigate and right-click the flow to view the execution summary. Click View
Execution History.

4. Click the flow execution entries to view the respective details of that execution.

The Flow Execution Status page displays the details about the flow execution, including logs
and request and response for each of the component.

Viewing Flow Execution Summary Report

Creating Test Flows 6-19
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Viewing Flow Execution Summary Report
To view the execution summary of a flow:

1. Login to Oracle Utilities Testing Accelerator.

2. Navigate to the Flow menu.

3. On the left pane, navigate and right-click the flow to view the execution summary.

4. Click View Execution History.

5. Click any of the flow execution entries to view the respective details.

6. On the Flow Execution Status page, click Summary.

7. On the Flow Execution Summary Report page, click Summary. The summary of the flow
execution is displayed, including total scenarios passed/failed, percentage of pass/fail, etc.
You can also drill down individual scenarios and check more details.

The flow execution summary can be sent via email. Specify the email address in the Summary
Report page and click Email.

Conversational Test Data Management
As an alternative to the Edit Test Data GUI, test data can also be provided in XML format
through the conversational Test Data Entry page. Before accessing this GUI, the component in
the flow has to be executed at least once, by providing the web service name and the transaction
type. In case a component of a flow fails during execution, user can use the Edit Request feature
to access the Conversational Test Data Management page.

Note: This feature is only supported for web service components.

The Edit Request feature allows to:

a. Open the failed request of a component.

b. Make changes to the test data and resend the request to edge application (without
executing the flow multiple times).

c. Observe the response for the modified request.

d. Save the modified request as test data for the flow’s component step.

Repeat the above steps until the test data for the successful request is identified.

The Edit Request feature can be accessed from the flow execution interface (including from flow
execution history, flow set execution/history, iterative execution/history). User can invoke the
Edit Request user interface. Right-click a component from the flow execution status tree and
selecting the Edit Request option.

After selecting the Edit Request option from the right-click menu, a new window is displayed
and prompts to select the configuration sets to be used. Modify the request by either changing test
data value of one or more elements, adding/deleting new elements in the request and click Send

Runtime Configuration for Flow Execution

Creating Test Flows 6-20
Oracle Utilities Testing Accelerator User’s Guide for Cloud

to send the request to the edge application and observe the response. Continue to make
modifications until the desired response is received from the edge application.

The user has below options to manage request content better:

• Repopulate all schema elements. Click Refresh Schema. This helps in resetting fields that are
required to make a successful request that were not present/left out in the previous/original
request.

• Click Settings to allow the user to control some header level information that is sent as part
of the request, including username token, timestamp and whether the request should include
any schema elements that do not have any test data filled in.

• Choose to save the test data of the request to a flow test data set. Click Save to select the flow
test data set to which the test data needs to be saved to in the dialog box.

Note: While saving the test data in the request XML in to the component step's
test data, only static test data values defined in the component are replaced. The
variables defined in the component's test data are not replaced with the test
data in the XML request.

Runtime Configuration for Flow Execution
A test flow is executed using flow configuration sets and user flow configuration sets that contain
the required properties, such as URL of the environment against which the flow to be executed,
username/password to be used, etc.

The flow configuration set includes configuration applicable for a particular environment. It is
expected that the flow level configuration sets do not contain any user specific properties, thereby
allowing many users to use a single flow configuration set.

The user configuration sets, on the other hand, are specific to each user and typically contain user-
specific properties, such as the username/password used to connect to an environment.

It is expected that customers setup some generic flow configuration sets with common runtime
properties and users have their personal user configuration sets that contain their credentials.
While executing a test flow/flow set, specify a flow configuration set and a user configuration set
in combination to get generic runtime properties and user specific properties to be used for test
flow/flow set execution.

Note: For Oracle Utilities Testing Accelerator that is available as part of Oracle
Utilities Enterprise SaaS services, the corresponding environment's URL is
predefined within UTA. Users need not provide the web service URL for the
same. However, user's will need to provide the user name and password for
authentication.

This section focuses on managing the flow and user configuration sets:

• Creating a Flow Configuration Set

• Creating a User Configuration Set

• Editing a Flow Configuration Set

• Editing a User Configuration Set

• Copying a Flow Configuration Set

• Copying a User Configuration Set

Creating a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

Runtime Configuration for Flow Execution

Creating Test Flows 6-21
Oracle Utilities Testing Accelerator User’s Guide for Cloud

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, click Create.

5. Specify the name of the flow configuration set being created and then click Create.

6. If the flow configuration set is created successfully, a message appears confirming that the
operation was successful and redirects to the Manage Flow Configuration Sets page.

7. Search for the configuration set created and click Edit to create flow level configuration
properties.

8. Each of the property is a key-value pair. By default some of the property names are listed on
the Edit page. You can either enter a value for the existing property or choose to create a new
property by clicking Add Property.

Important! It is recommended that sensitive information (such as passwords) be encrypted. Click
Encrypt to encrypt the corresponding row of the property.

Creating a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

4. On the Manage User Configuration Sets page, click Create.

5. Specify the name of the user configuration set being created and then click Create.

6. If the user configuration set is created successfully, a message appears confirming that the
operation was successful and redirects to the Manage User Configuration Sets page.

7. Search for the configuration set created and click Edit to create user level configuration
properties.

8. Each of the property is a key-value pair. By default some of the property names are listed on
the Edit page. You can either enter a value for the existing property or choose to create a new
property by clicking Add Property.

Important! It is recommended that sensitive information (such as passwords) be encrypted. Click
Encrypt to encrypt the corresponding row of the property.

Editing a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, search for the flow configuration set to be
edited, and then click Edit.

5. On the Update Flow Configuration Set page, click Add Property to either enter a value
for the existing property or choose to create a new property.

Important! It is recommended that sensitive information (such as passwords) be encrypted. Click
Encrypt to encrypt the corresponding row of the property.

