
Oracle8 i

Application Developer’s Guide - Large Objects (LOBs)

Release 8.1.5

February, 1999

Part No. A68004-01

Oracle8i Application Developer’s Guide - Large Objects (LOBs), Release 8.1.5

Part No. A68004-01

Copyright © 1999, Oracle Corporation. All rights reserved.

Primary Author: Denis Raphaely, Susan Kotsovolos

Contributing Authors: Rosanne Park, John Gibb

Contributors: Michael Chiocca, R. Govindarajan, Gopal Kirsur, Anindo Roy

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be the licensee’s responsibility to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and dis-
closure and are also protected by copyright, patent, and other intellectual and industrial property laws.
Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these Pro-
grams, no part of these Programs may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on behalf
of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial com-
puter software" and use, duplication, and disclosure of the Programs including documentation, shall be
subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Pro-
grams delivered subject to the Federal Acquisition Regulations are "restricted computer software" and
use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19, Com-
mercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065.

Oracle, Pro*Ada, Pro*COBOL, Pro*FORTRAN, SQL*Loader, SQL*Net and SQL*Plus are registered trade-
marks of Oracle Corporation, Redwood City, California.

Designer/2000, Developer/2000, Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle8i, Oracle Forms,
Oracle Parallel Server, PL/SQL, Pro*C, Pro*C/C++ and Trusted Oracle are trademarks of Oracle Corpora-
tion, Redwood City, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Send Us Your Comments ... xxiii

Preface ... xxv

Use Case Diagrams... xxx

1 Introduction to Working With LOBs

The LOB Datatype .. 1-2
Internal LOBs .. 1-2
External LOBs (BFILEs) ... 1-2

Varying-Width Character Data ... 1-3
DBMS_LOB Package .. 1-3
OCI.. 1-4

LOBs in Comparison to LONG and LONG RAW Types .. 1-5
LOB Restrictions ... 1-6
DBA Actions Required Prior to Working with LOBs .. 1-8

Set Maximum Number of Open BFILEs ... 1-8
Using SQL DML for Basic Operations on LOBs .. 1-8
Programmatic Environments for Operating on LOBs ... 1-9

Comparison of Six Interfaces .. 1-10
Using the DBMS_LOB Package for Working With LOBs... 1-12
Using the Oracle Call Interface (OCI) with LOBs.. 1-15
Using C++ (Pro*C/C++) to Work with LOBs .. 1-23
Using COBOL (Pro*COBOL) to Work with LOBs... 1-26
Using Visual Basic (OO4O) to Work with LOBs.. 1-29
iii

Using Java (JDBC) to Work with LOBs ... 1-34
An Example Application ... 1-39

The Multimedia Content-Collection System .. 1-39
Applying an Object-Relational Design to the Application ... 1-41
The Structure of the Multimedia_tab Table .. 1-42

The Most Basic Operation: Getting and Using the LOB Locator .. 1-47
LOB Value and Locators .. 1-47
LOB Locator Operations .. 1-47
LOB Locators and Transaction Boundaries .. 1-49
Open, Close and IsOpen Interfaces for Internal LOBs .. 1-52

Indexing a LOB Column.. 1-55

2 Advanced Topics

Read-Consistent Locators .. 2-2
Updated locators... 2-5
LOB Bind Variables .. 2-9
LOB locators cannot span transactions.. 2-12

LOBs in the Object Cache ... 2-14
LOB Buffering Subsystem .. 2-14

Advantages of LOB Buffering... 2-15
Considerations in the Use of LOB Buffering .. 2-15
LOB Buffering Operations... 2-17
Example of LOB Buffering .. 2-21

User Guidelines for Best Performance Practices .. 2-24
Working with Varying-Width Character Data... 2-25
LOBs in Index Organized Tables ... 2-25

3 Internal Persistent LOBs

Use Case Model: Internal Persistent LOBs .. 3-2
Three Ways to Create a Table Containing a LOB.. 3-6
Issues to Consider in Creating Tables that Will Contain LOBs... 3-7

Initializing Internal LOBs to NULL or Empty.. 3-7
Stipulating Tablespace and Storage Characteristics for Internal Lobs 3-8

CREATE a Table Containing One or More LOB Columns ... 3-14
Scenario .. 3-14
iv

Example: Create a Table Containing One or More LOB Columns using SQL DDL 3-15
CREATE a Table Containing an Object Type with a LOB Attribute 3-18

Scenario .. 3-18
Example: Create a Table Containing an Object Type with a LOB Attribute Using SQL DDL ..

3-19
 CREATE a Table with a Nested Table Containing a LOB.. 3-22

Scenario .. 3-22
Example: Create a Table with a Nested Table Containing a LOB Using SQL DDL 3-23

Three Ways Of Inserting One or More LOB Values into a Row.. 3-25
INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() ... 3-26

Making a LOB Column Non-Null.. 3-27
Example: Insert a Value by means of EMPTY_CLOB() / EMPTY_BLOB() using SQL ... 3-27

INSERT a Row Containing a LOB as SELECT.. 3-28
Scenario .. 3-28
Example: Insert a Row by Selecting from Another Table Using SQL DML 3-29

INSERT a Row by Initializing a LOB Locator Bind Variable .. 3-30
Scenario .. 3-30
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using SQL DML ... 3-31
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C (OCI) 3-31
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Pro*COBOL 3-33
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)

3-35
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Visual Basic

(OO4O) 3-36
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Java (JDBC) 3-36

Load Data into an Internal LOB (BLOB, CLOB, NCLOB) .. 3-38
Scenario .. 3-38
LOB Data in Predetermined Size Fields .. 3-39
LOB Data in Delimited Fields... 3-39
LOB Data in Length-value Pair Fields... 3-40
One LOB per file ... 3-41
Predetermined Size LOBs.. 3-42
Delimited LOBs... 3-43
Length-Value Pair Specified LOBs... 3-44

Load a LOB with Data from a BFILE .. 3-46
Character Set Conversion .. 3-47
v

Scenario .. 3-47
Example: Load a LOB with Data from a BFILE Using the DBMS_LOB Package.............. 3-47
Example: Load a LOB with Data from a BFILE Using C (OCI) ... 3-48
Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL).................. 3-50
Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++) 3-52
Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)..................... 3-53
Example: Load a LOB with Data from a BFILE Using Java (JDBC) 3-54

See If a LOB Is Open .. 3-56
Scenario .. 3-56
Example: See If a LOB Is Open Using PL/SQL.. 3-57
Example: See If a LOB Is Open Using C (OCI) ... 3-57
Example: See If a LOB Is Open Using COBOL (Pro*COBOL) ... 3-59
Example: See If a LOB Is Open Using C++ (Pro*C/C++)... 3-60
Example: See If a LOB Is Open Using Visual Basic (OO4O) .. 3-61
Example: See If a LOB Is Open Using Java (JDBC).. 3-61

Copy LONG to LOB ... 3-64
Scenario .. 3-64
Example: Copy Long to LOB Using SQL .. 3-65

Checkout a LOB... 3-68
Streaming Mechanism.. 3-68
Scenario .. 3-69
Example: CheckOut a LOB Using PL/SQL (DBMS_LOB Package).................................... 3-69
Example: CheckOut a LOB Using C (OCI) ... 3-70
Example: CheckOut a LOB Using COBOL (Pro*COBOL).. 3-72
Example: CheckOut a LOB Using C++ (Pro*C/C++) ... 3-74
Example: CheckOut a LOB Using Visual Basic (OO4O)... 3-76
Example: CheckOut a LOB Using Java (JDBC) .. 3-77

Checkin a LOB... 3-79
Streaming Mechanism.. 3-79
Scenario .. 3-80
Example: Checkin a LOB Using PL/SQL (DBMS_LOB Package) 3-80
Example: Checkin a LOB Using C (OCI)... 3-81
Example: Checkin a LOB Using COBOL (Pro*COBOL) ... 3-84
Example: Checkin a LOB Using C++ (Pro*C/C++)... 3-87
Example: Checkin a LOB Using Visual Basic (OO4O) .. 3-89
vi

Example: Checkin a LOB Using Java (JDBC) ... 3-91
Display the LOB Data .. 3-93

Streaming Mechanism ... 3-94
Scenario .. 3-94
Example: Display the LOB Data Using PL/SQL ... 3-94
Example: Display the LOB Data Using C (OCI) .. 3-95
Example: Display the LOB Data Using COBOL (Pro*COBOL)... 3-97
Example: Display the LOB Data Using C++ (Pro*C/C++) .. 3-99
Example: Display the LOB Data Using Visual Basic (OO4O).. 3-100
Example: Display the LOB Data Using Java (JDBC) ... 3-101

Read Data from the LOB ... 3-104
Stream Read... 3-105
Chunksize .. 3-105
Scenario .. 3-106
Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package) 3-106
Example: Read Data from a LOB Using C (OCI) ... 3-107
Example: Read Data from a LOB Using COBOL (Pro*COBOL).. 3-109
Example: Read Data from a LOB Using C++ (Pro*C/C++) ... 3-111
Example: Read Data from a LOB Using Visual Basic (OO4O) .. 3-112
Example: Read Data from a LOB Using Java (JDBC) .. 3-112

Read a Portion of the LOB (substr) ... 3-115
Scenario .. 3-116
Example: Read a Portion of the LOB (substr) Using PL/SQL (DBMS_LOB Package)... 3-116
Example: Read a Portion of the LOB (substr) Using COBOL (Pro*COBOL)................... 3-117
Example: Read a Portion of the LOB (substr) Using C++ (Pro*C/C++) 3-118
Example: Read a Portion of the LOB (substr) Using Visual Basic (OO4O)...................... 3-120
Example: Read a Portion of the LOB (substr) Using Java (JDBC) 3-120

Compare All or Part of Two LOBs ... 3-123
Scenario .. 3-123
Example: Compare All or Part of Two LOBs Using PL/SQL (DBMS_LOB Package) ... 3-124
Example: Compare All or Part of Two LOBs Using COBOL (Pro*COBOL) 3-125
Example: Compare All or Part of Two LOBs Using C++ (Pro*C/C++)........................... 3-127
Example: Compare All or Part of Two LOBs Using Visual Basic (OO4O) 3-128
Example: Compare All or Part of Two LOBs Using Java (JDBC)...................................... 3-128

See If a Pattern Exists in the LOB (instr) .. 3-131
vii

Scenario .. 3-132
Example: See If a Pattern Exists in the LOB (instr) Using PL/SQL (DBMS_LOB Package)

3-132
Example: See If a Pattern Exists in the LOB (instr) Using COBOL (Pro*COBOL) 3-133
Example: See If a Pattern Exists in the LOB (instr) Using C++ (Pro*C/C++).................. 3-134
Example: See If a Pattern Exists in the LOB (instr) Using Visual Basic (OO4O) 3-136
Example: See If a Pattern Exists in the LOB (instr) Using Java (JDBC)............................. 3-136

Get the Length of a LOB .. 3-138
Scenario .. 3-138
Example: Get the Length of a LOB Using PL/SQL (DBMS_LOB Package)..................... 3-139
Example: Get the Length of a LOB Using C (OCI)... 3-139
Example: Get the Length of a LOB Using COBOL (Pro*COBOL)..................................... 3-141
Example: Get the Length of a LOB Using C++ (Pro*C/C++) .. 3-142
Example: Get the Length of a LOB Using Visual Basic (OO4O).. 3-143
Example: Get the Length of a LOB Using Java (JDBC) ... 3-144

Copy All or Part of a LOB to another LOB... 3-146
Locking the Row Prior to Updating... 3-146
Scenario .. 3-147
Example: Copy All or Part of a LOB to another LOB Using PL/SQL (DBMS_LOB Package)...

3-147
Example: Copy All or Part of a LOB to another LOB Using C (OCI)................................ 3-148
Example: Copy All or Part of a LOB to another LOB Using COBOL (Pro*COBOL) 3-150
Example: Copy All or Part of a LOB to another LOB Using C++ (Pro*C/C++) 3-152
Example: Copy All or Part of a LOB to another LOB Using Visual Basic (OO4O)......... 3-154
Example: Copy All or Part of a LOB to another LOB Using Java (JDBC) 3-154

Copy a LOB Locator.. 3-157
Scenario .. 3-157
Example: Copy a LOB Locator Using PL/SQL .. 3-158
Example: Copy a LOB Locator Using C (OCI) ... 3-158
Example: Copy a LOB Locator Using COBOL (Pro*COBOL).. 3-160
Example: Copy a LOB Locator Using C++ (Pro*C/C++) ... 3-161
Example: Copy a LOB Locator Using Visual Basic (OO4O)... 3-162
Example: Copy a LOB Locator Using Java (JDBC) .. 3-163

See If One LOB Locator Is Equal to Another... 3-165
Scenario .. 3-165
Example: See If One LOB Locator Is Equal to Another Using C (OCI) 3-166
viii

Example: See If One LOB Locator Is Equal to Another Using C++ (Pro*C/C++) 3-167
Example: See If One LOB Locator Is Equal to Another Using Java (JDBC) 3-169

See If a LOB Locator Is Initialized .. 3-171
Scenario .. 3-171
Example: See If a LOB Locator Is Initialized Using C (OCI) .. 3-172
Example: See If a LOB Locator Is Initialized Using C++ (Pro*C/C++)............................ 3-173

Get Character Set ID .. 3-175
Scenario .. 3-175
Example: Get Character Set ID Using C (OCI)... 3-176

Get Character Set Form.. 3-178
Scenario .. 3-178
Example: Get Character Set Form Using C (OCI).. 3-179

Append One LOB to Another... 3-181
Locking the Row Prior to Updating... 3-182
Scenario .. 3-182
Example: Append One LOB to Another Using PL/SQL (DBMS_LOB Package) 3-182
Example: Append One LOB to Another Using C (OCI) ... 3-183
Example: Append One LOB to Another Using COBOL (Pro*COBOL) 3-185
Example: Append One LOB to Another Using C++ (Pro*C/C++)................................... 3-186
Example: Append One LOB to Another Using Visual Basic (OO4O) 3-187
Example: Append One LOB to Another Using Java (JDBC).. 3-188

Write Append to a LOB ... 3-191
Writing Singly or Piecewise .. 3-191
Locking the Row Prior to Updating... 3-192
Scenario .. 3-192
Example: Write Append to a LOB Using PL/SQL.. 3-192
Example: Write Append to a LOB Using C (OCI) ... 3-193
Example: Write Append to a LOB Using COBOL (Pro*COBOL)...................................... 3-195
Example: Write Append to a LOB Using C++ (Pro*C/C++) ... 3-196
Example: Write Append to a LOB Using Visual Basic (OO4O) .. 3-197
Example: Write Append to a LOB Using Java (JDBC) .. 3-197

Write Data to a LOB.. 3-200
Stream Write.. 3-201
Chunksize .. 3-201
Locking the Row Prior to Updating... 3-201
ix

Scenario .. 3-202
Example: Write Data to a LOB Using the DBMS_LOB Package.. 3-202
Example: Write Data to a LOB Using C (OCI).. 3-203
Example: Write Data to a LOB Using COBOL (Pro*COBOL) .. 3-207
Example: Write Data to a LOB Using C++ (Pro*C/C++) ... 3-209
Example: Write Data to a LOB Using Visual Basic (OO4O)... 3-212
Example: Write Data to a LOB Using Java (JDBC) .. 3-213

Trim the LOB Data .. 3-216
Locking the Row Prior to Updating... 3-217
Scenario .. 3-217
Example: Trim the LOB Data Using PL/SQL (DBMS_LOB Package) 3-217
Example: Trim the LOB Data Using C (OCI).. 3-218
Example: Trim the LOB Data Using COBOL (Pro*COBOL) .. 3-219
Example: Trim the LOB Data Using C++ (Pro*C/C++).. 3-221
Example: Trim the LOB Data Using Visual Basic (OO4O) ... 3-223
Example: Trim the LOB Data Using Java (JDBC)... 3-223

Erase Part of a LOB ... 3-226
Locking the Row Prior to Updating... 3-227
Scenario .. 3-227
Example: Erase Part of a LOB Using PL/SQL (DBMS_LOB Package) 3-227
Example: Erase Part of a LOB Using C (OCI) ... 3-228
Example: Erase Part of a LOB Using COBOL (Pro*COBOL) ... 3-229
Example: Erase Part of a LOB Using C++ (Pro*C/C++)... 3-231
Example: Erase Part of a LOB Using Visual Basic (OO4O) .. 3-232
Example: Erase Part of a LOB Using Java (JDBC).. 3-232

Enable LOB Buffering.. 3-235
Scenario .. 3-236
Example: Enable LOB Buffering Using C (OCI)... 3-236
Example: Enable LOB Buffering Using COBOL (Pro*COBOL) ... 3-236
Example: Enable LOB Buffering Using C++ (Pro*C/C++) .. 3-238
Example: Enable LOB Buffering Using Visual Basic (OO4O).. 3-239

Flush Buffer.. 3-241
Scenario .. 3-242
Example: Flush Buffer Using C (OCI).. 3-242
Example: Flush Buffer Using COBOL (Pro*COBOL) .. 3-242
x

Example: Flush Buffer Using C++ (Pro*C/C++) ... 3-244
Example: Flush Buffer Using Visual Basic (OO4O)... 3-245

Disable LOB Buffering .. 3-246
Scenario .. 3-247
Example: Disable LOB Buffering Using C (OCI) ... 3-247
Example: Disable LOB Buffering Using COBOL (Pro*COBOL).. 3-249
Example: Disable LOB Buffering Using C++ (Pro*C/C++) ... 3-251
Example: Disable LOB Buffering Using Visual Basic (OO4O)... 3-252

Three Ways to Update a LOB.. 3-254
UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()... 3-255

Scenario .. 3-256
Example: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() Using SQL......... 3-256

UPDATE as SELECT .. 3-257
Scenario .. 3-257
Example: Update as Select Using SQL DML.. 3-257

UPDATE by Initializing a LOB Locator Bind Variable ... 3-258
Scenario .. 3-258
Example: Update by Initializing a LOB Locator Bind Variable Using SQL DML 3-259
Example: Update by Initializing a LOB Locator Bind Variable Using C (OCI) 3-259
Example: Update by Initializing a LOB Locator Bind Variable Using COBOL (Pro*COBOL)..

3-261
Example: Update by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)

3-262
Example: Update by Initializing a LOB Locator Bind Variable Using Visual Basic (OO4O).....

3-263
Example: Update by Initializing a LOB Locator Bind Variable Using Java (JDBC) 3-264

DELETE the Row of a Table Containing a LOB ... 3-266
Scenario .. 3-266
Example: Delete a LOB Using SQL DML.. 3-267

4 Temporary LOBs

Use Case Model: Internal Temporary LOBs .. 4-2
Programmatic Environments.. 4-5
The Location of Temporary LOBs.. 4-6
The Lifetime and Duration of Temporary LOBs.. 4-6
xi

Memory Handling .. 4-6
Locators and Semantics.. 4-7
Security Issues with Temporary LOBs .. 4-9
Managing Temporary LOBs.. 4-10

Create a Temporary LOB ... 4-11
Scenario .. 4-11
Example: Create a Temporary LOB Using PL/SQL (DBMS_LOB Package) 4-12
Example: Create a Temporary LOB Using C (OCI) ... 4-12
Example: Create a Temporary LOB Using COBOL (Pro*COBOL) 4-14
Example: Create a Temporary LOB Using C++ (Pro*C/C++)... 4-16

See If a LOB is Temporary... 4-18
Scenario .. 4-18
Example: See If a LOB is Temporary Using PL/SQL (DBMS_LOB Package) 4-19
Example: See If a LOB is Temporary Using C (OCI) ... 4-19
Example: See If a LOB is Temporary Using COBOL (Pro*COBOL) 4-20
Example: See If a LOB is Temporary Using C++ (Pro*C/C++)... 4-21

Free a Temporary LOB ... 4-23
Scenario .. 4-23
Example: Free a Temporary LOB Using PL/SQL (DBMS_LOB Package) 4-24
Example: Free a Temporary LOB Using C (OCI)... 4-24
Example: Free a Temporary LOB Using COBOL (Pro*COBOL) ... 4-25
Example: Free a Temporary LOB Using C++ (Pro*C/C++)... 4-26

Load a Temporary LOB with Data from a BFILE .. 4-28
Scenario .. 4-28
Example: Load a Temporary LOB with Data from a BFILE Using PL/SQL (DBMS_LOB

Package) 4-29
Example: Load a Temporary LOB with Data from a BFILE Using C (OCI) 4-30
Example: Load a Temporary LOB with Data from a BFILE Using COBOL (Pro*COBOL)........

4-32
Example: Load a Temporary LOB with Data from a BFILE Using C++ (Pro*C/C++) 4-33

See If a Temporary LOB Is Open ... 4-36
Scenario .. 4-36
Example: See If a Temporary LOB Is Open Using PL/SQL... 4-37
Example: See If a Temporary LOB Is Open Using C (OCI) .. 4-37
Example: See If a Temporary LOB Is Open Using COBOL (Pro*COBOL) 4-38
Example: See If a Temporary LOB Is Open Using C++ (Pro*C/C++)................................ 4-40
xii

Display the Temporary LOB Data ... 4-42
Scenario .. 4-43
Example: Display the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)...... 4-43
Example: Display the Temporary LOB Data Using C (OCI).. 4-44
Example: Display the Temporary LOB Data Using COBOL (Pro*COBOL) 4-47
Example: Display the Temporary LOB Data Using C++ (Pro*C/C++) 4-49

Read Data from a Temporary LOB .. 4-52
Stream Read... 4-53
Scenario .. 4-53
Example: Read Data from a Temporary LOB Using PL/SQL (DBMS_LOB Package) 4-54
Example: Read Data from a Temporary LOB Using C (OCI) .. 4-54
Example: Read Data from a Temporary LOB Using COBOL (Pro*COBOL)..................... 4-57
Example: Read Data from a Temporary LOB Using C++ (Pro*C/C++) 4-59

Read a Portion of the Temporary LOB (substr)... 4-61
Scenario .. 4-62
Example: Read a Portion of the Temporary LOB (substr) Using PL/SQL (DBMS_LOB

Package) 4-62
Example: Read a Portion of the Temporary LOB (substr) Using COBOL (Pro*COBOL) 4-62
Example: Read a Portion of the Temporary LOB (substr) Using C++ (Pro*C/C++) 4-65

Compare All or Part of Two (Temporary) LOBs ... 4-67
Scenario .. 4-68
Example: Compare All or Part of Two (Temporary) LOBs Using PL/SQL (DBMS_LOB

Package) 4-68
Example: Compare All or Part of Two (Temporary) LOBs Using COBOL (Pro*COBOL).........

4-69
Example: Compare All or Part of Two (Temporary) LOBs Using C++ (Pro*C/C++) 4-71

See If a Pattern Exists in a Temporary LOB (instr) ... 4-74
Scenario .. 4-75
Example: See If a Pattern Exists in a Temporary LOB (instr) Using PL/SQL (DBMS_LOB

Package) 4-75
Example: See If a Pattern Exists in a Temporary LOB (instr) Using COBOL (Pro*COBOL)......

4-76
Example: See If a Pattern Exists in a Temporary LOB (instr) Using C++ (Pro*C/C++) .. 4-78

Get the Length of a Temporary LOB ... 4-80
Scenario .. 4-81
Example: Get the Length of a Temporary LOB Using PL/SQL (DBMS_LOB Package).. 4-81
xiii

Example: Get the Length of a Temporary LOB Using C (OCI).. 4-82
Example: Get the Length of a Temporary LOB Using COBOL (Pro*COBOL) 4-84
Example: Get the Length of a Temporary LOB Using C++ (Pro*C/C++) 4-86

Copy All or Part of One (Temporary) LOB to Another.. 4-88
Scenario .. 4-88
Example: Copy All or Part of One (Temporary) LOB to Another Using PL/SQL (DBMS_

LOB Package) 4-89
Example: Copy All or Part of One (Temporary) LOB to Another Using C (OCI)............. 4-90
Example: Copy All or Part of One (Temporary) LOB to Another Using COBOL

(Pro*COBOL) 4-93
Example: Copy All or Part of One (Temporary) LOB to Another Using C++ (Pro*C/C++)

4-95
Copy a LOB Locator for a Temporary LOB .. 4-98

Scenario .. 4-98
Example: Copy a LOB Locator (Temporary LOBs) Using PL/SQL.................................... 4-99
Example: Copy a LOB Locator for a Temporary LOB Using C (OCI) 4-100
Example: Copy a LOB Locator for a Temporary LOB Using COBOL (Pro*COBOL)..... 4-102
Example: Copy a LOB Locator for a Temporary LOB Using C++ (Pro*C/C++) 4-104

See If One LOB Locator for a Temporary LOB Is Equal to Another 4-107
Scenario .. 4-107
Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C (OCI) ..

4-108
Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C++

(Pro*C/C++) 4-109
See If a LOB Locator for a Temporary LOB Is Initialized ... 4-111

Scenario .. 4-111
Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C (OCI) 4-112
Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C++ (Pro*C/C++) ..

4-112
Get Character Set ID of a Temporary LOB... 4-114

Scenario .. 4-115
Example: Get Character Set ID of a Temporary LOB Using C (OCI)................................ 4-115

Get Character Set Form of a Temporary LOB .. 4-116
Scenario .. 4-117
Example: Get Character Set Form of a Temporary LOB Using C (OCI)........................... 4-117

Append One (Temporary) LOB to Another ... 4-118
xiv

Scenario .. 4-119
Example: Append One (Temporary) LOB to Another Using PL/SQL (DBMS_LOB Package).

4-119
Example: Append One (Temporary) LOB to Another Using C (OCI) 4-120
Example: Append One (Temporary) LOB to Another Using COBOL (Pro*COBOL).... 4-122
Example: Append One (Temporary) LOB to Another Using C++ (Pro*C/C++) 4-125

Write Append to a Temporary LOB... 4-127
Scenario .. 4-128
Example: Write Append to a Temporary LOB Using PL/SQL ... 4-128
Example: Write Append to a Temporary LOB Using C (OCI) .. 4-129
Example: Write Append to a Temporary LOB Using COBOL (Pro*COBOL)................. 4-130
Example: Write Append to a Temporary LOB Using C++ (Pro*C/C++) 4-132

Write Data to a Temporary LOB ... 4-134
Stream Write.. 4-135
Scenario .. 4-135
Example: Write Data to a Temporary LOB Using the DBMS_LOB Package................... 4-135
Example: Write Data to a Temporary LOB Using C (OCI) .. 4-136
Example: Write Data to a Temporary LOB Using COBOL (Pro*COBOL)....................... 4-139
Example: Write Data to a Temporary LOB Using C++ (Pro*C/C++) 4-140

Trim the Temporary LOB Data ... 4-144
Scenario .. 4-145
Example: Trim the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)......... 4-145
Example: Trim the Temporary LOB Data Using C (OCI)... 4-146
Example: Trim the Temporary LOB Data Using COBOL (Pro*COBOL) 4-148
Example: Trim the Temporary LOB Data Using C++ (Pro*C/C++) 4-150

Erase Part of a Temporary LOB .. 4-152
Scenario .. 4-153
Example: Erase Part of a Temporary LOB Using PL/SQL (DBMS_LOB Package) 4-153
Example: Erase Part of a Temporary LOB Using C (OCI).. 4-154
Example: Erase Part of a Temporary LOB Using COBOL (Pro*COBOL) 4-156
Example: Erase Part of a Temporary LOB Using C++ (Pro*C/C++)................................ 4-158

Enable LOB Buffering for a Temporary LOB .. 4-160
Scenario .. 4-160
Example: Enable LOB Buffering for a Temporary LOB Using C (OCI) 4-161
Example: Enable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL).. 4-163
Example: Enable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++) 4-164
xv

Flush Buffer for a Temporary LOB .. 4-166
Scenario .. 4-166
Example: Flush Buffer for a Temporary LOB Using C (OCI)... 4-167
Example: Flush Buffer for a Temporary LOB Using COBOL (Pro*COBOL) 4-168
Example: Flush Buffer for a Temporary LOB Using C++ (Pro*C/C++) 4-170

Disable LOB Buffering for a Temporary LOB... 4-172
Scenario .. 4-172
Example: Disable LOB Buffering Using C (OCI) ... 4-173
Example: Disable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL). 4-175
Example: Disable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++) 4-176
... 4-178

5 External LOBs (BFILEs)

Use Case Model: External LOBs... 5-2
Accessing External LOBs (SQL DML) ... 5-5
BFILE Security... 5-7
Catalog Views on Directories.. 5-9
Guidelines for DIRECTORY Usage.. 5-9
BFILEs in Multi-Threaded Server (MTS) Mode ... 5-10

Three Ways to Create a Table Containing a BFILE... 5-12
CREATE a Table Containing a BFILE ... 5-13

Scenario .. 5-13
Example: Create a Table Containing a BFILE Using SQL DDL... 5-14

CREATE a Table of an Object Type with a BFILE Attribute .. 5-16
Scenario .. 5-16
Example: Create a Table of an Object Type with a BFILE Attribute Using SQL DDL 5-17

CREATE a Table with a Nested Table Containing a BFILE .. 5-19
Scenario .. 5-19
Example: Create a Table with a Nested Table Containing a BFILE Using SQL DDL 5-20

Three Ways to Insert a Row Containing a BFILE ... 5-21
INSERT a Row by means of BFILENAME() .. 5-22

Scenario .. 5-23
Example: Insert a Row by means of BFILENAME() Using SQL.. 5-23
Example: Insert a Row by means of BFILENAME() Using C (OCI) 5-24
Example: Insert a Row by means of BFILENAME() Using COBOL (Pro*COBOL).......... 5-24
xvi

Example: Insert a Row by means of BFILENAME() Using C++ (Pro*C/C++) 5-25
Example: Insert a Row by means of BFILENAME() Using Visual Basic (OO4O)............. 5-26
Example: Insert a Row by means of BFILENAME() Using Java (JDBC) 5-27
INSERT a Row Containing a BFILE as SELECT .. 5-29
Scenario .. 5-29
Example: Insert a Row Containing a BFILE as Select Using SQL 5-29

INSERT a Row Containing a BFILE by Initializing a BFILE Locator..................................... 5-30
Scenario .. 5-31
Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using PL/SQL....

5-31
Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C (OCI)

5-31
Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using COBOL

(Pro*COBOL) 5-33
Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C++

(Pro*C/C++) 5-34
Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Visual

Basic (OO4O) 5-35
Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Java

(JDBC) 5-35
Load External LOB (BFILE) Data into a Table... 5-38

Scenario .. 5-38
Load a LOB with Data from a BFILE .. 5-41

Scenario .. 5-42
Example: Load a LOB with Data from a BFILE Using PL/SQL (DBMS_LOB Package) . 5-42
Example: Load a LOB with Data from a BFILE Using C (OCI) ... 5-43
Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL) 5-44
Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)......................... 5-46
Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O) 5-47
Example: Load a LOB with Data from a BFILE Using Java (JDBC).................................... 5-48

Two Ways to Open a BFILE... 5-51
Maximum Number of Open BFILEs.. 5-52

Open a BFILE with FILEOPEN .. 5-53
Scenario .. 5-54
Example: Open a BFILE with FILEOPEN Using PL/SQL ... 5-54
Example: Open a BFILE with FILEOPEN Using C (OCI)... 5-54
xvii

Example: Open a BFILE with FILEOPEN Using Visual Basic (OO4O) 5-56
Example: Open a BFILE with FILEOPEN Using Java (JDBC).. 5-56

Open a BFILE with OPEN ... 5-59
Scenario .. 5-60
Example: Open a BFILE with OPEN Using PL/SQL .. 5-60
Example: Open a BFILE with OPEN Using C (OCI) ... 5-60
Example: Open a BFILE with OPEN Using COBOL (Pro*COBOL).................................... 5-62
Example: Open a BFILE with OPEN Using C++ (Pro*C/C++) ... 5-63
Example: Open a BFILE with OPEN Using Visual Basic (OO4O)....................................... 5-64
Example: Open a BFILE with OPEN Using Java (JDBC) .. 5-64

Two Ways to See If a BFILE is Open ... 5-67
Maximum Number of Open BFILEs.. 5-67

See If the BFILE is Open with FILEISOPEN ... 5-69
Scenario .. 5-69
Example: See If the BFILE is Open with FILEISOPEN Using PL/SQL (DBMS_LOB Package).

5-70
Example: See If the BFILE is Open with FILEISOPEN Using C (OCI) 5-70
Example: See If the BFILE is Open with FILEISOPEN Using Visual Basic (OO4O)......... 5-72
Example: See If the BFILE is Open with FILEISOPEN Using Java (JDBC) 5-72

See If the BFILE is Open Using ISOPEN ... 5-74
Scenario .. 5-74
Example: See If the BFILE is Open with ISOPEN Using PL/SQL (DBMS_LOB Package)

5-75
Example: See If the BFILE is Open with ISOPEN Using C (OCI).. 5-75
Example: See If the BFILE is Open with ISOPEN Using COBOL (Pro*COBOL) 5-76
Example: See If the BFILE is Open with ISOPEN Using C++ (Pro*C/C++)...................... 5-78
Example: See If the BFILE is Open with ISOPEN Using Visual Basic (OO4O) 5-79
Example: See If the BFILE is Open with ISOPEN Using Java (JDBC)................................. 5-80

Display the BFILE Data ... 5-82
Scenario .. 5-83
Example: Display the BFILE Data Using PL/SQL... 5-83
Example: Display the BFILE Data Using C (OCI).. 5-84
Example: Display the BFILE Data Using COBOL (Pro*COBOL) .. 5-86
Example: Display the BFILE Data Using C++ (Pro*C/C++).. 5-88
Example: Display the BFILE Data Using Visual Basic (OO4O) ... 5-90
Example: Display the BFILE Data Using Java (JDBC)... 5-90
xviii

Read the Data from a BFILE ... 5-93
Scenario .. 5-94
Example: Read the Data from a BFILE Using PL/SQL (DBMS_LOB Package)................ 5-95
Example: Read the Data from a BFILE Using C (OCI).. 5-95
Example: Read the Data from a BFILE Using COBOL (Pro*COBOL) 5-97
Example: Read the Data from a BFILE Using C++ (Pro*C/C++).. 5-98
Example: Read the Data from a BFILE Using Visual Basic (OO4O) 5-99
Example: Read the Data from a BFILE Using Java (JDBC)... 5-100

Read a Portion of the BFILE Data (substr) ... 5-103
Scenario .. 5-104
Example: Read a Portion of the BFILE Data (substr) Using PL/SQL (DBMS_LOB Package) ...

5-104
Example: Read a Portion of the BFILE Data (substr) Using COBOL (Pro*COBOL)....... 5-105
Example: Read a Portion of the BFILE Data (substr) Using C++ (Pro*C/C++).............. 5-106
Example: Read a Portion of the BFILE Data (substr) Using Visual Basic (OO4O) 5-107
Example: Read a Portion of the BFILE Data (substr) Using Java (JDBC) 5-107

Compare All or Parts of Two BFILES.. 5-110
Scenario .. 5-111
Example: Compare All or Parts of Two BFILES Using PL/SQL (DBMS_LOB Package)

5-111
Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL) 5-112
Example: Compare All or Parts of Two BFILES Using C++ (Pro*C/C++)...................... 5-114
Example: Compare All or Parts of Two BFILES Using Visual Basic (OO4O) 5-115
Example: Compare All or Parts of Two BFILES Using Java (JDBC) 5-116

See If a Pattern Exists (instr) in the BFILE ... 5-119
Scenario .. 5-120
Example: See If a Pattern Exists (instr) in the BFILE Using PL/SQL (DBMS_LOB Package)

5-120
Example: See If a Pattern Exists (instr) in the BFILE Using COBOL (Pro*COBOL) 5-121
Example: See If a Pattern Exists (instr) in the BFILE Using C++ (Pro*C/C++)............... 5-123
Example: See If a Pattern Exists (instr) in the BFILE Using Visual Basic (OO4O) 5-124
Example: See If a Pattern Exists (instr) in the BFILE Using Java (JDBC).......................... 5-124

See If the BFILE Exists ... 5-127
Scenario .. 5-128
Example: See If the BFILE Exists Using PL/SQL (DBMS_LOB Package) 5-128
Example: See If the BFILE Exists Using C (OCI).. 5-128
xix

Example: See If the BFILE Exists Using COBOL (Pro*COBOL) .. 5-130
Example: See If the BFILE Exists Using C++ (Pro*C/C++).. 5-131
Example: See If the BFILE Exists Using Visual Basic (OO4O) ... 5-132
Example: See If the BFILE Exists Using Java (JDBC)... 5-133

Get the Length of a BFILE ... 5-136
Scenario .. 5-137
Example: Get the Length of a BFILE Using PL/SQL (DBMS_LOB Package).................. 5-137
Example: Get the Length of a BFILE Using C (OCI).. 5-138
Example: Get the Length of a BFILE Using COBOL (Pro*COBOL) 5-139
Example: Get the Length of a BFILE Using C++ (Pro*C/C++) ... 5-140
Example: Get the Length of a BFILE Using Visual Basic (OO4O) 5-141
Example: Get the Length of a BFILE Using Java (JDBC)... 5-142

Copy a LOB Locator for a BFILE .. 5-145
Scenario .. 5-146
Example: Copy a LOB Locator for a BFILE Using PL/SQL ... 5-146
Example: Copy a LOB Locator for a BFILE Using C (OCI) .. 5-146
Example: Copy a LOB Locator for a BFILE Using COBOL (Pro*COBOL)....................... 5-148
Example: Copy a LOB Locator for a BFILE Using C++ (Pro*C/C++) 5-149
Example: Copy a LOB Locator for a BFILE Using Visual Basic (OO4O).......................... 5-150
Example: Copy a LOB Locator for a BFILE Using Java (JDBC) ... 5-150

See If a LOB Locator for a BFILE Is Initialized ... 5-153
Scenario .. 5-154
Example: See If a LOB Locator for a BFILE Is Initialized Using C (OCI) 5-154
Example: See If a LOB Locator for a BFILE Is Initialized Using C++ (Pro*C/C++) 5-154

See If One LOB Locator for a BFILE Is Equal to Another ... 5-156
Scenario .. 5-157
Example: See If One LOB Locator for a BFILE Is Equal to Another Using C (OCI) 5-157
Example: See If One LOB Locator for a BFILE Is Equal to Another Using C++ (Pro*C/C++) ..

5-157
Example: See If One LOB Locator for a BFILE Is Equal to Another Using Java (JDBC) 5-159

Get Directory Alias and Filename ... 5-161
Scenario .. 5-162
Example: Get Directory Alias and Filename Using PL/SQL ... 5-162
Example: Get Directory Alias and Filename Using C (OCI) .. 5-162
Example: Get Directory Alias and Filename Using COBOL (Pro*COBOL)..................... 5-164
Example: Get Directory Alias and Filename Using C++ (Pro*C/C++) 5-165
xx

Example: Get Directory Alias and Filename Using Visual Basic (OO4O) 5-166
Example: Get Directory Alias and Filename Using Java (JDBC)....................................... 5-167

Three Ways to Update a Row Containing a BFILE... 5-169
UPDATE a BFILE Using BFILENAME() .. 5-170

BFILENAME() Function .. 5-170
Scenario .. 5-172
Example: Update a BFILE by means of BFILENAME() Using SQL.................................. 5-172

UPDATE a BFILE as SELECT ... 5-173
Scenario .. 5-173
Example: Update a BFILE as Select Using SQL ... 5-173

UPDATE a BFILE by Initializing a BFILE Locator ... 5-174
Scenario .. 5-175
Example: Update a BFILE by Initializing a BFILE Locator Using PL/SQL..................... 5-175
Example: Update a BFILE by Initializing a BFILE Locator Using C (OCI) 5-175
Example: Update a BFILE by Initializing a BFILE Locator Using COBOL (Pro*COBOL)

5-176
Example: Update a BFILE by Initializing a BFILE Locator Using C++ (Pro*C/C++).... 5-178
Example: Update a BFILE by Initializing a BFILE Locator Using Visual Basic (OO4O) 5-179
Example: Update a BFILE by Initializing a BFILE Locator Using Java (JDBC)............... 5-180

Two Ways to Close a BFILE... 5-182
Close a BFILE with FILECLOSE .. 5-184

Scenario .. 5-185
Example: Close a BFile with FILECLOSE Using PL/SQL (DBMS_LOB Package) 5-185
Example: Close a BFile with FILECLOSE Using C (OCI) ... 5-185
Example: Close a BFile with FILECLOSE Using Visual Basic (OO4O) 5-187
Example: Close a BFile with FILECLOSE Using Java (JDBC).. 5-187

Close a BFILE with CLOSE... 5-189
Scenario .. 5-190
Example: Close a BFile with CLOSE Using PL/SQL (DBMS_LOB Package).................. 5-190
Example: Close a BFile with CLOSE Using C (OCI) ... 5-190
Example: Close a BFile with CLOSE Using COBOL (Pro*COBOL).................................. 5-192
Example: Close a BFile with CLOSE Using C++ (Pro*C/C++) ... 5-193
Example: Close a BFile with CLOSE Using Visual Basic (OO4O)..................................... 5-194
Example: Close a BFile with CLOSE Using Java (JDBC) .. 5-195

Close All Open BFILEs .. 5-197
Scenario .. 5-198
xxi

Example: Close All Open BFiles Using PL/SQL (DBMS_LOB Package) 5-198
Example: Close All Open BFiles Using C (OCI)... 5-198
Example: Close All Open BFiles Using COBOL (Pro*COBOL) ... 5-199
Example: Close All Open BFiles Using C++ (Pro*C/C++)... 5-200
Example: Close All Open BFiles Using Visual Basic (OO4O) .. 5-201
Example: Close All Open BFiles Using Java (JDBC).. 5-202

DELETE the Row of a Table Containing a BFILE... 5-205
Scenario .. 5-205
Example: Delete a Row from a Table Using SQL... 5-206

6 LOBs and Partitioned Tables

Using LOBs in Partitions ... 6-2
Creating and Partitioning a Table Containing LOB Data ... 6-3
Creating an Index on a Table Containing LOB Columns ... 6-5
Exchanging Partitions Containing LOB Data ... 6-5
Adding Partitions to Tables Containing LOB Data ... 6-6
Moving Partitions Containing LOBs.. 6-6
Splitting Partitions Containing LOBs .. 6-6
Merging Partitions Containing LOBs .. 6-6
Populating the Script CLOB and Photo BLOB ... 6-7

Index
xxii

Send Us Your Comments

Oracle8 i Application Developer’s Guide - Large Objects (LOBs), Release 8.1.5

Part No. A68004-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to the Information Development

department in the following ways:

■ Electronic mail - infodev@us.oracle.com

■ FAX - (650) 506-7228 Attn: Oracle Server Documentation

■ Postal service:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
xxiii

xxiv

Preface

This Guide describes features of application development on the Oracle Server

having to do with Large Objects (LOBs). Information in this Guide applies to

versions of the Oracle Server that run on all platforms, and does not include

system-specific information.

The Preface includes the following sections:

■ Information in This Guide

■ Feature Coverage and Availability

■ New Features Introduced with Oracle8i

■ Other Guides

■ How This Book Is Organized

■ Visual Modeling

■ Conventions Used in this Guide

Information in This Guide
The Oracle8i Application Developer’s Guide - Large Objects (LOBs) is intended for

programmers developing new applications that use LOBs, as well as those who

have already implemented this technology and now wish to take advantage of new

features.

The increasing importance of multimedia data as well as unstructured data has led

to this topic being presented as an independent volume within the Oracle

Application Developers documentation set.
xxv

Feature Coverage and Availability
The Oracle8i Application Developer’s Guide - Large Objects (LOBs) contains information

that describes the features and functionality of the Oracle8 and the Oracle8

Enterprise Edition products. Oracle8 and Oracle8 Enterprise Edition have the same

basic features. However, several advanced features are available only with the

Enterprise Edition, and some of these are optional. For example, to use object

functionality, you must have the Enterprise Edition and the Objects Option.

There are no special restrictions in dealing with LOBs. However, you will need the

Partitioning option to use LOBs in partitioned tables. Also, you will not be able to

use LOBs with object types unless you have purchased the object option. For

information about the differences between Oracle8 and the Oracle8 Enterprise

Edition and the features and options that are available to you, see Getting to Know
Oracle8i and the Oracle8i Enterprise Edition.

New Features Introduced with Oracle8 i
The new features included in the Oracle8i, release 8.1.5 are as follows:

■ Temporary LOBs

■ Varying width CLOB and NCLOB support

■ Support for LOBs in partitioned tables

■ New API for LOBs (open /close /isopen , writeappend , getchunksize)

■ Support for LOBs in non-partitioned index-organized tables

■ Copying the value of a LONG to a LOB

Other Guides
Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete

description of this high-level programming language, which is Oracle Corporation’s

procedural extension to SQL.

The Oracle Call Interface (OCI) is described in theOracle Call Interface Programmer’s
Guide. You can use the OCI to build third-generation language (3GL) applications

that access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you

to embed SQL and PL/SQL in your application programs. If you write 3GL
xxvi

application programs in Ada, C, C++, COBOL, or FORTRAN that incorporate

embedded SQL, refer to the corresponding precompiler manual. For example, if

you program in C or C++, refer to the Pro*C/C++ Precompiler Programmer’s Guide..

Oracle 8i offers the opportunity of working with Java in the database. The Oracle

Java documentation set includes the Enterprise JavaBeans and CORBA Developer’s
Guide, the Oracle8i JDBC Developer’s Guide and Reference , the Oracle8i Java Developer’s
Guide , the Oracle8i JPublisher User’s Guide and the Oracle8i Java Stored Procedures
Developer’s Guide.You can access Oracle’s development environment for multimedia

technology in a number of different ways.

■ To build self-contained applications that integrate with the database, you can

learn about how to use Oracle’s extensibility framework in Oracle8i Data
Cartridge Developer’s Guide

■ To utilize Oracle’s own intermedia applications, refer to Oracle8i interMedia
Audio, Image, and Video User’s Guide and Reference.

For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide. If you need information about Oracle replication with LOB data, refer to

Oracle8i Replication. LOBsFor basic Oracle concepts, see Oracle8i Concepts..

How This Book Is Organized
The Oracle8i Application Developer’s Guide - Large Objects (LOBs) contains six

chapters organized into two volumes. A brief summary of what you will find in

each chapter follows:

VOLUME I

Chapter 1, "Introduction to Working With LOBs"
In this chapter we describe the LOB datatype in terms of three main kinds of LOBs:

Internal persistent LOBs, Internal temporary LOBs, and External LOBs (BFILEs). We

discuss the use of LOBs to promote internationalization by way of CLOBS, and the

advantages of using LOBs over LONGs. We then turns to the various programmatic

environments by which you can operate on LOBs

■ The PL/SQL language by means of the DBMS_LOB package as described in

Oracle8i Application Developer’s Reference - Packages.

■ The C language by means of the Oracle Call Interface (OCI) described in the

Oracle Call Interface Programmer’s Guide
xxvii

■ The C++ language by means of the Pro*C/C++ precompiler as described in the

Pro*C/C++ Precompiler Programmer’s Guide

■ The COBOL language by means of the Pro*COBOL precompiler as described

in the Pro*COBOL Precompiler Programmer’s Guide

■ The Visual Basic language by means of Oracle Objects For OLE (OO4O) as

described in its accompanying online documentation.

■ The Java language by means of the JDBC Application Programmers Interface
(API) as described in the Oracle8i JDBC Developer’s Guide and Reference .

The chapter also includes an example scenario that frames examples provided

throughout the rest of the book. Various general topics that underlie LOB
operations are discussed as an introduction to the later chapters.

Chapter 2, "Advanced Topics"
The last chapter in the book covers advanced topics that touch on all the other

chapters. Specifically, we focus on:

■ Read consistency

■ The LOB buffering subsystem

■ LOBs and the issue of spanning transactions

■ LOBs in the object cache

■ Working with varying-width character data

■ Guidelines for optimal performance

VOLUME II

Chapter 3, "Internal Persistent LOBs"
The basic operations concerning internal persistent LOBs are discussed, along with

pertinent issues in the context of the scenario outlined in Chapter 1. We introduce

the Unified Modeling Language (UML) notation with a special emphasis on use
cases. Specifically, each basic operation is described as a use case. A full description

of UML is beyond the scope of this book, but the small set of conventions used in

this book appears later in the Preface. Wherever possible, we provide the same

example in each of the programmatic environments.
xxviii

Chapter 4, "Temporary LOBs"
This chapter follows the same pattern as Chapter 2 but here focuses on the new

feature of temporary LOBs. The new API and its attendant issues are discussed in

detail.

Chapter 5, "External LOBs (BFILEs)"
The focus in this chapter is on external LOBs, also known as BFILEs. The same

treatment is provided here as in Chapters 2 and 3, namely every operation is treated

as a use case, and we provide matching code examples in every available

programmatic environment.

Chapter 6, "LOBs and Partitioned Tables"
This new feature is also presented in terms of the overarching scenario. Please note

that using LOBs in partitioned tables requires that you purchase the partition

option.
xxix

Visual Modeling
This release of the documentation introduces the Universal Modeling Language

(UML) as a way of explaining the technology that we hope will help you develop

applications. A full presentation of the UML is beyond the scope of this

documentation set, however we do provide a description of the subset of UML

notation that we use in a chapter devoted to visual modeling inOracle8i Application
Developer’s Guide - Fundamentals. What follows here is a selection from that chapter

of those elements that are used in this book.

Use Case Diagrams

Graphic Element Description

This release of the documentation
introduces and makes heavy use of the
Use Case Diagram. Each primary use
case is instigated by an actor
(’stickman’) that could be a human
user, an application, or a sub-program.
The actor is connected to the primary
use case which is depicted as an oval
(bubble) enclosing the use case action.

The totality of primary use cases is
described by means of a Use Case
Model Diagram.

Primary use cases may require other
operations to complete them. In this
diagram fragment

■ specify queue name

is one of the sub-operations, or
secondary use cases, needed to
complete

■ ENQUEUE a message

The downward lines from the primary
use case lead to the other required
operations (not shown).

User/
Program

DELETE
the row

Operational Interface

User/
Program

specify
queue name

ENQUEUE
a message
xxx

Secondary use cases that have drop
shadows ’expand’ in that they are
described by means of their own use
case diagrams. There are two reasons
for doing this:

(a) it makes it easier to understand the
logic of the operation;

 (b) it would not have been possible to
place all the operations and
sub-operations on the same page.

In this example

■ specify message
properties,

■ specify options

■ add payload

are all expanded in separate use case
diagrams.

This diagram fragment shows the use
case diagram ad expanded. While the
standard diagram has the actor as the
initiator), here the use case itself is the
point of departure for the
sub-operation. In this example, the
expanded view of

■ add payload

represents a constituent operation of

■ ENQUEUE a message

Graphic Element Description

Operational Interface

User/
Program

specify
options

add
payload

specify
message
properties

specify
queue name

ENQUEUE
a message

Operational Interface

add
payload

ENQUEUE
a message
xxxi

This convention (a, b, c) shows that
there are three different ways of

creating a table that contains LOBs.

This fragment shows one of the uses of
a NOTE box, here distinguishing the
first of a number of ways of creating a

table containing LOBs.

Graphic Element Description

b
c

a

Internal persistent LOBs

CREATE
a table
(LOB)

User/
Program

a CREATE table with one or more LOBs
CREATE

a table (LOB
columns)
xxxii

Graphic Element

Description

This drawing shows two other common use of NOTE boxes:

(a) as a way of presenting an alternative name, as in this case the action SELECTpropagation schedules in
the user schema is represented by the view USER_QUEUE_SCHEDULES

(b) the action list attribute names is qualified by the note to the user that you must list at least one
attribute if you elect not to list all the propagation schedule attributes.

User/
Program

OR

list
all propogation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
xxxiii

Graphic Element Description

The dotted arrow in the use case
diagram indicates dependency. In
this example

■ free a temporary LOB

requires that you first

■ create a temporary LOB

Put another way: you should not
execute the free operation on a

LOB that is not temporary.

What you need to remember is
that the target of the arrow shows
the operation that must be
performed first.

Use cases and their sub-operations
can be linked in complex
relationships. In this example of a
callback, you must earlier

■ REGISTERfor
notification

in order to later

■ receive a notification

Graphic Element

User/
Program

create
a temporary

LOB

free
a temporary

LOB

REGISTER
for

notification

receive
notification

User/
Program

OR

list
all propogation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
xxxiv

Description

In this case the branching paths of an OR condition are shown. In invoking the view, you may choose either to
list all the attributes or you may view one or more attributes. The fact that you may stipulate which of the
attributes you wish made visible is indicated by the grayed arrow.
xxxv

Graphic Element

Description

Not all lined operations are mandatory. While the black dashed-line and arrow indicate that you must perform
the targeted operation to complete the use case, actions that are optional are shown by the grey dashed-line and
arrow. In this example, executing

■ write append

on a LOB requires that you first

■ SELECTa LOB

As a facilitating operations, you may choose to

■ OPENa LOB and/or get chunk size

However, note that if you OPENa LOB, you will later have to CLOSEit.

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

write
append
xxxvi

Conventions Used in this Guide
The following notational and text formatting conventions are used in this guide:

[]
Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{ }
Braces enclose items of which only one is required.

|
A vertical bar separates items within braces, and may also be used to indicate that

multiple values are passed to a function parameter.

...
In code fragments, an ellipsis means that code not relevant to the discussion has

been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

Graphic Element Description

Use Case Model Diagrams summarize all
the use cases in a particular domain,

such as Internal temporary LOBs .
Often these diagrams are too complex
to contain within a single page. When
that happens we have resorted to
dividing the diagram into two parts.
Please note that there is no sequence
implied in this division.

In some cases we have had to split a
diagram simply because it is too long
for the page. In such cases, we have
included this marker.

Internal temporary LOBs (part 1 of 2)

continued on next page
xxxvii

UPPERCASE
Uppercase is used for SQL keywords, like SELECT or UPDATE.

This guide uses special text formatting to draw the reader’s attention to some

information. A paragraph that is indented and begins with a bold text label may

have special meaning. The following paragraphs describe the different types of

information that are flagged this way.

Note: The "Note" flag indicates that the reader should pay particular attention

to the information to avoid a common problem or increase understanding of a

concept.

Warning: An item marked as "Warning" indicates something that an OCI

programmer must be careful to do or not do in order for an application to work

correctly.

See Also: Text marked "See Also" points you to another section of this guide, or

to other documentation, for additional information about the topic being

discussed.

Your Comments Are Welcome
We value and appreciate your comment as an Oracle user and reader of our

manuals. As we write, revise, and evaluate our documentation, your opinions are

the most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail

address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the

following address:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228
xxxviii

Introduction to Working With
1

Introduction to Working With LOBs

This introductory chapter discusses with the following topics:

■ The LOB Datatype

■ Varying-Width Character Data

■ LOBs in Comparison to LONG and LONG RAW Types

■ LOB Restrictions

■ Using SQL DML for Basic Operations on LOBs

■ Programmatic Environments for Operating on LOBs

■ An Example Application

■ The Most Basic Operation: Getting and Using the LOB Locator

■ Indexing a LOB Column
LOBs 1-1

The LOB Datatype
The LOB Datatype
Oracle8 regards LOBs as being of two kinds depending on their location with regard

to the database — internal LOBs and external LOBs, also referred to as BFILEs
(binary files). Note that when we discuss some aspect of working with LOBs

without specifying whether the LOB is internal or external, the characteristic under

discussion pertains to both internal and external LOBs.

Internal LOBs are further divided into those that are persistent and those that are

temporary.

Internal LOBs
Internal LOBs, as their name suggests, are stored inside database tablespaces in a

way that optimizes space and provides efficient access. Internal LOBs use copy

semantics and participate in the transactional model of the server. You can recover

internal LOBs in the event of transaction or media failure, and any changes to a

internal LOB value can be committed or rolled back. In other words, all the ACID

properties that pertain to using database objects pertain to using internal LOBs.

Internal LOB Datatypes
There are three SQL datatypes for defining instances of internal LOBs:

■ BLOB, a LOB whose value is composed of unstructured binary ("raw") data.

■ CLOB, a LOB whose value is composed of character data that corresponds to the

database character set defined for the Oracle8 database.

■ NCLOB, a LOB whose value is composed of character data that corresponds to

the national character set defined for the Oracle8 database.

External LOBs (BFILEs)
External LOBs (BFILES) are large binary data objects stored in operating system files

outside of database tablespaces. These files use reference semantics. Apart from

conventional secondary storage devices such as hard disks, BFILEs may also be

located on tertiary block storage devices such as CD-ROM, PhotoCDs and DVDs.

But note that you cannot locate a single BFILE on more than one device, for

instance, striped across a disk array.

The SQL datatype BFILE allows read-only byte stream I/O access to large files

existing on the filesystem of the database server. The Oracle Server can access
1-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Varying-Width Character Data
BFILE s provided the underlying server operating system supports a stream-mode

access to these operating system (OS) files.

External LOB Datatype
There is one external SQL LOB datatype:

■ BFILE , a LOB whose value is composed of binary ("raw") data, and is stored

outside of the database tablespaces in a server-side operating system file.

Varying-Width Character Data
You can create a table with CLOB/NCLOB columns even if the CHAR/NCHAR
database character set is varying width. You can also create a table with a type that

has a CLOB attribute irrespective of whether the CHAR database character set is of

varying width. However, NCLOBs are not allowed as attributes in object types.

The CLOB/NCLOBvalue is stored in the database using the 2 byte Unicode character

set which is fixed width. The stored Unicode value is translated to the (possibly

varying width) character set that you request on either the client or the server.

When you insert data into the CLOB/NCLOB, the data input can be in a varying

width character set. This varying width character data is implicitly converted into

Unicode before the data is stored in the database. Note that all translations to and

from Unicode are implicitly performed by Oracle.

You can perform the full gamut of LOB operations on CLOB/NCLOBs (read , write ,

trim , erase , compare , etc.) All programmatic environments that provide access

to CLOBs/NCLOBs work on CLOBs/NCLOBs in databases where the CHAR/NCHAR
character set is of varying width. This includes SQL, PL/SQL, OCI, PRO*C, DBMS_
LOB, and so on. However, you should take note of the following issue that pertain

to specific environments.

DBMS_LOB Package
Regardless of the client-side character set, the offset and amount parameters are

always in characters for CLOBs/NCLOBs and in bytes for BLOBs/BFILEs.

Note: External LOBs do not participate in transactions. Any

support for integrity and durability must be provided by the

underlying file system as governed by the operating system.
Introduction to Working With LOBs 1-3

Varying-Width Character Data
OCI
The following decisions only apply to varying-width client-side character sets. For

fixed-width client side character sets, the offset and amount parameters are always

in characters for CLOBs and NCLOBs and in bytes for BLOBs and BFILE s.

General Rule:
■ The amount parameter: When the amount parameter refers to the server-side

LOB, the amount is in characters. When the amount parameter refers to the

client-side buffer, the amount is in bytes.

■ The offset parameter: Regardless of whether the client-side character set is

varying-width, the offset parameter is always in characters for CLOBs and

NCLOBs, and in bytes for BLOBs and BFILE s.

■ OCILobFileGetLength : Regardless of whether the client-side character set is

varying-width, the output length is in characters for CLOBs and NCLOBs and in

bytes for BLOBs and BFILE s.

■ OCILobRead : If the client-side character set is varying-width, for CLOBs
and NCLOBs, the input amount is in characters and the output amount is in

bytes. The input amount refers to the number of characters to read from the

server-side CLOBor NCLOB. The output amount indicates how many bytes were

read into the buffer 'bufp '.

■ OCILobWrite : If the client-side character set is varying-width, for CLOBs and

NCLOBs, the input amount is in bytes and the output amount is in characters.

The input amount refers to the number of bytes of data that are in the input

buffer 'bufp '. The output amount refers to the number of characters written

into the server-side CLOB or NCLOB.

Other Operations:
For all other LOB operations, irrespective of the client-side character set, the amount

parameter is in characters for CLOBs and NCLOBs. These include OCILobCopy ,

OCILobErase , OCILobLoadFromFile , and OCILobTrim . All these operations

refer to the amount of LOB data on the server.

For more information, see: Oracle8i National Language Support Guide
1-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOBs in Comparison to LONG and LONG RAW Types
LOBs in Comparison to LONG and LONG RAW Types
LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

■ You can store multiple LOBs in a single row but you can store only one LONG or

LONG RAW per row.

■ A LOBs can be attributes of a user-defined datatype but this is not possible with

either a LONG or LONG RAW.

■ Only the LOB locator is stored in the table column; BLOB and CLOB data can be

stored in separate tablespaces and BFILE data is stored as an external file. In

the case of a LONG or LONG RAW the entire value is stored in the table column.

For inline LOBs, Oracle will store up to 3964 bytes of data in the table column.

■ When you access a LOB column, it is the locator which is returned. When you

access a LONG or LONG RAW, the entire value is returned.

■ A LOB can be up to 4 gigabytes in size. The BFILE maximum is operating

system dependent, but cannot exceed 4 gigabytes. The valid accessible range is

1 to (232-1). By contrast, a LONG or LONG RAW is limited to 2 gigabytes.

■ There is greater flexibility in manipulating data in a random, piece-wise manner

with LOBs than there is with LONG or LONG RAW data. LOBs can be accessed at

random offsets while LONGs must be accessed from the beginning to the

desired location

■ You can replicate LOBs in both local and distributed environments, but this is

not possible with aLONG or LONG RAW (see Oracle8i Replication).

Existing LONG columns can be converted to LOBs using the TO_LOB() function (see

"Copy LONG to LOB" on page 2-62 in Chapter 2, ". Internal Persistent LOBs").

However note that Oracle8i does not support conversion of LOBs back to LONGs.
Introduction to Working With LOBs 1-5

LOB Restrictions
LOB Restrictions
The use of LOBs are subject to some restrictions:

■ Distributed LOBs are not supported. Specifically, this means that the user

cannot use a remote locator in the SELECT and WHERE clauses. This includes

using DBMS_LOB package functions. In addition, references to objects in remote

tables with or without LOB attributes is not allowed.

For example, the following operations are invalid:

– SELECT lobcol from table1@remote_site;

– INSERT INTO lobtable select type1.lobattr from table1@remote_site;

– SELECT dbms_lob.getlength(lobcol) from table1@remote_site;

Valid operations on LOB columns in remote tables include:

– CREATE TABLE as select * from table1@remote_site;

– INSERT INTO t select * from table1@remote_site;

– UPDATE t set lobcol = (select lobcol from table1@remote_site);

– INSERT INTO table1@remote...

– UPDATE table1@remote...

– DELETE table1@remote...

■ When binding an internal LOB in order to use piece-wise INSERT/UPDATE,
the bind variable may be of type SQLT_CHR or SQLT_LBI but is limited to 4k.

You cannot bind a SQLT_LNG to a LOB or a SQLT_LBI that is longer than 4k.

Also, LOBs are not allowed in the following places:

■ LOBs are not allowed in clustered tables and thus cannot be a cluster key.

■ LOBs are not allowed in GROUP BY, ORDER BY, SELECT DISTINCT, aggregates

and JOINS. However, UNION ALL is allowed on tables with LOBs. UNION,

MINUS, and SELECT DISTINCT are allowed on LOB attributes if the object type

has a MAP or ORDER function.

■ LOBS are not analyzed in ANALYZE... COMPUTE/ESTIMATE STATISTICS
statements.

■ LOBs are not allowed in partitioned index organized tables but are allowed

non-partitioned index organized tables.

■ LOBs are not allowed in VARRAYs.
1-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Restrictions
■ NCLOBs are not allowed as attributes in object types but NCLOB parameters are

allowed in methods.

■ You can use the LOB column/attribute in a trigger body subject to the following

conditions. In general, the :new and :old LOB values bound in the trigger are

read-only which means that you cannot write to the LOB. More specifically:

a. In before row and after row triggers -

* you can read the :old value of a LOB in both the triggers.

* you can read the :new value of the LOB only in an after-row trigger.

b. In INSTEAD OF triggers on views, you can read both the :new and :old
values.

c. You cannot specify the LOB column in an OF clause (Note that a BFILE can

be modified without updating the underlying tables on which it is based).

d. If you use OCI functions or DBMS_LOB routines to update LOB values or

LOB attributes on object columns, the functions or routines will not fire the

triggers defined on the tables containing the columns or attributes.

■ Client-side PL/SQL procedures may not call the DBMS_LOB package routines.

However, you can use server-side PL/SQL procedures or anonymous blocks in

Pro*C/C++ to call the DBMS_LOB package routines.

For more information about firing triggers on extensible indexes
see:

■ Oracle8i Data Cartridge Developer’s Guide
Introduction to Working With LOBs 1-7

DBA Actions Required Prior to Working with LOBs
DBA Actions Required Prior to Working with LOBs

Set Maximum Number of Open BFILEs
A limited number of BFILE s can be open simultaneously per session. The

initialization parameter, SESSION_MAX_OPEN_FILESdefines an upper limit on the

number of simultaneously open files in a session.

The default value for this parameter is 10. That is, you can open a maximum of 10

files at the same time per session if the default value is utilized. If you want to alter

this limit, the database administrator can change the value of this parameter in the

init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILESvalue then

you will not be able to open any more files in the session. To close all open files, use

the FILECLOSEALL call.

Using SQL DML for Basic Operations on LOBs
SQL DML provides basic operations — INSERT, UPDATE, SELECT, DELETE —

that let you make changes to the entire values of internal LOBs within the Oracle

ORDBMS. To work with parts of internal LOBs, you will need to use one of the

interfaces that have been developed to handle more complex requirements.

Oracle8 supports read-only operations on external LOBs. So if you need to

update/write to external LOBs, you will have to develop client side applications

suited to your needs
1-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
Programmatic Environments for Operating on LOBs
Oracle now offers you six different environments for working with LOBs:

■ The PL/SQL language by means of the DBMS_LOB package as described in

Oracle8i Application Developer’s Reference - Packages (see "Using the DBMS_LOB

Package for Working With LOBs" on page 1-12).

■ The C language by means of the Oracle Call Interface (OCI) as described in the

Pro*COBOL Precompiler Programmer’s Guide(see "Using the Oracle Call Interface

(OCI) with LOBs" on page 1-15).

■ The C++ language by means of the Pro*C/C++ precompiler as described in the

Pro*C/C++ Precompiler Programmer’s Guide (see "Using C++ (Pro*C/C++) to

Work with LOBs" on page 1-23).

■ The COBOL language by means of the Pro*COBOL precompiler as described

in the Pro*COBOL Precompiler Programmer’s Guide (see "Using COBOL

(Pro*COBOL) to Work with LOBs" on page 1-26).

■ The Visual Basic language by means of Oracle Objects For OLE (OO4O) as

described in its accompanying online help (see "Using Visual Basic (OO4O) to

Work with LOBs" on page 1-29).

■ The Java language by means of the JDBC Application Programmers Interface
(API) as described in the Oracle8i Java Developer’s Guide (see "Using Java (JDBC)

to Work with LOBs" on page 1-34).
Introduction to Working With LOBs 1-9

Programmatic Environments for Operating on LOBs
Comparison of Six Interfaces
The following chart compares the six LOB interfaces.

Table 1–1 Comparison of Interfaces for working with LOBs

OCI (ociap.h)
DBMS_LOB
(dbmslob.sql)

Pro*C &
Pro*COBOL Visual Basic Java

N/A DBMS_
LOB.COMPARE

N/A ORALOB.Compare use DBMS_
LOB.COMPARE

N/A DBMS_LOB.INSTR N/A ORALOB.Matchpos position

N/A DBMS_LOB.SUBSTR N/A N/A getBytes

OCILobAppend DBMS_LOB.APPEND APPEND ORALOB.Append use length and then
putBytes

OCILobAssign N/A [use Pl/SQL
assign operator]

ASSIGN ORALOB.Clone N/A [use equal
sign]

OCILobCharSetForm N/A N/A N/A N/A

OCILobCharSetId N/A N/A N/A N/A

OCILobClose DBMS_LOB.CLOSE CLOSE N/A BLOB/CLOB: uze
close() on stream
object

BFILE: use DBMS_
LOB.CLOSE

OCILobCopy DBMS_LOB.COPY COPY ORALOB.Copy use read and write

OCILobDisableBuffering N/A DISABLE
BUFFERING

ORALOB.DisableBuffering N/A

OCILobEnableBuffering N/A ENABLE
BUFFERING

ORALOB.EnableBuffering N/A

OCILobErase DBMS_LOB.ERASE ERASE ORALOB.Erase use DBMS_
LOB.ERASE

OCILobFileClose DBMS_
LOB.FILECLOSE

CLOSE ORABFILE.Close closeFile

OCILobFileCloseAll DBMS_
LOB.FILECLOSEALL

FILE CLOSE
ALL

ORABFILE.CloseAll use DBMS_
LOB.FILECLOSEALL

OCILobFileExists DBMS_
LOB.FILEEXISTS

DESCRIBE
[FILEEXISTS]

ORABFILE.Exist fileExists
1-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
The following subsections describe each of the interfaces in more detail.

OCILobFileGetChunkSize DBMS_
LOB.GETCHUNKSIZE

DESCRIBE
[CHUNKSIZE]

ORALOB.ChunkSize N/A

OCILobFileGetName DBMS_
LOB.FILEGETNAME

DESCRIBE
[DIRECTORY,
FILENAME]

ORABFILE.DirectoryName

ORABFILE.FileName

getDirAlias

getName

OCILobFileIsOpen DBMS_
LOB.FILEISOPEN

DESCRIBE
[ISOPEN]

ORABFILE.IsOpen use DBMS_
LOB.ISOPEN

OCILobFileOpen DBMS_
LOB.FILEOPEN

OPEN ORABFILE.Open openFile

OCILobFileSetName N/A (use BFILENAME
operator)

FILE SET DirectoryName

FileName

use BFILENAME

OCILobFlushBuffer N/A FLUSH BUFFER ORALOB.FlushBuffer N/A

OCILobGetLength DBMS_
LOB.GETLENGTH

DESCRIBE
[LENGTH]

ORALOB.Size length

OCILobIsEqual N/A N/A N/A equals

OCILobIsOpen DBMS_LOB.ISOPEN DESCRIBE
[ISOPEN]

ORALOB.IsOpen BLOB/CLOB: create
stream object

BEILE: use
DBMS_LOB.ISOPEN

OCILobLoadFromFile DBMS_
LOB.LOADFROMFILE

LOAD FROM
FILE

ORALOB.CopyFromBfile use read and then
write

OCILobLocatorIsInit N/A [always initialize] N/A ORALOB.IsNull N/A

OCILobOpen DBMS_LOB.OPEN OPEN ORALOB.open use DBMS_
LOB.OPEN

OCILobRead DBMS_LOB.READ READ ORALOB.Read getBytes

OCILobTrim DBMS_LOB.TRIM TRIM ORALOB.Trim use DBMS_
LOB.TRIM

OCILobWrite DBMS_LOB.WRITE WRITEORALOB. Write putBytes

OCILobWriteAppend DBMS_
LOB.WRITEAPPEND

WRITE APPEND N/A use length and then
putBytes

Table 1–1 Comparison of Interfaces for working with LOBs (Cont.)

OCI (ociap.h)
DBMS_LOB
(dbmslob.sql)

Pro*C &
Pro*COBOL Visual Basic Java
Introduction to Working With LOBs 1-11

Programmatic Environments for Operating on LOBs
Using the DBMS_LOB Package for Working With LOBs
The DBMS_LOB package can be used to read and modify internal LOBs (persistent

and temporary) either entirely or in a piece-wise manner. This package can also be

used for read operations on BFILEs.

As described in more detail below, DBMS_LOBroutines work based on LOBlocators.

For the successful completion of DBMS_LOB routines, you must provide an input

locator that represents a LOB that exists in the database tablespaces or external

filesystem before you invoke the routine.

For internal LOBs, you must first use SQL DDL to define tables that contain LOB
columns, and subsequently SQL DML to initialize or populate the locators in these

LOB columns.

For external LOBs, you must define a DIRECTORY object that maps to a valid

physical directory containing the external LOBs that you intend to access. Also,

these files must exist, and must be set to have read permissions for the Oracle server

process. If your operating system uses case-sensitive path names, be sure you

specify the directory in the correct format.

Once the LOBs are defined and created, you may then SELECT a LOB locator into a

local PL/SQL LOB variable and use this variable as an input parameter to DBMS_
LOB for access to the LOB value. Examples provided with each DBMS_LOB routine

will illustrate this in the following sections.

The routines that can modify BLOB, CLOB, and NCLOB values are:

For more information see:

■ Oracle8i Application Developer’s Reference - Packages for detailed

documentation, including parameters, parameter types, return

values, and example code.

Table 1–2 DBMS_LOB Routines that Modify BLOB, CLOB, and NCLOB values

Function/Procedure Description

APPEND() appends the LOB value to another LOB

COPY() copies a portion of a LOB to another LOB

ERASE() erases part of a LOB, starting at a specified offset

LOADFROMFILE() load BFILE data into an internal LOB
1-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
The routines involved in reading or examining LOB values are:

The following routines have to do with temporary lobs:

The read-only routines specific to BFILE s are:

TRIM() trims the LOB value to the specified shorter length

WRITE() writes data to the LOB at a specified offset

WRITEAPPEND() writes data to the end of the LOB

Table 1–3 DBMS_LOB Routines Involved in Reading or Examining LOB values

Function/Procedure Description

COMPARE() compares the value of two LOBs

GETCHUNKSIZE() gets the chunk size for reading and writing

GETLENGTH() gets the length of the LOB value

INSTR() returns the matching position of the nth occurrence of the
pattern in the LOB

READ() reads data from the LOB starting at the specified offset

SUBSTR() returns part of the LOB value starting at the specified offset

Table 1–4 DBMS_LOB Routines that Operate on Temporary LOBs

Function/Procedure Description

CREATETEMPORARY() creates a temporary LOB

ISTEMPORARY() checks if a LOB locator refers to a temporary LOB

FREETEMPORARY() frees a temporary LOB

Table 1–2 (Cont.) DBMS_LOB Routines that Modify BLOB, CLOB, and NCLOB

Function/Procedure Description
Introduction to Working With LOBs 1-13

Programmatic Environments for Operating on LOBs
The following routines have to do with opening and closing LOBs:

We will describe these routines in greater detail as we explore specific LOB
operations (e.g., INSERT a row containing a LOB).

Table 1–5 DBMS_LOB Read-Only Routines that are Specific to BFILE s

Function/Procedure Description

FILECLOSE() closes the file

FILECLOSEALL() closes all previously opened files

FILEEXISTS() checks if the file exists on the server

FILEGETNAME() gets the directory alias and file name

FILEISOPEN() checks if the file was opened using the input BFILE
locators

FILEOPEN() opens a file

Table 1–6 DBMS_LOB Open and Close Routines

Function/Procedure Description

OPEN() opens a LOB

ISOPEN() sees if a LOB is open

CLOSE() closes a LOB
1-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
Using the Oracle Call Interface (OCI) with LOBs
You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of it through the OCI API. You can access both internal and external

LOBs for read purposes, and you can also write to internal LOBs.

The OCI includes functions that you can use to access data stored in BLOBs, CLOBs,

NCLOBs, and BFILE s. These functions are listed in the tables below, and are

discussed in greater detail later in the chapter.

Users who want to read or write data in UCS2 format can set the 'csid ' parameter

in OCILobRead and OCILobWrite to OCI_UCS2ID. The 'csid ' parameter

indicates the csid for the buffer parameter. You can set the 'csid ' parameter to any

character set id. If the csid parameter is set, it will override the NLS_LANG
environment variable.

The routines that can modify BLOB, CLOB, and NCLOB values are:

For more information see:

■ Oracle Call Interface Programmer’s Guide for detailed

documentation, including parameters, parameter types, return

values, and example code.

■ Oracle8i National Language Support Guide for detailed

information about implementing applications in different

languages.

Table 1–7 OCI Functions that Modify BLOB, CLOB, and NCLOB values

Function/Procedure Description

OCILobAppend() appends LOB value to another LOB.

OCILobCopy() copies a portion of a LOB into another LOB.

OCILobErase() erases part of a LOB, starting at a specified offset.

OCILobLoadFromFile() loads BFILE data into an internal LOB.

OCILobTrim() truncates a LOB.

OCILobWrite() writes data from a buffer into a LOB, overwriting
existing data .
Introduction to Working With LOBs 1-15

Programmatic Environments for Operating on LOBs
The routines that read or examine LOB values are:

The following routines are have to do with temporary lobs:

Read-only routines specific to BFILE s are:

OCILobWriteAppend() writes data from a buffer to the end of the LOB.

Table 1–8 OCI Routines that Read or Examine LOB Values

Function/Procedure Description

OCILobGetChunkSize() gets the size of the Chunk for reading and writing

OCILobGetLength() returns the length of a LOB or a BFILE .

OCILobRead() reads a specified portion of a non-null LOB or a BFILE into a
buffer.

Table 1–9 OCI Routines that Operate on Temporary LOBs

Function/Procedure Description

OCILobCreateTemporary
()

creates a temporary LOB

OCILobIsTemporary() sees if a temporary LOB exists

OCILobFreeTemporary() frees a temporary LOB

Table 1–10 OCI Read-Only Routines that are Specific to BFILES

Function/Procedure Description

OCILobFileClose() closes an open BFILE .

OCILobFileCloseAll() closes all open BFILE s.

OCILobFileExists() checks whether a BFILE exists.

Table 1–7 OCI Functions that Modify BLOB, CLOB, and NCLOB values

Function/Procedure Description
1-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
These routines are used for working with LOB locators:

The following three routines have to do with LOB-buffering:

The following routines have to do with opening and closing LOBs:

OCILobFileGetName() returns the name of a BFILE .

OCILobFileIsOpen() checks whether a BFILE is open.

OCILobFileOpen() opens a BFILE .

Table 1–11 OCI LOB-Locator Routines

Function/Procedure Description

OCILobAssign() assigns one LOB locator to another.

OCILobCharSetForm() returns the character set form of a LOB.

OCILobCharSetId() returns the character set ID of a LOB.

OCILobFileSetName() sets the name of a BFILE in a locator.

OCILobIsEqual() checks whether two LOB locators refer to the same LOB.

OCILobLocatorIsInit() checks whether a LOB locator is initialized.

Table 1–12 OCI LOB-Buffering Routines

Function/Procedure Description

OCILobDisableBuffering
()

disables the buffering subsystem use.

OCILobEnableBuffering(
)

uses the LOB buffering subsystem for subsequent reads and
writes of LOB data.

OCILobFlushBuffer() flushes changes made to the LOBbuffering subsystem to the
database (sever)

Table 1–10 (Cont.) OCI Read-Only Routines that are Specific to BFILES

Function/Procedure Description
Introduction to Working With LOBs 1-17

Programmatic Environments for Operating on LOBs
A sample main() and LOB procedure
In order to work with the OCI examples in the remainder of the book, you could

use a main() like the following. Here, its use with the seeIfLOBIsOpen procedure is

shown as an example.

int main(char *argv, int argc)
{
 /* Declare OCI Handles to be used */
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCILobLocator *Lob_loc;

 /* Create and Initialize an OCI Environment: */
 (void) OCIEnvCreate(&envhp, (ub4)OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *))0,
 (size_t) 0, (dvoid **) 0);

 /* Allocate error handle: */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 /* Allocate server contexts: */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);

 /* Allocate service context: */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);

Table 1–13 OCI LOB-Buffering Routines

Function/Procedure Description

OCILobOpen() opens a LOB

OCILobIsOpen() sees if a LOB is open

OCILobClose() closes a LOB
1-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
 /* Attach to the Oracle database: */
 (void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);

 /* Set the server context attribute in the service context: */
 (void) OCIAttrSet ((dvoid *) svchp, OCI_HTYPE_SVCCTX,
 (dvoid *)srvhp, (ub4) 0,
 OCI_ATTR_SERVER, (OCIError *) errhp);

 /* Allocate the session handle: */
 (void) OCIHandleAlloc((dvoid *) envhp,
 (dvoid **)&authp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 /* Set the username in the session handle:*/
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4)4,
 (ub4) OCI_ATTR_USERNAME, errhp);
 /* Set the password in the session handle: */
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4) 4,
 (ub4) OCI_ATTR_PASSWORD, errhp);

 /* Authenticate and begin the session: */
 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));

 /* Set the session attribute in the service context: */
 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0,
 (ub4) OCI_ATTR_SESSION, errhp);

 /* ------- At this point a valid session has been created -----------*/
 printf ("user session created \n");

 /* Allocate a statement handle: */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /* ============= Sample procedure call begins here ===================*/

 printf ("calling seeIfLOBIsOpen...\n");
 seeIfLOBIsOpen(envhp, errhp, svchp, stmthp);

 return 0;
}

Introduction to Working With LOBs 1-19

Programmatic Environments for Operating on LOBs
void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

/* Select the locator into a locator variable */

sb4 select_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
1-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID=1";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return (0);
}

void seeIfLOBIsOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 int isOpen;

 /* allocate locator resources */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

 /* Select the locator */
 (void)select_frame_locator(Lob_loc, errhp, svchp, stmthp);

 /* See if the LOB is Open */
 checkerr (errhp, OCILobIsOpen(svchp, errhp, Lob_loc, &isOpen));

 if (isOpen)
 {
Introduction to Working With LOBs 1-21

Programmatic Environments for Operating on LOBs
 printf(" Lob is Open\n");
 /* ... Processing given that the LOB has already been Opened */
 }
 else
 {
 printf(" Lob is not Open\n");
 /* ... Processing given that the LOB has not been Opened */
 }

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

1-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
Using C++ (Pro*C/C++) to Work with LOBs
You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of it by using embedded SQL. You can access both internal and

external LOBs for read purposes, and you can also write to internal LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs,

NCLOBs, and BFILE s. These statements are listed in the tables below, and are

discussed in greater detail later in the chapter.

Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers

which are then used to refer to the LOB or BFILE value. For the successful

completion of an embedded SQL LOB statement you must provide an allocated
input locator pointer that represents a LOB that exists in the database tablespaces or

external file system before you execute the statement.

Once a locator pointer has been allocated, you may then SELECT a LOB locator into

a LOB locator pointer variable and use that variable in an embedded SQL LOB

statement to access and manipulate the LOB value. Examples provided with each

embedded SQL LOB statement will illustrate this in the following sections.

The statements that can modify BLOB, CLOB, and NCLOB values are:

For more information see:

■ Pro*C/C++ Precompiler Programmer’s Guide for detailed

documentation, including syntax, host variables, host variable

types and example code.

Table 1–14 Embedded SQL Statements that Modify BLOB, CLOB, and NCLOB values

Statement Description

APPEND appends a LOB value to another LOB.

COPY copies all or a portion of a LOB into another LOB.

ERASE erases part of a LOB, starting at a specified offset.

LOAD FROM FILE loads BFILE data into an internal LOB at a specified offset.

TRIM truncates a LOB.

WRITE writes data from a buffer into a LOB at a specified offset.

WRITE APPEND writes data from a buffer into a LOB at the end of the LOB.
Introduction to Working With LOBs 1-23

Programmatic Environments for Operating on LOBs
The statements that read or examine LOB values are:

The statements that deal with temporary LOBs are:

The statements specific to BFILE s are:

These statements are used for working with LOB locators:

Table 1–15 Embedded SQL Statements that Read or Examine LOB Values

Statement Description

DESCRIBE [CHUNKSIZE] gets the size of the Chunk for writing.

DESCRIBE [LENGTH] returns the length of a LOB or a BFILE .

READ reads a specified portion of a non-null LOB or a BFILE into a
buffer.

Table 1–16 Embedded SQL Statements that Operate on Temporary LOBs

Statement Description

CREATE TEMPORARY creates a temporary LOB.

DESCRIBE
[ISTEMPORARY]

sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY frees a temporary LOB.

Table 1–17 Embedded SQL Statements that are Specific to BFILES

Statement Description

FILE CLOSE ALL closes all open BFILE s.

DESCRIBE
[FILEEXISTS]

checks whether a BFILE exists.

DESCRIBE [DIRECTORY,
FILENAME]

returns the directory alias and/or filename of a BFILE .
1-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
The following three statements have to do with the LOB Buffering Subsystem:

The following statements have to do with opening and closing LOBs and BFILEs:

Table 1–18 LOB Locator Embedded SQL Statements

Statement Description

ASSIGN assigns one LOB locator to another.

FILE SET sets the directory alias and filename of a BFILE in a locator.

Table 1–19 LOB Buffering Subsystem Embedded SQL statements

Statement Description

DISABLE BUFFERING disables the use of the buffering subsystem.

ENABLE BUFFERING uses the LOB buffering subsystem for subsequent reads and
writes of LOB data.

FLUSH BUFFER flushes changes made to the LOBbuffering subsystem to the
database (server)

Table 1–20 Embedded SQL Statements for Opening and CLosing LOBs and BFILEs

Statement Description

OPEN opens a LOB or BFILE.

DESCRIBE [ISOPEN] sees if a LOB or BFILE is open.

CLOSE closes a LOB or BFILE.
Introduction to Working With LOBs 1-25

Programmatic Environments for Operating on LOBs
Using COBOL (Pro*COBOL) to Work with LOBs
You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of it by using embedded SQL. You can access both internal and

external LOBs for read purposes, and you can also write to internal LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs,

NCLOBs, and BFILE s. These statements are listed in the tables below, and are

discussed in greater detail later in the chapter.

Unlike locators in PL/SQL, locators in Pro*COBOL are mapped to locator pointers

which are then used to refer to the LOB or BFILE value. For the successful

completion of an embedded SQL LOB statement you must provide an allocated
input locator pointer that represents a LOB that exists in the database tablespaces or

external file system before you execute the statement.

Once a locator pointer has been allocated, you may then SELECT a LOB locator into

a LOB locator pointer variable and use that variable in an embedded SQL LOB

statement to access and manipulate the LOB value. Examples provided with each

embedded SQL LOB statement will illustrate this in the following sections.

In cases in which the Pro*COBOL interface does not supply the required

functionality, you can call the OCI via C. We do not provide an example because

such programs are operating system dependent.

The statements that can modify BLOB, CLOB, and NCLOB values are:

For more information see:

■ Pro*COBOL Precompiler Programmer’s Guide for detailed

documentation, including syntax, host variables, host variable

types and example code.

Table 1–21 Embedded SQL Statements that Modify BLOB, CLOB, and NCLOB values

Statement Description

APPEND appends a LOB value to another LOB.

COPY copies all or a portion of a LOB into another LOB.

ERASE erases part of a LOB, starting at a specified offset.

LOAD FROM FILE loads BFILE data into an internal LOB at a specified offset.

TRIM truncates a LOB.
1-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
The statements that read or examine LOB values are:

The statements that deal with temporary LOBs are:

The statements specific to BFILE s are:

WRITE writes data from a buffer into a LOB at a specified offset.

WRITE APPEND writes data from a buffer into a LOB at the end of the LOB.

Table 1–22 Embedded SQL Statements that Read or Examine LOB Values

Statement Description

DESCRIBE [CHUNKSIZE] gets the size of the Chunk for writing.

DESCRIBE [LENGTH] returns the length of a LOB or a BFILE .

READ reads a specified portion of a non-null LOB or a BFILE into a
buffer.

Table 1–23 Embedded SQL Statements that Operate on Temporary LOBs

Statement Description

CREATE TEMPORARY creates a temporary LOB.

DESCRIBE
[ISTEMPORARY]

sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY frees a temporary LOB.

Table 1–24 Embedded SQL Statements that are Specific to BFILES

Statement Description

FILE CLOSE ALL closes all open BFILE s.

DESCRIBE
[FILEEXISTS]

checks whether a BFILE exists.

Table 1–21 Embedded SQL Statements that Modify BLOB, CLOB, and NCLOB values

Statement Description
Introduction to Working With LOBs 1-27

Programmatic Environments for Operating on LOBs
These statements are used for working with LOB locators:

The following three statements have to do with the LOB Buffering Subsystem:

The following statements have to do with opening and closing LOBs and BFILEs:

DESCRIBE [DIRECTORY,
FILENAME]

returns the directory alias and/or filename of a BFILE .

Table 1–25 LOB Locator Embedded SQL Statements

Statement Description

ASSIGN assigns one LOB locator to another.

FILE SET sets the directory alias and filename of a BFILE in a locator.

Table 1–26 LOB Buffering Subsystem Embedded SQL statements

Statement Description

DISABLE BUFFERING disables the use of the buffering subsystem.

ENABLE BUFFERING uses the LOB buffering subsystem for subsequent reads and
writes of LOB data.

FLUSH BUFFER flushes changes made to the LOBbuffering subsystem to the
database (server)

Table 1–27 Embedded SQL Statements for Opening and CLosing LOBs and BFILEs

Statement Description

OPEN opens a LOB or BFILE.

DESCRIBE [ISOPEN] sees if a LOB or BFILE is open.

CLOSE closes a LOB or BFILE.

Table 1–24 (Cont.) Embedded SQL Statements that are Specific to BFILES

Statement Description
1-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
Using Visual Basic (OO4O) to Work with LOBs
You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of it via the OO4O API. Specifically, you employ the OraBlob ,

OraClob and OraBFile objects. You can access both internal and external LOBs for

read purposes, and you can also write to internal LOBs.

The OraBlob , OraClob interfaces in OO4O provides methods for performing

operations on large objects in the database including BLOB, CLOB and NCLOB data

types. The OraBFile interface provides methods for performing operations on

BFILE data in the database. These interfaces (OraBlob , OraClob , OraBFile)

encapsulate LOB locators, so the user does not deal with locators but instead uses

the methods and properties provided to perform operations and get state

information.

OraMyBFile refers to the locator obtained from a PL/SQL "OUT" parameter as a

result of executing a PL/SQL procedure (either by doing an OraDatabase .Exe-
cuteSQL or by using the OraSqlStmt object). Note that an OraConnect.Begin-
Trans has been called since the locator became invalid after the COMMIT.

When OraBlob , OraClob objects are retrieved as a part of a dynaset, these objects

represent LOB locators of the dynaset current row. If the dynaset current row

changes due to move operation, OraBlob , OraClob objects will represent LOB

locator for the new current row. In order to retain the LOB locator of the OraBlob ,

OraClob object independent of the dynaset move operation, use the Clone
method. This method returns the OraBlob and OraClob object. One could also use

these objects as PL/SQL bind parameters. Here is an example which shows both

types of usage. The functions and samples are explained in greater detail as part of

the reference documentation.

Dim OraDyn as OraDynaset, OraSound1 as OraBLOB, OraSoundClone as OraBlob,
OraMyBfile as OraBFile

OraConnection.BeginTrans
set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab order by clip_
id", ORADYN_DEFAULT)
set OraSound1 = OraDyn.Fields("Sound").value
set OraSoundClone = OraSound1

OraParameters.Add "id", 1,ORAPARAM_INPUT
OraParameters.Add "mybfile", Empty,ORAPARAM_OUTPUT
OraParameters("mybfile").ServerType = ORATYPE_BFILE
Introduction to Working With LOBs 1-29

Programmatic Environments for Operating on LOBs
OraDatabase.ExecuteSQL ("begin GetBFile(:id, :mybfile ") end")

Set OraMyBFile = OraParameters("mybfile").value
’Go to Next row
OraDyn.MoveNext

OraDyn.Edit
’Lets update OraSound1 data with that from the BFILE
OraSound1. CopyFromBFile OraMyBFile
OraDyn.Update

OraDyn.MoveNext
’Go to Next row
OraDyn.Edit
’Lets update OraSound1 by appending with LOB data from 1st row represenetd by
’OraSoundClone
OraSound1.Append OraSoundClone
OraDyn.Update

OraConnection.CommitTrans

In the above example OraSound1 represents the locator for the current row in the

dynaset where as OraSoundClone represents the locator for the 1st row. A change

in the current row (say a OraDyn.MoveNext) will mean that OraSound1 will

actually represent locator for the 2nd row whereas OraSoundClone will represent

the locator in the 1st row (OraSoundClone only refers the locator for the 1st row

irrespective of any OraDyn row navigation).

OraMyBFile refers to the locator got an PL/SQL "OUT" parameter as a result of

executing a PL/SQL procedure (either by doing an OraDatabase .ExecuteSQL or

by using the OraSqlStmt object). Note that an OraConnect .BeginTrans has

been called since with a database "COMMIT" the locator becomes invalid.

OO4O includes methods and properties that you can use to access data stored in

BLOBs, CLOBs, NCLOBs, and BFILE s. These methods and properties are listed in the

tables below, and are discussed in greater detail later in the chapter.

The routines that can modify BLOB, CLOB, and NCLOB values are:

See Also: OO4O online help for detailed information including

parameters, parameter types, return values, and example code.
1-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
The routines that read or examine LOB values are:

The following methods have to do with opening and closing LOBs:

Table 1–28 OO4O Methods That Modify BLOB, CLOB, and NCLOB Values

Function/Procedure Description

OraBlob.Append,
OraClob.Append

appends LOB value to another LOB.

OraBlob.Copy,
OraClob.Copy

copies a portion of a LOB into another LOB.

OraBlob.Erase,
OraClob.Erase

erases part of a LOB, starting at a specified offset.

OraBlob.CopyFromBFile,
OraClob.CopyFromBFile

loads BFILE data into an internal LOB.

OraBlob.Trim,
OraClob.Trim

truncates a LOB.

OraBlob.CopyFromFile,
OraClob.CopyFromFile

writes data from a file to a LOB

OraBlob.Write,
OraClob.Write

writes data from a file to a LOB

Table 1–29 Oo4o Methods that Read or Examine LOB Values

Function/Procedure Description

OraBlob.Read,
OraClob.Read,
OraBFile.Read

reads a specified portion of a non-null LOB into a buffer

OraBlob.CopyToFile,
OraClob.CopyToFile

reads a specified portion of a non-null LOB to a file.

Table 1–30 OO4O Methods for Operating on BFILEs

Methods Description

OraBFile.Open opens BFILE .
Introduction to Working With LOBs 1-31

Programmatic Environments for Operating on LOBs
The following methods have to do with LOB-buffering:

OraBFile.Close closes BFILE .

Table 1–31 OO4OLOB-Buffering methods

Function/Procedure Description

OraBlob.FlushBuffer,
OraClob.FlushBuffer

flushes changes made to the LOBbuffering subsystem to the
database (sever)

OraBlob.EnableBufferin
g

OraClob.EnableBufferin
g

Enables buffering of LOB operations

OraBlob.DisableBufferi
ng

OraClob.DisableBufferi
ng

Disables buffering of LOB operations

Table 1–32 OO4OLOB- properties

Property Description

IsNull (Read) indicates when a LOB is Null

PollingAmount(Read/Write) Get/Set the total amount for Read/Write polling operation

Offset(Read/Write) Get/Set the offset for Read/Write operation. By default, it is
set to 1.

Status(Read) Returns the polling status.Possible values are

ORALOB_NEED_DATA There is more data to
be read/written

ORALOB_NO_DATA There is no more data to
be read/written

 ORALOB_SUCCESS LOB data read/written
successfully

Size(Read) Returns the length of the LOB data

Table 1–30 OO4O Methods for Operating on BFILEs

Methods Description
1-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
Methods specific to BFILE s are:

Table 1–33 OO4ORead-Only methods that are Specific to BFILES

Methods Description

OraBFile.Close closes an open BFILE .

OraBFile.CloseAll closes all open BFILE s.

OraBFile.Open opens a BFILE .

OraBFile.IsOpen determine if a BFILE is open

Table 1–34 OO4O Properties that are Specific to BFILES

Properties Description

OraBFile.DirectoryNa
me

gets/Sets the server side directory alias name.

OraBFile.FileName(Re
ad/Write)

gets/Sets the server side filename.

OraBFile.Exists checks whether a BFILE exists.
Introduction to Working With LOBs 1-33

Programmatic Environments for Operating on LOBs
Using Java (JDBC) to Work with LOBs

You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of an internal LOB in Java by means of the JDBC API via the

Oracle .sql .BLOBand Oracle .sql .CLOBobjects. These objects also implement the

java .sql .Blob and java .sql .Clob interfaces according to the JDBC 2.0

specification. With this implementation, an Oracle .sql .BLOB can be used

wherever a java.sql.Blob is expected and an Oracle.sql.CLOB can be used

wherever a java .sql .Clob is expected.

The JDBC interface will let you access both internal and external LOBs for read

purposes, and you can also write to internal LOBs.

The BLOB and CLOB classes in JDBC provide methods for performing operations on

large objects in the database including BLOB, CLOB and NCLOB data types. The

BFILE class provides methods for performing operations on BFILE data in the

database. These classes (BLOB, CLOB, BFILE) encapsulate LOB locators, so the user

does not deal with locators but instead uses the methods and properties provided to

perform operations and get state information. Any of Oracle’s LOBfunctionality not

provided by these classes can be accessed by a call to the DBMS_LOB PL/SQL
package. This technique is used repeatedly in the examples throughout the book.

You can get a reference to any of the above LOBs either as a column of an

OracleResultSet or as an "OUT" type PL/SQL parameter from an

OraclePreparedStatement . When BLOB and CLOB objects are retrieved as a

part of aN OracleResultSet , these objects represent LOBlocators of the currently

selected row. If the current row changes due to a move operation (for example,

rset .next ()), the retrieved locator still refers to the original LOB row. In order to

retrieve the locator for the most current row, you must call getXXXX () on the

OracleResultSet each time a move operation is made (where XXXX is a BLOB,

CLOB or BFILE).

For more information see:

■ Oracle8i JDBC Developer’s Guide and Reference for detailed
documentation, including parameters, parameter types, return values,
and example code.
1-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
oracle .sql .BLOB methods for modifying values:

oracle .sql .BLOB methods for reading or examining values:

oracle .sql .BLOB LOB-buffering methods and properties:

Table 1–35 oracle.sql.BLOB Methods for Modifying Values

Function/Procedure Description

int putBytes(long, byte[]) inserts the byte array into the LOB, starting at the
given offset

Table 1–36 oracle.sql.BLOB Methods for Reading or Examining Values

Function/Procedure Description

byte[] getBytes(long, int) gets the contents of the LOB as an array of bytes,
given an offset

long position(byte[], long) finds the given byte array within the LOB, given an
offset

long
position(oracle.jdbc2.Blob,
long)

finds the given BLOB within the LOB

public boolean
equals(java.lang.Object)

compares this LOB with another

public long length() returns the length of the LOB

public int getChunkSize() returns the ChunkSize of the LOB

Table 1–37 oracle.sql.BLOB LOB-Buffering Methods and Properties

Function/Procedure Description

public java.io.InputStream
getBinaryStream())

streams the LOB as a binary stream

public java.io.OutputStream
getBinaryOutputStream()

writes to LOB as a binary stream
Introduction to Working With LOBs 1-35

Programmatic Environments for Operating on LOBs
oracle.sql.CLOB methods for modifying values

oracle .sql .CLOB methods for reading or examining values:

oracle.sql.CLOB LOB -buffering methods and properties:

Table 1–38 oracle.sql.CLOB Methods for Modifying Values

Function/Procedure Description

int putString(long,
java.lang.String)

inserts the string into the LOB, starting at the
given offset

int putChars(long,
char[])

inserts the character array into the LOB, starting at
the given offset

Table 1–39 oracle.sql.CLOB Methods for Reading or Examining Values

Function/Procedure Description

byte[] getBytes() gets the contents of the LOB as an array of bytes

java.lang.String
getSubString(long, int)

returns a substring of the LOB as a string

int getChars(long, int,
char[])

reads a subset of the LOB into a character array

long
position(java.lang.String
, long)

finds the given String within the LOB, given an offset

long
position(oracle.jdbc2.Clo
b, long)

finds the given CLOB within the LOB, given an offset

boolean
equals(java.lang.Object)

compares this LOB with another

long length() returns the length of the LOB

int getChunkSize() returns the ChunkSize of the LOB
1-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs
oracle .sql .BFILE methods for reading or examining values

Table 1–40 oracle.sql.CLOB LOB-Buffering Methods and Properties

Function/Procedure Description

java.io.InputStream
getAsciiStream()

streams the LOB as an ASCII stream

java.io.InputStream
getStream()

streams the LOB as a byte array

java.io.OutputStream
getAsciiOutputStream()

writes to the LOB as an ASCII stream

java.io.Reader
getCharacterStream()

streams the LOB as a character stream

java.io.Writer
getCharacterOutputStream()

writes to LOB as a character stream

Table 1–41 oracle.sql.BFILE Methods for reading or Examining Values

Function/Procedure Description

byte[] getBytes() gets the contents of the LOB as an array
of bytes

byte[] getBytes(long,
int)

gets the contents of the LOB as an
array of bytes, given an offset

int getBytes(long, int,
byte[])

r eads a subset of the LOB into a byte
array

long
position(oracle.sql.BFILE
, long)

f inds the given BFILE contents within
the LOB, given an offset

long position(byte[],
long)

finds the given byte array within the
LOB, given an offset

boolean
equals(java.lang.Object)

compares this LOB with another

long length() returns the length of the LOB

boolean fileExists() checks if the OS file referenced by this BFILE exists

public void openFile() opens the OS file referenced by this BFILE
Introduction to Working With LOBs 1-37

Programmatic Environments for Operating on LOBs
oracle .sql .BFILE methods for LOB-buffering methods and properties:

public void closeFile() closes the OS file referenced by this BFILE

public boolean
isFileOpen()

checks if this BFILE is already open

public java.lang.String
getDirAlias()

gets the directory alias for this BFILE

public java.lang.String
getName()

gets the file name referenced by this BFILE

Table 1–42 oracle.sql.CLOB Methods for Modifying Values

Function/Procedure Description

public
java.io.InputStream
getBinaryStream()

streams the LOB as a binary stream

public
java.io.InputStream
getStream()

streams the LOB as a byte array

Table 1–41 oracle.sql.BFILE Methods for reading or Examining Values

Function/Procedure Description
1-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

An Example Application
An Example Application
Oracle8 supports LOBs, large objects which can hold up to 4 gigabytes of binary or

character data. What does this mean for you, the application developer?

Consider the following hypothetical application:

The Multimedia Content-Collection System
Multimedia data is used in an increasing variety of media channels — film,

television, webpages, and CD-ROM being the most prevalent. The media

experiences having to do with these different channels vary in many respects

(interactivity, physical environment, the structure of information, to name a few).

Yet despite these differences, there is often considerable similarity in the multimedia

authoring process, especially with regard to assembling content.

Figure 1–1 The Multimedia Authoring Process

For instance, a television station that creates complex documentaries, an advertising

agency that produces advertisements for television, and a software production

house that specializes in interactive games for the web could all make good use of a

database management system for collecting and organizing the multimedia data.

Presumably, they each have sophisticated editing software for composing these

elements into their specific products, but the complexity of such projects creates a

need for a pre-composition application for organizing the multimedia elements into

appropriate groups.

Taking our lead from movie-making, our hypothetical application for collecting

content uses the clip as its basic unit of organization. Any clip is able to include one

or more of the following media types:

■ character text (e.g.,storyboard, transcript, subtitles,),

■ images (e.g., photographs, video frames),

■ line drawings (e.g., maps),

Story
Board

Development

Media
Content

Collection

Programming
the

Composition

Media
Experience
Introduction to Working With LOBs 1-39

An Example Application
■ audio (e.g., sound-effects, music, interviews)

Since this is a pre-editing application, the precise relationship of elements within a

clip (such as the synchronization of voice-over audio with a photograph) and

between clips (such as the sequence of clips) is not defined.

The application should allow multiple editors working simultaneously to store,

retrieve and manipulate the different kinds of multimedia data. We assume that

some material is gathered from in-house databases. At the same time, it should also

be possible to purchase and download data from professional services.

Note: The Example is Only An Example
Our mission in this chapter is not to create this real-life application, but to describe

everything you need to know about working with LOBs. Consequently, we only

implement the application sufficiently to demonstrate the technology. For example,

we deal with only a limited number of multimedia types. We make no attempt to

create the client-side applications for manipulating the LOBs. And we do not deal

with deployment issues such as, the fact that you should implement disk striping of

LOB files, if possible, for best performance.
1-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

An Example Application
Applying an Object-Relational Design to the Application

Figure 1–2 Schema Plan for Table MULTIMEDIA_TAB

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table VOICEOVER_TAB (of VOICED_TYP)

SCRIPT ACTOR RECORDING

Text
CLOB

ORIGINATOR

Text
VARCHAR2(30)

Text
VARCHAR2(30)

Audio
BFILE

Table INTERVIEWSEGMENTS_NTAB

INTERVIEW_DATE

Date
DATE

INTERVIEWER

Text
VARCHAR2(30)

TRANSCRIPT

Text
CLOB

INTERVIEWEE

Text
VARCHAR2(30)

RECORDING

Audio
BFILE

SEGMENT

Number
NUMBER

Column Object MAP_OBJ (of MAP_TYP)

NW

Number
NUMBER

NE

Number
NUMBER

SW

Number
NUMBER

SE

Number
NUMBER

DRAWING

Map
BLOB

AERIAL

Photo
BFILE

REGION

Text
VARCHAR2(30)

TAKE

Number
NUMBER

PKPK

PK

Reference to a row
object of a table of
the defined type

Nested Table of the
defined type

Column Object of
the defined type
Introduction to Working With LOBs 1-41

An Example Application
The Structure of the Multimedia_tab Table

Figure 1–3 Schema Plan for Table MULTIMEDIA_TAB

■ CLIP_ID : Every row (clip object) must have a number which identifies the clip.

This number is generated by the Oracle number SEQUENCER as a matter of

convenience, and has nothing to do with the eventual ordering of the clip.

■ STORY: The application design requires that every clip must also have text, that

is a storyboard, that describes the clip. Since we do not wish to limit the length

of this text, or restrict its format, we use a CLOB datatype.

■ FLSUB: Subtitles have many uses — for closed-captioning, as titles, as overlays

that draw attention, and so on. A full-fledged application would have columns

for each of these kinds of data but we are considering only the specialized case

of a foreign language subtitle, for which we use the NCLOB datatype.

■ PHOTO: Photographs are clearly a staple of multimedia products. We assume

there is a library of photographs stored in the PhotoLib_tab archive. Since a

large database of this kind would be stored on tertiary storage that was

periodically updated, the column for photographs makes use of the BFILE

datatype.

■ FRAME: It is often necessary to extract elements from dynamic media sources for

further processing For instance, VRML game-builders and animation

cartoonists are often interested in individual cells. Our application takes up the

need to subject film/video to frame-by-frame analysis such as was performed

on the film of the Kennedy assassination. While it is assumed that the source is

on persistent storage, our application allows for an individual frame to be

stored as a BLOB.

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type
1-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

An Example Application
■ SOUND: The table includes a column for sound-effects in the form of a BLOB.

■ VOICED_REF: This column allows for a reference to a specific row in a table

which must be of the type Voiced_typ . In our application, this is a reference

to a row in the table VoiceOver_tab whose purpose is to store audio

recordings for use as voice-over commentaries. For instance, these might be

readings by actors of words spoken or written by people for whom no audio

recording can be made, perhaps because they are no longer alive, or because

they spoke or wrote in a foreign language.

This structure offers the application builder a number of different strategies

from those discussed thus far. Instead of loading material into the row from an

archival source, an application can simply reference the data. This means that

the same data can be referenced from other tables within the application, or by

other applications. The single stipulation is that the reference can only be to

tables of the same type. Put another way: the reference, Voiced_ref , can refer

to row objects in any table which conforms to the type, Voiced_typ .

Note that Voiced_typ combines the use of two LOB datatypes: a CLOB to

store the script which the actor reads, and a BFILE for the audio recordings.
Introduction to Working With LOBs 1-43

An Example Application
Figure 1–4 Schema Design for Inclusion of VOICED_REF Reference

■ INSEG_NTAB: While it is not possible to store a Varray of LOBs, application

builders are able to store a variable number of multimedia elements in a single

row by means of nested tables. In the case of our application, a nested table

InSeg_ntab of the predefined type InSeg_typ can be used to store zero, one

or many interview segments in a given clip. So, for instance, a hypothetical user

could use this facility to collect together one or more interview segments having

to do with the same theme that occurred at different times.

In this case, the nested table makes use of two LOB datatypes — a BFILE to

store the audio recording of the interview, and a CLOB for transcript. Since such

segments might be of great length, it is important to keep in mind that LOBs

cannot be more than 4 gigabytes in size.

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table VOICEOVER_TAB (of VOICED_TYP)

SCRIPT ACTOR RECORDING

Text
CLOB

ORIGINATOR

Text
VARCHAR2(30)

Text
VARCHAR2(30)

Audio
BFILE

TAKE

Number
NUMBER

PKPK

Reference to a row
object of a table of
the defined type
1-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

An Example Application
Figure 1–5 Schema Design for Inclusion of a Nested Table INTERVIEWSEGMENTS_
TAB

■ MUSIC: The ability to handle music must be one of the basic requirements of

any multimedia database management system. In this case, the BFILE datatype

is used to store the audio as an operating system file.

■ MAP_OBJ: Multimedia applications must be be able to handle many different

kinds of line art — cartoons, diagrams, and fine art, to name a few. In our

application, provision is made for a clip to contain a map as a column object,

MAP_OBJ, of the object type MAP_TYP. In this case, the object is contained by

value, being embedded in the row. As defined in our application, MAP_TYP has

only one LOB in its structure — a BLOB for the drawing itself. However, as in

the case of the types underlying REFs and nested tables, there is no restriction

on the number of LOBs that an object type may contain.

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table INTERVIEWSEGMENTS_NTAB

INTERVIEW_DATE

Date
DATE

INTERVIEWER

Text
VARCHAR2(30)

TRANSCRIPT

Text
CLOB

INTERVIEWEE

Text
VARCHAR2(30)

RECORDING

Audio
BFILE

SEGMENT

Number
NUMBER

PK

Nested Table of the
defined type
Introduction to Working With LOBs 1-45

An Example Application
Figure 1–6 Schema Design for Inclusion of a Column Object MAP_OBJ

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Column Object MAP_OBJ (of MAP_TYP)

NW

Number
NUMBER

NE

Number
NUMBER

SW

Number
NUMBER

SE

Number
NUMBER

DRAWING

Map
BLOB

AERIAL

Photo
BFILE

REGION

Text
VARCHAR2(30)

Reference to a row
object of a table of
the defined type

Column Object of
the defined type
1-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

The Most Basic Operation: Getting and Using the LOB Locator
The Most Basic Operation: Getting and Using the LOB Locator

LOB Value and Locators

Inline storage of the LOB value
Data stored in a LOB is termed the LOB’s value. The value of an internal LOB may or

may not be stored inline with the other row data. If the internal LOB value is less

than approximately 4000 bytes, then the value is stored inline; otherwise it is stored

outside the row. Since LOBs are intended to be large objects, inline storage will only

be relevant if your application mixes small and large LOBs.

As mentioned below ("ENABLE | DISABLE STORAGE IN ROW" on page 1-45), the

LOB value is automatically moved out of the row once it extends beyond

approximately 4000 bytes.

LOB locators
Regardless of where the value of the internal LOB is stored, a locator is stored in the

row. You can think of a LOB locator as a pointer to the actual location of the LOB
value. A LOB locator is a locator to an internal LOB while a BFILE locator is a locator

to an external LOB. When the term locator is used without an identifying prefix term,

it refers to both LOB locators and BFILE locators.

Internal LOB Locators
For internal LOBs, the LOB column stores a locator to the LOB’s value which is

stored in a database tablespace. Each LOB column/attribute for a given row has its

own distinct LOB locator and copy of the LOB value stored in the database

tablespace.

LOB Locator Operations

Setting the LOB Column/Attribute to contain a locator
Before you can start writing data to an internal LOB, the LOBcolumn/attribute must

be made non-null, that is, it must contain a locator. Similarly, before you can start

accessing the BFILE value, the BFILE column/attribute must be made non-null.

■ For internal LOBs, you can accomplish this by initializing the internal LOB to

empty in an INSERT/UPDATE statement using the functions EMPTY_BLOB() for

BLOBs or EMPTY_CLOB() for CLOBs and NCLOBs.
Introduction to Working With LOBs 1-47

The Most Basic Operation: Getting and Using the LOB Locator
■ For external LOBs, you can initialize the BFILE column to point to an external

file by using the BFILENAME() function.

Invoking the EMPTY_BLOB() or EMPTY_CLOB() function in and of itself does not

raise an exception. However, using a LOB locator that was set to empty to access or

manipulate the LOB value in any PL/SQL DBMS_LOB or OCI routine will raise an

exception. Valid places where empty LOB locators may be used include the VALUES
clause of an INSERT statement and the SET clause of an UPDATE statement.

The following INSERT statement

– populates story with the character string ’JFK interview’,

– sets flsub, frame and sound to an empty value,

– sets photo to NULL, and

– initializes music to point to the file ’JFK_interview’ located under the logical

directory ’AUDIO_DIR’ (see the CREATE DIRECTORY command in the

Oracle8i Reference. Character strings are inserted using the default character

set for the instance.

INSERT INTO Multimedia_tab VALUES (101, ’JFK interview’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL,
 BFILENAME(’AUDIO_DIR’, ’JFK_interview’), NULL);

Similarly, the LOB attributes for the Map_typ column in Multimedia_tab can be

initialized to NULLor set to empty as shown below. Note that you cannot initialize a

LOB object attribute with a literal.

INSERT INTO Multimedia_tab
 VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(),
 EMPTY_BLOB(), NULL, NULL, NULL,
 Map_typ(’Moon Mountain’, 23, 34, 45, 56, EMPTY_BLOB(), NULL);

For more information see:

■ "INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()" on
page 3-26

For more information see:

■ "INSERT a Row by means of BFILENAME()" on page 5-22.
1-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

The Most Basic Operation: Getting and Using the LOB Locator
Accessing a LOB through a locator

SELECTing a LOB Performing a SELECT on a LOB returns the locator instead of the

LOB value. In the following PL/SQL fragment you select the LOB locator for story
and place it in the PL/SQL locator variable Image1 defined in the program block.

When you use PL/SQL DBMS_LOBfunctions to manipulate the LOBvalue, you refer

to the LOB using the locator.

DECLARE
 Image1 BLOB;
 ImageNum INTEGER := 101;
BEGIN
 SELECT story INTO Image1 FROM Multimedia_tab
 WHERE clip_id = ImageNum;
 DBMS_OUTPUT.PUT_LINE(’Size of the Image is: ’ ||
 DBMS_LOB.GETLENGTH(Image1));
 /* more LOB routines */
END;

In the case of OCI, locators are mapped to locator pointers which are used to

manipulate the LOB value. As mentioned before, the OCI LOB interface is described

briefly in "Support Libraries" on page 1-309, and more extensively in the Oracle Call
Interface Programmer’s Guide.

LOB Locators and Transaction Boundaries
If you begin a transaction and then select a locator, the locator contains the

transaction ID. Note that you can implicitly be in a transaction without explicitly

beginning one. For example, SELECT... FOR UPDATEimplicitly begins a transaction.

In such a case, the locator will contain a transaction ID. By contrast, if you select a

locator outside of a transaction, the locator does not contain a transaction ID. Note

that a transaction ID will not be assigned until the first DML statement executes.

Therefore, locators that are selected out prior to such a DML statement will not

contain a transaction ID.

You can always read the LOB data using the locator irrespective of whether the

locator contains a transaction id. However, if the locator contains a transaction id,

you cannot write to the LOBoutside of that particular transaction. If the locator does

not contain a transaction id, you can write to the LOB after beginning a transaction

either explicitly or implicitly. We can show the relationship between transactions

and locators by considering a few examples. However, if the locator contains a

transaction id and the transaction is serializable, you cannot read or write outside of
Introduction to Working With LOBs 1-49

The Most Basic Operation: Getting and Using the LOB Locator
that particular transaction. If the transaction is non-serializable, you can read, but

not write outside of that transaction. The following examples show the relationship

between locators and non-serializable transactions

Select the Locator with No Current Transaction

Case 1:
1. Select the locator with no current transaction.

At this point, the locator does not contain a transaction id.

2. Begin the transaction.

3. Use the locator to read data from the LOB.

4. Commit or rollback the transaction.

5. Use the locator to read data from the LOB.

6. Begin a transaction.

The locator does not contain a transaction id.

7. Use the locator to write data to the LOB.

This operation is valid because the locator did not contain a transaction id

prior to the write. After this call, the locator contains a transaction id.

Case 2:
1. Select the locator with no current transaction.

At this point, the locator does not contain a transaction id.

2. Begin the transaction.

The locator does not contain a transaction id.

3. Use the locator to read data from the LOB.

The locator does not contain a transaction id.

4. Use the locator to write data to the LOB

This operation is valid because the locator did not contain a transaction id

prior to the write. After this call, the locator contains a transaction id. You

can continue to read from and/or write to the LOB.

5. Commit or rollback the transaction.
1-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

The Most Basic Operation: Getting and Using the LOB Locator
The locator continues to contain the transaction id.

6. Use the locator to read data from the LOB.

This is a valid operation.

7. Begin a transaction.

The locator already contains the previous transaction’s id.

8. Use the locator to write data to the LOB.

This write operation will fail because the locator does not contain the

transaction id that matches the current transaction.

Select the Locator within a Transaction

Case 3:
1. Select the locator within a transaction.

At this point, the locator contains the transaction id.

2. Begin the transaction.

The locator contains the previous transaction’s id.

3. Use the locator to read data from the LOB.

This operation is valid even though the transaction id in the locator does

not match the current transaction.

4. Use the locator to write data to the LOB

This operation fails because the transaction id in the locator does not match

the current transaction.

Case 4:
1. Begin a transaction.

2. Select the locator.

For more information on the LOB value that is Read see:

■ "Read-Consistent Locators" on page 2-2
Introduction to Working With LOBs 1-51

The Most Basic Operation: Getting and Using the LOB Locator
The locator contains the transaction id because it was selected within a

transaction.

3. Use the locator to read from and/or write to the LOB.

These operations are valid.

4. Commit or rollback the transaction.

The locator continues to contain the transaction id.

5. Use the locator to read data from the LOB.

This operation is valid even though there’s a transaction id in the locator

and the transaction was previously committed or rolled back.

6. Use the locator to write data to the LOB

This operation fails because the transaction id in the locator is for a

transaction that was previously committed or rolled back.

Open, Close and IsOpen Interfaces for Internal LOBs
These interfaces let you open and close an internal LOBand test whether an internal

LOB is already open.

It is not mandatory that you wrap all LOBoperations inside the Open/Close APIs.

The addition of this feature will not impact already-existing applications that write

to LOBs without first opening them, since these calls did not exist in 8.0.

It is important to note that openness is associated with the LOB, not the locator. The

locator does not save any information as to whether the LOB to which it refers is

open.

Open and Close with Extensible Indexes
If you do not wrap LOBoperations inside an Open/Close call, each modification to

the LOB will implicitly open and close the LOB thereby firing any triggers on an

extensible index. Note that in this case, any extensible indexes on the LOB will

become updated as soon as LOB modifications are made. Therefore, extensible LOB
indexes are always valid and may be used at any time. By contrast, if you wrap

your LOB operations inside the Open/Close operations, triggers will not be fired

For more information on the LOB value that is Read see:

■ "Read-Consistent Locators" on page 2-2
1-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

The Most Basic Operation: Getting and Using the LOB Locator
for each LOB modification. Instead, the trigger on extensible indexes will be fired at

the Close call. For example, you might design your application so that extensible

indexes are not be updated until you call Close . However, this means that any

extensible indexes on the LOB will not be valid in-between the Open/Close calls.

Note that the definition of a ’transaction’ within which an open LOB value must be

closed is one of the following:

■ between ’DML statements that start a transaction (including SELECT ... FOR
UPDATE)’ and COMMIT

■ within an autonomous transaction block

A LOB opened when there is no transaction must be closed before the end of the

session. If there are still open lobs at the end of the session, the openness will be

discarded and no triggers on extensible indexes will be fired.

Errors
It is an error to commit the transaction before closing all opened LOBs that were

opened by the transaction. When the error is returned, the openness of the open

LOBs is discarded. At this point, the user must decide whether to close all the LOBs

and reissue the call to commit, or rollback the transaction. Note that the changes to

the LOB are not discarded if the COMMIT returns an error. At transaction rollback

time, the openness of all open LOBs that are still open for that transaction will be

discarded. Discarding the openness means that the LOBs won't be closed, thereby

firing the triggers on extensible indexes.

It is also an error to open/close the same LOB twice either with different locators or

with the same locator.

Example 1
DECLARE
 Lob_loc1 CLOB;
 Lob_loc2 CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1;
BEGIN
 /* Select a LOB: */
 SELECT Story INTO Lob_loc1 FROM Multimedia_tab WHERE Clip_ID = 1;

 /* The following statement opens the LOB outside of a transaction
 so it must be closed before the session ends: */
 DBMS_LOB.OPEN(Lob_loc1, DBMS_LOB.LOB_READONLY);
Introduction to Working With LOBs 1-53

The Most Basic Operation: Getting and Using the LOB Locator
/* The following statement begins a transaction. Note that Lob_loc1 and
 Lob_loc2 point to the same LOB: */
 SELECT Story INTO Lob_loc2 FROM Multimedia_tab WHERE Clip_ID = 1 for update;
 /* The following LOB open operation is allowed since this lob has
 not been opened in this transaction: */
 DBMS_LOB.OPEN(Lob_loc2, DBMS_LOB.LOB_READWRITE);

 /* Fill the buffer with data to write to the LOB */
 buffer := 'A good story';
 Amount := 12;

 /* Write the buffer to the LOB: */
 DBMS_LOB.WRITE(Lob_loc2, Amount, Position, Buffer);

 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Lob_loc2);
 /* The COMMIT ends the transaction. It is allowed because all LOBs
 opened in the transaction were closed. */
 COMMIT;
 /* The the following statement closes the LOB that was opened
 before the transaction started: */
 DBMS_LOB.CLOSE(Lob_loc1);
END;

Example 2:
DECLARE
 Lob_loc CLOB;
BEGIN
 /* Note that the FOR UPDATE clause starts a transaction: */
 SELECT Story INTO Lob_loc FROM Multimedia_tab WHERE Clip_ID = 1 for update;
 DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
 /* COMMIT returns an error because there is still an open LOB associated
 with this transaction: */
 COMMIT;
END;
1-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Indexing a LOB Column
Indexing a LOB Column
You cannot build B-tree or bitmap indexes on a LOB column. However, depending

on your application and its usage of the LOB column, you might be able to improve

the performance of queries by building indexes specifically attuned to your domain.

Oracle’s extensibility interfaces allow for Extensible Indexing, a framework for

implementing such domain specific indexes.

Depending on the nature of the contents of the LOB column, one of the Oracle

intermedia options could also be used for building indexes. For example, if a text

document is stored in a CLOB column, you can build a text index (provided by

Oracle) to speed up the performance of text-based queries over the CLOB column.

For more information regarding building domain specific indexes,
see: Oracle8i Data Cartridge Developer’s Guide.

For more information regarding Oracle’s intermedia options,
see: Oracle8i interMedia Audio, Image, and Video User’s Guide and
Reference and Oracle8i Context Cartridge Reference.
Introduction to Working With LOBs 1-55

Indexing a LOB Column
1-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Advanced T
2

Advanced Topics

The material in this chapter is a supplement and elaboration of the use cases

described in the following chapters.You will probably find the topics discussed here

to be more relevant once you have explored the use cases.

■ Read-Consistent Locators

■ LOBs in the Object Cache

■ LOB Buffering Subsystem

■ User Guidelines for Best Performance Practices

■ Working with Varying-Width Character Data
opics 2-1

Read-Consistent Locators
Read-Consistent Locators
Oracle provides the same read consistency mechanisms for LOBs as for all other

database reads and updates of scalar quantities (refer to Oracle8i Concepts for

general information about read consistency). However, read consistency has some

special applications to LOB locators that need to be understood.

A SELECTed locator, regardless of the existence of the FOR UPDATE clause, becomes

a read consistent locator, and remains a read consistent locator until the LOB value is

updated through that locator. A read consistent locator contains the snapshot

environment as of the point in time of the SELECT.

This has some complex implications. Let us say that you have created a read

consistent locator (L1) by way of a SELECT operation. In reading the value of the

internal LOB through L1, the LOB is read as of the point in time of the SELECT
statement even if the SELECT statement includes a FOR UPDATE. Further, if the LOB
value is updated through a different locator (L2) in the same transaction, L1 does

not see L2's updates. In addition, L1 will not see committed updates made to the

LOB through another transaction.

Furthermore, if the read consistent locator L1 is copied to another locator L2 (for

example, by a PL/SQL assignment of two locator variables — L2:= L1), then L2

becomes a read consistent locator along with L1 and any data read is read as of the
point in time of the SELECT for L1.

Clearly you can utilize the existence of multiple locators to access different

transformations of the LOB value. However, in taking this course, you must be

careful to keep track of the different values accessed by different locators. The

following code demonstrates the relationship between read-consistency and

updating in a simple example.

Using Multimedia_tab as defined previously and PL/SQL, three CLOBs are

created as potential locators: clob_selected , clob_updated and clob_
copied .

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_selected.

■ In the second operation (at t2), the value in story is associated with the locator

clob_updated. Since there has been no change in the value of story between t1 and

t2, both clob_selected and clob_updated are read consistent locators that effectively

have the same value even though they reflect snapshots taken at different

moments in time.
2-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
■ The third operation (at t3) copies the value in clob_selected to clob_copied. At this

juncture, all three locators see the same value. The example demonstrates this

with a series of DBMS_LOB.READ() calls.

■ At time t4, the program utilizes DBMS_LOB.WRITE() to alter the value in clob_
updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ() of the value through clob_selected (at t5) reveals

that it is a read consistent locator, continuing to refer to the same value as of the

time of its SELECT.

■ Likewise, a DBMS_LOB.READ() of the value through clob_copied (at t6) reveals

that it is a read consistent locator, continuing to refer to the same value as clob_
selected.

Example of a Read Consistent Locator

INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
 SELECT story INTO clob_selected
 FROM Multimedia_tab
 WHERE clip_id = 1;

 -- At time t2:
 SELECT story INTO clob_updated
 FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;
Advanced Topics 2-3

Read-Consistent Locators
 -- At time t3:
 clob_copied := clob_selected;
 -- After the assignment, both the clob_copied and the
 -- clob_selecte d have the same snapshot as of the point in time
 -- of the SELECT into clob_selected

 -- Reading from the clob_selected and the clob_copied will
 -- return the same LOB value . clob_updated also sees the same
 -- LOB value as of its select:
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t4:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t5:
 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
2-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
 -- At time t6:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

Updated locators
When you update the value of the internal LOB through the LOB locator (L1), L1

(that is, the locator itself) is updated to contain the current snapshot environment as
of the point in time after the operation was completed on the LOB value through the

locator L1. L1 is then termed an updated locator. This operation allows you to see

your own changes to the LOB value on the next read through the same locator, L1.

Any committed updates made by a different transaction are seen by L1 only if your

transaction is a read-committed transaction and if you use L1 to update the LOB
value after the other transaction committed.

Updating the value of the internal LOB through the OCI LOB APIs or the PL/SQL

DBMS_LOB package can be thought of as updating the LOB value and then reselecting
the locator that refers to the new LOB value.

Note that updating the LOBvalue through SQL is merely an UPDATEstatement. It is

up to you to do the reselect of the LOB locator or use the RETURNING clause in the

UPDATEstatement (see the PL/SQL User’s Guide and Reference) so that the locator can

see the changes made by the UPDATE statement. Unless you reselect the LOB locator

or use the RETURNING clause, you may think you are reading the latest value when

this is not the case. For this reason you should avoid mixing SQL DML with OCI

and DBMS_LOB piecewise operations.

Note: the snapshot environment in the locator is not updated if

the locator is used to merely read the LOB value. It is only updated

when you modify the LOB value through the locator via the PL/SQL

DBMS_LOB package or the OCI LOB APIs.

Note: When you update an internal LOB’s value, the modification

is always made to the most current LOB value.
Advanced Topics 2-5

Read-Consistent Locators
Using the Multimedia_tab as defined previously, a CLOB locator is created: clob_
selected .

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_selected.

■ In the second operation (at t2), the value in story is modified through the SQL
UPDATE command, bypassing the clob_selected locator. The locator still sees the

value of the LOB as of the point in time of the original SELECT. In other words,

the locator does not see the update made via the SQL UPDATEcommand. This is

illustrated by the subsequent DBMS_LOB.READ() call.

■ The third operation (at t3) re-selects the LOB value into the locator clob_selected.

The locator is thus updated with the latest snapshot environment which allows

the locator to see the change made by the previous SQL UPDATE command.

Therefore, in the next DBMS_LOB.READ(), an error is returned because the LOB
value is empty (i.e., it does not contain any data).

Example of Repercussions of Mixing SQL DML with DBMS_LOB

INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN

 -- At time t1:
 SELECT story INTO clob_selected
 FROM Multimedia_tab
 WHERE clip_id = 1;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
2-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
 -- At time t2:
 UPDATE Multimedia_tab SET story = empty_clob()
 WHERE clip_id = 1;
 -- although the most current current LOB value is now empty,
 -- clob_selected still sees the LOB value as of the point
 -- in time of the SELECT

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 SELECT story INTO clob_selected FROM Multimedia_tab WHERE
 clip_id = 1;
 -- the SELECT allows clob_selected to see the most current
 -- LOB value

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 -- ERROR: ORA-01403: no data found
END;
/

Using the table Multimedia_tab as defined previously, two CLOBs are created as

potential locators: clob_updated and clob_copied .

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied. At

this juncture, both locators see the same value. The example demonstrates this

with a series of DBMS_LOB.READ() calls.

■ At this juncture (at t3), the program utilizes DBMS_LOB.WRITE() to alter the

value in clob_updated, and a DBMS_LOB.READ() reveals a new value.

Note: We advise that you avoid updating the same LOB with

different locators. You will avoid many pitfalls if you use only one

locator to update the same LOB value.
Advanced Topics 2-7

Read-Consistent Locators
■ However, a DBMS_LOB.READ() of the value through clob_copied (at t4) reveals

that it still sees the value of the LOB as of the point in time of the assignment

from clob_updated (at t2).

■ It is not until clob_updated is assigned to clob_copied (t5) that clob_copied sees the

modification made by clob_updated.

Example of an Updated LOB Locator
INSERT INTO Multimedia_tab VALUES (1,’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER; ;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

-- At time t1:
 SELECT story INTO clob_updated FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 -- At time t2:
 clob_copied := clob_updated;
 -- after the assign, clob_copied and clob_updated see the same
 -- LOB value

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
2-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 clob_copied := clob_updated;

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcdefg'
END;
/

LOB Bind Variables
When a LOB locator is used as the source to update another internal LOB (as in a

SQL INSERT or UPDATE statement, the DBMS_LOB.COPY() routine, and so on), the

snapshot environment in the source LOB locator determines the LOB value that is

used as the source. If the source locator (for example L1) is a read consistent locator,

then the LOB value as of the point in time of the SELECT of L1 is used. If the source

locator (for example L2) is an updated locator, then the LOB value associated with

L2’s snapshot environment at the time of the operation is used.

Using the table Multimedia_tab as defined previously, three CLOBs are created as

potential locators: clob_selected , clob_updated and clob_copied .
Advanced Topics 2-9

Read-Consistent Locators
■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied. At

this juncture, both locators see the same value.

■ Then (at t3), the program utilizes DBMS_LOB.WRITE() to alter the value in clob_
updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ of the value through clob_copied (at t4) reveals that

clob_copied does not see the change made by clob_updated.

■ Therefore (at t5), when clob_copied is used as the source for the value of the

INSERT statement, we insert the value associated with clob_copied (i.e. without

the new changes made by clob_updated). This is demonstrated by the subsequent

DBMS_LOB.READ() of the value just inserted.

Example of Updating a LOB with a PL/SQL Variable
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

 -- At time t1:
 SELECT story INTO clob_updated FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'
2-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
 -- At time t2:
 clob_copied := clob_updated;

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'
 -- note that clob_copied doesn’t see the write made before
 -- clob_updated

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 -- the insert uses clob_copied view of the LOB value which does
 -- not include clob_updated changes
 INSERT INTO Multimedia_tab VALUES (2, clob_copied, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL)
 RETURNING story INTO clob_selected;

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

Advanced Topics 2-11

Read-Consistent Locators
LOB locators cannot span transactions
Modifying an internal LOB’s value through the LOB locator via DBMS_LOB, OCI, or

SQL INSERT or UPDATE statements changes the locator from a read consistent

locator to an updated locator. Further, the INSERT or UPDATE statement

automatically starts a transaction and locks the row. Once this has occurred, the

locator may not be used outside the current transaction to modify the LOB value. In

other words, LOB locators that are used to write data cannot span transactions.

However, the locator may be used to read the LOB value unless you are in a

serializable transaction.

Using the table Multimedia_tab defined previously, a CLOB locator is created: clob_
updated .

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2), utilizes the DBMS_LOB.WRITE() command to alter

the value in clob_updated, and a DBMS_LOB.READ() reveals a new value.

■ The commit statement (at t3) ends the current transaction.

■ Therefore (at t4), the subsequent DBMS_LOB.WRITE() operation fails because the

clob_updated locator refers to a different (already committed) transaction. This is

noted by the error returned. You must re-select the LOB locator before using it

in further DBMS_LOB (and OCI) modify operations.

Example of Locator Not Spanning a Transaction
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 read_amount INTEGER;
 read_offset INTEGER;

For more information about the relationship between LOBs and
transaction boundaries see:

■ "LOB Locators and Transaction Boundaries" on page 1-49
2-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:

 SELECT story
 INTO clob_updated
 FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcd'

 -- At time t2:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcdefg'

 -- At time t3:
 COMMIT;

 -- At time t4:
 dbms_lob.write(clob_updated , write_amount, write_offset,
 buffer);
 -- ERROR: ORA-22990: LOB locators cannot span transactions
END;
/

Advanced Topics 2-13

LOBs in the Object Cache
LOBs in the Object Cache
When you create an object in the object cache that contains an internal LOB
attribute, the LOB attribute is implicitly set to empty. You may not use this empty

LOB locator to write data to the LOB. You must first flush the object, thereby

inserting a row into the table and creating an empty LOB — that is, a LOB with 0

length. Once the object is refreshed in the object cache (use OCI_PIN_LATEST), the

real LOB locator is read into the attribute, and you can then call the OCI LOB API to

write data to the LOB.

When creating an object with a BFILE attribute, the BFILE is set to NULL. It must

be updated with a valid directory alias and filename before reading from the file.

When you copy one object to another in the object cache with a LOB locator

attribute, only the LOB locator is copied. This means that the LOB attribute in these

two different objects contain exactly the same locator which refers to one and the
same LOBvalue. Only when the target object is flushed is a separate, physical copy of

the LOB value made, which is distinct from the source LOB value.

Therefore, in cases where you want to modify the LOB that was the target of the

copy, you must flush the target object, refresh the target object, and then write to the LOB
through the locator attribute.

LOB Buffering Subsystem
Oracle8 provides a LOB buffering subsystem (LBS) for advanced OCI based

applications such as DataCartridges, Web servers, and other client-based

applications that need to buffer the contents of one or more LOBs in the client’s

address space. The client-side memory requirement for the buffering subsystem

during its maximum usage is 512K bytes. It is also the maximum amount that you

can specify for a single read or write operation on a LOB that has been enabled for

buffered access.

See Also: "Example of a Read Consistent Locator" on page 2-3 for

a description of what version of the LOB value will be seen by each

object if a write is performed through one of the locators.
2-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
Advantages of LOB Buffering
The advantages of buffering, especially for client applications that perform a series

of small reads and writes (often repeatedly) to specific regions of the LOB, are:

■ Buffering enables deferred writes to the server. You can buffer up several writes

in the LOB’s buffer in the client’s address space and eventually flush the buffer

to the server. This reduces the number of network roundtrips from your client

application to the server, and hence, makes for better overall performance for

LOB updates.

■ Buffering reduces the overall number of LOB updates on the server, thereby

reducing the number of LOB versions and amount of logging. This results in

better overall LOB performance and disk space usage.

Considerations in the Use of LOB Buffering
The following caveats hold for buffered LOB operations:

■ Oracle8 provides a simple buffering subsystem, and not a cache. To be specific,

Oracle8 does not guarantee that the contents of a LOB’s buffer are always in

synchronize with the LOB value in the server. Unless you explicitly flush the

contents of a LOB’s buffer, you will not see the results of your buffered writes

reflected in the actual LOB on the server.

■ Error recovery for buffered LOB operations is your responsibility. Owing to the

deferred nature of the actual LOB update, error reporting for a particular

buffered read or write operation is deferred until the next access to the server

based LOB.

■ Transactions involving buffered LOB operations cannot migrate across user

sessions — the LBS is a single user, single threaded system.

■ Oracle8 does not guarantee transactional support for buffered LOB operations.

To ensure transactional semantics for buffered LOB updates, you must maintain

logical savepoints in your application to rollback all the changes made to the

buffered LOB in the event of an error. You should always wrap your buffered

LOB updates within a logical savepoint (see "Example of LOB Buffering" on

page 2-21).

■ In any given transaction, once you have begun updating a LOB using buffered

writes, it is your responsibility to ensure that the same LOB is not updated

through any other operation within the scope of the same transaction that
bypasses the buffering subsystem.
Advanced Topics 2-15

LOB Buffering Subsystem
You could potentially do this by using an SQL statement to update the

server-based LOB. Oracle8 cannot distinguish, and hence prevent, such an

operation. This will seriously affect the correctness and integrity of your

application.

■ Buffered operations on a LOB are done through its locator, just as in the

conventional case. A locator that is enabled for buffering will provide a

consistent read version of the LOB, until you perform a write operation on the

LOB through that locator.

Once the locator becomes an updated locator by virtue of its being used for a

buffered write, it will always provide access to the most up-to-date version of

the LOBas seen through the buffering subsystem. Buffering also imposes an

additional significance to this updated locator — all further buffered writes to

the LOBcan be done only through this updated locator. Oracle8 will return an error

if you attempt to write to the LOB through other locators enabled for buffering.

■ You can pass an updated locator that was enabled for buffering as an IN
parameter to a PL/SQL procedure. However, passing an IN OUT or an OUT
parameter will produce an error, as will an attempt to return an updated

locator.

■ You cannot assign an updated locator that was enabled for buffering to another

locator. There are a number of different ways that assignment of locators may

occur — through OCILobAssign (), through assignment of PL/SQL variables,

through OCIObjectCopy () where the object contains the LOB attribute, and so

on. Assigning a consistent read locator that was enabled for buffering to a

locator that did not have buffering enabled, turns buffering on for the target

locator. By the same token, assigning a locator that was not enabled for

buffering to a locator that did have buffering enabled, turns buffering off for the

target locator.

Similarly, if you SELECT into a locator for which buffering was originally

enabled, the locator becomes overwritten with the new locator value, thereby

turning buffering off.

See Also: "Read-Consistent Locators" on page 2-2.

See Also: "Updated locators" on page 2-5.
2-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
■ Appending to the LOB value using buffered write(s) is allowed, but only if the

starting offset of these write(s) is exactly one byte (or character) past the end of

the BLOB (or CLOB/NCLOB). In other words, the buffering subsystem does not

support appends that involve creation of zero-byte fillers or spaces in the server

based LOB.

■ For CLOBs, Oracle8 requires that the character set form for the locator bind

variable on the client side be the same as that of the LOB in the server. This is

usually the case in most OCI LOB programs. The exception is when the locator

is SELECTed from a remote database, which may have a different character set

form from the database which is currently being accessed by the OCI program.

In such a case, an error is returned. If there is no character set form input by the

user, then we assume it is SQLCS_IMPLICIT .

LOB Buffering Operations

The Physical Structure of the LOB Buffer
Each user session has a fixed page pool of 16 pages, which are to be shared by all

LOBs accessed in buffering mode from that session. Each page has a fixed size of up

to 32K bytes (not characters) — to be precise, pagesize = n x CHUNKSIZE ~= 32K. A

LOB’s buffer consists of one or more of these pages, up to a maximum of 16 per

session. The maximum amount that you ought to specify for any given buffered

read or write operation is 512K bytes, remembering that under different

circumstances the maximum amount you may read/write could be smaller.

Using the LOB Buffering System
Consider that a LOB is divided into fixed-size, logical regions. Each page is mapped

to one of these fixed size regions, and is in essence, their in-memory copy.

Depending on the input offset and amount specified for a read or write operation,

Oracle8 allocates one or more of the free pages in the page pool to the LOB’s buffer.

A free page is one that has not been read or written by a buffered read or write

operation.

For example, assuming a page size of 32K, for an input offset of 1000 and a specified

read/write amount of 30000, Oracle8 reads the first 32K byte region of the LOB into

a page in the LOB’s buffer. For an input offset of 33000 and a read/write amount of

30000, the second 32K region of the LOB is read into a page. For an input offset of

1000, and a read/write amount of 35000, the LOB’s buffer will contain two pages —

the first mapped to the region 1 — 32K, and the second to the region 32K+1 — 64K

of the LOB.
Advanced Topics 2-17

LOB Buffering Subsystem
This mapping between a page and the LOB region is temporary until Oracle8 maps

another region to the page. When you attempt to access a region of the LOB that is

not already available in full in the LOB’s buffer, Oracle8 allocates any available free

page(s) from the page pool to the LOB’s buffer. If there are no free pages available in

the page pool, Oracle8 reallocates the pages as follows. It ages out the least recently
used page among the unmodified pages in the LOB’s buffer and reallocates it for the

current operation.

If no such page is available in the LOB’s buffer, it ages out the least recently used

page among the unmodified pages of other buffered LOBs in the same session. Again,

if no such page is available, then it implies that all the pages in the page pool are

dirty (i.e. they have been modified), and either the currently accessed LOB, or one of

the other LOBs, need to be flushed. Oracle8 notifies this condition to the user as an

error. Oracle8 never flushes and reallocates a dirty page implicitly — you can either

flush them explicitly, or discard them by disabling buffering on the LOB.

To illustrate the above discussion, consider two LOBs being accessed in buffered

mode — L1 and L2, each with buffers of size 8 pages. Assume that 6 of the 8 pages

in L1’s buffer are dirty, with the remaining 2 contain unmodified data read in from

the server. Assume similar conditions in L2’s buffer. Now, for the next buffered

operation on L1, Oracle8 will reallocate the least recently used page from the two

unmodified pages in L1’s buffer. Once all the 8 pages in L1’s buffer are used up for

LOB writes, Oracle8 can service two more operations on L1 by allocating the two

unmodified pages from L2’s buffer using the least recently used policy. But for any

further buffered operations on L1 or L2, Oracle8 returns an error.

If all the buffers are dirty and you attempt another read from or write to a buffered

LOB, you will receive the following error:

 Error 22280: no more buffers available for operation

There are two possible causes:

1. All buffers in the buffer pool have been used up by previous operations.

In this case, flush the LOB(s) through the locator that is being used to

update the LOB.

2. You are trying to flush a LOB without any previous buffered update

operations.

In this case, write to the LOB through a locator enabled for buffering before

attempting to flush buffers.
2-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
Flushing the LOB Buffer
The term flush refers to a set of processes. Writing data to the LOB in the buffer

through the locator transforms the locator into an updated locator. Once you have

updated the LOB data in the buffer through the updated locator, a flush call will

■ write the dirty pages in the LOB’s buffer to the server-based LOB, thereby

updating the LOB value,

■ reset the updated locator to be a read consistent locator, and

■ either free the flushed buffers or turn the status of the buffer pages back from

dirty to unmodified.

After the flush, the locator becomes a read consistent locator and can be assigned to

another locator (L2 := L1).

For instance, suppose you have two locators, L1 and L2. Let us say that they are

both read consistent locators and consistent with the state of the LOB data in the

server. If you then update the LOBby writing to the buffer, L1 becomes an updated

locator. L1 and L2 now refer to different versions of the LOB value. If you wish to

update the LOB in the server, you must use L1 to retain the read consistent state

captured in L2. The flush operation writes a new snapshot environment into the

locator used for the flush. The important point to remember is that you must use

the updated locator (L1), when you flush the LOB buffer. Trying to flush a read

consistent locator will generate an error.

This raises the question: What happens to the data in the LOB buffer? There are two

possibilities. In the default mode, the flush operation retains the data in the pages

that were modified. In this case, when you read or write to the same range of bytes

no roundtrip to the server is necessary. Note that flush in this context does not clear

the data in the buffer. It also does not return the memory occupied by the flushed

buffer to the client address space.

In the second case, you set the flag parameter in OCILobFlushBuffer () to OCI_
LOB_BUFFER_FREE to free the buffer pages, and so return the memory to the client

address space. Note that flush in this context updates the LOB value on the server,

returns a read consistent locator, and frees the buffer pages.

Note: Unmodified pages may now be aged out if necessary.
Advanced Topics 2-19

LOB Buffering Subsystem
Flushing the Updated LOB
It is very important to note that you must flush a LOB that has been updated

through the LBS:

■ before committing the transaction,

■ before migrating from the current transaction to another,

■ before disabling buffering operations on a LOB

■ before returning from an external callout execution into the calling

function/procedure/method in PL/SQL.

Using Locators Enabled for Buffering
Note that there are several cases in which you can use buffer-enabled locators and

others in which you cannot.

■ A locator that is enabled for buffering can only be used with the following OCI

APIs:

OCILobRead (), OCILobWrite (), OCILobAssign (), OCILobIsEqual (),

OCILobLocatorIsInit (), OCILobCharSetId (), OCILobCharSetForm ().

■ The following OCI APIs will return errors if used with a locator enabled for

buffering:

Note: When the external callout is called from a PL/SQL block

and the locator is passed as a parameter, all buffering operations,

including the enable call, should be made within the callout itself.

In other words, we recommend that you adhere to the following

sequence:

■ call the external callout,

■ enable the locator for buffering,

■ read/write using the locator,

■ flush the LOB,

■ disable the locator for buffering, and

■ return to the calling function/procedure/method in PL/SQL.

Remember that Oracle8 never implicitly flushes the LOB.
2-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
OCILobCopy (), OCILobAppend (), OCILobErase (), OCILobGetLength (),

OCILobTrim ().

These APIs will also return errors when used with a locator which has not been

enabled for buffering, but the LOB that the locator represents is already being

accessed in buffered mode through some other locator.

■ An error is returned from DBMS_LOB APIs if the input lob locator has buffering

enabled.

■ As in the case of all other locators, locators enabled for LOB buffering cannot

span transactions.

Saving Locator State so as to Avoid a Reselect
Suppose you want to save the current state of the LOB before further writing to the

LOBbuffer. In performing updates while using LOBbuffering, writing to an existing

buffer does not make a roundtrip to the server, and so does not refresh the snapshot

environment in the locator. This would not be the case if you were updating the

LOB directly without using LOB buffering. In that case, every update would involve

a roundtrip to the server, and so would refresh the snapshot in the locator. In order

to save the state of a LOB that has been written through the LOB buffer, you

therefore need to

1. Flush the LOB, thereby updating the LOB and the snapshot environment in the

locator (L1). At this point, the state of the locator (L1) and the LOBare the same.

2. Assign the locator (L1) used for flushing and updating to another locator (L2).

At this point, the states of the two locators (L1 and L2), as well as the LOB are

all identical.

L2 now becomes a read consistent locator with which you are able to access the

changes made through L1 up until the time of the flush, but not after! This

assignment avoids incurring a roundtrip to the server to reselect the locator into L2.

Example of LOB Buffering
The following pseudocode for an OCI program based on the Multimedia_tab
schema briefly explains the concepts listed above.

OCI_BLOB_buffering_program ()
{
 int amount;
 int offset;
 OCILobLocator lbs_loc1, lbs_loc2, lbs_loc3;
 void *buffer;
Advanced Topics 2-21

LOB Buffering Subsystem
 int bufl;

 -- Standard OCI initialization operations - logging on to
 -- server, creating and initializing bind variables etc.

 init_OCI ();

 -- Establish a savepoint before start of LBS operations
 exec_statement("savepoint lbs_savepoint");

 -- Initialize bind variable to BLOB columns from buffered
-- access:

 exec_statement("select frame into lbs_loc1 from Multimedia_tab
 where clip_id = 12");
 exec_statement("select frame into lbs_loc2 from Multimedia_tab
 where clip_id = 12 for update");
 exec_statement("select frame into lbs_loc2 from Multimedia_tab
 where clip_id = 12 for update");

 -- Enable locators for buffered mode access to LOB:
 OCILobEnableBuffering(lbs_loc1);
 OCILobEnableBuffering(lbs_loc2);
 OCILobEnableBuffering(lbs_loc3);

 -- Read 4K bytes through lbs_loc1 starting from offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 OCILobRead(.., lbs_loc1, offset, &amount, buffer, bufl,
 ..);
 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a page (call it page_A) in the LOB’s
 -- client-side buffer.
 -- lbs_loc1 is a read consistent locator.

 -- W rite 4K of the LOB throgh lbs_loc2 starting from
 -- offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 buffer = populate_buffer(4096);
 OCILobWrite(.., lbs_loc2, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
2-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
 -- the server into a new page (call it page_B) in the
 -- L OB’s buffer, and modify the contents of this page
 -- with input buffer contents.
 -- lbs_loc2 is an updated locator.

 -- Read 20K bytes through lbs_loc1 starting from
 -- offset 10K
 amount = 20480; offset = 10240;
 OCILobRead(.., lbs_loc1, offset, &amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- Read directly from page_A into the user buffer.
 -- There is no round-trip to the server because the
 -- data is already in the client-side buffer.

 -- Wri te 20K bytes through lbs_loc2 starting from offset
 -- 10K
 amount = 20480; offset = 10240; bufl = 20480;
 buffer = populate_buffer(20480);
 OCILobWrite(.., lbs_loc2, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- The contents of the user buffer will now be written
 -- into page_B without involving a round-trip to the
 -- server. This avoids making a new LOB version on the
 -- server and writing redo to the log.

 -- The following write through lbs_loc3 will also
 -- result in an error:
 amount = 20000; offset = 1000; bufl = 20000;
 buffer = populate_buffer(20000);
 OCILobWrite(.., lbs_loc3, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- No two locators can be used to update a buffered LOB
 -- through the buffering subsystem

 -- The following update through lbs_loc3 will also
 -- result in an error
Advanced Topics 2-23

User Guidelines for Best Performance Practices
 OCILobFileCopy(.., lbs_loc3, lbs_loc2, ..);

 if (exception)
 goto exception_handler;

-- Locators enabled for buffering cannot be used with
 -- operations like Append, Copy, Trim etc.

 -- When done, flush LOB’s buffer to the server:
 OCILobFlushBuffer(.., lbs_loc2, OCI_LOB_BUFFER_NOFREE);

 if (exception)
 goto exception_handler;
 -- This flushes all the modified pages in the LOB’s buffer,
 -- and resets lbs_loc2 from updated to read consistent
 -- locator. The modified pages remain in the buffer
 -- without freeing memory. These pages can be aged
 -- out if necessary.

 -- Disable locators for buffered mode access to LOB */
 OCILobDisableBuffering(lbs_loc1);
 OCILobDisableBuffering(lbs_loc2);
 OCILobDisableBuffering(lbs_loc3);

 if (exception)
 goto exception_handler;
 -- This disables the three locators for buffered access,
 -- and frees up the LOB’s buffer resources.

 exception_handler:
 handle_exception_reporting ();
 exec_statement("rollback to savepoint lbs_savepoint");
}

User Guidelines for Best Performance Practices
■ Since LOBs are big, you can obtain the best performance by reading and writing

large chunks of a LOB value at a time. This helps in several respects:

a. If accessing the LOB from the client side and the client is at a different node

than the server, large reads/writes reduce network overhead.

b. If using the 'NOCACHE' option, each small read/write incurs an I/O.

Reading/writing large quantities of data reduces the I/O.
2-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOBs in Index Organized Tables
c. Writing to the LOB creates a new version of the LOB CHUNK. Therefore,

writing small amounts at a time will incur the cost of a new version for each

small write. If logging is on, the CHUNK is also stored in the redo log.

■ If you need to read/write small pieces of LOB data on the client, use LOB
buffering — see OCILobEnableBuffering (), OCILobDisableBuffering (),

OCILobFlushBuffer (), OCILobWrite (), OCILobRead (). Basically, turn on

LOB buffering before reading/writing small pieces of LOB data.

■ Use OCILobWrite () and OCILobRead () with a callback so data is streamed

to/from the LOB. Make sure that the length of the entire write is set in the

'amount ' parameter on input. Whenever possible, read and write in multiples

of the LOB chunk size.

■ Use a checkout/checkin model for LOBs. LOBs are optimized for the following:

a. SQL UPDATE which replaces the entire LOB value

b. Copy the entire LOB data to the client, modify the LOB data on the client

side, copy the entire LOB data back to the database. This can be done using

OCILobRead () and OCILobWrite () with streaming.

Working with Varying-Width Character Data
In using the OCI, or any of the programmatic environments that access OCI

functionality, character set conversions are implicitly performed when translating

from one character set to another. However, no implicit translation is ever

performed from binary data to a character set. When you use the loadfromfile
operation to populate a CLOB or NCLOB, you are populating the LOB with binary

data from the BFILE . In that case, you will need to perform character set

conversions on the BFILE data before executing loadfromfile .

LOBs in Index Organized Tables
Index Organized Tables now support internal and external LOB columns. The SQL

DDL, DML and piecewise operations on LOBs in index organized tables exhibit the

See Also: "LOB Buffering Subsystem" on page 2-14 for more

information on LOB buffering.
Advanced Topics 2-25

LOBs in Index Organized Tables
same behavior as that observed in conventional tables. The only exception is the

default behavior of LOBs during creation. The main differences are:

■ Tablespace mapping: By default, or unless specified otherwise, the LOB's data

and index segments will be created in the tablespace in which the primary key

index segments of the index organized table are created.

■ Inline as compared to Out-of-line storage: By default, all LOBs in an index

organized table created without an overflow segment will be stored out of line.

In other words, if an index organized table is created without an overflow

segment, the LOBs in this table have their default storage attributes as DISABLE
STORAGE IN ROW. If you forcibly try to specify an ENABLE STORAGE IN ROW
clause for such LOBs, SQL will raise an error.

On the other hand, if an overflow segment has been specified, LOBs in index

organized tables will exactly mimic their behavior in conventional tables (see

"Stipulating Tablespace and Storage Characteristics for Internal Lobs" on

page 3-8 in Chapter 3, "Internal Persistent LOBs").

Consider the following example:

CREATE TABLE iotlob_tab (c1 INTEGER primary key, c2 BLOB, c3 CLOB, c4
VARCHAR2(20))
 ORGANIZATION INDEX
 TABLESPACE iot_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
 PCTTHRESHOLD 50 INCLUDING c2
 OVERFLOW
 TABLESPACE ioto_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
 STORE AS lobseg (TABLESPACE lob_ts DISABLE STORAGE IN ROW
 CHUNK 1 PCTVERSION 1 CACHE STORAGE (INITIAL 2m)
 INDEX LOBIDX_C1 (TABLESPACE lobidx_ts STORAGE (INITIAL
 4K)));

Executing these statements will result in the creation of an index organized table

iotlob_tab with the following elements:

■ A primary key index segment in the tablespace iot_ts ,

■ An overflow data segment in the tablespace ioto_ts ,

■ Columns starting from column C3 being explicitly stored in the overflow data

segment,

■ BLOB (column C2) data segments in the tablespace lob_ts ,
2-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOBs in Index Organized Tables
■ BLOB (C2) index segments in the tablespace lobidx_ts ,

■ CLOB (C3) data segments in the tablespace iot_ts ,

■ CLOB (C3) index segments in the tablespace iot_ts ,

■ the CLOB (C3) stored in line by virtue of the IOT having an overflow segment,

■ the BLOB (C2) column explicitly forced to be stored out of line.

Note that, if no overflow had been specified, both C2 and C3 would have been

stored out of line by default.

Other LOB features, such as BFILE s and varying character width LOBs, are also

supported in index organized tables, and their usage is the same as conventional

tables.

Note: Support for LOBs in partitioned index organized tables will

be provided in a future release.
Advanced Topics 2-27

LOBs in Index Organized Tables
2-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Internal Persistent
3

Internal Persistent LOBs

In this chapter we describe how to work with internal persistent LOBs in terms of

use cases. That is, we discuss each operation on a LOB (such as "See If a LOB is

Open") in terms of a use case by that name. The table listing all the use cases is

provided at the head of the chapter (see "Use Case Model: Internal Persistent LOBs"

on page 2-2). A summary figure, "Use Case Model Diagram: Internal Persistent

LOBs", locates all the use cases in single drawing. If you are using the HTML

version of this document, you can use this figure to navigate to the use case in

which you are interested by clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

■ A figure that depicts the use case (see "Preface" for a description of how to

interpret these diagrams).

■ A scenario that portrays one implementation of the use case in terms of the

hypothetical multimedia application described above (see "An Example

Application" on page 1-39 in Chapter 1, "Introduction to Working With LOBs").

■ Code examples in each of the programmatic environments which can be

utilized to implement the use case (see "Programmatic Environments for

Operating on LOBs" on page 1-9 in Chapter 1, "Introduction to Working With

LOBs").
LOBs 3-1

Use Case Model: Internal Persistent LOBs
Use Case Model: Internal Persistent LOBs

Table 3–1 Use Case Model: Internal Persistent LOBs Basic Operations

Use Case and Page

Three Ways to Create a Table Containing a LOB on page 3-6

CREATE a Table Containing One or More LOB Columns on page 3-14

CREATE a Table Containing an Object Type with a LOB Attribute on page 3-18

CREATE a Table with a Nested Table Containing a LOB on page 3-22

Three Ways Of Inserting One or More LOB Values into a Row on page 3-25

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() on page 3-26

INSERT a Row Containing a LOB as SELECT on page 3-28

INSERT a Row by Initializing a LOB Locator Bind Variable on page 3-30

Load Data into an Internal LOB (BLOB, CLOB, NCLOB) on page 3-38

Load a LOB with Data from a BFILE on page 3-46

See If a LOB Is Open on page 3-56

Copy LONG to LOB on page 3-64

Checkout a LOB on page 3-68

Checkin a LOB on page 3-79

Display the LOB Data on page 3-93

Read Data from the LOB on page 3-104

Read a Portion of the LOB (substr) on page 3-115

Compare All or Part of Two LOBs on page 3-123

See If a Pattern Exists in the LOB (instr) on page 3-131

Get the Length of a LOB on page 3-138

Copy All or Part of a LOB to another LOB on page 3-146

Copy a LOB Locator on page 3-157

See If One LOB Locator Is Equal to Another on page 3-165

See If a LOB Locator Is Initialized on page 3-171

Get Character Set ID on page 3-175

Get Character Set Form on page 3-178

Append One LOB to Another on page 3-181
3-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Persistent LOBs
Write Append to a LOB on page 3-191

Write Data to a LOB on page 3-200

Trim the LOB Data on page 3-216

Erase Part of a LOB on page 3-226

Enable LOB Buffering on page 3-235

Flush Buffer on page 3-241

Disable LOB Buffering on page 3-246

Three Ways to Update a LOB on page 3-254

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() on page 3-255

UPDATE as SELECT on page 3-257

UPDATE by Initializing a LOB Locator Bind Variable on page 3-258

DELETE the Row of a Table Containing a LOB on page 3-266

Use Case and Page
Internal Persistent LOBs 3-3

Use Case Model: Internal Persistent LOBs
Figure 3–1 Use Case Model Diagram: Internal Persistent LOBs (part 1 of 2)

Internal persistent LOBs (part 1 of 2)

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

flush
buffer

OCI Lob
FileSet NameSELECT

BFILE OR

INITIALIZE
BFILE
locator

CLOSE
a LOB

display
the LOB

data

close
all BFILES

checkin
a LOB

checkout
a LOB

read data
from the LOB

enable
buffering

load a LOB
with data

from a BFILE

write data
to the LOB

close
a BFILE

b

a

b
c

a

CREATE
a table
(LOB)

User/
Program

UPDATE
the row/entire

LOB data

DELETE
the row

INSERT
a row b

c

c

a

disable
buffering

write
append

OR

open
a BFILE
3-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Persistent LOBs
Figure 3–2 Use Case Model Diagram: Internal Persistent LOBs (part 2 of 2)

Internal persistent LOBs (part 2 of 2)

User/
Program

User/
Program

SELECT
a LOB

erase part
of a LOB

OPEN
a LOB

CLOSE
a LOB

get the
length of
the LOB

append one
LOB to
another

copy all or
part of a LOB to

another LOB

trim the
LOB data

see if
LOB is open

get character
set ID

see if locator
is initialized

read a
portion of the
LOB from the
table (substr)

get character
set form

compare all
or parts of

2 LOBs

see if locators
are equal

copy
LOB locator

load
initial data into

the LOB

copy
LONG to LOB

see where/if
a pattern exists

in the LOB
(instr)
Internal Persistent LOBs 3-5

Three Ways to Create a Table Containing a LOB
Three Ways to Create a Table Containing a LOB

Figure 3–3 Use Case Diagram: Three ways to CREATE a Table Containing a LOB

It is possible to incorporate LOBs into tables in three ways.

a. LOBs may be columns in a table — see "CREATE a Table Containing One or

More LOB Columns" on page 3-14.

b. LOBs may be attributes of an object type — see "CREATE a Table

Containing an Object Type with a LOB Attribute" on page 3-18.

c. LOBs may be contained within a nested table — see "CREATE a Table with

a Nested Table Containing a LOB" on page 3-22.