Editing a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

Runtime Configuration for Flow Execution

Creating Test Flows 6-22
Oracle Utilities Testing Accelerator User’s Guide for Cloud

4. On the Manage User Configuration Sets page, search for the user configuration set to be
edited, and then click Edit.

5. On the Update User Configuration Sets page, click Add Property to either enter a value
for the existing property or choose to create a new property.

Important! It is recommended that sensitive information (such as passwords) be encrypted. Click
Encrypt to encrypt the corresponding row of the property.

Copying a Flow Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click Flow Configuration Sets.

4. On the Manage Flow Configuration Sets page, search for the flow configuration set to be
copied, and then click Copy.

5. Enter the new configuration set name and click Confirm to create a copy.

Copying a User Configuration Set
1. Login to the application.

2. Navigate to the Tools menu.

3. On the left pane, click User Configuration Sets.

4. On the Manage User Configuration Sets page, search for the user configuration set to be
copied, and then click Copy.

5. Enter the new configuration set name and click Confirm to create a copy.

Creating Test Flow Sets 7-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 7
Creating Test Flow Sets

Flow sets offer a level of abstraction above the flows that allows more flexibility in managing
flows. Several related flows can be grouped into a flow set and can be executed in sequence.
Multiple flow sets can be executed in parallel, whereas flows in a flow set will be executed in the
specified sequence. Unlike the flow subroutines, the flows in a flow set do not have a direct
dependency on each other i.e., the test data/outputs cannot be passed from one-flow to another,
within Oracle Utilities Testing Accelerator.

This chapter focuses on flow sets including:

• Creating Flow Sets

• Adding Flows to a Flow Set

• Deleting Flows from a Flow Set

• Executing Flow Sets

• Aborting Flow Set Execution

• Exporting Flow Sets

• Viewing Flow Set Execution History

• Viewing Flow Set Execution Summary Report

Creating Flow Sets

Creating Test Flow Sets 7-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating Flow Sets
To create a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Create Flow Set.

4. Provide the Flow Set Name and Description, and click Save to save the flow set.

5. Navigate to the Manage Flow Set menu to add flows to the flow set.

Adding Flows to a Flow Set
To add flows to a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set name to which the flow(s) needs to be added.

5. Click Add Flows. You can search for one or more flows using the wildcard “%” to search for
flows matching a name.

For example: Search for all flows that contain the text “person” in their name by searching for
string “%person%”.

6. Click Save to save the flow set.

Deleting Flows from a Flow Set
To delete flows from a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. In the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set from which the flow(s) needs to be deleted.

5. Delete one or more flows from the flows displayed. Select the checkbox for each of the flow
to be deleted and then click Delete.

6. Click Save to save the flow set.

Executing Flow Sets
To execute a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. In the left pane, click Manage Flow Set. The list of available flow sets is displayed.

4. Select the flow set to be executed and click Execute.

5. Select the flow configuration and user configuration to be used to execute the flow set.

6. Click Confirm.

Aborting Flow Set Execution

Creating Test Flow Sets 7-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Note: For more details about on flow configuration and user configuration,
refer to the Runtime Configuration for Flow Execution (For Execution Using
Browser) section.

7. Once the flow set execution starts, click each of the flows to view more details about the
execution.

Aborting Flow Set Execution
The Abort feature allows the active flow execution to complete and stops all subsequent flows in
the flowset from execution.

To abort a flow set execution:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click View History on the flow set name whose execution needs to be aborted.

5. Select the currently executing instance of the flow set and click Abort.

Exporting Flow Sets
To export a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click Export against the Flow Set to be exported.

Viewing Flow Set Execution History
To view the execution history of a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click View History of a flow set to display all previous executions. You can view details such
as the flow set execution status, date and time of the run, the user who triggered the
execution, etc.

5. Click any of the previous executions to view flow-level details of that particular execution.

You can drill-down even further by clicking a flow name and view the details of the flow
execution, including overall status, request and response details for each of the component
and even view the log file details of a particular component execution.

Viewing Flow Set Execution Summary Report
To view the execution summary of a flow set:

1. Login to the application.

2. Navigate to the Flow Sets menu.

Viewing Flow Set Execution Summary Report

Creating Test Flow Sets 7-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

3. On the left pane, click Manage Flow Set. A list of available flow sets are displayed.

4. Click View History of a flow set to display all previous executions. You can view details such
as the flow set execution status, date and time of the run, the user who triggered the
execution, etc.

5. Click any of the previous executions to view flow-level details of that particular execution.

6. Click Summary to display a summary of the flow set execution, including total flows passed/
failed, percentage of pass/fail, etc. You can also drill down individual flows to view the
respective details.

7. Email the flow set execution summary. Specify the email address on the Summary Report
page and click Email.

Development Accelerator Tools 8-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 8
Development Accelerator Tools

This chapter describes the development accelerator tools available in this Oracle Utilities Testing
Accelerator release:

• Component Export Tool

• Flow Export Tool

• Component/ Flow Import Tool

• Component Generation Tool

Component Export Tool

Development Accelerator Tools 8-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Component Export Tool
This tool is used to export one or more components to another environment. Note that only
components in “Approved” state can be exported.

To export a component pack:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Export Components in the left pane.

4. Select the Release, Portfolio, Product, Module, Component Name, Tags (example: CM)
and Owner Flag as required.

5. Click Export.

A prompt appears on the screen to open or save the generated zip file “component.zip”.

6. Click Save to download the zip file.

The component has been exported as a .zip file.

Flow Export Tool
This feature is used to export one or more flows to another environment. Note that only flows in
“Approved” state can be exported.

To export a flow:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Export Flows in the left pane.

4. Select the Release, Portfolio, Product, Flow Name, Tags (example: CM) and Owner Flag
as required.

5. Click Export.

A prompt appears on the screen to open or save the generated zip file “flow.zip”.

6. Click Save to download the zip file.

The flow has been exported as a .zip file.

Component/ Flow Import Tool
This feature is used to import components and/or flows to another environment.

To import a component/flow:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Import in the left pane.

4. Drop the component/flow pack in to Import wizard in the right pane.

When a file is selected/ dropped in the wizard, the file name appears.

5. Click Save.

Component Generation Tool

Development Accelerator Tools 8-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

6. If the component/flow already exists in the database, a pop-up is displayed giving a choice to
continue or abort the process.

7. When you click Cancel, the import component/flow process is not triggered and it goes
back to step 3 (you can still import it again).

8. When you click OK on the pop-up, the process of importing component/flows begins with
progress bar.

The component/flow is imported successfully.

Component Generation Tool
This feature is used to generate components from WSDL.

To generate components:

1. Login to the application.

2. Navigate to the Tools tab.

3. Click Generate Components on the left pane.

4. Enter the data in the required fields.

5. Specify the number of rows to add and click Add Rows.

6. Enter the component name, tags, and description, and provide a webservice name, operation
name.

7. Click Generate Component(s) and select the Flow/User configuration. The application
URL and user credentials will be taken from the specified configuration file.

Note: When attempting to generate components from more than one
application at the same time, prefix the URLs with keywords in the
configuration files that can be used while specifying the WSDL to connect to.

Example: If an Oracle Utilities Meter Data Management component should be
generated along with an Oracle Utilities Customer Cloud Service component,
specify the three properties mentioned below either in flow or user
configuration properties.

opdev=<MDM url>
opdev_gStrApplicationUserName=johnDoe
opdev_gStrApplicationUserPassword=enc(pj0TFjXMczsoyzmQ8GuXPt2PS
ydO7VCbR2jhxtkUH06Fuz+zmChpGSCr241KggFC6FwgMg==)

Component Generation Tool

Development Accelerator Tools 8-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

To generate a Oracle Utilities Meter Data Management component, enter the webservice
name prefixed with "opdev/".

8. Upon successful component generation, a list of generated components and failed
components is displayed.

Tip: The WSDL Method column is an operation in WSDL. The following
figure shows the name of operation in WSDL.

Function Library Reference 9-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 9
Function Library Reference

This chapter lists the Oracle Utilities Testing Accelerator function libraries and functions available
to create components and flows in Oracle Utilities Testing Accelerator Workbench for testing
Oracle Utilities Testing Accelerator.

The following function libraries are described:

• CLOUDLIB

• OUTSPCORELIB

• WSCOMMONLIB

• WSVALIDATELIB

CLOUDLIB

Function Library Reference 9-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

CLOUDLIB
This library includes functions to support the Oracle Utilities applications deployed in Oracle
Cloud.

login
Logs into the Oracle Utilities Application Cloud environment (uses configuration.properties for
URL, user name, password, etc).

login

Input Parameters: none
Return Type: void

importBundle
Imports a bundle into the Oracle Utilities Application Cloud environment. Note that the bundle
has to be attached to the script.

importBundle ()

Input Parameters: strFilename - name of bundle file
Return Type: void

createTimeZone
Creates a TimeZone in the Oracle Utilities Application Cloud environment using data provided in
the component.

createTimeZone

Input Parameters:None
Return Type: void

updateInstallOptionsWithTimeZone
Adds an existing TimeZone to the installation options in the Oracle Utilities Application Cloud
environment using data provided in the component.

updateInstallOptionsWithTimeZone

Input Parameters: None
Return Type: void

OUTSPCORELIB
This library develops the component code and flows for web services and general applications. It
includes functions with date and time processing and string processing capabilities, as well as
database and file operations.

This section provides a list of the functions included in the library, along with their usage details.

getCurrentTimeInMilliSeconds
Gets the time in milliseconds.

Example:

getCurrentTimeInMilliSeconds ()

Input Parameters: <none>
Return Type: Sting

OUTSPCORELIB

Function Library Reference 9-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

rand
Gets the random number for the given range.

Example:

rand(int lo, int hi) ()

Input Parameters: lo, hi
Return Type: int

randomStringWithGivenRange
Gets the random string in lower case for the given range.

Example:

randomStringWithGivenRange(int lo, int hi)

Input Parameters: lo, hi
Return Type: String

Randomstring
Generates the random string based on the parameters passed. ‘lo’ and ‘hi’ are the lowest and
highest numbers to be used to generate the random string.

Example:

randomstring (lowerLim, higherLim)

Input Parameters: int lowerLim , int higherLim
Return Type: String

compare2Strings
Compares two strings and returns a boolean result based on the result of comparison.

Note: This function returns “True” if strings provided are same. Else, it returns
‘False’.

Example:

compare2Strings (String_A, String_B)

Input Parameters: String_A, String_B
Return Type: String

randomNumberUsingDateTime
Gets the random string with date and time in it.

Example:

randomNumberUsingDateTime()

Input Parameters: <none>
Return Type: String

getCurrentDateTimeWithGivenDateFormat
Gets the current date and time in the specified format.

Example:

getCurrentDateTimeWithGivenDateFormat(String dFormat)
getCurrentDateTimeWithGivenDateFormat("mm-dd-yyyy:hh.mm.ss")

OUTSPCORELIB

Function Library Reference 9-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Input Parameters: dFormat
Return Type: String

getDateDiffInSecsWithGivenDateFormat()
Gets the difference in the date.

Example:

getDateDiffInSecsWithGivenDateFormat(String dateStart, String
dateStop, String dFormat)
getDateDiffInSecsWithGivenDateFormat(“12-13-2014”, “12-29-2014”,
“mm-dd-yyy”)

Input Parameters: String dateStart, String dateStop, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateTime
Gets the adjusted time with the given date and time.

Example:

getAdjustedTimeWithGivenDateTime(String dateTime, String offset,
String dFormat)
getAdjustedTimeWithGivenDateTime(“12-13-2014”, “-02:30”,”mm-dd-
yyyy”)

Input Parameters: String dateTime, String offset, String dFormat
Return Type: String

getAdjustedTimeWithCurrentDateTime
Returns the date and time after adding the specified offset to the current date and time in the
specified date/time format. Date and time are the inputs to this function.