In all cases SQL DDL is used — to define LOB columns in a table and LOB attributes

in an object type.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

b
c

a

Internal persistent LOBs

CREATE
a table
(LOB)

User/
Program
3-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Issues to Consider in Creating Tables that Will Contain LOBs
Issues to Consider in Creating Tables that Will Contain LOBs

Initializing Internal LOBs to NULL or Empty
You can set an internal LOB — that is, a LOB column in a table, or a LOB attribute in

an object type defined by you— to be NULL or empty. A LOB set to NULL has no

locator. By contrast, an empty LOBstored in a table is a LOBof zero length that has a

locator. So, if you SELECT from an empty LOB column / attribute, you get back a

locator which you can use to populate the LOB with data via the OCI or DBMS_LOB
routines. This is discussed in more detail below.

Alternatively, LOB columns, but not LOB attributes, may be initialized to a value.

Which is to say — internal LOB attributes differ from internal LOB columns in that

LOB attributes may not be initialized to a value other than NULL or empty. As

discussed below, an external LOB (i.e. BFILE) can be initialized to NULL or to

a filename.

You can initialize the LOBs in Multimedia_tab by using the following SQL

INSERT statement:

INSERT INTO Multimedia_tab VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of story, flsub, frame and sound to an empty value, and sets photo,
and music to NULL.

Setting a LOB to NULL
You may want to set the internal LOB value to NULL upon inserting the row in cases

where you do not have the LOB data at the time of the INSERT and/or if you want

to issue a SELECT statement at some later time such as:

SELECT COUNT (*) FROM Voiced_tab WHERE Recording IS NOT NULL;

 because you want to see all the voice-over segments that have been recorded, or

SELECT COUNT (*) FROM Voiced_tab WHERE Recording IS NULL;

if you wish to establish which segments still have to be recorded.

However, the drawback to this approach is that you must then issue a SQL UPDATE
statement to reset the null LOBcolumn — to EMPTY_BLOB() /EMPTY_CLOB() or to a

value (e.g. ’Denzel Washington’) for internal LOBs, or to a filename for external

LOBs. The point is that you cannot call the OCI or the PL/SQL DBMS_LOB functions
Internal Persistent LOBs 3-7

Issues to Consider in Creating Tables that Will Contain LOBs
on a LOB that is NULL. These functions only work with a locator, and if the LOB
column is NULL, there is no locator in the row.

Setting an Internal LOB to Empty
If you do not want to set an internal LOB column to NULL, another option is for you

to set the LOB value to empty by using the function EMPTY_BLOB () /EMPTY_
CLOB() in the INSERT statement:

INSERT INTO a_table VALUES (EMPTY_BLOB());

Even better is to use the returning clause (thereby eliminating a round trip that is

necessary for the subsequent SELECT), and then immediately call OCI or the

PL/SQL DBMS_LOB functions to populate the LOB with data.

DECLARE
 Lob_loc BLOB;
BEGIN
 INSERT INTO a_table VALUES (EMPTY_BLOB()) RETURNING blob_col INTO Lob_loc;
 /* Now use the locator Lob_loc to populate the BLOB with data */
END;

Stipulating Tablespace and Storage Characteristics for Internal Lobs
When defining LOBs in a table, you can explicitly indicate the tablespace and

storage characteristics for each internal LOB. There are no extra tablespace or

storage characteristics for external LOBs since they are not stored in the database. If

you later wish to modify the LOBstorage parameters, use the MODIFY LOBclause of

the ALTER TABLE command. For example:

CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
 lob (c) STORE AS (CHUNK 4096
 PCTVERSION 5
 NOCACHE LOGGING
 STORAGE (MAXEXTENTS 5)
);

Specifying a name for the LOB data segment makes for a much more intuitive

working environment. When querying the LOB data dictionary views USER_LOBS,
ALL_LOBS, DBA_LOBS (see Oracle8i Reference), you see the LOB data segment that

you chose instead of system-generated names.

The LOB storage characteristics that can be specified for a LOB column or a LOB
attribute include PCTVERSION, CACHE, NOCACHE, LOGGING, NOLOGGING, CHUNK
3-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Issues to Consider in Creating Tables that Will Contain LOBs
and ENABLE/DISABLE STORAGE IN ROW. For most users, defaults for these storage

characteristics will be sufficient. If you want to fine-tune LOB storage, you should

consider the following guidelines.

Tablespace and LOB Index
Best performance for LOBs can be achieved by specifying storage for LOBs in a

tablespace that is different from the one used for the table that contains the LOB. If

many different LOBs will be accessed frequently, it may also be useful to specify a

separate tablespace for each LOB column/attribute in order to reduce device

contention.

The LOB index is an internal structure that is strongly associated with the LOB
storage. This implies that a user may not drop the LOB index and rebuild it. Note

that the LOB index cannot be altered. The system determines which tablespace to

use for the LOB data and LOB index depending on the user specification in the LOB
storage clause:

■ If you do not specify a tablespace for the LOBdata, the table's tablespace is used

for the LOB data and index.

■ If you specify a tablespace for the LOB data, both the LOB data and index use

the tablespace that was specified.

If in creating tables in 8.1 you specify a tablespace for the LOB index for a

non-partitioned table, your specification of the tablespace will be ignored and the

LOB index will be co-located with the LOB data. Partitioned LOBs do not include the

LOB index syntax.

Specifying a separate tablespace for the LOB storage segments will allow for a

decrease in contention on the table's tablespace.

PCTVERSION
When a LOB is modified, a new version of the LOB page is made in order to support

consistent read of prior versions of the LOB value.

PCTVERSION is the percentage of all used LOB data space that can be occupied by

old versions of LOB data pages. As soon as old versions of LOB data pages start to

occupy more than the PCTVERSION amount of used LOB space, Oracle will try to

reclaim the old versions and reuse them. In other words, PCTVERSION is the

percent of used LOB data blocks that is available for versioning of old LOB data.

 Default: 10 (%) Minimum: 0 (%) Maximum: 100 (%)
Internal Persistent LOBs 3-9

Issues to Consider in Creating Tables that Will Contain LOBs
In order to decide what value PCTVERSION should be set to, you should consider

how often LOBs are updated, and how often you read the updated LOBs.

Example 1:
 Several LOB updates concurrent with heavy reads of LOBs.

 set PCTVERSION = 20%

Setting PCTVERSION to twice the default allows more free pages to be used for old

versions of data pages. Since large queries may require consistent reads of LOBs, it

may be useful to retain old versions of LOB pages. In this case LOB storage may

grow because Oracle will not reuse free pages aggressively.

Example 2:
LOBs are created and written just once and are primarily read-only afterwards.

Updates are infrequent.

 set PCTVERSION = 5% or lower

The more infrequent and smaller the LOB updates are, the less space needs to be

reserved for old copies of LOB data. If existing LOBs are known to be read-only, you

could safely set PCTVERSION to 0% since there would never be any pages needed

for old versions of data.

CACHE / NOCACHE
Use the CACHEoption on LOBs if the same LOBdata will be accessed frequently. Use

the NOCACHEoption (the default) if LOBdata will be read only once, or infrequently.

LOGGING / NOLOGGING
[NO] LOGGING has a similar application with regard to using LOBs as it does for

other table operations. In the normal case, if the [NO]LOGGINGclause is omitted, this

means that neither NO LOGGING nor LOGGING is specified and the logging attribute

Table 3–2 Recommended PCTVERSION Settings in Different Cases

LOB Update Pattern LOB Read Pattern PCTVERSION

Updates XX% of LOB data Reads updated LOBs XX%

Updates XX% of LOB data Reads LOBs but not the updated LOBs 0%

Updates XX% of LOB data Reads both LOBs and non-updated LOBs XX%

Never updates LOB Reads LOBs 0%
3-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Issues to Consider in Creating Tables that Will Contain LOBs
of the table or table partition defaults to the logging attribute of the tablespace in

which it resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

■ If the [NO]LOGGING clause is omitted and CACHE is specified, LOGGING is
automatically implemented (because you cannot have CACHE NOLOGGING).

■ If the [NO]LOGGING clause is omitted and CACHE is not specified, the process

defaults in the same way as it does for tables and partitioned tables. That is, the

[NO]LOGGING value is obtained from the tablespace in which the LOB value

resides.

The following issues should also be kept in mind.

■ LOBs will always generate undo for LOB index pages. Regardless of whether

LOGGING or NOLOGGING is set LOBs will never generate rollback information

(undo) for LOB data pages because old LOB data is stored in versions. Rollback

information that is created for LOBs tends to be small because it is only for the

LOB index page changes.

■ When LOGGING is set Oracle will generate full redo for LOB data pages.

NOLOGGING is intended to be used when a customer does not care about media

recovery. Thus, if the disk/tape/storage media fails, you will not be able to

recover your changes from the log since the changes were never logged.

An example of when NOLOGGING is useful is bulk loads or inserts. For instance,

when loading data into the LOB, if you don't care about redo and can just start

the load over if it fails, set the LOB's data segment storage characteristics to

NOCACHE NOLOGGING. This will give good performance for the initial load of

data. Once you have completed loading the data, you can use ALTER TABLE to
modify the LOB storage characteristics for the LOB data segment to be what you

really want for normal LOB operations -- i.e. CACHE or NOCACHE LOGGING.

CHUNK
Set CHUNK to the number of blocks of LOB data that will be accessed at one time i.e.

the number of blocks that will be read/written via OCILobRead() ,

OCILobWrite() , DBMS_LOB.READ() , or DBMS_LOB.WRITE() during one access of

the LOB value. Note that the default value for CHUNK is one Oracle block and does

not vary across platforms. For example, if only one block of LOB data is accessed at

Note: CACHE implies that you also get LOGGING.
Internal Persistent LOBs 3-11

Issues to Consider in Creating Tables that Will Contain LOBs
a time, set CHUNK to the size of one block. For example, if the database block size is

2K, then set CHUNK to 2K.

If you explicitly specify the storage characteristics for the LOB, make sure that

INITIAL and NEXT for the LOB data segment storage are set to a size that is larger

than the CHUNK size. For example, if the database block size is 2K and you specify a

CHUNK of 8K, make sure that the INITIAL and NEXT are bigger than 8K and

preferably considerably bigger (for example, at least 16K).

Put another way: If you specify a value for INITIAL, NEXT or the LOB CHUNK
size, make sure that:

■ CHUNK <= NEXT

and

■ CHUNK <= INITIAL

ENABLE | DISABLE STORAGE IN ROW
You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether the

LOB should be stored inline (i.e. in the row) or out of line. You may not alter this

specification once you have made it: if you ENABLE STORAGE IN ROW, you cannot

alter it to DISABLE STORAGE IN ROW and vice versa. The default is ENABLE
STORAGE IN ROW.

The maximum amount of LOB data that will be stored in the row is the maximum

VARCHAR size (4000). Note that this includes the control information as well as the

LOB value. If the user indicates that the LOB should be stored in the row, once the

LOB value and control information is larger than 4000, the LOB value is

automatically moved out of the row.

This suggests the following guideline. If the LOB is small (i.e. < 4000 bytes), then

storing the LOB data out of line will decrease performance. However, storing the

LOB in the row increases the size of the row. This will impact performance if the

user is doing a lot of base table processing, such as full table scans, multi-row

accesses (range scans) or many UPDATE/SELECT to columns other than the LOB
columns. If the user doesn't expect the LOB data to be < 4000, i.e. if all LOBs are big,

then the default is the best choice since

(a) the LOBdata is automatically moved out of line once it gets bigger than 4000

(which will be the case here since the LOB data is big to begin with), and

(b) performance will be slightly better since we still store some control

information in the row even after we move the LOB data out of the row.
3-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Issues to Consider in Creating Tables that Will Contain LOBs
For LOBs in index organized tables, inline LOB storage is allowed only if the table is

created with an overflow segment (see "LOBs in Index Organized Tables" on

page 2-25 in Chapter 2, "Advanced Topics").
Internal Persistent LOBs 3-13

CREATE a Table Containing One or More LOB Columns
CREATE a Table Containing One or More LOB Columns

Figure 3–4 Use Case Diagram: CREATE a Table Containing a LOB Column

Scenario
The heart of our hypothetical application is the table Multimedia_tab . The varied

types which make up the columns of this table make it possible to collect together

the many different kinds multimedia elements used in the composition of clips.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

User/
Program

Internal persistent LOBs

a CREATE table with one or more LOBs
CREATE

a table (LOB
columns)
3-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing One or More LOB Columns
Figure 3–5 MULTIMEDIA_TAB as Example of Creating a Table Containing a LOB
Column

Example: Create a Table Containing One or More LOB Columns using SQL DDL

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT system/manager;
DROP USER samp CASCADE;
DROP DIRECTORY AUDIO_DIR;
DROP DIRECTORY FRAME_DIR;
DROP DIRECTORY PHOTO_DIR;

CREATE USER samp identified by samp;
GRANT CONNECT, RESOURCE to samp;
CREATE DIRECTORY AUDIO_DIR AS ’/tmp/’;
CREATE DIRECTORY FRAME_DIR AS ’/tmp/’;
CREATE DIRECTORY PHOTO_DIR AS ’/tmp/’;
GRANT READ ON DIRECTORY AUDIO_DIR to samp;
GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type
Internal Persistent LOBs 3-15

CREATE a Table Containing One or More LOB Columns
Note (continued):
CONNECT samp/samp
CREATE TABLE a_table (blob_col BLOB);
CREATE TYPE Voiced_typ AS OBJECT (
 Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE
);

CREATE TABLE VoiceoverLib_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT TakeLib CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

CREATE TYPE InSeg_typ AS OBJECT (
 Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB
);

CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;
CREATE TYPE Map_typ AS OBJECT (
 Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE
);
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);
3-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing One or More LOB Columns
Since one can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS_LOB package.

CREATE TABLE Multimedia_tab (
 Clip_ID NUMBER NOT NULL,
 Story CLOB default EMPTY_CLOB(),
 FLSub NCLOB default EMPTY_CLOB(),
 Photo BFILE default NULL,
 Frame BLOB default EMPTY_BLOB(),
 Sound BLOB default EMPTY_BLOB(),
 Voiced_ref REF Voiced_typ,
 InSeg_ntab InSeg_tab,
 Music BFILE default NULL,
 Map_obj Map_typ
) NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

Notes
■ The result of using the functions EMPTY_BLOB () and EMPTY_CLOB() means

that the LOB is initialized, but not populated with data. LOBs that are empty

are not null, and vice versa. This topic is discussed in more detail in "INSERT a

LOB Value using EMPTY_CLOB() or EMPTY_BLOB()" on page 3-26.

■ For information about creating nested tables that have ore or more columns of

LOB datatype see "CREATE a Table with a Nested Table Containing a LOB" on

page 3-22

■ The creation of an object column containing one or more LOBs is discussed

under the heading "CREATE a Table Containing an Object Type with a LOB

Attribute" on page 3-18.

For more information see:

■ Oracle8i SQL Reference for a complete specification of the

syntax for using LOBs in the DDL commands CREATE TABLE
and ALTER TABLE with:

 - BLOB , CLOB, NCLOB and BFILE columns

 - EMPTY_BLOB and EMPTY_CLOB functions

 - LOB storage clause for internal LOB columns, and LOB
attributes of embedded objects
Internal Persistent LOBs 3-17

CREATE a Table Containing an Object Type with a LOB Attribute
CREATE a Table Containing an Object Type with a LOB Attribute

Figure 3–6 Use Case Diagram: Create a table Containing an Object Type as a LOB
Attribute

Scenario
As shown in the diagram, you must create the object type that contains the LOB

attributes before you can proceed to create a table that makes use of that object type.

Our example application contains examples of two different ways in which object

types can contain LOBs:

■ Multimedia_tab contains a column Voiced_ref that references row objects

in the table VoiceOver_tab which is based on the type Voiced_typ . This

type contains two kinds of LOBs — a CLOB to store the script that’s read by the

actor, and a BFILE to hold the audio recording.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

CREATE
a table

(Object Type)

User/
Program

b CREATE table with an object
type containing a LOB

CREATE
Object Type
3-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute
■ The table Multimedia_tab contains a column Map_obj that contains column

objects of the type Map_typ. This type utilizes the BLOB datatype for storing

maps in the form of drawings.

Figure 3–7 VOICED_TYP As An Example of Creating a Type Containing a LOB

Example: Create a Table Containing an Object Type with a LOB Attribute Using SQL
DDL

/* Create type Voiced_typ as a basis for tables that can contain recordings of
 voice-over readings using SQL DDL: */
CREATE TYPE Voiced_typ AS OBJECT (
 Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE
);

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table VOICEOVER_TAB (of VOICED_TYP)

SCRIPT ACTOR RECORDING

Text
CLOB

ORIGINATOR

Text
VARCHAR2(30)

Text
VARCHAR2(30)

Audio
BFILE

TAKE

Number
NUMBER

PKPK

Reference to a row
object of a table of
the defined type
Internal Persistent LOBs 3-19

CREATE a Table Containing an Object Type with a LOB Attribute
/* Create table Voiceover_tab Using SQL DDL: */
CREATE TABLE Voiceover_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

Figure 3–8 MAP_TYP As An Example of Creating a Type Containing a LOB

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Column Object MAP_OBJ (of MAP_TYP)

NW

Number
NUMBER

NE

Number
NUMBER

SW

Number
NUMBER

SE

Number
NUMBER

DRAWING

Map
BLOB

AERIAL

Photo
BFILE

REGION

Text
VARCHAR2(30)

Reference to a row
object of a table of
the defined type

Column Object of
the defined type
3-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute
/* Create Type Map_typ using SQL DDL as a basis for the table that will contain
 the column object: */
CREATE TYPE Map_typ AS OBJECT (
 Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE
);

/* Create support table MapLib_tab as an archive of maps using SQL DDL: */
CREATE TABLE MapLib_tab of Map_typ;

For more information see:

■ Oracle8i SQL Reference for a complete specification of the

syntax for using LOBs in the DDL commands CREATE TYPE
and ALTER TYPE with BLOB, CLOB, and BFILE attributes

(noting that NCLOBs cannot be attributes of an object type).
Internal Persistent LOBs 3-21

CREATE a Table with a Nested Table Containing a LOB
 CREATE a Table with a Nested Table Containing a LOB

Figure 3–9 Use Case Diagram: Create a table with a Nested Table Containing a LOB

Scenario
As shown in the diagram, you must create the object type that contains the LOB

attributes before you can proceed to create a nested table based on that object type.

In our example, Multimedia_tab contains a nested table Inseg_ntab that is

based on the type InSeg_typ . This type makes use of two LOB datatypes — a

BFILE for audio recordings of the interviews, and a CLOB should the user wish to

make transcripts of the recordings.

We have already described how to create a table with LOB columns (see "CREATE a

Table Containing One or More LOB Columns" on page 3-14), so here we only

describe the SQL DDL syntax the creating the underlying type:

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal Persistent LOBs

CREATE
a table

(Nested Table)

User/
Program

c CREATE table with an nested
table containing a LOB

CREATE
Object Type
3-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table with a Nested Table Containing a LOB
Figure 3–10 INTERVIEWSEGMENTS_NTAB As An Example of Creating a Nested Table
Containing a LOB

Example: Create a Table with a Nested Table Containing a LOB Using SQL DDL
/* Create a type InSeg_typ as the base type for the nested table containing
 a LOB: */
CREATE TYPE InSeg_typ AS OBJECT (
 Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB
);

/* Type created, but need a nested table of that type to embed in
 multi_media_tab; so: */
CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table INTERVIEWSEGMENTS_NTAB

INTERVIEW_DATE

Date
DATE

INTERVIEWER

Text
VARCHAR2(30)

TRANSCRIPT

Text
CLOB

INTERVIEWEE

Text
VARCHAR2(30)

RECORDING

Audio
BFILE

SEGMENT

Number
NUMBER

PK

Nested Table of the
defined type
Internal Persistent LOBs 3-23

CREATE a Table with a Nested Table Containing a LOB
The actual embedding of the nested table is accomplished when the structure of the

containing table is defined. In our example, this is effected by means of the

following statement at the time that Multimedia_tab is created.

NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;
3-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways Of Inserting One or More LOB Values into a Row
Three Ways Of Inserting One or More LOB Values into a Row

Figure 3–11 Three Ways of Inserting LOB Values into a Row

There are three different ways of inserting LOB values into a row:

a. LOBs may be inserted into a row by first initializing a locator — see

"INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()" on

page 3-26

b. LOBs may be inserted by selecting a a row from another table— see

"INSERT a Row Containing a LOB as SELECT" on page 3-28.

c. LOBs may be inserted by first initializing a LOB locator bind variable — see

"INSERT a Row by Initializing a LOB Locator Bind Variable" on page 3-30.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

User/
Program

Internal persistent LOBs

b
c

a
INSERT

a row
Internal Persistent LOBs 3-25

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

Figure 3–12 Use Case Diagram: INSERT a Row using EMPTY_CLOB() or EMPTY_
BLOB()

Internal Persistent LOBs

User/
Program

EMPTY
_CLOB() or

_BLOB()

a INSERT using Empty_CLOB() or Empty_BLOB()INSERT
a row
3-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
Making a LOB Column Non-Null
Before you can start writing data to an internal LOB, the LOB column must be made

non-null; that is, it must contain a locator that points to an empty or populated LOB
value. You can initialize a BLOB column’s value by using the function EMPTY_
BLOB() as a default predicate. Similarly, a CLOB or NCLOB column’s value can be

initialized by using the function EMPTY_CLOB(). You can perform this initialization

during CREATE TABLE(see "CREATE a Table Containing One or More LOB

Columns") or, as in this case, by means of an INSERT.

Example: Insert a Value by means of EMPTY_CLOB() / EMPTY_BLOB() using SQL
These functions are available as special functions in Oracle8 SQL DML, and are not

part of the DBMS_LOB package.

/* In the new row of table Multimedia_tab,
 the columns STORY and FLSUB are initialized using EMPTY_CLOB(),
 the columns FRAME and SOUND are initialized using EMPTY_BLOB(),
 the column TRANSSCRIPT in the nested table is initialized using EMPTY_CLOB(),

the column DRAWING in the column object is initialized using EMPTY_BLOB(): */
INSERT INTO Multimedia_tab
 VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(), EMPTY_BLOB(),
 NULL, InSeg_tab(InSeg_typ(1, NULL, ’Ted Koppell’, ’Jimmy Carter’, NULL,
 EMPTY_CLOB())), NULL, Map_typ(’Moon Mountain’, 23, 34, 45, 56, EMPTY_BLOB(),
 NULL));

/* In the new row of table Voiceover_tab, the column SCRIPT is initialized using
 EMPTY_CLOB(): */
INSERT INTO Voiceover_tab
 VALUES (’Abraham Lincoln’, EMPTY_CLOB(), ’James Earl Jones’, 1, NULL);

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
Internal Persistent LOBs 3-27

INSERT a Row Containing a LOB as SELECT
INSERT a Row Containing a LOB as SELECT

Figure 3–13 Use Case Diagram: Insert a Row as SELECT

Scenario
With regard to LOBs, one of the advantages of utilizing an object-relational

approach is that you can define a type as a common template for related tables. For

instance, it makes sense that both the tables that store archival material and the

working tables that use those libraries share a common structure. The following

code fragment is based on the fact that a library table VoiceoverLib_tab is of the

same type (Voiced_typ) as Voiceover_tab referenced by the Voiced_ref
column of the Multimedia_tab table. It inserts values into the library table, and

then inserts this same data into Multimedia_tab by means of a SELECT
operation.

Note that the internal LOBtypes — BLOB, CLOB, and NCLOB— use copy semantics, as

opposed to the reference semantics that apply to BFILE s. When a BLOB, CLOB, or

NCLOB is copied from one row to another row in the same table or in a different

table, the actual LOB value is copied, not just the LOB locator. For example,

assuming Voiceover_tab and VoiceoverLib_tab have identical schemas, the

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal Persistent LOBs

User/
Program

SELECT
a LOB

b INSERT as SELECTINSERT
a row
3-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a LOB as SELECT
statement creates a new LOB locator in the table Voiceover_tab , and copies the

LOBdata from VoiceoverLib_tab to the location pointed to by a new LOBlocator

which is inserted in table Voiceover_tab .

Example: Insert a Row by Selecting from Another Table Using SQL DML
/* Store records in the archive table VoiceoverLib_tab: */
INSERT INTO VoiceoverLib_tab
 VALUES (’George Washington’, EMPTY_CLOB(), ’Robert Redford’, 1, NULL);

/* Insert values into Voiceover_tab by selecting from VoiceoverLib_tab: */
INSERT INTO Voiceover_tab
 (SELECT * from VoiceoverLib_tab
 WHERE Take = 1);
Internal Persistent LOBs 3-29

INSERT a Row by Initializing a LOB Locator Bind Variable
INSERT a Row by Initializing a LOB Locator Bind Variable

Figure 3–14 Use Case Diagram: INSERT a Row by Initializing a LOB Locator Bind
Variable

Scenario
In this example we use a LOB locator bind variable to take Sound data that is in one

row of Multimedia_tab and insert it into another row.

■ "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using SQL

DML" on page 3-31

■ "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C

(OCI)" on page 3-31

■ "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using

Pro*COBOL" on page 3-33

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal Persistent LOBs

User/
Program

SELECT
a LOB

Initialize
a LOB locator
bind variable

c INSERT by Initializing a LOB locator bind variableINSERT
a row
3-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Initializing a LOB Locator Bind Variable
■ "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C++

(Pro*C/C++)" on page 3-35

■ "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using

Visual Basic (OO4O)" on page 3-36

■ "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Java

(JDBC)" on page 3-36

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using SQL DML
/* Note that the example procedure insertUseBindVariable_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE insertUseBindVariable_proc
 (Rownum IN NUMBER, Blob_loc IN BLOB) IS
BEGIN
 INSERT INTO Multimedia_tab (Clip_ID, Sound) VALUES (Rownum, Blob_loc);
END;

DECLARE
 Blob_loc BLOB;
BEGIN
 /* Select the LOB from the row where Clip_ID = 1,
 Initialize the LOB locator bind variable: */
 SELECT Sound INTO Blob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1;
 /* Insert into the row where Clip_ID = 2: */
 insertUseBindVariable_proc (2, Blob_loc);
 COMMIT;
END;

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C (OCI)
/* Select the locator into a locator variable */

sb4 select_MultimediaLocator (Lob_loc, errhp, stmthp, svchp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCIStmt *stmthp;
OCISvcCtx *svchp;
{

 OCIDefine *defnp1;
Internal Persistent LOBs 3-31

INSERT a Row by Initializing a LOB Locator Bind Variable
 text *sqlstmt =
 (text *)"SELECT Sound FROM Multimedia_tab WHERE Clip_ID=1";

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,

(ub2)SQLT_BLOB,(dvoid *)0, (ub2 *)0, (ub2 *)0,
 (ub4)OCI_DEFAULT));

 /* Execute and fetch one row */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return (0);

}
/* Insert the selected Locator into table using Bind Variables.
 This function selects a locator from the Multimedia_tab and inserts
 it into the same table in another row.
 */
void insertUseBindVariable (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 int clipid;
 OCILobLocator *Lob_loc;
 OCIBind *bndhp2;
 OCIBind *bndhp1;

 text *insstmt =
 (text *) "INSERT INTO Multimedia_tab (Clip_ID, Sound) VALUES (:1, :2)";

 /* Allocate locator resources */
 (void) OCIDescriptorAlloc((dvoid *) envhp,
 (dvoid **) &Lob_loc, (ub4)OCI_DTYPE_LOB,
3-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Initializing a LOB Locator Bind Variable
 (size_t) 0, (dvoid **) 0);

 /* Select a LOB locator from the Multimedia Table */
 select_MultimediaLocator(Lob_loc, errhp, stmthp, svchp);

 /* Insert the locator into the Multimedia_tab with Clip_ID=2 */
 clipid = 2;

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Binds the bind positions */
 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1,
 (dvoid *) &clipid, (sb4) sizeof(clipid),
 SQLT_INT, (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIBindByPos(stmthp, &bndhp2, errhp, (ub4) 2,
 (dvoid *) &Lob_loc, (sb4) 0, SQLT_BLOB,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 /* Free LOB resources*/
 OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

}

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Pro*COBOL
 IDENTIFICATION DIVISION.
 PROGRAM-ID. INSERT-LOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 USERID PIC X(11) VALUES "USER1/USER1".
Internal Persistent LOBs 3-33

INSERT a Row by Initializing a LOB Locator Bind Variable
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 INSERT-LOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Initialize the BLOB locator
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 * Populate the LOB
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :BLOB1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 1
 END-EXEC.

 * Insert the value with CLIP_ID of 2.
 EXEC SQL
 INSERT INTO MULTIMEDIA_TAB (CLIP_ID, SOUND)
 VALUES (2, :BLOB1)
 END-EXEC.

 * Free resources held by locator
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.

 EXEC SQL COMMIT WORK END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
3-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Initializing a LOB Locator Bind Variable
 STOP RUN.

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C++
(Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertUseBindVariable_proc(Rownum, Lob_loc)
 int Rownum;
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL INSERT INTO Multimedia_tab (Clip_ID, Sound)
 VALUES (:Rownum, :Lob_loc);
}

void insertBLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the LOB from the row where Clip_ID = 1: */
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Insert into the row where Clip_ID = 2: */
 insertUseBindVariable_proc(2, Lob_loc);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{

Internal Persistent LOBs 3-35

INSERT a Row by Initializing a LOB Locator Bind Variable
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 insertBLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Visual Basic
(OO4O)

Dim OraDyn as OraDynaset, OraSound1 as OraBLOB, OraSoundClone as OraBLOB

Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value
’Clone it for future reference
Set OraSoundClone = OraSound1

’Go to Next row
OraDyn.MoveNext

’Lets update the current row and set the LOB to OraSoundClone
OraDyn.Edit
Set OraSound1 = OraSoundClone
OraDyn.Update

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Java (JDBC)
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_31
{
 public static void main (String args [])
3-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Initializing a LOB Locator Bind Variable
 throws Exception
 {
 // Load the Oracle JDBC driver
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 ResultSet rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 1");
 if (rset.next())
 {
 // retrieve the LOB locator from the ResultSet
 BLOB sound_blob = ((OracleResultSet)rset).getBLOB (1);

 OraclePreparedStatement ops =
 (OraclePreparedStatement) conn.prepareStatement(
 "INSERT INTO multimedia_tab (clip_id, sound) VALUES (2, ?)");

 ops.setBlob(1, sound_blob);
 ops.execute();
 conn.commit();
 conn.close();
 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-37

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

Figure 3–15 Use Case Diagram: Load the Initial Data into the Internal LOB

Scenario
Since LOBs can be quite large in size, it makes sense that SQL*Loader can load LOB
data from either the main datafile (that is, in-line with the rest of the data) or from

one or more secondary datafiles.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

User/
Program

load
initial data into

the LOB

Internal persistent LOBs
3-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
To load LOB data from the main datafile, the usual SQL*Loader formats can be

used. The LOB data instances can be in predetermined size fields, delimited fields,

or length-value pair fields.

LOB Data in Predetermined Size Fields
■ This is a very fast and conceptually simple way to load LOBs; unfortunately, the

LOBs to be loaded will not usually be of the same size (note: a possible

work-around to this problem is to pad the LOB data with white space to make

all of the LOBs the same length within the particular datafield; for information

on the trimming of trailing white spaces see "Trimming of Blanks and Tabs" in

the Oracle8i Utilities). To load LOBs using this format, use either CHAR or RAW as

the loading datatype. For example:

Control File:
LOAD DATA
INFILE ’sample.dat’ "fix 21"
INTO TABLE Multimedia_tab
 (Clip_ID POSITION(1:3) INTEGER EXTERNAL,
 Story POSITION(5:20) CHAR DEFAULTIF Story=BLANKS)

Data file (sample.dat):
007 Once upon a time

Note:
■ One space separates the Clip_ID,(O07) from the beginning of the story. The

story is 20 characters long.

■ If the datafield containing the story is empty, then an empty LOB instead of a

null LOB is produced. A null LOB is produced if the NULLIF directive was used

instead of the DEFAULTIF directive. Also note that you can use loader

datatypes other than CHAR to load LOBS. When loading BLOBs you would

probably want to use the RAW datatype.

LOB Data in Delimited Fields
In this format, having different size LOBs within the same column (that is, datafile

field) is not a problem. The trade-off for this added flexibility is performance.

Loading in this format is somewhat slower because the loader has to scan through

the data, looking for the delimiter string. For example:
Internal Persistent LOBs 3-39

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
Control File:
LOAD DATA
INFILE ’sample1.dat’ "str X’7c0a’"
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
Clip_ID CHAR(3),
 Story CHAR(507) ENCLOSED BY ’<startlob>’ AND ’<endlob>’
)

Data file(sample1.dat):
007, <startlob> Once upon a time,The end. <endlob>|
008, <startlob> Once upon another timeThe end. <endlob>|

Note:
■ <startlob> and <endlob> are the delimiting strings. Note that the

maximum length for a LOB that can be read using the CHAR (507) is 507 bytes.

■ If the record separator ' | ' was placed right after <endlob> and followed with

the newline character, the newline would have been interpreted as part of the

next record. One way around this problem would be to make the newline part

of the record separator (for example, "|\n" or in hexadecimal notation:

X"7c0a").

LOB Data in Length-value Pair Fields
You could use VARCHAR (see Oracle8i Utilities), VARCHARC, or VARRAW datatypes to

load LOB data organized in this way. Note that this method of loading produces

better performance over the previous method, however, it removes some of the

flexibility (that is, it requires you to know the LOB length for each LOB before

loading).

Control File:
LOAD DATA
INFILE ’sample2.dat’ "str X’3c656e647265633e0a’"
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
Clip_ID INTEGER EXTERNAL (3),
 Story VARCHARC (3, 500)
3-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
)

Data file (sample2.dat):
007,041 Once upon a time... The end. <endrec>
008,000<endrec>

Note:
■ If the escape character was not supported, the string used as a record separator

in the example could have been expressed in hexadecimal.

■ Story is a field corresponding to a CLOB column. In the control file, it is

described as a VARCHARC whose length field is 3 characters long and maximum

size is 500 bytes.

■ The length subfield of the VARCHARC is 0 (that is, the value subfield is empty);

consequently, the LOB instance is initialized to empty.

■ Make sure the last character of the last line of the data file above is a line feed.

As mentioned earlier, LOB data can be so large that it is very reasonable to want to

load it from secondary datafile(s). While you can use secondary data files as the

source of LOB data, it is better to use LOBFILEs instead.

In the LOBFILE , LOB data instances are still thought to be in fields (predetermined

size, delimited, length-value), but these fields are not organized into records (the

concept of a record does not exist within LOBFILES); thus, the processing overhead

of dealing with records is avoided. This type of organization of data is ideal for LOB
loading.

One LOB per file
Each LOBFILE clause is the source of just one LOB. To load LOB data organized in

this manner into the control file, follow the column/field name with the LOBFILE
specification and the datatype specification. The following example illustrates

loading LOBS, with one LOB per file.

Control File:
LOAD DATA
INFILE ’sample3.dat’
INTO TABLE Multimedia_tab
REPLACE
Internal Persistent LOBs 3-41

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
FIELDS TERMINATED BY ’,’
(
 Clip_ID INTEGER EXTERNAL(5),
 ext_FileName FILLER CHAR(40),
 Story LOBFILE(ext_FileName) TERMINATED BY EOF
)

Data file (sample3.dat):
007,FirstStory.txt,
008,/tmp/SecondStory.txt,

Secondary Data file (FirstStory.txt):
Once upon a time ...
The end.

Secondary Data file (SecondStory.txt):
Once upon another time
The end.

Note:
■ The FILLER field is mapped to the 40-byte long datafield which is read using

the SQL*Loader CHAR datatype.

■ The SQL*Loader gets the LOBFILE file name from the ext-FileName FILLER
field. The data from a specified LOBFILE file (that is, from the first byte to the

EOF character) is loaded to make a LOB instance. Note that if you specify a

LOBFILE file that doesn't exist, the Story field is initialized to empty. Also note

that since no SQL*Loader datatype is specified, the CHAR datatype is used.

Predetermined Size LOBs
In the control file, the size of the LOBs to be loaded into a particular column is

specified. During the load, any LOB data loaded into that particular column is

assumed to be of the specified size. The predetermined size of the fields allows the

dataparser to perform very well. Unfortunately, it is often hard to guarantee that all

of the LOBs are of the same size.

Control File:
LOAD DATA
3-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
INFILE ’sample4.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
 Clip_ID INTEGER EXTERNAL(5),
 Story LOBFILE (CONSTANT ’FirstStory1.txt’) CHAR(32)
)

Data file (sample4.dat):
007,
008,

Secondary Data file (FirstStory1.txt):
Once upon the time ...
The end,
Upon another time ...
The end,

Note:
■ The loader loads 2000 bytes of data from the FirstStory. txt LOBFILE ,

using CHAR datatype, starting with the byte following the byte loaded last

during the current loading session.

■ There is a newline after the comma in the last line of the data file.

Delimited LOBs
The LOB data instances in the LOBFILE files are delimited. In this format, loading

different size LOBs into the same column is not a problem. The trade-off for this

added flexibility is performance. Loading in this format is somewhat slower

because the loader has to scan through the data, looking for the delimiter string. For

example:

Control File:
LOAD DATA
INFILE ’sample5.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(Clip_ID INTEGER EXTERNAL(5),
Story LOBFILE (CONSTANT ’FirstStory2.txt’) CHAR(2000)
Internal Persistent LOBs 3-43

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
TERMINATED BY "<endlob>")

Data file (sample5.dat):
007,
008,

Secondary Data file (FirstStory2.txt):
Once upon a time...
The end.<endlob>
Once upon another time...
The end.<endlob>

Note:
Specifying maximum length (that is, 2000) gives a hint to the loader as to the

maximum length of the field. This often results in optimized memory usage. (Note

that if you use this hint, you should not estimate the value too low). The

TERMINATED BY clause specifies the string that terminates the LOBs. You can also

use the ENCLOSED BYclause. Note that the ENCLOSED BYclause allows a bit more

flexibility as to the relative positioning of the LOBs in the LOBFILE (that is, the LOBs

in the LOBFILE wouldn't have to follow one after another).

Length-Value Pair Specified LOBs
Each LOB in the LOBFILE is preceded by its length. You can use VARCHAR (see

Oracle8 Utilities), VARCHARC, or VARRAW datatypes to load LOB data organized in

this way. The controllable syntax for loading length-value pair specified LOBs is

quite simple.

Note that this method of loading enjoys better performance over the previous one,

but at the same time it takes some of the flexibility away (that is, it requires that you

know the length of each LOB before loading).

Control File:
LOAD DATA
INFILE ’sample6.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
Clip_ID INTEGER EXTERNAL(5),
Story LOBFILE (CONSTANT ’FirstStory3.txt’) VARCHARC(4,2000)
3-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
)

Data file (sample6.dat):
007,
008,

Secondary Data file (FirstStory3.txt):
0031
Once upon a time ... The end.
0000

Note:
The VARCHARC(4, 2000) tells the loader that the LOBs in the LOBFILE are in

length-value pair format and that the first four bytes should be interpreted as the

length. The max_length part (that is, 2000) gives the hint to the loader as to the

maximum size of the field.

■ 0031 tells the loader that the next 31 characters belong to the specified LOB.

■ 0000 results in an empty LOB (not a NULL LOB).

Note the following LOB loading details:

■ The failure to load a particular LOB doesn't result in the rejection of the record

containing that LOB; instead, the record ends up containing an empty LOB.

■ It is not necessary to specify the maximum length of the field corresponding to

a LOB-type column. Nevertheless, if the maximum length is specified, it is taken

as a hint to help optimize memory usage. It is very important that the

maximum length specification doesn't underestimate the true maximum length.
Internal Persistent LOBs 3-45

Load a LOB with Data from a BFILE
Load a LOB with Data from a BFILE

Figure 3–16 Use Case Diagram: Load a LOB with data from a BFILE

Internal persistent LOBs

OPEN
a LOB

User/
Program

OCI Lob
FileSet NameSELECT

BFILE OR

INITIALIZE
BFILE
locator

CLOSE
a LOB

close
all BFILES

load a LOB
with data

from a BFILE

close
a BFILE

OR

open
a BFILE

SELECT
a LOB
3-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
Character Set Conversion
In using the OCI, or any of the programmatic environments that access OCI

functionality, character set conversions are implicitly performed when translating

from one character set to another. However, no implicit translation is ever

performed from binary data to a character set. When you use the loadfromfile
operation to populate a CLOB or NCLOB, you are populating the LOB with binary

data from the BFILE . In that case, you will need to perform character set

conversions on the BFILE data before executing loadfromfile .

Scenario
The example procedure assumes that there is an operating system source file

(Washington_audio) that contains the LOB data to be loaded into the target LOB

(Music). The example procedure also assumes that the directory object AUDIO_DIR
already exists and is mapped to the location of the source file.

■ "Example: Load a LOB with Data from a BFILE Using the DBMS_LOB Package"

on page 3-47

■ "Example: Load a LOB with Data from a BFILE Using C (OCI)" on page 3-48

■ "Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)"

on page 3-50

■ "Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)" on

page 3-52

■ "Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)" on

page 3-53

■ "Example: Load a LOB with Data from a BFILE Using Java (JDBC)" on page 3-54

Example: Load a LOB with Data from a BFILE Using the DBMS_LOB Package
/* Note that the example procedure loadLOBFromBFILE_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE loadLOBFromBFILE_proc IS
 Dest_loc BLOB;

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
Internal Persistent LOBs 3-47

Load a LOB with Data from a BFILE
 Src_loc BFILE := BFILENAME(’FRAME_DIR’, ’Washington_frame’);
 Amount INTEGER := 4000;
BEGIN
 SELECT Frame INTO Dest_loc FROM Multimedia_tab
 WHERE Clip_ID = 3 FOR UPDATE;
 /* Opening the LOB is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Src_loc);
 COMMIT;
END;

Example: Load a LOB with Data from a BFILE Using C (OCI)
/* This example illustrates how to select a BLOB from a Multimedia
 table and load it with data from a BFILE
 */

sb4 select_lock_frame_locator_3(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID=3 FOR UPDATE";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
3-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
 (ub4) OCI_DEFAULT));

 return 0;
}

void LoadLobDataFromBFile(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile;
 OCILobLocator *blob;
 ub4 amount= 4000;

 /* Allocate the Source (bfile) & destination (blob) locators desriptors*/
 OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&bfile,
 (ub4)OCI_DTYPE_FILE, (size_t)0, (dvoid **)0);
 OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&blob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

 /* Select a frame locator for update */
 printf (" select the frame locator...\n");
 select_lock_frame_locator_2(blob, errhp, svchp, stmthp);

 /* Set the Directory Alias and File Name of the frame file */
 printf (" set the file name in bfile\n");
 checkerr (errhp, OCILobFileSetName(envhp, errhp, &bfile, (text*)"FRAME_DIR",
 (ub2)strlen("FRAME_DIR"),
 (text*)"Washington_frame",
 (ub2)strlen("Washington_frame")));

 printf (" open the bfile\n");
 /* Opening the BFILE locator is Mandatory */
 checkerr (errhp, (OCILobOpen(svchp, errhp, bfile, OCI_LOB_READONLY)));

 printf(" open the lob\n");
 /* Opening the BLOB locator is optional */
 checkerr (errhp, (OCILobOpen(svchp, errhp, blob, OCI_LOB_READWRITE)));

 /* Load the data from the audio file (bfile) into the blob */
 printf (" load the LOB from File\n");
 checkerr (errhp, OCILobLoadFromFile(svchp, errhp, blob, bfile, (ub4)amount,
 (ub4)1, (ub4)1));
Internal Persistent LOBs 3-49

Load a LOB with Data from a BFILE
 /* Closing the LOBs is Mandatory if they have been Opened */
 checkerr (errhp, OCILobClose(svchp, errhp, bfile));
 checkerr (errhp, OCILobClose(svchp, errhp, blob));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) bfile, (ub4) OCI_DTYPE_FILE);
 (void) OCIDescriptorFree((dvoid *) blob, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-LOAD.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 DEST SQL-BLOB.
 01 BFILE1 SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 * Declare the amount to load. The value here
 * was chosen arbitrarily
 01 LOB-AMT PIC S9(9) COMP VALUE 10.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 LOB-LOAD.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 * Set up the directory and file information
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
3-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :BFILE1 DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Allocate and initialize the destination BLOB
 EXEC SQL ALLOCATE :DEST END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :DEST
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3 FOR UPDATE
 END-EXEC.

 * Open the source BFILE for READ
 EXEC SQL
 LOB OPEN :BFILE1 READ ONLY
 END-EXEC.

 * Open the destination BLOB for READ/WRITE
 EXEC SQL
 LOB OPEN :DEST READ WRITE
 END-EXEC.

 * Load the destination BLOB from the source BFILE
 EXEC SQL
 LOB LOAD :LOB-AMT FROM FILE :BFILE1 INTO :DEST
 END-EXEC.

 * Close the source and destination LOBs
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.
 EXEC SQL LOB CLOSE :DEST END-EXEC.

 END-OF-BLOB.
 EXEC SQL FREE :DEST END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
Internal Persistent LOBs 3-51

Load a LOB with Data from a BFILE
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void loadLOBFromBFILE_proc()
{
 OCIBlobLocator *Dest_loc;
 OCIBFileLocator *Src_loc;
 char *Dir = "FRAME_DIR", *Name = "Washington_frame";
 int Amount = 4000;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Initialize the BFILE Locator */
 EXEC SQL ALLOCATE :Src_loc;
 EXEC SQL LOB FILE SET :Src_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Initialize the BLOB Locator */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL SELECT frame INTO :Dest_loc FROM Multimedia_tab
 WHERE Clip_ID = 3 FOR UPDATE;
 /* Opening the BFILE is Mandatory */
 EXEC SQL LOB OPEN :Src_loc READ ONLY;
 /* Opening the BLOB is Optional */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
3-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
 EXEC SQL LOB LOAD :Amount FROM FILE :Src_loc INTO :Dest_loc;
 /* Closing LOBs and BFILEs is Mandatory if they have been OPENed */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;
 /* Release resources held by the Locators */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 loadLOBFromBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)
Dim OraDyn as OraDynaset, OraSound1 as OraBLOB, OraMyBfile as OraBFile

OraConnection.BeginTrans
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value

OraParameters.Add "id", 1,ORAPARAM_INPUT
OraParameters.Add "mybfile", Empty,ORAPARAM_OUTPUT
OraParameters("mybfile").ServerType = ORATYPE_BFILE

OraDatabase.ExecuteSQL ("begin GetBFile(:id, :mybfile ") end")

Set OraMyBFile = OraParameters("mybfile").Value
’Go to Next row
OraDyn.MoveNext

OraDyn.Edit
’Lets update OraSound1 data with that from the BFILE
OraSound1.CopyFromBFile OraMyBFile
OraDyn.Update

OraConnection.CommitTrans
Internal Persistent LOBs 3-53

Load a LOB with Data from a BFILE
Example: Load a LOB with Data from a BFILE Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_45
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 BLOB dest_lob = null;
 InputStream in = null;
 OutputStream out = null;
 byte buf[] = new byte[1000];
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME('AUDIO_DIR', 'Washington_audio') FROM DUAL");
3-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 src_lob.openFile();
 in = src_lob.getBinaryStream();
 }

 rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 99 FOR UPDATE");
 if (rset.next())
 {
 dest_lob = ((OracleResultSet)rset).getBLOB (1);

 // Fetch the output stream for dest_lob:
 out = dest_lob.getBinaryOutputStream();
 }

 int length = 0;
 int pos = 0;
 while ((in != null) && (out != null) && ((length = in.read(buf)) != -1))
 {
 System.out.println(
 "Pos = " + Integer.toString(pos) + ". Length = " +
 Integer.toString(length));
 pos += length;
 out.write(buf, pos, length);
 }

 // Close all streams and file handles:
 in.close();
 out.flush();
 out.close();
 src_lob.closeFile();

 // Commit the transaction:
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-55

See If a LOB Is Open
See If a LOB Is Open

Figure 3–17 Use Case Diagram: See If a LOB Is Open

■ "Example: See If a LOB Is Open Using PL/SQL" on page 3-57

■ "Example: See If a LOB Is Open Using C (OCI)" on page 3-57

■ "Example: See If a LOB Is Open Using COBOL (Pro*COBOL)" on page 3-59

■ "Example: See If a LOB Is Open Using C++ (Pro*C/C++)" on page 3-60

■ "Example: See If a LOB Is Open Using Java (JDBC)" on page 3-61

Scenario
The following example opens a Video frame (Frame), and then evaluates to see if

the LOB is open.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

SELECT
a LOB

see if
LOB is open
3-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Is Open
Example: See If a LOB Is Open Using PL/SQL
/* Note that the example procedure lobIsOpen_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE lobIsOpen_proc IS
 Lob_loc BLOB;
 Retval INTEGER;
BEGIN
 SELECT Frame INTO Lob_loc FROM Multimedia_tab where Clip_ID = 1;

 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc , DBMS_LOB.LOB_READONLY);

 /* See if the LOB is open: */
 Retval := DBMS_LOB.ISOPEN(Lob_loc);
 /* The value of Retval will be 1 meaning that the LOB is open. */
END;

Example: See If a LOB Is Open Using C (OCI)
/* Select the locator into a locator variable */

sb4 select_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID=1";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
Internal Persistent LOBs 3-57

See If a LOB Is Open
 (ub4) OCI_DEFAULT));

 return (0);
}

void seeIfLOBIsOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 int isOpen;

 /* Allocate locator resources */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

 /* Select the locator */
 (void)select_frame_locator(Lob_loc, errhp, svchp, stmthp);

 /* See if the LOB is Open */
 checkerr (errhp, OCILobIsOpen(svchp, errhp, Lob_loc, &isOpen));

 if (isOpen)
 {
 printf(" Lob is Open\n");
 /* ... Processing given that the LOB has already been Opened */
 }
 else
 {
 printf(" Lob is not Open\n");
 /* ... Processing given that the LOB has not been Opened */
 }

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

3-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Is Open
Example: See If a LOB Is Open Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-OPEN.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 LOB-ATTR-GRP.
 05 ISOPN PIC S9(9) COMP.

 01 SRC SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 LOB-OPEN.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the target BLOB
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT FRAME INTO :BLOB1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 1
 END-EXEC.

 * See if the LOB is OPEN
 EXEC SQL
 LOB DESCRIBE :BLOB1 GET ISOPEN INTO :ISOPN
 END-EXEC.

 IF ISOPN = 1
 * <Processing for the LOB OPEN case>
 DISPLAY "The LOB is open"
 ELSE
Internal Persistent LOBs 3-59

See If a LOB Is Open
 * <Processing for the LOB NOT OPEN case>
 DISPLAY "The LOB is not open"
 END-IF.

 * Free the resources used by the BLOB
 END-OF-BLOB.
 EXEC SQL FREE :BLOB1 END-EXEC.

 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: See If a LOB Is Open Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeIfLOBIsOpen()
{
 OCIBlobLocator *Lob_loc;
 int isOpen = 1;
3-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Is Open
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Frame INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* See if the LOB is Open: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN INTO :isOpen;
 if (isOpen)
 printf("LOB is open\n");
 else
 printf("LOB is not open\n");
 /* Note that in this example, the LOB is not open */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeIfLOBIsOpen();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: See If a LOB Is Open Using Visual Basic (OO4O)

Example: See If a LOB Is Open Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.Types;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

Note: An example will be made available in a subsequent release.
Internal Persistent LOBs 3-61

See If a LOB Is Open
// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_48
{
 public Ex2_48 ()
 {
 }

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {

 BLOB blob = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT frame FROM multimedia_tab WHERE clip_id = 1");
 if (rset.next())
 {
 blob = ((OracleResultSet)rset).getBLOB (1);
 }

 OracleCallableStatement cstmt =
 (OracleCallableStatement) conn.prepareCall (
 "BEGIN ? := DBMS_LOB.ISOPEN(?); END;");
 cstmt.registerOutParameter (1, Types.NUMERIC);
 cstmt.setBLOB(2, blob);
 cstmt.execute();
 int result = cstmt.getInt(1);
3-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Is Open
 System.out.println("The result is: " + Integer.toString(result));

 OracleCallableStatement cstmt2 = (OracleCallableStatement)
 conn.prepareCall (
 "BEGIN DBMS_LOB.OPEN(?,DBMS_LOB.LOB_READONLY); END;");
 cstmt2.setBLOB(1, blob);
 cstmt2.execute();

 System.out.println("The LOB has been opened with a call to DBMS_LOB.OPEN()");

 // Use the existing cstmt handle to re-query the status of the locator:
 cstmt.setBLOB(2, blob);
 cstmt.execute();
 result = cstmt.getInt(1);
 System.out.println("This result is: " + Integer.toString(result));

 stmt.close();
 cstmt.close();
 cstmt2.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-63

Copy LONG to LOB
Copy LONG to LOB

Figure 3–18 Use Case Diagram: Copy LONG to LOB

Scenario
Assume that the following archival source table SoundsLib_tab was defined and

contains data:

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

User/
Program

copy
LONG to LOB

Internal persistent LOBs
3-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy LONG to LOB
CREATE TABLE SoundsLib_tab
(
 Id NUMBER,
 Description VARCHAR2(30),
 SoundEffects LONG RAW
);

The example assumes that you want to copy the data from the LONG RAW column

(SoundEffects) into the BLOB column (Sound) of the multimedia table, and uses

the SQL function TO_LOB to accomplish this.

Example: Copy Long to LOB Using SQL
INSERT INTO Multimedia_tab (clip_id,sound) SELECT id, TO_LOB(SoundEffects)
 FROM SoundsLib_tab WHERE id =1;

This functionality is based on using an operator on LONGs called TO_LOB that

converts the LONG to a LOB. The TO_LOB operator copies the data in all the rows of

the LONG column to the corresponding LOB column, and then lets you apply the

LOBfunctionality to what was previously LONGdata. Note that the type of data that

is stored in the LONG column must match the type of data stored in the LOB. For

example, LONG RAW data must be copied to BLOB data, and LONG data must be

copied to CLOB data.

Once you have completed this one-time only operation and are satisfied that the

data has been copied correctly, you could then drop the LONG column. However,

this will not reclaim all the storage originally required to store LONGs in the table.

In order to avoid unnecessary, excessive storage, you are better advised to copy the

LONG data to a LOB in a new or different table. Once you have made sure that the

data has been accurately copied, you should then drop the original table.

For more information see:

■ Oracle8i SQL Reference for syntax of the function TO_LOB.

Note: in order for the above to succeed, execute:

CREATE TABLE SoundsLib_tab (
 id NUMBER,
 SoundEffects LONG RAW);
Internal Persistent LOBs 3-65

Copy LONG to LOB
One simple way to effect this transposing of LONGs to LOBs is to use the CREATE
TABLE... SELECTstatement, using the TO_LOBoperator on the LONGcolumn as part

of the SELECT statement. You can also use INSERT... SELECT.

In the examples in the following procedure, the LONG column named LONG_COL in
table LONG_TAB is copied to a LOB column named LOB_COL in table LOB_TAB.
These tables include an ID column that contains identification numbers for each

row in the table.

Complete the following steps to copy data from a LONG column to a LOB column:

1. Create a new table with the same definition as the table that contains the LONG
column, but use a LOB datatype in place of the LONG datatype.

For example, if you have a table with the following definition:

CREATE TABLE Long_tab (
 id NUMBER,
 long_col LONG);

Create a new table using the following SQL statement:

CREATE TABLE Lob_tab (
 id NUMBER,
 blob_col BLOB);

2. Issue an INSERT command using the TO_LOB operator to insert the data from

the table with the LONG datatype into the table with the LOB datatype.

For example, issue the following SQL statement:

INSERT INTO Lob_tab
SELECT id,
TO_LOB(long_col)
FROM long_tab;

3. When you are certain that the copy was successful, drop the table with the

LONG column.

For example, issue the following SQL command to drop the LONG_TAB table:

Note: When you create the new table, make sure you preserve the

table’s schema, including integrity constraints, triggers, grants, and

indexes. The TO_LOB operator only copies data; it does not

preserve the table’s schema.
3-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy LONG to LOB
DROP TABLE Long_tab;

4. Create a synonym for the new table using the name of the table with LONGdata.

The synonym ensures that your database and applications continue to function

properly.

For example, issue the following SQL statement:

CREATE SYNONYM Long_tab FOR Lob_tab;

Once the copy is complete, any applications that use the table must be modified to

use the LOB data.

You can use the TO_LOB operator to copy the data from the LONG to the LOB in

statements that employ CREATE TABLE...AS SELECT or INSERT...SELECT. In the

latter case, you must have already ALTERed the table and ADDed the LOB column

prior to the UPDATE. If the UPDATE returns an error (because of lack of undo space),

you can incrementally migrate LONG data to the LOB using the WHERE clause. The

WHERE clause cannot contain functions on the LOB but can test the LOB’s nullness.

Note that use of TO_LOB is subject to the following limitations:

■ You can use TO_LOB to copy data to a LOB column, but not to a LOB attribute.

■ You cannot use TO_LOB with any remote table. Consequently, all the following

statements will fail:

INSERT INTO tb1@dblink (lob_col) SELECT TO_LOB(long_col) FROM tb2;
INSERT INTO tb1 (lob_col) SELECT TO_LOB(long_col) FROM tb2@dblink;
CREATE table tb1 AS SELECT TO_LOB(long_col) FROM tb2@dblink;

■ If the target table (the table with the lob column) has a trigger — such as

BEFORE INSERT or INSTEAD OF INSERT — the :NEW.lob_col variable can't

be referenced in the trigger body.

■ You cannot deploy TO_LOB inside any PL/SQL block.
Internal Persistent LOBs 3-67

Checkout a LOB
Checkout a LOB

Figure 3–19 Use Case Diagram: Checkout a LOB

Streaming Mechanism
The most efficient way to write large amounts of LOB data is to use OCILobRead ()

with the streaming mechanism enabled via polling or a callback. You should use the

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

checkout
a LOB

read data
from the LOB
3-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB
OCI or PRO*C interface with streaming for the underlying read operation; using

DBMS_LOB.READ will result in non-optimal performance.

Scenario
In the typical use of the checkout-checkin operation, the user wants to checkout a

version of the LOB from the database to the client, modify the data on the client

without accessing the database, and then in one fell swoop, checkin all the

modifications that were made to the document on the client side.

Here we portray the checkout portion of the scenario: the code lets the user read the

CLOB Transcript from the nested table InSeg_ntab which contains interview

segments for the purpose of processing it in some text editor on the client. The

checkin portion of the scenario is described in "Checkin a LOB" on page 3-79.

■ "Example: CheckOut a LOB Using PL/SQL (DBMS_LOB Package)" on

page 3-69

■ "Example: CheckOut a LOB Using C (OCI)" on page 3-70

■ "Example: CheckOut a LOB Using COBOL (Pro*COBOL)" on page 3-72

■ "Example: CheckOut a LOB Using C++ (Pro*C/C++)" on page 3-74

■ "Example: CheckOut a LOB Using Visual Basic (OO4O)" on page 3-76

■ "Example: CheckOut a LOB Using Java (JDBC)" on page 3-77

Example: CheckOut a LOB Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure checkOutLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE checkOutLOB_proc IS
 Lob_loc CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 2147483647;
BEGIN
 /* Select the LOB: */
 SELECT Intab.Transcript INTO Lob_loc
 FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab
 WHERE Mtab.Clip_ID = 1) Intab
 WHERE Intab.Segment = 1;
 * Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 LOOP
Internal Persistent LOBs 3-69

Checkout a LOB
 DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
 /* Process the buffer: */
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data’);
END;

Example: CheckOut a LOB Using C (OCI)
/* This example will READ the entire contents of a BLOB piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire BLOB has been read: */

#define MAXBUFLEN 32767

/* Select the locator into a locator variable: */
sb4 select_transcript_locator(Lob_loc, errhp, stmthp, svchp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *) "SELECT Intab.Transcript \
 FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab \
 WHERE Mtab.Clip_ID = 1) Intab \
 WHERE Intab.Segment = 1";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
3-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

void checkoutLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub4 amt;
 ub4 offset;
 sword retval;
 boolean done;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate locators desriptors: */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB,(size_t) 0, (dvoid **) 0);
 /* Select the BLOB: */
 printf(" select the transcript locator...\n");
 select_transcript_locator(Lob_loc, errhp, stmthp, svchp);

 /* Open the CLOB: */
 printf (" open lob in checkOutLOB_proc\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY)));

 /* Setting amt = 0 will read till the end of LOB: */
 amt = 0;
 buflen = sizeof(bufp);

 /* Process the data in pieces: */
 printf (" read lob in pieces\n");
 offset = 1;
 memset(bufp, '\0', MAXBUFLEN);
 done = FALSE;
 while (!done)
 {
 retval = OCILobRead(svchp, errhp, Lob_loc, &amt, offset, (dvoid *)bufp,
 buflen, (dvoid *)0,(sb4 (*)(dvoid *, dvoid *, ub4,
 ub1)) 0, (ub2) 0, (ub1) SQLCS_IMPLICIT);
Internal Persistent LOBs 3-71

Checkout a LOB
 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece or last piece */

 /* Process the data in bufp. amt will give the amount of data just read in
 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs */
 done = TRUE;
 break;
 case OCI_ERROR:
 checkerr (errhp, OCI_ERROR);
 done = TRUE;
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */
 /* Process the data in bufp. amt will give the amount of data just read in
 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs. */
 break;
 default:
 checkerr (errhp, retval);
 done = TRUE;
 break;
 } /* while */
 }
 /* Closing the CLOB is mandatory if you have opened it: */
 printf (" close lob in checkOutLOB_proc\n");
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: CheckOut a LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CHECKOUT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 CLOB1 SQL-CLOB.
3-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB
 01 BUFFER PIC X(5) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.

 01 D-BUFFER-LEN PIC 9.
 01 D-AMT PIC 9.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 READ-CLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.

 EXEC SQL
 SELECT STORY INTO :CLOB1 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 2
 END-EXEC.

 * Initiate polling read:
 MOVE 0 TO AMT.

 * Read first piece of the CLOB into the buffer:
 EXEC SQL
 LOB READ :AMT FROM :CLOB1 AT :OFFSET INTO :BUFFER
 END-EXEC.
 DISPLAY "Reading a CLOB ...".
 DISPLAY " ".
 MOVE BUFFER-LEN TO D-BUFFER-LEN.
 DISPLAY "first read (", D-BUFFER-LEN, "): "
 BUFFER-ARR(1:BUFFER-LEN).

 * Read subsequent pieces of the CLOB:
 READ-LOOP.
 MOVE " " TO BUFFER-ARR.
 EXEC SQL
 LOB READ :AMT FROM :CLOB1 INTO :BUFFER
 END-EXEC.
 MOVE BUFFER-LEN TO D-BUFFER-LEN.
Internal Persistent LOBs 3-73

Checkout a LOB
 DISPLAY "next read (", D-BUFFER-LEN, "): "
 BUFFER-ARR(1:BUFFER-LEN).

 GO TO READ-LOOP.

 * Read the last piece of the CLOB:
 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 MOVE BUFFER-LEN TO D-BUFFER-LEN.
 DISPLAY "last read (", D-BUFFER-LEN, "): "
 BUFFER-ARR(1:BUFFER-LEN).
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: CheckOut a LOB Using C++ (Pro*C/C++)
/* This example will READ the entire contents of a CLOB piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire CLOB has been read: */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
3-74 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB
}

#define BufferLength 256

void checkOutLOB_proc()
{
 OCIClobLocator *Lob_loc;
 int Amount;
 int Clip_ID, Segment;
 VARCHAR Buffer[BufferLength];

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;

 /* Use Dynamic SQL to retrieve the LOB: */
 EXEC SQL PREPARE S FROM
 'SELECT Intab.Transcript \
 FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab \
 WHERE Mtab.Clip_ID = :cid) Intab \
 WHERE Intab.Segment = :seg';
 EXEC SQL DECLARE C CURSOR FOR S;
 Clip_ID = Segment = 1;
 EXEC SQL OPEN C USING :Clip_ID, :Segment;
 EXEC SQL FETCH C INTO :Lob_loc;
 EXEC SQL CLOSE C;

 /* Open the LOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;

 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;

 /* Set the maximum size of the Buffer: */
 Buffer.len = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the LOB into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Checkout %d characters\n", Buffer.len);
 }
 printf("Checkout %d characters\n", Amount);

 /* Closing the LOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
Internal Persistent LOBs 3-75

Checkout a LOB
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 checkOutLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: CheckOut a LOB Using Visual Basic (OO4O)
’Note that this code fragment assumes an orablob object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1. There are two ways
’of reading a lob using orablob.read or orablob.copytofile

’Using OraBlob.Read mechanism
Dim OraDyn as OraDynaset, OraSound as OraBlob, amount_read%, chunksize%, chunk

chunksize = 32767
set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
set OraSound = OraDyn.Fields("Sound")
OraSound.PollingAmount = OraSound.Size ’Read entire BLOB contents
Do

amount_read = OraSound.Read(chunk,chunksize) ’chunk returned is a variant of
type byte array
 If amount_read = 0 Then
 Exit Do
 End If
 OraMusic.offset = OraSound.offset + amount_read + 1
Loop Until amount_read = 0

’Using OraBlob.CopyToFile mechanism
Dim OraDyn as OraDynaset, OraSound as OraBlob, amount_read%, chunksize%, chunk

Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraSound = OraDyn.Fields("Sound") .Value

OraSound.pollingAmount = OraSound.Size
’Read entire BLOB contents
3-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB
OraSound.CopyToFile "c:\mysound.aud"

Example: CheckOut a LOB Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_59
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 CLOB src_lob = null;
Internal Persistent LOBs 3-77

Checkout a LOB
 InputStream in = null;
 byte buf[] = new byte[MAXBUFSIZE];

 ResultSet rset = stmt.executeQuery (
 "SELECT intab.transcript FROM TABLE(
 SELECT mtab.inseg_ntab FROM multimedia_tab mtab
 WHERE mtab.clip_id = 1) intab WHERE intab.segment = 1");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getCLOB (1);
 in = src_lob.getAsciiStream();
 }

 int length = 0;
 int pos = 0;
 while ((in != null) && ((length = in.read(buf)) != -1))
 {
 pos += length;
 System.out.println(Integer.toString(pos));
 // Process the buffer:
 }

 in.close();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
Checkin a LOB

Figure 3–20 Use Case Diagram: Checkin a LOB

Streaming Mechanism
The most efficient way to write large amounts of LOB data is to use

OCILobWrite () with the streaming mechanism enabled via polling or a callback

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

checkin
a LOB

write data
to the LOB
Internal Persistent LOBs 3-79

Checkin a LOB
Scenario
The checkin operation demonstrated here follows from "Checkout a LOB" on

page 3-68. In this case, the procedure writes the data back into the CLOB
Transcript column within the nested table InSeg_ntab that contains interview

segments. As noted above, you should the OCI or PRO*C interface with streaming

for the underlying write operation; using DBMS_LOB.WRITE will result in

non-optimal performance.

Example: Checkin a LOB Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure checkInLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE checkInLOB_proc IS
 Lob_loc CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 2147483647;
 i INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT Intab.Transcript INTO Lob_loc
 FROM TABLE(SELECT m.InSeg_ntab FROM Multimedia_tab Mtab
 WHERE Clip_ID = 2) Intab
 WHERE Intab.Segment = 1
 FOR UPDATE;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE)
 FOR i IN 1..3 LOOP
 /* Fill the Buffer with data to be written. */
 /* Write data: */
 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;
3-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
Example: Checkin a LOB Using C (OCI)
/* This example demonstrates how OCI provides for the ability to write
 arbitrary amounts of data to an Internal LOB in either a single piece
 of in multiple pieces using a streaming mechanism that utilizes standard
 polling. A statically allocated Buffer is used to hold the data being
 written to the LOB. */

#define MAXBUFLEN 32767

/* Select the locator into a locator variable */
sb4 select_lock_transcript_locator(Lob_loc, errhp, stmthp,svchp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;

 text *sqlstmt =
 (text *) "SELECT Intab.Transcript \
 FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab \
 WHERE Mtab.Clip_ID = 2) Intab \
 WHERE Intab.Segment = 1 FOR UPDATE";

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return OCI_SUCCESS;
}

void checkinLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
Internal Persistent LOBs 3-81

Checkin a LOB
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIClobLocator *Lob_loc;
 ub4 Total = 2.5*MAXBUFLEN;
 ub4 amtp;
 ub4 offset;
 ub4 remainder;
 ub4 nbytes;
 boolean last;
 ub1 bufp[MAXBUFLEN];
 sb4 err;

 /* Allocate locators desriptors*/
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB,(size_t) 0,(dvoid **) 0);
 /* Select the CLOB */
 printf(" select the transcript locator...\n");
 select_lock_transcript_locator(Lob_loc, errhp, stmthp, svchp);

 /* Open the CLOB */
 printf (" open the locator.\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 printf (" write the lob in pieces\n");
 if (Total > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single write is required */

 /* Fill the buffer with nbytes worth of data */

 remainder = Total - nbytes;

 /* Setting Amount to 0 streams the data until use specifies OCI_LAST_PIECE */
 amtp = 0;

 /* offset = <Starting position where to begin writing the data>; */
 offset = 1;

 if (0 == remainder)
 {
 amtp = nbytes;
 /* Here, (Total <= MAXBUFLEN) so we can write in one piece */
3-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
 checkerr (errhp, OCILobWrite (svchp, errhp, Lob_loc, amtp,
 offset, bufp, nbytes,
 OCI_ONE_PIECE, (dvoid *) 0,
 (sb4 (*)(dvoid *,dvoid *,ub4 *,ub1 *)) 0,
 0, SQLCS_IMPLICIT));
 }
 else
 {
 /* Here (Total > MAXBUFLEN) so we use streaming via standard polling */
 /* write the first piece. Specifying first initiates polling. */
 err = OCILobWrite (svchp, errhp, Lob_loc, &amtp, offset, bufp, nbytes,
 OCI_FIRST_PIECE, (dvoid *) 0,
 (sb4 (*)(dvoid *,dvoid *,ub4 *,ub1 *)) 0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);

 last = FALSE;
 /* write the next (interim) and last pieces */
 do
 {
 if (remainder > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= MAXBUFLEN) */
 last = TRUE; /* This is going to be the Final piece */
 }

 /* Fill the buffer with nbytes worth of data */

 if (last)
 {
 /* Specifying LAST terminates polling */
 err = OCILobWrite (svchp, errhp, Lob_loc, &amtp,
 offset, bufp, nbytes,
 OCI_LAST_PIECE, (dvoid *) 0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_SUCCESS)
 checkerr(errhp, err);
 }
 else
 {
 err = OCILobWrite (svchp, errhp, Lob_loc, &amtp,
Internal Persistent LOBs 3-83

Checkin a LOB
 offset, bufp, nbytes,
 OCI_NEXT_PIECE, (dvoid *) 0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);
 }
 /* Determine how much is left to write */
 remainder = remainder - nbytes;
 } while (!last);
 }

 /* At this point, (remainder == 0) */

 /* Closing the BLOB is mandatory if you have opend it */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

}

Example: Checkin a LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CHECKIN.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE
 ASSIGN TO "datfile.dat"
 ORGANIZATION IS SEQUENTIAL.
 DATA DIVISION.
 FILE SECTION.

 FD INFILE
 RECORD CONTAINS 80 CHARACTERS.
 01 INREC PIC X(80).

 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 CLOB1 SQL-CLOB.
 01 BUFFER PIC X(80) VARYING.
 01 AMT PIC S9(9) COMP VALUE 0.
3-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 END-OF-FILE PIC X(1) VALUES "N".

 01 D-BUFFER-LEN PIC 9.
 01 D-AMT PIC 9.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.

 WRITE-CLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.

 EXEC SQL
 SELECT STORY INTO :CLOB1 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 1 FOR UPDATE
 END-EXEC.

 * Open the input file for reading:

 OPEN INPUT INFILE.

 * Either write entire record or write first piece.
 * Read a data file here and populate BUFFER-ARR and BUFFER-LEN.
 * END-OF-FILE will be set to "Y" when the entire file has been
 * read.
 PERFORM READ-NEXT-RECORD.

 MOVE INREC TO BUFFER-ARR.
 MOVE 80 TO BUFFER-LEN.
 IF (END-OF-FILE = "Y")
 MOVE 80 TO AMT
 EXEC SQL
 LOB WRITE ONE :AMT FROM :BUFFER
 INTO :CLOB1 AT :OFFSET
 END-EXEC
 ELSE
 DISPLAY "LOB WRITE FIRST"
 DISPLAY BUFFER-ARR
 MOVE 321 TO AMT
 EXEC SQL
 LOB WRITE FIRST :AMT FROM :BUFFER INTO :CLOB1
 END-EXEC
Internal Persistent LOBs 3-85

Checkin a LOB
 END-IF.

 * Continue reading from the input data file
 * and writing to the CLOB:
 PERFORM READ-WRITE
 UNTIL END-OF-FILE = "Y".
 PERFORM SIGN-OFF.
 STOP RUN.

 READ-WRITE.
 PERFORM READ-NEXT-RECORD.
 MOVE INREC TO BUFFER-ARR.
 DISPLAY "READ-WRITE".
 DISPLAY INREC.
 MOVE 80 TO BUFFER-LEN.
 IF END-OF-FILE = "Y"
 DISPLAY "LOB WRITE LAST: ", BUFFER-ARR
 MOVE 1 TO BUFFER-LEN
 EXEC SQL
 LOB WRITE LAST :AMT FROM :BUFFER INTO :CLOB1
 END-EXEC
 ELSE
 DISPLAY "LOB WRITE NEXT: ", BUFFER-ARR
 MOVE 0 TO AMT
 EXEC SQL
 LOB WRITE NEXT :AMT FROM :BUFFER INTO :CLOB1
 END-EXEC
 END-IF.

 READ-NEXT-RECORD.
 MOVE SPACES TO INREC.
 READ INFILE NEXT RECORD
 AT END
 MOVE "Y" TO END-OF-FILE.

 SIGN-OFF.
 CLOSE INFILE.
 EXEC SQL FREE :CLOB1 END-EXEC.

 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
3-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Checkin a LOB Using C++ (Pro*C/C++)
/* This example demonstrates how Pro*C/C++ provides for the ability to WRITE
 arbitrary amounts of data to an Internal LOB in either a single piece
 or in multiple pieces using a Streaming Mechanism that utilizes standard
 polling. A static Buffer is used to hold the data being written: */

#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 512

void checkInLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Lob_loc;
 VARCHAR Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
Internal Persistent LOBs 3-87

Checkin a LOB
 EXEC SQL SELECT Story INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Open the LOB: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single WRITE is required */
 /* Fill the Buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can WRITE in ONE piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 /* Here (Total > BufferLength) so use streaming via standard polling:
 WRITE the FIRST piece. Specifying FIRST initiates polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write FIRST %d characters\n", Buffer.len);
 last = FALSE;
 /* WRITE the NEXT (interim) and LAST pieces: */
 do
 {
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder;
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the Buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write LAST Total of %d characters\n", Amount);
3-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to WRITE: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* At this point, (Amount == Total), the total amount that was written */
 /* Close the LOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 checkInLOB_proc(1);
 EXEC SQL ROLLBACK WORK;
 checkInLOB_proc(4);
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Checkin a LOB Using Visual Basic (OO4O)
’Note that this code fragment assumes an orablob object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1. there are two ways
’of writing a lob using orablob.write or orablob.copyfromfile

’Using OraBlob.Write mechanism
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim fnum As Integer
Dim OraDyn As OraDynaset, OraSound As OraBlob, amount_written%, chunksize%,
curchunk() As Byte

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Internal Persistent LOBs 3-89

Checkin a LOB
chunksize = 500
ReDim curchunk(chunksize)
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Multimedia_tab", ORADYN_DEFAULT)
Set OraSound = OraDyn.Fields("Sound").Value

fnum = FreeFile

Open "c:\tmp\washington_audio" For Binary As #fnum
OraSound.offset = 1
OraSound.pollingAmount = LOF(fnum)
remainder = LOF(fnum)

 Dim piece As Byte
 Get #fnum, , curchunk

 OraDyn.Edit

 piece = ORALOB_FIRST_PIECE
 amount_written = OraSound.Write(curchunk, chunksize, ORALOB_FIRST_PIECE)

 While OraSound.Status = ORALOB_NEED_DATA
 remainder = remainder - chunksize
 If amount_written <= chunksize Then
 chunksize = remainder
 piece = ORALOB_LAST_PIECE
 Else
 piece = ORALOB_NEXT_PIECE
 End If

 Get #fnum, , curchunk
 amount_written = OraSound.Write(curchunk, chunksize, piece)
 Wend

OraDyn.Update

’Using OraBlob.CopyFromFile mechanism
Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab order by clip_
id", ORADYN_DEFAULT)
Set OraSound = OraDyn.Fields("Sound").Value

OraDyn.Edit
OraSound.CopyFromFile "c:\tmp\washington_audio"
OraDyn.Update
3-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
Example: Checkin a LOB Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_66
{
 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 CLOB lob_loc = null;
 String buf = new String ("Some Text To Write");

 ResultSet rset = stmt.executeQuery (
 "SELECT story FROM multimedia_tab WHERE clip_id = 2 FOR UPDATE");
Internal Persistent LOBs 3-91

Checkin a LOB
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 long pos = 0; // Offset within the CLOB where the data is to be written
 long length = 0; // This is the size of the buffer to be written

 // This loop writes the buffer three times consecutively:
 for (int i = 0; i < 3; i++)
 {
 pos = lob_loc.length();

 // an alternative is: lob_loc.putString(pos, buf);
 lob_loc.putChars(pos, buf.toCharArray());

 // Some debug information:
 System.out.println(" putChars(" + Long.toString(pos) + ",
 buf.toCharArray());");
 }

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data
Display the LOB Data

Figure 3–21 Use Case Diagram: Display the LOB data

Internal persistent LOBs

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

display
the LOB

data

read data
from the LOB
Internal Persistent LOBs 3-93

Display the LOB Data
Streaming Mechanism
The most efficient way to read large amounts of LOB data is to use OCILobRead ()

with the streaming mechanism enabled.

Scenario
As an example of displaying a LOB, our scenario stream-reads the image Drawing
from the column object Map_obj onto the client-side in order to view the data.

■ "Example: Display the LOB Data Using PL/SQL" on page 3-94

■ "Example: Display the LOB Data Using C (OCI)" on page 3-95

■ "Example: Display the LOB Data Using COBOL (Pro*COBOL)" on page 3-97

■ "Example: Display the LOB Data Using C++ (Pro*C/C++)" on page 3-99

■ "Example: Display the LOB Data Using Visual Basic (OO4O)" on page 3-100

■ "Example: Display the LOB Data Using Java (JDBC)" on page 3-101

Example: Display the LOB Data Using PL/SQL
/* Note that the example procedure displayLOB_proc is not part of the
DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE displayLOB_proc IS
Lob_loc BLOB;
Buffer RAW(1024);
Amount BINARY_INTEGER := 1024;
Position INTEGER := 1;
BEGIN
 /* Select the LOB: */
 SELECT m.Map_obj.Drawing INTO Lob_loc
 FROM Multimedia_tab m WHERE m.Clip_ID = 1;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 LOOP
 DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
 /* Display the buffer contents: */

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
3-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data
 DBMS_OUTPUT.PUT_LINE(utl_raw.cast_to_varchar2(Buffer));
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data’);
END;

Example: Display the LOB Data Using C (OCI)
/* This example will READ the entire contents of a BLOB piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire BLOB has been read. */

#define MAXBUFLEN 32767

/* Select the locator into a locator variable */
sb4 select_mapobjectdrawing_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;

 text *sqlstmt =
 (text *) "SELECT m.Map_obj.Drawing \
 FROM Multimedia_tab m WHERE m.Clip_ID = 1";

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
Internal Persistent LOBs 3-95

Display the LOB Data
 return 0;
}

void displayLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIBlobLocator *Lob_loc;
 ub4 amt;
 ub4 offset;
 sword retval;
 boolean done;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 OCILobLocator *Lob_Loc;

 /* Allocate the Source (bfile) & destination (blob) locators desriptors*/
 (void) OCIDescriptorAlloc((dvoid *) envhp,
 (dvoid **) &Lob_loc, (ub4)OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0);
 /* Select the BLOB */
 printf(" select the mapobjectdrawing locator...\n");
 select_mapobjectdrawing_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB */
 printf(" open the lob\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY)));

 /* Setting amt = 0 will read till the end of LOB*/
 amt = 0;
 buflen = sizeof(bufp);

 /* Process the data in pieces */
 printf(" Process the data in pieces\n");
 offset = 1;
 memset(bufp, '\0', MAXBUFLEN);
 done = FALSE;
 while (!done)
 {
 retval = OCILobRead(svchp, errhp, Lob_loc, &amt, offset, (dvoid *) bufp,
 buflen, (dvoid *)0,
3-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece or last piece*/

/* Process the data in bufp. amt will give the amount of data just read in
 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs
 */
 done = TRUE;
 break;
 case OCI_ERROR:
 checkerr (errhp, retval);
 done = TRUE;
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */

/* Process the data in bufp. amt will give the amount of data just read in
 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs
 */
 break;
 default:
 checkerr (errhp, retval);
 done = TRUE;
 break;
 }
 } /* while */

 /* Closing the BLOB is mandatory if you have opend it */
 printf(" close the lob \n");
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

}

Example: Display the LOB Data Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. DISPLAY-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
Internal Persistent LOBs 3-97

Display the LOB Data
 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BLOB1 SQL-BLOB.
 01 BUFFER2 PIC X(5) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 D-AMT PIC 9.