Example:

getAdjustedTimeWithCurrentDateTime(String offset, String dFormat)
getAdjustedTimeWithCurrentDateTime("-2.30", "mm-dd-yyyy")

Input Parameters: String dateTime, String offset, String dFormat
Return Type: String

getAdjustedTimeWithGivenDateAndTime
Returns the date and time after adding the specified offset to specified date and time in the
specified date/time format.

Example:

getAdjustedTimeWithGivenDateAndTime(String cuDate,String
cuTime,String offset, String dFormat)
getAdjustedTimeWithGivenDateAndTime("12-13-2014","12:15:00","-
2.30", "mm-dd-yyyy")

Input Parameters: String cuDate, String cuTime, String offset,
String dFormat
Return Type: String

addDaysToCurrentDateWithGivenFormat
Adds the number of days to the current date and returns the result in the specified format.

Example:

OUTSPCORELIB

Function Library Reference 9-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

addDaysToCurrentDateWithGivenFormat(String noOfDays, String
dFormat)
addDaysToCurrentDateWithGivenFormat("45", "mm-dd-yyyy")

Input Parameters: String noOfDays, String dFormat
Return Type: String

serverDate
Gets the server date.

Example:

serverDate()

Input Parameters: <none>
Return Type: String

serverTime
Gets the server time.

Example:

serverTime()

Input Parameters: <none>
Return Type: String

waitForTime
Waits for the specified time.

Example:

waitForTime(String strWaitTimeInMinutes)
waitForTime(“15”)

Input Parameters: String strWaitTimeInMinutes
Return Type: void

verifyLastBatchRun
Verifies if the batch is in execution in the last x minutes.

Example:

verifyLastBatchRun(String Batch_CD, String strMaXTimeToCheck)
verifyLastBatchRun("1234567890", "90")

Input Parameters: String Batch_CD, String strMaXTimeToCheck
Return Type: String

getCurrentOffsetTime
Gets the current offset time.

Example:

getCurrentOffsetTime(String cuDate, String cuTime, String
offset,String timeFormat)
getCurrentOffsetTime("12-13-2014", "12:30:00", "+2:30","mm-dd-
yyyy")

Input Parameters: String cuDate, String cuTime, String offset,
String timeFormat
Return Type: String

OUTSPCORELIB

Function Library Reference 9-6
Oracle Utilities Testing Accelerator User’s Guide for Cloud

addDaysToAGivenDate
Adds days to the provided date.

Example:

addDaysToAGivenDate(String date, String noOfDays)
addDaysToAGivenDate("12-13-2014", "19")

Input Parameters: String date, String noOfDays
Return Type: String

randomNumber
Gets the random number.

Example:

randomNumber()
Input Parameters: <none>
Return Type: String

getWaitConditionState
Waits for the specified time.

Example:

getWaitConditionState(long StartTime, float TimeInMinutes)
getWaitConditionState("12345L", "12.00")

Input Parameters: long StartTime, float TimeInMinutes
Return Type: boolean

setVariableValueUsingListIndex
Handles the resolving repeating elements in the response XML and retrieves the value(s) based on
the parameters passed. The parameters passed are global variable (gVar1) and index value.

Example:

setVariableValueUsingListIndex(String listVariableName,String
index)
setVariableValueUsingListIndex(“data1,data2,data3”, 2)

Input Parameters: String listVariableName: List values separated by
comma
String index: the index number to retrieve value
Return Type: String: Value

appendStrings
Appends strings provided in the parameters.

Example:

appendStrings (String strValue1, String strValue2, String
strValue3, String strValue4, String strValue5, String strValue6

Input Parameters: string1, string2, string3, string4, string5,
string6

Return Type: String

WSCOMMONLIB

Function Library Reference 9-7
Oracle Utilities Testing Accelerator User’s Guide for Cloud

getCurrentMonth
Gets the current month.

Example:

getCurrentMonth()

Input Parameters: none
Return Type: String

WSCOMMONLIB
This library performs common operations in the Oracle Utilities Testing Accelerator web services
testing, such as composing request, sending request, composing email summary, converting it to
HTML format, sending an email, and parsing WSDL.

Note: This library does not have any component development functions other
than the generateAndSendReport function that provides result reporting and
email capabilities to the user. For more details. refer to the Logging and Reporting
section in Chapter 6: Creating Components.

This section provides the functions included in the library, along with their usage details.

generateAndSendReport
Generates the HTML test execution report and sends the execution summary via email. The email
settings can be specified in the configuration.properties file available in the /etc directory of the
execution folder structure.

generateAndSendReport ()

Input Parameters: NA
Return Type: NA

WSVALIDATELIB
Use the WSVALIDATELIB function library to validate the test components (referred to as
verification points) in the components. The library covers validation routines for string and XML
elements in the returned response XML.

This section provides a list of functions in the library, along with the usage details.

elementListNotNull
Verifies if all the elements with the specified xpath in response are not null.

Example:

elementListNotNull(String xPath) elementNotNull(contact/
mobileNumber)

Input Parameters: String xPath
Return Type: void

elementListNull
Verifies if all the elements in response with the specified xpath are null.

Example:

elementListNull(String xPath) elementNotNull(contact/mobileNumber)

Input Parameters: String xPath
Return Type: void

WSVALIDATELIB

Function Library Reference 9-8
Oracle Utilities Testing Accelerator User’s Guide for Cloud

validateXpathOccurrenceCount
Verifies if the specified xpath occurs the specified number of times in the response.

Example:

validateXpathOccurenceCount (String xpath,String expectedCount)
validateXpathOccurenceCount(contact/mobileNumber,20)

Input Parameters: String xpath,String expectedCount
Return Type: void

elementNotNull
Verifies if the specified element in response is null.

Example:

elementNotNull(String responseTag)
elementNotNull(mobileNumber)

Input Parameters: String responseTag
Return Type: void

elementIsNull
Verifies if the specified element in response is not null.