 EXEC SQL VAR BUFFER2 IS RAW(5) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 DISPLAY-BLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 EXEC SQL
 SELECT M.SOUND INTO :BLOB1
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 1
 END-EXEC.
 DISPLAY "Found column SOUND".
 * Initiate polling read:
 MOVE 0 TO AMT.

 EXEC SQL LOB READ :AMT FROM :BLOB1 AT :OFFSET
 INTO :BUFFER2 END-EXEC.
 DISPLAY " ".
 MOVE AMT TO D-AMT.
 DISPLAY "first read (", D-AMT, "): " BUFFER2.

 READ-BLOB-LOOP.
 MOVE " " TO BUFFER2.
 EXEC SQL LOB READ :AMT FROM :BLOB1 INTO :BUFFER2 END-EXEC.
 MOVE AMT TO D-AMT.
 DISPLAY "next read (", D-AMT, "): " BUFFER2.
 GO TO READ-BLOB-LOOP.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
3-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data
 EXEC SQL FREE :BLOB1 END-EXEC.
 MOVE AMT TO D-AMT.
 DISPLAY "last read (", D-AMT, "): " BUFFER2(1:AMT).
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Display the LOB Data Using C++ (Pro*C/C++)
/* This example will READ the entire contents of a BLOB piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire BLOB has been read: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 32767

void displayLOB_proc()
{
 OCIBlobLocator *Lob_loc;
Internal Persistent LOBs 3-99

Display the LOB Data
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BLOB: */
 EXEC SQL SELECT m.Map_obj.Drawing INTO Lob_loc
 FROM Multimedia_tab m WHERE m.Clip_ID = 1;
 /* Open the BLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;
 /* Set the maximum size of the Buffer: */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BLOB into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 /* Process (Buffer.Length == BufferLength) amount of Buffer.Data */
 }
 /* Process (Buffer.Length == Amount) amount of Buffer.Data */
 /* Closing the BLOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Display the LOB Data Using Visual Basic (OO4O)
’Using OraClob.Read mechanism
Dim MySession As OraSession
3-100 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data
Dim OraDb As OraDatabase

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Dim OraDyn as OraDynaset, OraStory as OraClob, amount_read%, chunksize%, chunk

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Multimedia_tab", ORADYN_DEFAULT)
Set OraStory = OraDyn.Fields("Story").Value
OraStory.PollingAmount = OraStory.Size ’Read entire CLOB contents
Do
 ’chunk returned is a variant of type byte array:
 amount_read = OraStory.Read(chunk, chunksize)
 If amount_read = 0 Then
 Exit Do
 End If
 ’Display the data here
 OraStory.offset = OraStory.offset + amount_read + 1
Loop Until amount_read = 0

Example: Display the LOB Data Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_72
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
Internal Persistent LOBs 3-101

Display the LOB Data
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB lob_loc = null;
 InputStream in = null;
 byte buf[] = new byte[MAXBUFSIZE];
 int pos = 0;
 int length = 0;

 ResultSet rset = stmt.executeQuery (
 "SELECT m.map_obj.drawing FROM multimedia_tab m WHERE m.clip_id = 1");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // read this LOB through an InputStream:
 in = lob_loc.getBinaryStream();

 while ((length = in.read(buf)) != -1)
 {
 pos += length;
 System.out.println(Integer.toString(pos));
 // Process the contents of the buffer here.
 }

 in.close();
 stmt.close();
 conn.commit();
 conn.close();
3-102 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-103

Read Data from the LOB
Read Data from the LOB

Figure 3–22 Use Case Diagram: Read data from the LOB

Internal persistent LOBs

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

flush
buffer

CLOSE
a LOB

read data
from the LOB

enable
buffering

disable
buffering
3-104 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from the LOB
Stream Read
The most efficient way to read large amounts of LOB data is to use OCILobRead ()

with the streaming mechanism enabled via polling or a callback.

When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4 gigabytes

regardless of the starting offset and the amount of data in the LOB. You do need to

incur a round-trip to the server to call OCILobGetLength () to find out the length

of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read

the entire LOB value starting at offset 1,000. Also assume that you do not know the

current length of the LOB value. Here's the OCI read call, excluding the

initialization of all parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

When using polling mode, be sure to look at the value of the 'amount ' parameter

after each OCILobRead () call to see how many bytes were read into the buffer since

the buffer may not be entirely full.

When using callbacks, the 'len ' parameter, which is input to the callback, will

indicate how many bytes are filled in the buffer. Be sure to check the 'len '

parameter during your callback processing since the entire buffer may not be filled

with data (see theOracle Call Interface Programmer’s Guide.).

Chunksize
A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the chunk size

used by Oracle when accessing or modifying the LOB value. Part of the chunk is

used to store system-related information and the rest stores the LOB value. The

getchunksize function returns the amount of space used in the LOB chunk to

store the LOB value.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
Internal Persistent LOBs 3-105

Read Data from the LOB
You will improve performance if the you execute read requests using a multiple of

this chunk size. The reason for this is that you’re using the same unit that the Oracle

database uses when reading data from disk. If it is appropriate for your application,

you should batch reads until you have enough for an entire chunk instead of

issuing several LOB read calls that operate on the same LOB chunk.

Scenario
Our example reads the data from a single video Frame.

■ "Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)" on

page 3-106

■ "Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)" on

page 3-106

■ "Example: Read Data from a LOB Using COBOL (Pro*COBOL)" on page 3-109

■ "Example: Read Data from a LOB Using C++ (Pro*C/C++)" on page 3-111

■ "Example: Read Data from a LOB Using Visual Basic (OO4O)" on page 3-112

■ "Example: Read Data from a LOB Using Java (JDBC)" on page 3-112

Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure readLOB _proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE readLOB_proc IS
 Lob_loc BLOB;
 Buffer RAW(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1000;
 Chunksize INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT Frame INTO Lob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1;
 /* Find out the chunksize for this LOB column: */
 Chunksize := DBMS_LOB.GETCHUNKSIZE(Lob_loc);
 IF (Chunksize < 32767) THEN
 Amount := (32767 / Chunksize) * Chunksize;
 END IF;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
3-106 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from the LOB
 /* Read data from the LOB: */
 DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

Example: Read Data from a LOB Using C (OCI)
/* This example will READ the entire contents of a BLOB piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire BLOB has been read. */
#define MAXBUFLEN 32767

/* Select the locator into a locator variable */
sb4 select_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;

 text *sqlstmt =
 (text *) "SELECT Frame \
 FROM Multimedia_tab m WHERE m.Clip_ID = 1";

 printf(" prepare statement in select_frame_locator\n");
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 printf(" OCIDefineByPos in select_frame_locator\n");
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row */
 printf(" OCIStmtExecute in select_frame_locator\n");
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
Internal Persistent LOBs 3-107

Read Data from the LOB
}

void readLOB_proc(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;
 boolean done;

 OCILobLocator *Lob_loc;
 OCILobLocator *blob;

 /* Allocate the Source (bfile) & destination (blob) locators desriptors*/
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 /* Select the BLOB */
 printf(" call select_frame4read_locator\n");
 select_frame_locator(Lob_loc);

 /* Open the BLOB */
 printf(" call OCILobOpen\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, blob, OCI_LOB_READONLY)));

 /* Setting the amt to the buffer length. Note here that amt is in bytes
 since we are using a BLOB */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);

 /* Process the data in pieces */
 printf(" process the data in piece\n");
 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);

 retval = OCILobRead(svchp, errhp, Lob_loc, &amt, offset, (dvoid *) bufp,
 buflen, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 switch (retval)
 {
3-108 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from the LOB
 case OCI_SUCCESS: /* Only one piece since amtp == bufp */
/* Process the data in bufp. amt will give the amount of data just read in

 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs */
 break;
 case OCI_ERROR:
 /* report_error(); this function is not shown here */
 break;
 default:
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
 done = TRUE;
 break;
 }

 /* Closing the BLOB is mandatory if you have opend it */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);
}

Example: Read Data from a LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ONE-READ-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 ONE-READ-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
Internal Persistent LOBs 3-109

Read Data from the LOB
 END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 EXEC SQL
 SELECT FRAME INTO :BLOB1
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 1
 END-EXEC.

 EXEC SQL LOB OPEN :BLOB1 END-EXEC.

 * Perform a single read:
 MOVE 32767 TO AMT.
 EXEC SQL
 LOB READ :AMT FROM :BLOB1 INTO :BUFFER2
 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

 END-OF-BLOB.
 DISPLAY "BUFFER2: ", BUFFER2(1:AMT).
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.

 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.
3-110 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from the LOB
Example: Read Data from a LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 32767

void readLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 /* Here (Amount == BufferLength) so only one READ is needed: */
 char Buffer[BufferLength];
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Frame INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Open the BLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 /* Read the BLOB data into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Read %d bytes\n", Amount);
 /* Close the BLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 readLOB_proc();
Internal Persistent LOBs 3-111

Read Data from the LOB
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Read Data from a LOB Using Visual Basic (OO4O)
’Using OraClob.Read mechanism
Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Dim OraDyn as OraDynaset, OraStory as OraClob, amount_read%, chunksize%, chunk

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Multimedia_tab", ORADYN_DEFAULT)
Set OraStory = OraDyn.Fields("Story").Value
OraStory.ChunkSize = chunksize
OraStory.pollingAmount = OraStory.Size
’Read entire CLOB contents
Do
 amount_read = OraStory.Read(chunk)
 ’chunk returned is a variant of type byte array
 If amount_read = 0 Then
 Exit Do
 End If
 ’Display the data here
 OraStory.offset = OraStory.offset + amount_read + 1
Loop Until amount_read = 0

Example: Read Data from a LOB Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
3-112 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from the LOB
// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_79
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB lob_loc = null;
 byte buf[] = new byte[MAXBUFSIZE];

 ResultSet rset = stmt.executeQuery (
 "SELECT frame FROM multimedia_tab WHERE clip_id = 1");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // MAXBUFSIZE is the number of bytes to read and 1000 is the offset from
 // which to start reading
 buf = lob_loc.getBytes(1000, MAXBUFSIZE);

 // Display the contents of the buffer here:
 System.out.println(new String(buf));

 stmt.close();
Internal Persistent LOBs 3-113

Read Data from the LOB
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-114 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)
Read a Portion of the LOB (substr)

Figure 3–23 Use Case Diagram: Read a portion of the LOB from the Table (substr)

Internal persistent LOBs

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

read a
portion of the
LOB from the
table (substr)
Internal Persistent LOBs 3-115

Read a Portion of the LOB (substr)
Scenario
This example demonstrates reading a portion from sound-effect Sound .

■ "Example: Read a Portion of the LOB (substr) Using PL/SQL (DBMS_LOB

Package)" on page 3-116

■ "Example: Read a Portion of the LOB (substr) Using COBOL (Pro*COBOL)" on

page 3-117

■ "Example: Read a Portion of the LOB (substr) Using C++ (Pro*C/C++)" on

page 3-118

■ "Example: Read a Portion of the LOB (substr) Using Visual Basic (OO4O)" on

page 3-120

■ "Example: Read a Portion of the LOB (substr) Using Java (JDBC)" on page 3-120

Example: Read a Portion of the LOB (substr) Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure substringLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE substringLOB_proc IS
 Lob_loc BLOB;
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1024;
 Buffer RAW(32767);
BEGIN
 /* Select the LOB: */
 SELECT Sound INTO Lob_loc FROM Multimedia_tab
 WHERE Clip_ID = 1;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 Buffer := DBMS_LOB.SUBSTR(Lob_loc, Amount, Position);
 /* Process the data */
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

/* In the following SQL statement, 255 is the amount to read

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
3-116 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)
 and 1 is the starting offset from which to read: */
SELECT DBMS_LOB.SUBSTR(Sound, 255, 1) FROM Multimedia_tab WHERE Clip_ID = 1;

Example: Read a Portion of the LOB (substr) Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BLOB-SUBSTR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 POS PIC S9(9) COMP VALUE 1.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 BLOB-SUBSTR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 EXEC SQL
 SELECT FRAME INTO :BLOB1
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 1
 END-EXEC.
 DISPLAY "Selected the BLOB".

 * Open the BLOB for READ ONLY:
 EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.

 * Execute PL/SQL to get SUBSTR functionality:
 MOVE 5 TO AMT.
Internal Persistent LOBs 3-117

Read a Portion of the LOB (substr)
 EXEC SQL EXECUTE
 BEGIN
 :BUFFER2 := DBMS_LOB.SUBSTR(:BLOB1,:AMT,:POS);
 END;
 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
 DISPLAY "Substr: ", BUFFER2-ARR(POS:AMT).

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Read a Portion of the LOB (substr) Using C++ (Pro*C/C++)
/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS_LOB.SUBSTR()
 function. However, Pro*C/C++ can interoperate with PL/SQL using anonymous
 PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
3-118 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)
 exit(1);
}

#define BufferLength 32767

void substringLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Position = 1;
 int Amount = BufferLength;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Open the BLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Invoke SUBSTR() from within an anonymous PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Lob_loc, :Amount, :Position);
 END;
 END-EXEC;
 /* Close the BLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Process the Data */
 /* Release resources used by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(0);
}

Internal Persistent LOBs 3-119

Read a Portion of the LOB (substr)
Example: Read a Portion of the LOB (substr) Using Visual Basic (OO4O)
’Note that reading a portion of a LOB (or BFILE) in OO4O is accomplished by
’setting the OraBlob.Offset and OraBlob.chunksize properties.
’Using OraClob.Read mechanism
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn as OraDynaset, OraStory as OraClob, amount_read%, chunksize%, chunk

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)

Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Multimedia_tab", ORADYN_DEFAULT)
Set OraStory = OraDyn.Fields("Story") .Value

’Let’s read 100 bytes from the 500th byte onwards:
OraStory.Offset = 500
OraStory.PollingAmount = OraStory.Size ’Read entire CLOB contents
amount_read = OraStory.Read(chunk, 100)
’chunk returned is a variant of type byte array

Example: Read a Portion of the LOB (substr) Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_79
{

 static final int MAXBUFSIZE = 32767;
3-120 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB lob_loc = null;
 byte buf[] = new byte[MAXBUFSIZE];

 ResultSet rset = stmt.executeQuery (
 "SELECT frame FROM multimedia_tab WHERE clip_id = 1");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.OPEN(?,
 DBMS_LOB.LOB_READONLY); END;");
 cstmt.setBLOB(1, lob_loc);
 cstmt.execute();

// MAXBUFSIZE is the number of bytes to read and 1000 is the offset from
 // which to start reading:
 buf = lob_loc.getBytes(1000, MAXBUFSIZE);
 // Display the contents of the buffer here.

 cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.CLOSE(?); END;");
 cstmt.setBLOB(1, lob_loc);
 cstmt.execute();

 stmt.close();
Internal Persistent LOBs 3-121

Read a Portion of the LOB (substr)
 cstmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-122 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs
Compare All or Part of Two LOBs

Figure 3–24 Use Case Diagram: Compare All or Part of Two LOBs

Scenario
The following example compares two frames from the archival table

VideoframesLib_tab to see whether they are different and, depending on the

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

compare all
or parts of

2 LOBs
Internal Persistent LOBs 3-123

Compare All or Part of Two LOBs
result of the comparison, inserts the Frame into the Multimedia_tab .

■ "Example: Compare All or Part of Two LOBs Using PL/SQL (DBMS_LOB

Package)" on page 3-124

■ "Example: Compare All or Part of Two LOBs Using COBOL (Pro*COBOL)" on

page 3-125

■ "Example: Compare All or Part of Two LOBs Using C++ (Pro*C/C++)" on

page 3-127

■ "Example: Compare All or Part of Two LOBs Using Visual Basic (OO4O)" on

page 3-128

■ "Example: Compare All or Part of Two LOBs Using Java (JDBC)" on page 3-128

Example: Compare All or Part of Two LOBs Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure compareTwoLOBs_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE compareTwoLOBs_proc IS
 Lob_loc1 BLOB;
 Lob_loc2 BLOB;
 Amount INTEGER := 32767;
 Retval INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT Frame INTO Lob_loc1 FROM Multimedia_tab
 WHERE Clip_ID = 1;
 SELECT Frame INTO Lob_loc2 FROM Multimedia_tab
 WHERE Clip_ID = 2;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc1, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN (Lob_loc2, DBMS_LOB.LOB_READONLY);
 /* Compare the two frames: */
 retval := DBMS_LOB.COMPARE(Lob_loc1, Lob_loc2, Amount, 1, 1);
 IF retval = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Processing for equal frames’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Processing for non-equal frames’);
 END IF;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc1);
 DBMS_LOB.CLOSE (Lob_loc2);
END;
3-124 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs
Example: Compare All or Part of Two LOBs Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COMPARE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 BLOB1 SQL-BLOB.
 01 BLOB2 SQL-BLOB.
 01 BUFFER2 PIC X(32767) VARYING.
 01 RET PIC S9(9) COMP.
 01 AMT PIC S9(9) COMP.
 01 POS PIC S9(9) COMP VALUE 1024.
 01 OFFSET PIC S9(9) COMP VALUE 1.

 EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 COMPARE-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL ALLOCATE :BLOB2 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 EXEC SQL
 SELECT FRAME INTO :BLOB1
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 1
 END-EXEC.

 EXEC SQL
 SELECT FRAME INTO :BLOB2
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 2
 END-EXEC.

 * Open the BLOBs for READ ONLY:
 EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.
Internal Persistent LOBs 3-125

Compare All or Part of Two LOBs
 EXEC SQL LOB OPEN :BLOB2 READ ONLY END-EXEC.

 * Execute PL/SQL to get COMPARE functionality:
 MOVE 4 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :RET := DBMS_LOB.COMPARE(:BLOB1,:BLOB2,:AMT,1,1);
 END;
 END-EXEC.

 IF RET = 0
 * Logic for equal BLOBs goes here
 DISPLAY "BLOBs are equal"
 ELSE
 * Logic for unequal BLOBs goes here
 DISPLAY "BLOBs are not equal"
 END-IF.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB2 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL FREE :BLOB2 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.
3-126 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs
Example: Compare All or Part of Two LOBs Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareTwoLobs_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;
 int Amount = 32767;
 int Retval;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Select the LOBs: */
 EXEC SQL SELECT Frame INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 1;
 EXEC SQL SELECT Frame INTO :Lob_loc2
 FROM Multimedia_tab WHERE Clip_ID = 2;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Compare the two Frames using DBMS_LOB.COMPARE() from within PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Retval := DBMS_LOB.COMPARE(:Lob_loc1, :Lob_loc2, :Amount, 1, 1);
 END;
 END-EXEC;
 if (0 == Retval)
 printf("The frames are equal\n");
 else
 printf("The frames are not equal\n");
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
Internal Persistent LOBs 3-127

Compare All or Part of Two LOBs
 /* Release resources held by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareTwoLobs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Compare All or Part of Two LOBs Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Dim OraDyn as OraDynaset, OraSound1 as OraBLOB, OraSoundClone as OraBLOB

Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value
’Clone it for future reference
Set OraSoundClone = OraSound1

’Lets go to the next row and compare LOBs
OraDyn.MoveNext

MsgBox CBool(OraSound1.Compare(OraSoundClone, OraSoundClone.size, 1, 1))

Example: Compare All or Part of Two LOBs Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
3-128 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_87
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB lob_loc1 = null;
 BLOB lob_loc2 = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT frame FROM multimedia_tab WHERE clip_id = 1");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBLOB (1);
 }

 rset = stmt.executeQuery (
 "SELECT frame FROM multimedia_tab WHERE clip_id = 99");
 if (rset.next())
 {
Internal Persistent LOBs 3-129

Compare All or Part of Two LOBs
 lob_loc2 = ((OracleResultSet)rset).getBLOB (1);
 }

 if (lob_loc1.length() > lob_loc2.length())
 System.out.println("Looking for LOB2 inside LOB1.
 result = " + Long.toString(lob_loc1.position(lob_loc2, 0)));
 else
 System.out.println("Looking for LOB1 inside LOB2.
 result = " + Long.toString(lob_loc2.position(lob_loc1, 0)));

 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-130 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)
See If a Pattern Exists in the LOB (instr)

Figure 3–25 Use Case Diagram: See If a Pattern Exists in the LOB (instr)

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

see where/if
a pattern exists

in the LOB
(instr)
Internal Persistent LOBs 3-131

See If a Pattern Exists in the LOB (instr)
Scenario
The example examines the storyboard text to see if the string "children" is present.

■ "Example: See If a Pattern Exists in the LOB (instr) Using PL/SQL (DBMS_LOB

Package)" on page 3-132

■ "Example: See If a Pattern Exists in the LOB (instr) Using COBOL

(Pro*COBOL)" on page 3-133

■ "Example: See If a Pattern Exists in the LOB (instr) Using C++ (Pro*C/C++)" on

page 3-134

■ "Example: See If a Pattern Exists in the LOB (instr) Using Java (JDBC)" on

page 3-136

Example: See If a Pattern Exists in the LOB (instr) Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure instringLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE instringLOB_proc IS
 Lob_loc CLOB;
 Pattern VARCHAR2(30) := ’children’;
 Position INTEGER := 0;
 Offset INTEGER := 1;
 Occurrence INTEGER := 1;
BEGIN
 /* Select the LOB: */
 SELECT Story INTO Lob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 /* Seek for the pattern: */
 Position := DBMS_LOB.INSTR(Lob_loc, Pattern, Offset, Occurrence);
 IF Position = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Pattern not found’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The pattern occurs at ’|| position);
 END IF;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;
3-132 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)
Example: See If a Pattern Exists in the LOB (instr) Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CLOB-INSTR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 CLOB1 SQL-CLOB.
 01 PATTERN PIC X(8) VALUE "children".
 01 POS PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 OCCURRENCE PIC S9(9) COMP VALUE 1.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 CLOB-INSTR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.

 EXEC SQL
 SELECT STORY INTO :CLOB1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 1
 END-EXEC.

 * Open the CLOB for READ ONLY:
 EXEC SQL LOB OPEN :CLOB1 READ ONLY END-EXEC.

 * Execute PL/SQL to get INSTR functionality:
 EXEC SQL EXECUTE
 BEGIN
 :POS := DBMS_LOB.INSTR(:CLOB1, :PATTERN,
 :OFFSET,:OCCURRENCE);
 END;
 END-EXEC.
Internal Persistent LOBs 3-133

See If a Pattern Exists in the LOB (instr)
 IF POS = 0
 * Logic for pattern not found here
 DISPLAY "Pattern not found."
 ELSE
 * Pos contains position where pattern is found
 DISPLAY "Pattern found."
 END-IF.

 EXEC SQL LOB CLOSE :CLOB1 END-EXEC.

 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: See If a Pattern Exists in the LOB (instr) Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
3-134 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)
}

void instringLOB_proc()
{
 OCIClobLocator *Lob_loc;
 char *Pattern = "The End";
 int Position = 0;
 int Offset = 1;
 int Occurrence = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc;
 /* Seek the Pattern using DBMS_LOB.INSTR() in a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Position := DBMS_LOB.INSTR(:Lob_loc, :Pattern, :Offset, :Occurrence);
 END;
 END-EXEC;
 if (0 == Position)
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 /* Closing the LOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 instringLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 3-135

See If a Pattern Exists in the LOB (instr)
Example: See If a Pattern Exists in the LOB (instr) Using Visual Basic (OO4O)

Example: See If a Pattern Exists in the LOB (instr) Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_91
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:

Note: A Visual Basic (OO4O) example will be made available in a

subsequent release.
3-136 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)
 Statement stmt = conn.createStatement ();

 try
 {
 final int offset = 1; // Start looking at the first byte
 final int occurrence = 1; // Start at the 1st occurrence of the pattern
within the CLOB

 CLOB lob_loc = null;
 String pattern = new String("Junk"); // Pattern to look for within the CLOB.

 ResultSet rset = stmt.executeQuery (
 "SELECT story FROM multimedia_tab WHERE clip_id = 2");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 // Search for location of pattern string in the CLOB, starting at offset 1:
 long result = lob_loc.position(pattern, offset);
 System.out.println("Results of Pattern Comparison : " +
 Long.toString(result));

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-137

Get the Length of a LOB
Get the Length of a LOB

Figure 3–26 Use Case Diagram: Get the length of a LOB

Scenario
This example demonstrates how to determine the length of a LOB in terms of the

foreign language subtitle (FLSub).

■ "Example: Get the Length of a LOB Using PL/SQL (DBMS_LOB Package)" on

page 3-139

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

get the
length of
the LOB
3-138 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB
■ "Example: Get the Length of a LOB Using C (OCI)" on page 3-139

■ "Example: Get the Length of a LOB Using COBOL (Pro*COBOL)" on page 3-141

■ "Example: Get the Length of a LOB Using C++ (Pro*C/C++)" on page 3-142

■ "Example: Get the Length of a LOB Using Visual Basic (OO4O)" on page 3-143

■ "Example: Get the Length of a LOB Using Java (JDBC)" on page 3-144

Example: Get the Length of a LOB Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure getLengthLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE getLengthLOB_proc IS
 Lob_loc NCLOB;
 Length INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT FLSub INTO Lob_loc FROM Multimedia_tab
 WHERE Clip_ID = 2;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 /* Get the length of the LOB: */
 length := DBMS_LOB.GETLENGTH(Lob_loc);
 IF length IS NULL THEN
 DBMS_OUTPUT.PUT_LINE(’LOB is null.’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The length is ’|| length);
 END IF;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

Example: Get the Length of a LOB Using C (OCI)
/* Select the locator into a locator variable */
sb4 select_FLSub_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;
Internal Persistent LOBs 3-139

Get the Length of a LOB
 text *sqlstmt =
 (text *)"SELECT FLSub FROM Multimedia_tab WHERE Clip_ID = 2";

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2)SQLT_CLOB,(dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT));

 /* Execute and fetch one row */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

/* This function gets the length of the selected LOB */
void getLengthLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 ub4 length;

 OCILobLocator *Lob_loc;

 /* Allocate Locator resources */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select a LOB locator from FLSub */
 printf(" select a FLSub locator\n");
 select_FLSub_locator(Lob_loc, errhp, svchp, stmthp);

 /* Opening the LOB is Optional */
 printf(" Open the locator (optional)\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY)));

 printf(" get the length of FLSub.\n");
3-140 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB
 checkerr (errhp, OCILobGetLength(svchp, errhp, Lob_loc, &length));

 /* Length is undefined if the LOB is NULL or undefined */
 fprintf(stderr," Length of LOB is %d\n",length);

 /* Closing the LOBs is Mandatory if they have been Opened */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: Get the Length of a LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-LENGTH.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 CLOB1 SQL-CLOB.
 01 LOB-ATTR-GRP.
 05 LEN PIC S9(9) COMP.

 01 D-LEN PIC 9(4).
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 LOB-LENGTH.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the target CLOB:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
 EXEC SQL
 SELECT STORY INTO :CLOB1
Internal Persistent LOBs 3-141

Get the Length of a LOB
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 2
 END-EXEC.

 * Obtain the length of the CLOB:
 EXEC SQL
 LOB DESCRIBE :CLOB1 GET LENGTH INTO :LEN
 END-EXEC.

 MOVE LEN TO D-LEN.
 DISPLAY "The length is ", D-LEN.

 * Free the resources used by the CLOB:
 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Get the Length of a LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
3-142 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB
 exit(1);
}

void getLengthLOB_proc()
{
 OCIClobLocator *Lob_loc;
 unsigned int Length;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Length: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 /* If the LOB is NULL or unitialized, then Length is Undefined: */
 printf("Length is %d characters\n", Length);
 /* Closing the LOB is mandatory if you have Opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Get the Length of a LOB Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value
Internal Persistent LOBs 3-143

Get the Length of a LOB
’Display out size of the lob:
MsgBox "Length of the lob is " & OraSound1.Size

Example: Get the Length of a LOB Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_95
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
3-144 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB
 {
 CLOB lob_loc = null;

 ResultSet rset = stmt.executeQuery ("SELECT story FROM multimedia_tab
WHERE clip_id = 2");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 System.out.println(
 "Length of this column is : " + Long.toString(lob_loc.length()));

 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-145

Copy All or Part of a LOB to another LOB
Copy All or Part of a LOB to another LOB

Figure 3–27 Use Case Diagram: Copy all or part of a LOB to another LOB

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or the OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

copy all or
part of a LOB to

another LOB
3-146 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs. For more details on the state of the locator

after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced

Topics".

Scenario
The code in this example shows you to copy a portion of Sound from one clip to

another.

■ "Example: Copy All or Part of a LOB to another LOB Using PL/SQL (DBMS_

LOB Package)" on page 3-147

■ "Example: Copy All or Part of a LOB to another LOB Using C (OCI)" on

page 3-148

■ "Example: Copy All or Part of a LOB to another LOB Using COBOL

(Pro*COBOL)" on page 3-150

■ "Example: Copy All or Part of a LOB to another LOB Using C++ (Pro*C/C++)"

on page 3-152

■ "Example: Copy All or Part of a LOB to another LOB Using Visual Basic

(OO4O)" on page 3-154

■ "Example: Copy All or Part of a LOB to another LOB Using Java (JDBC)" on

page 3-154

Example: Copy All or Part of a LOB to another LOB Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure copyLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE copyLOB_proc IS
 Dest_loc BLOB;
 Src_loc BLOB;
 Amount NUMBER;
 Dest_pos NUMBER;
 Src_pos NUMBER;
BEGIN
 SELECT Sound INTO Dest_loc FROM Multimedia_tab
 WHERE Clip_ID = 2 FOR UPDATE;
 /* Select the LOB: */
 SELECT Sound INTO Src_loc FROM Multimedia_tab
Internal Persistent LOBs 3-147

Copy All or Part of a LOB to another LOB
 WHERE Clip_ID = 1;
 /* Opening the LOBs is optional: */
 DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Copies the LOB from the source position to the destination position: */
 DBMS_LOB.COPY(Dest_loc, Src_loc, Amount, Dest_pos, Src_pos);
 /* Closing LOBs is mandatory if you have opened them: */
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Src_loc);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Example: Copy All or Part of a LOB to another LOB Using C (OCI)
/* Select the locator */
sb4 select_lock_sound_locator_2(Lob_loc, dest_type, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
ub1 dest_type; /* whether destination locator */
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 char sqlstmt[150];
 OCIDefine *defnp1;

 if (dest_type == TRUE)
 {
 strcpy (sqlstmt,
 (char *)"SELECT Sound FROM Multimedia_tab
 WHERE Clip_ID=2 FOR UPDATE");
 printf (" select destination sound locator\n");
 }
 else
 {
 strcpy(sqlstmt, (char *)"SELECT Sound FROM Multimedia_tab WHERE Clip_ID=1");
 printf (" select source sound locator\n");
 }
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (text *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
3-148 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

/* This function copies part of the Source LOB into a specified position
 in the destination LOB
 */
void copyAllPartLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIBlobLocator *Dest_loc, *Src_loc;
 int Amount = 1000; /* <Amount to Copy> */
 int Dest_pos = 100; /*<Position to start copying into> */
 int Src_pos = 1; /* <Position to start copying from> */

 /* Allocate the LOB locators */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Src_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs */
 printf(" select the destination and source locators\n");
 select_lock_sound_locator_2(Dest_loc, TRUE, errhp, svchp, stmthp);

 /* destination locator */
 select_lock_sound_locator_2(Src_loc, FALSE, errhp, svchp, stmthp);

 /* source locator */

 /* Opening the LOBs is Optional */
 printf (" open the destination locator (optional)\n");
 checkerr (errhp, OCILobOpen(svchp, errhp, Dest_loc, OCI_LOB_READWRITE));
 printf (" open the source locator (optional)\n");
 checkerr (errhp, OCILobOpen(svchp, errhp, Src_loc, OCI_LOB_READONLY));
Internal Persistent LOBs 3-149

Copy All or Part of a LOB to another LOB
 printf (" copy the lob (amount) from the source to destination\n");
 checkerr (errhp, OCILobCopy(svchp, errhp, Dest_loc, Src_loc,
 Amount, Dest_pos, Src_pos));

 /* Closing the LOBs is Mandatory if they have been Opened */
 printf(" close the locators\n");
 checkerr (errhp, OCILobClose(svchp, errhp, Dest_loc));
 checkerr (errhp, OCILobClose(svchp, errhp, Src_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Dest_loc, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) Src_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: Copy All or Part of a LOB to another LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BLOB-COPY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 DEST SQL-BLOB.
 01 SRC SQL-BLOB.

 * Define the amount to copy.
 * This value has been chosen arbitrarily:
 01 AMT PIC S9(9) COMP VALUE 10.

 * Define the source and destination position.
 * These values have been chosen arbitrarily:
 01 SRC-POS PIC S9(9) COMP VALUE 1.
 01 DEST-POS PIC S9(9) COMP VALUE 1.

 * The return value from PL/SQL function:
 01 RET PIC S9(9) COMP.

 EXEC SQL INCLUDE SQLCA END-EXEC.
3-150 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB
 PROCEDURE DIVISION.
 COPY-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :DEST END-EXEC.
 EXEC SQL ALLOCATE :SRC END-EXEC.
 DISPLAY "Source and destination LOBs are open.".

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :SRC
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 2
 END-EXEC.
 DISPLAY "Source LOB populated.".
 EXEC SQL
 SELECT SOUND INTO :DEST
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 3 FOR UPDATE
 END-EXEC.
 DISPLAY "Destination LOB populated.".

 * Open the DESTination LOB read/write and SRC LOB read only
 EXEC SQL LOB OPEN :DEST READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC READ ONLY END-EXEC.
 DISPLAY "Source and destination LOBs are open.".

 * Copy the desired amount
 EXEC SQL
 LOB COPY :AMT FROM :SRC AT :SRC-POS
 TO :DEST AT :DEST-POS
 END-EXEC.
 DISPLAY "Src LOB copied to destination LOB.".

 * Execute PL/SQL to get COMPARE functionality
 * to make sure that the BLOBs are identical
 EXEC SQL EXECUTE
 BEGIN
 :RET := DBMS_LOB.COMPARE(:SRC,:DEST,:AMT,1,1);
 END;
 END-EXEC.
Internal Persistent LOBs 3-151

Copy All or Part of a LOB to another LOB
 IF RET = 0
 * Logic for equal BLOBs goes here
 DISPLAY "BLOBs are equal"
 ELSE
 * Logic for unequal BLOBs goes here
 DISPLAY "BLOBs are not equal"
 END-IF.

 EXEC SQL LOB CLOSE :DEST END-EXEC.
 EXEC SQL LOB CLOSE :SRC END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :DEST END-EXEC.
 EXEC SQL FREE :SRC END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Copy All or Part of a LOB to another LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
3-152 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB
 exit(1);
}

void copyLOB_proc()
{
 OCIBlobLocator *Dest_loc, *Src_loc;
 int Amount = 5;
 int Dest_pos = 10;
 int Src_pos = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL ALLOCATE :Src_loc;
 /* Select the LOBs: */
 EXEC SQL SELECT Sound INTO :Dest_loc
 FROM Multimedia_tab WHERE Clip_ID = 2 FOR UPDATE;
 EXEC SQL SELECT Sound INTO :Src_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB OPEN :Src_loc READ ONLY;
 /* Copies the specified Amount from the source position in the source
 LOB to the destination position in the destination LOB: */
 EXEC SQL LOB COPY :Amount
 FROM :Src_loc AT :Src_pos TO :Dest_loc AT :Dest_pos;
 /* Closing the LOBs is mandatory if they have been opened: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;
 /* Release resources held by the locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 copyLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 3-153

Copy All or Part of a LOB to another LOB
Example: Copy All or Part of a LOB to another LOB Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value

Set OraSoundClone = OraSound1

’Go to next row and copy LOB

OraDyn.MoveNext

OraDyn.Edit
OraSound1.Copy OraSoundClone, OraSoundClone.Size, 1, 1
OraDyn.Update

Example: Copy All or Part of a LOB to another LOB Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_100
{

3-154 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 final int AMOUNT_TO_COPY = 2000;

 ResultSet rset = null;
 BLOB dest_loc = null;
 BLOB src_loc = null;
 InputStream in = null;
 OutputStream out = null;
 byte[] buf = new byte[AMOUNT_TO_COPY];

 rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 1");
 if (rset.next())
 {
 src_loc = ((OracleResultSet)rset).getBLOB (1);
 }
 in = src_loc.getBinaryStream();

 rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 2 FOR UPDATE");
 if (rset.next())
 {
 dest_loc = ((OracleResultSet)rset).getBLOB (1);
 }
 out = dest_loc.getBinaryOutputStream();
Internal Persistent LOBs 3-155

Copy All or Part of a LOB to another LOB
 // read AMOUNT_TO_COPY bytes into buf from stream, starting from offset 0:
 in.read(buf, 0, AMOUNT_TO_COPY);

// write AMOUNT_TO_COPY bytes from buf into output stream, starting at offset
0:
 out.write(buf, 0, AMOUNT_TO_COPY);

 // Close all streams and handles
 in.close();
 out.flush();
 out.close();
 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-156 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator
Copy a LOB Locator

Figure 3–28 Use Case Diagram: Copy a LOB Locator

Scenario
This example shows the copying of one locator to another involving the video

frame (Frame). Note how different locators may point to the same/different,

current/outdated data.

■ "Example: Copy a LOB Locator Using PL/SQL" on page 3-158

■ "Example: Copy a LOB Locator Using C (OCI)" on page 3-158

■ "Example: Copy a LOB Locator Using COBOL (Pro*COBOL)" on page 3-160

■ "Example: Copy a LOB Locator Using C++ (Pro*C/C++)" on page 3-161

■ "Example: Copy a LOB Locator Using Visual Basic (OO4O)" on page 3-162

■ "Example: Copy a LOB Locator Using Java (JDBC)" on page 3-163

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

SELECT
a LOB

copy
LOB locator
Internal Persistent LOBs 3-157

Copy a LOB Locator
Example: Copy a LOB Locator Using PL/SQL

/* Note that the example procedure lobAssign_proc is not part of the
 DBMS_LOB package. */
CREATE OR REPLACE PROCEDURE lobAssign_proc IS
 Lob_loc1 blob;
 Lob_loc2 blob;
BEGIN
 SELECT Frame INTO Lob_loc1 FROM Multimedia_tab where Clip_ID = 1 FOR UPDATE;
 /* Assign Lob_loc1 to Lob_loc2 thereby saving a copy of the value of the lob
 at this point in time. */
 Lob_loc2 := Lob_loc1;

/* When you write some data to the lob through Lob_loc1 , Lob_loc2 will not see
 the newly written data whereas Lob_loc1 will see the new data. */
END;

Example: Copy a LOB Locator Using C (OCI)
/* Select the locator */
sb4 select_lock_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID=1 FOR UPDATE";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

Note: Assigning one LOB to another using PL/SQL entails using

the ":=" sign. This is an advanced topic that is discussed in more

detail under the heading "Read-Consistent Locators" on page 2-2.
3-158 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator
 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return (0);
}

void assignLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *dest_loc, *src_loc;
 boolean isEqual;

 /* Allocate the LOB locators */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &src_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs */
 printf (" select and lock a frame locator\n");
 select_lock_frame_locator(src_loc, errhp, svchp, stmthp);/* source locator */

 /* Assign src_loc to dest_loc thereby saving a copy of the value of the LOB
 at this point in time.
 */
 printf(" assign the src locator to dest locator\n");
 checkerr (errhp, OCILobAssign(envhp, errhp, src_loc, &dest_loc));

 /* When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
 see the newly written data whereas Lob_loc1 will see the new data.
 */

 /* Call OCI to see if the two locators are Equal */

 printf (" check if Lobs are Equal.\n");
 checkerr (errhp, OCILobIsEqual(envhp, src_loc, dest_loc, &isEqual));

 if (isEqual)
 {
 /* ... The LOB locators are Equal */
Internal Persistent LOBs 3-159

Copy a LOB Locator
 printf(" Lob Locators are equal.\n");
 }
 else
 {
 /* ... The LOB locators are not Equal */
 printf(" Lob Locators are NOT Equal.\n");
 }

 /* Note that in this example, the LOB locators will be Equal */

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) dest_loc, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) src_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: Copy a LOB Locator Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COPY-LOCATOR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 DEST SQL-BLOB.
 01 SRC SQL-BLOB.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 PROCEDURE DIVISION.
 COPY-BLOB-LOCATOR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :DEST END-EXEC.
 EXEC SQL ALLOCATE :SRC END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 EXEC SQL
3-160 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator
 SELECT FRAME INTO :SRC
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 2 FOR UPDATE
 END-EXEC.

 EXEC SQL
 LOB ASSIGN :SRC TO :DEST
 END-EXEC.

 * When you write data to the LOB through SRC, DEST will
 * not see the newly written data

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :DEST END-EXEC.
 EXEC SQL FREE :SRC END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Copy a LOB Locator Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
Internal Persistent LOBs 3-161

Copy a LOB Locator
 exit(1);
}

void lobAssign_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Frame INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Assign Lob_loc1 to Lob_loc2 thereby saving a copy of the value of the
 LOB at this point in time: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
 see the newly written data whereas Lob_loc1 will see the new data: */
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 lobAssign_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Copy a LOB Locator Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id ", ORADYN_DEFAULT)

Set OraSound1 = OraDyn.Fields("Sound").Value
Set OraSoundClone = OraSound1

OraDyn.MoveNext
3-162 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator
’Copy 1000 bytes of LOB values OraSoundClone to OraSoundl at OraSoundl
’offset 100:
OraDyn.Edit
OraSound1.Copy OraSoundClone, 1000, 100

OraDyn.Update

Example: Copy a LOB Locator Using Java (JDBC)
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_104
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB lob_loc1 = null;
Internal Persistent LOBs 3-163

Copy a LOB Locator
 BLOB lob_loc2 = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT frame FROM multimedia_tab WHERE clip_id = 1");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBLOB (1);
 }

 // When you write some data to the LOB through lob_loc1, lob_loc2 will not
see the changes
 lob_loc2 = lob_loc1;

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-164 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator Is Equal to Another
See If One LOB Locator Is Equal to Another

Figure 3–29 Use Case Diagram: See If One LOB Locator Is Equal to Another

Scenario
If two locators are equal, this means that they refer to the same version of the LOB

data (see "Read-Consistent Locators" on page 2-2). In this example, the locators are

equal. However, it may be as important to determine that locators do not refer to

same version of the LOB data.

This functionality is available in only a limited number of environments.

■ "Example: See If One LOB Locator Is Equal to Another Using C (OCI)" on

page 3-166

■ "Example: See If One LOB Locator Is Equal to Another Using C++

(Pro*C/C++)" on page 3-167

■ "Example: See If One LOB Locator Is Equal to Another Using Java (JDBC)" on

page 3-169

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

SELECT
a LOB

see if locators
are equal
Internal Persistent LOBs 3-165

See If One LOB Locator Is Equal to Another
Example: See If One LOB Locator Is Equal to Another Using C (OCI)
/* Select the locator: */

sb4 select_lock_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID=1 FOR UPDATE";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return (0);
}

void assignLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *dest_loc, *src_loc;
 boolean isEqual;

 /* Allocate the LOB locators: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &src_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
3-166 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator Is Equal to Another
 /* Select the LOBs: */
 printf (" select and lock a frame locator\n");
 select_lock_frame_locator(src_loc, errhp, svchp, stmthp);/* source locator */

 /* Assign src_loc to dest_loc thereby saving a copy of the value of the LOB
 at this point in time: */
 printf(" assign the src locator to dest locator\n");
 checkerr (errhp, OCILobAssign(envhp, errhp, src_loc, &dest_loc));

 /* When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
 see the newly written data whereas Lob_loc1 will see the new data: */

 /* Call OCI to see if the two locators are Equal: */

 printf (" check if Lobs are Equal.\n");
 checkerr (errhp, OCILobIsEqual(envhp, src_loc, dest_loc, &isEqual));

 if (isEqual)
 {
 /* ... The LOB locators are Equal: */
 printf(" Lob Locators are equal.\n");
 }
 else
 {
 /* ... The LOB locators are not Equal: */
 printf(" Lob Locators are NOT Equal.\n");
 }

 /* Note that in this example, the LOB locators will be Equal */

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) dest_loc, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) src_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: See If One LOB Locator Is Equal to Another Using C++ (Pro*C/C++)
/* Pro*C/C++ does not provide a mechanism to test the equality of two
 locators. However, by using the OCI directly, two locators can be
 compared to determine whether or not they are equal as this example
 demonstrates: */
Internal Persistent LOBs 3-167

See If One LOB Locator Is Equal to Another
#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void LobLocatorIsEqual_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;
 OCIEnv *oeh;
 boolean isEqual;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Frame INTO Lob_loc1
 FROM Multimedia_tab where Clip_ID = 1 FOR UPDATE;
 /* Assign Lob_loc1 to Lob_loc2 thereby saving a copy of the value of the
 LOB at this point in time: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* When you write some data to the lob through Lob_loc1, Lob_loc2 will
 not see the newly written data whereas Lob_loc1 will see the new
 data. */
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Call OCI to see if the two locators are Equal: */
 (void) OCILobIsEqual(oeh, Lob_loc1, Lob_loc2, &isEqual);
 if (isEqual)
 printf("The locators are equal\n");
 else
 printf("The locators are not equal\n");
 /* Note that in this example, the LOB locators will be Equal */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{

3-168 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator Is Equal to Another
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobLocatorIsEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: See If One LOB Locator Is Equal to Another Using Java (JDBC)
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_108
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB lob_loc1 = null;
 BLOB lob_loc2 = null;
Internal Persistent LOBs 3-169

See If One LOB Locator Is Equal to Another
 ResultSet rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 2");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBLOB (1);
 }

 // When you write some data to the LOB through lob_loc1, lob_loc2 will not
see the changes:
 lob_loc2 = lob_loc1;

 // Note that in this example, the Locators will be equal.
 if (lob_loc1.equals(lob_loc2))
 {
 // The Locators are equal:
 System.out.println("Locators are equal");
 }
 else
 {
 // The Locators are different:
 System.out.println("Locators are NOT equal");
 }

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-170 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator Is Initialized
See If a LOB Locator Is Initialized

Figure 3–30 Use Case Diagram: See If a LOB Locator Is Initialized

Scenario
The operation allows you to determine if the locator has been initialized or not. In

the example shown both locators are found to be initialized.

This functionality is currently available in only two environments.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

see if locator
is initialized
Internal Persistent LOBs 3-171

See If a LOB Locator Is Initialized
■ "Example: See If a LOB Locator Is Initialized Using C (OCI)" on page 3-172

■ "Example: See If a LOB Locator Is Initialized Using C++ (Pro*C/C++)" on

page 3-173

Example: See If a LOB Locator Is Initialized Using C (OCI)
/* Select the locator: */

sb4 select_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID=1";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return (0);
}

void isInitializedLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc1, *Lob_loc2;
 boolean isInitialized;
3-172 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator Is Initialized
 /* Allocate the LOB locators: */
 printf(" allocate locator 1 and 2\n");
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc1,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc2,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs: */
 printf (" select a frame locator into locator 1\n");
 select_frame_locator(Lob_loc1, errhp, svchp, stmthp); /* locator 1 */

 /* Determine if the locator 1 is Initialized -: */
 checkerr(errhp, OCILobLocatorIsInit(envhp, errhp, Lob_loc1, &isInitialized));
 /* IsInitialized should return TRUE here */
 printf(" for Locator 1, isInitialized = %d\n", isInitialized);

 /* Determine if the locator 2 is Initialized -: */
 checkerr(errhp, OCILobLocatorIsInit(envhp, errhp, Lob_loc2, &isInitialized));
 /* IsInitialized should return TRUE here */
 printf(" for Locator 2, isInitialized = %d\n", isInitialized);

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc1, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) Lob_loc2, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: See If a LOB Locator Is Initialized Using C++ (Pro*C/C++)
/* Pro*C/C++ has no form of embedded SQL statement to determine if a LOB
 locator is initialized. Locators in Pro*C/C++ are initialized when they
 are allocated via the EXEC SQL ALLOCATE statement. However, an example
 can be written that uses embedded SQL and the OCI as is shown here: */

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
Internal Persistent LOBs 3-173

See If a LOB Locator Is Initialized
 exit(1);
}

void LobLocatorIsInit_proc()
{
 OCIBlobLocator *Lob_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Frame INTO Lob_loc
 FROM Multimedia_tab where Clip_ID = 1;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized: */
 (void) OCILobLocatorIsInit(oeh, err, Lob_loc, &isInitialized);
 if (isInitialized)
 printf("The locator is initialized\n");
 else
 printf("The locator is not initialized\n");
 /* Note that in this example, the locator is initialized */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobLocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

3-174 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set ID
Get Character Set ID

Figure 3–31 Use Case Diagram: Get Character Set ID

Scenario
The use case demonstrates how to determine the characterset ID of the foreign

language subtitle (FLSub). This functionality is available only in OCI.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

SELECT
a LOB

get character
set ID
Internal Persistent LOBs 3-175

Get Character Set ID
■ "Example: Get Character Set ID Using C (OCI)" on page 3-176

Example: Get Character Set ID Using C (OCI)
/* This function takes a valid LOB locator and prints the character set id of
the LOB. */

/* Select the locator */
sb4 select_FLSub_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;

 text *sqlstmt =
 (text *)"SELECT FLSub FROM Multimedia_tab WHERE Clip_ID = 2";

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2)SQLT_CLOB,(dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT));

 /* Execute and fetch one row */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

sb4 getcsidLob (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub2 charsetid =0 ;
3-176 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set ID
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 printf (" select a FLSub locator\n");
 select_FLSub_locator(Lob_loc, errhp, svchp, stmthp);

 printf (" get the character set id of FLSub_locator\n");

 /* Get the charactersid ID of the LOB*/
 checkerr (errhp, OCILobCharSetId(envhp, errhp, Lob_loc, &charsetid));
 printf(" character Set ID of FLSub is : %d\n", charsetid);

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Internal Persistent LOBs 3-177

Get Character Set Form
Get Character Set Form

Figure 3–32 Use Case Diagram: Get Character Set Form

Scenario
The use case demonstrates how to determine the character set form of the foreign

language subtitle (FLSub). This functionality is available only in OCI.

■ "Example: Get Character Set Form Using C (OCI)" on page 3-179

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

User/
Program

SELECT
a LOB

get character
set form
3-178 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set Form
Example: Get Character Set Form Using C (OCI)
/* Select the locator */
sb4 select_FLSub_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;

 text *sqlstmt =
 (text *)"SELECT FLSub FROM Multimedia_tab WHERE Clip_ID = 2";

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2)SQLT_CLOB,(dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT));

 /* Execute and fetch one row */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

/* This function takes a valid LOB locator and prints the character set form
 of the LOB.
 */

sb4 getcsformLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub1 charset_form = 0 ;
Internal Persistent LOBs 3-179

Get Character Set Form
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 printf (" select a FLSub locator\n");
 select_FLSub_locator(Lob_loc, errhp, svchp, stmthp);

 printf (" get the character set form of FLSub\n");

 /* Get the charactersid ID of the LOB*/
 checkerr (errhp, OCILobCharSetForm(envhp, errhp, Lob_loc, &charset_form));
 printf(" character Set Form of FLSub is : %d\n", charset_form);

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;

}

3-180 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another
Append One LOB to Another

Figure 3–33 Use Case Diagram: Append one LOB to another

Internal persistent LOBs

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

append one
LOB to
another
Internal Persistent LOBs 3-181

Append One LOB to Another
Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or the OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs. For more details on the state of the locator

after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced

Topics".

Scenario
This example deals with the task of appending one segment of Sound to another.

We assume that you use sound-specific editing tools to match the wave-forms.

■ "Example: Append One LOB to Another Using PL/SQL (DBMS_LOB Package)"

on page 3-182

■ "Example: Append One LOB to Another Using C (OCI)" on page 3-183

■ "Example: Append One LOB to Another Using COBOL (Pro*COBOL)" on

page 3-185

■ "Example: Append One LOB to Another Using C++ (Pro*C/C++)" on

page 3-186

■ "Example: Append One LOB to Another Using Visual Basic (OO4O)" on

page 3-187

■ "Example: Append One LOB to Another Using Java (JDBC)" on page 3-188

Example: Append One LOB to Another Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure appendLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE appendLOB_proc IS
 Dest_loc BLOB;
 Src_loc BLOB;
BEGIN

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
3-182 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another
 /* Select the LOB, get the destination LOB locator: */
 SELECT Sound INTO Dest_loc FROM Multimedia_tab
 WHERE Clip_ID = 2
 FOR UPDATE;
 /* Select the LOB, get the destination LOB locator: */
 SELECT Sound INTO Src_loc FROM Multimedia_tab
 WHERE Clip_ID = 1;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Dest_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN (Src_loc, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.APPEND(Dest_loc, Src_loc);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Dest_loc);
 DBMS_LOB.CLOSE (Src_loc);
COMMIT;

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Example: Append One LOB to Another Using C (OCI)
/* This function appends the Source LOB to the end of the Destination LOB*/
/* Select the locator */
sb4 select_lock_sound_locator_2(Lob_loc, dest_type, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
ub1 dest_type; /* whether destination locator */
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 char sqlstmt[150];
 OCIDefine *defnp1;

 if (dest_type == TRUE)
 {
 strcpy (sqlstmt,
 (char *)"SELECT Sound FROM Multimedia_tab WHERE Clip_ID=2 FOR UPDATE");
 printf (" select destination sound locator\n");
 }
 else
 {
 strcpy(sqlstmt, (char *)"SELECT Sound FROM Multimedia_tab WHERE Clip_ID=1");
Internal Persistent LOBs 3-183

Append One LOB to Another
 printf (" select source sound locator\n");
 }
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (text *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}
void appendLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Dest_loc, *Src_loc;

 /* Allocate the LOB locators */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Src_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs */
 printf(" select source and destination Lobs\n");
 select_lock_sound_locator_2(Dest_loc, TRUE, errhp, svchp, stmthp);

 /* destination locator */
 select_lock_sound_locator_2(Src_loc, FALSE, errhp, svchp, stmthp);
 /* source locator */

 /* Opening the LOBs is Optional */
 checkerr (errhp, OCILobOpen(svchp, errhp, Dest_loc, OCI_LOB_READWRITE));
 checkerr (errhp, OCILobOpen(svchp, errhp, Src_loc, OCI_LOB_READONLY));

 /* Append Source LOB to the end of the Destination LOB. */
 printf(" append the source Lob to the destination Lob\n");
3-184 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another
 checkerr(errhp, OCILobAppend(svchp, errhp, Dest_loc, Src_loc));

 /* Closing the LOBs is Mandatory if they have been Opened */
 checkerr (errhp, OCILobClose(svchp, errhp, Dest_loc));
 checkerr (errhp, OCILobClose(svchp, errhp, Src_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Dest_loc, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) Src_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: Append One LOB to Another Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-APPEND.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 DEST SQL-BLOB.
 01 SRC SQL-BLOB.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 APPEND-BLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :DEST END-EXEC.
 EXEC SQL ALLOCATE :SRC END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 EXEC SQL
 SELECT SOUND INTO :DEST
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 2 FOR UPDATE
 END-EXEC.

 EXEC SQL
 SELECT SOUND INTO :SRC
Internal Persistent LOBs 3-185

Append One LOB to Another
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 1
 END-EXEC.

 * Open the DESTination LOB read/write and SRC LOB read only:
 EXEC SQL LOB OPEN :DEST READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC READ ONLY END-EXEC.

 * Append the source LOB to the destination LOB:
 EXEC SQL
 LOB APPEND :SRC TO :DEST
 END-EXEC.

 EXEC SQL LOB CLOSE :DEST END-EXEC.
 EXEC SQL LOB CLOSE :SRC END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :DEST END-EXEC.
 EXEC SQL FREE :SRC END-EXEC.
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Append One LOB to Another Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
3-186 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void appendLOB_proc()
{
 OCIBlobLocator *Dest_loc, *Src_loc;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the locators: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL ALLOCATE :Src_loc;
 /* Select the destination locator: */
 EXEC SQL SELECT Sound INTO :Dest_loc
 FROM Multimedia_tab WHERE Clip_ID = 2 FOR UPDATE;
 /* Select the source locator: */
 EXEC SQL SELECT Sound INTO :Src_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB OPEN :Src_loc READ ONLY;
 /* Append the source LOB to the end of the destination LOB: */
 EXEC SQL LOB APPEND :Src_loc TO :Dest_loc;
 /* Closing the LOBs is mandatory if they have been opened: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;
 /* Release resources held by the locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 appendLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Append One LOB to Another Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase
Internal Persistent LOBs 3-187

Append One LOB to Another
Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value
Set OraSoundClone = OraSound1

OraDyn.MoveNext

OraDyn.Edit
OraSound1.Append OraSoundClone
OraDyn.Update

Example: Append One LOB to Another Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_121
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
3-188 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 ResultSet rset = null;
 BLOB dest_loc = null;
 BLOB src_loc = null;
 InputStream in = null;
 byte[] buf = new byte[MAXBUFSIZE];
 int length = 0;
 long pos = 0;

 rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 2");
 if (rset.next())
 {
 src_loc = ((OracleResultSet)rset).getBLOB (1);
 }
 in = src_loc.getBinaryStream();

 rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 1 FOR UPDATE");
 if (rset.next())
 {
 dest_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // Start writing at the end of the LOB. ie. append:
 pos = dest_loc.length();

 // populate the buffer:
 buf = (new String("Hello World")).getBytes();

 while ((length = in.read(buf)) != -1)
Internal Persistent LOBs 3-189

Append One LOB to Another
 {
 // Write the contents of the buffer into position pos of the output LOB:
 dest_loc.putBytes(pos, buf);
 }

 // Close all streams and handles:
 in.close();
 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-190 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a LOB
Write Append to a LOB

Figure 3–34 Use Case Diagram: Write Append to a LOB

Writing Singly or Piecewise
The writeappend operation writes a buffer to the end of a LOB. For the OCI, the

buffer can be written to the LOB in a single piece with this call; alternatively, it can

be rendered piecewise using callbacks or a standard polling method. If the value of

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal persistent LOBs

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

write
append
Internal Persistent LOBs 3-191

Write Append to a LOB
the piece parameter is OCI_FIRST_PIECE , data must be provided through

callbacks or polling. If a callback function is defined in the cbfp parameter, then this

callback function will be invoked to get the next piece after a piece is written to the

pipe. Each piece will be written from bufp. If no callback function is defined, then

OCILobWriteAppend () returns the OCI_NEED_DATA error code. The application

must call OCILobWriteAppend () again to write more pieces of the LOB. In this

mode, the buffer pointer and the length can be different in each call if the pieces are

of different sizes and from different locations. A piece value of OCI_LAST_PIECE
terminates the piecewise write.

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or the OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs. For more details on the state of the locator

after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced

Topics".

Scenario
This example demonstrates writing to the end of a video frame (Frame).

■ "Example: Write Append to a LOB Using PL/SQL" on page 3-192

■ "Example: Write Append to a LOB Using C (OCI)" on page 3-193

■ "Example: Write Append to a LOB Using COBOL (Pro*COBOL)" on page 3-195

■ "Example: Write Append to a LOB Using Visual Basic (OO4O)" on page 3-197

■ "Example: Write Append to a LOB Using Java (JDBC)" on page 3-197

Example: Write Append to a LOB Using PL/SQL
/* Note that the example procedure lobWriteAppend_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE lobWriteAppend_proc IS
 Lob_loc BLOB;
 Buffer RAW(32767);
 Amount Binary_integer := 32767;
BEGIN
 SELECT Frame INTO Lob_loc FROM Multimedia_tab where Clip_ID = 1 FOR UPDATE;
 /* Fill the buffer with data... */
3-192 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a LOB
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Append the data from the buffer to the end of the LOB: */
 DBMS_LOB.WRITEAPPEND(Lob_loc, Amount, Buffer);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Lob_loc);
END;

Example: Write Append to a LOB Using C (OCI)
/* Select the locator into a locator variable: */

sb4 select_lock_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID=1 FOR UPDATE";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return (0);
}

#define MAXBUFLEN 32767

void writeAppendLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
Internal Persistent LOBs 3-193

Write Append to a LOB
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIBlobLocator *Lob_loc;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 OCILobLocator *Lob_Loc;

 /* Allocate the Source (bfile) & destination (blob) locators desriptors: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf(" select and lock a frame locator\n");
 select_lock_frame_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB: */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 /* Setting the amt to the buffer length. Note here that amt is in bytes
 since we are using a BLOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);

 /* Fill bufp with data: */
 /* Write the data from the buffer at the end of the LOB: */
 printf(" write-append data to the frame Lob\n");
 checkerr (errhp, OCILobWriteAppend (svchp, errhp, Lob_loc, &amt,
 bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4 *, ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));
 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

3-194 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a LOB
Example: Write Append to a LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRITE-APPEND-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 AMT PIC S9(9) COMP.
 01 BUFFER PIC X(32767) VARYING.
 EXEC SQL VAR BUFFER IS LONG RAW (32767) END-EXEC.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-APPEND-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT FRAME INTO :BLOB1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 1 FOR UPDATE
 END-EXEC.

 * Open the target LOB:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
1
 * Populate AMT here:
 MOVE 5 TO AMT.
 MOVE "2424242424" to BUFFER.

 * Append the source LOB to the destination LOB:
 EXEC SQL
 LOB WRITE APPEND :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.
Internal Persistent LOBs 3-195

Write Append to a LOB
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Write Append to a LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 128

void LobWriteAppend_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
3-196 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a LOB
 /* Amount == BufferLength so only a single WRITE is needed: */
 char Buffer[BufferLength];
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS RAW(BufferLength);

 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Frame INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc;
 memset((void *)Buffer, 1, BufferLength);
 /* Write the data from the buffer at the end of the LOB: */
 EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Lob_loc;
 /* Closing the LOB is mandatory if it has been opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobWriteAppend_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Write Append to a LOB Using Visual Basic (OO4O)

Example: Write Append to a LOB Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;

Note: A Visual Basic example will be made available in a

subsequent release.
Internal Persistent LOBs 3-197

Write Append to a LOB
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_126
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB dest_loc = null;
 byte[] buf = new byte[MAXBUFSIZE];
 long pos = 0;

 ResultSet rset = stmt.executeQuery (
 "SELECT frame FROM multimedia_tab WHERE clip_id = 1 FOR UPDATE");
 if (rset.next())
 {
 dest_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // Start writing at the end of the LOB. ie. append:
 pos = dest_loc.length();
3-198 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a LOB
 // fill buf with contents to be written:
 buf = (new String("Hello World")).getBytes();

 // Write the contents of the buffer into position pos of the output LOB:
 dest_loc.putBytes(pos, buf);

 // Close all streams and handles:
 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-199

Write Data to a LOB
Write Data to a LOB

Figure 3–35 Use Case Diagram: Write data to a LOB

OPEN
a LOB

SELECT
a LOB

get
chunk size

CLOSE
a LOB

enable
buffering

write data
to the LOB

Internal persistent LOBs

User/
Program

disable
buffering

flush
buffer
3-200 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
Stream Write
The most efficient way to write large amounts of LOB data is to use

OCILobWrite () with the streaming mechanism enabled via polling or a callback. If

you know how much data will be written to the LOB, specify that amount when

calling OCILobWrite (). This will allow for the contiguity of the LOB data on disk.

Apart from being spatially efficient, the contiguous structure of the LOB data will

make for faster reads and writes in subsequent operations.

Chunksize
A chunk is one or more Oracle blocks. As noted previously, you can specify the

chunk size for the LOB when creating the table that contains the LOB. This

corresponds to the chunk size used by Oracle when accessing/modifying the LOB
value. Part of the chunk is used to store system-related information and the rest

stores the LOB value. The getchunksize function returns the amount of space

used in the LOB chunk to store the LOB value.

You will improve performance if the you execute write requests using a multiple

of this chunk size. The reason for this is that the LOB chunk is versioned for every

write operation. If all writes are done on a chunk basis, no extra or excess

versioning is incurred or duplicated. If it is appropriate for your application, you

should batch writes until you have enough for an entire chunk instead of issuing

several LOB write calls that operate on the same LOB chunk.

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or the OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs. For more details on the state of the locator

after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced

Topics".

To refer to the table of all basic operations having to do with Tem-
porary LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
Internal Persistent LOBs 3-201

Write Data to a LOB
Scenario
The following example procedure allows the STORY data (the storyboard for the

clip) to be updated by writing data to the LOB.

■ "Example: Write Data to a LOB Using the DBMS_LOB Package" on page 3-202

■ "Example: Write Data to a LOB Using C (OCI)" on page 3-203

■ "Example: Write Data to a LOB Using COBOL (Pro*COBOL)" on page 3-207

■ "Example: Write Data to a LOB Using C++ (Pro*C/C++)" on page 3-209

■ "Example: Write Data to a LOB Using Visual Basic (OO4O)" on page 3-212

■ "Example: Write Data to a LOB Using Java (JDBC)" on page 3-213

Example: Write Data to a LOB Using the DBMS_LOB Package
/* Note that the example procedure writeDataToLOB_proc is not part of the
CREATE or REPLACE PROCEDURE writeDataToLOB_proc IS
 Lob_loc CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1;
 i INTEGER;
BEGIN
 /* Select a LOB: */
 SELECT Story INTO Lob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1
 FOR UPDATE;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Fill the buffer with data to write to the LOB: */
 FOR i IN 1..3 LOOP
 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
 /* Fill the buffer with more data to write to the LOB: */
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

/* We add a second example to show a case in which the buffer size and amount
 differs from the first example: */
CREATE or REPLACE PROCEDURE writeDataToLOB_proc IS
3-202 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
 Lob_loc CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER;
 i INTEGER;
 Chunk_size INTEGER;
BEGIN
 SELECT Story INTO Lob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1
 FOR UPDATE;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);

 Chunk_size := DBMS_LOB.GETCHUNKSIZE(Lob_loc);

 /* Fill the buffer with ’Chunk_size’ worth of data to write to
 the LOB. Use the chunk size (or a multiple of chunk size) when writing
 data to the LOB. Make sure that you write within a chunk boundary and
 don’t overlap different chunks within a single call to DBMS_LOB.WRITE. */

 Amount := Chunk_size;

 /* Write data starting at the beginning of the second chunk: */
 Position := Chunk_size + 1;

 FOR i IN 1..3 LOOP
 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
 /* Fill the buffer with more data (of size Chunk_size) to write to
 the LOB: */
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

Example: Write Data to a LOB Using C (OCI)
/* This example demonstrates how OCI provides for the ability to write
 arbitrary amounts of data to an Internal LOB in either a single piece
 or in multiple pieces using a streaming mechanism that utilizes standard
 polling. A dynamically allocated Buffer is used to hold the data being
 written to the LOB. */

/* Select the locator into a locator variable */
Internal Persistent LOBs 3-203

Write Data to a LOB
sb4 select_lock_story_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *) "SELECT Story FROM Multimedia_tab m \
 WHERE m.Clip_ID = 1 FOR UPDATE";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return (0);
}

void writeDataToLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIClobLocator *Lob_loc;
 ub4 Total = 2.5*MAXBUFLEN;
 /* <total amount of data to write to the CLOB in bytes> */
 unsigned int amt;
 unsigned int offset;
 unsigned int remainder, nbytes;
 boolean last;
 ub1 bufp[MAXBUFLEN];
 sb4 err;

 /* Allocate the locators desriptors*/
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
3-204 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the CLOB */
 printf (" select a story Lob\n");
 select_lock_story_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the CLOB */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 if (Total > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single write is required */

 /* Fill the buffer with nbytes worth of data */
 remainder = Total - nbytes;

 /* Setting Amount to 0 streams the data until use specifies OCI_LAST_PIECE */
 amt = 0;
 offset = 1;

 printf(" write the Lob data in pieces\n");
 if (0 == remainder)
 {
 amt = nbytes;
 /* Here, (Total <= MAXBUFLEN) so we can write in one piece */
 checkerr (errhp, OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, nbytes,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));
 }
 else
 {
 /* Here (Total > MAXBUFLEN) so we use streaming via standard polling */
 /* write the first piece. Specifying first initiates polling. */
 err = OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, nbytes,
 OCI_FIRST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);

 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);
Internal Persistent LOBs 3-205

Write Data to a LOB
 last = FALSE;
 /* Write the next (interim) and last pieces */
 do
 {
 if (remainder > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; / * Here, (remainder <= MAXBUFLEN) */
 last = TRUE; /* This is going to be the final piece */
 }

 /* Fill the Buffer with nbytes worth of data */

 if (last)
 {
 /* Specifying LAST terminates polling */
 err = OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, nbytes,
 OCI_LAST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_SUCCESS)
 checkerr(errhp, err);
 }
 else
 {
 err = OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, nbytes,
 OCI_NEXT_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);
 }
 /* Determine how much is left to write */
 remainder = remainder - nbytes;
 } while (!last);
 }

 /* At this point, (remainder == 0) */

 /* Closing the LOB is mandatory if you have opened it */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));
3-206 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: Write Data to a LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRITE-CLOB.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE
 ASSIGN TO "datfile.dat"
 ORGANIZATION IS SEQUENTIAL.
 DATA DIVISION.
 FILE SECTION.

 FD INFILE
 RECORD CONTAINS 5 CHARACTERS.
 01 INREC PIC X(5).

 WORKING-STORAGE SECTION.

 01 CLOB1 SQL-CLOB.
 01 BUFFER PIC X(5) VARYING.
 01 AMT PIC S9(9) COMP VALUES 321.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 END-OF-FILE PIC X(1) VALUES "N".

 01 D-BUFFER-LEN PIC 9.
 01 D-AMT PIC 9.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-CLOB.

 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
Internal Persistent LOBs 3-207

Write Data to a LOB
 * Open the input file:
 OPEN INPUT INFILE.
 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.

 EXEC SQL
 SELECT STORY INTO :CLOB1 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 1 FOR UPDATE
 END-EXEC.

 * Either write entire record or write first piece
 * Read a data file here and populate BUFFER-ARR and BUFFER-LEN
 * END-OF-FILE will be set to "Y" when the entire file has been
 * read.
 PERFORM READ-NEXT-RECORD.
 MOVE INREC TO BUFFER-ARR.
 MOVE 5 TO BUFFER-LEN.
 IF (END-OF-FILE = "Y")
 EXEC SQL
 LOB WRITE ONE :AMT FROM :BUFFER
 INTO :CLOB1 AT :OFFSET
 END-EXEC
 ELSE
 DISPLAY "LOB WRITE FIRST: ", BUFFER-ARR
 EXEC SQL
 LOB WRITE FIRST :AMT FROM :BUFFER
 INTO :CLOB1 AT :OFFSET
 END-EXEC.

 * Continue reading from the input data file
 * and writing to the CLOB:
 PERFORM READ-NEXT-RECORD.
 PERFORM WRITE-TO-CLOB
 UNTIL END-OF-FILE = "Y".

 MOVE INREC TO BUFFER-ARR.
 MOVE 1 TO BUFFER-LEN.
 DISPLAY "LOB WRITE LAST: ", BUFFER-ARR(1:BUFFER-LEN).
 EXEC SQL
 LOB WRITE LAST :AMT FROM :BUFFER INTO :CLOB1
 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.
3-208 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
 WRITE-TO-CLOB.
 MOVE INREC TO BUFFER-ARR.
 MOVE 5 TO BUFFER-LEN.
 DISPLAY "LOB WRITE NEXT: ", BUFFER-ARR(1:BUFFER-LEN).
 EXEC SQL
 LOB WRITE NEXT :AMT FROM :BUFFER INTO :CLOB1
 END-EXEC.
 PERFORM READ-NEXT-RECORD.

 READ-NEXT-RECORD.
 MOVE SPACES TO INREC.
 READ INFILE NEXT RECORD
 AT END
 MOVE "Y" TO END-OF-FILE.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Write Data to a LOB Using C++ (Pro*C/C++)
/* This example demonstrates how Pro*C/C++ provides for the ability to write
 arbitrary amounts of data to an Internal LOB in either a single piece
 of in multiple pieces using a Streaming Mechanism that utilizes standard
 polling. A dynamically allocated Buffer is used to hold the data being
 written to the LOB: */
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
Internal Persistent LOBs 3-209

Write Data to a LOB
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void writeDataToLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Lob_loc;
 varchar Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Open the CLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single write is required */
 /* Fill the buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can write in one piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 /* Here (Total > BufferLength) so we streaming via standard polling */
 /* write the first piece. Specifying first initiates polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write first %d characters\n", Buffer.len);
 last = FALSE;
3-210 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
 /* Write the next (interim) and last pieces: */
 do
 {
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= BufferLength) */
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write LAST Total of %d characters\n", Amount);
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to write: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* At this point, (Amount == Total), the total amount that was written */
 /* Close the CLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeDataToLOB_proc(1);
 EXEC SQL ROLLBACK WORK;
 writeDataToLOB_proc(4);
Internal Persistent LOBs 3-211

Write Data to a LOB
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Write Data to a LOB Using Visual Basic (OO4O)
’Note that this code fragment assumes an orablob object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1. There are two ways
’of writing a lob using orablob.write or orablob.copyfromfile

’Using OraBlob.Write mechanism
Dim OraDyn as OraDynaset, OraSound as OraBlob, amount_written%, chunksize%,
curchunk

chunksize = 32768
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Multimedia_tab", ORADYN_DEFAULT)
Set OraSound = OraDyn.Fields("Sound")

OraSound.offset = 1
OraSound.pollingAmount = LOF(fnum)

Dim piece As Byte
Get #fnum, , curchunk

piece = ORALOB_FIRST_PIECE
amount_written = OraSound.Write(curchunk, chunksize, ORALOB_FIRST_PIECE)

While OraSound.Status = ORALOB_NEED_DATA
 If amount_written <= chunksize Then
 piece = ORALOB_LAST_PIECE
 Else
 piece = ORALOB_NEXT_PIECE
 End If

 Get #fnum, , curchunk
 amount_written = OraSound.Write(curchunk, chunksize, piece)

Wend

’Using OraBlob.CopyFromFile mechanism
Dim OraDyn as OraDynaset, OraSound as OraBlob, amount_read%, chunksize%, chunk

Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraSound = OraDyn.Fields("Sound").Value
3-212 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
OraSound.CopyFromFile "c:\mysound.aud"

Example: Write Data to a LOB Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_66
{
 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 CLOB lob_loc = null;
Internal Persistent LOBs 3-213

Write Data to a LOB
 String buf = new String ("Some Text To Write");

 ResultSet rset = stmt.executeQuery (
 "SELECT intab.transcript FROM TABLE(
 SELECT mtab.inseg_ntab FROM multimedia_tab mtab
 WHERE mtab.clip_id = 1) intab WHERE intab.segment=1 FOR UPDATE");

 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.OPEN(?,
 DBMS_LOB.LOB_READWRITE); END;");
 cstmt.setCLOB(1, lob_loc);
 cstmt.execute();

 long pos = 0; // This is the offset within the CLOB where the data is
to be written
 long length = 0; // This is the size of the buffer to be written.

 // This loop writes the buffer three times consecutively:
 for (int i = 0; i < 3; i++)
 {
 // Fill the buffer with some data to be written:
 length = buf.length();
 pos += length;
 // This is an Oracle-specific method:
 lob_loc.plsql_write(pos, buf.toCharArray());
 }

 // All OPENed LOBS must be CLOSEd:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.CLOSE(?); END;");
 cstmt.setCLOB(1, lob_loc);
 cstmt.execute();

 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
3-214 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-215

Trim the LOB Data
Trim the LOB Data

Figure 3–36 Use Case Diagram: Trim the LOB data

Internal persistent LOBs

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

trim the
LOB data
3-216 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data
Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or the OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs. For more details on the state of the locator

after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced

Topics".

Scenario
Our example accesses text (CLOB data) that is referenced in the Script column of

the table Voiceover_tab , and trims it.

■ "Example: Trim the LOB Data Using PL/SQL (DBMS_LOB Package)" on

page 3-217

■ "Example: Trim the LOB Data Using C (OCI)" on page 3-218

■ "Example: Trim the LOB Data Using COBOL (Pro*COBOL)" on page 3-219

■ "Example: Trim the LOB Data Using C++ (Pro*C/C++)" on page 3-221

■ "Example: Trim the LOB Data Using Visual Basic (OO4O)" on page 3-223

■ "Example: Trim the LOB Data Using Java (JDBC)" on page 3-223

Example: Trim the LOB Data Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure trimLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE trimLOB_proc IS
 Lob_loc CLOB;
BEGIN
 /* Select the LOB, get the LOB locator: */
 SELECT Mtab.Voiced_ref.Script INTO Lob_loc FROM Multimedia_tab Mtab
 WHERE Mtab.Clip_ID = 2
 FOR UPDATE;

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
Internal Persistent LOBs 3-217

Trim the LOB Data
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Trim the LOB data: */
 DBMS_LOB.TRIM(Lob_loc,100);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
COMMIT;
/* Exception handling: */
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Example: Trim the LOB Data Using C (OCI)
/* Select the locator into a locator variable */
sb4 select_lock_voice_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *) "SELECT Mtab.Voiced_ref.Script \
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 2 FOR UPDATE";

 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

3-218 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data
void trimLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 unsigned int trimLength;

 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the CLOB */
 printf(" select a voice LOB\n");
 select_lock_voice_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the CLOB */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 /* Trim the LOB to its new length */
 trimLength = 100; /* <New truncated length of the LOB>*/

 printf (" trim the lob to %d bytes\n", trimLength);
 checkerr (errhp, OCILobTrim (svchp, errhp, Lob_loc, trimLength));

 /* Closing the CLOB is mandatory if you have opend it */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);
}

Example: Trim the LOB Data Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TRIM-CLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 CLOB1 SQL-CLOB.
 01 NEW-LEN PIC S9(9) COMP.
 * Define the source and destination position and location:
Internal Persistent LOBs 3-219

Trim the LOB Data
 01 SRC-POS PIC S9(9) COMP.
 01 DEST-POS PIC S9(9) COMP.
 01 SRC-LOC PIC S9(9) COMP.
 01 DEST-LOC PIC S9(9) COMP.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 TRIM-CLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locators:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
 EXEC SQL
 SELECT MTAB.STORY INTO :CLOB1
 FROM MULTIMEDIA_TAB MTAB
 WHERE MTAB.CLIP_ID = 2 FOR UPDATE
 END-EXEC.

 * Open the CLOB:
 EXEC SQL LOB OPEN :CLOB1 READ WRITE END-EXEC.

 * Move some value to NEW-LEN:
 MOVE 3 TO NEW-LEN.
 EXEC SQL
 LOB TRIM :CLOB1 TO :NEW-LEN
 END-EXEC.

 EXEC SQL LOB CLOSE :CLOB1 END-EXEC.

 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
3-220 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Trim the LOB Data Using C++ (Pro*C/C++)

Note: In addition to the data structures set up above in the section

"Example: Create a Table Containing One or More LOB Columns

using SQL DDL" on page 3-15, you should use DML like this:

INSERT INTO multimedia_tab VALUES (
 2, ’The quick brown fox jumped over the lazy dog’,
 empty_clob(), NULL, empty_blob(), empty_blob(), NULL, NULL,
NULL, NULL);

INSERT INTO voiceover_tab VALUES (
 voiced_typ(’hello’,
 (SELECT story FROM multimedia_tab WHERE clip_id = 2),
 ’world’, 1, NULL))

UPDATE multimedia_tab SET voiced_ref =
 (SELECT REF(r) FROM voiceover_tab r WHERE r.take = 1)
 WHERE clip_id = 2

Then create this text file, pers_trim.typ, containing:

case=lower
type voiced_typ

Then run this Object Type Translator command:

ott intyp=pers_trim.typ outtyp=pers_trim_o.typ
 hfile=pers_trim.h code=c user=samp/samp
Internal Persistent LOBs 3-221

Trim the LOB Data
#include "pers_trim.h"
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("sqlcode = %ld\n", sqlca.sqlcode);
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void trimLOB_proc()
{
 voiced_typ_ref *vt_ref;
 voiced_typ *vt_typ;
 OCIClobLocator *Lob_loc;
 unsigned int Length, trimLength;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :vt_ref;
 EXEC SQL ALLOCATE :vt_typ;
 /* Retrieve the REF using Associative SQL */
 EXEC SQL SELECT Mtab.Voiced_ref INTO :vt_ref
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 2 FOR UPDATE;
 /* Dereference the Object using the Navigational Interface */
 EXEC SQL OBJECT DEREF :vt_ref INTO :vt_typ FOR UPDATE;
 Lob_loc = vt_typ->script;
 /* Opening the LOB is Optional */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 printf("Old length was %d\n", Length);
 trimLength = (unsigned int)(Length / 2);
 /* Trim the LOB to its new length */
 EXEC SQL LOB TRIM :Lob_loc TO :trimLength;
 /* Closing the LOB is mandatory if it has been opened */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Mark the Object as Modified (Dirty) */
 EXEC SQL OBJECT UPDATE :vt_typ;
 /* Flush the changes to the LOB in the Object Cache */
 EXEC SQL OBJECT FLUSH :vt_typ;
 /* Display the new (modified) length */
 EXEC SQL SELECT Mtab.Voiced_ref.Script INTO :Lob_loc
3-222 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 2;
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 printf("New length is now %d\n", Length);
 /* Free the Objects and the LOB Locator */
 EXEC SQL FREE :vt_ref;
 EXEC SQL FREE :vt_typ;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 trimLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Trim the LOB Data Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value

OraDyn.Edit
OraSound1.Trim 10
OraDyn.Update

Example: Trim the LOB Data Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
Internal Persistent LOBs 3-223

Trim the LOB Data
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_141
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 CLOB lob_loc = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT mtab.voiced_ref.script FROM multimedia_tab mtab
 WHERE mtab.clip_id = 2 FOR UPDATE");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 // Open the LOB for READWRITE:
3-224 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data
 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.OPEN(?,DBMS_LOB.LOB_READWRITE);
END;");
 cstmt.setCLOB(1, lob_loc);
 cstmt.execute();

 // Trim the LOB to length of 400:
 cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.TRIM(?, 400); END;");
 cstmt.setCLOB(1, lob_loc);
 cstmt.execute();

 // Close the LOB:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.CLOSE(?); END;");
 cstmt.setCLOB(1, lob_loc);
 cstmt.execute();

 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-225

Erase Part of a LOB
Erase Part of a LOB

Figure 3–37 Use Case Diagram: Erase part of a LOB

Internal persistent LOBs

User/
Program

SELECT
a LOB

erase part
of a LOB

OPEN
a LOB

CLOSE
a LOB
3-226 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB
Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or the OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs. For more details on the state of the locator

after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced

Topics".

Scenario
The example demonstrates erasing a portion of sound (Sound).

■ "Example: Erase Part of a LOB Using PL/SQL (DBMS_LOB Package)" on

page 3-227

■ "Example: Erase Part of a LOB Using C (OCI)" on page 3-228

■ "Example: Erase Part of a LOB Using COBOL (Pro*COBOL)" on page 3-229

■ "Example: Erase Part of a LOB Using C++ (Pro*C/C++)" on page 3-231

■ "Example: Erase Part of a LOB Using Visual Basic (OO4O)" on page 3-232

■ "Example: Erase Part of a LOB Using Java (JDBC)" on page 3-232

Example: Erase Part of a LOB Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure eraseLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE eraseLOB_proc IS
 Lob_loc BLOB;
 Amount INTEGER := 3000;
BEGIN
 /* Select the LOB, get the LOB locator: */
 SELECT Sound INTO lob_loc FROM Multimedia_tab
 WHERE Clip_ID = 1
 FOR UPDATE;

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
Internal Persistent LOBs 3-227

Erase Part of a LOB
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Erase the data: */
 DBMS_LOB.ERASE(Lob_loc, Amount, 2000);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
COMMIT;
/* Exception handling: */
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Example: Erase Part of a LOB Using C (OCI)
/* Select the locator into a locator variable: */

sb4 select_lock_sound_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Sound FROM Multimedia_tab WHERE Clip_ID=1 FOR UPDATE";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

3-228 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB
void eraseLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub4 amount = 3000;
 ub4 offset = 2000;

 OCILobLocator *Lob_Loc;

 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the CLOB: */
 printf(" select and lock a sound LOB\n");
 select_lock_sound_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB: */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 /* Erase the data starting at the specified Offset: */
 printf(" erase %d bytes from the sound Lob\n", amount);
 checkerr (errhp, OCILobErase (svchp, errhp, Lob_loc, &amount, offset));

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Example: Erase Part of a LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ERASE-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
Internal Persistent LOBs 3-229

Erase Part of a LOB
 01 BLOB1 SQL-BLOB.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 ERASE-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :BLOB1
 FROM MULTIMEDIA_TAB MTAB
 WHERE MTAB.CLIP_ID = 2 FOR UPDATE
 END-EXEC.

 * Open the BLOB:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.

 * Move some value to AMT and OFFSET:
 MOVE 2 TO AMT.
 MOVE 1 TO OFFSET.
 EXEC SQL
 LOB ERASE :AMT FROM :BLOB1 AT :OFFSET
 END-EXEC.

 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
3-230 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Erase Part of a LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void eraseLob_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = 5;
 int Offset = 5;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 /* Erase the data starting at the specified Offset: */
 EXEC SQL LOB ERASE :Amount FROM :Lob_loc AT :Offset;
 printf("Erased %d bytes\n", Amount);
 /* Closing the LOB is mandatory if it has been opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

Internal Persistent LOBs 3-231

Erase Part of a LOB
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 eraseLob_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Erase Part of a LOB Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)

Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Multimedia_tab ORDER BY clip_
id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value
’Erase 10 bytes begining from the 100th byte:
OraDyn.Edit
OraSound1.Erase 10, 100
OraDyn.Update

Example: Erase Part of a LOB Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
3-232 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB
import oracle.jdbc.driver.*;

public class Ex2_145
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB lob_loc = null;
 int eraseAmount = 30;

 ResultSet rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 2 FOR UPDATE");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // Open the LOB for READWRITE:
 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.OPEN(?,
 DBMS_LOB.LOB_READWRITE); END;");
 cstmt.setBLOB(1, lob_loc);
 cstmt.execute();

 // Erase eraseAmount bytes starting at offset 2000:
 cstmt = (OracleCallableStatement)
Internal Persistent LOBs 3-233

Erase Part of a LOB
 conn.prepareCall ("BEGIN DBMS_LOB.ERASE(?, ?, 1); END;");
 cstmt.registerOutParameter (1, OracleTypes.BLOB);
 cstmt.registerOutParameter (2, Types.INTEGER);
 cstmt.setBLOB(1, lob_loc);
 cstmt.setInt(2, eraseAmount);
 cstmt.execute();
 lob_loc = cstmt.getBLOB(1);
 eraseAmount = cstmt.getInt(2);

 // Close the LOB:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.CLOSE(?); END;");
 cstmt.setBLOB(1, lob_loc);
 cstmt.execute();

 conn.commit();
 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

3-234 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering
Enable LOB Buffering

Figure 3–38 Use Case Diagram: Enable LOB Buffering

Internal persistent LOBs

OPEN
a LOB

User/
Program

SELECT
a LOB

flush
buffer

CLOSE
a LOB

read data
from the LOB

enable
buffering

write data
to the LOB

disable
buffering
Internal Persistent LOBs 3-235

Enable LOB Buffering
Scenario
This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

You enable buffering in order to perform a small read or write of the data. Once you

have completed these tasks, you must disable buffering before you can continue

with any other LOBoperations. Note that you must flush the buffer in order to make

your modifications persistent. For more information, refer to "LOB Buffering

Subsystem" on page 2-14 in Chapter 2, "Advanced Topics".

Please note that you would not enable buffering to perform the stream read and

write involved in checkin and checkout.

■ "Example: Enable LOB Buffering Using COBOL (Pro*COBOL)" on page 3-236

■ "Example: Enable LOB Buffering Using C++ (Pro*C/C++)" on page 3-238

■ "Example: Enable LOB Buffering Using Visual Basic (OO4O)" on page 3-239

Example: Enable LOB Buffering Using C (OCI)

Example: Enable LOB Buffering Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BLOB1 SQL-BLOB.
 01 BUFFER PIC X(10).
 01 AMT PIC S9(9) COMP.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

See:

■ "Disable LOB Buffering" on page 3-246
3-236 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering
 EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :BLOB1
 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 1 FOR UPDATE
 END-EXEC.

 * Open the BLOB and enable buffering:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
 EXEC SQL
 LOB ENABLE BUFFERING :BLOB1
 END-EXEC.

 * Write some data to the BLOB:
 MOVE "242424" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.

 MOVE "212121" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.

 * Now flush the buffered writes:
 EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
 EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.

 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
Internal Persistent LOBs 3-237

Enable LOB Buffering
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Enable LOB Buffering Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void enableBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;
3-238 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering
 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 enableBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Enable LOB Buffering Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
Internal Persistent LOBs 3-239

Enable LOB Buffering
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields("Sound").Value
’Enable buffering:
OraSound1. EnableBuffering
3-240 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer
Flush Buffer

Figure 3–39 Use Case Diagram: Flush Buffer

Internal persistent LOBs

OPEN
a LOB

User/
Program

SELECT
a LOB

flush
buffer

CLOSE
a LOB

read data
from the LOB

enable
buffering

write data
to the LOB

disable
buffering
Internal Persistent LOBs 3-241

Flush Buffer
Scenario
This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

You enable buffering in order to perform a small read or write of the data. Once you

have completed these tasks, you must disable buffering before you can continue

with any other LOBoperations. Note that you must flush the buffer in order to make

your modifications persistent. For more information, refer to "LOB Buffering

Subsystem" on page 2-14 in Chapter 2, "Advanced Topics".

Please note that you would not enable buffering to perform the stream read and

write involved in checkin and checkout.

■ "Example: Flush Buffer Using C (OCI)" on page 3-242

■ "Example: Flush Buffer Using COBOL (Pro*COBOL)" on page 3-242

■ "Example: Flush Buffer Using C++ (Pro*C/C++)" on page 3-244

Example: Flush Buffer Using C (OCI)

Example: Flush Buffer Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BLOB1 SQL-BLOB.
 01 BUFFER PIC X(10).
 01 AMT PIC S9(9) COMP.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

See:

■ "Disable LOB Buffering" on page 3-246
3-242 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer
 EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :BLOB1
 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 1 FOR UPDATE
 END-EXEC.

 * Open the BLOB and enable buffering:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
 EXEC SQL
 LOB ENABLE BUFFERING :BLOB1
 END-EXEC.

 * Write some data to the BLOB:
 MOVE "242424" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.

 MOVE "212121" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.

 * Now flush the buffered writes:
 EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
 EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.

 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
Internal Persistent LOBs 3-243

Flush Buffer
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Flush Buffer Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void flushBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;
3-244 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer
 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 flushBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Flush Buffer Using Visual Basic (OO4O)

Note: A Visual Basic (OO4O) example will be made available in a

subsequent release.
Internal Persistent LOBs 3-245

Disable LOB Buffering
Disable LOB Buffering

Figure 3–40 Use Case Diagram: Disable LOB Buffering

Internal persistent LOBs

OPEN
a LOB

User/
Program

SELECT
a LOB

flush
buffer

CLOSE
a LOB

read data
from the LOB

enable
buffering

write data
to the LOB

disable
buffering
3-246 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering
Scenario
This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

You enable buffering in order to perform a small read or write of the data. Once you

have completed these tasks, you must disable buffering before you can continue

with any other LOBoperations. Note that you must flush the buffer in order to make

your modifications persistent.

Please note that you would not enable buffering to perform the stream read and

write involved in checkin and checkout.

■ "Example: Disable LOB Buffering Using C (OCI)" on page 3-247

■ "Example: Disable LOB Buffering Using COBOL (Pro*COBOL)" on page 3-249

■ "Example: Disable LOB Buffering Using C++ (Pro*C/C++)" on page 3-251

■ "Example: Disable LOB Buffering Using Visual Basic (OO4O)" on page 3-252

■ "Three Ways to Update a LOB" on page 3-254

Example: Disable LOB Buffering Using C (OCI)
/* Select the locator into a locator variable: */

sb4 select_lock_sound_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Sound FROM Multimedia_tab WHERE Clip_ID=1 FOR UPDATE";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2
Internal Persistent LOBs 3-247

Disable LOB Buffering
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

void lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the locator desriptor: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf (" select a sound Lob\n");
 select_lock_sound_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB: */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 /* Enable LOB Buffering: */
 printf (" enable LOB buffering\n");
 checkerr (errhp, OCILobEnableBuffering(svchp, errhp, Lob_loc));

 printf (" write data to LOB\n");
3-248 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering
 /* Write data into the LOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);
 offset = 1;

 checkerr (errhp, OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Flush the buffer: */
 printf(" flush the LOB buffers\n");
 checkerr (errhp, OCILobFlushBuffer(svchp, errhp, Lob_loc,
 (ub4)OCI_LOB_BUFFER_FREE));

 /* Disable Buffering: */
 printf (" disable LOB buffering\n");
 checkerr (errhp, OCILobDisableBuffering(svchp, errhp, Lob_loc));

 /* Subsequent LOB WRITEs will not use the LOB Buffering Subsystem: */

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;

}

Example: Disable LOB Buffering Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BLOB1 SQL-BLOB.
 01 BUFFER PIC X(10).
 01 AMT PIC S9(9) COMP.
Internal Persistent LOBs 3-249

Disable LOB Buffering
 EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :BLOB1
 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 1 FOR UPDATE
 END-EXEC.

 * Open the BLOB and enable buffering:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
 EXEC SQL
 LOB ENABLE BUFFERING :BLOB1
 END-EXEC.

 * Write some data to the BLOB:
 MOVE "242424" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.

 MOVE "212121" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.

 * Now flush the buffered writes:
 EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
 EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.

 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
3-250 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Disable LOB Buffering Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void disableBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;
Internal Persistent LOBs 3-251

Disable LOB Buffering
 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
 for (multiple = 0; multiple < 7; multiple++)
 {
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Write APPEND can only be done when Buffering is Disabled: */
 EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 disableBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Disable LOB Buffering Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
3-252 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)

Set OraSound1 = OraDyn.Fields("Sound").Value
’Disable buffering:
OraSound1.DisableBuffering
Internal Persistent LOBs 3-253

Three Ways to Update a LOB
Three Ways to Update a LOB

Figure 3–41 Use Case Diagram: Three Ways to Update a LOB

a. "UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()" on page 3-256

b. "UPDATE as SELECT" on page 3-257

c. "UPDATE by Initializing a LOB Locator Bind Variable" on page 3-259

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

User/
Program

Internal persistent LOBs

b
c

a
UPDATE

the row/entire
LOB data
3-254 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

Figure 3–42 Use Case Diagram: UPDATE using EMPTY_CLOB() or EMPTY_BLOB()

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal Persistent LOBs

User/
Program

EMPTY
_CLOB() or

_BLOB()

a UPDATE using Empty_CLOB() or Empty BLOB()
UPDATE

the row / entire
LOB data
Internal Persistent LOBs 3-255

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
Scenario
This example shows a series of updates via the EMPTY_CLOB operation to different

data types of the first clip.

Example: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() Using SQL
UPDATE Multimedia_tab SET Story = EMPTY_CLOB() WHERE Clip_ID = 1;
UPDATE Multimedia_tab SET FLSub = EMPTY_CLOB() WHERE Clip_ID = 1;
UPDATE multimedia_tab SET Sound = EMPTY_BLOB() WHERE Clip_ID = 1;
3-256 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE as SELECT
UPDATE as SELECT

Figure 3–43 Use Case Diagram: UPDATE as SELECT

Scenario
This example updates voice-over data from archival storage (VoiceoverLib_tab) by

means of a reference.

Example: Update as Select Using SQL DML
UPDATE Voiceover_tab SET (Originator, Script, Actor, Take, Recording) =
 (SELECT * FROM VoiceoverLib_tab T2 WHERE T2.Take = 101);
UPDATE Multimedia_tab Mtab
 SET Voiced_ref =
 (SELECT REF(Vref) FROM Voiceover_tab Vref
 WHERE Vref.Actor = ’James Earl Jones’ AND Vref.Take = 1)
 WHERE Mtab.Clip_ID = 1;

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal Persistent LOBs

User/
Program

SELECT
a LOB

b UPDATE as SELECT
UPDATE

the row / entire
LOB data
Internal Persistent LOBs 3-257

UPDATE by Initializing a LOB Locator Bind Variable
UPDATE by Initializing a LOB Locator Bind Variable

Figure 3–44 Use Case Diagram: UPDATE by Initializing a LOB Locator Bind Variable

Scenario
This example updates Sound data by means of a locator bind variable.

■ "Example: Update by Initializing a LOB Locator Bind Variable Using SQL DML"

on page 3-259

■ "Example: Update by Initializing a LOB Locator Bind Variable Using C (OCI)"

on page 3-259

■ "Example: Update by Initializing a LOB Locator Bind Variable Using COBOL

(Pro*COBOL)" on page 3-261

■ "Example: Update by Initializing a LOB Locator Bind Variable Using C++

(Pro*C/C++)" on page 3-262

■ "Example: Update by Initializing a LOB Locator Bind Variable Using C++

(Pro*C/C++)" on page 3-262

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal Persistent LOBs

User/
Program

SELECT
a LOB

c UPDATE by initializing LOB
locator bind variable

UPDATE
the row / entire

LOB data
3-258 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable
■ "Example: Update by Initializing a LOB Locator Bind Variable Using Java

(JDBC)" on page 3-264

Example: Update by Initializing a LOB Locator Bind Variable Using SQL DML
/* Note that the example procedure updateUseBindVariable_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE updateUseBindVariable_proc (Lob_loc BLOB) IS
BEGIN
 UPDATE Multimedia_tab SET Sound = lob_loc WHERE Clip_ID = 2;
END;

DECLARE
 Lob_loc BLOB;
BEGIN
 /* Select the LOB: */
 SELECT Sound INTO Lob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1;
 updateUseBindVariable_proc (Lob_loc);
 COMMIT;
END;

Example: Update by Initializing a LOB Locator Bind Variable Using C (OCI)
/* Select the locator into a locator variable: */

sb4 select_sound_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Sound FROM Multimedia_tab WHERE Clip_ID=2";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
Internal Persistent LOBs 3-259

UPDATE by Initializing a LOB Locator Bind Variable
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

/* Update the LOB in the selected row in the table: */
void updateLobUsingBind (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *updstmt =
 (text *) "UPDATE Multimedia_tab SET Sound = :1 WHERE Clip_ID = 1";
 OCILobLocator *Lob_loc;
 OCIBind *bndhp1;

 /* Allocate locator resources: */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

 /* Select the locator: */
 printf(" select a sound locator\n");
 (void)select_sound_locator(Lob_loc, errhp, svchp, stmthp);

 /* Prepare the SQL statement: */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, updstmt, (ub4)
 strlen((char *) updstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Binds the bind positions: */
 printf(" bind locator to bind position\n");

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1,
 (dvoid *) &Lob_loc, (sb4)0, SQLT_BLOB,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement: */
3-260 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable
 printf ("update LOB column in another row using this locator\n");
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return;
}

Example: Update by Initializing a LOB Locator Bind Variable Using COBOL
(Pro*COBOL)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. UPDATE-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 NEW-LEN PIC S9(9) COMP.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP.

 * Define the source and destination position and location:
 01 SRC-POS PIC S9(9) COMP.
 01 DEST-POS PIC S9(9) COMP.
 01 SRC-LOC PIC S9(9) COMP.
 01 DEST-LOC PIC S9(9) COMP.
 01 USERID PIC X(11) VALUES "USER1/USER1".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 UPDATE-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :BLOB1
Internal Persistent LOBs 3-261

UPDATE by Initializing a LOB Locator Bind Variable
 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 1
 END-EXEC.

 EXEC SQL
 UPDATE MULTIMEDIA_TAB
 SET SOUND = :BLOB1 WHERE CLIP_ID = 2
 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Update by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

3-262 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable
void updateUseBindVariable_proc(Lob_loc)
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL UPDATE Multimedia_tab SET Sound = :Lob_loc WHERE Clip_ID = 2;
}

void updateLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 updateUseBindVariable_proc(Lob_loc);
 EXEC SQL FREE :Lob_loc;
 EXEC SQL COMMIT WORK;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 updateLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Update by Initializing a LOB Locator Bind Variable Using Visual Basic
(OO4O)

Dim OraDatabase as OraDatabase,OraDyn as OraDynaset, OraSound as OraBLOB,

’Select a column with clip_id = 1:
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Multimedia_tab WHERE
 clip_id = 1", ORADYN_DEFAULT)

’Get the OraBlob object from the field:
Set OraSound = OraDyn.Fields("Sound").Value

’Create a parameter for OraBlob object:
OraDatabase.Parameters.Add "SOUND",NULL,ORAPARM_INPUT,ORATYPE_BLOB

’Set the value of SOUND parameter to OraSound:
Internal Persistent LOBs 3-263

UPDATE by Initializing a LOB Locator Bind Variable
OraDatabase.Parameters("SOUND").Value = OraSound

’Update the Multimedia_tab with OraSound for clip_id = 2:
OraDatabase.ExecuteSQL("Update Multimedia_tab SET Sound = :SOUND
 WHERE Clip_id = 2")

Example: Update by Initializing a LOB Locator Bind Variable Using Java (JDBC)
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_163
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 ResultSet rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 1");
 if (rset.next())
3-264 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable
 {
 // retrieve the LOB locator from the ResultSet:
 BLOB sound_blob = ((OracleResultSet)rset).getBLOB (1);

 OraclePreparedStatement ops =
 (OraclePreparedStatement) conn.prepareStatement(
 "UPDATE multimedia_tab SET SOUND = ? WHERE clip_id = 2");

 ops.setBlob(1, sound_blob);
 ops.execute();
 conn.commit();
 conn.close();
 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 3-265

DELETE the Row of a Table Containing a LOB
DELETE the Row of a Table Containing a LOB

Figure 3–45 Use Case Diagram: DELETE the row of a table containing a LOB

Scenario
You delete a row that contains an internal LOB column / attribute by using

■ the explicit SQL DML command DELETE, or

■ a SQL DDL command that effectively deletes it, such as DROP TABLE,
TRUNCATE TABLE, or DROP TABLESPACE.

In either case you delete the LOB locator and the LOB value as well.

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: Internal Persistent LOBs" on page 3-2

User/
Program

DELETE
the row

Internal persistent LOBs
3-266 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a LOB
But note that due to the consistent read mechanism, the old LOB value remains

accessible with the value that it had at the time of execution of the statement (such

as SELECT) that returned the LOB locator.

Of course, two distinct rows of a table with a LOB column have their own distinct

LOB locators and distinct copies of the LOB values irrespective of whether the LOB
values are the same or different. This means that deleting one row has no effect on

the data or LOB locator in another row even if one LOB was originally copied from

another row.

In this case we delete all the data associated with Clip 10.

Example: Delete a LOB Using SQL DML
DELETE FROM Multimedia_tab
 WHERE Clip_ID = 10;

DROP TABLE Multimedia_tab;

TRUNCATE TABLE Multimedia_tab;

Note: This is an advanced topic that is discussed in more detail

with regard to "Read-Consistent Locators" on page 2-2.
Internal Persistent LOBs 3-267

DELETE the Row of a Table Containing a LOB
3-268 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Temporary
4

Temporary LOBs

In this chapter we describe how to work with Temporary LOBs in terms of use cases.

That is, we discuss each operation on a LOB (such as "See If a Temporary LOB is

Open") in terms of a use case by that name. The table listing all the use cases is

provided at the head of the chapter (see "Use Case Model: Internal Temporary

LOBs" on page 4-2). A summary figure, "Use Case Model Diagram: Temporary

LOBs", locates all the use cases in single drawing. If you are using the HTML

version of this document, you can use this figure to navigate to the use case in

which you are interested by clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

■ A figure that depicts the use case (see "Preface" for a description of how to

interpret these diagrams).

■ A scenario that portrays one implementation of the use case in terms of the

hypothetical multimedia application described above (see "An Example

Application" on page 1-39 in Chapter 1, "Introduction to Working With LOBs").

■ Code examples in each of the programmatic environments which can be

utilized to implement the use case (see "Programmatic Environments for

Operating on LOBs" on page 1-9 in Chapter 1, "Introduction to Working With

LOBs").
LOBs 4-1

Use Case Model: Internal Temporary LOBs
Use Case Model: Internal Temporary LOBs

Table 4–1 Use Case Model Overview: Internal Temporary LOBs

Use Case and Page

Create a Temporary LOB on page 4-11

See If a LOB is Temporary on page 4-18

Free a Temporary LOB on page 4-23

Load a Temporary LOB with Data from a BFILE on page 4-28

See If a Temporary LOB Is Open on page 4-36

Display the Temporary LOB Data on page 4-42

Read Data from a Temporary LOB on page 4-52

Read a Portion of the Temporary LOB (substr) on page 4-61

Compare All or Part of Two (Temporary) LOBs on page 4-67

See If a Pattern Exists in a Temporary LOB (instr) on page 4-74

Get the Length of a Temporary LOB on page 4-80

Copy All or Part of One (Temporary) LOB to Another on page 4-88

Copy a LOB Locator for a Temporary LOB on page 4-98

See If One LOB Locator for a Temporary LOB Is Equal to Another on page 4-107

See If a LOB Locator for a Temporary LOB Is Initialized on page 4-111

Get Character Set ID of a Temporary LOB on page 4-114

Get Character Set Form of a Temporary LOB on page 4-116

Append One (Temporary) LOB to Another on page 4-118

Write Append to a Temporary LOB on page 4-127

Write Data to a Temporary LOB on page 4-134

Trim the Temporary LOB Data on page 4-144

Erase Part of a Temporary LOB on page 4-152

Enable LOB Buffering for a Temporary LOB on page 4-160

Flush Buffer for a Temporary LOB on page 4-166

Disable LOB Buffering for a Temporary LOB on page 4-172
4-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs
Figure 4–1 Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2)

Internal temporary LOBs (part 1 of 2)

User/
Program

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

display the
LOB data

see if locator
is initialized

read data
from the LOB

free
a temporary

LOB

see where/if
a pattern exists

in the LOB
(instr)

compare all
or parts of

2 LOBs

get the
length of
the LOB

read a
portionof the LOB

from the table
(substr)

see if locators
are equal

get character
set ID

get character
set form

flush
buffer

enable
buffering

disable
buffering

write data
to the LOB
Temporary LOBs 4-3

Use Case Model: Internal Temporary LOBs
Figure 4–2 Use Case Model Diagram: Internal temporary LOBs (part 2 of 2)

Internal temporary LOBs (part 2 of 2)

User/
Program

User/
Program

create
a temporary

LOB

close
a BFILE

specify
BFILE name

SELECT
BFILE OR

INITIALIZE
a BFILE
locator

open
a BFILE

OPEN
a LOB

CLOSE
a LOB

load a LOB
with data

from a BFILE

erase part
of a LOB

trim the
LOB data

copy all or
part of a LOB to

another LOB

append one
LOB to
another

see if LOB
is temporary

free
a temporary

LOB

see
if LOB is open

write
append

copy
LOB locator
4-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs
Programmatic Environments

Oracle8i supports the definition, creation, deletion, access, and update of temporary

LOBs in PL/SQL (using the DBMS_LOB package), C/C++ (using PRO*C), and C

(using the OCI) .

These interfaces operate on temporary LOBs through locators in the same way that

they do for permanent LOBs. Since temporary lobs are never part of any table, you

cannot use SQL DML to operate on them. They must be manipulated using the

DBMS_LOB package, the OCI, or the other programmatic interfaces.

SQL support for temporary LOBs is available in that temporary LOB locators can be

used as IN values, with values accessed through a locator. Specifically, they can be

used

■ as a value in a WHERE clause for INSERT, UPDATE, DELETE, or SELECT such as

SELECT pattern FROM composite_image WHERE temp_lob_pattern_id =
somepattern_match_function(lobvalue);

 and

■ as a variable in a SELECT INTO... statement such as

SELECT PermanentLob INTO TemporaryLob_loc FROM Demo_tab WHERE Column1 := 1;

Note that selecting a permanent LOB into a temporary LOB locator will cause the

temporary LOB locator to point to a permanent LOB. It does not cause a copy of the

permanent LOB to be put in the temporary LOB.

Examining the use case model diagrams for temporary LOBs, and comparing it to

the "Use Case Model Diagram: Internal Persistent LOBs (part 1 of 2)", and "Use Case

Model Diagram: Internal Persistent LOBs (part 2 of 2)", you can see that you can

utilize many of the same functions that apply to persistent LOBs for operating on

temporary LOBs:

■ DBMS_LOB package PL/SQL procedures (Compare , Instr , Substr)

■ DBMS_LOB package PL/SQL procedures and corresponding OCI functions

(Append , Copy, Erase , Getlength , Loadfromfile , Read, Trim , Write,
WriteAppend).

Note: No Visual Basic or Java support for temporary LOBs is

planned for the 8.1 time-frame.
Temporary LOBs 4-5

Use Case Model: Internal Temporary LOBs
■ OCI functions (OCILobAssign , OCILobLocatorIsInit , etc.).

In addition, you can use the ISTEMPORARY function to determine if a LOB is

temporary based on its locator.

The Location of Temporary LOBs
Temporary LOBs are not stored permanently in the database like other data. The

data is stored in temporary tablespaces, but is not stored in any tables. This means

you can CREATE an internal temporary LOB (BLOB,CLOB, NCLOB) on the server

independent of any table, but you cannot store that LOB. Since temporary LOBs are

not associated with a table schema, there are no meanings to the terms "inline" and

"out-of-line" for temporary LOBs. However, note that all temporary LOBs reside in

the server; there is no support for client-side temporary LOBs.

The Lifetime and Duration of Temporary LOBs
The default lifetime of a temporary LOB is a session.

The interface for creating temporary LOBs includes a parameter that lets you specify

the default scope of the life of the temporary LOB. By default, all temporary LOBs

are deleted at the end of the session in which they were created. If a process dies

unexpectedly or the database crashes, all temporary LOBs are deleted.

OCI users can group temporary LOBs together into a logical bucket. The

OCIDuration will represent a store for temporary LOBs. There will be a default

duration for every session into which temporary LOBs will be placed if the user

doesn’t specify a specific duration. The default duration will end when the user’s

session ends. Also, the user will be able to perform an OCIDuration operation

which will cause all contents in the OCIDuration to be freed.

Memory Handling
Temporary LOBs are especially useful when you want to perform some

transformational operation on a LOB — such as morphing an image, or changing a

LOB from one format to another — and then return it to the database. In doing this

you can utilize LOB Buffering support for temporary LOBs, you can specify

CACHE/NOCACHE for each temporary LOB, and you can FREE an individual

temporary internal LOB when you have no further need of it.

Your temporary tablespace is used to store the temporary LOB data. Data storage

resources will be controlled by the DBA through control of a user’s access to

temporary tablespaces, and by the creation of different temporary tablespaces.
4-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs
Memory usage will increase incrementally as the number of temporary LOBs grows.

You can reuse temporary LOB space in your session by freeing temporary LOBs

explicitly. Freeing one or more temporary LOBs does not result in all of the space

being returned to the temporary tablespace for general re-consumption. Instead, it

remains available for reuse in the session. If a process dies unexpectedly or the

database crashes, the space for temporary LOBs is freed along with the deletion of

the temporary LOBs. In all cases, when a user’s session ends, space is returned to

the temporary tablespace for general reuse.

We previously noted that if you perform a

SELECT permanent_lob INTO temporary_lob_locator FROM y_blah WHERE x_blah

the temporary_lob_locator will get overwritten with the permanent_lob ’s

locator. This will result in creating a copy of the LOB pointed at by permanent_
lob , and temporary_lob_locator will represent this newly created

temporary LOB. Note that unless you had saved the temporary_lob 's locator in

another variable, you will lose track of the LOB that temporary_lob_locator
originally pointed at before the SELECT INTO operation.

In this case the temporary LOB will not get implicitly freed. If you do not wish to

waste space, you will explicitly free a temporary LOB before overwriting it with a

permanent LOB locator.

Since CR and rollbacks will not be supported for temporary LOBs, you will have to

free the temporary LOB and start over again if you run into an error.

Locators and Semantics
Creation of a temporary LOB instance by a user causes the engine to create, and

return a locator to the LOB data. Temporary LOBs do not support any operations

that are not supported for persistent LOB locators, but temporary LOB locators have

certain specific features. For instance, when you perform the following query

SELECT permanent_lob INTO temporary_lob_locator FROM y_blah
 WHERE x_blah := a_number;

temporary_lob_locator is overwritten with the permanent_lob ’s locator.

This means that unless you have a copy of temporary_lob ’s locator that points

to the temporary LOB that was overwritten, you no longer have a locator with

which to access the temporary LOB.

Temporary LOBs adhere to value semantics in order to be consistent with

permanent LOBs and to conform to the ANSI standard for LOBs. Since CR, undo,
Temporary LOBs 4-7

Use Case Model: Internal Temporary LOBs
and versions are not generated for temporary LOBs, there may be an impact on

performance if you assign multiple locators to the same temporary LOB because

semantically each locator will have its own copy of the temporary LOB. Each time a

user does an OCILobAssign , or the equivalent assignment in PL/SQL, the

database will make a copy of the temporary LOB (although it may be done lazily

for performance reasons) . Each locator will point to its own LOB value. If one

locator is used to create a temporary LOB, and another LOB locator is assigned to

that temporary LOB using OCILobAssign , the database will copy the original

temporary LOB and cause the second locator to point to the copy, not the original

temporary LOB.

In order for multiple users to modify the same LOB, they must go through the same

locator. Although temporary LOBs use value semantics, you can apply

pseudo-reference semantics by using pointers to locators in OCI, and having

multiple pointers to locators point to the same temporary LOB locator if necessary.

In PL/SQL, you can have the same effect by passing the temporary LOB locator "by

reference" between modules. This will help avoid using more than one locator per

temporary LOB, and prevent these modules from making local copies of the

temporary LOB.

Here are two examples of situations where a user will incur a copy, or at least an

extra roundtrip to the server:

■ Assigning one temporary LOB to another.

DECLARE
 Va BLOB;
 Vb BLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Vb,TRUE,DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(Va,TRUE,DBMS_LOB.SESSION);
 Va := Vb;
END;

This will cause Oracle to create a copy of Vb and point the locator Va to it. We

will also free the temporary LOB that Va used to point to.

■ Assigning one collection to another collection.

If a temporary LOBis an element in a collection and you assign one collection to

another, you will incur copy overhead and free overhead for the temporary LOB
locators that get updated. This is also true for the case where you assign an

object type containing a temporary LOB as an attribute to another such object

type, and they have temporary LOB locators that get assigned to each other
4-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs
because the object types have LOBattributes that are pointing to temporary LOB
locators.

If your application involves several such assignments and copy operations of

collections or complex objects, and you seek to avoid the above overheads, then

persistent internal LOBs may be more suitable for such applications. More

precisely: you should not use temporary LOBs inside collections or complex objects

when you are doing assignments or copies of those collections or complex objects.

Also, you should not select LOB values into temporary LOB locators.

You will incur overhead if you have a temporary LOB in a duration, you call

OCIDurationEnd on that duration, and then subsequently reassign the locator for

that temporary LOB to another LOB. Irrespective of whether there was a previous

OCIDurationEnd call, Oracle will attempt to free the temporary LOB to which the

locator pointed. Or if the user tries to access the temporary LOB with that locator

they will incur an error. Once a user issues OCIDurationEnd, all temporary LOBs

in that duration will be freed regardless of the fact that locators may still exist which

used to refer to the now freed LOBs.

In PL/SQL, user-defined durations are not exposed. However, users may specify

either session scope or call scopes using the predefined duration parameters dbms_
lob.session , or dbms_lob.call .

User-defined OCIDurations can be created using the OCIDurationBegin call

when the database is using the object option. The user can end the OCIDuration

with a call to OCIDurationEnd . Any temporary LOBs that existed in the duration

will be freed.

Security Issues with Temporary LOBs
Security is provided through the LOB locator. Only the user who created the

temporary LOBcan access it. Locators are not designed to be passed from one user’s

session to another. If you did manage to pass a locator from one session to another,

you would no longer be able to access the temporary LOBs in the new session from

the original session. By the same token, you would not be able to access a

temporary LOB in the original session from the new (current) session to which the

locator was migrated.

For information about with collections, see:

■ Oracle8i Concepts

■ Oracle8i Application Developer’s Guide - Fundamentals
Temporary LOBs 4-9

Use Case Model: Internal Temporary LOBs
Temporary LOB lookup will be localized to each user’s own session. Someone using

a locator from another session would only be able to access LOBs within his own

session that had the same lobid . Users of your application should not try to do

this, but if they do, they will still not be able to affect anyone else’s data.

Managing Temporary LOBs
Oracle keeps track of temporary LOBs per session, and provides a v$ view called

v$temporary_lobs . From the session the application can determine which user

owns the temporary LOBs. This table can be used by DBAs to monitor and guide

any emergency cleanup of temporary space used by temporary LOBs.
4-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Create a Temporary LOB
Create a Temporary LOB

Figure 4–3 Use Case Diagram: Create a temporary LOB

Scenario
A temporary LOB will be empty when it is created.

Temporary LOBs do not support the empty_blob () or empty_clob () functions

that are supported for permanent LOBs. The empty_blob () function specifies the

fact that the LOB is initialized, but not populated with any data.

This example reads in a single video Frame from the Multimedia_tab table. Then

it creates a temporary LOB so that we can use the temporary LOB to convert the

video image from MPEG to JPEG format. The Temporary LOB which is created will

be read through the CACHE, and it will be automatically cleaned up at the end of the

user’s session, if it is not explicitly freed sooner.

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

create
a temporary

LOB

free
a temporary

LOB
Temporary LOBs 4-11

Create a Temporary LOB
■ "Example: Create a Temporary LOB Using PL/SQL (DBMS_LOB Package)" on

page 4-12

■ "Example: Create a Temporary LOB Using C (OCI)" on page 4-12

■ "Example: Create a Temporary LOB Using COBOL (Pro*COBOL)" on page 4-14

■ "Example: Create a Temporary LOB Using C++ (Pro*C/C++)" on page 4-14

Example: Create a Temporary LOB Using PL/SQL (DBMS_LOB Package)

DECLARE
 Dest_loc BLOB;
 Src_loc BLOB;
 Amount INTEGER := 4000;
BEGIN
 SELECT Frame INTO Src_loc FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Create a temporary LOB: */
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE, DBMS_LOB.SESSION);
 /* Copy the entire frame from the Src_loc to the Temporary Lob: */
 DBMS_LOB.COPY(Dest_loc,Src_loc,DBMS_LOB.GETLENGTH(Src_loc),1,1);
 DBMS_LOB.FREETEMPORARY(Dest_loc);
END;

Example: Create a Temporary LOB Using C (OCI)
/* This function reads in a single video Frame from the Multimedia_tab table.
 Then it creates a temporary LOB so that we can use the temporary LOB to
 convert the video image from MPEG to JPEG format.. The Temporary LOB which is
 created will be read through the CACHE, and it will be automatically cleaned
 up at the end of the user’s session, if it is not explicitly freed sooner.
 This function returns 0 if it completes successfully, and -1 if it fails: */
sb4 select_and_createtemp (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,

Note: You may need to set up the following data structures for

certain examples to work:

CREATE TABLE long_raw_tab (id number, long_raw_col long raw);
INSERT INTO long_raw_tab VALUES (1,HEXTORAW(’7D’));
INSERT INTO multimedia_tab (clip_id,frame) SELECT
 id,TO_LOB(long_raw_col) FROM long_raw_tab;
4-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Create a Temporary LOB
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIDefine *defnp1;
 OCIBind *bndhp;
 text *sqlstmt;
 int rowind =1;
 ub4 loblen = 0;
 OCILobLocator *tblob;

 printf ("in select_and_createtemp \n");

 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
 {
 printf("failed in OCIDescriptor Alloc in select_and_createtemp \n");
 return -1;
 }

 /* Arbitrarily select where Clip_ID =1: */
 sqlstmt = (text *)
 "SELECT Frame FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE";

 if (OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return -1;
 }

 /* Define for BLOB: */
 if (OCIDefineByPos(stmthp,
 &defnp1, errhp, (ub4) 1, (dvoid *) &lob_loc, (sb4)0,
 (ub2) SQLT_BLOB, (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: Select locator: OCIDefineByPos()\n");
 return -1;
 }

 /* Execute the select and fetch one row: */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
Temporary LOBs 4-13

Create a Temporary LOB
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return -1;
 }

 if(OCILobCreateTemporary(svchp,
 errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobGetLength(svchp, errhp, lob_loc, &loblen) != 0)
 {
 printf("OCILobGetLength FAILED\n");
 return -1;
 }
 if (OCILobCopy(svchp, errhp, tblob,lob_loc,(ub4)loblen, (ub4) 1, (ub4) 1))
 {
 printf("OCILobCopy FAILED \n");
 }
 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call \n");
 return -1;
 }

 return 0;
}

Example: Create a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CREATE-TEMPORARY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 BLOB1 SQL-BLOB.
 01 TEMP-BLOB SQL-BLOB.
4-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Create a Temporary LOB
 01 LEN PIC S9(9) COMP.
 01 D-LEN PIC 9(9).
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 CREATE-TEMPORARY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.

 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
 EXEC SQL
 SELECT FRAME INTO :BLOB1
 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 1
 END-EXEC.

 * Get the length of the persistent BLOB:
 EXEC SQL
 LOB DESCRIBE :BLOB1
 GET LENGTH INTO :LEN
 END-EXEC.

 * Copy the entire length from persistent to temporary:
 EXEC SQL
 LOB COPY :LEN FROM :BLOB1 TO :TEMP-BLOB
 END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
Temporary LOBs 4-15

Create a Temporary LOB
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Create a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void createTempLOB_proc()
{
 OCIBlobLocator *Lob_loc, *Temp_loc;
 int Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB Locators: */
4-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Create a Temporary LOB
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :Temp_loc;
 /* Create the Temporary LOB: */
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 EXEC SQL SELECT Frame INTO :Lob_loc FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Copy the full length of the source LOB into the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount;
 EXEC SQL LOB COPY :Amount FROM :Lob_loc TO :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 createTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-17

See If a LOB is Temporary
See If a LOB is Temporary

Figure 4–4 Use Case Diagram: See If a LOB is Temporary

Scenario
This is a generic example that queries whether the locator is associated with a

temporary LOB or not.

■ "Example: See If a LOB is Temporary Using PL/SQL (DBMS_LOB Package)" on

page 4-19

■ "Example: See If a LOB is Temporary Using C (OCI)" on page 4-19

■ "Example: See If a LOB is Temporary Using COBOL (Pro*COBOL)" on

page 4-20

■ "Example: See If a LOB is Temporary Using C++ (Pro*C/C++)" on page 4-21

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

see if LOB
is temporary
4-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB is Temporary
Example: See If a LOB is Temporary Using PL/SQL (DBMS_LOB Package)
/* This is also an example of freeing a temporary LOB. First we test to make
 sure that the LOB locator points to a temporary LOB, then we free it.
 Otherwise, we issue an error: */
CREATE or REPLACE PROCEDURE freeTempLob_proc(Lob_loc IN OUT BLOB) IS
BEGIN
 /* Free the temporary LOB locator passed in. */
 /* First check to make sure that the locator is pointing to a temporary
 LOB:*/
 IF DBMS_LOB.ISTEMPORARY(Lob_loc) = 1 THEN
 /* Free the temporary LOB locator: */
 DBMS_LOB.FREETEMPORARY(Lob_loc);
 DBMS_OUTPUT.PUT_LINE(’ temporary LOB was freed’);
 ELSE
 /* Print an error: */
 DBMS_OUTPUT.PUT_LINE(
 ’Locator passed in was not a temporary LOB locator’);
 END IF;
END;

Example: See If a LOB is Temporary Using C (OCI)
/* This function also frees a temporary LOB. It takes a locator as an argument,
 checks to see if it is a temporary LOB, and if it is the function will free
 the temporary LOB. Otherwise, it will print out a message saying the locator
 wasn’t a temporary LOB locator. This function returns 0 if it
 completes successfully, and -1 otherwise: */

sb4 check_and_free_temp(OCILobLocator *tblob,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 boolean is_temp;
 is_temp = FALSE;

 if (OCILobIsTemporary(envhp, errhp, tblob, &is_temp))
 {
 printf ("FAILED: OCILobIsTemporary call\n");
 return -1;
 }
 if(is_temp)
 {
Temporary LOBs 4-19

See If a LOB is Temporary
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call\n");
 return -1;

 }else
 {
 printf("Temporary LOB freed\n");
 }
 }else
 {
 printf("locator is not a temporary LOB locator\n");
 }
 return 0;
}

Example: See If a LOB is Temporary Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-ISTEMP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 IS-TEMP PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 CREATE-TEMPORARY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.

 EXEC SQL
4-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB is Temporary
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Check if the LOB is temporary:
 EXEC SQL
 LOB DESCRIBE :TEMP-BLOB
 GET ISTEMPORARY INTO :IS-TEMP
 END-EXEC.

 IF IS-TEMP = 1
 * Logic for a temporary LOB goes here
 DISPLAY "LOB is temporary."
 ELSE
 * Logic for a persistent LOB goes here.
 DISPLAY "LOB is persistent."
 END-IF.

 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: See If a LOB is Temporary Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
Temporary LOBs 4-21

See If a LOB is Temporary
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void lobIsTemp_proc()
{
 OCIBlobLocator *Temp_loc;
 int isTemporary = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Determine if the Locator is a Temporary LOB Locator: */
 EXEC SQL LOB DESCRIBE :Temp_loc GET ISTEMPORARY INTO :isTemporary;
 if (isTemporary)
 printf("Locator is a Temporary LOB locator\n");
 else
 printf("Locator is not a Temporary LOB locator \n");
 /* Note that in this example, isTemporary should be 1 (TRUE) */
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 lobIsTemp_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

4-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Free a Temporary LOB
Free a Temporary LOB

Figure 4–5 Use Case Diagram: Free a Temporary LOB

Scenario
A temporary LOB instance can only be destroyed by using OCI or the DBMS_LOB
package by using the appropriate FREETEMPORARY or OCIDurationEnd or

OCILOBFreeTemporary statements.

To make a temporary LOB permanent, the user must explicitly use the OCI or

DBMS_LOB copy() command and copy the temporary LOB into a permanent one.

■ "Example: Free a Temporary LOB Using PL/SQL (DBMS_LOB Package)" on

page 4-24

■ "Example: Free a Temporary LOB Using C (OCI)" on page 4-24

■ "Example: Free a Temporary LOB Using COBOL (Pro*COBOL)" on page 4-25

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

free
a temporary

LOB
Temporary LOBs 4-23

Free a Temporary LOB
■ "Example: Free a Temporary LOB Using C++ (Pro*C/C++)" on page 4-26

Example: Free a Temporary LOB Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure freeTempLob_proc is not part of the
 DBMS_LOB package: */
CREATE or REPLACE PROCEDURE freeTempLob_proc(Lob_loc IN OUT BLOB) IS

BEGIN
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
 /* Use the temporary LOB locator here, then free it.*/
 /* Free the temporary LOB locator: */
 DBMS_LOB.FREETEMPORARY(Lob_loc);
 DBMS_OUTPUT.PUT_LINE(’Temporary LOB was freed’);
END;

Example: Free a Temporary LOB Using C (OCI)
/* This function creates a temporary LOB and then frees it:
 This function returns 0 if it completes successfully, and -1 otherwise: */

sb4 freeTempLob(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *tblob;

 checkerr (errhp,OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0,
 (dvoid**)0));

 if(OCILobCreateTemporary(svchp,errhp,tblob,(ub2)0,SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED:CreateTemporary():check_and_free_temp2\n");
 return -1;
 }

 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call in check_and_free_temp2\n");
 return -1;
4-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Free a Temporary LOB
 }else
 {
 printf("Temporary LOB freed in check_and_free_temp2\n");
 }
 return 0;
}

Example: Free a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. FREE-TEMPORARY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 TEMP-BLOB SQL-BLOB.
 01 IS-TEMP PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 FREE-TEMPORARY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.

 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Do something with the temporary LOB here:

 * Free the temporary LOB:
 EXEC SQL
Temporary LOBs 4-25

Free a Temporary LOB
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Free a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void freeTempLob_proc()
{
 OCIBlobLocator *Temp_loc;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Do something with the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 EXEC SQL FREE :Temp_loc;
}

4-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Free a Temporary LOB
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 freeTempLob_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-27

Load a Temporary LOB with Data from a BFILE
Load a Temporary LOB with Data from a BFILE

Figure 4–6 Use Case Diagram: Load a LOB with data from a BFILE

Scenario
In using the OCI, or any of the programmatic environments that access OCI

functionality, character set conversions are implicitly performed when translating

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

load a LOB
with data

from a BFILE

free
a temporary

LOB
4-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a Temporary LOB with Data from a BFILE
from one character set to another. However, no implicit translation is ever

performed from binary data to a character set. When you use the loadfromfile
operation to populate a CLOB or NCLOB, you are populating the LOB with binary

data from the BFILE . In that case, you will need to perform character set

conversions on the BFILE data before executing loadfromfile .

The example procedure assumes that there is an operating system source directory

(AUDIO_DIR) that contains the LOB data to be loaded into the target LOB.

■ "Example: Load a Temporary LOB with Data from a BFILE Using PL/SQL

(DBMS_LOB Package)" on page 4-29

■ "Example: Load a Temporary LOB with Data from a BFILE Using C (OCI)" on

page 4-30

■ "Example: Load a Temporary LOB with Data from a BFILE Using COBOL

(Pro*COBOL)" on page 4-32

■ "Example: Load a Temporary LOB with Data from a BFILE Using C++

(Pro*C/C++)" on page 4-33

Example: Load a Temporary LOB with Data from a BFILE Using PL/SQL (DBMS_LOB
Package)

DECLARE
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 Amount INTEGER := 4000;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE, DBMS_LOB.SESSION);
 /* Opening the BFILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.CLOSE(Dest_loc);
 /* Free the temporary LOB: */
 DBMS_LOB.FREETEMPORARY(Dest_loc);
END;
Temporary LOBs 4-29

Load a Temporary LOB with Data from a BFILE
Example: Load a Temporary LOB with Data from a BFILE Using C (OCI)
/* Here is a section of code which shows how to create a temporary LOB, and load
 the contents of a BFILE into the temporary LOB: */

sb4 load_temp(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *bfile;
 int amount =100;
 OCILobLocator *tblob;

 printf("in load_temp\n");
 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in load_temp\n");
 return -1;
 }
 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&bfile,
 (ub4)OCI_DTYPE_FILE, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in load_temp\n");
 return -1;
 }

 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0,
 SQLCS_IMPLICIT, OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"), (text *)"Washington_audio",
 (ub2)strlen("Washington_audio")))
 {
 printf("OCILobFileSetName FAILED in load_temp\n");
 return -1;
 }
4-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a Temporary LOB with Data from a BFILE
/* Opening the BFILE is mandatory: */
 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile load_temp \n");
 return -1;
 }

 /* Opening the LOB is optional: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }

 if(OCILobLoadFromFile(svchp,
 errhp,
 tblob,
 (OCILobLocator*)bfile,
 (ub4)amount,
 (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return -1;
 }

 /* Close the lobs: */
 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobClose FAILED for bfile \n");
 return -1;
 }

 checkerr(errhp,(OCILobClose(svchp, errhp, (OCILobLocator *) tblob)));

 /* Free the temporary LOB now that we are done using it */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }
}

Temporary LOBs 4-31

Load a Temporary LOB with Data from a BFILE
Example: Load a Temporary LOB with Data from a BFILE Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOAD-TEMPORARY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 LOAD-TEMPORARY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
4-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a Temporary LOB with Data from a BFILE
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Load a Temporary LOB with Data from a BFILE Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
Temporary LOBs 4-33

Load a Temporary LOB with Data from a BFILE
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void loadTempLobFromBFILE_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the BFILE is mandatory; */

/* Opening the LOB is optional: */
EXEC SQL LOB OPEN :Lob_loc READ ONLY;

 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load the data from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Temp_loc;
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Temp_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 loadTempLobFromBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
4-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a Temporary LOB with Data from a BFILE
}

Temporary LOBs 4-35

See If a Temporary LOB Is Open
See If a Temporary LOB Is Open

Figure 4–7 Use Case Diagram: See If a Temporary LOB Is Open... 206

Scenario
This is a generic example takes a locator as input, creates a temporary LOB, opens it

and tests if the LOB is open.

■ "Example: See If a Temporary LOB Is Open Using PL/SQL" on page 4-37

■ "Example: See If a Temporary LOB Is Open Using C (OCI)" on page 4-37

■ "Example: See If a Temporary LOB Is Open Using COBOL (Pro*COBOL)" on

page 4-38

■ "Example: See If a Temporary LOB Is Open Using C++ (Pro*C/C++)" on

page 4-40

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

see
if LOB is open

free
a temporary

LOB
4-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Temporary LOB Is Open
Example: See If a Temporary LOB Is Open Using PL/SQL
/* Note that the example procedure seeTempLOBIsOpen_proc is not part of the
 DBMS_LOB package. This procedure takes a locator as input, creates a
 temporary LOB, opens it and tests if the LOB is open. */
CREATE OR REPLACE PROCEDURE seeTempLOBIsOpen_proc(Lob_loc IN OUT BLOB,
 Retval OUT INTEGER) IS
BEGIN
 /* Create the temporary LOB: */
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
 /* See If the LOB is open: */
 Retval := DBMS_LOB.ISOPEN(Lob_loc);
 /* The value of Retval will be 1 if the LOB is open. */
 /* Free the temporary LOB: */
 DBMS_LOB.FREETEMPORARY(Lob_loc);
END;

Example: See If a Temporary LOB Is Open Using C (OCI)
/* This function takes a locator and returns 0 if the function
 completes successfully. The function prints out "Temporary LOB is open" or
 "Temporary LOB is closed". It does not check whether or not the locator is
 actually pointing to a temporary LOB or not, but the open or close test will
 work either way. The function returns 0 if it completes
 successfully, and -1 if it fails. */

sb4 seeTempLOBIsOpen (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 boolean is_open = FALSE;
 OCILobLocator *tblob;

 printf("in seeTempLOBIsOpen \n");

 if(OCILobCreateTemporary(svchp,
 errhp,
 lob_loc,
 (ub2)0,
 SQLCS_IMPLICIT,
 OCI_TEMP_BLOB,
Temporary LOBs 4-37

See If a Temporary LOB Is Open
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCILobIsOpen(svchp, errhp, lob_loc, &is_open))
 {
 printf("OCILobIsOpen FAILED\n");
 return -1;
 }
 if(is_open)
 {
 printf("Temporary LOB is open\n");

 }else
 {
 printf("Temporary LOB is closed\n");

 }

 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 return 0;
}

Example: See If a Temporary LOB Is Open Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-ISOPEN.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
4-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Temporary LOB Is Open
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP.
 01 IS-OPEN PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-LOB-ISOPEN.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Open temporary LOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ ONLY END-EXEC.

 EXEC SQL
 LOB DESCRIBE :TEMP-BLOB GET ISOPEN INTO :IS-OPEN
 END-EXEC.

 IF IS-OPEN = 1
 * Logic for an open temporary LOB goes here:
 DISPLAY "Temporary LOB is OPEN."
 ELSE
 * Logic for a closed temporary LOB goes here:
 DISPLAY "Temporary LOB is CLOSED."
 END-IF.

 * Close the temporary LOB:
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
Temporary LOBs 4-39

See If a Temporary LOB Is Open
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: See If a Temporary LOB Is Open Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void tempLobIsOpen_proc()
{
 OCIBlobLocator *Temp_loc;
 int isOpen = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
4-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Temporary LOB Is Open
 /* Open the Temporary LOB */
 EXEC SQL LOB OPEN :Temp_loc READ ONLY;
 /* Determine if the LOB is Open */
 EXEC SQL LOB DESCRIBE :Temp_loc GET ISOPEN INTO :isOpen;
 if (isOpen)
 printf("Temporary LOB is open\n");
 else
 printf("Temporary LOB is not open\n");
 /* Note that in this example, the LOB is Open so isOpen == 1 (TRUE) */
 /* Close the LOB */
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 tempLobIsOpen_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-41

Display the Temporary LOB Data
Display the Temporary LOB Data

Figure 4–8 Use Case Diagram: Display the Temporary LOB data

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

display the
LOB data

read data
from the LOB

free
a temporary

LOB
4-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the Temporary LOB Data
Scenario
As an instance of displaying a LOB, our example stream-reads the image Drawing
from the column object Map_obj onto the client-side in order to view the data.

■ "Example: Display the Temporary LOB Data Using C (OCI)" on page 4-44

■ "Example: Display the Temporary LOB Data Using COBOL (Pro*COBOL)" on

page 4-47

■ "Example: Display the Temporary LOB Data Using C++ (Pro*C/C++)" on

page 4-49

Example: Display the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)
/* The following function acceses the Washington_audio file, creates a temporary
 LOB, loads some data from the file, and then reads it back and
 displays it. */
DECLARE
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 Amount INTEGER := 128;
 Bbuf RAW(128);
 Position INTEGER :=1;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE, DBMS_LOB.SESSION);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc,Src_loc,Amount);

 LOOP
 DBMS_LOB.READ (Dest_loc, Amount, Position, Bbuf);
 /* Display the buffer contents: */
 DBMS_OUTPUT.PUT_LINE(’Result :’|| utl_raw.cast_to_varchar2(Bbuf));
 Position := Position + Amount;
 END LOOP;
EXCEPTION

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2
Temporary LOBs 4-43

Display the Temporary LOB Data
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data loaded into temp LOB’);

 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc);
 /* Closing the file is mandatory unless you close the files later: */
 DBMS_LOB.CLOSE(Src_loc);
END;

Example: Display the Temporary LOB Data Using C (OCI)
/* The following function acceses the Washington_audio file, creates a temporary
 LOB, loads some data from the file, and then reads it back and

displays it. The reading is done in a streaming fashion. This function assumes
 that the file specified is kept in the directory known by the directory alias

"AUDIO_DIR". It also assumes that the file is at least 14000 bytes long, which
is the amount specified to be read and loaded. These amounts are arbitrary for

 this example. This function uses fprintf() to display the contents of the
file. This works well for text data, but you may wish to change the method for

 binary data. For audio data, you could, for instance, call an audio function.
 The function returns 0 if it completes successfully, and -1 if it fails. */

#define MAXBUFLEN 32767

sb4 display_file_to_lob(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 int rowind;
 char *binfile;
 OCILobLocator *tblob;
 OCILobLocator *bfile;

 ub4 amount = 14000;
 ub4 offset = 0;
 ub4 loblen = 0;
 ub4 amtp = 0;
 sword retval;
 ub4 piece = 1;
 ub4 remainder= 0;
 ub1 bufp[MAXBUFLEN];
 sb4 return_code = 0;
4-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the Temporary LOB Data
 (void) printf("\n===> Testing loading files into lobs and displaying
them\n\n");

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCILobFileSetName(envhp, errhp, &bfile, (text*)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"),(text*)"Washington_audio",
 (ub2)strlen("Wasthington_audio")))
 {
 printf("OCILobFileSetName FAILED\n");
 return_code = -1;
 }

 /* Open the BFILE: */
 if(OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_FILE_READONLY))
 {
 printf("OCILobFileOpen FAILED \n");
 return_code = -1;
 }
Temporary LOBs 4-45

Display the Temporary LOB Data
 if(OCILobLoadFromFile(svchp,errhp,tblob,(OCILobLocator*)bfile,(ub4)amount,
 (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;
 }

 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);

 retval = OCILobRead(svchp, errhp, tblob, &amtp, offset,
(dvoid *) bufp, (amount < MAXBUFLEN ? amount : MAXBUFLEN),

 (dvoid *)0, (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 printf("1st piece read from file is %s\n",bufp);

 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece */
 (void) printf("stream read piece # %d \n", ++piece);
 (void)printf("piece read was %s\n",bufp);
 break;
 case OCI_FAILURE:
 /* report_error(); function not shown here */
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */
 remainder = amount;
 printf("remainder is %d \n",remainder);
 do
 {
 memset(bufp, ’\0’, MAXBUFLEN);
 amtp = 0;
 remainder -= MAXBUFLEN;
 printf("remainder is %d \n",remainder);
 retval = OCILobRead(svchp, errhp, tblob, &amtp, offset,
 (dvoid *) bufp, (ub4) MAXBUFLEN, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 /* The amount read returned is undefined for FIRST, NEXT pieces: */
 (void)fprintf(stderr,"stream read %d th piece, amtp = %d\n",
 ++piece, amtp);
 (void)fprintf(stderr,"piece of length read was %d\n",
 strlen((const char*)bufp));
4-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the Temporary LOB Data
 (void)fprintf(stderr,"piece read was %s\n",bufp);
 } while (retval == OCI_NEED_DATA);
 break;
 default:
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
 break;
 }

 /* Close the audio file: */
 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobFileClose FAILED\n");
 return_code = -1;
 }
 /* clean up the temp LOB now that we are done with it */

 if(check_and_free_temp(tblob, errhp, svchp,stmthp, envhp))
 {
 printf("check and free failed in load test\n");
 return_code = -1;
 }
 return return_code;
}

Example: Display the Temporary LOB Data Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ONE-READ-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(9) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).
 01 ISTEMP PIC S9(9) COMP.

 EXEC SQL INCLUDE SQLCA END-EXEC.
Temporary LOBs 4-47

Display the Temporary LOB Data
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 ONE-READ-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "Washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 EXEC SQL
 LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Perform a single read:
4-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the Temporary LOB Data
 EXEC SQL
 LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
 END-EXEC.

 DISPLAY "Read ", BUFFER2, " from TEMP-BLOB".

 END-OF-BLOB.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Display the Temporary LOB Data Using C++ (Pro*C/C++)
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void displayTempLOB_proc()
Temporary LOBs 4-49

Display the Temporary LOB Data
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "PHOTO_DIR", *Name = "Lincoln_photo";
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 int Position = 1;
 /* Datatype Equivalencing is Mandatory for this Datatype */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the LOB Locators */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load a specified amount from the BFILE into the Temporary LOB */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc;
 /* Setting Amount = 0 will initiate the polling method */
 Amount = 0;
 /* Set the maximum size of the Buffer */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BLOB into the Buffer */
 EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
 printf("Display %d bytes\n", Buffer.Length);
 }
 printf("Display %d bytes\n", Amount);
 /* Closing the LOBs is mandatory if you have opened them */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator */
 EXEC SQL FREE :Temp_loc;
}

4-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the Temporary LOB Data
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-51

Read Data from a Temporary LOB
Read Data from a Temporary LOB

Figure 4–9 Use Case Diagram: Read Data from a Temporary LOB

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

flush
buffer

disable
buffering

free
a temporary

LOB

enable
buffering

read data
from the LOB
4-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a Temporary LOB
Stream Read
The most efficient way to read large amounts of LOB data is to use OCILobRead ()

with the streaming mechanism enabled via polling or a callback.

When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4 gigabytes

regardless of the starting offset and the amount of data in the LOB. You do not need

to incur a round-trip to the server to call OCILobGetLength () to find out the

length of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read

the entire LOB value starting at offset 1,000. Also assume that you do not know the

current length of the LOB value. Here's the OCI read call, excluding the

initialization of the parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

When using polling mode, be sure to look at the value of the 'amount ' parameter

after each OCILobRead () call to see how many bytes were read into the buffer since

the buffer may not be entirely full.

When using callbacks, the 'len ' parameter, which is input to the callback, will

indicate how many bytes are filled in the buffer. Be sure to check the 'len '

parameter during your callback processing since the entire buffer may not be filled

with data (see theOracle Call Interface Programmer’s Guide.).

Scenario
Our example reads the data from a single video Frame.

■ "Example: Read Data from a Temporary LOB Using PL/SQL (DBMS_LOB

Package)" on page 4-54

■ "Example: Read Data from a Temporary LOB Using C (OCI)" on page 4-54

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2
Temporary LOBs 4-53

Read Data from a Temporary LOB
■ "Example: Read Data from a Temporary LOB Using COBOL (Pro*COBOL)" on

page 4-57

■ "Example: Read Data from a Temporary LOB Using C++ (Pro*C/C++)" on

page 4-59

Example: Read Data from a Temporary LOB Using PL/SQL (DBMS_LOB Package)
/* Note that PL/SQL does not support streaming reads. The OCI example will
 illustrate streaming reads: */
DECLARE
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 Amount INTEGER := 4000;
 Bbuf RAW(32767);
 Position INTEGER :=1;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE, DBMS_LOB.SESSION);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional: */
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 DBMS_LOB.READ (Dest_loc, Amount, Position, Bbuf);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Src_loc);

Example: Read Data from a Temporary LOB Using C (OCI)
/* This is the same example as was shown for reading and displaying data from a
 temporary LOB. This function takes the Washinton_audio file, opens that file
 as a BFILE as input, loads that file data into a temporary LOB and then reads
 the data from the temporary LOB 5000 or less bytes at a time.
 5000 bytes was an arbitrary maximum buffer length chosen for this example.
 The function returns 0 if it completes successfully, and -1 if it fails. */

#define MAXBUFLEN 32767

sb4 test_file_to_lob (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 int rowind;
4-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a Temporary LOB
 OCILobLocator *tblob;
 OCILobLocator *bfile;

 ub4 amount = 14000;
 ub4 offset =0;
 ub4 loblen = 0;
 ub4 amtp = 0;
 sword retval;
 ub4 piece = 1;
 ub4 remainder=0;
 ub1 bufp[MAXBUFLEN];

 (void) printf(
"\n===> Testing loading files into lobs and displaying them\n\n");

 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }
 if(OCILobFileSetName(envhp, errhp, &bfile,(text*)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"),
 (text*)"Washington_audio",
 (ub2)strlen("Washington_audio")))
 {
 printf("OCILobFileSetName FAILED\n");
 return -1;
 }
 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_FILE_READONLY))
 {
 printf("OCILobFileOpen FAILED \n");
 return -1;
 }
 if(OCILobLoadFromFile(svchp,errhp,tblob,(OCILobLocator*)bfile,(ub4)amount,
 (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return -1;
 }

 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);
Temporary LOBs 4-55

Read Data from a Temporary LOB
 retval = OCILobRead(svchp, errhp, tblob, &amtp, offset, (dvoid *) bufp,
 (amount < MAXBUFLEN ? amount : MAXBUFLEN), (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 fprintf(stderr,"1st piece read from file is %s\n",bufp);

 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece */
 (void) printf("stream read piece # %d \n", ++piece);
 (void)printf("piece read was %s\n",bufp);
 break;
 case OCI_FAILURE:
 /* report_error(); function not shown here */
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */
 remainder = amount;
 fprintf(stderr,"remainder is %d \n",remainder);
 do
 {
 memset(bufp, ’\0’, MAXBUFLEN);
 amtp = 0;
 remainder -= MAXBUFLEN;
 fprintf(stderr,"remainder is %d \n",remainder);

 retval = OCILobRead(svchp, errhp, tblob, &amtp, offset,
 (dvoid *) bufp,(ub4) MAXBUFLEN, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 /* The amount read returned is undefined for FIRST, NEXT pieces: */
 (void)fprintf(stderr,"stream read %d th piece, amtp = %d\n",
 ++piece, amtp);
 (void)fprintf(stderr,
 "piece of length read was %d\n",strlen((const char *)bufp));
 (void)fprintf(stderr,"piece read was %s\n",bufp);
 } while (retval == OCI_NEED_DATA);
 break;
 default:
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
 break;
 }

 /* Close the audio file: */
4-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a Temporary LOB
 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobFileClose FAILED\n");
 return -1;
 }

 /* Clean up the temp LOB now that we are done with it: */
 if(check_and_free_temp(lob_loc, errhp, svchp,stmthp, envhp))
 {
 printf("check and free failed in load test\n");
 return -1;
 }
 return 0;
}

Example: Read Data from a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ONE-READ-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(9) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).
 01 ISTEMP PIC S9(9) COMP.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 ONE-READ-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
Temporary LOBs 4-57

Read Data from a Temporary LOB
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "Washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 EXEC SQL
 LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Perform a single read:

 EXEC SQL
 LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
 END-EXEC.

 DISPLAY "Read ", BUFFER2, " from TEMP-BLOB".

 END-OF-BLOB.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
4-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a Temporary LOB
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Read Data from a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void readTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Length, Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
Temporary LOBs 4-59

Read Data from a Temporary LOB
 } Buffer;
 /* Datatype Equivalencing is Mandatory for this Datatype */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the BFILE Locator */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Determine the Length of the BFILE */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Open the BFILE for Reading */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Load the BFILE into the Temporary LOB */
 Amount = Length;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 /* Close the BFILE */
 EXEC SQL LOB CLOSE :Lob_loc;
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the Temporary LOB into the Buffer */
 EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
 printf("Read %d bytes\n", Buffer.Length);
 }
 printf("Read %d bytes\n", Amount);
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators */
 EXEC SQL FREE :Temp_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 readTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

4-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the Temporary LOB (substr)
Read a Portion of the Temporary LOB (substr)

Figure 4–10 Use Case Diagram: Read a portion of the Temporary LOB from the Table
(substr)

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

read a
portion of the LOB

from the table
(substr)free

a temporary
LOB
Temporary LOBs 4-61

Read a Portion of the Temporary LOB (substr)
Scenario
This example shows the operation in terms of reading a portion from sound-effect

Sound .

■ "Example: Read a Portion of the Temporary LOB (substr) Using PL/SQL

(DBMS_LOB Package)" on page 4-62

■ "Example: Read a Portion of the Temporary LOB (substr) Using COBOL

(Pro*COBOL)" on page 4-62

■ "Example: Read a Portion of the Temporary LOB (substr) Using C++

(Pro*C/C++)" on page 4-65

Example: Read a Portion of the Temporary LOB (substr) Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure substringTempLOB_proc is not part of the
 DBMS_LOB package. */
/* This example assumes the user has a ’Washington_audio’ file in a
 directory which has a AUDIO_DIR alias */
CREATE or REPLACE PROCEDURE substringTempLOB_proc IS
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 Amount INTEGER := 32767;
 Bbuf RAW(32767);
 Position INTEGER :=128;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE, DBMS_LOB.SESSION);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional */
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 Bbuf := DBMS_LOB.SUBSTR(Dest_loc, Amount, Position);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.CLOSE(Dest_loc);
END;

Example: Read a Portion of the Temporary LOB (substr) Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ONE-READ-BLOB.
4-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the Temporary LOB (substr)
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(9) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).
 01 ISTEMP PIC S9(9) COMP.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 ONE-READ-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 * Set up the directory and file information
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "Washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
Temporary LOBs 4-63

Read a Portion of the Temporary LOB (substr)
 END-EXEC.

 EXEC SQL
 LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
 END-EXEC.

 * Open source BFILE and destination temporary BLOB.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Perform a single read

 EXEC SQL
 LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
 END-EXEC.

 DISPLAY "Read ", BUFFER2, " from TEMP-BLOB".

 END-OF-BLOB.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.
4-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the Temporary LOB (substr)
Example: Read a Portion of the Temporary LOB (substr) Using C++ (Pro*C/C++)
/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS_LOB.SUBSTR()
 function. However, Pro*C/C++ can interoperate with PL/SQL using
 anonymous PL/SQL blocks embedded in a Pro*C/C++ program as this example
 shows. */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 4096

void substringTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Position = 1024;
 unsigned int Length;
 int Amount = BufferLength;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Open the LOBs: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
Temporary LOBs 4-65

Read a Portion of the Temporary LOB (substr)
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Determine the length of the BFILE and load it into the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 EXEC SQL LOB LOAD :Length FROM FILE :Lob_loc INTO :Temp_loc;
 /* Invoke SUBSTR() on the Temporary LOB inside a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Temp_loc, :Amount, :Position);
 END;
 END-EXEC;
 /* Process the Data in the Buffer. */
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources used by the locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

4-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two (Temporary) LOBs
Compare All or Part of Two (Temporary) LOBs

Figure 4–11 Use Case Diagram: Compare All or Part of Two Temporary LOBs

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

compare all
or parts of

2 LOBs

free
a temporary

LOB
Temporary LOBs 4-67

Compare All or Part of Two (Temporary) LOBs
Scenario
The following example compares two frames from the archival table

VideoframesLib_tab to see whether they are different and, depending on the

result of comparison, inserts the Frame into the Multimedia_tab .

■ "Example: Compare All or Part of Two (Temporary) LOBs Using PL/SQL

(DBMS_LOB Package)" on page 4-68

■ "Example: Compare All or Part of Two (Temporary) LOBs Using COBOL

(Pro*COBOL)" on page 4-69

■ "Example: Compare All or Part of Two (Temporary) LOBs Using C++

(Pro*C/C++)" on page 4-71

Example: Compare All or Part of Two (Temporary) LOBs Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure compareTwoTemporPersistLOBs_proc is not part
 of the DBMS_LOB package. */
CREATE OR REPLACE PROCEDURE compareTwoTemporPersistLOBs_proc IS
 Lob_loc1 BLOB;
 Lob_loc2 BLOB;
 Temp_loc BLOB;
 Amount INTEGER := 32767;
 Retval INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT Frame INTO Lob_loc1 FROM Multimedia_tab
 WHERE Clip_ID = 1;
 SELECT Frame INTO Lob_loc2 FROM Multimedia_tab
 WHERE Clip_ID = 2;
 /* Copy a frame into a temp LOB and convert it to a different format */
 /* before comparing the frames : */
 DBMS_LOB.CREATETEMPORARY(Temp_loc, TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.OPEN(Temp_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Lob_loc1, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN(Lob_loc2, DBMS_LOB.LOB_READONLY);
 /* Copy the persistent LOB into the temp LOB: */
 DBMS_LOB.COPY(Temp_loc,Lob_loc2,DBMS_LOB.GETLENGTH(Lob_loc2),1,1);
 /* Perform some conversion function on the temp LOB before comparing it*/
 /* ...some_conversion_format_function(Temp_loc); */
 retval := DBMS_LOB.COMPARE(Lob_loc1, Temp_loc, Amount, 1, 1);
 IF retval = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Processing for equal frames’);
4-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two (Temporary) LOBs
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Processing for non-equal frames’);
 END IF;
 DBMS_LOB.CLOSE(Temp_loc);
 DBMS_LOB.CLOSE(Lob_loc1);
 DBMS_LOB.CLOSE(Lob_loc2);
 /* Free the temporary LOB now that we are done using it: */
 DBMS_LOB.FREETEMPORARY(Temp_loc);
 END;

Example: Compare All or Part of Two (Temporary) LOBs Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BLOB-COMPARE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 BLOB1 SQL-BLOB.
 01 BLOB2 SQL-BLOB.
 01 TEMP-BLOB SQL-BLOB.
 01 RET PIC S9(9) COMP.
 01 AMT PIC S9(9) COMP VALUE 5.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BLOB-COMPARE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL ALLOCATE :BLOB2 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
Temporary LOBs 4-69

Compare All or Part of Two (Temporary) LOBs
 EXEC SQL
 SELECT FRAME INTO :BLOB1
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 1
 END-EXEC.

 EXEC SQL
 SELECT FRAME INTO :BLOB2
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 2
 END-EXEC.

 * Allocate and create a temporary LOB:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Open the BLOBs for READ ONLY, Open temp LOB READ/WRITE:
 EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :BLOB2 READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

 * Copy data from BLOB2 to the temporary BLOB:
 EXEC SQL
 LOB COPY :AMT FROM :BLOB2 TO :TEMP-BLOB
 END-EXEC.

 * Execute PL/SQL to use its COMPARE functionality:
 MOVE 5 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :RET := DBMS_LOB.COMPARE(:BLOB1,:TEMP-BLOB,:AMT,1,1);
 END;
 END-EXEC.

 IF RET = 0
 * Logic for equal BLOBs goes here
 DISPLAY "BLOBs are equal"
 ELSE
 * Logic for unequal BLOBs goes here
 DISPLAY "BLOBs are not equal"
 END-IF.

 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB2 END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
4-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two (Temporary) LOBs
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.

 EXEC SQL FREE :TEMP-BLOB END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL FREE :BLOB2 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Compare All or Part of Two (Temporary) LOBs Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareTwoTempOrPersistLOBs_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2, *Temp_loc;
 int Amount = 128;
 int Retval;
Temporary LOBs 4-71

Compare All or Part of Two (Temporary) LOBs
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Select the LOBs: */
 EXEC SQL SELECT Frame INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 1;
 EXEC SQL SELECT Frame INTO :Lob_loc2
 FROM Multimedia_tab WHERE Clip_ID = 2;
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Copy the Persistent LOB into the Temporary LOB: */
 EXEC SQL LOB COPY :Amount FROM :Lob_loc2 TO :Temp_loc;
 /* Compare the two Frames using DBMS_LOB.COMPARE() from within PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Retval := DBMS_LOB.COMPARE(:Lob_loc1, :Temp_loc, :Amount, 1, 1);
 END;
 END-EXEC;
 if (0 == Retval)
 printf("Frames are equal\n");
 else
 printf("Frames are not equal\n");
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareTwoTempOrPersistLOBs_proc();
4-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two (Temporary) LOBs
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-73

See If a Pattern Exists in a Temporary LOB (instr)
See If a Pattern Exists in a Temporary LOB (instr)

Figure 4–12 Use Case Diagram: See If a Pattern Exists in a Temporary LOB (instr)

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs"

Internal temporary LOBs

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

see where/if
a pattern exists

in the LOB
(instr)

create
a temporary

LOB

free
a temporary

LOB
4-74 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in a Temporary LOB (instr)
Scenario
The following example examines the storyboard text to see if the string "children" is

present.

■ "Example: See If a Pattern Exists in a Temporary LOB (instr) Using PL/SQL

(DBMS_LOB Package)" on page 4-75

■ "Example: See If a Pattern Exists in a Temporary LOB (instr) Using COBOL

(Pro*COBOL)" on page 4-76

■ "Example: See If a Pattern Exists in a Temporary LOB (instr) Using C++

(Pro*C/C++)" on page 4-78

Example: See If a Pattern Exists in a Temporary LOB (instr) Using PL/SQL (DBMS_
LOB Package)

/* Note that the example procedure instringTempLOB_proc is not part of the
 DBMS_LOB package. */
CREATE OR REPLACE PROCEDURE instringTempLOB_proc IS
 Lob_loc CLOB;
 Temp_clob CLOB;
 Pattern VARCHAR2(30) := ’children’; Position INTEGER := 0;
 Offset INTEGER := 1;
 Occurrence INTEGER := 1;
BEGIN
 /* Create the temp LOB and copy a CLOB into it: */
 DBMS_LOB.CREATETEMPORARY(Temp_clob,TRUE, DBMS_LOB.SESSION);
 SELECT Story INTO Lob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1;

 DBMS_LOB.OPEN(Temp_clob,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Lob_loc,DBMS_LOB.LOB_READONLY);
 /* Copy the CLOB into the temp CLOB: */
 DBMS_LOB.COPY(Temp_clob,Lob_loc,DBMS_LOB.GETLENGTH(Lob_loc),1,1);
 /* Seek the pattern in the temp CLOB: */
 Position := DBMS_LOB.INSTR(Temp_clob, Pattern, Offset, Occurrence);
 IF Position = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Pattern not found’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The pattern occurs at ’|| position);
 END IF;
 DBMS_LOB.CLOSE(Lob_loc);
 DBMS_LOB.CLOSE(Temp_clob);
Temporary LOBs 4-75

See If a Pattern Exists in a Temporary LOB (instr)
 /* Free the temporary LOB: */
 DBMS_LOB.FREETEMPORARY(Temp_clob);
END;

Example: See If a Pattern Exists in a Temporary LOB (instr) Using COBOL
(Pro*COBOL)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CLOB-INSTR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 CLOB1 SQL-CLOB.
 01 TEMP-CLOB SQL-CLOB.
 01 PATTERN PIC X(8) VALUE "children".
 01 BUFFER2 PIC X(32767) VARYING.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 OCCURRENCE PIC S9(9) COMP VALUE 1.
 01 LEN PIC S9(9) COMP.
 01 POS PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 CLOB-INSTR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
4-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in a Temporary LOB (instr)
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
 EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
 EXEC SQL
 SELECT STORY INTO :CLOB1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 1
 END-EXEC.
 EXEC SQL ALLOCATE :TEMP-CLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-CLOB
 END-EXEC.