Example:

elementIsNull (String responseTag)
elementIsNull (mobileNumber)

Input Parameters: String responseTag
Return Type: void

elementValueEquals
Verifies if the specified element value in response is equal to the provided value.

elementValueEquals(String responseTag, String expectedValue)
elementValueEquals(mobileNumber, "1234567890")

Input Parameters: String responseTag, String expectedValue
Return Type: void

elementValueNotEquals
Verifies if the specified element value in response is not equal to the provided value.

Example:

elementValueNotEquals(String responseTag, String expectedValue)
elementValueNotEquals (mobileNumber, "1234567890")

Input Parameters: String responseTag, String expectedValue
Return Type: void

elementValueGreaterThan
Verifies if the specified element value in response is greater than the provided value.

Example:

elementValueGreaterThan(String responseTag, String valueToCompare)
elementValueGreaterThan("count","5")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

WSVALIDATELIB

Function Library Reference 9-9
Oracle Utilities Testing Accelerator User’s Guide for Cloud

elementValueGreaterThanEqualTo
Verifies if the specified element value in response is greater than or equal to the provided value.

Example:

elementValueGreaterThanEqualTo(String responseTag,String
valueToCompare)
elementValueGreaterThanEqualTo("totalRecords", "50")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementValueLesserThan
Verifies if the specified element value in response is less than the provided value.

elementValueLesserThan(String responseTag,String valueToCompare)
elementValueLesserThan ("counter", "50")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementValueLesserThanEqualTo
Verifies if the specified element value in response is less than or equal to the provided value.

Example:

elementValueLesserThanEqualTo(String responseTag,String
valueToCompare)
elementValueLesserThanEqualTo ("attempts", "10")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementContains
Verifies if the specified element is available in the response.

Example:

elementContains(String responseTag,String valueToBeChecked)
elementContains("batchName", "F1-BILLING)

Input Parameters: String responseTag, String valueToCompare
Return Type: void

elementNotContains
Verifies if the specified element is not available in the response.

Example:

elementNotContains(String responseTag, String valueToBeChecked)
elementNotContains ("description", "billing")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

WSVALIDATELIB

Function Library Reference 9-10
Oracle Utilities Testing Accelerator User’s Guide for Cloud

reponseNotContains
Verifies if the specified value or element is not available in the response.

Example:

reponseNotContains(String value)
reponseNotContains("Failed")

Input Parameters: String responseTag, String valueToCompare
Return Type: void

responseContains
Verifies if the specified value or element is available in the response.

responseContains(String value)
responseContains("Exception")
Input Parameters: String responseTag, String valueToCompare
Return Type: void

Custom Libraries 10-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Chapter 10
Custom Libraries

This chapter focuses on creating custom libraries that include custom validation functions used
for component validation.

Note: Only Groovy script language custom libraries are supported. Due to
security constraints, only a few Groovy packages are allowed in custom
libraries.

• Creating/Updating Custom Libraries

• Using Custom Library Functions

Creating/Updating Custom Libraries

Custom Libraries 10-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating/Updating Custom Libraries
Make sure to have Administrator privileges to manage custom libraries.

To create a custom library:

1. Login to Oracle Utilities Testing Accelerator as an Administrator.

2. Navigate to the Administration tab and click Libraries on the left pane.

3. Enter the name of the new custom library in the Library Name field. Click Create Library.

4. From the Library Type drop-down list, select the library type being created. It is used only
for web services based requests, UI or REST requests, or all type of requests.

5. Click Create.

Note: This step only creates a definition of the library, the actual code
supporting/implementing the definition is expected to have been already
developed using an IDE like Eclipse or Groovy consoles. See the example at
the end of this section for more details.

6. Once a library is created, add the function definitions using “+Add”. The function definition
should specify the function name (Function), number of input parameters of the function
(Parameter Count), definition of parameters (as @param1 and @param2), comments and
description.

7. On the Create/Update Library page, click “+” in the Library Functions section. Add
functions exposed by the custom library and other details, such as parameters of the
functions.

8. Add separate rows for each exposed function in the custom library.

• Function: Function name in the custom library

• Parameter Count: Total number of parameters for the function. A function can have a
maximum of 6 parameters.

• Parameters: Name of the parameter(s). If more than one parameter exists, separate
them by a comma and should be named as @param1, @param2 ..@param6.

• Parameter Comments: Description about parameters, helps to show more information
about the parameters. If the function has more than one parameter, descriptions should
be separated by a comma.

• Description: Function description

9. Click Save.

10. Click Upload Library File to upload the Groovy script containing actual implementation of
the functions included.

11. Specify the package name of the custom library.

12. Select the file to be uploaded. Click Upload.

13. Click Confirm to overwrite any existing library with an updated version or a new library
being uploaded.

In case of any compilation issues in the custom library an error message is displayed. Rectify the
errors and re-upload.

Example: Creating a Groovy Library

To create a function to generate a random social security number as test data to create a person,
create a .groovy file with the function definition. The library name is “UTATEST” and the function
name is “generateSSN”. It takes an input prefix and returns a random set of digits prefixed with
the input value. Create a UTATEST.groovy file with the function’s implementation.

Using Custom Library Functions

Custom Libraries 10-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

The UTATEST.groovy contents are as follows:

package uta.oracle;

import java.util.ArrayList;

import java.util.List;

import com.oracle.utilities.core.plugin.FunctionalTestScript;

import com.oracle.utilities.core.lib.WSCOMMONLIB;

import java.util.logging.Logger;

import com.oracle.utilities.core.lib.OUTSPCORELIB;

public class UTATEST {

private static final Logger _logger =
Logger.getLogger(UTATEST.class.getName());

public String generateSSN(String prefix) throws Exception{

 Random random = new Random();

 int x = random.nextInt(900) + 100;

 int y = random.nextInt(90) + 10;

 int z=random.nextInt(9000) + 1000;

 String zz = x+"-"+y+"-"+z;

 return prefix+zz;

 }}

Below is the function definition in Oracle Utilities Testing Accelerator.

Click Upload Library File to upload the .groovy file. It can be plugged into any custom
component or the pre-validations and post-validations section of flow test data definition.