 * Open the CLOB for READ ONLY:
 EXEC SQL LOB OPEN :CLOB1 READ ONLY END-EXEC.

 * Use LOB describe to get the length of CLOB1:
 EXEC SQL
 LOB DESCRIBE :CLOB1 GET LENGTH INTO :LEN
 END-EXEC.
 EXEC SQL
 LOB COPY :LEN FROM :CLOB1 TO :TEMP-CLOB
 END-EXEC.

 * Execute PL/SQL to get INSTR functionality:
 EXEC SQL EXECUTE
 BEGIN
 :POS := DBMS_LOB.INSTR(:TEMP-CLOB,:PATTERN,
 :OFFSET, :OCCURRENCE);
 END;
 END-EXEC.

 IF POS = 0
 * Logic for pattern not found here
 DISPLAY "Pattern was not found"
 ELSE
 * Pos contains position where pattern is found
 DISPLAY "Pattern was found"
 END-IF.

 * Close and free the LOBs:
 EXEC SQL LOB CLOSE :CLOB1 END-EXEC.
 EXEC SQL FREE :TEMP-CLOB END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-CLOB
 END-EXEC.
Temporary LOBs 4-77

See If a Pattern Exists in a Temporary LOB (instr)
 EXEC SQL FREE :TEMP-CLOB END-EXEC.

 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: See If a Pattern Exists in a Temporary LOB (instr) Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void instringTempLOB_proc()
{
 OCIClobLocator *Lob_loc, *Temp_loc;
 char *Pattern = "The End";
 unsigned int Length;
 int Position = 0;
 int Offset = 1;
 int Occurrence = 1;
4-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in a Temporary LOB (instr)
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Persistent LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Determine the Length of the Persistent LOB: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH into :Length;
 /* Copy the Persistent LOB into the Temporary LOB: */
 EXEC SQL LOB COPY :Length FROM :Lob_loc TO :Temp_loc;
 /* Seek the Pattern using DBMS_LOB.INSTR() in a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Position :=
 DBMS_LOB.INSTR(:Temp_loc, :Pattern, :Offset, :Occurrence);
 END;
 END-EXEC;
 if (0 == Position)
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 instringTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-79

Get the Length of a Temporary LOB
Get the Length of a Temporary LOB

Figure 4–13 Use Case Diagram: Get the length of a Temporary LOB

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

get the
length of
the LOB

free
a temporary

LOB
4-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a Temporary LOB
Scenario
The following example gets the length of interview to see if it will run over the 4

gigabyte limit.

■ "Example: Get the Length of a Temporary LOB Using PL/SQL (DBMS_LOB

Package)" on page 4-81

■ "Example: Get the Length of a Temporary LOB Using C (OCI)" on page 4-82

■ "Example: Get the Length of a Temporary LOB Using COBOL (Pro*COBOL)" on

page 4-84

■ "Example: Get the Length of a Temporary LOB Using C++ (Pro*C/C++)" on

page 4-86

Example: Get the Length of a Temporary LOB Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure getLengthTempCLOB_proc is not part of the
 DBMS_LOB package. */
CREATE OR REPLACE PROCEDURE getLengthTempCLOB_proc IS
 Length INTEGER;
 tlob CLOB;
 bufc VARCHAR2(8);
 Amount NUMBER;
 pos NUMBER;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
BEGIN
 DBMS_LOB.CREATETEMPORARY(tlob,TRUE,DBMS_LOB.SESSION);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(tlob,DBMS_LOB.LOB_READWRITE);
 /* Opening the file is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 Amount := 32767;
 DBMS_LOB.LOADFROMFILE(tlob, Src_loc, Amount);
 /* Get the length of the LOB: */
 length := DBMS_LOB.GETLENGTH(tlob);
 IF length = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’LOB is empty.’);

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2
Temporary LOBs 4-81

Get the Length of a Temporary LOB
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The length is ’ || length);
 END IF;
 /* Must close any lobs that were opened: */
 DBMS_LOB.CLOSE(tlob);
 DBMS_LOB.CLOSE(Src_loc);
 /* Free the temporary LOB now that we are done with it: */
 DBMS_LOB.FREETEMPORARY(tlob);
END;

Example: Get the Length of a Temporary LOB Using C (OCI)
/* This function takes a temporary LOB locator as an amount as argument and
 prints out the length of the corresponding LOB. The function returns
 0 if it completes successfully, and -1 if it fails.*/
sb4 print_length(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)

{
 ub4 length=0;
 ub4 amount = 4;
 ub4 pos = 1;
 OCILobLocator *bfile;
 OCILobLocator *tblob;
 sb4 return_code = 0;

 printf("in print_length\n");
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }
4-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a Temporary LOB
 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"),
 (text *)"Washington_audio",
 (ub2)strlen("Washington_audio")))
 {
 printf("OCILobFileSetName FAILED\n");
 return_code = -1;
 }

 checkerr(errhp,(OCILobFileOpen(svchp, errhp,
 (OCILobLocator *) bfile,
 OCI_LOB_READONLY)));

 /* Create a temporary BLOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return_code = -1 ;
 }

 if(OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 (void) printf("FAILED: Open Temporary \n");
 return_code = -1;
 }

 if(OCILobLoadFromFile(svchp, errhp, tblob,(OCILobLocator*)bfile,
 (ub4)amount, (ub4)1,(ub4)1))
 {
 (void) printf("FAILED: Open Temporary \n");
 return_code = -1;
 }

 if (OCILobGetLength(svchp, errhp, tblob,&length))
 {
 printf ("FAILED: OCILobGetLength in print_length\n");
 return_code = -1;
 }

 /* Close the bfile and the temp LOB */
 checkerr(errhp,OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile));
Temporary LOBs 4-83

Get the Length of a Temporary LOB
 checkerr(errhp,OCILobClose(svchp, errhp, (OCILobLocator *) tblob));

 /* Free the temporary LOB now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 fprintf(stderr,"Length of LOB is %d\n",length);
 return return_code;
}

Example: Get the Length of a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-LENGTH.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 LEN PIC S9(9) COMP.
 01 LEN-D PIC 9(4).
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-LOB-LENGTH.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
4-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a Temporary LOB
 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Get the length of the temporary LOB:
 EXEC SQL
 LOB DESCRIBE :TEMP-BLOB GET LENGTH INTO :LEN
 END-EXEC.
 MOVE LEN TO LEN-D.
 DISPLAY "Length of TEMPORARY LOB is ", LEN-D.
 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.
Temporary LOBs 4-85

Get the Length of a Temporary LOB
 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Get the Length of a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void getLengthTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Length, Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
4-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a Temporary LOB
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load a specified amount from the BFILE into the Temporary LOB */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 /* Get the length of the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
 /* Note that in this example, Length == Amount == 4096: */
 printf("Length is %d bytes\n", Length);
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-87

Copy All or Part of One (Temporary) LOB to Another
Copy All or Part of One (Temporary) LOB to Another

Figure 4–14 Use Case Diagram: Copy All or Part of One (Temporary) LOB to Another

Scenario
Assume the following table:

CREATE TABLE VoiceoverLib_tab of VOICED_TYP;

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

copy all or
part of a LOB to

another LOBfree
a temporary

LOB
4-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of One (Temporary) LOB to Another
Note that this VoiceoverLib_tab is of the same type as the Voiceover_tab
which is referenced by the Voiced_ref column of the multimedia table.

INSERT INTO Voiceover_tab
 (SELECT * FROM VoiceoverLib_tab Vtab1
 WHERE T2.Take = 101);

creates a new LOB locator in the table Voiceover_tab , and copies the LOB data

from Vtab1 to the location pointed to by a new LOB locator which is inserted into

table Voiceover_tab.

■ "Example: Copy All or Part of One (Temporary) LOB to Another Using PL/SQL

(DBMS_LOB Package)" on page 4-89

■ "Example: Copy All or Part of One (Temporary) LOB to Another Using C (OCI)"

on page 4-90

■ "Example: Copy All or Part of One (Temporary) LOB to Another Using COBOL

(Pro*COBOL)" on page 4-93

■ "Example: Copy All or Part of One (Temporary) LOB to Another Using C++

(Pro*C/C++)" on page 4-95

Example: Copy All or Part of One (Temporary) LOB to Another Using PL/SQL (DBMS_
LOB Package)

/* Note that the example procedure copyTempLOB_proc is not part of the
 DBMS_LOB package.* /
CREATE OR REPLACE PROCEDURE copyTempLOB_proc IS
 Dest_pos NUMBER;
 Src_pos NUMBER;
 Dest_loc BLOB;
 Dest_loc2 BLOB;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 Amount INTEGER := 32767;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc2,TRUE,DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE, DBMS_LOB.SESSION);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the temporary LOBs is optional: */
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Dest_loc2,DBMS_LOB.LOB_READWRITE);
Temporary LOBs 4-89

Copy All or Part of One (Temporary) LOB to Another
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 /* Set Dest_pos to the position at which we should start writing in the

 target temp LOB */
 /* Copies the LOB from the source position to the destination
 position:*/
 /* Set amount to the amount you want copied */
 Amount := 328;
 Dest_pos := 1000;
 Src_pos := 1000;
 /* Set Src_pos to the position from which we should start copying data
 from tclob_src: */
 DBMS_LOB.COPY(Dest_loc2,Dest_loc, Amount, Dest_pos, Src_pos);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Dest_loc2);
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc2);
END;

Example: Copy All or Part of One (Temporary) LOB to Another Using C (OCI)
/* This function takes two temporary LOB locators as arguments and copies 4000
 bytes from one temporary LOB to another. It reads the source LOB starting at
 offset 1, and writes to the destination at offset 2. The function returns
 0 if it completes successfully, and -1 otherwise. */
sb4 copy_temp_lobs (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIDefine *defnp1;
 OCILobLocator *tblob;
 OCILobLocator *tblob2;
 OCILobLocator *bfile;
 int rowind =1;
 ub4 amount=4000;
 ub4 src_offset=1;
 ub4 dest_offset=2;
 sb4 return_code = 0;
4-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of One (Temporary) LOB to Another
 printf("in copy_temp_lobs \n");

 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in copy_temp_lobs\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&bfile,
 (ub4)OCI_DTYPE_FILE, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in copy_temp_lobs\n");
 return -1;
 }

 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob2,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in copy_temp_lobs\n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp, errhp, tblob2, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return_code = -1;
 }

 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"),
 (text *)"Washington_audio",
 (ub2)strlen("Washington_audio")))
 {
 printf("OCILobFileSetName FAILED\n");
Temporary LOBs 4-91

Copy All or Part of One (Temporary) LOB to Another
 return_code = -1;
 }

 if(OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile\n");
 return_code = -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return_code = -1;
 }
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob2, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return_code = -1;
 }

 if(OCILobLoadFromFile(svchp, errhp, tblob, (OCILobLocator*)bfile,
 (ub4)amount, (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;
 }

 if (OCILobCopy(svchp, errhp, tblob2, tblob, amount, dest_offset,
 src_offset))
 {
 printf ("FAILED: OCILobCopy in copy_temp_lobs\n");
 return -1;
 }
 /* Close LOBs here */

 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobFileClose FAILED for bfile \n");
 return_code = -1;
 }
 if (OCILobClose(svchp, errhp, (OCILobLocator *) tblob))
 {
 printf("OCILobClose FAILED for temporary LOB \n");
 return_code = -1;
 }
4-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of One (Temporary) LOB to Another
 if (OCILobClose(svchp, errhp, (OCILobLocator *) tblob2))
 {
 printf("OCILobClose FAILED for temporary LOB \n");
 return_code = -1;
 }
 /* free the temporary lobs now that we are done using them */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 if(OCILobFreeTemporary(svchp, errhp, tblob2))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 return return_code;
}

Example: Copy All or Part of One (Temporary) LOB to Another Using COBOL
(Pro*COBOL)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-BLOB-COPY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 TEMP-DEST SQL-BLOB.
 01 TEMP-SRC SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.
 01 AMT PIC S9(9) COMP.

 * Define the source and destination position and location:
 01 SRC-POS PIC S9(9) COMP VALUE 1.
 01 DEST-POS PIC S9(9) COMP VALUE 1.

 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
Temporary LOBs 4-93

Copy All or Part of One (Temporary) LOB to Another
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-BLOB-COPY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-DEST END-EXEC.
 EXEC SQL ALLOCATE :TEMP-SRC END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-DEST
 END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-SRC
 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-SRC READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :TEMP-DEST READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 * MOVE the desired amount to copy to AMT:
 MOVE 5 TO AMT.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-SRC
 END-EXEC.

 * Copy data from BFILE to temporary LOB:
4-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of One (Temporary) LOB to Another
 EXEC SQL
 LOB COPY :AMT FROM :TEMP-SRC AT :SRC-POS
 TO :TEMP-DEST AT :DEST-POS
 END-EXEC.

 EXEC SQL LOB CLOSE :TEMP-SRC END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-DEST END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-SRC
 END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-DEST
 END-EXEC.
 EXEC SQL FREE :TEMP-SRC END-EXEC.
 EXEC SQL FREE :TEMP-DEST END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Copy All or Part of One (Temporary) LOB to Another Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
Temporary LOBs 4-95

Copy All or Part of One (Temporary) LOB to Another
 exit(1);
}

void copyTempLOB_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;
 /* Load a specified amount from the BFILE into one of the
 Temporary LOBs: */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
 /* Copy a specified amount from one Temporary LOB to another: */
 EXEC SQL LOB COPY :Amount FROM :Temp_loc1 TO :Temp_loc2;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
4-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of One (Temporary) LOB to Another
 EXEC SQL CONNECT :samp;
 copyTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-97

Copy a LOB Locator for a Temporary LOB
Copy a LOB Locator for a Temporary LOB

Figure 4–15 Use Case Diagram: Copy a LOB Locator for a Temporary LOB...208

Scenario
This generic operation copies one temporary LOB locator to another.

■ "Example: Copy a LOB Locator (Temporary LOBs) Using PL/SQL" on page 4-99

■ "Example: Copy a LOB Locator for a Temporary LOB Using C (OCI)" on

page 4-100

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

free
a temporary

LOB

copy
LOB locator
4-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a Temporary LOB
■ "Example: Copy a LOB Locator for a Temporary LOB Using COBOL

(Pro*COBOL)" on page 4-102

■ "Example: Copy a LOB Locator for a Temporary LOB Using C++ (Pro*C/C++)"

on page 4-104

Example: Copy a LOB Locator (Temporary LOBs) Using PL/SQL

/* Note that the example procedure copyTempLOBLocator_proc is not part of the
 DBMS_LOB package. */

CREATE OR REPLACE PROCEDURE copyTempLOBLocator_proc(
 Lob_loc1 IN OUT CLOB, Lob_loc2 IN OUT CLOB) IS

 bufp VARCHAR2(4);
 Amount NUMBER := 32767;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
BEGIN
 DBMS_LOB.CREATETEMPORARY(Lob_loc1,TRUE,DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(Lob_loc2,TRUE,DBMS_LOB.SESSION);
 /* Populate the first temporary LOB with some data. */
 /* Opening file is mandatory: */
 DBMS_LOB.OPEN(Src_loc,DBMS_LOB.LOB_READONLY);
 /* Opening LOB is optional: */
 DBMS_LOB.OPEN(Lob_loc1,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Lob_loc2,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Lob_loc1,Src_loc,Amount);

 /* Assign Lob_loc1 to Lob_loc2 thereby creating a copy of the value of
 the temporary LOB referenced by Lob_loc1 at this point in time: */
 Lob_loc2 := Lob_loc1;

 /* When you write some data to the LOB through Lob_loc1, Lob_loc2
 will not see the newly written data whereas Lob_loc1 will see
 the new data: */
 /*Closing LOBs is mandatory if they were opened: */
 DBMS_LOB.CLOSE (Src_loc);
 DBMS_LOB.CLOSE (Lob_loc1);

Note: Assigning one LOB to another using PL/SQL entails using

the "=" sign. This is an advanced topic that is discussed in more

detail above with regard to "Read-Consistent Locators" on page 2-2.
Temporary LOBs 4-99

Copy a LOB Locator for a Temporary LOB
 DBMS_LOB.CLOSE (Lob_loc2);
 DBMS_LOB.FREETEMPORARY(Lob_loc1);
 DBMS_LOB.FREETEMPORARY(Lob_loc2);
END;

Example: Copy a LOB Locator for a Temporary LOB Using C (OCI)
/* This function creates two temporary lobs. It populates one and
 then copies the locator of that one to the other temporary
 LOB locator: */

sb4 copy_locators(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIEnv *envhp)
{
 sb4 return_code = 0;
 OCILobLocator *tblob;
 OCILobLocator *tblob2;
 OCILobLocator *bfile;
 ub4 amount = 4000;

checkerr(errhp,OCIDescriptorAlloc((dvoid*)envhp,(dvoid**)&tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0));

checkerr(errhp,OCIDescriptorAlloc((dvoid*)envhp,(dvoid**)&tblob2,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0));

checkerr(errhp,OCIDescriptorAlloc((dvoid*)envhp,(dvoid**)&bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0));

 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"),
 (text *)"Washington_audio",
 (ub2)strlen("Washington_audio")))
 {
 printf("OCILobFileSetName FAILED in load_temp\n");
 return -1;
 }

 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_FILE_READONLY))
 {
4-100 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a Temporary LOB
 printf("OCILobFileOpen FAILED for the bfile load_temp \n");
 return -1;
 }

 if(OCILobCreateTemporary(svchp,errhp, tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCILobCreateTemporary(svchp,errhp, tblob2,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob2, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }

 if(OCILobLoadFromFile(svchp, errhp, tblob, (OCILobLocator*)bfile,
 (ub4)amount, (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile failed \n");
 return_code = -1;
 }

 if(OCILobLocatorAssign(svchp,errhp, (CONST OCILobLocator *)tblob,&tblob2))
 {

 printf("OCILobLocatorAssign failed \n");
 return_code = -1;
Temporary LOBs 4-101

Copy a LOB Locator for a Temporary LOB
 }

 /* Close the lobs */
 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobClose FAILED for bfile \n");
 return -1;
 }

 checkerr(errhp,(OCILobClose(svchp, errhp, (OCILobLocator *) tblob)));
 checkerr(errhp,(OCILobClose(svchp, errhp, (OCILobLocator *) tblob2)));

 /* Free the temporary lobs now that we are done using it */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 if(OCILobFreeTemporary(svchp, errhp, tblob2))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }
}

Example: Copy a LOB Locator for a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-BLOB-COPY-LOCATOR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 TEMP-DEST SQL-BLOB.
 01 TEMP-SRC SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.
 01 AMT PIC S9(9) COMP.
4-102 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a Temporary LOB
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-BLOB-COPY-LOCATOR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-DEST END-EXEC.
 EXEC SQL ALLOCATE :TEMP-SRC END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-DEST
 END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-SRC
 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-SRC READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :TEMP-DEST READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 * MOVE the desired amount to copy to AMT:
 MOVE 5 TO AMT.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-SRC
Temporary LOBs 4-103

Copy a LOB Locator for a Temporary LOB
 END-EXEC.

 * Assign source BLOB locator to destination BLOB locator:
 EXEC SQL
 LOB ASSIGN :TEMP-SRC TO :TEMP-DEST
 END-EXEC.

 EXEC SQL LOB CLOSE :TEMP-SRC END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-DEST END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-SRC
 END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-DEST
 END-EXEC.
 EXEC SQL FREE :TEMP-SRC END-EXEC.
 EXEC SQL FREE :TEMP-DEST END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Copy a LOB Locator for a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
4-104 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a Temporary LOB
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void copyTempLobLocator_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;
 /* Load a specified amount from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
 /* Assign Temp_loc1 to Temp_loc2 thereby creating a copy of the value of
 the Temporary LOB referenced by Temp_loc1 at this point in time: */
 EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;
 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
}

void main()
{

Temporary LOBs 4-105

Copy a LOB Locator for a Temporary LOB
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 copyTempLobLocator_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

4-106 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator for a Temporary LOB Is Equal to Another
See If One LOB Locator for a Temporary LOB Is Equal to Another

Figure 4–16 Use Case Diagram: See If One (Temporary) LOB Locator Is Equal to
Another

Scenario
If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" on page 2-2)

■ "Example: See If One LOB Locator for a Temporary LOB Is Equal to Another

Using C (OCI)" on page 4-108

■ "Example: See If One LOB Locator for a Temporary LOB Is Equal to Another

Using C++ (Pro*C/C++)" on page 4-109

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

see if locators
are equal

free
a temporary

LOB
Temporary LOBs 4-107

See If One LOB Locator for a Temporary LOB Is Equal to Another
Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C
(OCI)

sb4 ck_isequal (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *loc1;f
 OCILobLocator *loc2;
 boolean is_equal;
 is_equal= FALSE;
 if(OCILobCreateTemporary(svchp, errhp, loc1, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }
 if(OCILobCreateTemporary(svchp, errhp, loc2, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobIsEqual(envhp,loc1,loc2, &is_equal))
 {
 printf ("FAILED: OCILobLocatorIsEqual call\n");
 return -1;
 }
 if(is_equal)
 {
 fprintf (stderr,"LOB loators are equal \n");
 return -1;

 }else
 {
 fprintf(stderr,"LOB locators are not equal \n");
 }
 if(OCILobFreeTemporary(svchp,errhp,loc1))
 {
 printf("FAILED: OCILobFreeTemporary for temp LOB #1\n");
4-108 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator for a Temporary LOB Is Equal to Another
 return -1;
 }
 if(OCILobFreeTemporary(svchp,errhp,loc2))
 {
 printf("FAILED: OCILobFreeTemporary for temp LOB #2\n");
 return -1;
 }

 return 0;
}

Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using
C++ (Pro*C/C++)

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("sqlcode = %ld\n", sqlca.sqlcode);
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeTempLobLocatorsAreEqual_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;
 OCIEnv *oeh;
 int isEqual = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
Temporary LOBs 4-109

See If One LOB Locator for a Temporary LOB Is Equal to Another
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;
 /* Load a specified amount from the BFILE into one of the Temporary LOBs: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
 /* Retrieve the OCI Environment Handle: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Now assign Temp_loc1 to Temp_loc2 using Embedded SQL: */
 EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;
 /* Determine if the Temporary LOBs are Equal: */
 (void) OCILobIsEqual(oeh, Temp_loc1, Temp_loc2, &isEqual);
 /* This time, isEqual should be 0 (FALSE): */
 printf("Locators %s equal\n", isEqual ? "are" : "are not");
 /* Assign Temp_loc1 to Temp_loc2 using C pointer assignment: */
 Temp_loc2 = Temp_loc1;
 /* Determine if the Temporary LOBs are Equal again: */
 (void) OCILobIsEqual(oeh, Temp_loc1, Temp_loc2, &isEqual);
 /* The value of isEqual should be 1 (TRUE) in this case: */
 printf("Locators %s equal\n", isEqual ? "are" : "are not");
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Note that because Temp_loc1 and Temp_loc2 are now equal, closing
 and freeing one will implicitely do the same to the other: */
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeTempLobLocatorsAreEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

4-110 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator for a Temporary LOB Is Initialized
See If a LOB Locator for a Temporary LOB Is Initialized

Figure 4–17 Use Case Diagram: See If a LOB Locator for a Temporary LOB Is
Initialized

Scenario
This generic function takes a LOB locator and checks if it is initialized. If it is

initialized, then it prints out a message saying "LOB is initialized". Otherwise, it

reports "LOB is not initialized".

■ "Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C

(OCI)" on page 4-112

■ "Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C++

(Pro*C/C++)" on page 4-112

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

see if locator
is initialized
Temporary LOBs 4-111

See If a LOB Locator for a Temporary LOB Is Initialized
Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C (OCI)
/* This function takes a LOB locator and checks if it is initialized. If it is
 initalized, then it prints out a message saying "LOB is initialized".
 Otherwise, it says "LOB is not initialized". This function returns
 0 if it completes successfully, and -1 if it doesn’t. */

sb4 ck_isinit (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)

{
 boolean is_init;

 is_init= FALSE;
 if (OCILobLocatorIsInit(envhp,errhp, lob_loc, &is_init))
 {
 printf ("FAILED: OCILobLocatorIsInit call\n");
 return -1;
 }
 if(is_init)
 {
 printf ("LOB is initialized\n");

 }else
 {
 printf("LOB is not initialized\n");
 }
 return 0;
}

Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C++
(Pro*C/C++)

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
4-112 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator for a Temporary LOB Is Initialized
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}
void tempLobLocatorIsInit_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized */
 (void) OCILobLocatorIsInit(oeh, err, Temp_loc, &isInitialized);
 if (isInitialized)
 printf("Locator is initialized\n");
 else
 printf("Locator is not initialized\n");
 /* Note that in this example, the locator is initialized. */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 tempLobLocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-113

Get Character Set ID of a Temporary LOB
Get Character Set ID of a Temporary LOB

Figure 4–18 Use Case Diagram: Get Character Set ID for a Temporary LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

get character
set ID

free
a temporary

LOB
4-114 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set ID of a Temporary LOB
Scenario
This function takes a LOB locator and prints the character set id of the LOB.

■ "Example: Get Character Set ID of a Temporary LOB Using C (OCI)" on

page 4-115

Example: Get Character Set ID of a Temporary LOB Using C (OCI)
/* This function takes a LOB locator and prints the character set id of the LOB.
 This function returns 0 if it completes successfully, and -1
 if it doesn’t. */

sb4 get_charsetid (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 ub2 charsetid=199;
 if(OCILobCreateTemporary(svchp, errhp, lob_loc, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobCharSetId(envhp, errhp, lob_loc, &charsetid))
 {
 printf ("FAILED: OCILobCharSetId call\n");
 return -1;
 }
 fprintf (stderr,"LOB charsetid is %d\n",charsetid);
 if(OCILobFreeTemporary(svchp,errhp,lob_loc))
 {
 printf("FAILED: OCILobFreeTemporary \n");
 return -1;
 }

 return 0;

}

Temporary LOBs 4-115

Get Character Set Form of a Temporary LOB
Get Character Set Form of a Temporary LOB

Figure 4–19 Use Case Diagram: Get Character Set Form of a Temporary LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

get character
set form

create
a temporary

LOB

free
a temporary

LOB
4-116 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set Form of a Temporary LOB
Scenario
This function takes a LOB locator and prints the character set form for the LOB.

■ "Example: Get Character Set Form of a Temporary LOB Using C (OCI)" on

page 4-117

Example: Get Character Set Form of a Temporary LOB Using C (OCI)
/* This function takes a LOB locator and prints out the character set form for
the LOB. It returns 0 if it completes successfully, and it returns -1 if it
doesn’t. */

sb4 get_charsetform (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 ub1 charsetform =0;
 if(OCILobCreateTemporary(svchp,errhp,lob_loc,(ub2)0,
 SQLCS_IMPLICIT, OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobCharSetForm(envhp,errhp, lob_loc, &charsetform))
 {
 printf ("FAILED: OCILobCharSetForm call\n");
 return -1;
 }
 fprintf (stderr,"LOB charsetform is %d\n",charsetform);

 if(OCILobFreeTemporary(svchp,errhp,lob_loc))
 {
 printf("FAILED: OCILobFreeTemporary \n");
 return -1;
 }
 return 0;
}

Temporary LOBs 4-117

Append One (Temporary) LOB to Another
Append One (Temporary) LOB to Another

Figure 4–20 Use Case Diagram: Append one (Temporary) LOB to another

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

append one
LOB to
another

free
a temporary

LOB
4-118 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One (Temporary) LOB to Another
Scenario
This example deals with the task of appending one segment of sound to another. We

assume that you use sound-specific editing tools to match the wave-forms.

■ "Example: Append One (Temporary) LOB to Another Using PL/SQL (DBMS_

LOB Package)" on page 4-119

■ "Example: Append One (Temporary) LOB to Another Using C (OCI)" on

page 4-120

■ "Example: Append One (Temporary) LOB to Another Using COBOL

(Pro*COBOL)"

■ "Example: Append One (Temporary) LOB to Another Using C++ (Pro*C/C++)"

Example: Append One (Temporary) LOB to Another Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure appendTempLOB_proc is not part of the
 DBMS_LOB package. */
CREATE OR REPLACE PROCEDURE appendTempLOB_proc IS
 Dest_loc2 CLOB;
 Dest_loc CLOB;
 Amount NUMBER;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE,DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(Dest_loc2,TRUE,DBMS_LOB.SESSION);
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Dest_loc2,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Src_loc,DBMS_LOB.LOB_READWRITE);
 Amount := 32767;
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 DBMS_LOB.LOADFROMFILE(Dest_loc2, Src_loc, Amount);
 DBMS_LOB.APPEND(Dest_loc, Dest_loc2);
 /* Close the temporary lobs and then free them: */
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Dest_loc2);
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc2);
END;
Temporary LOBs 4-119

Append One (Temporary) LOB to Another
Example: Append One (Temporary) LOB to Another Using C (OCI)
/* This function takes two temporary LOB locators and appends the second LOB to
 the first one. It returns 0 if it completes successfully, and
 -1, otherwise.*/

sb4 append_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *tblob;
 OCILobLocator *tblob2;
 OCILobLocator *bfile;
 ub4 amt = 4000;
 sb4 return_code = 0;

 printf("in append \n");
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob2,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 /* Set the BFILE to point to the Washington_audio file */
 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"),
 (text *)"Washington_audio",
4-120 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One (Temporary) LOB to Another
 (ub2)strlen("Washington_audio")))
 {
 printf("OCILobFileSetName FAILED\n");
 return -1;
 }

 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile\n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp,errhp,tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp,errhp,tblob2,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return_code = -1;
 }

 /* Open the lobs: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB tblob \n");
 return_code = -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob2, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB, tblob2 \n");
 return_code = -1;
 }

 /* Populate the source temporary LOB with some data: */

 If(OCILobLoadFromFile(svchp, errhp, tblob,(OCILobLocator*)bfile,
 (ub4)amt, (ub4)1,(ub4)1))
Temporary LOBs 4-121

Append One (Temporary) LOB to Another
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;
 }

 /* Append the source LOB to the dest temp LOB: */
 if (OCILobAppend(svchp, errhp,tblob2,tblob))
 {
 printf ("FAILED: OCILobAppend in append_temp_lobs\n");
 return_code = -1;
 }else
 {
 printf("Append succeeded\n");
 }

 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf("FAILED: OCILobFreeTemporary \n");
 return_code = -1;
 }
 if(OCILobFreeTemporary(svchp,errhp,tblob2))
 {
 printf("FAILED: OCIlobFreeTemporary\n");
 return_code = -1;
 }
 return return_code;
}

Example: Append One (Temporary) LOB to Another Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. APPEND-TEMP-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * Define the username and password:
 01 USERID PIC X(11) VALUES "USER1/USER1".

 * Define the temporary LOBs and the source BFILE:
 01 TEMP-BLOB1 SQL-BLOB.
 01 TEMP-BLOB2 SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 AMT PIC S9(9) COMP.
4-122 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One (Temporary) LOB to Another
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.

 * Define the source position in BFILE:
 01 SRC-POS PIC S9(9) COMP.

 * Define the line number in case of error:
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 APPEND-TEMP-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB1 END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB2 END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB1
 END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB2
 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB2 READ WRITE END-EXEC.
Temporary LOBs 4-123

Append One (Temporary) LOB to Another
 EXEC SQL LOB OPEN :TEMP-BLOB1 READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 DISPLAY "LOBs opened.".

 * Move the desired amount to copy to AMT:
 MOVE 5 TO AMT.
 MOVE 1 TO SRC-POS.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE
 AT :SRC-POS INTO :TEMP-BLOB1
 END-EXEC.

 ADD 1 TO AMT GIVING SRC-POS.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE
 AT :SRC-POS INTO :TEMP-BLOB2
 END-EXEC.
 DISPLAY "Temporary LOBs loaded".

 EXEC SQL
 LOB APPEND :TEMP-BLOB2 TO :TEMP-BLOB1
 END-EXEC.
 DISPLAY "LOB APPEND complete.".

 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB1
 END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB2
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB1 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB2 END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
4-124 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One (Temporary) LOB to Another
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Append One (Temporary) LOB to Another Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void appendTempLOB_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 2048;
 int Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;
 /* Load a specified amount from the BFILE into the first Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc1;
 /* Set the Position for the next load from the same BFILE: */
 Position = Amount + 1;
 /* Load a second amount from the BFILE into the second Temporary LOB: */
Temporary LOBs 4-125

Append One (Temporary) LOB to Another
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc2;
 /* Append the second Temporary LOB to the end of the first one: */
 EXEC SQL LOB APPEND :Temp_loc2 TO :Temp_loc1;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;
 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 appendTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

4-126 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a Temporary LOB
Write Append to a Temporary LOB

Figure 4–21 Use Case Diagram: Write Append to a Temporary LOB

Internal temporary LOBs

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

free
a temporary

LOB

User/
Program

write
append
Temporary LOBs 4-127

Write Append to a Temporary LOB
Scenario
This example procedure will read in 32767 bytes of data from the Washington_
audio file starting at offset 128 and append it to a temporary LOB.

■ "Example: Write Append to a Temporary LOB Using PL/SQL" on page 4-128

■ "Example: Write Append to a Temporary LOB Using C (OCI)" on page 4-129

■ "Example: Write Append to a Temporary LOB Using COBOL (Pro*COBOL)" on

page 4-130

■ "Example: Write Append to a Temporary LOB Using C++ (Pro*C/C++)" on

page 4-132

Example: Write Append to a Temporary LOB Using PL/SQL
/* Note that the example procedure writeAppendTempLOB_proc is not part of the
 DBMS_LOB package. This example procedure will read in 32767 bytes of data
 from the Washington_audio file starting at offset 128 and append it to a
 temporary LOB. */

CREATE OR REPLACE PROCEDURE writeAppendTempLOB_proc IS
 Lob_loc BLOB;
 Buffer RAW(32767);
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 Amount Binary_integer := 32767;
 Position Binary_integer := 128;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
 /* Opening the temporary LOB is optional: */
 DBMS_LOB.OPEN(Lob_loc,DBMS_LOB.LOB_READWRITE);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Fill the buffer with data: */
 DBMS_LOB.LOADFROMFILE (Lob_loc,Src_loc, Amount);

 /* Append the data from the buffer to the end of the LOB: */
 DBMS_LOB.WRITEAPPEND(Lob_loc, Amount, Buffer);
 DBMS_LOB.CLOSE(Src_loc);

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2
4-128 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a Temporary LOB
 DBMS_LOB.CLOSE(Lob_loc);
 DBMS_LOB.FREETEMPORARY(Lob_loc);
END;

Example: Write Append to a Temporary LOB Using C (OCI)
sb4 write_append_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIClobLocator *tclob;
 unsigned int Total = 40000;
 unsigned int amtp;
 unsigned int nbytes;
 ub1 bufp[MAXBUFLEN];

 /* Allocate the locators desriptors: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tclob ,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 if(OCILobCreateTemporary(svchp, errhp, tclob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_CLOB, OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the CLOB */
 printf("calling open \n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, tclob, OCI_LOB_READWRITE)));

 nbytes = MAXBUFLEN; /* We will use Streaming via Standard Polling */

 /* Fill the Buffer with nbytes worth of Data */
 memset(bufp,'a',32767);

 amtp = sizeof(bufp);
 /* Setting Amount to 0 streams the data until use specifies OCI_LAST_PIECE */

 printf("calling write append \n");
 checkerr (errhp, OCILobWriteAppend (svchp, errhp, tclob, &amtp,
 bufp, nbytes, OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
Temporary LOBs 4-129

Write Append to a Temporary LOB
 0, SQLCS_IMPLICIT));

 printf("calling close \n");
 /* Closing the LOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tclob));

 /* Free the temporary LOB: */
 printf("calling free\n");
 checkerr(errhp,OCILobFreeTemporary(svchp,errhp,tclob));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tclob, (ub4) OCI_DTYPE_LOB);
}

Example: Write Append to a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRITE-APPEND-TEMP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 BUFFER PIC X(2048).
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 EXEC SQL VAR BUFFER IS RAW(2048) END-EXEC.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-APPEND-TEMP.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
4-130 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a Temporary LOB
 END-EXEC.

 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 MOVE "262626" TO BUFFER.
 MOVE 3 TO AMT.
 * Append the data in BUFFER to TEMP-BLOB:
 EXEC SQL
 LOB WRITE APPEND :AMT FROM :BUFFER INTO :TEMP-BLOB
 END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
Temporary LOBs 4-131

Write Append to a Temporary LOB
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Write Append to a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void writeAppendTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
4-132 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a Temporary LOB
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load a specified amount from the BFILE into the Temporary LOB: */
 Amount = 2048;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 strcpy((char *)Buffer.Data, "afafafafafaf");
 Buffer.Length = 6;
 /* Write the contents of the Buffer to the end of the Temporary LOB: */
 Amount = Buffer.Length;
 EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Temp_loc;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeAppendTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-133

Write Data to a Temporary LOB
Write Data to a Temporary LOB

Figure 4–22 Use Case Diagram: Write data to a Temporary LOB

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

flush
buffer

free
a temporary

LOB

enable
buffering

disable
buffering

write data
to the LOB
4-134 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a Temporary LOB
Stream Write
The most efficient way to write large amounts of LOB data is to use

OCILobWrite () with the streaming mechanism enabled via polling or a callback. If

you know how much data will be written to the LOB specify that amount when

calling OCILobWrite (). This will allow for the contiguity of the LOB data on disk.

Apart from being spatially efficient, contiguous structure of the LOB data will make

for faster reads and writes in subsequent operations.

Scenario
This example procedure allows the STORY data (the storyboard for the clip) to be

updated by writing data to the LOB.

■ "Example: Write Data to a Temporary LOB Using the DBMS_LOB Package" on

page 4-135

■ "Example: Write Data to a Temporary LOB Using C (OCI)" on page 4-136

■ "Example: Write Data to a Temporary LOB Using COBOL (Pro*COBOL)" on

page 4-139

■ "Example: Write Data to a Temporary LOB Using C++ (Pro*C/C++)" on

page 4-140

Example: Write Data to a Temporary LOB Using the DBMS_LOB Package
/* Note that the example procedure writeDataToTempLOB_proc is not part of the
 DBMS_LOB package. */
CREATE or REPLACE PROCEDURE writeDataToTempLOB_proc IS
 Lob_loc CLOB;
 Buffer VARCHAR2(26);
 Amount BINARY_INTEGER := 26;
 Position INTEGER := 1;
 i INTEGER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2
Temporary LOBs 4-135

Write Data to a Temporary LOB
 /* Fill the buffer with data to write to the LOB: */
 Buffer := ’abcdefghijklmnopqrstuvwxyz’;

 FOR i IN 1..3 LOOP
 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
 /* Fill the buffer with more data to write to the LOB: */
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
 DBMS_LOB.FREETEMPORARY(Lob_loc);
END;

Example: Write Data to a Temporary LOB Using C (OCI)
/* This example illustrates streaming writes with polling */
sb4 write_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIClobLocator *tclob;
 unsigned int Total = 40000;
 unsigned int amtp;
 unsigned int offset;
 unsigned int remainder, nbytes;
 boolean last;
 ub1 bufp[MAXBUFLEN];
 sb4 err;

 /* Allocate the locators desriptors: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tclob ,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 if(OCILobCreateTemporary(svchp,
 errhp,
 tclob,
 (ub2)0,
 SQLCS_IMPLICIT,
 OCI_TEMP_CLOB,
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
4-136 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a Temporary LOB
 return -1;
 }

 /* Open the CLOB: */
 checkerr (errhp, (OCILobOpen(svchp, errhp, tclob, OCI_LOB_READWRITE)));

 if (Total > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* We will use Streaming via Standard Polling */
 else
 nbytes = Total; /* Only a single WRITE is required */

 /* Fill the Buffer with nbytes worth of Data: */
 memset(bufp,'a',32767);

 remainder = Total - nbytes;
 amtp = 0;
 offset = 1;
 /* Setting Amount to 0 streams the data until use specifies OCI_LAST_PIECE: */

 if (0 == remainder)
 {
 amtp = nbytes;
 /* Here, (Total <= MAXBUFLEN) so we can WRITE in ONE piece: */
 checkerr (errhp, OCILobWrite (svchp, errhp, tclob, &amtp,
 offset, bufp, nbytes,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));
 }
 else
 {
 /* Here (Total > MAXBUFLEN) so we use Streaming via Standard Polling: */
 /* WRITE the FIRST piece. Specifying FIRST initiates Polling: */
 err = OCILobWrite (svchp, errhp, tclob, &amtp,
 offset, bufp, nbytes,
 OCI_FIRST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);

 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);

 last = FALSE;
 /* WRITE the NEXT (interim) and LAST pieces: */
 do
Temporary LOBs 4-137

Write Data to a Temporary LOB
 {
 if (remainder > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= MAXBUFLEN) */
 last = TRUE; /* This is going to be the Final piece */
 }

 /* Fill the Buffer with nbytes worth of Data */

 if (last)
 {
 /* Specifying LAST terminates Polling */
 err = OCILobWrite (svchp, errhp, tclob, &amtp,
 offset, bufp, nbytes,
 OCI_LAST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);

 if (err != 0)
 checkerr (errhp, err);

 } else

 {
 err = OCILobWrite (svchp, errhp, tclob, &amtp,
 offset, bufp, nbytes,
 OCI_NEXT_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);

 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);

 }
 /* Determine how much is left to WRITE: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 /* At this point, (remainder == 0) */

 /* Closing the LOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tclob));
4-138 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a Temporary LOB
 /* Free the temporary LOB: */
 checkerr(errhp,OCILobFreeTemporary(svchp,errhp,tclob));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tclob, (ub4) OCI_DTYPE_LOB);
}

Example: Write Data to a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRITE-TEMP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-CLOB SQL-CLOB.
 01 BUFFER PIC X(20) VARYING.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-TEMP.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :TEMP-CLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-CLOB
 END-EXEC.

 EXEC SQL LOB OPEN :TEMP-CLOB READ WRITE END-EXEC.
Temporary LOBs 4-139

Write Data to a Temporary LOB
 MOVE "ABCDE12345ABCDE12345" TO BUFFER-ARR.
 MOVE 20 TO BUFFER-LEN.
 MOVE 20 TO AMT.
 * Append the data in BUFFER to TEMP-CLOB:
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :TEMP-CLOB
 END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :TEMP-CLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-CLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-CLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Write Data to a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{

4-140 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a Temporary LOB
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void writeDataToTempLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Open the Temporary LOB: */
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use Streaming via Standard Polling */
 else
 nbytes = Total; /* Only a single WRITE is required */
 /* Fill the Buffer with nbytes worth of Data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can WRITE in ONE piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 /* Here (Total > BufferLength) so use Streaming via Standard Polling */
 /* WRITE the FIRST piece. Specifying FIRST initiates Polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write FIRST %d characters\n", Buffer.len);
 last = FALSE;
Temporary LOBs 4-141

Write Data to a Temporary LOB
 /* WRITE the NEXT (interim) and LAST pieces: */
 do
 {
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= BufferLength) */
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the Buffer with nbytes worth of Data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates Polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write LAST Total of %d characters\n", Amount);
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to WRITE: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* At this point, (Amount == Total), the total amount that was written. */
 /* Close the Temporary LOB: */
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Free resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeDataToTempLOB_proc(1); /* Write One Piece */
4-142 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a Temporary LOB
 writeDataToTempLOB_proc(4); /* Write Multiple Pieces using Polling */
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-143

Trim the Temporary LOB Data
Trim the Temporary LOB Data

Figure 4–23 Use Case Diagram: Trim the Temporary LOB data

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

trim the
LOB data

free
a temporary

LOB
4-144 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the Temporary LOB Data
Scenario
Our example accesses text (CLOB data) that is referenced in the Script column of

the table Voiceover_tab , and trims it.

■ "Example: Trim the Temporary LOB Data Using PL/SQL (DBMS_LOB

Package)" on page 4-145

■ "Example: Trim the Temporary LOB Data Using C (OCI)" on page 4-146

■ "Example: Trim the Temporary LOB Data Using COBOL (Pro*COBOL)" on

page 4-148

■ "Example: Trim the Temporary LOB Data Using C++ (Pro*C/C++)" on

page 4-150

Example: Trim the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure trimTempLOB_proc is not part of the
 DBMS_LOB package. */
CREATE OR REPLACE PROCEDURE trimTempLOB_proc IS
 Lob_loc CLOB;
 Amount number;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 TrimAmount number := 100;
BEGIN
 /* Create a temporary LOB: */
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Opening the file is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Populate the temporary LOB with some data: */
 Amount := 32767;
 DBMS_LOB.LOADFROMFILE(Lob_loc, Src_loc, Amount);
 DBMS_LOB.TRIM(Lob_loc,TrimAmount);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
 DBMS_LOB.CLOSE(Src_loc);

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2
Temporary LOBs 4-145

Trim the Temporary LOB Data
 DBMS_LOB.FREETEMPORARY(Lob_loc);
COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Example: Trim the Temporary LOB Data Using C (OCI)
sb4 trim_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *tblob;
 OCILobLocator *bfile;
 ub4 amt = 4000;
 ub4 trim_size = 2;
 sb4 return_code = 0;

 printf("in trim\n");
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in trim\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in trim\n");
 return -1;
 }

 /* Set the BFILE to point to the Washington_audio file: */
 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"),
 (text *)"Washington_audio",
 (ub2)strlen("Washington_audio")))
 {
 printf("OCILobFileSetName FAILED\n");
4-146 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the Temporary LOB Data
 return -1;
 }

 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile\n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp,errhp,tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return_code = -1;
 }

 /* populate the temp LOB with 4000 bytes of data */
 if(OCILobLoadFromFile(svchp, errhp, tblob, (OCILobLocator*)bfile,
 (ub4)amt,(ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;
 }

 if (OCILobTrim(svchp, errhp, (OCILobLocator *) tblob, trim_size))
 {
 printf("OCILobTrim FAILED for temp LOB \n");
 return_code = -1;
 } else
 {
 printf("OCILobTrim succeeded for temp LOB \n");
 }

 if (OCILobClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobClose FAILED for bfile \n");
 return_code = -1;
 }
Temporary LOBs 4-147

Trim the Temporary LOB Data
 if (OCILobClose(svchp, errhp, (OCILobLocator *) tblob))
 {
 printf("OCILobClose FAILED for temporary LOB \n");
 return_code = -1;
 }
 /* Free the temporary LOB now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 return return_code;
}

Example: Trim the Temporary LOB Data Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-TRIM.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-LOB-TRIM.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
4-148 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the Temporary LOB Data
 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Trim the last half of the data:
 MOVE 5 TO AMT.
 EXEC SQL
 LOB TRIM :TEMP-BLOB TO :AMT
 END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
Temporary LOBs 4-149

Trim the Temporary LOB Data
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Trim the Temporary LOB Data Using C++ (Pro*C/C++)
void trimTempLOB_proc()
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void trimTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;
 int trimLength;

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
4-150 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the Temporary LOB Data
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load the specified amount from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 /* Set the new length of the Temporary LOB: */
 trimLength = (int) (Amount / 2);
 /* Trim the Temporary LOB to its new length: */
 EXEC SQL LOB TRIM :Temp_loc TO :trimLength;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 trimTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-151

Erase Part of a Temporary LOB
Erase Part of a Temporary LOB

Figure 4–24 Use Case Diagram: Erase part of a Temporary LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

erase part
of a LOB

free
a temporary

LOB
4-152 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a Temporary LOB
Scenario
■ "Example: Erase Part of a Temporary LOB Using PL/SQL (DBMS_LOB

Package)" on page 4-153

■ "Example: Erase Part of a Temporary LOB Using C (OCI)" on page 4-154

■ "Example: Erase Part of a Temporary LOB Using COBOL (Pro*COBOL)" on

page 4-156

■ "Example: Erase Part of a Temporary LOB Using C++ (Pro*C/C++)" on

page 4-158

Example: Erase Part of a Temporary LOB Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure eraseTempLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE trimTempLOB_proc IS
 Lob_loc CLOB;
 amt number;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 Amount INTEGER := 32767;
BEGIN
 /* Create a temporary LOB: */
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Populate the temporary LOB with some data: */
 Amount := 32767;
 DBMS_LOB.LOADFROMFILE(Lob_loc, Src_loc, Amount);
 /* Erase the LOB data: */
 amt := 3000;
 DBMS_LOB.ERASE(Lob_loc, amt, 2);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.FREETEMPORARY(Lob_loc);
COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;
Temporary LOBs 4-153

Erase Part of a Temporary LOB
Example: Erase Part of a Temporary LOB Using C (OCI)
/* Erase 2 bytes at offset 100 in a temporary LOB: */

sb4 erase_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{

 OCILobLocator *tblob;
 OCILobLocator *bfile;
 ub4 amt = 4000;
 ub4 erase_size = 2;
 ub4 erase_offset = 100;
 sb4 return_code = 0;

 printf("in erase\n");
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED \n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED \n");
 return -1;
 }

 /* Set the BFILE to point to the Washington_audio file: */
 if(OCILobFileSetName(envhp, errhp, &bfile,
 (text *)"AUDIO_DIR",
 (ub2)strlen("AUDIO_DIR"),
 (text *)"Washington_audio",
 (ub2)strlen("Washington_audio")))
 {
 printf("OCILobFileSetName FAILED\n");
 return -1;
 }
4-154 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a Temporary LOB
 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile\n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp,errhp,tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return_code = -1;
 }

 /* Populate the temp LOB with 4000 bytes of data: */
 if(OCILobLoadFromFile(svchp,
 errhp,
 tblob,
 (OCILobLocator*)bfile,
 (ub4)amt,
 (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;

 }

 if (OCILobErase(svchp, errhp, (OCILobLocator *) tblob, &erase_size,
 erase_offset))
 {
 printf("OCILobErase FAILED for temp LOB \n");
 return_code = -1;
 } else
 {
 printf("OCILobErase succeeded for temp LOB \n");
 }

 if (OCILobClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobClose FAILED for bfile \n");
Temporary LOBs 4-155

Erase Part of a Temporary LOB
 return_code = -1;
 }

 if (OCILobClose(svchp, errhp, (OCILobLocator *) tblob))
 {
 printf("OCILobClose FAILED for temporary LOB \n");
 return_code = -1;
 }
 /* free the temporary LOB now that we are done using it */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 return return_code;

}

Example: Erase Part of a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-BLOB-ERASE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 POS PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-BLOB-ERASE.
4-156 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a Temporary LOB
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Erase some of the LOB data:
 EXEC SQL
 LOB ERASE :AMT FROM :TEMP-BLOB AT :POS
 END-EXEC.

 * Close the LOBs
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.
Temporary LOBs 4-157

Erase Part of a Temporary LOB
 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Erase Part of a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void eraseTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount;
 int Position = 1024;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
4-158 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a Temporary LOB
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load a specified amount from the BFILE into the Temporary LOB: */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 /* Erase a specified amount from the Temporary LOB at a given position: */
 Amount = 2048;
 EXEC SQL LOB ERASE :Amount FROM :Temp_loc AT :Position;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 eraseTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-159

Enable LOB Buffering for a Temporary LOB
Enable LOB Buffering for a Temporary LOB

Figure 4–25 Use Case Diagram: Enable LOB Buffering for a Temporary LOB

Scenario
You enable buffering in order to perform a small series of reads or writes. Once you

have completed these tasks, you must disable buffering before you can continue

with any other LOB operations.

Please note that you would not enable buffering to perform the stream read and

write involved in checkin and checkout.

■ "Example: Enable LOB Buffering for a Temporary LOB Using C (OCI)" on

page 4-161

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

enable
buffering

flush
buffer

disable
buffering
4-160 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering for a Temporary LOB
■ "Example: Enable LOB Buffering for a Temporary LOB Using COBOL

(Pro*COBOL)" on page 4-163

■ "Example: Enable LOB Buffering for a Temporary LOB Using C++

(Pro*C/C++)" on page 4-163

Example: Enable LOB Buffering for a Temporary LOB Using C (OCI)
sb4 lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *tblob;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the descriptor for the lob locator: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tblob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf (" create a temporary Lob\n");
 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the BLOB: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }

 /* Enable LOB Buffering: */
Temporary LOBs 4-161

Enable LOB Buffering for a Temporary LOB
 printf (" enable LOB buffering\n");
 checkerr (errhp, OCILobEnableBuffering(svchp, errhp, tblob));

 printf (" write data to LOB\n");

 /* Write data into the LOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);
 offset = 1;
 checkerr (errhp, OCILobWrite (svchp, errhp, tblob, &amt,
 offset, bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Flush the buffer: */
 printf(" flush the LOB buffers\n");
 checkerr (errhp, OCILobFlushBuffer(svchp, errhp, tblob,
 (ub4)OCI_LOB_BUFFER_FREE));

 /* Disable Buffering: */
 printf (" disable LOB buffering\n");
 checkerr (errhp, OCILobDisableBuffering(svchp, errhp, tblob));

 /* Subsequent LOB WRITEs will not use the LOB Buffering Subsystem */

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tblob));

 /* Free the temporary LOB now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tblob, (ub4) OCI_DTYPE_LOB);

 return;

}

4-162 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering for a Temporary LOB
Example: Enable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 BUFFER PIC X(80).
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL VAR BUFFER IS RAW(80) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Enable buffering for the temporary LOB:
 EXEC SQL
 LOB ENABLE BUFFERING :TEMP-BLOB
 END-EXEC.
 *
 * Write some data to the temporary LOB here:
 *
 MOVE '252525262626252525' TO BUFFER.
 EXEC SQL
 LOB WRITE ONE :AMT FROM :BUFFER
 INTO :TEMP-BLOB
 END-EXEC
Temporary LOBs 4-163

Enable LOB Buffering for a Temporary LOB
 * Flush the buffered writes:
 EXEC SQL
 LOB FLUSH BUFFER :TEMP-BLOB FREE
 END-EXEC.

 * Disable buffering for the temporary LOB:
 EXEC SQL
 LOB DISABLE BUFFERING :TEMP-BLOB
 END-EXEC.

 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Enable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
4-164 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering for a Temporary LOB
}

#define BufferLength 1024

void enableBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
 printf("Wrote %d characters using the Buffering Subsystem\n", Length);
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 enableBufferingTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-165

Flush Buffer for a Temporary LOB
Flush Buffer for a Temporary LOB

Figure 4–26 Use Case Diagram: Flush Buffer for a Temporary LOB

Scenario
■ "Example: Flush Buffer for a Temporary LOB Using C (OCI)" on page 4-167

■ "Example: Flush Buffer for a Temporary LOB Using COBOL (Pro*COBOL)" on

page 4-168

■ "Example: Flush Buffer for a Temporary LOB Using C++ (Pro*C/C++)" on

page 4-170

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

disable
buffering

enable
buffering

flush
buffer
4-166 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer for a Temporary LOB
Example: Flush Buffer for a Temporary LOB Using C (OCI)
sb4 lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *tblob;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the descriptor for the lob locator: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tblob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf (" create a temporary Lob\n");
 /* Create a temporary lob :*/
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0,
 SQLCS_IMPLICIT, OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the BLOB: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp lob \n");
 return -1;
 }

 /* Enable LOB Buffering: */
 printf (" enable LOB buffering\n");
 checkerr (errhp, OCILobEnableBuffering(svchp, errhp, tblob));

 printf (" write data to LOB\n");

 /* Write data into the LOB: */
 amt = sizeof(bufp);
Temporary LOBs 4-167

Flush Buffer for a Temporary LOB
 buflen = sizeof(bufp);
 offset = 1;
 checkerr (errhp, OCILobWrite (svchp, errhp, tblob, &amt,
 offset, bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Flush the buffer: */
 printf(" flush the LOB buffers\n");
 checkerr (errhp, OCILobFlushBuffer(svchp, errhp, tblob,
 (ub4)OCI_LOB_BUFFER_FREE));

 /* Disable Buffering: */
 printf (" disable LOB buffering\n");
 checkerr (errhp, OCILobDisableBuffering(svchp, errhp, tblob));

 /* Subsequent LOB WRITEs will not use the LOB Buffering Subsystem */

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tblob));

 /* Free the temporary lob now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tblob, (ub4) OCI_DTYPE_LOB);

 return;

}

Example: Flush Buffer for a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. FREE-TEMPORARY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
4-168 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer for a Temporary LOB
 01 USERID PIC X(11) VALUES "USER1/USER1".

 01 TEMP-BLOB SQL-BLOB.
 01 IS-TEMP PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 FREE-TEMPORARY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.

 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Do something with the temporary LOB here:

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
Temporary LOBs 4-169

Flush Buffer for a Temporary LOB
 END-EXEC.
 STOP RUN.

Example: Flush Buffer for a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void flushBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
4-170 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer for a Temporary LOB
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
 printf("Wrote %d characters using the Buffering Subsystem\n", Length);
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 flushBufferingTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-171

Disable LOB Buffering for a Temporary LOB
Disable LOB Buffering for a Temporary LOB

Figure 4–27 Use Case Diagram: Disable LOB Buffering

Scenario
You enable buffering in order to perform a small series of reads or writes. Once you

have completed these tasks, you must disable buffering before you can continue

with any other LOB operations.

Please note that you would not enable buffering to perform the stream read and

write involved in checkin and checkout.

■ "Example: Disable LOB Buffering Using C (OCI)" on page 4-173

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

■ "Use Case Model: Internal Temporary LOBs" on page 4-2

Internal temporary LOBs

User/
Program

flush
buffer

disable
buffering

enable
buffering
4-172 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering for a Temporary LOB
■ "Example: Disable LOB Buffering for a Temporary LOB Using COBOL

(Pro*COBOL)" on page 4-175

■ "Example: Disable LOB Buffering for a Temporary LOB Using C++

(Pro*C/C++)" on page 4-176

Example: Disable LOB Buffering Using C (OCI)
sb4 lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *tblob;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the descriptor for the lob locator: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tblob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf (" create a temporary Lob\n");
 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp,errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the BLOB: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }
Temporary LOBs 4-173

Disable LOB Buffering for a Temporary LOB
 /* Enable LOB Buffering: */
 printf (" enable LOB buffering\n");
 checkerr (errhp, OCILobEnableBuffering(svchp, errhp, tblob));

 printf (" write data to LOB\n");

 /* Write data into the LOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);
 offset = 1;
 checkerr (errhp, OCILobWrite (svchp, errhp, tblob, &amt,
 offset, bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Flush the buffer: */
 printf(" flush the LOB buffers\n");
 checkerr (errhp, OCILobFlushBuffer(svchp, errhp, tblob,
 (ub4)OCI_LOB_BUFFER_FREE));

 /* Disable Buffering: */
 printf (" disable LOB buffering\n");
 checkerr (errhp, OCILobDisableBuffering(svchp, errhp, tblob));

 /* Subsequent LOB WRITEs will not use the LOB Buffering Subsystem */

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tblob));

 /* Free the temporary LOB now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tblob, (ub4) OCI_DTYPE_LOB);

 return;

}

4-174 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering for a Temporary LOB
Example: Disable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 BUFFER PIC X(80).
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL VAR BUFFER IS RAW(80) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Enable buffering for the temporary LOB:
 EXEC SQL
 LOB ENABLE BUFFERING :TEMP-BLOB
 END-EXEC.

 * Write some data to the temporary LOB here:

 MOVE '252525262626252525' TO BUFFER.
 EXEC SQL
 LOB WRITE ONE :AMT FROM :BUFFER
 INTO :TEMP-BLOB
 END-EXEC
Temporary LOBs 4-175

Disable LOB Buffering for a Temporary LOB
 * Flush the buffered writes:
 EXEC SQL
 LOB FLUSH BUFFER :TEMP-BLOB FREE
 END-EXEC.

 * Disable buffering for the temporary LOB:
 EXEC SQL
 LOB DISABLE BUFFERING :TEMP-BLOB
 END-EXEC.

 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Disable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
4-176 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering for a Temporary LOB
}

#define BufferLength 1024

void disableBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 7; multiple++)
 {
 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
 /* Write APPEND can only be done when Buffering is Disabled: */
 EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Temp_loc;
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
 printf("Wrote a total of %d characters\n", Length);
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 disableBufferingTempLOB_proc();
Temporary LOBs 4-177

Disable LOB Buffering for a Temporary LOB
 EXEC SQL ROLLBACK WORK RELEASE;
}

4-178 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

External LOBs (BF
5

External LOBs (BFILEs)

In this chapter we describe how to work with External LOBs (BFILE s) in terms of

use cases. That is, we discuss each operation on a LOB (such as "See If a Temporary

LOB is Open") in terms of a use case by that name. The table listing all the use cases

is provided at the head of the chapter (see "Use Case Model: External LOBs" on

page 5-2). A summary figure, "Use Case Model Diagram: External LOBs", locates all

the use cases in single drawing. If you are using the HTML version of this

document, you can use this figure to navigate to the use case in which you are

interested by clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

■ A figure that depicts the use case (see "Preface" for a description of how to

interpret these diagrams).

■ A scenario that portrays one implementation of the use case in terms of the

hypothetical multimedia application described above (see "An Example

Application" on page 1-39 in Chapter 1, "Introduction to Working With LOBs").

■ Code examples in each of the programmatic environments which can be

utilized to implement the use case (see "Programmatic Environments for

Operating on LOBs" on page 1-9 in Chapter 1, "Introduction to Working With

LOBs").
ILEs) 5-1

Use Case Model: External LOBs
Use Case Model: External LOBs

Table 5–1 Use Case Model: External LOBs

Use Case and Page

"Three Ways to Create a Table Containing a BFILE" on page 5-12

CREATE a Table Containing a BFILE on page 5-13

CREATE a Table of an Object Type with a BFILE Attribute on page 5-16

CREATE a Table with a Nested Table Containing a BFILE on page 5-19 on page 5-19

Three Ways to Insert a Row Containing a BFILE on page 5-21

INSERT a Row by means of BFILENAME() on page 5-22

INSERT a Row Containing a BFILE as SELECT on page 5-29

INSERT a Row Containing a BFILE by Initializing a BFILE Locator on page 5-30

Load External LOB (BFILE) Data into a Table on page 5-38

Load a LOB with Data from a BFILE on page 5-41

Two Ways to Open a BFILE on page 5-51

Open a BFILE with FILEOPEN on page 5-53

Open a BFILE with OPEN on page 5-59

Two Ways to See If a BFILE is Open on page 5-67

See If the BFILE is Open with FILEISOPEN on page 5-69

See If the BFILE is Open Using ISOPEN on page 5-74

Display the BFILE Data on page 5-82

Read the Data from a BFILE on page 5-93

Read a Portion of the BFILE Data (substr) on page 5-103

Compare All or Parts of Two BFILES on page 5-110

See If a Pattern Exists (instr) in the BFILE on page 5-119

See If the BFILE Exists on page 5-127

Get the Length of a BFILE on page 5-136

Copy a LOB Locator for a BFILE on page 5-145

See If a LOB Locator for a BFILE Is Initialized on page 5-153

See If One LOB Locator for a BFILE Is Equal to Another on page 5-156
5-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: External LOBs
Get Directory Alias and Filename on page 5-161

Three Ways to Update a Row Containing a BFILE on page 5-169

UPDATE a BFILE Using BFILENAME() on page 5-170

UPDATE a BFILE as SELECT on page 5-173

UPDATE a BFILE by Initializing a BFILE Locator on page 5-174

Two Ways to Close a BFILE on page 5-182

Close a BFILE with FILECLOSE on page 5-184

Close a BFILE with CLOSE on page 5-189

Close All Open BFILEs on page 5-197

DELETE the Row of a Table Containing a BFILE on page 5-205

Use Case and Page
External LOBs (BFILEs) 5-3

Use Case Model: External LOBs
Figure 5–1 Use Case Model Diagram: External LOBs

b

a

b
c

a
CREATE

a table
(BFILE)

User/
Program

User/
Program

read a
portion of the
BFILE data

(substr)

load a LOB
with data from

a BFILE

see where/if
a pattern exists

in the BFILE
(instr)

compare all
or parts of 2

BFILE

read data
from the BFILE

display the
BFILE data

SELECT
a LOB

see if the
BFILE is open

get the length
of the BFILE

see if the
BFILE exists

OR

b
c

a

b
c

a

DELETE
the row

INSERT
a row

UPDATE
a BFILE with a

diff. OS file

see
if locator

is initialized

get directory
alias and
filename

copy
LOB

locator

see
if locators
are equal

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR

Load
initial data into

LOB

Initialize
a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE
5-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: External LOBs
Accessing External LOBs (SQL DML)

Directory Object
The DIRECTORY object enables administering the access and usage of BFILE s in an

Oracle Server (see the CREATE DIRECTORYcommand in the Oracle8i SQL Reference).
A DIRECTORY specifies a logical alias name for a physical directory on the server’s

filesystem under which the file to be accessed is located. You can access a file in the

server’s filesystem only if granted the required access privilege on the DIRECTORY
object.

The DIRECTORY object also provides the flexibility to manage the locations of the

files, instead of forcing you to hardcode the absolute pathnames of the physical files

in your applications. A DIRECTORY alias is used in conjunction with the

BFILENAME() function (in SQL and PL/SQL), or the OCILobFileSetName () (in

OCI) for initializing a BFILE locator.

Initializing BFILES using BFILENAME()
In order to associate an operating system file to a BFILE , it is necessary to first

create a DIRECTORY object which is an alias for the full pathname to the operating

system file.

You use Oracle SQL DML to associate existing operating system files with the

relevant database records of a particular table. You can use the SQL INSERT
statement to initialize a BFILE column to point to an existing file in the server’s

filesystem, and you can use a SQL UPDATE statement to change the reference target

of the BFILE . You can also initialize a BFILE to NULL and then update it later to

refer to an operating system file via the BFILENAME() function. OCI users can also

use OCILobFIleSetName () to initialize a BFILE locator variable that is then used

in the VALUES clause of an INSERT statement.

For example, the following statements associate the files Image1.gif and image2.gif
with records having key_value of 21 and 22 respectively. ’IMG’ is a DIRECTORY

Note: Oracle does not verify that the directory and pathname you

specify actually exist. You should take care to specify a valid

directory in your operating system. If your operating system uses

case-sensitive pathnames, be sure you specify the directory in the

correct format. There is no need to specify a terminating slash (e.g.,

/tmp/ is not necessary, simply use /tmp).
External LOBs (BFILEs) 5-5

Use Case Model: External LOBs
object that represents the physical directory under which Image1.dif and image2.dif
are stored.

INSERT INTO Lob_table VALUES
 (21, BFILENAME(’IMG’, ’Image1.gif’));
 INSERT INTO Lob_table VALUES
 (22, BFILENAME(’IMG’, ’image2.gif’));

The UPDATE statement below changes the target file to image3.gif for the row with

key_value 22.

 UPDATE Lob_table SET f_lob = BFILENAME(’IMG’, ’image3.gif’)
 WHERE Key_value = 22;

BFILENAME() is a built-in function that is used to initialize the BFILE column to

point to the external file.

Once physical files are associated with records using SQL DML, subsequent read

operations on the BFILE can be performed using PL/SQL DBMS_LOB package and

OCI. However, these files are read-only when accessed through BFILES , and so

they cannot be updated or deleted through BFILES .

As a consequence of the reference-based semantics for BFILEs , it is possible to have

multiple BFILE columns in the same record or different records referring to the

same file. For example, the UPDATE statements below set the BFILE column of the

row with key_value 21 in lob_table to point to the same file as the row with

key_value 22.

UPDATE lob_table
 SET f_lob = (SELECT f_lob FROM lob_table WHERE key_value = 22)
 WHERE key_value = 21;

You should think of BFILENAME() in terms of initialization — it can initialize the

value for both a BFILE column and that of a BFILE (automatic) variable declared

inside a PL/SQL module. This has the unique advantage that if your need for a

particular BFILE is temporary, and scoped just within the module on which you are

working, you can utilize the BFILE related APIs on the variable without ever

Note: You may need to set up data structures similar to the

following for certain examples to work:

CREATE TABLE Lob_table (
 Key_value NUMBER NOT NULL,
 F_lob BFILE)
5-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: External LOBs
having to associate this with a column in the database. There is a further advantage

as well. Since you are not forced to create a BFILE column in a server side table,

initialize this column value, and then retrieve this column value via a SELECT, you

save a roundtrip to the server.

For more information, refer to the example given for DBMS_LOB.LOADFROMFILE
(see "Load a LOB with Data from a BFILE" on page 5-41). The OCI counterpart for

BFILENAME() is OCILobFileSetName (), which can be used in a similar fashion.

DIRECTORY Name Specification
The naming convention for DIRECTORY objects is the same as that done for tables

and indexes. That is, normal identifiers are interpreted in uppercase, but delimited

identifiers are interpreted as is. For example, the following statement

CREATE DIRECTORY scott_dir AS '/usr/home/scott';

creates a directory object whose name is ’SCOTT_DIR’ (in uppercase). But if a

delimited identifier is used for the DIRECTORY name, as shown in the following

statement

CREATE DIRECTORY "Mary_Dir" AS '/usr/home/mary';

the directory object’s name is ’Mary_Dir ’. Use ’SCOTT_DIR’ and ’Mary_Dir ’

when calling BFILENAME(). For example:

BFILENAME(’SCOTT_DIR’, ’afile’)
BFILENAME(’Mary_Dir’, ’afile’)

BFILE Security
This section introduces the BFILE security model and the associated SQL DDL and

DML. The main features for BFILE security are:

■ SQL DDL to CREATE and REPLACE/ALTER a DIRECTORY object.

■ SQL DML to GRANT and REVOKE the READ system and object privileges on

DIRECTORY objects.

Ownership and Privileges
The DIRECTORY is a system owned object. For more information on system owned

objects, see Oracle8i SQL Reference. Oracle8i supports two new system privileges,

which are granted only to the DBA account:
External LOBs (BFILEs) 5-7

Use Case Model: External LOBs
■ CREATE ANY DIRECTORY — for creating or altering the directory object creation

■ DROP ANY DIRECTORY — for deleting the directory object

The READ privilege on the DIRECTORY object allows you to read files located under

that directory. The creator of the DIRECTORY object automatically earns the READ
privilege. If you have been granted the READprivilege with GRANToption, you may

in turn grant this privilege to other users/roles and add them to your privilege

domains.

It is important to note that the READ privilege is defined only on the DIRECTORY
object. The physical directory that it represents may or may not have the

corresponding operating system privileges (read in this case) for the Oracle Server

process. It is the DBA’s responsibility to ensure that the physical directory exists,

and read permission for the Oracle Server process is enabled on the file, the

directory, and the path leading to it. It is also the DBA’s responsibility to make sure

that the directory remains available, and the read permission remains enabled, for

the entire duration of file access by database users.

The privilege just implies that as far as the Oracle Server is concerned, you may

read from files in the directory. These privileges are checked and enforced by the

PL/SQL DBMS_LOB package and OCI APIs at the time of the actual file operations.

SQL DDL for BFILE security
Refer to the Oracle8i SQL Reference for information about the following SQL DDL

commands that create, replace, and drop directory objects:

■ CREATE DIRECTORY

■ DROP DIRECTORY

SQL DML for BFILE security
Refer to the Oracle8i SQL Reference for information about the following SQL DML

commands that provide security for BFILE s:

■ GRANT (system privilege)

WARNING: Because the CREATE ANY DIRECTORY and DROP ANY
DIRECTORY privileges potentially expose the server filesystem to
all database users, the DBA should be prudent in granting these
privileges to normal database users to prevent any accidental or
malicious security breach.
5-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: External LOBs
■ GRANT (object privilege)

■ REVOKE (system privilege)

■ REVOKE (object privilege)

■ AUDIT (new statements)

■ AUDIT (schema objects)

Catalog Views on Directories
Catalog views are provided for directory objects to enable users to view object

names and their corresponding paths and privileges. The supported views are:

■ ALL_DIRECTORIES (OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all the directories accessible to the user.

■ DBA_DIRECTORIES(OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all the directories specified for the entire database.

Guidelines for DIRECTORY Usage
The main goal of the DIRECTORY feature is to enable a simple, flexible,

non-intrusive, yet secure mechanism for the DBA to manage access to large files in

the server filesystem. But to realize this goal, it is very important that the DBA

follow these guidelines when using directory objects:

■ A DIRECTORY should not be mapped to physical directories which contain

Oracle data files, control files, log files, and other system files. Tampering with

these files (accidental or otherwise) could potentially corrupt the database or

the server operating system.

■ The system privileges such as CREATE ANY DIRECTORY (granted to the DBA

initially) should be used carefully and not granted to other users

indiscriminately. In most cases, only the database administrator should have

these privileges.

■ Privileges on directory objects should be granted to different users carefully.

The same holds for the use of the WITH GRANT OPTION clause when granting

privileges to users.

■ DIRECTORY objects should not be arbitrarily dropped or replaced when the

database is in operation. If this were to happen, DBMS_LOB or OCI operations

from all sessions on all files associated with this directory object will fail. Further,
External LOBs (BFILEs) 5-9

Use Case Model: External LOBs
if a DROP or REPLACE command is executed before these files could be

successfully closed, the references to these files will be lost in the programs, and

system resources associated with these files will not be released until the

session(s) is shutdown.

The only recourse left to PL/SQL users, for example, will be to either execute a

program block that calls DBMS_LOB.FILECLOSEALL() and restart their file

operations, or exit their sessions altogether. Hence, it is imperative that you use

these commands with prudence, and preferably during maintenance

downtimes.

■ Similarly, revoking an user’s privilege on a directory using the REVOKE
statement causes all subsequent operations on dependent files from the user’s

session to fail. Either you must re-acquire the privileges to close the file, or

execute a FILECLOSEALL() in the session and restart the file operations.

In general, using DIRECTORY objects for managing file access is an extension of

system administration work at the operating system level. With some planning, files

can be logically organized into suitable directories that have read privileges for the

Oracle process, DIRECTORYobjects can be created with READprivileges that map to

these physical directories, and specific database users granted access to these

directories.

BFILEs in Multi-Threaded Server (MTS) Mode
Oracle8i does not support session migration for BFILE s in MTS mode. This implies

that operations on open BFILE s can persist beyond the end of a call to an MTS

server. Sessions involving BFILE operations need to be bound to one shared server,

they cannot migrate from one server to another.

External LOB Locators (BFILE Locators)
For BFILE s, the value is stored in a server-side operating system file; i.e., external to

the database. The BFILE locator that refers to that file is stored in the row. If a

BFILE locator variable that is used in a DBMS_LOB.FILEOPEN() (for example L1) is

assigned to another locator variable, (for example L2), both L1 and L2 point to the

same file. This means that two rows in a table with a BFILE column can refer to the

same file or to two distinct files — a fact that the canny developer might turn to

advantage, but which could well be a pitfall for the unwary.

A BFILE locator variable in a PL/SQL or OCI program behaves like any other

automatic variable. With respect to file operations, it behaves like a file descriptor
available as part of the standard I/O library of most conventional programming

languages. This implies that once you define and initialize a BFILE locator, and
5-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: External LOBs
open the file pointed to by this locator, all subsequent operations until the closure of

this file must be done from within the same program block using this locator or

local copies of this locator.

The BFILE locator variable can be used, just as any scalar, as a parameter to other

procedures, member methods, or external function callouts. However, it is

recommended that you open and close a file from the same program block at the

same nesting level, in PL/SQL and OCI programs.

If the object contains a BFILE , you must set the BFILE value before flushing the

object to the database, thereby inserting a new row. In other words, you must call

OCILobFileSetName () after OCIObjectNew () and before OCIObjectFlush (). It

is an error to INSERT/UPDATE a BFILE without indicating a directory alias and

filename.

This rule also applies to users using an OCI bind variable for a BFILE in an

insert/update statement. The OCI bind variable must be initialized with a directory

alias and filename before issuing the insert or update statement. Note that

OCISetAttr () does not allow the user to set a BFILE locator to NULL.

General rule: Before using SQL to insert or update a row with a BFILE , the user

must either initialize the BFILE

■ to NULL (not possible if using an OCI bind variable) or

■ to a directory alias and filename
External LOBs (BFILEs) 5-11

Three Ways to Create a Table Containing a BFILE
Three Ways to Create a Table Containing a BFILE

Figure 5–2 Use Case Diagram: Three Ways to Create a Table Containing a BFILE

It is possible to incorporate BFILE s into tables in three ways.

a. BFILEs may be columns in a table — see "CREATE a Table of an Object

Type with a BFILE Attribute" on page 5-13

b. BFILEs may be attributes of an object type — see "CREATE a Table of an

Object Type with a BFILE Attribute" on page 5-16

c. BFILEs may be contained within a nested table — see "CREATE a Table

with a Nested Table Containing a BFILE" on page 5-19

In all cases SQL DDL is used — to define BFILE columns in a table and BFILE
attributes in an object type.

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

b
c

a

External LOBs

CREATE
a table
(BFILE)

User/
Program
5-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing a BFILE
CREATE a Table Containing a BFILE

Figure 5–3 Use Case Diagram: CREATE a table containing a BFILE

Scenario
The heart of our hypothetical application is the table Multimedia_tab . The varied

types which make up the columns of this table make it possible to collect together

the many different kinds multimedia elements used in the composition of clips.

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

CREATE
a table (BFILE

columns)

User/
Program

a CREATE table with one or more BFILEs
External LOBs (BFILEs) 5-13

CREATE a Table Containing a BFILE
Example: Create a Table Containing a BFILE Using SQL DDL

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT system/manager;
DROP USER samp CASCADE;
DROP DIRECTORY AUDIO_DIR;
DROP DIRECTORY FRAME_DIR;
DROP DIRECTORY PHOTO_DIR;

CREATE USER samp identified by samp;
GRANT CONNECT, RESOURCE to samp;
CREATE DIRECTORY AUDIO_DIR AS ’/tmp/’;
CREATE DIRECTORY FRAME_DIR AS ’/tmp/’;
CREATE DIRECTORY PHOTO_DIR AS ’/tmp/’;
GRANT READ ON DIRECTORY AUDIO_DIR to samp;
GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;

CREATE TABLE VoiceoverLib_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT TakeLib CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);
CONNECT samp/samp
CREATE TABLE a_table (blob_col BLOB);
CREATE TYPE Voiced_typ AS OBJECT (
 Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE);
5-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing a BFILE
Because you can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS_LOB package.

CREATE TABLE Multimedia_tab (
 Clip_ID NUMBER NOT NULL,
 Story CLOB default EMPTY_CLOB(),
 FLSub NCLOB default EMPTY_CLOB(),
 Photo BFILE default NULL,
 Frame BLOB default EMPTY_BLOB(),
 Sound BLOB default EMPTY_BLOB(),
 Voiced_ref REF Voiced_typ,
 InSeg_ntab InSeg_tab,
 Music BFILE default NULL,
 Map_obj Map_typ
) NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

Note (continued):
CREATE TYPE InSeg_typ AS OBJECT (
 Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB);

CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;

CREATE TYPE Map_typ AS OBJECT (
 Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE);
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL);
External LOBs (BFILEs) 5-15

CREATE a Table of an Object Type with a BFILE Attribute
CREATE a Table of an Object Type with a BFILE Attribute

Figure 5–4 Use Case Diagram: CREATE a table containing a BFILE

Scenario
As shown in the diagram, you must create the object type that contains the BFILE
attributes before you can proceed to create a table that makes use of that object type.

Our example application contains examples of two different ways in which object

types can contain BFILEs :

■ Multimedia_tab contains a column Voiced_ref that references row objects

in the table VoiceOver_tab which is based on the type Voiced_typ . This

type contains two kinds of LOBs — a CLOB to store the script that’s read by the

actor, and a BFILE to hold the audio recording.

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

CREATE
a table

(Object Type)

User/
Program

b CREATE table with an object
type containing a BFILE

CREATE
Object Type
5-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table of an Object Type with a BFILE Attribute
■ The table Multimedia_tab contains a column Map_obj that contains column

objects of the type Map_typ. This type utilizes the BFILE datatype for storing

aerial pictures of the region.

Example: Create a Table of an Object Type with a BFILE Attribute Using SQL DDL
/* Create type Voiced_typ as a basis for tables that can contain recordings of
 voice-over readings using SQL DDL: */
CREATE TYPE Voiced_typ AS OBJECT
(
 Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE
);

/* Create table Voiceover_tab Using SQL DDL: */
CREATE TABLE Voiceover_tab OF Voiced_typ
(
 Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

/* Create Type Map_typ using SQL DDL as a basis for the table that will contain
 the column object: */
CREATE TYPE Map_typ AS OBJECT (
 Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE
);

/* Create support table MapLib_tab as an archive of maps using SQL DDL: */
CREATE TABLE Map_tab of MapLib_typ;
External LOBs (BFILEs) 5-17

CREATE a Table of an Object Type with a BFILE Attribute
For more information see:

— Oracle8i SQL Reference for a complete specification of the syntax

for using LOBs in the DDL commands CREATE TYPE and ALTER
TYPE with BLOB, CLOB, and BFILE attributes (noting that NCLOBs
cannot be attributes of an object type).
5-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table with a Nested Table Containing a BFILE
CREATE a Table with a Nested Table Containing a BFILE

Figure 5–5 Use Case Diagram: CREATE a Table with a Nested Table Containing a
BFILE

Scenario
As shown in the diagram, you must create the object type that contains the BFILE

attributes before you can proceed to create a nested table based on that object type.

In our example, Multimedia_tab contains a nested table Inseg_ntab that is

based on the type InSeg_typ . This type makes use of two LOB datatypes — a

BFILE for audio recordings of the interviews, and a CLOB should the user wish to

make transcripts of the recordings.

We have already described how to create a table with BFILE columns (see "CREATE

a Table Containing a BFILE" on page 5-13), so here we only describe the SQL DDL

syntax the creating the underlying type:

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

CREATE
a table

(Nested Table)

User/
Program

c CREATE table with a nested
table containing one or
more BFILEs

CREATE
Object Type
External LOBs (BFILEs) 5-19

CREATE a Table with a Nested Table Containing a BFILE
Example: Create a Table with a Nested Table Containing a BFILE Using SQL DDL
Because you use SQL DDL directly to create a table, the DBMS_LOB package is not

relevant.

CREATE TYPE InSeg_typ AS OBJECT
(
 Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB
);

The actual embedding of the nested table is accomplished when the structure of the

containing table is defined. In our example, this is effected by means of the

following statement at the time that Multimedia_tab is created.

NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;
5-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways to Insert a Row Containing a BFILE
Three Ways to Insert a Row Containing a BFILE

Figure 5–6 Use Case Diagram: Three Ways to Insert a Row Containing a BFILE

Note that before you insert, you must initialize the BFILE either to NULL or to a

directory alias and filename.

a. "INSERT a Row by means of BFILENAME()" on page 5-22

b. "INSERT a Row Containing a BFILE as SELECT" on page 5-30

c. "INSERT a Row Containing a BFILE by Initializing a BFILE Locator" on

page 5-30

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

b
c

a
INSERT

a row
External LOBs (BFILEs) 5-21

INSERT a Row by means of BFILENAME()
INSERT a Row by means of BFILENAME()

Figure 5–7 Use Case Diagram: INSERT a Row by means of BILENAME()

External LOBs

User/
Program

BFILENAME()

a INSERT using BFILENAME()INSERT
a row
5-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by means of BFILENAME()
Scenario
The BFILENAME() function should be called as part of a SQL INSERT to initialize a

BFILE column or attribute for a particular row by associating it with a physical file

in the server’s filesystem.

The DIRECTORY object represented by the directory_alias parameter to this

function need not already be defined using SQL DDL before the BFILENAME()
function is called in SQL DML or a PL/SQL program. However, the directory object

and operating system file must exist by the time you actually use the BFILE locator

(for example, as having been used as a parameter to an operation such as

OCILobFileOpen() , DBMS_LOB.FILEOPEN() , OCILobOpen() , or DBMS_
LOB.OPEN()) .

Note that BFILENAME() does not validate privileges on this DIRECTORY object, or

check if the physical directory that the DIRECTORY object represents actually exists.

These checks are performed only during file access using the BFILE locator that

was initialized by the BFILENAME() function.

You can use BFILENAME() as part of a SQL INSERT and UPDATE statement to

initialize a BFILE column. You can also use it to initialize a BFILE locator variable

in a PL/SQL program, and use that locator for file operations. However, if the

corresponding directory alias and/or filename does not exist, then PL/SQL DBMS_
LOB routines that use this variable will generate errors.

The directory_alias parameter in the BFILENAME() function must be specified

taking case-sensitivity of the directory name into consideration.

Example: Insert a Row by means of BFILENAME() Using SQL
/* Note that this is the same insert statement as applied to internal persistent

LOBs but with the BFILENAME() function added to initialize the BFILE columns:
*/

INSERT INTO Multimedia_tab VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(),

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

See Also: "DIRECTORY Name Specification". on page 5-7
External LOBs (BFILEs) 5-23

INSERT a Row by means of BFILENAME()
 BFILENAME(’PHOTO_DIR’, ’LINCOLN_PHOTO’),
 EMPTY_BLOB(), EMPTY_BLOB(),
 VOICED_TYP(’Abraham Lincoln’, EMPTY_CLOB(),

’James Earl Jones’, 1, NULL),
 NULL, BFILENAME(’AUDIO_DIR’,
 ’LINCOLN_AUDIO’),
 MAP_TYP(’Gettysburg’, 23, 34, 45, 56,
 EMPTY_BLOB(), NULL));

Example: Insert a Row by means of BFILENAME() Using C (OCI)
/* Insert a row using BFILENAME: */
void insertUsingBfilename(svchp, stmthp, errhp)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
{
 text *insstmt =
 (text *) "INSERT INTO Multimedia_tab VALUES (3, EMPTY_CLOB(),
 EMPTY_CLOB(), BFILENAME(’PHOTO_DIR’, ’Lincoln_photo’),
 EMPTY_BLOB(), EMPTY_BLOB(),
 VOICED_TYP(’Abraham Lincoln’, EMPTY_CLOB(),
 ’James Earl Jones’, 1, NULL),
 NULL, BFILENAME(’AUDIO_DIR’, ’Lincoln_audio’),
 MAP_TYP(’Gettysburg’, 23, 34, 45, 56, EMPTY_BLOB(), NULL))";

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
 /* Execute the SQL statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

Example: Insert a Row by means of BFILENAME() Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-INSERT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
5-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by means of BFILENAME()
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-INSERT.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 EXEC SQL
 INSERT INTO MULTIMEDIA_TAB (CLIP_ID, PHOTO)
 VALUES (1, BFILENAME('PHOTO_DIR', 'LINCOLN_PHOTO'))
 END-EXEC.

 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Insert a Row by means of BFILENAME() Using C++ (Pro*C/C++)
#include <oci.h>
External LOBs (BFILEs) 5-25

INSERT a Row by means of BFILENAME()
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILENAMEInsert_proc()
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 /* Delete any existing row: */
 EXEC SQL DELETE FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Insert a new row using the BFILENAME() function for BFILEs: */
 EXEC SQL INSERT INTO Multimedia_tab
 VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(),
 BFILENAME('PHOTO_DIR', 'Lincoln_photo'),
 EMPTY_BLOB(), EMPTY_BLOB(), NULL,
 InSeg_tab(InSeg_typ(1, NULL, 'Ted Koppell', 'Abraham Lincoln',
 BFILENAME('AUDIO_DIR', 'Lincoln_audio'),
 EMPTY_CLOB())),
 BFILENAME('AUDIO_DIR', 'Lincoln_audio'),
 Map_typ('Moon Mountain', 23, 34, 45, 56, EMPTY_BLOB(),
 BFILENAME('PHOTO_DIR', 'Lincoln_photo')));
 printf("Inserted %d row\n", sqlca.sqlerrd[2]);
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILENAMEInsert_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Insert a Row by means of BFILENAME() Using Visual Basic (OO4O)
Dim OraDyn as OraDynaset, OraPhoto as OraBFile, OraMusic as OraBFile

Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
5-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by means of BFILENAME()
Set OraMusic = OraDyn.Fields("Music") .Value
Set OraPhoto = OraDyn.Fields("Photo") .Value
OraDyn.AddNew

OraDyn.Fields("Clip_ID").value = 1
OraDyn.Fields("Story").value = Empty ’This is equivalent to EMPTY_BLOB() in SQL
OraDyn.Fields("FLSub").value = Empty
’ Initialize BFile Data:
OraPhoto.Directory = "PHOTO_DIR"
OraPhoto.FileName = "LINCOLN_PHOTO"
OraDyn.Fields("Frame").Value = Empty
OraDyn.Fields("Sound").Value = Empty
’ Initialize BFile Data:
OraMusic.Directory Name = "AUDIO_DIR"
OraMusic.FileName = "LINCOLN_AUDIO"
OraDyn.Edit
OraDyn.Update
’Add the row to the table

Example: Insert a Row by means of BFILENAME() Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_21
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
External LOBs (BFILEs) 5-27

INSERT a Row by means of BFILENAME()
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {

 stmt.execute("INSERT INTO multimedia_tab
 VALUES (99, EMPTY_CLOB(), EMPTY_CLOB(),
 BFILENAME ('PHOTO_DIR','Lincoln_photo'),
 EMPTY_BLOB(), EMPTY_BLOB(),
 (SELECT REF(Vref) FROM Voiceover_tab Vref
 WHERE Actor = 'James Earl Jones'), NULL,
 BFILENAME('AUDIO_DIR', 'Lincoln_audio'),
 MAP_TYP('Gettysburg', 23, 34, 45, 56, EMPTY_BLOB(), NULL))");

 // Commit the transaction:
 conn.commit();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by means of BFILENAME()
INSERT a Row Containing a BFILE as SELECT

Figure 5–8 Use Case Diagram: INSERT a Row Containing a BFILE as SELECT

Scenario
With regard to LOBs, one of the advantages of utilizing an object-relational

approach is that you can define a type as a common template for related tables. For

instance, it makes sense that both the tables that store archival material and the

working tables that use those libraries share a common structure. The following

code fragment is based on the fact that a library table VoiceoverLib_tab is of the

same type (Voiced_typ) as Voiceover_tab referenced by the Voiced_ref
column of the Multimedia_tab table. It inserts values from the library table into

Multimedia_tab by means of a SELECT operation.

Example: Insert a Row Containing a BFILE as Select Using SQL
 INSERT INTO Voiceover_tab
 (SELECT * from VoiceoverLib_tab
 WHERE Take = 12345);

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

SELECT
a BFILE

INSERT
a row b INSERT as SELECT
External LOBs (BFILEs) 5-29

INSERT a Row Containing a BFILE by Initializing a BFILE Locator
INSERT a Row Containing a BFILE by Initializing a BFILE Locator

Figure 5–9 Use Case Diagram: INSERT a Row by Initializing a BFILE Locator

External LOBs

User/
Program

BFILENAME
OCI LOB File

Set Name

SELECT
a BFILE

OR

INSERT
a row

Initialize
a BFILE locator

c INSERT by Initializing BFILE locator
5-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a BFILE by Initializing a BFILE Locator
Scenario
Note that you must initialize the BFILE locator bind variable to a directory alias

and filename before issuing the insert statement. In this case we insert a Photo
from an operating system source file (PHOTO_DIR).

■ "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator

Using PL/SQL" on page 5-31

■ "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator

Using C (OCI)" on page 5-31

■ "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator

Using C (OCI)" on page 5-31

■ "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator

Using C++ (Pro*C/C++)" on page 5-34

■ "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator

Using Visual Basic (OO4O)" on page 5-35

■ "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator

Using Java (JDBC)" on page 5-35

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using
PL/SQL

DECLARE
 /* Initialize the BFILE locator: */
 Lob_loc BFILE := BFILENAME(’PHOTO_DIR’, ’Washington_photo’);
BEGIN
 INSERT INTO Multimedia_tab (Clip_ID, Photo) VALUES (3, Lob_loc);
 COMMIT;
END;

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
External LOBs (BFILEs) 5-31

INSERT a Row Containing a BFILE by Initializing a BFILE Locator
(OCI)
/* Insert a row using BFILE Locator: */
void insertUsingBfileLocator(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 text *insstmt =
 (text *) "INSERT INTO Multimedia_tab (Clip_ID, Photo)
 VALUES (3, :Lob_loc)";
 OCIBind *bndhp;
 OCILobLocator *Lob_loc;
 OraText *Dir = (OraText *)"PHOTO_DIR", *Name = (OraText *)"Washington_photo";

 /* Prepare the SQL statement: */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

* Allocate Locator resources: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_FILE, (size_t) 0, (dvoid **) 0))

 checkerr (errhp, OCILobFileSetName(envhp, errhp, &Lob_loc,
 Dir, (ub2)strlen((char *)Dir),
 Name,(ub2)strlen((char *)Name)));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &Lob_Loc, (sb4) 0, SQLT_BFILE,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement: */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

/* Free LOB resources: */
 OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_FILE);
}

5-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a BFILE by Initializing a BFILE Locator
Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using
COBOL (Pro*COBOL)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-INSERT-INIT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-INSERT-INIT.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Set up the directory and file information:
 MOVE "PHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_photo" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 * Set the directory alias and filename in locator:
 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.
External LOBs (BFILEs) 5-33

INSERT a Row Containing a BFILE by Initializing a BFILE Locator
 EXEC SQL
 INSERT INTO MULTIMEDIA_TAB (CLIP_ID, PHOTO)
 VALUES (6, :SRC-BFILE)
 END-EXEC.

 EXEC SQL COMMIT WORK END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C++
(Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertBFILELocator_proc()
{
 OCIBFileLocator *Lob_loc;
 char *Dir = "PHOTO_DIR", *Name = "Washington_photo";
5-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a BFILE by Initializing a BFILE Locator
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the input Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 /* Set the Directory and Filename in the Allocated (Initialized) Locator: */
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 EXEC SQL INSERT INTO Multimedia_tab (Clip_ID, Photo) VALUES (4, :Lob_loc);
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 insertBFILELocator_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using
Visual Basic (OO4O)

Dim OraDyn as OraDynaset, OraPhoto as OraBFile, OraMusic as OraBFile

Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value
Set OraPhoto = OraDyn.Fields("Photo").Value

’Edit the first row and initiliaze the "Photo" column:
OraDyn.Edit
OraPhoto.DirectoryName = "PHOTO_DIR"
OraPhoto.Filename = "Washington_photo"
OraDynaset.Update

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Java
(JDBC)

// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
External LOBs (BFILEs) 5-35

INSERT a Row Containing a BFILE by Initializing a BFILE Locator
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_26
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 OracleCallableStatement cstmt = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'Washington_photo') FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Prepare a CallableStatement to OPEN the LOB for READWRITE:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "INSERT INTO multimedia_tab (clip_id, photo) VALUES (3, ?)");
 cstmt.setBFILE(1, src_lob);
5-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a BFILE by Initializing a BFILE Locator
 cstmt.execute();

 //Close the statements and commit the transaction:
 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 5-37

Load External LOB (BFILE) Data into a Table
Load External LOB (BFILE) Data into a Table

Figure 5–10 Use Case Diagram: Load the Initial Data into the External LOB

Scenario
The BFILE datatype stores unstructured binary data in operating-system files

outside of the database. A BFILE column or attribute stores a file locator that points

to a server-side external file containing the data

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

■ "Use Case Model: External LOBs" on page 5-2

User/
Program

load
initial data into

the LOB

External LOBs
5-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load External LOB (BFILE) Data into a Table
The SQL Loader assumes that the necessary directory objects (a logical alias name

for a physical directory on the server's filesystem) have already been created.

A control file field corresponding to a BFILE column consists of column name

followed by the BFILE directive. The BFILE directive takes as arguments a

DIRECTORY OBJECT name followed by a BFILE name. Both of these can be

provided as string constants, or they can be dynamically sourced through some

other field.

The following two examples illustrate the loading of BFILES . In the first example

only the file name is specified dynamically. In the second example, the BFILE and

the DIRECTORY OBJECT are specified dynamically.

Control File:
LOAD DATA
INFILE sample9.dat
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(Clip_ID INTEGER EXTERNAL(5),
 FileName FILLER CHAR(30),
 Photo BFILE(CONSTANT "DETECTIVE_PHOTO", FileName))

Data file (sample9.dat):
007,/tmp/JamesBond.jpeg,

Note: A particular file which is to be loaded as a BFILE does not

have to actually exist at the time of loading.

For more information on BFILES: See the Oracle8i Application
Developer’s Guide - Fundamentals

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT system/manager
GRANT CREATE ANY DIRECTORY to samp;
CONNECT samp/samp
CREATE OR REPLACE DIRECTORY detective_photo as ’/tmp’;
CREATE OR REPLACE DIRECTORY photo_dir as ’/tmp’;
External LOBs (BFILEs) 5-39

Load External LOB (BFILE) Data into a Table
008,/tmp/SherlockHolmes.jpeg,
009,/tmp/MissMarple.jpeg,

Note:
Clip_ID defaults to (255) if a size is not specified; it is mapped to the file names in

the datafile. Detectivel_dir is the directory where all the files are stored

(Detectivel_dir is a directory object created previously).

Control File:

LOAD DATA
INFILE sample10.dat
INTO TABLE Multimedia_tab
replace
FIELDS TERMINATED BY ','
(
 Clip_ID INTEGER EXTERNAL(5),
 Photo BFILE (DirName, FileName),
 FileName FILLER CHAR(30),
 DirName FILLER CHAR(30)
)

Data file (sample10.dat):
007,JamesBond.jpeg,DETECTIVE_PHOTO,
008,SherlockHolmes.jpeg,DETECTIVE_PHOTO,
009,MissMarple.jpeg,PHOTO_DIR,

Note:
DirName FILLER CHAR (30) is mapped to the datafile field containing the

directory name corresponding to the file being loaded.
5-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
Load a LOB with Data from a BFILE

Figure 5–11 Use Case Diagram: Load a LOB with data from a BFILE

User/
Program

load a LOB
with data from

a BFILE

SELECT
a LOB

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR
External LOBs (BFILEs) 5-41

Load a LOB with Data from a BFILE
Scenario
In using the OCI, or any of the programmatic environments that access OCI

functionality, character set conversions are implicitly performed when translating

from one character set to another. However, no implicit translation is ever

performed from binary data to a character set. When you use the loadfromfile
operation to populate a CLOB or NCLOB, you are populating the LOB with binary

data from the BFILE . In that case, you will need to perform character set

conversions on the BFILE data before executing loadfromfile .

The example procedure assumes that there is an operating system source file

(AUDIO_DIR) that contains the LOB data to be loaded into the target LOB (Music).

■ "Example: Load a LOB with Data from a BFILE Using PL/SQL (DBMS_LOB

Package)" on page 5-42

■ "Example: Load a LOB with Data from a BFILE Using C (OCI)" on page 5-43

■ "Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)"

on page 5-44

■ "Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)" on

page 5-46

■ "Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)" on

page 5-47

■ "Example: Load a LOB with Data from a BFILE Using Java (JDBC)" on page 5-48

Example: Load a LOB with Data from a BFILE Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure loadLOBFromBFILE_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE loadLOBFromBFILE_proc IS
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’AUDIO_DIR’, ’Washington_audio’);
 Amount INTEGER := 4000;
BEGIN
 SELECT Music INTO Dest_loc FROM Multimedia_tab
 WHERE Clip_ID = 3

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
5-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
 FOR UPDATE;
/* Opening the LOB is mandatory: */

 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
/* Opening the LOB is optional: */

 DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);

/* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Src_loc);
 COMMIT;
END;

Example: Load a LOB with Data from a BFILE Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
External LOBs (BFILEs) 5-43

Load a LOB with Data from a BFILE
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 /* Free the locator descriptors */
 OCIDescriptorFree((dvoid *)dest_loc, (ub4)OCI_DTYPE_BLOB);
 OCIDescriptorFree((dvoid *)dest_loc, (ub4)OCI_DTYPE_FILE);
}

void loadLobFromBfile(svchp, errhp, dest_loc, src_loc)
OCISvcCtx *svchp;
OCIError *errhp;
OCILobLocator *dest_loc; /* These locators have been already allocated */
OCILobLocator *src_loc; /* This is the BFILE locator. */
{
 checkerr(errhp, OCILobFileOpen(svchp, errhp, src_loc,
 (ub1)OCI_FILE_READONLY));
 checkerr(errhp, OCILobOpen(svchp, errhp, dest_loc, (ub1)OCI_FILE_READWRITE));
 checkerr (errhp, OCILobLoadFromFile(svchp, errhp, dest_loc, src_loc,
 (ub4)4000, (ub4)0, (ub4)0));
 checkerr(errhp, OCILobClose(svchp, errhp, dest_loc));
 checkerr(errhp, OCILobFileClose(svchp, errhp, src_loc));
}

Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOAD-BFILE.
5-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 DEST-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 LOAD-BFILE.

 * Allocate and initialize the LOB locators:
 EXEC SQL ALLOCATE :DEST-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 * Populate the BFILE:
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT PHOTO INTO :SRC-BFILE
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
 END-EXEC.

 * Open the source BFILE READ ONLY.
 * Open the destination BLOB READ/WRITE:
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :DEST-BLOB READ WRITE END-EXEC.

 * Load BFILE data into the BLOB:
 EXEC SQL
External LOBs (BFILEs) 5-45

Load a LOB with Data from a BFILE
 LOB LOAD :AMT FROM FILE :SRC-BFILE
 INTO :DEST-BLOB
 END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :DEST-BLOB END-EXEC.

 * And free the LOB locators:
 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :DEST-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
5-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
}

void loadLOBFromBFILE_proc()
{
 OCIBlobLocator *Dest_loc;
 OCIBFileLocator *Src_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Src_loc;
 EXEC SQL LOB FILE SET :Src_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL SELECT Sound INTO :Dest_loc FROM Multimedia_tab
 WHERE Clip_ID = 3 FOR UPDATE;
 /* Opening the BFILE is Mandatory: */
 EXEC SQL LOB OPEN :Src_loc READ ONLY;
 /* Opening the BLOB is Optional: */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB LOAD :Amount FROM FILE :Src_loc INTO :Dest_loc;
 /* Closing LOBs and BFILEs is Mandatory if they have been OPENed: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 loadLOBFromBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)
’Note that this code fragment assumes a ORABFILE object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1.
External LOBs (BFILEs) 5-47

Load a LOB with Data from a BFILE
Dim OraDyn as OraDynaset, OraDyn2 as OraDynaset, OraPhoto as OraBFile
Dim OraImage as OraLob

chunksize = 32768
Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraDyn2 = OraDb.CreateDynaset("select * from Images", ORADYN_DEFAULT)

Set OraPhoto = OraDyn.Fields("Photo").value
Set OraImage = OraDyn2.Fields("Image").value

OraDyn2.Edit
’Load LOB with data from BFILE:
OraImage.CopyFromBFile (OraPhoto)
OraDyn2.Update

Example: Load a LOB with Data from a BFILE Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_45
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
5-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 BLOB dest_lob = null;
 InputStream in = null;
 OutputStream out = null;
 byte buf[] = new byte[1000];
 ResultSet rset = null;
 OracleCallableStatement cstmt = null;

 // Prepare a CallableStatement to OPEN the LOB for READWRITE:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.OPEN(?,DBMS_LOB.LOB_READWRITE); END;");

 rset = stmt.executeQuery (
 "SELECT BFILENAME('AUDIO_DIR', 'Washington_audio') FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 src_lob.openFile();
 in = src_lob.getBinaryStream();
 }

 rset = stmt.executeQuery (
 "SELECT sound FROM multimedia_tab WHERE clip_id = 2 FOR UPDATE");
 if (rset.next())
 {
 dest_lob = ((OracleResultSet)rset).getBLOB (1);

 // Bind the dest_lob to the prepared statement and execute it:
 cstmt.setBLOB(1, dest_lob);
 cstmt.execute();

 // Fetch the output stream for dest_lob:
 out = dest_lob.getBinaryOutputStream();
 }

 int length = 0;
External LOBs (BFILEs) 5-49

Load a LOB with Data from a BFILE
 int pos = 0;
 while ((in != null) && (out != null) && ((length = in.read(buf)) != -1))
 {
 System.out.println("Pos = " + Integer.toString(pos) +
 ". Length = " + Integer.toString(length));
 pos += length;
 out.write(buf, pos, length);
 }

 // Close all streams and file handles:
 in.close();
 out.flush();
 out.close();
 src_lob.closeFile();

 // All OPENed LOBS must be CLOSEd:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.CLOSE(?); END;");
 cstmt.setBLOB(1, dest_lob);
 cstmt.execute();

 // Commit the transaction:
 conn.commit();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Two Ways to Open a BFILE
Two Ways to Open a BFILE

Figure 5–12 Use Case Diagram: Two Ways to Open a BFILE

External LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

b

a
open

a BFILE
External LOBs (BFILEs) 5-51

Two Ways to Open a BFILE
As you can see by comparing the code, these alternative methods are very similar.

However, while you can continue to use the older FILEOPEN form, we strongly
recommend that you switch to using OPEN because this facilitates future extensibility.

a. "Open a BFILE with FILEOPEN" on page 5-53

b. "Open a BFILE with OPEN" on page 5-59

Maximum Number of Open BFILEs
A limited number of BFILE s can be open simultaneously per session. The

maximum number is specified by using the initialization parameter SESSION_
MAX_OPEN_FILES.

SESSION_MAX_OPEN_FILES defines an upper limit on the number of

simultaneously open files in a session. The default value for this parameter is 10.

That is, a maximum of 10 files can be opened simultaneously per session if the

default value is utilized. The database administrator can change the value of this

parameter in the init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILESvalue then

you will not be able to open any more files in the session. To close all open files, use

the FILECLOSEALL call.

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
5-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with FILEOPEN
Open a BFILE with FILEOPEN

Figure 5–13 Use Case Diagram: Open a BFILE with FILEOPEN

External LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

a Open a BFILE
with FILEOPEN

open
a BFILE
External LOBs (BFILEs) 5-53

Open a BFILE with FILEOPEN
Scenario
While you can continue to use the older FILEOPEN form, we strongly recommend
that you switch to using OPEN, because this facilitates future extensibility. This

example opens a Lincoln_photo in operating system file PHOTO_DIR.

■ "Example: Open a BFILE with FILEOPEN Using PL/SQL" on page 5-54

■ "Example: Open a BFILE with FILEOPEN Using C (OCI)" on page 5-54

■ "Example: Open a BFILE with FILEOPEN Using Visual Basic (OO4O)" on

page 5-56

■ "Example: Open a BFILE with FILEOPEN Using Java (JDBC)" on page 5-56

Example: Open a BFILE with FILEOPEN Using PL/SQL
/* Note that the example procedure openBFILE_procOne is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDUREopenBFILE_procOne IS
 Lob_loc BFILE := BFILENAME(’PHOTO_DIR’, ’Lincoln_photo’);
BEGIN

/* Open the BFILE: */
 DBMS_LOB.FILEOPEN (Lob_loc, DBMS_LOB.FILE_READONLY)

/* ... Do some processing. */
 DBMS_LOB.FILECLOSE(Lob_loc);
END;

Example: Open a BFILE with FILEOPEN Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
5-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with FILEOPEN
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 ,
 SQLT_BFILE, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
void BfileOpen(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 allocated and initialized.
 */

 OCILobLocator *bfile_loc;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Set the bfile locator information */
 checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
 (OraText *)"PHOTO_DIR",
 (ub2)strlen("PHOTO_DIR"),
 (OraText *)"Lincoln_photo",
 (ub2)strlen("Lincoln_photo"))));
 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 (ub1)OCI_FILE_READONLY));
 /* ... Do some processing. */
 checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));
External LOBs (BFILEs) 5-55

Open a BFILE with FILEOPEN
 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

void BfileOpen(envhp, errhp, svchp, stmthp, bfile_loc)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCILobLocator *bfile_loc; /* This is the BFILE locator that is already
 allocated and initialized. */
{
 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 (ub1)OCI_FILE_READONLY));
 /* ... Do some processing. */
 checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));
}

Example: Open a BFILE with FILEOPEN Using Visual Basic (OO4O)

Example: Open a BFILE with FILEOPEN Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

Note: At the present time, OO4O only offers BFILE opening with

OPEN (see "Example: Open a BFILE with OPEN Using Visual Basic

(OO4O)" on page 5-64).
5-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with FILEOPEN
public class Ex4_38
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'Lincoln_photo') FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);

 // plsql_fileOpen() wraps a call to dbms_lob.fileopen():
 src_lob.plsql_fileOpen();

 System.out.println("The file is now open");
 }

 // Close the BFILE, statement and connection:
 src_lob.plsql_fileClose();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
External LOBs (BFILEs) 5-57

Open a BFILE with FILEOPEN
 }
 }
}

5-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN
Open a BFILE with OPEN

Figure 5–14 Use Case Diagram: Open a BFILE with OPEN

External LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

b Open a BFILE
with OPEN

open
a BFILE
External LOBs (BFILEs) 5-59

Open a BFILE with OPEN
Scenario
 This example opens a Lincoln_photo in operating system file PHOTO_DIR.

■ "Example: Open a BFILE with OPEN Using PL/SQL" on page 5-60

■ "Example: Open a BFILE with OPEN Using C (OCI)" on page 5-60

■ "Example: Open a BFILE with OPEN Using COBOL (Pro*COBOL)" on

page 5-62

■ "Example: Open a BFILE with OPEN Using C++ (Pro*C/C++)" on page 5-63

■ "Example: Open a BFILE with OPEN Using Visual Basic (OO4O)" on page 5-64

■ "Example: Open a BFILE with OPEN Using Java (JDBC)" on page 5-64

Example: Open a BFILE with OPEN Using PL/SQL
/* Note that the example procedure openBFILE_procTwo is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDUREopenBFILE_procTwo IS
 Lob_loc BFILE := BFILENAME(’PHOTO_DIR’, ’Lincoln_photo’);
BEGIN

/* Open the BFILE: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY)

/* ... Do some processing: */
 DBMS_LOB.CLOSE(Lob_loc);
END;

Example: Open a BFILE with OPEN Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
5-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
void BfileFileOpen(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been

 allocated and initialized.
 */

 OCILobLocator *bfile_loc;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Set the Bfile Locator Information */
 checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
 (OraText *)"PHOTO_DIR", (ub2)strlen("PHOTO_DIR"),
 (OraText *)"Lincoln_photo",
 (ub2)strlen("Lincoln_photo"))));
 checkerr(errhp, OCILobOpen(svchp, errhp, bfile_loc,
 (ub1)OCI_FILE_READONLY));
 /* ... Do some processing. */
 checkerr(errhp, OCILobClose(svchp, errhp, bfile_loc));
External LOBs (BFILEs) 5-61

Open a BFILE with OPEN
 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

Example: Open a BFILE with OPEN Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. OPEN-BFILE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 OPEN-BFILE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "washington_audio" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 * Assign directory alias and file name to BFILE:
 EXEC SQL
 LOB FILE SET :SRC-BFILE
 DIRECTORY = :DIR-ALIAS, FILENAME = :FNAME
 END-EXEC.
5-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN
 * Open the BFILE read only:
 EXEC SQL
 LOB OPEN :SRC-BFILE READ ONLY
 END-EXEC.

 * Close the LOB:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.

 * And free the LOB locator:
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Open a BFILE with OPEN Using C++ (Pro*C/C++)
/* In Pro*C/C++ there is only one form of OPEN that is used for OPENing
 BFILEs. There is no FILE OPEN, only a simple OPEN statement: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
External LOBs (BFILEs) 5-63

Open a BFILE with OPEN
 exit(1);
}

void openBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 char *Dir = "PHOTO_DIR", *Name = "Lincoln_photo";

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* ... Do some processing: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 openBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Open a BFILE with OPEN Using Visual Basic (OO4O)
Dim OraDyn as OraDynaset, OraPhoto as OraBFile, OraMusic as OraBFile
Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab",ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music") .Value
Set OraPhoto = OraDyn.Fields("Photo") .Value

’Go to the last rowand open Bfile for reading:
OraDyn.MoveLast
OraPhoto.Open ’Open Bfile for reading
’Do some processing:
OraPhoto.Close

Example: Open a BFILE with OPEN Using Java (JDBC)
// Java IO classes:
5-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_41
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'Lincoln_photo') FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);

 // openFile() delegates to oracle.jdbc.dbaccess.DBAccess.fileOpen():
 src_lob.openFile();
External LOBs (BFILEs) 5-65

Open a BFILE with OPEN
 System.out.println ("the file is now open");
 }

 // Close the BFILE, statement and connection:
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Two Ways to See If a BFILE is Open
Two Ways to See If a BFILE is Open

Figure 5–15 Use Case Diagram: Two Ways to See If a BFILE is Open

As you can see by comparing the code, these alternative methods are very similar.

However, while you can continue to use the older FILEISOPEN form, we strongly

recommend that you switch to using ISOPEN, because this facilitates future

extensibility.

a. "See If the BFILE is Open with FILEISOPEN" on page 5-69

b. "See If the BFILE is Open Using ISOPEN" on page 5-74

Maximum Number of Open BFILEs
A limited number of BFILE s can be open simultaneously per session. The

maximum number is specified by using the SESSION_MAX_OPEN_FILES
initialization parameter.

SESSION_MAX_OPEN_FILES defines an upper limit on the number of

simultaneously open files in a session. The default value for this parameter is 10.

That is, a maximum of 10 files can be opened simultaneously per session if the

default value is utilized. The database administrator can change the value of this

parameter in the init .ora file. For example:

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

b

a

External LOBs

User/
Program

see if the
BFILE is open
External LOBs (BFILEs) 5-67

Two Ways to See If a BFILE is Open
SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILESvalue then

you will not be able to open any more files in the session. To close all open files, use

the FILECLOSEALL call.
5-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open with FILEISOPEN
See If the BFILE is Open with FILEISOPEN

Figure 5–16 Use Case Diagram: See If the BFILE is Open Using FILEISOPEN

Scenario
While you can continue to use the older FILEISOPEN form, we strongly recommend
that you switch to using ISOPEN, because this facilitates future extensibility. his

example queries whether the a BFILE associated with Music is open that is.

■ "Example: See If the BFILE is Open with FILEISOPEN Using PL/SQL (DBMS_

LOB Package)" on page 5-70

■ "Example: See If the BFILE is Open with FILEISOPEN Using C (OCI)" on

page 5-70

■ "Example: See If the BFILE is Open with FILEISOPEN Using Visual Basic

(OO4O)" on page 5-72

■ "Example: See If the BFILE is Open with FILEISOPEN Using Java (JDBC)" on

page 5-72

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

a See if the BFILE is OPEN
with FILEISOPEN

see if the
BFILE is open
External LOBs (BFILEs) 5-69

See If the BFILE is Open with FILEISOPEN
Example: See If the BFILE is Open with FILEISOPEN Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure seeIfOpenBFILE_procOne is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE seeIfOpenBFILE_procOne IS
 Lob_loc BFILE;
 RetVal INTEGER;
BEGIN
 /* Select the LOB, initializing the BFILE locator: */
 SELECT Music INTO Lob_loc FROM Multimedia_tab
 WHERE Clip_ID = 3;
 RetVal := DBMS_LOB.FILEISOPEN(Lob_loc);
 IF (RetVal = 1)
 THEN
 DBMS_OUTPUT.PUT_LINE(’File is open’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’File is not open’);
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Example: See If the BFILE is Open with FILEISOPEN Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)

OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
5-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open with FILEISOPEN
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
boolean BfileIsOpen(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been

 allocated and initialized.
 */

 OCILobLocator *bfile_loc;
 boolean flag;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Select the bfile */
 selectLob(svchp, stmthp, errhp, dfnhp, bfile_loc,
 "SELECT Music FROM Multimedia_tab WHERE Clip_ID=3");
 boolean flag;
 checkerr(errhp, OCILobFileIsOpen(svchp, errhp, bfile_loc,
 &flag));
 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
 return(flag);
}

External LOBs (BFILEs) 5-71

See If the BFILE is Open with FILEISOPEN
Example: See If the BFILE is Open with FILEISOPEN Using Visual Basic (OO4O)

Example: See If the BFILE is Open with FILEISOPEN Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_45
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try

Note: At the present time, OO4O only offers ISOPEN to test

whether or not a BFILE is open (see "Example: See If the BFILE is

Open with FILEISOPEN Using Visual Basic (OO4O)" on page 5-72).
5-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open with FILEISOPEN
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'Lincoln_photo') FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 result = new Boolean(src_lob.plsql_fileIsOpen());
 System.out.println(
 "result of fileIsOpen() before opening file : " + result.toString());

 src_lob.plsql_fileOpen();

 result = new Boolean(src_lob.plsql_fileIsOpen());
 System.out.println(
 "result of fileIsOpen() after opening file : " + result.toString());

 // Close the BFILE, statement and connection:
 src_lob.plsql_fileClose();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 5-73

See If the BFILE is Open Using ISOPEN
See If the BFILE is Open Using ISOPEN

Figure 5–17 Use Case Diagram: See If the BFILE is Open Using FILEISOPEN

Scenario
This example queries whether the a BFILE is open that is associated with Music .

■ "Example: See If the BFILE is Open with ISOPEN Using PL/SQL (DBMS_LOB

Package)" on page 5-75

■ "Example: See If the BFILE is Open with ISOPEN Using C (OCI)" on page 5-75

■ "Example: See If the BFILE is Open with ISOPEN Using COBOL (Pro*COBOL)"

on page 5-76

■ "Example: See If the BFILE is Open with ISOPEN Using C++ (Pro*C/C++)" on

page 5-78

■ "Example: See If the BFILE is Open with ISOPEN Using Visual Basic (OO4O)"

on page 5-79

■ "Example: See If the BFILE is Open with ISOPEN Using Java (JDBC)" on

page 5-80

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

b See if the BFILE is OPEN
with ISOPEN

see if the
BFILE is open
5-74 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open Using ISOPEN
Example: See If the BFILE is Open with ISOPEN Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure seeIfOpenBFILE_procTwo is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE seeIfOpenBFILE_procTwo IS
 Lob_loc BFILE;
 RetVal INTEGER;
BEGIN
 /* Select the LOB, initializing the BFILE locator: */
 SELECT Music INTO Lob_loc FROM Multimedia_tab
 WHERE Clip_ID = 3;
 RetVal := DBMS_LOB.ISOPEN(Lob_loc);
 IF (RetVal = 1)
 THEN
 DBMS_OUTPUT.PUT_LINE(’File is open’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’File is not open’);
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Example: See If the BFILE is Open with ISOPEN Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));
External LOBs (BFILEs) 5-75

See If the BFILE is Open Using ISOPEN
 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
boolean BfileIsOpen(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 allocated and initialized.
 */

 OCILobLocator *bfile_loc;
 boolean flag;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Select the bfile */
 selectLob(svchp, stmthp, errhp, dfnhp, bfile_loc,
 "SELECT Music FROM Multimedia_tab WHERE Clip_ID=3");

 boolean flag;
 checkerr(errhp, OCILobFileIsOpen(svchp, errhp, bfile_loc,
 &flag));
 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
 return(flag);
}

Example: See If the BFILE is Open with ISOPEN Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-IS-OPEN.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
5-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open Using ISOPEN
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 IS-OPEN PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-IS-OPEN.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT PHOTO INTO :BFILE1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
 END-EXEC.

 * Use the LOB DESCRIBE to see if lob is open:
 EXEC SQL
 LOB DESCRIBE :BFILE1 GET ISOPEN INTO :IS-OPEN
 END-EXEC.
 IF IS-OPEN = 1
 * Logic for an open BFILE goes here
 DISPLAY "BFILE is open."
 ELSE
 * Logic for a closed BFILE goes here
 DISPLAY "BFILE is closed."
 END-IF.

 * And free the LOB locator:
 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
External LOBs (BFILEs) 5-77

See If the BFILE is Open Using ISOPEN
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: See If the BFILE is Open with ISOPEN Using C++ (Pro*C/C++)
/* In Pro*C/C++, there is only one form of ISOPEN used to determine whether
 or not a BFILE is OPEN. There is no FILE IS OPEN, only a simple ISOPEN.
 This is an attribute used in the DESCRIBE statement: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeIfOpenBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 int isOpen;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
5-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open Using ISOPEN
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BFILE into the locator: */
 EXEC SQL SELECT Music INTO :Lob_loc FROM Multimedia_tab
 WHERE Clip_ID = 3;
 /* Determine if the BFILE is OPEN or not: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN into :isOpen;
 if (isOpen)
 printf("BFILE is open\n");
 else
 printf("BFILE is not open\n");
 /* Note that in this example, the BFILE is not open: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeIfOpenBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: See If the BFILE is Open with ISOPEN Using Visual Basic (OO4O)
’Note that this code fragment assumes a ORABFILE object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1:

Dim OraDyn as OraDynaset, OraMusic as OraBFile, amount_read%, chunksize%, chunk

chunksize = 32768
Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music")

If OraMusic.IsOpen then
 ’Processing given that the file is already open:
Else
 ’Processing given that the file is not open, or return an error:
End If
External LOBs (BFILEs) 5-79

See If the BFILE is Open Using ISOPEN
Example: See If the BFILE is Open with ISOPEN Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_48
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'Lincoln_photo') FROM DUAL");
 if (rset.next())
5-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open Using ISOPEN
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 result = new Boolean(src_lob.isFileOpen());
 System.out.println(
 "result of fileIsOpen() before opening file : " + result.toString());

 src_lob.openFile();

 result = new Boolean(src_lob.isFileOpen());
 System.out.println(
 "result of fileIsOpen() after opening file : " + result.toString());

 // Close the BFILE, statement and connection:
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 5-81

Display the BFILE Data
Display the BFILE Data

Figure 5–18 Use Case Diagram: Display the BFILE data

User/
Program

display the
BFILE data

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR
5-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data
Scenario
This example opens and displays a BFILE is open that is associated with Music .

■ "Example: Display the BFILE Data Using PL/SQL" on page 5-83

■ "Example: Display the BFILE Data Using C (OCI)" on page 5-84

■ "Example: Display the BFILE Data Using COBOL (Pro*COBOL)" on page 5-86

■ "Example: Display the BFILE Data Using C++ (Pro*C/C++)" on page 5-88

■ "Example: Display the BFILE Data Using Visual Basic (OO4O)" on page 5-90

■ "Example: Display the BFILE Data Using Java (JDBC)" on page 5-90

Example: Display the BFILE Data Using PL/SQL
/* Note that the example procedure displayBFILE_proc is not part of the
DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE displayBFILE_proc IS
 Lob_loc BFILE;
 Buffer RAW(1024);
 Amount BINARY_INTEGER := 1024;
 Position INTEGER := 1;
BEGIN
 /* Select the LOB: */
 SELECT Music INTO Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Opening the BFILE: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 LOOP
 DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
 /* Display the buffer contents: */
 DBMS_OUTPUT.PUT_LINE(utl_raw.cast_to_varchar2(Buffer));
 Position := Position + Amount;
 END LOOP;
 /* Closing the BFILE: */
 DBMS_LOB.CLOSE (Lob_loc);
 EXCEPTION

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
External LOBs (BFILEs) 5-83

Display the BFILE Data
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data’);
END;

Example: Display the BFILE Data Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
#define MAXBUFLEN 32767

void BfileDisplay(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 allocated and initialized.
 */
5-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data
 OCILobLocator *bfile_loc;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen, amt, offset;
 boolean done;
 ub4 retval;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Select the bfile */
 selectLob(svchp, stmthp, errhp, dfnhp, bfile_loc,
 "SELECT Music FROM Multimedia_tab WHERE Clip_ID=3");

 ub1 bufp[MAXBUFLEN];
 ub4 buflen, amt, offset;
 boolean done;
 ub4 retval;

 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 OCI_FILE_READONLY));
 /* This example will READ the entire contents of a BFILE piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire BFILE has been read. */
 /* Setting amt = 0 will read till the end of LOB*/
 amt = 0;
 buflen = sizeof(bufp);
 /* Process the data in pieces */
 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);
 done = FALSE;
 while (!done)
 {
 retval = OCILobRead(svchp, errhp, bfile_loc,
 &amt, offset, (dvoid *) bufp,
 buflen, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 switch (retval)
 {
 case 0: /* Only one piece or last piece*/
 /* process the data in bufp. amt will give the amount of data

just read in bufp. This is in bytes for BLOBs and in characters
 for fixed width CLOBS and in bytes for variable width CLOBs*/
External LOBs (BFILEs) 5-85

Display the BFILE Data
 done = TRUE;
 break;
 case -1:
 /* report_error(); this function is not shown here */
 done = TRUE;
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */
 /* process the data in bufp. amt will give the amount of
 data just read in bufp. This is in bytes for BFILEs and i
 characters for fixed width CLOBS and in bytes for variable
 width CLOBs */
 break;
 default:
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
 done = TRUE;
 break;
 } /* switch */
 } /* while */

 /* Closing the BFILE is mandatory if you have opened it */
 checkerr (errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

Example: Display the BFILE Data Using COBOL (Pro*COBOL)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DISPLAY-BFILE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(9) VALUES "SAMP/SAMP".

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 DEST-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 BUFFER PIC X(5) VARYING.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 AMT PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).
5-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 D-AMTPIC 99,999,99.

 EXEC SQL VAR BUFFER IS LONG RAW (100) END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 DISPLAY-BFILE-DATA.

 * Connect to ORACLE
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Select the BFILE
 EXEC SQL SELECT PHOTO INTO :SRC-BFILE
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
 END-EXEC.

 * Open the BFILE
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 * Set the amount = 0 will initiate the polling method
 MOVE 0 TO AMT;
 EXEC SQL
 LOB READ :AMT FROM :SRC-BFILE INTO :BUFFER
 END-EXEC.

 * DISPLAY "BFILE DATA".
 * MOVE AMT TO D-AMT.
 * DISPLAY "First READ (", D-AMT, "): " BUFFER.

 * Do READ-LOOP until the whole BFILE is read.
 EXEC SQL WHENEVER NOT FOUND GO TO END-LOOP END-EXEC.

 READ-LOOP.
 EXEC SQL
External LOBs (BFILEs) 5-87

Display the BFILE Data
 LOB READ :AMT FROM :SRC-BFILE INTO :BUFFER
 END-EXEC.

 * MOVE AMT TO D-AMT.
 * DISPLAY "Next READ (", D-AMT, "): " BUFFER.

 GO TO READ-LOOP.

 END-LOOP.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

 * Close the LOB
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.

 * And free the LOB locator
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Display the BFILE Data Using C++ (Pro*C/C++)
/* This example will READ the entire contents of a BFILE piecewise into a
 buffer using a streaming mechanism via standard polling, displaying each
 buffer piece after every READ operation until the entire BFILE has been
 read: */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
5-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void displayBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 int Amount;
 struct {
 short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Buffer is VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BFILE: */
 EXEC SQL SELECT Music INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;
 /* Set the maximum size of the Buffer: */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BFILE into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Display %d bytes\n", Buffer.Length);
 }
 printf("Display %d bytes\n", Amount);
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{

External LOBs (BFILEs) 5-89

Display the BFILE Data
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Display the BFILE Data Using Visual Basic (OO4O)
’Note that this code fragment assumes a ORABFILE object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1:
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, amount_read%, chunksize%, chunk
As Variant

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value

OraMusic.offset = 1
OraMusic.PollingAmount = OraMusic.Size ’Read entire BFILE contents

’Open the Bfile for reading:
OraMusic.Open
amount_read = OraMusic.Read(chunk, chunksize)

While OraMusic.Status = ORALOB_NEED_DATA
 amount_read = OraMusic.Read(chunk, chunksize)
Wend

OraMusic.Close

Example: Display the BFILE Data Using Java (JDBC)
// Java IO classes
import java.io.InputStream;
import java.io.OutputStream;
5-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_53
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;
 InputStream in = null;
 byte buf[] = new byte[1000];
 int length = 0;
 boolean alreadyDisplayed = false;

 rset = stmt.executeQuery (
 "SELECT music FROM multimedia_tab WHERE clip_id = 2");

 if (rset.next())
 {
External LOBs (BFILEs) 5-91

Display the BFILE Data
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Open the BFILE:
 src_lob.openFile();

 // Get a handle to stream the data from the BFILE:
 in = src_lob.getBinaryStream();

 // This loop fills the buf iteratively, retrieving data
 // from the InputStream:
 while ((in != null) && ((length = in.read(buf)) != -1))
 {
 // the data has already been read into buf

 // We will only display the first CHUNK in this example:
 if (! alreadyDisplayed)
 {
 System.out.println("Bytes read in: " + Integer.toString(length));
 System.out.println(new String(buf));
 alreadyDisplayed = true;
 }
 }

 // Close the stream, BFILE, statement and connection:
 in.close();
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE
Read the Data from a BFILE

Figure 5–19 Use Case Diagram: Read the data from a BFILE

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

close
a BFILE

open
a BFILE

OR

User/
Program

read data
from the BFILE
External LOBs (BFILEs) 5-93

Read the Data from a BFILE
Scenario
When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4 gigabytes

regardless of the starting offset and the amount of data in the LOB. You do not need

to incur a round-trip to the server to call OCILobGetLength () to find out the

length of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read

the entire LOB value starting at offset 1,000. Also assume that you do not know the

current length of the LOB value. Here is the OCI read call, excluding the

initialization of all parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

The following example considers reading a photograph into PHOTO from a BFILE
’PHOTO_DIR’.

■ "Example: Read the Data from a BFILE Using PL/SQL (DBMS_LOB Package)"

on page 5-95

■ "Example: Read the Data from a BFILE Using C (OCI)" on page 5-95

■ "Example: Read the Data from a BFILE Using COBOL (Pro*COBOL)" on

page 5-97

■ "Example: Read the Data from a BFILE Using C++ (Pro*C/C++)" on page 5-98

■ "Example: Read the Data from a BFILE Using Visual Basic (OO4O)" on

page 5-99

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

Note: The most efficient way to read large amounts of LOB data is

to use OCILobRead () with the streaming mechanism enabled via

polling or a callback.
5-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE
■ "Example: Read the Data from a BFILE Using Java (JDBC)" on page 5-100

Example: Read the Data from a BFILE Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure readBFILE_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE readBFILE_proc IS
 Lob_loc BFILE := BFILENAME(’PHOTO_DIR’, ’Jefferson_photo’);
 Amount INTEGER := 32767;
 Position INTEGER := 1;
 Buffer RAW(32767);
BEGIN

/* Select the LOB: */
 SELECT Photo INTO Lob_loc FROM Multimedia_tab
 WHERE Clip_ID = 3;

/* Open the BFILE: */
 DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);

/* Read data: */
 DBMS_LOB.READ(Lob_loc, Amount, Position, Buffer);

/* Close the BFILE: */
 DBMS_LOB.CLOSE(Lob_loc);
END;

Example: Read the Data from a BFILE Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
External LOBs (BFILEs) 5-95

Read the Data from a BFILE
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
#define MAXBUFLEN 32767
void BfileRead(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 allocated and initialized.
 */

 OCILobLocator *bfile_loc;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen, amt, offset;
 boolean done;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Select the bfile */
 selectLob(svchp, stmthp, errhp, dfnhp, bfile_loc,
 "SELECT Photo FROM Multimedia_tab WHERE Clip_ID=3");

 ub1 bufp[MAXBUFLEN];
 ub4 buflen, amt, offset;
 boolean done;

 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 OCI_FILE_READONLY));
 amt = MAXBUFLEN;
 buflen = sizeof(bufp);
 /* Process the data in pieces */
 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);
5-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE
 done = FALSE;
 checkerr(errhp, OCILobRead(svchp, errhp, bfile_loc, &amt, offset,
 (dvoid *) bufp, buflen, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT));

 /* Closing the BFILE is mandatory if you have opened it */
 checkerr (errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

Example: Read the Data from a BFILE Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. READ-BFILE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BFILE1 SQL-BFILE.
 01 BUFFER2 PIC X(5) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 EXEC SQL VAR BUFFER2 IS LONG RAW(5) END-EXEC.

 PROCEDURE DIVISION.
 READ-BFILE.

 * Allocate and initialize the CLOB locator
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.

 EXEC SQL
 SELECT MUSIC INTO :BFILE1
 FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID = 3
 END-EXEC.
 * Open the BFILE
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.
External LOBs (BFILEs) 5-97

Read the Data from a BFILE
 * Initiate polling read
 MOVE 0 TO AMT.

 EXEC SQL LOB READ :AMT FROM :BFILE1
 INTO :BUFFER2 END-EXEC.

 *
 * Display the data here.
 *

 * Close and free the locator
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.

Example: Read the Data from a BFILE Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 4096

void readBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 /* Amount and BufferLength are equal so only one READ is necessary: */
 int Amount = BufferLength;
 char Buffer[BufferLength];
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Buffer IS RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
5-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Photo INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 /* Read data: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Read %d bytes\n", Amount);
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 readBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Read the Data from a BFILE Using Visual Basic (OO4O)
’Example: Read the Data from a BFILE Using Visual Basic (OO4O)
’Note that this code fragment assumes a ORABFILE object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1:
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, amount_read%, chunksize%, chunk
As Variant

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value

OraMusic.offset = 1
OraMusic.PollingAmount = OraMusic.Size ’Read entire BFILE contents
External LOBs (BFILEs) 5-99

Read the Data from a BFILE
’Open the Bfile for reading:
OraMusic.Open
amount_read = OraMusic.Read(chunk, chunksize)

While OraMusic.Status = ORALOB_NEED_DATA
 amount_read = OraMusic.Read(chunk, chunksize)
Wend

OraMusic.Close

Example: Read the Data from a BFILE Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_53
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement
5-100 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;
 InputStream in = null;
 byte buf[] = new byte[1000];
 int length = 0;
 boolean alreadyDisplayed = false;
 rset = stmt.executeQuery (
 "SELECT music FROM multimedia_tab WHERE clip_id = 2");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Open the BFILE:
 src_lob.openFile();

 // Get a handle to stream the data from the BFILE:
 in = src_lob.getBinaryStream();

 // This loop fills the buf iteratively, retrieving data
 // from the InputStream:
 while ((in != null) && ((length = in.read(buf)) != -1))
 {
 // the data has already been read into buf

 // We will only display the first CHUNK in this example:
 if (! alreadyDisplayed)
 {
 System.out.println("Bytes read in: " + Integer.toString(length));
 System.out.println(new String(buf));
 alreadyDisplayed = true;
 }
 }

 // Close the stream, BFILE, statement and connection:
 in.close();
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
External LOBs (BFILEs) 5-101

Read the Data from a BFILE
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-102 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the BFILE Data (substr)
Read a Portion of the BFILE Data (substr)

Figure 5–20 Use Case Diagram: Read a portion of the BFILE data (substr)

External LOBs

User/
Program

read a
portion of the
BFILE data

(substr)

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR
External LOBs (BFILEs) 5-103

Read a Portion of the BFILE Data (substr)
Scenario
The following example considers reading an audio recording into RECORDINGfrom

a BFILE ’AUDIO_DIR’ .

■ "Example: Read a Portion of the BFILE Data (substr) Using PL/SQL (DBMS_

LOB Package)" on page 5-104

■ "Example: Read a Portion of the BFILE Data (substr) Using COBOL

(Pro*COBOL)" on page 5-105

■ "Example: Read a Portion of the BFILE Data (substr) Using C++ (Pro*C/C++)"

on page 5-106

■ "Example: Read a Portion of the BFILE Data (substr) Using Visual Basic

(OO4O)" on page 5-107

■ "Example: Read a Portion of the BFILE Data (substr) Using Java (JDBC)" on

page 5-107

Example: Read a Portion of the BFILE Data (substr) Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure substringBFILE_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE substringBFILE_proc IS
 Lob_loc BFILE;
 Position INTEGER := 1;
 Buffer RAW(32767);
BEGIN

/* Select the LOB: */
 SELECT Mtab.Voiced_ref.Recording INTO Lob_loc FROM Multimedia_tab Mtab
 WHERE Mtab.Clip_ID = 3;

/* Open the BFILE: */
 DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
 Buffer := DBMS_LOB.SUBSTR(Lob_loc, 255, Position);

/* Close the BFILE: */
 DBMS_LOB.CLOSE(Lob_loc);
END;

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
5-104 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the BFILE Data (substr)
Example: Read a Portion of the BFILE Data (substr) Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BFILE1 SQL-BFILE.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 POS PIC S9(9) COMP VALUE 1024.
 01 OFFSET PIC S9(9) COMP VALUE 1.

 EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 BFILE-SUBSTR.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.

 EXEC SQL
 SELECT MTAB.VOICED_REF.RECORDING INTO :BFILE1
 FROM MULTIMEDIA_TAB MTAB WHERE MTAB.CLIP_ID = 3
 END-EXEC.

 * Open the BFILE for READ ONLY:
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

 * Execute PL/SQL to use its SUBSTR functionality:
 MOVE 32767 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :BUFFER2 := DBMS_LOB.SUBSTR(:BFILE1,:AMT,:POS);
 END;
 END-EXEC.

 * Close and free the locators:
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.
External LOBs (BFILEs) 5-105

Read a Portion of the BFILE Data (substr)
 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXC SQL FREE :BFILE1 END-EXEC.

Example: Read a Portion of the BFILE Data (substr) Using C++ (Pro*C/C++)
/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS_LOB.SUBSTR()
 function. However, Pro*C/C++ can interoperate with PL/SQL using anonymous
 PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void substringBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 int Position = 1;
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer IS RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Invoke SUBSTR() from within an anonymous PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Lob_loc, 256, :Position);
 END;
 END-EXEC;
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
5-106 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the BFILE Data (substr)
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Read a Portion of the BFILE Data (substr) Using Visual Basic (OO4O)
’Note that this code fragment assumes a ORABFILE object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1:
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, amount_read%, chunksize%, chunk

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

chunk_size = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value
OraMusic.PollingAmount = OraMusic.Size ’Read entire BFILE contents
OraMusic.offset = 255 ’Read from the 255th position
’Open the Bfile for reading:
OraMusic.Open
amount_read = OraMusic.Read(chunk, chunk_size) ’chunk returned is a variant of
type byte array
 If amount_read <> chunk_size Then
 ’Do error processing
 Else
 ’Process the data
 End If

Example: Read a Portion of the BFILE Data (substr) Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
External LOBs (BFILEs) 5-107

Read a Portion of the BFILE Data (substr)
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_62
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 InputStream in = null;
 byte buf[] = new byte[1000];
 int length = 0;

 rset = stmt.executeQuery (
 "SELECT music FROM multimedia_tab WHERE clip_id = 2");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
5-108 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the BFILE Data (substr)
 }

 // Open the BFILE:
 src_lob.openFile();

 // Get a handle to stream the data from the BFILE
 in = src_lob.getBinaryStream();

 if (in != null)
 {
 // request 255 bytes into buf, starting from offset 1.
 // length = # bytes actually returned from stream:
 length = in.read(buf, 1, 255);

 System.out.println("Bytes read in: " + Integer.toString(length));

 // Process the buf:
 System.out.println(new String(buf));
 }

 // Close the stream, BFILE, statement and connection:
 in.close();
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 5-109

Compare All or Parts of Two BFILES
Compare All or Parts of Two BFILES

Figure 5–21 Use Case Diagram: Compare all or parts of 2 BFILES

User/
Program

compare all
or parts of 2

BFILE

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR
5-110 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES
Scenario
The following example deals with the problem of determining whether a

photograph in the file ’PHOTO_DIR’ has already been used as a specific PHOTO by

comparing each data entity bit by bit. Note that LOBMAXSIZEis set at 4 gigabytes so

that you do not have to find out the length of each BFILE before beginning the

comparison.

■ "Example: Compare All or Parts of Two BFILES Using PL/SQL (DBMS_LOB

Package)" on page 5-111

■ "Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL)"

on page 5-112

■ "Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL)"

on page 5-112

■ "Example: Compare All or Parts of Two BFILES Using C++ (Pro*C/C++)" on

page 5-114

■ "Example: Compare All or Parts of Two BFILES Using Visual Basic (OO4O)" on

page 5-115

■ "Example: Compare All or Parts of Two BFILES Using Java (JDBC)" on

page 5-116

Example: Compare All or Parts of Two BFILES Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure compareBFILEs_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE compareBFILEs_proc IS
 /* Initialize the BFILE locator: */
 Lob_loc1 BFILE := BFILENAME(’PHOTO_DIR’, ’RooseveltFDR_photo’);
 Lob_loc2 BFILE;
 Retval INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT Photo INTO Lob_loc2 FROM Multimedia_tab
 WHERE Clip_ID = 3;
 /* Open the BFILEs: */

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
External LOBs (BFILEs) 5-111

Compare All or Parts of Two BFILES
 DBMS_LOB.OPEN(Lob_loc1, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN(Lob_loc2, DBMS_LOB.LOB_READONLY);
 Retval := DBMS_LOB.COMPARE(Lob_loc2, Lob_loc1, DBMS_LOB.LOBMAXSIZE, 1, 1);
 /* Close the BFILEs: */
 DBMS_LOB.CLOSE(Lob_loc1);
 DBMS_LOB.CLOSE(Lob_loc2);
END;

Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-COMPARE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 BFILE2 SQL-BFILE.
 01 RET PIC S9(9) COMP.
 01 AMT PIC S9(9) COMP.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFIlE-COMPARE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL ALLOCATE :BFILE2 END-EXEC.

 * Set up the directory and file information:
 MOVE "PHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
5-112 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES
 MOVE "fdroosevelt_photo" TO FNAME-ARR.
 MOVE 17 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :BFILE1 DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT PHOTO INTO :BFILE2
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
 END-EXEC.

 * Open the BLOBs for READ ONLY:
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :BFILE2 READ ONLY END-EXEC.

 * Execute PL/SQL to get COMPARE functionality:
 MOVE 5 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :RET := DBMS_LOB.COMPARE(:BFILE1,:BFILE2,
 :AMT,1,1);
 END;
 END-EXEC.

 IF RET = 0
 * Logic for equal BFILEs goes here
 DISPLAY "BFILES are equal"
 ELSE
 * Logic for unequal BFILEs goes here
 DISPLAY "BFILEs are not equal"
 END-IF.

 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.
 EXEC SQL LOB CLOSE :BFILE2 END-EXEC.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL FREE :BFILE2 END-EXEC.
 STOP RUN.

 SQL-ERROR.
External LOBs (BFILEs) 5-113

Compare All or Parts of Two BFILES
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Compare All or Parts of Two BFILES Using C++ (Pro*C/C++)
/* Pro*C/C++ lacks an equivalent embedded SQL form for the
 DBMS_LOB.COMPARE() function. Like the DBMS_LOB.SUBSTR() function,
 however, Pro*C/C++ can invoke DBMS_LOB.COMPARE() in an anonymous PL/SQL
 block as is shown here: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareBFILEs_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;
 int Retval = 1;
 char *Dir1 = "PHOTO_DIR", *Name1 = "RooseveltFDR_photo";

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL LOB FILE SET :Lob_loc1 DIRECTORY = :Dir1, FILENAME = :Name1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Photo INTO :Lob_loc2 FROM Multimedia_tab
 WHERE Clip_ID = 3;
5-114 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES
 /* Open the BFILEs: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Compare the BFILEs in PL/SQL using DBMS_LOB.COMPARE() */
 EXEC SQL EXECUTE
 BEGIN
 :Retval := DBMS_LOB.COMPARE(
 :Lob_loc2, :Lob_loc1, DBMS_LOB.LOBMAXSIZE, 1, 1);
 END;
 END-EXEC;
 /* Close the BFILEs: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
 if (0 == Retval)
 printf("BFILEs are the same\n");
 else
 printf("BFILEs are not the same\n");
 /* Release resources used by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareBFILEs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Compare All or Parts of Two BFILES Using Visual Basic (OO4O)
’Note that the PL/SQL packages and the tables mentioned here are not part of the
’standard OO4O installation:
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraMusic As OraBfile, OraMyMusic As OraBfile, OraSql
As OraSqlStmt

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

OraDb.Connection.BeginTrans
External LOBs (BFILEs) 5-115

Compare All or Parts of Two BFILES
Set OraParameters = OraDb.Parameters

OraParameters.Add "id", 1001, ORAPARM_INPUT

’Define out parameter of BFILE type:
OraParameters.Add "MyMusic", Empty, ORAPARM_OUTPUT
OraParameters("MyMusic").ServerType = ORATYPE_BFILE

Set OraSql =
 OraDb.CreateSql(

"BEGIN SELECT music INTO :MyMusic FROM multimedia_tab WHERE clip_id = :id;
 END;", ORASQL_FAILEXEC)

Set OraMyMusic = OraParameters("MyMusic").Value

’Create dynaset:
Set OraDyn =
 OraDb.CreateDynaset(
 "SELECT * FROM Multimedia_tab WHERE Clip_Id = 1001", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value

’Open the Bfile for reading:
OraMusic.Open
OraMyMusic.Open

If OraMusic.Compare(OraMyMusic) Then
 ’Process the data
Else
 ’Do error processing
End If
OraDb.Connection.CommitTrans

Example: Compare All or Parts of Two BFILES Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
5-116 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_66
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc1 = null;
 BFILE lob_loc2 = null;
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 2");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBFILE (1);
 }

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'music') FROM DUAL");
 if (rset.next())
 {
External LOBs (BFILEs) 5-117

Compare All or Parts of Two BFILES
 lob_loc2 = ((OracleResultSet)rset).getBFILE (1);
 }

 if (lob_loc1.length() > lob_loc2.length())
 System.out.println("Looking for LOB2 inside LOB1. result = " +
 Long.toString(lob_loc1.position(lob_loc2, 0)));
 else
 System.out.println("Looking for LOB1 inside LOB2. result = " +
 Long.toString(lob_loc2.position(lob_loc1, 0)));

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-118 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE
See If a Pattern Exists (instr) in the BFILE

Figure 5–22 Use Case Diagram: See If a Pattern Exists in the BFILE

User/
Program

see where/if
a pattern exists

in the BFILE
(instr)

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR
External LOBs (BFILEs) 5-119

See If a Pattern Exists (instr) in the BFILE
Scenario
The following example searches for the occurrence of a pattern of audio data within

an interview Recording . This assumes that an audio signature is represented by

an identifiable bit pattern.

■ "Example: See If a Pattern Exists (instr) in the BFILE Using PL/SQL (DBMS_

LOB Package)" on page 5-120

■ "Example: See If a Pattern Exists (instr) in the BFILE Using COBOL

(Pro*COBOL)" on page 5-121

■ "Example: See If a Pattern Exists (instr) in the BFILE Using C++ (Pro*C/C++)"

on page 5-123

■ "Example: See If a Pattern Exists (instr) in the BFILE Using Visual Basic

(OO4O)" on page 5-124

■ "Example: See If a Pattern Exists (instr) in the BFILE Using Java (JDBC)" on

page 5-124

Example: See If a Pattern Exists (instr) in the BFILE Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure instringBFILE_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE instringBFILE_proc IS
 Lob_loc BFILE;
 Pattern RAW(32767);
 Position INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT Intab.Recording INTO Lob_loc
 FROM THE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab
 WHERE Clip_ID = 3) Intab
 WHERE Segment = 1;
 /* Open the BFILE: */
 DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
 /* Initialize the pattern for which to search, find the 2nd occurrence of

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
5-120 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE
 the pattern starting from the beginning of the BFILE: */
 Position := DBMS_LOB.INSTR(Lob_loc, Pattern, 1, 2);
 /* Close the BFILE: */
 DBMS_LOB.CLOSE(Lob_loc);
END;

Example: See If a Pattern Exists (instr) in the BFILE Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-INSTR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.

 * The length of pattern was chosen arbitrarily:
 01 PATTERN PIC X(4) VALUE "2424".
 EXEC SQL VAR PATTERN IS RAW(4) END-EXEC.
 01 POS PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-INSTR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT PHOTO INTO :BFILE1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
 END-EXEC.
External LOBs (BFILEs) 5-121

See If a Pattern Exists (instr) in the BFILE
 * Open the CLOB for READ ONLY:
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

 * Execute PL/SQL to get INSTR functionality:
 EXEC SQL EXECUTE
 BEGIN
 :POS := DBMS_LOB.INSTR(:BFILE1,:PATTERN, 1, 2);
 END;
 END-EXEC.

 IF POS = 0
 * Logic for pattern not found here
 DISPLAY "Pattern is not found."
 ELSE
 * Pos contains position where pattern is found
 DISPLAY "Pattern is found."
 END-IF.

 * Close and free the LOB:
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.
5-122 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE
Example: See If a Pattern Exists (instr) in the BFILE Using C++ (Pro*C/C++)
/* Pro*C lacks an equivalent embedded SQL form of the DBMS_LOB.INSTR()
 function. However, like SUBSTR() and COMPARE(), Pro*C/C++ can call
 DBMS_LOB.INSTR() from within an anonymous PL/SQL block as shown here: */
#include <sql2oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define PatternSize 5

void instringBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Position = 0;
 int Clip_ID = 3, Segment = 1;
 char Pattern[PatternSize];
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Pattern IS RAW(PatternSize);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Use Dynamic SQL to retrieve the BFILE Locator: */
 EXEC SQL PREPARE S FROM
 'SELECT Intab.Recording \
 FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab \
 WHERE Clip_ID = :cid) Intab \
 WHERE Intab.Segment = :seg';
 EXEC SQL DECLARE C CURSOR FOR S;
 EXEC SQL OPEN C USING :Clip_ID, :Segment;
 EXEC SQL FETCH C INTO :Lob_loc;
 EXEC SQL CLOSE C;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 memset((void *)Pattern, 0, PatternSize);
 /* Find the first occurrance of the pattern starting from the
External LOBs (BFILEs) 5-123

See If a Pattern Exists (instr) in the BFILE
 beginning of the BFILE using PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Position := DBMS_LOB.INSTR(:Lob_loc, :Pattern, 1, 1);
 END;
 END-EXEC;
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 if (0 == Position)
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 instringBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: See If a Pattern Exists (instr) in the BFILE Using Visual Basic (OO4O)

Example: See If a Pattern Exists (instr) in the BFILE Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

Note: A Visual Basic (OO4O) example will made available in a

subsequent release.
5-124 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE
// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_70
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc = null;
 // Pattern to look for within the BFILE:
 String pattern = new String("children");

 ResultSet rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 3");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBFILE (1);
 }

 // Open the LOB:
 lob_loc.openFile();

 // Search for the location of pattern string in the BFILE,
 // starting at offset 1:
 long result = lob_loc.position(pattern.getBytes(), 1);
 System.out.println(
External LOBs (BFILEs) 5-125

See If a Pattern Exists (instr) in the BFILE
 "Results of Pattern Comparison : " + Long.toString(result));

 // Close the LOB:
 lob_loc.closeFile();

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-126 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists
See If the BFILE Exists

Figure 5–23 Use Case Diagram: See If the BFILE exists

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

see if the
BFILE exists

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator
b

User/
Program
External LOBs (BFILEs) 5-127

See If the BFILE Exists
Scenario
This example queries whether a BFILE that is associated with Recording .

■ "Example: See If the BFILE Exists Using PL/SQL (DBMS_LOB Package)" on

page 5-128

■ "Example: See If the BFILE Exists Using C (OCI)" on page 5-128

■ "Example: See If the BFILE Exists Using COBOL (Pro*COBOL)" on page 5-130

■ "Example: See If the BFILE Exists Using C++ (Pro*C/C++)" on page 5-131

■ "Example: See If the BFILE Exists Using Visual Basic (OO4O)" on page 5-132

■ "Example: See If the BFILE Exists Using Java (JDBC)" on page 5-133

Example: See If the BFILE Exists Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure seeIfExistsBFILE_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE seeIfExistsBFILE_proc IS
 Lob_loc BFILE;
BEGIN
 /* Select the LOB: */
 SELECT Intab.Recording INTO Lob_loc
 FROM THE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab
 WHERE Mtab.Clip_ID = 3) Intab
 WHERE Intab.Segment = 1;
 /* See If the BFILE exists: */
 IF (DBMS_LOB.FILEEXISTS(Lob_loc) != 0)
 THEN
 DBMS_OUTPUT.PUT_LINE(’Processing given that the BFILE exists’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Processing given that the BFILE does not exist’);
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Example: See If the BFILE Exists Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
5-128 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
boolean BfileExists(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 allocated and initialized.
 */

 OCILobLocator *bfile_loc;
 boolean is_exists;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Select the bfile */
 selectLob(svchp, stmthp, errhp, dfnhp, bfile_loc,
 "SELECT Intab.Recording FROM THE(
 SELECT Mtab.InSeg_ntab FROM
External LOBs (BFILEs) 5-129

See If the BFILE Exists
 Multimedia_tab Mtab WHERE Mtab.Clip_ID=3) Intab
 WHERE Intab.Segment = 1");

 boolean is_exists;
 checkerr(errhp, OCILobFileExists(svchp, errhp, bfile_loc,
 &is_exists));
 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
 return(is_exists);
}

Example: See If the BFILE Exists Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-EXISTS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 FEXISTS PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-EXISTS.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT PHOTO INTO :BFILE1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
5-130 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists
 END-EXEC.

 EXEC SQL
 LOB DESCRIBE :BFILE1 GET FILEEXISTS INTO :FEXISTS
 END-EXEC.

 IF FEXISTS = 1
 * Logic for file exists here
 DISPLAY "File exists"
 ELSE
 * Logic for file does not exist here
 DISPLAY "File does not exist"
 END-IF.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: See If the BFILE Exists Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{

External LOBs (BFILEs) 5-131

See If the BFILE Exists
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeIfBFILEExists_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Exists = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* See if the BFILE Exists: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET FILEEXISTS INTO :Exists;
 printf("BFILE %s exist\n", Exists ? "does" : "does not");
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeIfBFILEExists_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: See If the BFILE Exists Using Visual Basic (OO4O)
’Note that the PL/SQL packages and the tables mentioned here are not part of the
’standard OO4O installation:
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraMusic As OraBfile, OraSql As OraSqlStmt

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

OraDb.Connection.BeginTrans

Set OraParameters = OraDb.Parameters
5-132 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists
OraParameters.Add "id", 1001, ORAPARM_INPUT

’Define out parameter of BFILE type:
OraParameters.Add "MyMusic", Empty, ORAPARM_OUTPUT
OraParameters("MyMusic").ServerType = ORATYPE_BFILE

Set OraSql =
 OraDb.CreateSql(

"BEGIN SELECT music INTO :MyMusic FROM multimedia_tab WHERE clip_id = :id;
 END;", ORASQL_FAILEXEC)

Set OraMusic = OraParameters("MyMusic").Value

If OraMusic.Exists Then
 ’Process the data
Else
 ’Do error processing
End If
OraDb.Connection.CommitTrans

Example: See If the BFILE Exists Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_74
{

 static final int MAXBUFSIZE = 32767;
External LOBs (BFILEs) 5-133

See If the BFILE Exists
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 3");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBFILE (1);
 }

 // See if the BFILE exists:
 Boolean exists = new Boolean(lob_loc.fileExists());
 System.out.println("Result from fileExists(): " + exists.toString());

 // Return the length of the BFILE:
 long length = lob_loc.length();
 System.out.println("Length of BFILE: " + Long.toString(length));

 // Get the directory alias for this BFILE:
 System.out.println("Directory alias: " + lob_loc.getDirAlias());

 // Get the file name for this BFILE:
 System.out.println("File name: " + lob_loc.getName());

 stmt.close();
 conn.commit();
 conn.close();
5-134 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 5-135

Get the Length of a BFILE
Get the Length of a BFILE

Figure 5–24 Use Case Diagram: Get the length of the BFILE

User/
Program

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

get the length
of the BFILE

OR
5-136 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE
Scenario
This example gets the length of a BFILE that is associated with Recording .

■ "Example: Get the Length of a BFILE Using PL/SQL (DBMS_LOB Package)" on

page 5-137

■ "Example: Get the Length of a BFILE Using C (OCI)" on page 5-138

■ "Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)" on

page 5-139

■ "Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)" on

page 5-139

■ "Example: Get the Length of a BFILE Using C++ (Pro*C/C++)" on page 5-140

■ "Example: Get the Length of a BFILE Using Visual Basic (OO4O)" on page 5-141

■ "Example: Get the Length of a BFILE Using Java (JDBC)" on page 5-142

Example: Get the Length of a BFILE Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure getLengthBFILE_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE getLengthBFILE_proc IS
 Lob_loc BFILE;
 Length INTEGER;
BEGIN
 /* Initialize the BFILE locator by selecting the LOB: */
 SELECT Mtab.Voiced_ref.Recording INTO Lob_loc FROM Multimedia_tab Mtab
 WHERE Mtab.Clip_ID = 3;
 /* Open the BFILE: */
 DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
 /* Get the length of the LOB: */
 Length := DBMS_LOB.GETLENGTH(Lob_loc);
 IF Length IS NULL THEN
 DBMS_OUTPUT.PUT_LINE(’BFILE is null.’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The length is ’ || length);
 END IF;

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
External LOBs (BFILEs) 5-137

Get the Length of a BFILE
 /* Close the BFILE: */
 DBMS_LOB.CLOSE(Lob_loc);
END;

Example: Get the Length of a BFILE Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
ub4 BfileLength(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 * allocated and initialized.
 */

 OCILobLocator *bfile_loc;
 ub4 len;
5-138 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE
 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Select the bfile */
 selectLob(svchp, stmthp, errhp, dfnhp, bfile_loc,
 "SELECT Mtab.Voiced_ref.Recording FROM Multimedia_tab Mtab
 WHERE Mtab.Clip_ID = 3");

 ub4 len;
 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 (ub1)OCI_FILE_READONLY));
 checkerr(errhp, OCILobGetLength(svchp, errhp, bfile_loc,
 &len));
 /* ... Do some processing. */
 checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
 return(len);
}

Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-LENGTH.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 LEN PIC S9(9) COMP.
 01 D-LEN PIC 9(4).
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-LENGTH.
External LOBs (BFILEs) 5-139

Get the Length of a BFILE
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT PHOTO INTO :BFILE1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
 END-EXEC.

 * Use LOB DESCRIBE to get length of lob:
 EXEC SQL
 LOB DESCRIBE :BFILE1 GET LENGTH INTO :LEN
 END-EXEC.

 MOVE LEN TO D-LEN.
 DISPLAY "Length of BFILE is ", D-LEN.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Get the Length of a BFILE Using C++ (Pro*C/C++)
#include <oci.h>
5-140 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void getLengthBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Length = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Length: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 /* If the BFILE is NULL or unitialized, then Length is Undefined: */
 printf("Length is %d bytes\n", Length);
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Get the Length of a BFILE Using Visual Basic (OO4O)
’Note that the PL/SQL packages and the tables mentioned here are not part of the
’standard OO4O installation:
External LOBs (BFILEs) 5-141

Get the Length of a BFILE
Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

OraDb.Connection.BeginTrans

Set OraParameters = OraDb.Parameters

OraParameters.Add "id", 1001, ORAPARM_INPUT

’Define out parameter of BFILE type:
OraParameters.Add "MyMusic", Empty, ORAPARM_OUTPUT
OraParameters("MyMusic").ServerType = ORATYPE_BFILE

Set OraSql =
 OraDb.CreateSql(

"BEGIN SELECT music INTO :MyMusic FROM multimedia_tab WHERE clip_id = :id;
 END;", ORASQL_FAILEXEC)

Set OraMusic = OraParameters("MyMusic").Value

If OraMusic.Size = 0 Then
 MsgBox "BFile size is 0"
Else
 MsgBox "BFile size is " & OraMusic.Size
End If
OraDb.Connection.CommitTrans

Example: Get the Length of a BFILE Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
5-142 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE
// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_74
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 3");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBFILE (1);
 }

 // See if the BFILE exists:
 Boolean exists = new Boolean(lob_loc.fileExists());
 System.out.println("Result from fileExists(): " + exists.toString());

 // Return the length of the BFILE:
 long length = lob_loc.length();
 System.out.println("Length of BFILE: " + Long.toString(length));

 // Get the directory alias for this BFILE:
External LOBs (BFILEs) 5-143

Get the Length of a BFILE
 System.out.println("Directory alias: " + lob_loc.getDirAlias());

 // Get the file name for this BFILE:
 System.out.println("File name: " + lob_loc.getName());

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-144 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE
Copy a LOB Locator for a BFILE

Figure 5–25 Use Case Diagram: Copy a LOB Locator for a BFILE

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

copy
LOB

locator
External LOBs (BFILEs) 5-145

Copy a LOB Locator for a BFILE
Scenario
This example assigns one BFILE locator to another related to Photo .