Using Custom Library Functions
After successfully uploading the custom library into Oracle Utilities Testing Accelerator use any of
the exposed custom library functions in any of their components/flows. It is similar to how the
built-in libraries are provided with Oracle Utilities Testing Accelerator.

Web Service Component Keywords A-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix A
Web Service Component Keywords

This chapter provides the list of keywords used in a web service based component.

• WS-SETWEBSERVICENAME

• WS-SETXMLELEMENT

• WS-SETXMLLISTELEMENT

• WS-SETVARIABLE

• WS-SETVARIABLEFROMRESPONSE

• WS-SETTRANSACTIONTYPE

• WS-LOGMESSAGE

• WS-CREATEWSREQUEST

• WS-PROCESSWSREQUEST

• WS-STARTPOLLWS

• WS-STOPPOLLWSIF

WS-SETWEBSERVICENAME

Web Service Component Keywords A-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

WS-SETWEBSERVICENAME
Sets the name of the application web service.

Use Case: Defines the web service to which the component’s web service request is sent. The
web service name is provided in the attribute values column during the component development.
This service name is appended with the WebContainerURL to form a complete WSDL URL for
processing the request. The WebContainerURL has to be specified in the flow runtime
configuration property file.

WS-SETXMLELEMENT
Sets the element (Xpath) value in the web service request using either a variable or a value.

Use Case: Enables the web service creation request (XML) with the element values populated by
setting each value for the defined element.

WS-SETXMLLISTELEMENT
Sets the repeating list element (Xpath) value in the web service request using either a variable or a
value.

Use Case: Enables the web service creation request (XML) with repeating list element values
populated by setting each value set for the defined element list. The values are provided from the
test data.

Usage Details Value

Keyword WS-SETWEBSERVICENAME

Display Name User Defined Display Name

Attribute Values Web Service Name

Usage Details Value

Keyword WS-SETXMLELEMENT

Display Name User Defined Display Name

Attribute Values Xpath of the element

Usage Details Value

Keyword WS-SETXMLLISTELEMENT

Display Name User Defined Display Name

Attribute Values Xpath of the element

WS-SETVARIABLE

Web Service Component Keywords A-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

WS-SETVARIABLE
Sets a value to a global variable.

Use Case: Used for setting a value to a global variable used across the flow for validations or for
setting XML elements. The values are provided from the test data.

WS-SETVARIABLEFROMRESPONSE
Used to retrieve the XML element value from the response and stores it in a global variable for
further processing.

Use Case: Enables use of a response value, such as ID from a component, as an input to a request
in another component.

WS-SETTRANSACTIONTYPE
Sets a value for the transaction type.

Use Case: Used to set a value to a transaction type variable used in the request XML to pass a
request for specific operations, such as ADD, UPDATE, READ, DELETE, etc. The transaction
type is provided from the test data.

WS-LOGMESSAGE
Used to set custom log messages in the execution results report.

Use Case: Provides the necessary extensibility to provide custom log messages for the generated
results report, such as to identify the start and completion of a transaction, etc.

Usage Details Value

Keyword WS-SETVARIABLE

Display Name User Defined Display Name

Output Parameters Variable Name

Usage Details Value

Keyword WS-SETVARIABLEFROMRESPONSE

Display Name User Defined Display Name

Attribute Values Xpath of the element in response

Output Parameters Variable Name

Usage Details Value

Keyword WS-SETTRANSACTIONTYPE

Display Name User Defined Display Name

Usage Details Value

Keyword WS-LOGMESSAGE

WS-CREATEWSREQUEST

Web Service Component Keywords A-4
Oracle Utilities Testing Accelerator User’s Guide for Cloud

WS-CREATEWSREQUEST
Creates a web service request XML and stores it in the “WSDLXML” global variable.

Use Case: Enables the manipulation of the web service XML request generated before
submitting it to the application for processing, giving greater flexibility in development.

WS-PROCESSWSREQUEST
Sends the web services request and receives the response from the application for the specified
WSDL name.

Use Case: Posts the generated XML request from WS-CREATEWSREQUEST to the
application and processes the response. This keyword performs the core process of the web
services based request-response model.

WS-STARTPOLLWS
Starts the polling of the web services request and receives the response from the application for
the specified WSDL name. It takes two parameters, the first is for the total time for which polling
should occur and the second is the interval between polls.

Use Case: Provides a means to run a loop to keep polling a web service for a specified time
measure or till a condition is met (specified in WS-STOPPOLLWSIF).

Display Name User Defined Value

Attribute Values Message

Usage Details Value

Usage Details Value

Keyword WS-CREATEWSREQUEST

Display Name User Defined Display Name

Attribute Values Web Service Name

Usage Details Value

Keyword WS-PROCESSWSREQUEST

Display Name User Defined Display Name

Attribute Values Web Service Name

Usage Details Value

Keyword WS-STARTPOLLWS

Display Name User Defined Display Name

Attribute Values User Defined Display Name

WS-STOPPOLLWSIF

Web Service Component Keywords A-5
Oracle Utilities Testing Accelerator User’s Guide for Cloud

WS-STOPPOLLWSIF
Indicates the end of the polling specified by WS-STARTPOLLWS.

Use Case: The condition to stop the poll can be specified here. The attribute takes the xpath of
the element against which the condition is to be compared. The condition is specified while
entering the test data. If the test data is just a string, say <val>, then polling would stop when
element value is <val>.

For example, if a web service needs to be polled unless the element BatchJobId is “ED”, the
attribute value should be set as the xpath of BatchJobId and the test data should be entered as
“ED”.

Similarly, if polling needs to continue as long as a certain value is returned, a “!” should be prefixed
to the value of test data. If we want to continue polling as long as the BatchJobId is “PD”, test
data should be “!PD” (the symbol ! indicates “not equals”). Similar conditions can be set for
greater than, less than, greater than equal to and less than equal to, by prefixing the test data with
“>”, “<“, “>=” and “<=” respectively.