■ "Example: Copy a LOB Locator for a BFILE Using PL/SQL" on page 5-146

■ "Example: Copy a LOB Locator for a BFILE Using C (OCI)" on page 5-146

■ "Example: Copy a LOB Locator for a BFILE Using COBOL (Pro*COBOL)" on

page 5-148

■ "Example: Copy a LOB Locator for a BFILE Using C++ (Pro*C/C++)" on

page 5-149

■ "Example: Copy a LOB Locator for a BFILE Using Visual Basic (OO4O)" on

page 5-150

■ "Example: Copy a LOB Locator for a BFILE Using Java (JDBC)" on page 5-150

Example: Copy a LOB Locator for a BFILE Using PL/SQL

/* Note that the example procedure BFILEAssign_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE BFILEAssign_proc IS
 Lob_loc1 BFILE;
 Lob_loc2 BFILE;
BEGIN
 SELECT Photo INTO Lob_loc1 FROM Multimedia_tab WHERE Clip_ID = 3
 FOR UPDATE;
 /* Assign Lob_loc1 to Lob_loc2 so that they both refer to the same operating
 system file: */
 Lob_loc2 := Lob_loc1;
 /* Now you can read the bfile from either Lob_loc1 or Lob_loc2. */
END;

Example: Copy a LOB Locator for a BFILE Using C (OCI)
/* Select the lob/bfile from the Multimedia table: */

Note: Assigning one BFILE to another using PL/SQL entails

using the "=" sign. This is an advanced topic that is discussed in

more detail above with regard to "Read-Consistent Locators". on

page 2-2
5-146 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement: */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column: */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement: */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
sword BfileAssign(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 * allocated and initialized:
 */

 OCILobLocator *src_loc;
 OCILobLocator *dest_loc;

 /* Allocate the locator descriptors: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &src_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)
External LOBs (BFILEs) 5-147

Copy a LOB Locator for a BFILE
 /* Select the bfile: */
 selectLob(svchp, stmthp, errhp, dfnhp, src_loc,
 "SELECT Photo FROM Multimedia_tab WHERE Clip_ID=3");

 /* Free the locator descriptors: */
 OCIDescriptorFree((dvoid *)src_loc, (ub4)OCI_DTYPE_FILE);
 OCIDescriptorFree((dvoid *)dest_loc, (ub4)OCI_DTYPE_FILE);
 return (OCILobLocatorAssign(svchp, errhp, src_loc, &dst_loc));
 /* Note: it is the caller’s responsibilit to free the source
 and destination locator descriptors once the caller is done using them.
 */
}

Example: Copy a LOB Locator for a BFILE Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-COPY-LOCATOR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 BFILE2 SQL-BFILE.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BILFE-COPY-LOCATOR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL ALLOCATE :BFILE2 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
5-148 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE
 EXEC SQL
 SELECT PHOTO INTO :BFILE1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
 END-EXEC.

 EXEC SQL
 LOB ASSIGN :BFILE1 TO :BFILE2
 END-EXEC.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL FREE :BFILE2 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Copy a LOB Locator for a BFILE Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILEAssign_proc()
External LOBs (BFILEs) 5-149

Copy a LOB Locator for a BFILE
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Photo INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 3;
 /* Assign Lob_loc1 to Lob_loc2 so that they both refer to the same
 operating system file: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* Now you can read the BFILE from either Lob_loc1 or Lob_loc2 */
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILEAssign_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Copy a LOB Locator for a BFILE Using Visual Basic (OO4O)

Example: Copy a LOB Locator for a BFILE Using Java (JDBC)
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

Note: A Visual Basic (OO4O) example will made available in a

subsequent release.
5-150 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE
public class Ex4_81
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc1 = null;
 BFILE lob_loc2 = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 3");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBFILE (1);
 }

 // Assign lob_loc1 to lob_loc2 so that they both refer
 // to the same operating system file.
 // Now the BFILE can be read through either of the locators:
 lob_loc2 = lob_loc1;

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
External LOBs (BFILEs) 5-151

Copy a LOB Locator for a BFILE
 }
}

5-152 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator for a BFILE Is Initialized
See If a LOB Locator for a BFILE Is Initialized

Figure 5–26 Use Case Diagram: See If a LOB Locator Is Initialized

To refer to the table of all basic operations having to do with
External LOBs (BFILES):

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

see
if locator

is initialized
External LOBs (BFILEs) 5-153

See If a LOB Locator for a BFILE Is Initialized
Scenario
Before you call any of the OCILob* interfaces (such as OCILobWrite), or any of

the programmatic environments that make use of the OCILob* interfaces, you must

first initialize the LOB locator, via a SELECT, for example. So, if your application

requires for a locator to be passed from one function to another, you may want to

verify that the locator has already been initialized. If it turns out the locator is not

initialized, you could design your application either to return an error or to perform

the SELECT before calling the OCILob* interface.

■ "Example: See If a LOB Locator for a BFILE Is Initialized Using C (OCI)" on

page 5-154

■ "Example: See If a LOB Locator for a BFILE Is Initialized Using C++

(Pro*C/C++)" on page 5-154

Example: See If a LOB Locator for a BFILE Is Initialized Using C (OCI)
boolean BfileIsInit(envhp, svchp, errhp, bfile_loc)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIError *errhp;
OCILobLocator *bfile_loc; /* This is the BFILE locator that is already
 allocated and initialized. */
{
 boolean is_init;
 checkerr(errhp, OCILobLocatorIsInit(envhp, errhp, bfile_loc, &is_init));
 return(is_init);
}

Example: See If a LOB Locator for a BFILE Is Initialized Using C++ (Pro*C/C++)
/* Pro*C/C++ has no form of embedded SQL statement to determine if a BFILE
 locator is initialized. Locators in Pro*C/C++ are initialized when they
 are allocated via the EXEC SQL ALLOCATE statement. However, an example
 can be written that uses embedded SQL and the OCI as is shown here: */
#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
5-154 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator for a BFILE Is Initialized
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILELocatorIsInit_proc()
{
 OCIBFileLocator *Lob_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized: */
 (void) OCILobLocatorIsInit(oeh, err, Lob_loc, &isInitialized);
 if (isInitialized)
 printf("Locator is initialized\n");
 else
 printf("Locator is not initialized\n");
 /* Note that in this example, the locator is initialized: */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILELocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

External LOBs (BFILEs) 5-155

See If One LOB Locator for a BFILE Is Equal to Another
See If One LOB Locator for a BFILE Is Equal to Another

Figure 5–27 Use Case Diagram: See If One LOB Locator for a BFILE Is Equal to
Another

External LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

see
if locators
are equal
5-156 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator for a BFILE Is Equal to Another
Scenario
If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" on page 2-2).

■ "Example: See If One LOB Locator for a BFILE Is Equal to Another Using C

(OCI)" on page 5-157

■ "Example: See If One LOB Locator for a BFILE Is Equal to Another Using C++

(Pro*C/C++)" on page 5-157

■ "Example: See If One LOB Locator for a BFILE Is Equal to Another Using Java

(JDBC)" on page 5-159

Example: See If One LOB Locator for a BFILE Is Equal to Another Using C (OCI)
boolean BfileIsEqual(envhp, errhp, bfile_loc1, bfile_loc2)
OCIEnv *envhp;
OCIError *errhp;
OCILobLocator *bfile_loc1; /* BFILE Locator 1 that is already allocated */
OCILobLocator *bfile_loc2; /* BFILE Locator 2 that is already allocated */
{
 boolean is_equal;
 OCILobIsEqual(envhp, bfile_loc1, bfile_loc2, &is_equal);
 return(is_equal);
}

Example: See If One LOB Locator for a BFILE Is Equal to Another Using C++
(Pro*C/C++)

/* Pro*C/C++ does not provide a mechanism to test the equality of two
 locators However, by using the OCI directly, two locators can be
 compared to determine whether or not they are equal as this example
 demonstrates: */

#include <sql2oci.h>
#include <stdio.h>

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
External LOBs (BFILEs) 5-157

See If One LOB Locator for a BFILE Is Equal to Another
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILELocatorIsEqual_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;
 OCIEnv *oeh;
 boolean isEqual = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Photo INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 3;
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* Now you can read the BFILE from either Lob_loc1 or Lob_loc2 */
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Call OCI to see if the two locators are Equal: */
 (void) OCILobIsEqual(oeh, Lob_loc1, Lob_loc2, &isEqual);
 if (isEqual)
 printf("Locators are equal\n");
 else
 printf("Locators are not equal\n");
 /* Note that in this example, the LOB locators will be Equal: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILELocatorIsEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

5-158 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator for a BFILE Is Equal to Another
Example: See If One LOB Locator for a BFILE Is Equal to Another Using Java (JDBC)
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_89
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc1 = null;
 BFILE lob_loc2 = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 3");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBFILE (1);
 }
External LOBs (BFILEs) 5-159

See If One LOB Locator for a BFILE Is Equal to Another
 // Set both LOBS to reference the same BFILE:
 lob_loc2 = lob_loc1;

 // Note that in this example, the Locators will be equal:
 if (lob_loc1.equals(lob_loc2))
 {
 // The Locators are equal:
 System.out.println("The BFILEs are equal");
 }
 else
 {
 // The Locators are different:
 System.out.println("The BFILEs are NOT equal");
 }

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-160 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Directory Alias and Filename
Get Directory Alias and Filename

Figure 5–28 Use Case Diagram: Get Directory Alias and Filename

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

get directory
alias and
filename
External LOBs (BFILEs) 5-161

Get Directory Alias and Filename
Scenario
This example retrieves the directory alias and filename related to the BFILE ,

Music .

■ "Example: Get Directory Alias and Filename Using PL/SQL" on page 5-162

■ "Example: Get Directory Alias and Filename Using C (OCI)" on page 5-162

■ "Example: Get Directory Alias and Filename Using COBOL (Pro*COBOL)" on

page 5-164

■ "Example: Get Directory Alias and Filename Using C++ (Pro*C/C++)" on

page 5-165

■ "Example: Get Directory Alias and Filename Using Visual Basic (OO4O)" on

page 5-166

■ "Example: Get Directory Alias and Filename Using Java (JDBC)" on page 5-167

Example: Get Directory Alias and Filename Using PL/SQL
CREATE OR REPLACE PROCEDURE getNameBFILE_proc IS
 Lob_loc BFILE;
 DirAlias_name VARCHAR2(30);
 File_name VARCHAR2(40);
BEGIN
 SELECT Music INTO Lob_loc FROM Multimedia_tab WHERE Clip_ID = 3;
 DBMS_LOB.FILEGETNAME(Lob_loc, DirAlias_name, File_name);
 /* do some processing based on the directory alias and file names */
END;

Example: Get Directory Alias and Filename Using C (OCI)
/* Select the lob/bfile from the Multimedia table: */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement: */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
5-162 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Directory Alias and Filename
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column: */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement: */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
void BfileGetDirFile(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 allocated and initialized.
 */

 OCILobLocator *bfile_loc;
 OraText dir_alias[32] = NULL;
 ub2 d_length = 32;
 OraText filename[256] = NULL;
 ub2 f_length = 256;

 /* Allocate the locator descriptor: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Select the bfile: */
 selectLob(svchp, stmthp, errhp, dfnhp, bfile_loc,
 "SELECT Music FROM Multimedia_tab WHERE Clip_ID=3");

 OCILobFileGetName(envhp, errhp, bfile_loc, dir_alias, &d_length,
 filename, &f_length);

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

External LOBs (BFILEs) 5-163

Get Directory Alias and Filename
Example: Get Directory Alias and Filename Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-DIR-ALIAS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-DIR-ALIAS.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.

 * Populate the BFILE locator:
 EXEC SQL
 SELECT PHOTO INTO :BFILE1
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 3
 END-EXEC.

 * Use the LOB DESCRIBE functionality to get
 * the directory alias and the filename:
 EXEC SQL
 LOB DESCRIBE :BFILE1
 GET DIRECTORY, FILENAME INTO :DIR-ALIAS, :FNAME
 END-EXEC.
5-164 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Directory Alias and Filename
 DISPLAY "DIRECTORY: ", DIR-ALIAS-ARR, "FNAME: ", FNAME-ARR.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Get Directory Alias and Filename Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void getBFILEDirectoryAndFilename_proc()
{
 OCIBFileLocator *Lob_loc;
 char Directory[31], Filename[255];
 /* Datatype Equivalencing is Optional: */
 EXEC SQL VAR Directory IS STRING;
 EXEC SQL VAR Filename IS STRING;
External LOBs (BFILEs) 5-165

Get Directory Alias and Filename
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BFILE: */
 EXEC SQL SELECT Photo INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Directory Alias and Filename: */
 EXEC SQL LOB DESCRIBE :Lob_loc
 GET DIRECTORY, FILENAME INTO :Directory, :Filename;
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 printf("Directory Alias: %s\n", Directory);
 printf("Filename: %s\n", Filename);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getBFILEDirectoryAndFilename_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Get Directory Alias and Filename Using Visual Basic (OO4O)
’Note that the PL/SQL packages and the tables mentioned here are not part of the
’standard OO4O installation:

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraMusic1 As OraBfile, OraSql As OraSqlStmt

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

OraDb.Connection.BeginTrans

Set OraParameters = OraDb.Parameters

OraParameters.Add "id", 1001, ORAPARM_INPUT
5-166 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Directory Alias and Filename
’Define out parameter of BFILE type:
OraParameters.Add "MyMusic", Empty, ORAPARM_OUTPUT
OraParameters("MyMusic").ServerType = ORATYPE_BFILE

Set OraSql =
 OraDb.CreateSql(

"BEGIN SELECT music INTO :MyMusic FROM multimedia_tab WHERE clip_id = :id;
 END;", ORASQL_FAILEXEC)

Set OraMusic1 = OraParameters("MyMusic").Value
’Get Directory alias and filename:
MsgBox " Directory alias is " & OraMusic1.DirectoryName &
 " Filename is " & OraMusic1.filename

OraDb.Connection.CommitTrans

Example: Get Directory Alias and Filename Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_74
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
External LOBs (BFILEs) 5-167

Get Directory Alias and Filename
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE lob_loc = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 3");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBFILE (1);
 }
 // See if the BFILE exists:
 Boolean exists = new Boolean(lob_loc.fileExists());
 System.out.println("Result from fileExists(): " + exists.toString());

 // Return the length of the BFILE:
 long length = lob_loc.length();
 System.out.println("Length of BFILE: " + Long.toString(length));

 // Get the directory alias for this BFILE:
 System.out.println("Directory alias: " + lob_loc.getDirAlias());

 // Get the file name for this BFILE:
 System.out.println("File name: " + lob_loc.getName());
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-168 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways to Update a Row Containing a BFILE
Three Ways to Update a Row Containing a BFILE

Figure 5–29 Use Case Diagram: Three Ways to Update a Row Containing a BFILE

Note that you must initialize the BFILE either to NULL or to a directory alias and

filename.

a. "UPDATE a BFILE Using BFILENAME()" on page 5-170

b. "UPDATE a BFILE as SELECT" on page 5-173

c. "UPDATE a BFILE by Initializing a BFILE Locator" on page 5-174

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

b
c

a
UPDATE

a BFILE with a
diff. OS file
External LOBs (BFILEs) 5-169

UPDATE a BFILE Using BFILENAME()
UPDATE a BFILE Using BFILENAME()

Figure 5–30 Use Case Diagram: UPDATE a BFILE Using BFILENAME()

BFILENAME() Function

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

BFILENAME()

UPDATE
a BFILE with a

diff. OS file
a UPDATE using BFILENAME()
5-170 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE Using BFILENAME()
The BFILENAME() function can be called as part of SQL INSERT or UPDATE to
initialize a BFILE column or attribute for a particular row by associating it with a

physical file in the server’s filesystem.

The DIRECTORY object represented by the directory_alias parameter to this

function need not already be defined using SQL DDL before the BFILENAME()
function is called in SQL DML or a PL/SQL program. However, the directory object

and operating system file must exist by the time you actually use the BFILE locator

(for example, as having been used as a parameter to an operation such as

OCILobFileOpen() , DBMS_LOB.FILEOPEN() , OCILobOpen() , or DBMS_
LOB.OPEN()) .

Note that BFILENAME() does not validate privileges on this DIRECTORY object, or

check if the physical directory that the DIRECTORY object represents actually exists.

These checks are performed only during file access using the BFILE locator that

was initialized by the BFILENAME() function.

You can use BFILENAME() as part of a SQL INSERT and UPDATE statement to

initialize a BFILE column. You can also use it to initialize a BFILE locator variable

in a PL/SQL program, and use that locator for file operations. However, if the

corresponding directory alias and/or filename does not exist, then PL/SQL DBMS_
LOB routines that use this variable will generate errors.

The directory_alias parameter in the BFILENAME() function must be specified

taking case-sensitivity of the directory name into consideration.

Syntax

FUNCTION BFILENAME(directory_alias IN VARCHAR2,
 filename IN VARCHAR2)
RETURN BFILE;

See Also: "DIRECTORY Name Specification" on page 5-7

See Also: "DIRECTORY Name Specification" on page 5-7 for

information about the use of uppercase letters in the directory

name, and OCILobFileSetName () in Oracle Call Interface
Programmer’s Guide for an equivalent OCI based routine.
External LOBs (BFILEs) 5-171

UPDATE a BFILE Using BFILENAME()
Scenario
This example updates Multimedia_tab by means of the BFILENAME function.

Example: Update a BFILE by means of BFILENAME() Using SQL
UPDATE Multimedia_tab
 SET Photo = BFILENAME(’PHOTO_DIR’, ’Nixon_photo’) where Clip_ID = 3;
5-172 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE as SELECT
UPDATE a BFILE as SELECT

Figure 5–31 Use Case Diagram: UPDATE a BFILE as SELECT

Scenario
There is no copy function for BFILE s, so you have to use UPDATE as SELECT if you

want to copy a BFILE from one location to another. Because BFILE s use reference

semantics instead of copy semantics, only the BFILE locator is copied from one row

to another row. This means that you cannot make a copy of an external LOB value

without issuing an operating system command to copy the operating system file.

This example updates the table, Voiceover_tab by selecting from the archival storage

table, VoiceoverLib_tab

Example: Update a BFILE as Select Using SQL
UPDATE Voiceover_tab
 SET (originator,script,actor,take,recording) =
 (SELECT * FROM VoiceoverLib_tab VLtab WHERE VLtab.Take = 101);

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

b UPDATE as SELECT

SELECT
a BFILE

UPDATE
a BFILE with a

diff. OS file
External LOBs (BFILEs) 5-173

UPDATE a BFILE by Initializing a BFILE Locator
UPDATE a BFILE by Initializing a BFILE Locator

Figure 5–32 Use Case Diagram: UPDATE a BFILE by Initializing a BFILE Locator

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

OCILOBFileSet
NAME()

SELECT
a BFILE

OR
Initialize

a BFILE locator

c UPDATE by initializing a BFILE locatorUPDATE
a BFILE with a

diff. OS file
5-174 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator
Scenario
Note that you must initialize the BFILE locator bind variable to a directory alias

and filename before issuing the update statement.

■ "Example: Update a BFILE by Initializing a BFILE Locator Using PL/SQL" on

page 5-175

■ "Example: Update a BFILE by Initializing a BFILE Locator Using C (OCI)" on

page 5-175

■ "Example: Update a BFILE by Initializing a BFILE Locator Using COBOL

(Pro*COBOL)" on page 5-176

■ "Example: Update a BFILE by Initializing a BFILE Locator Using C++

(Pro*C/C++)" on page 5-178

■ "Example: Update a BFILE by Initializing a BFILE Locator Using Visual Basic

(OO4O)" on page 5-179

■ "Example: Update a BFILE by Initializing a BFILE Locator Using Java (JDBC)"

on page 5-180

Example: Update a BFILE by Initializing a BFILE Locator Using PL/SQL
/* Note that the example procedure updateUseBindVariable_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE updateUseBindVariable_proc (Lob_loc BFILE) IS
BEGIN
 UPDATE Multimedia_tab SET Photo = Lob_loc WHERE Clip_ID = 3;
END;

DECLARE
 Lob_loc BFILE;
BEGIN
 SELECT Photo INTO Lob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1;
 updateUseBindVariable_proc (Lob_loc);
 COMMIT;
END;

Example: Update a BFILE by Initializing a BFILE Locator Using C (OCI)
void BfileUpdate(envhp, errhp, svchp, stmthp)
External LOBs (BFILEs) 5-175

UPDATE a BFILE by Initializing a BFILE Locator
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 OCIBind *bndhp;

 text *updstmt =
 (text *) "UPDATE Multimedia_tab SET Photo = :Lob_loc WHERE Clip_ID = 1";

 OraText *Dir = (OraText *)"PHOTO_DIR", *Name = (OraText *)"Washington_photo";

 /* Prepare the SQL statement: */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, updstmt, (ub4)
 strlen((char *) updstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Allocate Locator resources: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_FILE, (size_t) 0, (dvoid **) 0);

 checkerr (errhp, OCILobFileSetName(envhp, errhp, &Lob_loc,
 Dir, (ub2)strlen((char *)Dir),
 Name,(ub2)strlen((char *)Name)));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &Lob_loc, (sb4) 0, SQLT_BFILE,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement: */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 /* Free LOB resources: */
 OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_FILE);
}

Example: Update a BFILE by Initializing a BFILE Locator Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-UPDATE.
5-176 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 BFILE-IND PIC S9(4) COMP.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-UPDATE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 * Populate the BFILE:
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
 EXEC SQL
 SELECT PHOTO INTO :BFILE1:BFILE-IND
 FROM MULTIMEDIA_TAB WHERE CLIP_ID = 1
 END-EXEC.

 * Make photo associated with clip_id=3 same as clip_id=1:
 EXEC SQL
 UPDATE MULTIMEDIA_TAB SET PHOTO = :BFILE1:BFILE-IND
 WHERE CLIP_ID = 3
 END-EXEC.

 * Free the BFILE:
 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL
External LOBs (BFILEs) 5-177

UPDATE a BFILE by Initializing a BFILE Locator
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Update a BFILE by Initializing a BFILE Locator Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void updateUseBindVariable_proc(Lob_loc)
 OCIBFileLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL UPDATE Multimedia_tab SET Photo = :Lob_loc WHERE Clip_ID = 3;
}

void updateBFILE_proc()
{
 OCIBFileLocator *Lob_loc;

 EXEC SQL ALLOCATE :Lob_loc;
5-178 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator
 EXEC SQL SELECT Photo INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 updateUseBindVariable_proc(Lob_loc);
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 updateBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Update a BFILE by Initializing a BFILE Locator Using Visual Basic (OO4O)
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraParameters As OraParameters, OraPhoto As OraBfile

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

OraDb.Connection.BeginTrans

Set OraParameters = OraDb.Parameters

’Define in out parameter of BFILE type:
OraParameters.Add "MyPhoto", Empty, ORAPARM_BOTH, ORATYPE_BFILE

’Define out parameter of BFILE type:
OraDb.ExecuteSQL (
 "BEGIN SELECT Photo INTO :MyPhoto FROM Multimedia_tab WHERE Clip_ID = 1;
 END;")

’Update the photo BFile for clip_id=1 to clip_id=1001:
OraDb.ExecuteSQL (
 "UPDATE Multimedia_tab SET Photo = :MyPhoto WHERE Clip_ID = 1001")

’Get Directory alias and filename
’MsgBox " Directory alias is " & OraMusic1.DirectoryName & " Filename is " &
OraMusic1.filename

OraDb.Connection.CommitTrans
External LOBs (BFILEs) 5-179

UPDATE a BFILE by Initializing a BFILE Locator
Example: Update a BFILE by Initializing a BFILE Locator Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_100
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 OracleCallableStatement cstmt = null;

 rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 3");
 if (rset.next())
5-180 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Prepare a CallableStatement to OPEN the LOB for READWRITE:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "UPDATE multimedia_tab SET photo = ? WHERE clip_id = 1");
 cstmt.setBFILE(1, src_lob);
 cstmt.execute();

 //Close the statements and commit the transaction:
 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 5-181

Two Ways to Close a BFILE
Two Ways to Close a BFILE

Figure 5–33 Use Case Diagram: Two Ways to See If a BFILE is Open

External LOBs

SELECT
a BFILE

Initialize
a BFILE locator

open
a BFILE

User/
Program

close
the BFILE
5-182 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Two Ways to Close a BFILE
As you can see by comparing the code, these alternative methods are very similar.

However, while you can continue to use the older FILECLOSE form, we strongly

recommend that you switch to using CLOSE, because this facilitates future

extensibility.

a. "Close a BFILE with FILECLOSE" on page 5-184

b. "Close a BFILE with CLOSE" on page 5-189

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
External LOBs (BFILEs) 5-183

Close a BFILE with FILECLOSE
Close a BFILE with FILECLOSE

Figure 5–34 Use Case Diagram: Close an Open BFILE

User/
Program

a Close a BFILE
with FILECLOSE

close
the BFILE

User/
Program

a Close a BFILE
with FILECLOSE

close all
opened files

open
a BFILE

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a
open

a BFILE

close
a BFILE
5-184 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with FILECLOSE
Scenario
While you can continue to use the older FILECLOSE form, we strongly recommend
that you switch to using CLOSE, because this facilitate future extensibility. This

example can be read in conjunction with the example of opening a BFILE .

■ "Example: Close a BFile with FILECLOSE Using PL/SQL (DBMS_LOB

Package)" on page 5-185

■ "Example: Close a BFile with FILECLOSE Using C (OCI)" on page 5-185

■ "Example: Close a BFile with FILECLOSE Using Visual Basic (OO4O)" on

page 5-187

■ "Example: Close a BFile with FILECLOSE Using Java (JDBC)" on page 5-187

Example: Close a BFile with FILECLOSE Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure closeBFILE_procOne is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE closeBFILE_procOne IS
 Lob_loc BFILE := BFILENAME(’PHOTO_DIR’, ’Lincoln_photo’);
BEGIN
 DBMS_LOB.FILEOPEN(Lob_loc, DBMS_LOB.FILE_READONLY);
 /* ...Do some processing. */
 DBMS_LOB.FILECLOSE(Lob_loc);
END;

Example: Close a BFile with FILECLOSE Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
OCILobLocator *Lob_loc;
text *selstmt;

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
External LOBs (BFILEs) 5-185

Close a BFILE with FILECLOSE
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
void BfileClose(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 * allocated and initialized.
 */

 OCILobLocator *bfile_loc;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Set the bfile locator information */
 checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
 (OraText *)"PHOTO_DIR", (ub2)strlen("PHOTO_DIR"),
 (OraText *)"Lincoln_photo",
 (ub2)strlen("Lincoln_photo"))));

 checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
5-186 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with FILECLOSE
}

Example: Close a BFile with FILECLOSE Using Visual Basic (OO4O)

Example: Close a BFile with FILECLOSE Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_45
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

Note: At the present time, OO4O only offers BFILE closing with

CLOSE (see below).
External LOBs (BFILEs) 5-187

Close a BFILE with FILECLOSE
 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'Lincoln_photo') FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 result = new Boolean(src_lob.plsql_fileIsOpen());
 System.out.println(
 "result of fileIsOpen() before opening file : " + result.toString());

 src_lob.plsql_fileOpen();

 result = new Boolean(src_lob.plsql_fileIsOpen());
 System.out.println(
 "result of fileIsOpen() after opening file : " + result.toString());

 // Close the BFILE, statement and connection:
 src_lob.plsql_fileClose();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-188 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE
Close a BFILE with CLOSE

Figure 5–35 Use Case Diagram: Close an Open BFILE

User/
Program

b Close a BFILE
with CLOSE

close
the BFILE

close all
opened files

open
a BFILE

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

close
a BFILE

open
a BFILE
External LOBs (BFILEs) 5-189

Close a BFILE with CLOSE
Scenario
This example should be read in conjunction with the example of opening a BFILE
— in this case, closing the BFILE associated with Lincoln_photo .

■ "Example: Close a BFile with CLOSE Using PL/SQL (DBMS_LOB Package)" on

page 5-190

■ "Example: Close a BFile with CLOSE Using C (OCI)" on page 5-190

■ "Example: Close a BFile with CLOSE Using COBOL (Pro*COBOL)" on

page 5-192

■ "Example: Close a BFile with CLOSE Using C++ (Pro*C/C++)" on page 5-193

■ "Example: Close a BFile with CLOSE Using Visual Basic (OO4O)" on page 5-194

■ "Example: Close a BFile with CLOSE Using Java (JDBC)" on page 5-195

Example: Close a BFile with CLOSE Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure closeBFILE_procTwo is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE closeBFILE_procTwo IS
 Lob_loc BFILE := BFILENAME(’PHOTO_DIR’, ’Lincoln_photo’);
BEGIN
 DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
 /* ...Do some processing. */
 DBMS_LOB.CLOSE(Lob_loc);
END;

Example: Close a BFile with CLOSE Using C (OCI)
/* Select the lob/bfile from the Multimedia table */
void selectLob(svchp, stmthp, errhp, dfnhp, Lob_loc, selstmt)
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2
5-190 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE
OCILobLocator *Lob_loc;
text *selstmt;
{
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
void BfileClose(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStatement *stmthp;
OCIError *errhp;
OCIDefine *dfnhp;
{
 /* Assume all handles passed as input to this routine have been
 allocated and initialized.
 */

 OCILobLocator *bfile_loc;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0)

 /* Set the bfile locator information */
 checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
 (OraText *)"PHOTO_DIR", (ub2)strlen("PHOTO_DIR"),
 (OraText *)"Lincoln_photo",
 (ub2)strlen("Lincoln_photo"))));

 checkerr(errhp, OCILobClose(svchp, errhp, bfile_loc));
External LOBs (BFILEs) 5-191

Close a BFILE with CLOSE
 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

Example: Close a BFile with CLOSE Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-CLOSE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-CLOSE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locators:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 * Set up the directory and file information:
 MOVE "PHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "lincoln_photo" TO FNAME-ARR.
 MOVE 13 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :BFILE1
 DIRECTORY = :DIR-ALIAS, FILENAME = :FNAME
 END-EXEC.
5-192 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE
 EXEC SQL
 LOB OPEN :BFILE1 READ ONLY
 END-EXEC.

 * Close the LOB:
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

 * And free the LOB locator:
 EXEC SQL FREE :BFILE1 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Close a BFile with CLOSE Using C++ (Pro*C/C++)
/* Pro*C/C++ has only one form of CLOSE for BFILEs. Pro*C/C++ has no
 FILE CLOSE statement. A simple CLOSE statement is used instead: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void closeBFILE_proc()
{

External LOBs (BFILEs) 5-193

Close a BFILE with CLOSE
 OCIBFileLocator *Lob_loc;
 char *Dir = "PHOTO_DIR", *Name = "Lincoln_photo";

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* ... Do some processing */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 closeBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Close a BFile with CLOSE Using Visual Basic (OO4O)
’Note that this code fragment assumes a ORABFILE object as the result of a
’dynaset operation. This object could have been an OUT parameter of a PL/SQL
’procedure. For more information please refer to chapter 1:
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, amount_read%, chunksize%, chunk

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "scott/tiger", 0&)

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value

If OraMusic.IsOpen Then
 ’Processing given that the file is already open
 OraMusic.Close
End If
5-194 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE
Example: Close a BFile with CLOSE Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_48
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'Lincoln_photo') FROM DUAL");
 if (rset.next())
External LOBs (BFILEs) 5-195

Close a BFILE with CLOSE
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 result = new Boolean(src_lob.isFileOpen());
 System.out.println(
 "result of fileIsOpen() before opening file : " + result.toString());

 src_lob.openFile();

 result = new Boolean(src_lob.isFileOpen());
 System.out.println(
 "result of fileIsOpen() after opening file : " + result.toString());

 // Close the BFILE, statement and connection:
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-196 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close All Open BFILEs
Close All Open BFILEs

Figure 5–36 Use Case Diagram: Close All Open BFILEs

It is the user’s responsibility to close any opened file(s) after normal or abnormal

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files
External LOBs (BFILEs) 5-197

Close All Open BFILEs
termination of a PL/SQL program block or OCI program. So, for instance, for every

DBMS_LOB.FILEOPEN() or DBMS_LOB.OPEN() call on a BFILE , there must be a

matching DBMS_LOB.FILECLOSE() or DBMS_LOB.CLOSE() call. You should close

open files before the termination of a PL/SQL block or OCI program, and also in

situations which have raised errors. The exception handler should make provisions

to close any files that were opened before the occurrence of the exception or

abnormal termination.

If this is not done, Oracle will consider these files unclosed.

Scenario
■ "Example: Close All Open BFiles Using PL/SQL (DBMS_LOB Package)" on

page 5-198

■ "Example: Close All Open BFiles Using C (OCI)" on page 5-198

■ "Example: Close All Open BFiles Using COBOL (Pro*COBOL)" on page 5-199

■ "Example: Close All Open BFiles Using C++ (Pro*C/C++)" on page 5-200

■ "Example: Close All Open BFiles Using Visual Basic (OO4O)" on page 5-201

■ "Example: Close All Open BFiles Using Java (JDBC)" on page 5-202

Example: Close All Open BFiles Using PL/SQL (DBMS_LOB Package)
/* Note that the example procedure closeAllOpenFilesBFILE_proc is not part of
 the DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE closeAllOpenFilesBFILE_proc IS
BEGIN
 /* Close all open BFILEs: */
 DBMS_LOB.FILECLOSEALL;
END;

Example: Close All Open BFiles Using C (OCI)
void BfileCloseAll(svchp, errhp)
OCISvcCtx *svchp;
OCIError *errhp;
{
 /* Close all open files on the service context */

See Also: "Maximum Number of Open BFILEs" on page 5-52
5-198 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close All Open BFILEs
 checkerr(errhp, OCILobFileCloseAll(svchp, errhp));
}

Example: Close All Open BFiles Using COBOL (Pro*COBOL)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-CLOSE-ALL.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 BFILE1 SQL-BFILE.
 01 BFILE2 SQL-BFILE.
 01 DIR-ALIAS1 PIC X(30) VARYING.
 01 FNAME1 PIC X(20) VARYING.
 01 DIR-ALIAS2 PIC X(30) VARYING.
 01 FNAME2 PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-CLOSE-ALL.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate the BFILEs:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL ALLOCATE :BFILE2 END-EXEC.

 * Set up the directory and file information:
 MOVE "AUDIO_DIR" TO DIR-ALIAS1-ARR.
 MOVE 9 TO DIR-ALIAS1-LEN.
 MOVE "washington_audio" TO FNAME1-ARR.
 MOVE 16 TO FNAME1-LEN.

 EXEC SQL
 LOB FILE SET :BFILE1
External LOBs (BFILEs) 5-199

Close All Open BFILEs
 DIRECTORY = :DIR-ALIAS1, FILENAME = :FNAME1
 END-EXEC.

 EXEC SQL
 LOB OPEN :BFILE1 READ ONLY
 END-EXEC.

 * Set up the directory and file information:
 MOVE "PHOTO_DIR" TO DIR-ALIAS2-ARR.
 MOVE 9 TO DIR-ALIAS2-LEN.
 MOVE "lincoln_photo" TO FNAME2-ARR.
 MOVE 13 TO FNAME2-LEN.

 EXEC SQL
 LOB FILE SET :BFILE2
 DIRECTORY = :DIR-ALIAS2, FILENAME = :FNAME2
 END-EXEC.

 EXEC SQL
 LOB OPEN :BFILE2 READ ONLY
 END-EXEC.

 * Close both BFILE1 and BFILE2:
 EXEC SQL LOB FILE CLOSE ALL END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Example: Close All Open BFiles Using C++ (Pro*C/C++)
#include <oci.h>
#include <stdio.h>
5-200 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close All Open BFILEs
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void closeAllOpenBFILEs_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Populate the Locators: */
 EXEC SQL SELECT Music INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 3;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO Lob_loc2
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* Open both BFILEs: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Close all open BFILEs: */
 EXEC SQL LOB FILE CLOSE ALL;
 /* Free resources held by the Locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 closeAllOpenBFILEs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Close All Open BFiles Using Visual Basic (OO4O)
Dim OraParameters as OraParameters, OraPhoto as OraBFile
OraConnection.BeginTrans
External LOBs (BFILEs) 5-201

Close All Open BFILEs
Set OraParameters = OraDatabase.Parameters

’Define in out parameter of BFILE type:
OraParameters.Add "MyPhoto", Empty,ORAPARAM_BOTH,ORATYPE_BFILE

’Select the photo BFile for clip_id 1:
OraDatabase.ExecuteSQL("Begin SELECT Photo INTO :MyPhoto FROM
Multimedia_tab WHERE Clip_ID = 1; END ")

’Get the BFile photo column:
set OraPhoto = OraParameters("MyPhoto").Value

’Open the OraPhoto:
OraPhoto.Open

’Do some processing on OraPhoto

’Close all the BFILEs associated with OraPhoto:
OraPhoto.CloseAll

Example: Close All Open BFiles Using Java (JDBC)
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_66
{

 static final int MAXBUFSIZE = 32767;
5-202 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close All Open BFILEs
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc1 = null;
 BFILE lob_loc2 = null;
 ResultSet rset = null;
 OracleCallableStatement cstmt = null;

 rset = stmt.executeQuery (
 "SELECT photo FROM multimedia_tab WHERE clip_id = 3");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBFILE (1);
 }

 rset = stmt.executeQuery (
 "SELECT BFILENAME('PHOTO_DIR', 'RooseveltFDR_photo') FROM DUAL");
 if (rset.next())
 {
 lob_loc2 = ((OracleResultSet)rset).getBFILE (1);
 }

 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.FILEOPEN(?,DBMS_LOB.LOB_READONLY); END;");
 // Open the first LOB:
 cstmt.setBFILE(1, lob_loc1);
 cstmt.execute();

 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.FILEOPEN(?,DBMS_LOB.LOB_READONLY); END;");
External LOBs (BFILEs) 5-203

Close All Open BFILEs
 // Use the same CallableStatement to open the second LOB:
 cstmt.setBFILE(1, lob_loc2);
 cstmt.execute();

 // Compare MAXBUFSIZE bytes starting at the first byte of
 // both lob_loc1 and lob_loc2:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN ? := DBMS_LOB.COMPARE(?, ?, ?, 1, 1); END;");
 cstmt.registerOutParameter (1, Types.NUMERIC);
 cstmt.setBFILE(2, lob_loc1);
 cstmt.setBFILE(3, lob_loc2);
 cstmt.setInt(4, MAXBUFSIZE);
 cstmt.execute();

 int result = cstmt.getInt(1);

 System.out.println("Comparison result: " + Integer.toString(result));

 // Close all BFILEs:
 stmt.execute("BEGIN DBMS_LOB.FILECLOSEALL; END;");

 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

5-204 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a BFILE
DELETE the Row of a Table Containing a BFILE

Figure 5–37 Use Case Diagram: DELETE the Row of a Table Containing a LOB
(BFILE)

Scenario
Unlike internal persistent LOBs, the LOB value in a BFILE does not get deleted by

using SQL DDL or SQL DML commands — only the BFILE locator is deleted.

Deletion of a record containing a BFILE column amounts to de-linking that record

from an existing file, not deleting the physical operating system file itself. An SQL

DELETE statement on a particular row deletes the BFILE locator for the particular

row, thereby removing the reference to the operating system file.

The following DELETE, DROP TABLE, or TRUNCATE TABLE statements delete the

row, and hence the BFILE locator that refers to Image1 .gif , but leave the

operating system file undeleted in the filesystem.

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

■ "Use Case Model: External LOBs" on page 5-2

External LOBs

User/
Program

DELETE
the row
External LOBs (BFILEs) 5-205

DELETE the Row of a Table Containing a BFILE
Example: Delete a Row from a Table Using SQL
DELETE FROM Multimedia_tab
 WHERE Clip_ID = 3;

DROP TABLE Multimedia_tab;

TRUNCATE TABLE Multimedia_tab;
5-206 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOBs and Partitioned T
6

LOBs and Partitioned Tables
ables 6-1

Using LOBs in Partitions
Using LOBs in Partitions
You can partition tables with LOBs. As a result, LOBs can take advantage of all of the

benefits of partitioning. For example, LOB segments can be spread between several

tablespaces to balance I/O load and to make backup and recovery more

manageable. LOBs in a partitioned table also become easier to maintain. This

section describes some of the ways you can manipulate LOBs in partitioned tables.

As an extension to the example multimedia application described in Chapter 1,

"Introduction to Working With LOBs", let us suppose that makers of a documentary

are producing multiple clips relating to different Presidents of the United States.

The clips consist of photographs of the presidents accompanied by spoken text and

background music. The photographs will come from the PhotoLib_Tab archive.

To make the most efficient use of the presidents’ photographs, they are loaded into

a database according to the schema illustrated in Figure 6–1.

Figure 6–1 Schema Design for Inclusion of PHOTO_REF Reference

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO_REF FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
PHOTO_TYP

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table PRESIDENTPHOTO_TAB (of PHOTO_TYP)

PHOTODATE PHOTONAME SCRIPT

Date
DATE

PRESNAME

Text
VARCHAR2(30)

Text
VARCHAR2(30)

ACTOR

Text
VARCHAR2(30)

Text
CLOB

MUSIC

Audio
BFILE

PRESPHOTO

Photo
BLOB

PK

Reference to a row
object of a table of
the defined type
6-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Using LOBs in Partitions
PRESNAME: A column on the president’s name lets the documentary producers

select data for clips organized around specific presidents. PRESNAME is also chosen

as a primary key because it holds unique values.

PRESPHOTO: This column contains photographs in which a president appears. This

category also contains photographs of paintings and engravings of presidents who

lived before the advent of photography.

PHOTODATE: This column contains the date on which the photograph was taken. In

the case of presidents who lived before the advent of photography, PHOTODATE
pertains to the date when the painting or engraving was created. This column is

chosen as the partition key to make it easier to add partitions and to perform

MERGEs and SPLITs of the data based on some given date such as the end of a

president’s first term. This will be illustrated later in this section.

PHOTONAME: This column contains the name of the photograph. An example name

might be something as precise as "Bush Addresses UN - June 1990" or as general as

"Franklin Roosevelt - Inauguration".

SCRIPT: This column contains written text associated with the photograph. This

could be text describing the event portrayed by the photograph or perhaps

segments of a speech by the president.

ACTOR: This column contains the name of the actor reading the script.

MUSIC: This column contains background music to be played during the viewing of

the photographs.

Creating and Partitioning a Table Containing LOB Data
To isolate the photographs associated with a given president, a partition is created

for each president by the ending dates of their terms of office. For example, a

president who served two terms would have two partitions: the first partition

bounded by the end date of the first term and a second partition bounded by the

end date of the second term.

Note that in the following examples, the extension 1 refers to a president’s first term

and 2 refers to a president’s second term. For example, GeorgeWashington1_
part refers to the partition created for George Washington’s first term and

RichardNixon2_part refers to the partition created for Richard Nixon’s second

term.
LOBs and Partitioned Tables 6-3

Using LOBs in Partitions
CREATE TABLE Presidentphoto_tab(PresName VARCHAR2(30), PhotoDate DATE,
 PhotoName VARCHAR2(30), PresPhoto BLOB,
 Script CLOB, Actor VARCHAR2(30), Music BFILE)
 STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0)
 LOB (PresPhoto) STORE AS (CHUNK 4096)
 LOB (Script) STORE AS (CHUNK 2048)
 PARTITION BY RANGE(PhotoDate)
(PARTITION GeorgeWashington1_part

Note: You may need to set up data structures for certain examples

to work; such as:

CONNECT system/manager
GRANT CREATE TABLESPACE, DROP TABLESPACE TO scott;
CONNECT scott/tiger
CREATE TABLESPACEEarlyPresidents_tbs DATAFILE
’disk1:moredata01’ SIZE 1M;
CREATE TABLESPACEEarlyPresidentsPhotos_tbs DATAFILE
’disk1:moredata99’ SIZE 1M;
CREATE TABLESPACEEarlyPresidentsScripts_tbs DATAFILE
’disk1:moredata03’ SIZE 1M;
CREATE TABLESPACERichardNixon1_tbs DATAFILE
’disk1:moredata04’ SIZE 1M;
CREATE TABLESPACEPost1960PresidentsPhotos_tbs DATAFILE
’disk1:moredata05’ SIZE 1M;
CREATE TABLESPACEPost1960PresidentsScripts_tbs DATAFILE
’disk1:moredata06’ SIZE 1M;
CREATE TABLESPACERichardNixon2_tbs DATAFILE
’disk1:moredata07’ SIZE 1M;
CREATE TABLESPACEGeraldFord1_tbs DATAFILE
’disk1:moredata97’ SIZE 1M;
CREATE TABLESPACE RichardNixonPhotos_tbs DATAFILE
’disk1:moredata08’ SIZE 2M;
CREATE TABLESPACE RichardNixonBigger2_tbs DATAFILE
’disk1:moredata48’ SIZE 2M;
CREATE TABLE Mirrorlob_tab(
 PresName VARCHAR2(30),
 PhotoDate DATE,
 PhotoName VARCHAR2(30),
 PresPhoto BLOB,
 Script CLOB,
 Actor VARCHAR2(30),
 Music BFILE);
6-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Using LOBs in Partitions
 /* Use photos to the end of Washington's first term */
 VALUES LESS THAN (TO_DATE('19-mar-1792', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION GeorgeWashington2_part
 /* Use photos to the end of Washington's second term */
 VALUES LESS THAN (TO_DATE('19-mar-1796', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION JohnAdams1_part
 /* Use photos to the end of Adams' only term */
 VALUES LESS THAN (TO_DATE('19-mar-1800', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
/* ...intervening presidents... */
PARTITION RichardNixon1_part
 /* Use photos to the end of Nixon's first term */
 VALUES LESS THAN (TO_DATE('20-jan-1972', 'DD-MON-YYYY'))
 TABLESPACE RichardNixon1_tbs
 LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_tbs)
);

Creating an Index on a Table Containing LOB Columns
To improve the performance of queries which access records by a President's name

and possibly the names of photographs, a UNIQUE local index is created:

CREATE UNIQUE INDEX PresPhoto_idx
 ON PresidentPhoto_tab (PresName, PhotoName, Photodate) LOCAL;

Exchanging Partitions Containing LOB Data
As a part of upgrading from Oracle8.0 to 8.1, data was exchanged from an existing

non-partitioned table containing photos of Bill Clinton's first term into the

appropriate partition:

ALTER TABLE PresidentPhoto_tab EXCHANGE PARTITION RichardNixon1_part
 WITH TABLE Mirrorlob_tab INCLUDING INDEXES;
LOBs and Partitioned Tables 6-5

Using LOBs in Partitions
Adding Partitions to Tables Containing LOB Data
To account for Richard Nixon’s second term, a new partition was added to

PresidentPhoto_tab :

ALTER TABLE PresidentPhoto_tab ADD PARTITION RichardNixon2_part
 VALUES LESS THAN (TO_DATE('20-jan-1976', 'DD-MON-YYYY'))
 TABLESPACE RichardNixon2_tbs
 LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_tbs);

Moving Partitions Containing LOBs
During his second term, Richard Nixon had so many photo-ops, that the partition

containing information on his second term is no longer adequate. It was decided to

move the data partition and the corresponding LOB partition of

PresidentPhoto_tab into a different tablespace, with the corresponding LOB
partition of Script remaining in the original tablespace:

ALTER TABLE PresidentPhoto_tab MOVE PARTITION RichardNixon2_part
 TABLESPACE RichardNixonBigger2_tbs
 LOB (PresPhoto) STORE AS (TABLESPACE RichardNixonPhotos_tbs);

Splitting Partitions Containing LOBs
When Richard Nixon was re-elected for his second term, a partition with bounds

equal to the expected end of his term (20-jan-1976) was added to the table (see

above example.) Since Nixon resigned from office on 9 August 1974, that partition

had to be split to reflect the fact that the remainder of the term was served by

Gerald Ford:

ALTER TABLE PresidentPhoto_tab SPLIT PARTITION RichardNixon2_part
 AT (TO_DATE('09-aug-1974'), 'DD-MON-YYYY'))
 INTO (PARTITION RichardNixon2_part),
 PARTITION GeraldFord1_part TABLESPACE GeraldFord1_tbs
 LOB (PresPhoto) STORE AS (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) STORE AS (TABLESPACE Post1960PresidentsScripts_tbs)));

Merging Partitions Containing LOBs
Despite the best efforts of the documentary producers in searching for photographs

of paintings or engravings of George Washington, the number of photographs that

were found was inadequate to justify a separate partition for each of his two terms.
6-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Using LOBs in Partitions
Accordingly, it was decided to merge these two partition into one named

GeorgeWashington8Years_part :

ALTER TABLE PresidentPhoto_tab
 MERGE PARTITIONS GeorgeWashington1_part, GeorgeWashington2_part
 INTO PARTITION GeorgeWashington8Years_part TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs);

Populating the Script CLOB and Photo BLOB
The documentary producers have found a photograph Bill Clinton during his trip

to Florida on 22 March 1993. They will add it to the PresidentPhoto_tab table,

and then fill the PresPhoto column with the photograph BLOB data and the

Script column with the text CLOB data. This section illustrates populating the

Script CLOB and the Photo BLOB .

Assume that the following directory objects for the music audio files and the

presidential photographs were already created,

CREATE DIRECTORY Music_dir as ’/audio/presidents’;
CREATE DIRECTORY Image_dir as ’/image/presidents’;

and that READ permission has been granted to the user who will use it:

GRANT READ ON DIRECTORY Music_dir TO a_user;
GRANT READ ON DIRECTORY Image_dir TO a_user;

INSERT INTO PresidentPhoto_tab VALUES (
 ’RichardNixon’, TO_DATE(’22-mar-1973’, ’DD-MON-YYYY’), ’NixonFlorida1993’,
 EMPTY_BLOB(), EMPTY_CLOB(), ’Warren Beatty’, BFILENAME(’MUSIC_DIR’,
 ’TropicalMusic’));

Populating the BLOB:
The following code segment uses the LOADFROMFILE command to populate the

PresPhoto BLOB with data:

CREATE OR REPLACE PROCEDURE loadPartLOBFromBFILE_proc IS
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’IMAGE_DIR’, ’FloridaTrip’);
 Amount INTEGER := 4000;
BEGIN
LOBs and Partitioned Tables 6-7

Using LOBs in Partitions
 /* Select the LOB from the partitioned table: */
 SELECT PresPhoto INTO Dest_loc FROM PresidentPhoto_tab WHERE
 PresName = ’RichardNixon’ AND
 PhotoName = ’NixonFlorida1993’
 FOR UPDATE;

 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Dest_loc, DBMS_LOB.LOB_READWRITE);
 /* Opening the BFILE is mandatory */
 DBMS_LOB.OPEN (Src_loc, DBMS_LOB.LOB_READONLY);

 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);

 /* Closing the LOB is mandatory if you have opened it */
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Src_loc);

COMMIT;
END;

Populate the CLOB:
The following code segment uses the CHECKIN method to load data into the

Script CLOB :

CREATE OR REPLACE PROCEDURE checkinPartLOB_proc IS
 Lob_loc CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1;
 i INTEGER;
BEGIN

/* Select the LOB from the partitioned table: */
 SELECT script INTO Lob_loc FROM PresidentPhoto_tab where
 PresName = ’RichardNixon’ AND
 PhotoName = ’NixonFlorida1993’;

/* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);

/* Fill the buffer with data */

 FOR i IN 1..3 LOOP
/* Write data: */

 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
6-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Using LOBs in Partitions
/* Fill in more data: */
 Position := Position + Amount;
 END LOOP;

/* Closing the LOB is mandatory if you have opened it */
 DBMS_LOB.CLOSE(Lob_loc);
 COMMIT;

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

Reading the LOB Value:
The following code segment uses the CHECKOUT command to READ the LOB value:

CREATE OR REPLACE PROCEDURE checkoutPartLOB_proc is
 Lob_loc CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1;
BEGIN
 /* Select the LOB from the partitioned table: */
 SELECT Script INTO Lob_loc FROM PresidentPhoto_tab WHERE
 PresName = ’RichardNixon’ AND
 PhotoName = ’NixonFlorida1993’;

 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);

 LOOP
 /* Read data: */
 DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);

 /* Process the data in the buffer. */
 Position := Position + Amount;
 END LOOP;

 /* Closing the LOB is mandatory if you have opened it */
 DBMS_LOB.CLOSE(Lob_loc);

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data’);
END;
LOBs and Partitioned Tables 6-9

Using LOBs in Partitions
6-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Index

B
BFILE datatype, 1-3

BFILENAME(), 5-5

BFILEs, 1-2

initializing, 5-5

maximum number of open, 1-8, 5-136

multi-threaded server (MTS), 5-10

BLOB datatype, 1-2

buffers

LOBs, 2-14

C
CACHE / NOCACHE, 3-10

caches

object cache, 2-14

CHUNK, 3-11

CLOB datatype, 1-2

NCLOBs, 1-2

copy semantics for internal LOBs, 3-28

copying LOBs, 2-12

D
DBMS_LOB package

multi-threaded server (MTS), 5-10

deleting internal LOBs, 2-14

deleting LOBs, 2-14

directories

catalog views, 5-9

guidelines for usage, 5-9

ownership and privileges, 5-7

DIRECTORY name specification, 5-7

directory objects, 5-5

E
examples

LOB buffering, 2-21

read consistent locators, 2-3

repercussions of mixing SQL DML with

DBMS_LOB, 2-6

updated LOB locators, 2-8

updating a LOB with a PL/SQL variable, 2-10

external callout, 2-20

external LOBs (BFILEs), 1-2

F
flushing the LOB’s buffer, 2-15

FOR UPDATE clause

LOBs, 1-49, 2-2

L
LBS

SeeLOB Buffering Subsystem

LOB Buffering System (LBS)

LOB locators cannot span transactions, 1-49

LOBS

external (BFILEs), 1-2

LOBs

accessing through a locator, 1-49

buffering

caveats, 2-15

pages can be aged out, 2-19

buffering operations, 2-17
Index-1

buffering subsystem, 2-14

deleting, 2-14

flushing, 2-15

in partitioned tables, 6-2

in the object cache, 2-14

inline storage, 1-47

internal LOBs

CACHE / NOCACHE, 3-10

CHUNK, 3-11

deleting, 2-14

ENABLE | DISABLE STORAGE IN

ROW, 3-12

initializing, 5-93

locators, 1-47

locking before updating, 3-146, 3-182, 3-192,

3-201, 3-217, 3-227

LOGGING / NOLOGGING, 3-10

PCTVERSION, 3-9

setting to empty, 3-8

tablespace and LOB index, 3-9

tablespace and storage characteristics, 3-8

LOB locators, 2-2

locators, 1-47

object cache, 2-14

performance, best practices, 2-24

performing SELECT on, 1-49

piecewise operations, 2-5

read consistent locators, 2-2

setting to contain a locator, 1-47

setting to NULL, 3-7

tables

adding partitions, 6-6

creating, 6-3

creating indexes, 6-5

exchanging partitions, 6-5

merging partitions, 6-6

moving partitions, 6-6

partitioning, 6-3

splitting partitions, 6-6

typical uses, 1-39

updated LOB locators, 2-5

value, 1-47

varying-width character data, 2-25

locators, 1-47

accessing a LOB through, 1-49

cannot span transactions, 1-49

multiple, 2-2

read consistent, 2-2, 2-3, 2-9, 2-12, 2-19, 2-21,

2-22, 2-24

read consistent locators, 2-2

selecting, 1-49

setting column / attribute to contain, 1-47

updated, 2-2, 2-5, 2-10, 2-12, 2-19

LOGGING / NOLOGGING, 3-10

M
multi-threaded server (MTS)

BFILEs, 5-10

N
national language support

NCLOBs, 1-2

NCLOB datatype, 1-2

O
object cache, 2-14

LOBs, 2-14

P
PCTVERSION, 3-9

R
read consistency

LOBs, 2-2

read consistent locators, 2-2, 2-3, 2-9, 2-12, 2-19,

2-21, 2-22, 2-24

reference semantics for BFILEs, 5-6

roundtrips to the server, avoiding, 2-15, 2-21

S
SELECT command

FOR UPDATE, 1-49

read consistency, 2-2

semantics

copy-based for internal LOBs, 3-28
Index-2

reference based for BFILEs, 5-6

SESSION_MAX_OPEN_FILES parameter, 1-8,

5-52, 5-67

setting internal LOBs to empty, 3-8

setting LOBs to NULL, 3-7

SQL DDL

BFILE security, 5-8

SQL DML

BFILE security, 5-8

T
transactions

external LOBs do not participate, 1-3

internal LOBs participate fully, 1-2

LOB locators cannot span, 1-49

migrating from, 2-20

U
updated locators, 2-2, 2-5, 2-10, 2-12, 2-19

V
value of LOBs, 1-47
Index-3

Index-4

	PDF Directory
	Contents
	Send Us Your Comments
	Preface
	1 Introduction to Working With LOBs
	The LOB Datatype
	Internal LOBs
	Internal LOB Datatypes

	External LOBs (BFILEs)
	External LOB Datatype

	Varying-Width Character Data
	DBMS_LOB Package
	OCI

	LOBs in Comparison to LONG and LONG RAW Types
	LOB Restrictions
	DBA Actions Required Prior to Working with LOBs
	Set Maximum Number of Open BFILEs

	Using SQL DML for Basic Operations on LOBs
	Programmatic Environments for Operating on LOBs
	Comparison of Six Interfaces
	Using the DBMS_LOB Package for Working With LOBs
	Using the Oracle Call Interface (OCI) with LOBs
	A sample main() and LOB procedure

	Using C++ (Pro*C/C++) to Work with LOBs
	Using COBOL (Pro*COBOL) to Work with LOBs
	Using Visual Basic (OO4O) to Work with LOBs
	Using Java (JDBC) to Work with LOBs

	An Example Application
	The Multimedia Content-Collection System
	Applying an Object-Relational Design to the Application
	The Structure of the Multimedia_tab Table

	The Most Basic Operation: Getting and Using the LOB Locator
	LOB Value and Locators
	Inline storage of the LOB value
	LOB locators
	Internal LOB Locators

	LOB Locator Operations
	Setting the LOB Column/Attribute to contain a locator
	Accessing a LOB through a locator
	SELECTing a LOB

	LOB Locators and Transaction Boundaries
	Case 1:
	Case 2:
	Case 3:
	Case 4:

	Open, Close and IsOpen Interfaces for Internal LOBs
	Open and Close with Extensible Indexes
	Errors
	Example 1
	Example 2:

	Indexing a LOB Column

	2 Advanced Topics
	Read-Consistent Locators
	Updated locators
	LOB Bind Variables
	LOB locators cannot span transactions

	LOBs in the Object Cache
	LOB Buffering Subsystem
	Advantages of LOB Buffering
	Considerations in the Use of LOB Buffering
	LOB Buffering Operations
	The Physical Structure of the LOB Buffer
	Using the LOB Buffering System
	Flushing the LOB Buffer
	Flushing the Updated LOB
	Using Locators Enabled for Buffering
	Saving Locator State so as to Avoid a Reselect

	Example of LOB Buffering

	User Guidelines for Best Performance Practices
	Working with Varying-Width Character Data
	LOBs in Index Organized Tables

	3 Internal Persistent LOBs
	Use Case Model: Internal Persistent LOBs
	Three Ways to Create a Table Containing a LOB
	Issues to Consider in Creating Tables that Will Contain LOBs
	Initializing Internal LOBs to NULL or Empty
	Setting a LOB to NULL
	Setting an Internal LOB to Empty

	Stipulating Tablespace and Storage Characteristics for Internal Lobs
	Tablespace and LOB Index
	PCTVERSION
	CACHE / NOCACHE
	LOGGING / NOLOGGING
	CHUNK
	ENABLE | DISABLE STORAGE IN ROW

	CREATE a Table Containing One or More LOB Columns
	Scenario
	Example: Create a Table Containing One or More LOB Columns using SQL DDL
	Notes

	CREATE a Table Containing an Object Type with a LOB Attribute
	Scenario
	Example: Create a Table Containing an Object Type with a LOB Attribute Using SQL DDL

	CREATE a Table with a Nested Table Containing a LOB
	Scenario
	Example: Create a Table with a Nested Table Containing a LOB Using SQL DDL

	Three Ways Of Inserting One or More LOB Values into a Row
	INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
	Making a LOB Column Non-Null
	Example: Insert a Value by means of EMPTY_CLOB() / EMPTY_BLOB() using SQL

	INSERT a Row Containing a LOB as SELECT
	Scenario
	Example: Insert a Row by Selecting from Another Table Using SQL DML

	INSERT a Row by Initializing a LOB Locator Bind Variable
	Scenario
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using SQL DML
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C (OCI)
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Pro*COBOL
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Visual Basic (OO4O)
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Java (JDBC)

	Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
	Scenario
	LOB Data in Predetermined Size Fields
	Control File:
	Data file (sample.dat):
	Note:

	LOB Data in Delimited Fields
	Control File:
	Data file(sample1.dat):
	Note:

	LOB Data in Length-value Pair Fields
	Control File:
	Data file (sample2.dat):
	Note:

	One LOB per file
	Control File:
	Data file (sample3.dat):
	Secondary Data file (FirstStory.txt):
	Secondary Data file (SecondStory.txt):
	Note:

	Predetermined Size LOBs
	Control File:
	Data file (sample4.dat):
	Secondary Data file (FirstStory1.txt):
	Note:

	Delimited LOBs
	Control File:
	Data file (sample5.dat):
	Secondary Data file (FirstStory2.txt):
	Note:

	Length-Value Pair Specified LOBs
	Control File:
	Data file (sample6.dat):
	Secondary Data file (FirstStory3.txt):
	Note:

	Load a LOB with Data from a BFILE
	Character Set Conversion
	Scenario
	Example: Load a LOB with Data from a BFILE Using the DBMS_LOB Package
	Example: Load a LOB with Data from a BFILE Using C (OCI)
	Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)
	Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)
	Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)
	Example: Load a LOB with Data from a BFILE Using Java (JDBC)

	See If a LOB Is Open
	Scenario
	Example: See If a LOB Is Open Using PL/SQL
	Example: See If a LOB Is Open Using C (OCI)
	Example: See If a LOB Is Open Using COBOL (Pro*COBOL)
	Example: See If a LOB Is Open Using C++ (Pro*C/C++)
	Example: See If a LOB Is Open Using Visual Basic (OO4O)
	Example: See If a LOB Is Open Using Java (JDBC)

	Copy LONG to LOB
	Scenario
	Example: Copy Long to LOB Using SQL

	Checkout a LOB
	Streaming Mechanism
	Scenario
	Example: CheckOut a LOB Using PL/SQL (DBMS_LOB Package)
	Example: CheckOut a LOB Using C (OCI)
	Example: CheckOut a LOB Using COBOL (Pro*COBOL)
	Example: CheckOut a LOB Using C++ (Pro*C/C++)
	Example: CheckOut a LOB Using Visual Basic (OO4O)
	Example: CheckOut a LOB Using Java (JDBC)

	Checkin a LOB
	Streaming Mechanism
	Scenario
	Example: Checkin a LOB Using PL/SQL (DBMS_LOB Package)
	Example: Checkin a LOB Using C (OCI)
	Example: Checkin a LOB Using COBOL (Pro*COBOL)
	Example: Checkin a LOB Using C++ (Pro*C/C++)
	Example: Checkin a LOB Using Visual Basic (OO4O)
	Example: Checkin a LOB Using Java (JDBC)

	Display the LOB Data
	Streaming Mechanism
	Scenario
	Example: Display the LOB Data Using PL/SQL
	Example: Display the LOB Data Using C (OCI)
	Example: Display the LOB Data Using COBOL (Pro*COBOL)
	Example: Display the LOB Data Using C++ (Pro*C/C++)
	Example: Display the LOB Data Using Visual Basic (OO4O)
	Example: Display the LOB Data Using Java (JDBC)

	Read Data from the LOB
	Stream Read
	Chunksize
	Scenario
	Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)
	Example: Read Data from a LOB Using C (OCI)
	Example: Read Data from a LOB Using COBOL (Pro*COBOL)
	Example: Read Data from a LOB Using C++ (Pro*C/C++)
	Example: Read Data from a LOB Using Visual Basic (OO4O)
	Example: Read Data from a LOB Using Java (JDBC)

	Read a Portion of the LOB (substr)
	Scenario
	Example: Read a Portion of the LOB (substr) Using PL/SQL (DBMS_LOB Package)
	Example: Read a Portion of the LOB (substr) Using COBOL (Pro*COBOL)
	Example: Read a Portion of the LOB (substr) Using C++ (Pro*C/C++)
	Example: Read a Portion of the LOB (substr) Using Visual Basic (OO4O)
	Example: Read a Portion of the LOB (substr) Using Java (JDBC)

	Compare All or Part of Two LOBs
	Scenario
	Example: Compare All or Part of Two LOBs Using PL/SQL (DBMS_LOB Package)
	Example: Compare All or Part of Two LOBs Using COBOL (Pro*COBOL)
	Example: Compare All or Part of Two LOBs Using C++ (Pro*C/C++)
	Example: Compare All or Part of Two LOBs Using Visual Basic (OO4O)
	Example: Compare All or Part of Two LOBs Using Java (JDBC)

	See If a Pattern Exists in the LOB (instr)
	Scenario
	Example: See If a Pattern Exists in the LOB (instr) Using PL/SQL (DBMS_LOB Package)
	Example: See If a Pattern Exists in the LOB (instr) Using COBOL (Pro*COBOL)
	Example: See If a Pattern Exists in the LOB (instr) Using C++ (Pro*C/C++)
	Example: See If a Pattern Exists in the LOB (instr) Using Visual Basic (OO4O)
	Example: See If a Pattern Exists in the LOB (instr) Using Java (JDBC)

	Get the Length of a LOB
	Scenario
	Example: Get the Length of a LOB Using PL/SQL (DBMS_LOB Package)
	Example: Get the Length of a LOB Using C (OCI)
	Example: Get the Length of a LOB Using COBOL (Pro*COBOL)
	Example: Get the Length of a LOB Using C++ (Pro*C/C++)
	Example: Get the Length of a LOB Using Visual Basic (OO4O)
	Example: Get the Length of a LOB Using Java (JDBC)

	Copy All or Part of a LOB to another LOB
	Locking the Row Prior to Updating
	Scenario
	Example: Copy All or Part of a LOB to another LOB Using PL/SQL (DBMS_LOB Package)
	Example: Copy All or Part of a LOB to another LOB Using C (OCI)
	Example: Copy All or Part of a LOB to another LOB Using COBOL (Pro*COBOL)
	Example: Copy All or Part of a LOB to another LOB Using C++ (Pro*C/C++)
	Example: Copy All or Part of a LOB to another LOB Using Visual Basic (OO4O)
	Example: Copy All or Part of a LOB to another LOB Using Java (JDBC)

	Copy a LOB Locator
	Scenario
	Example: Copy a LOB Locator Using PL/SQL
	Example: Copy a LOB Locator Using C (OCI)
	Example: Copy a LOB Locator Using COBOL (Pro*COBOL)
	Example: Copy a LOB Locator Using C++ (Pro*C/C++)
	Example: Copy a LOB Locator Using Visual Basic (OO4O)
	Example: Copy a LOB Locator Using Java (JDBC)

	See If One LOB Locator Is Equal to Another
	Scenario
	Example: See If One LOB Locator Is Equal to Another Using C (OCI)
	Example: See If One LOB Locator Is Equal to Another Using C++ (Pro*C/C++)
	Example: See If One LOB Locator Is Equal to Another Using Java (JDBC)

	See If a LOB Locator Is Initialized
	Scenario
	Example: See If a LOB Locator Is Initialized Using C (OCI)
	Example: See If a LOB Locator Is Initialized Using C++ (Pro*C/C++)

	Get Character Set ID
	Scenario
	Example: Get Character Set ID Using C (OCI)

	Get Character Set Form
	Scenario
	Example: Get Character Set Form Using C (OCI)

	Append One LOB to Another
	Locking the Row Prior to Updating
	Scenario
	Example: Append One LOB to Another Using PL/SQL (DBMS_LOB Package)
	Example: Append One LOB to Another Using C (OCI)
	Example: Append One LOB to Another Using COBOL (Pro*COBOL)
	Example: Append One LOB to Another Using C++ (Pro*C/C++)
	Example: Append One LOB to Another Using Visual Basic (OO4O)
	Example: Append One LOB to Another Using Java (JDBC)

	Write Append to a LOB
	Writing Singly or Piecewise
	Locking the Row Prior to Updating
	Scenario
	Example: Write Append to a LOB Using PL/SQL
	Example: Write Append to a LOB Using C (OCI)
	Example: Write Append to a LOB Using COBOL (Pro*COBOL)
	Example: Write Append to a LOB Using C++ (Pro*C/C++)
	Example: Write Append to a LOB Using Visual Basic (OO4O)
	Example: Write Append to a LOB Using Java (JDBC)

	Write Data to a LOB
	Stream Write
	Chunksize
	Locking the Row Prior to Updating
	Scenario
	Example: Write Data to a LOB Using the DBMS_LOB Package
	Example: Write Data to a LOB Using C (OCI)
	Example: Write Data to a LOB Using COBOL (Pro*COBOL)
	Example: Write Data to a LOB Using C++ (Pro*C/C++)
	Example: Write Data to a LOB Using Visual Basic (OO4O)
	Example: Write Data to a LOB Using Java (JDBC)

	Trim the LOB Data
	Locking the Row Prior to Updating
	Scenario
	Example: Trim the LOB Data Using PL/SQL (DBMS_LOB Package)
	Example: Trim the LOB Data Using C (OCI)
	Example: Trim the LOB Data Using COBOL (Pro*COBOL)
	Example: Trim the LOB Data Using C++ (Pro*C/C++)
	Example: Trim the LOB Data Using Visual Basic (OO4O)
	Example: Trim the LOB Data Using Java (JDBC)

	Erase Part of a LOB
	Locking the Row Prior to Updating
	Scenario
	Example: Erase Part of a LOB Using PL/SQL (DBMS_LOB Package)
	Example: Erase Part of a LOB Using C (OCI)
	Example: Erase Part of a LOB Using COBOL (Pro*COBOL)
	Example: Erase Part of a LOB Using C++ (Pro*C/C++)
	Example: Erase Part of a LOB Using Visual Basic (OO4O)
	Example: Erase Part of a LOB Using Java (JDBC)

	Enable LOB Buffering
	Scenario
	Example: Enable LOB Buffering Using C (OCI)
	Example: Enable LOB Buffering Using COBOL (Pro*COBOL)
	Example: Enable LOB Buffering Using C++ (Pro*C/C++)
	Example: Enable LOB Buffering Using Visual Basic (OO4O)

	Flush Buffer
	Scenario
	Example: Flush Buffer Using C (OCI)
	Example: Flush Buffer Using COBOL (Pro*COBOL)
	Example: Flush Buffer Using C++ (Pro*C/C++)
	Example: Flush Buffer Using Visual Basic (OO4O)

	Disable LOB Buffering
	Scenario
	Example: Disable LOB Buffering Using C (OCI)
	Example: Disable LOB Buffering Using COBOL (Pro*COBOL)
	Example: Disable LOB Buffering Using C++ (Pro*C/C++)
	Example: Disable LOB Buffering Using Visual Basic (OO4O)

	Three Ways to Update a LOB
	UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	Scenario
	Example: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() Using SQL

	UPDATE as SELECT
	Scenario
	Example: Update as Select Using SQL DML

	UPDATE by Initializing a LOB Locator Bind Variable
	Scenario
	Example: Update by Initializing a LOB Locator Bind Variable Using SQL DML
	Example: Update by Initializing a LOB Locator Bind Variable Using C (OCI)
	Example: Update by Initializing a LOB Locator Bind Variable Using COBOL (Pro*COBOL)
	Example: Update by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)
	Example: Update by Initializing a LOB Locator Bind Variable Using Visual Basic (OO4O)
	Example: Update by Initializing a LOB Locator Bind Variable Using Java (JDBC)

	DELETE the Row of a Table Containing a LOB
	Scenario
	Example: Delete a LOB Using SQL DML

	4 Temporary LOBs
	Use Case Model: Internal Temporary LOBs
	Programmatic Environments
	The Location of Temporary LOBs
	The Lifetime and Duration of Temporary LOBs
	Memory Handling
	Locators and Semantics
	Security Issues with Temporary LOBs
	Managing Temporary LOBs

	Create a Temporary LOB
	Scenario
	Example: Create a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Create a Temporary LOB Using C (OCI)
	Example: Create a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Create a Temporary LOB Using C++ (Pro*C/C++)

	See If a LOB is Temporary
	Scenario
	Example: See If a LOB is Temporary Using PL/SQL (DBMS_LOB Package)
	Example: See If a LOB is Temporary Using C (OCI)
	Example: See If a LOB is Temporary Using COBOL (Pro*COBOL)
	Example: See If a LOB is Temporary Using C++ (Pro*C/C++)

	Free a Temporary LOB
	Scenario
	Example: Free a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Free a Temporary LOB Using C (OCI)
	Example: Free a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Free a Temporary LOB Using C++ (Pro*C/C++)

	Load a Temporary LOB with Data from a BFILE
	Scenario
	Example: Load a Temporary LOB with Data from a BFILE Using PL/SQL (DBMS_LOB Package)
	Example: Load a Temporary LOB with Data from a BFILE Using C (OCI)
	Example: Load a Temporary LOB with Data from a BFILE Using COBOL (Pro*COBOL)
	Example: Load a Temporary LOB with Data from a BFILE Using C++ (Pro*C/C++)

	See If a Temporary LOB Is Open
	Scenario
	Example: See If a Temporary LOB Is Open Using PL/SQL
	Example: See If a Temporary LOB Is Open Using C (OCI)
	Example: See If a Temporary LOB Is Open Using COBOL (Pro*COBOL)
	Example: See If a Temporary LOB Is Open Using C++ (Pro*C/C++)

	Display the Temporary LOB Data
	Scenario
	Example: Display the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)
	Example: Display the Temporary LOB Data Using C (OCI)
	Example: Display the Temporary LOB Data Using COBOL (Pro*COBOL)
	Example: Display the Temporary LOB Data Using C++ (Pro*C/C++)

	Read Data from a Temporary LOB
	Stream Read
	Scenario
	Example: Read Data from a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Read Data from a Temporary LOB Using C (OCI)
	Example: Read Data from a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Read Data from a Temporary LOB Using C++ (Pro*C/C++)

	Read a Portion of the Temporary LOB (substr)
	Scenario
	Example: Read a Portion of the Temporary LOB (substr) Using PL/SQL (DBMS_LOB Package)
	Example: Read a Portion of the Temporary LOB (substr) Using COBOL (Pro*COBOL)
	Example: Read a Portion of the Temporary LOB (substr) Using C++ (Pro*C/C++)

	Compare All or Part of Two (Temporary) LOBs
	Scenario
	Example: Compare All or Part of Two (Temporary) LOBs Using PL/SQL (DBMS_LOB Package)
	Example: Compare All or Part of Two (Temporary) LOBs Using COBOL (Pro*COBOL)
	Example: Compare All or Part of Two (Temporary) LOBs Using C++ (Pro*C/C++)

	See If a Pattern Exists in a Temporary LOB (instr)
	Scenario
	Example: See If a Pattern Exists in a Temporary LOB (instr) Using PL/SQL (DBMS_ LOB Package)
	Example: See If a Pattern Exists in a Temporary LOB (instr) Using COBOL (Pro*COBOL)
	Example: See If a Pattern Exists in a Temporary LOB (instr) Using C++ (Pro*C/C++)

	Get the Length of a Temporary LOB
	Scenario
	Example: Get the Length of a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Get the Length of a Temporary LOB Using C (OCI)
	Example: Get the Length of a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Get the Length of a Temporary LOB Using C++ (Pro*C/C++)

	Copy All or Part of One (Temporary) LOB to Another
	Scenario
	Example: Copy All or Part of One (Temporary) LOB to Another Using PL/SQL (DBMS_ LOB Package)
	Example: Copy All or Part of One (Temporary) LOB to Another Using C (OCI)
	Example: Copy All or Part of One (Temporary) LOB to Another Using COBOL (Pro*COBOL)
	Example: Copy All or Part of One (Temporary) LOB to Another Using C++ (Pro*C/C++)

	Copy a LOB Locator for a Temporary LOB
	Scenario
	Example: Copy a LOB Locator (Temporary LOBs) Using PL/SQL
	Example: Copy a LOB Locator for a Temporary LOB Using C (OCI)
	Example: Copy a LOB Locator for a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Copy a LOB Locator for a Temporary LOB Using C++ (Pro*C/C++)

	See If One LOB Locator for a Temporary LOB Is Equal to Another
	Scenario
	Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C (OCI)
	Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C++ (Pro*C/C++)

	See If a LOB Locator for a Temporary LOB Is Initialized
	Scenario
	Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C (OCI)
	Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C++ (Pro*C/C++)

	Get Character Set ID of a Temporary LOB
	Scenario
	Example: Get Character Set ID of a Temporary LOB Using C (OCI)

	Get Character Set Form of a Temporary LOB
	Scenario
	Example: Get Character Set Form of a Temporary LOB Using C (OCI)

	Append One (Temporary) LOB to Another
	Scenario
	Example: Append One (Temporary) LOB to Another Using PL/SQL (DBMS_LOB Package)
	Example: Append One (Temporary) LOB to Another Using C (OCI)
	Example: Append One (Temporary) LOB to Another Using COBOL (Pro*COBOL)
	Example: Append One (Temporary) LOB to Another Using C++ (Pro*C/C++)

	Write Append to a Temporary LOB
	Scenario
	Example: Write Append to a Temporary LOB Using PL/SQL
	Example: Write Append to a Temporary LOB Using C (OCI)
	Example: Write Append to a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Write Append to a Temporary LOB Using C++ (Pro*C/C++)

	Write Data to a Temporary LOB
	Stream Write
	Scenario
	Example: Write Data to a Temporary LOB Using the DBMS_LOB Package
	Example: Write Data to a Temporary LOB Using C (OCI)
	Example: Write Data to a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Write Data to a Temporary LOB Using C++ (Pro*C/C++)

	Trim the Temporary LOB Data
	Scenario
	Example: Trim the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)
	Example: Trim the Temporary LOB Data Using C (OCI)
	Example: Trim the Temporary LOB Data Using COBOL (Pro*COBOL)
	Example: Trim the Temporary LOB Data Using C++ (Pro*C/C++)

	Erase Part of a Temporary LOB
	Scenario
	Example: Erase Part of a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Erase Part of a Temporary LOB Using C (OCI)
	Example: Erase Part of a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Erase Part of a Temporary LOB Using C++ (Pro*C/C++)

	Enable LOB Buffering for a Temporary LOB
	Scenario
	Example: Enable LOB Buffering for a Temporary LOB Using C (OCI)
	Example: Enable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Enable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++)

	Flush Buffer for a Temporary LOB
	Scenario
	Example: Flush Buffer for a Temporary LOB Using C (OCI)
	Example: Flush Buffer for a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Flush Buffer for a Temporary LOB Using C++ (Pro*C/C++)

	Disable LOB Buffering for a Temporary LOB
	Scenario
	Example: Disable LOB Buffering Using C (OCI)
	Example: Disable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Disable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++)

	5 External LOBs (BFILEs)
	Use Case Model: External LOBs
	Accessing External LOBs (SQL DML)
	Directory Object
	Initializing BFILES using BFILENAME()
	DIRECTORY Name Specification

	BFILE Security
	Ownership and Privileges
	SQL DDL for BFILE security
	SQL DML for BFILE security

	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	BFILEs in Multi-Threaded Server (MTS) Mode
	External LOB Locators (BFILE Locators)

	Three Ways to Create a Table Containing a BFILE
	CREATE a Table Containing a BFILE
	Scenario
	Example: Create a Table Containing a BFILE Using SQL DDL

	CREATE a Table of an Object Type with a BFILE Attribute
	Scenario
	Example: Create a Table of an Object Type with a BFILE Attribute Using SQL DDL

	CREATE a Table with a Nested Table Containing a BFILE
	Scenario
	Example: Create a Table with a Nested Table Containing a BFILE Using SQL DDL

	Three Ways to Insert a Row Containing a BFILE
	INSERT a Row by means of BFILENAME()
	Scenario
	Example: Insert a Row by means of BFILENAME() Using SQL
	Example: Insert a Row by means of BFILENAME() Using C (OCI)
	Example: Insert a Row by means of BFILENAME() Using COBOL (Pro*COBOL)
	Example: Insert a Row by means of BFILENAME() Using C++ (Pro*C/C++)
	Example: Insert a Row by means of BFILENAME() Using Visual Basic (OO4O)
	Example: Insert a Row by means of BFILENAME() Using Java (JDBC)
	INSERT a Row Containing a BFILE as SELECT
	Scenario
	Example: Insert a Row Containing a BFILE as Select Using SQL

	INSERT a Row Containing a BFILE by Initializing a BFILE Locator
	Scenario
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using PL/SQL
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C (OCI)
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using COBOL (Pro*COBOL)
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C++ (Pro*C/C++)
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Visual Basic (OO4O)
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Java (JDBC)

	Load External LOB (BFILE) Data into a Table
	Scenario
	Control File:
	Data file (sample9.dat):
	