Usage Details Value

Keyword WS- STOPPOLLWSIF

Display Name User Defined Display Name

Attribute Values Xpath of element

REST Component Keywords B-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix B
REST Component Keywords

This chapter provides the following REST component keywords:

• RS-SETREQUESTHEADER

• RS-SETENDPOINT

• RS-ARGUMENT

• RS-SETMETHOD

• RS-PROCESSRESTREQUEST

RS-SETREQUESTHEADER

REST Component Keywords B-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

RS-SETREQUESTHEADER
Sets the header in the defined REST request.

Use case: The attribute value takes the name of the request header.

RS-SETENDPOINT
Sets the endpoint for the REST request.

Use Case: Defines the static part of the application's REST endpoint.

RS-ARGUMENT
Sets the query parameter or the path parameter for the REST request.

Use Case: Used for setting the query parameter and path variable in the REST request. The
values are provided from the test data.

Usage Details Value

Keyword RS-SETREQUESTHEADER

Display Name User Defined Display Name

Attribute Values User Defined Header Name

Objects Valid No objects required

Usage Details Value

Keyword RS-SETENDPOINT

Display Name User Defined Display Name

Attribute Values User Defined End Point

Objects Valid No objects required

Usage Details Value

Keyword RS-ARGUMENT

Display Name User Defined Display Name

Attribute Values User Defined Query Parameter Name for
QueryParameter

None for PathVariable

Objects Valid QueryParameter - Appends the query parameter
name in the component definition and value
given in the test data to the REST end point.

PathVariable - Appends the user defined value
in test data to the REST end point.

RS-SETMETHOD

REST Component Keywords B-3
Oracle Utilities Testing Accelerator User’s Guide for Cloud

RS-SETMETHOD
Sets the method type for the REST request.

Use Case: Used to set the REST request method type.

RS-PROCESSRESTREQUEST
Sends the REST request and receives the response from the application for the specified REST.

Use Case: Used to send the REST request using the methods and data provided using the above
keywords.

Usage Details Value

Keyword RS-SETMETHOD

Display Name User Defined Display Name

Attribute Values None

Objects Valid GET - Creates a GET method to hit the REST
end point.

POST - Creates a POST method to hit the
REST end point.

Usage Details Value

Keyword RS-PROCESSRESTREQUEST

Display Name User Defined Display Name

Attribute Values None

Objects Valid No objects required

Setting Up Inbound Web Services C-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix C
Setting Up Inbound Web Services

The Oracle Utilities application-specific components are developed using the web services
method, and these components need the Inbound Web Services to be defined in the application.

This chapter includes the following sections:

• Creating Inbound Web Services

• Importing Inbound Web Services

• Searching Inbound Web Services

Creating Inbound Web Services

Setting Up Inbound Web Services C-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Creating Inbound Web Services
To create an Inbound Web Service, follow these steps:

1. Login to the Oracle Utilities application.

2. Navigate to Admin > Integration > Inbound Web Service > Add.

3. On the Inbound Web Service page, enter the Inbound Web Service Name.

4. Enter the Description and the Detailed Description.

5. Select the appropriate trace,debug.active,post error option from the drop down.

6. Select the Annotation.

7. Enter the Operation Name.

8. Select the Schema Type, Schema Name, and Transaction Type.

9. Click Save.

Importing Inbound Web Services
To import an Inbound Web Service into the Oracle Utilities application, follow these steps:

Note: Ensure the exported Inbound Web Services are available in the local
machine.

1. Login to the Oracle Utilities application.

2. Click Admin > Implementation Tools > Bundle Import > Add.

3. On the Bundle Import page, enter the reference and detailed description.

4. Copy paste the bundle details from the Inbound Web Services bundle.

5. Click Apply bundle. The “Imported Successfully” message appears in the Message text
column.

Searching Inbound Web Services
To search an Inbound Web Service in an Oracle Utilities application, follow these steps:

1. Login to the Oracle Utilities application.

2. Navigate to Admin > Integration > Inbound Web Service > Search.

3. On the Inbound Web Service Search page, enter the name of the required web service in
the Name field.

4. Enter the description in the Description field.

5. Click Refresh.

The web service, if found, is retrieved and displayed.

Generating Re-runnable Test Data D-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix D
Generating Re-runnable Test Data

To run a flow multiple times, some fields might need unique values for each execution. Instead of
changing the value in the databank, we can enable re-runnable test data so that the test data is
generated randomly every time the flow is executed.

This chapter describes the options available on how the random data generated can be configured.

Requirement Test Data
Structure Example Test Data Generated String

A specified number of random lower
case characters need to be appended
to the given test data.

<int>?data 4?van
3?appl
6?AC
2?
?

vancara
applxtg
ACkdbvdl
nd
ufdbn

A specified number of random upper
case characters need to be appended
to the given test data.

<int>U?data 4U?van
3u?appl
6U?AC
2U?
U?

vanCARA
applXTG
ACKDBVDL
ND
UFDBN

A specified number of random lower
case characters need to be prefixed to
the given test data.

<int>B?data 4B?van
3b?appl
6B?AC
2B?
B?

caravan
xtgappl
kdbvdlAC
nd
ufdbn

A specified number of random upper
case characters need to be prefixed to
the given test data.

<int>BU?data 4BU?van
3bu?appl
6Bu?AC
2BU?
BU?

CARAvan
XTGappl
KDBVDLAC
ND
UFDBN

A specified number of random
numbers need to prefixed to the
given test data

<int> d?data d?ABCD
2d?ABCD

ABCD32940
ABCD43

A specified number of random
numbers need to suffixed to the
given test data

<int> bd?data bd?ABCD
4bd?ABCD

32940ABCD
1534ABCD

Generating Re-runnable Test Data

Generating Re-runnable Test Data D-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Configuring Authentication for Web Service Requests E-1
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Appendix E
Configuring Authentication for Web Service

Requests

Based on the version of the Oracle Utilities application (and the Oracle Utilities Application
Framework), the web service requests are expected to include additional information apart from
the user credentials. In order to support this, two new properties have been introduced in the
configuration.properties file using which users can specify the authentication used by the
environment.

For the latest versions of Oracle Utilities applications, a timestamp is expected in the web service
requests. For these environments, specify the header type as TIMESTAMP, the other property
gStrTimeToLive specifies the validity of the request in seconds.

#Header Type
gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval
gStrTimeToLive=120

In cases where the configuration.properties contains details of more than one environment, prefix
the header property with the application string.

#Header Type
gStrUAT_gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval
gStrUAT_gStrTimeToLive=120

For the older versions of Oracle Utilities applications, only the user credentials are expected. So
specify the header as USERTOKEN.

#Header Type
gStrApplicationHeaderType=USERTOKEN

In cases where there is a mix of environments that use the new header type and old header type in
the same configuration.properties file, specify the properties for individual environments as
follows.

#Header Type
gStrUAT_gStrApplicationHeaderType=TIMESTAMP
#Timestamp interval
gStrUAT_gStrTimeToLive=120

#Header Type
gStrINT_gStrApplicationHeaderType=USERTOKEN

Configuring Authentication for Web Service Requests

Configuring Authentication for Web Service Requests E-2
Oracle Utilities Testing Accelerator User’s Guide for Cloud

Note: The user credentials are sent as digest by default. To send them as plain
text, set the property mentioned needs to ‘true’.

gStrSendPasswordAsText = true

	User’s Guide for Cloud
	Preface
	Audience
	Prerequisite Knowledge
	Abbreviations
	Related Documents
	Conventions

	Chapter 1
	Overview
	Introduction
	Terminology
	Application Architecture
	Application Features
	Supported Oracle Utilities Applications

	Chapter 2
	Oracle Utilities Testing Accelerator Features
	Administration
	Components
	Dashboard
	Notifications

	Flows
	Flow Sets
	Tools

	Chapter 3
	Developing Metadata Driven Web Service Based Test Automation
	Metadata Driven Automation Development Methodology
	Planning
	Design and Development
	Test Execution

	Configuring the Automation Development Environment
	Setting Up Flow and User Configuration Sets
	Setting Up Application under Test

	Chapter 4
	Oracle Utilities Testing Accelerator Administration
	Overview
	Administration Tab
	Managing Releases
	Managing Portfolios
	Managing Products
	Managing Modules
	Custom Content Upgrade
	Purging Flow Execution Data

	Chapter 5
	Creating Components
	Component Structure
	Component Lifecycle
	Locking/Unlocking Components

	Component Types
	Web Service Based Components
	REST Web Service Components

	Creating Web Service Based Components
	Creating a Component
	Creating a Component Definition
	Defining Default Data at Component Level
	Setting Up Operation Name for a Web Service
	Using Runtime Variables in Components
	file: prefix - csv file
	Using Function Libraries
	Resolving the Repeating Elements in Response XML
	Adding Validations
	Logging and Reporting
	Handling the List Elements

	Creating REST Web Service Components
	Creating a REST Service Component Definition
	Entering Test Data for a REST Component

	Copying Components

	Chapter 6
	Creating Test Flows
	Creating Flows
	Creating Flows By Dragging-and-Dropping Components
	Adding Test Data in a Flow
	Annotating Components in a Flow

	Creating Scenarios
	Creating Flow Modules
	Using Global Variables
	Flow Lifecycle
	Locking/Unlocking Flows
	Copying Flows
	Reordering Components in a Flow
	Copying Test Data from One Component to Another in a Flow
	Fetching Component Test Data from an Utilities Application
	Bulk Replacing Component Test Data in Multiple Flows
	Flow Subroutines
	This figure shows the Edit Test Data screen for a subroutine that outputs a personId and accountId. New variables, personId and accountId are created and mapped to the outputs of the subroutine, which are gVarAccountId1 and gVarPersonId1. Executing S...
	Component Test Data Sets
	Creating Reference Test Data for a Component
	Loading Test Data from a Component Test Data Set
	Flow Test Data Sets

	Adding the Email Capabilities to Flows
	Support for Integration Flows
	Executing Test Flows
	Executing Test Flows Using a Browser
	Iterative Flow Execution
	Stopping Flow Execution on Validation Failure
	Viewing Flow Execution Details
	Viewing Flow Execution Summary Report
	Conversational Test Data Management
	Runtime Configuration for Flow Execution

	Chapter 7
	Creating Test Flow Sets
	Creating Flow Sets
	Adding Flows to a Flow Set
	Deleting Flows from a Flow Set
	Executing Flow Sets
	Aborting Flow Set Execution
	Exporting Flow Sets
	Viewing Flow Set Execution History
	Viewing Flow Set Execution Summary Report

	Chapter 8
	Development Accelerator Tools
	Component Export Tool
	Flow Export Tool
	Component/ Flow Import Tool
	Component Generation Tool

	Chapter 9
	Function Library Reference
	CLOUDLIB
	OUTSPCORELIB
	WSCOMMONLIB
	WSVALIDATELIB

	Chapter 10
	Custom Libraries
	Creating/Updating Custom Libraries
	Using Custom Library Functions

	Appendix A
	Web Service Component Keywords
	WS-SETWEBSERVICENAME
	WS-SETXMLELEMENT
	WS-SETXMLLISTELEMENT
	WS-SETVARIABLE
	WS-SETVARIABLEFROMRESPONSE
	WS-SETTRANSACTIONTYPE
	WS-LOGMESSAGE
	WS-CREATEWSREQUEST
	WS-PROCESSWSREQUEST
	WS-STARTPOLLWS
	WS-STOPPOLLWSIF

	Appendix B
	REST Component Keywords
	RS-SETREQUESTHEADER
	RS-SETENDPOINT
	RS-ARGUMENT
	RS-SETMETHOD
	RS-PROCESSRESTREQUEST

	Appendix C
	Setting Up Inbound Web Services
	Creating Inbound Web Services
	Importing Inbound Web Services
	Searching Inbound Web Services

	Appendix D
	Generating Re-runnable Test Data
	Appendix E
	Configuring Authentication for Web Service Requests

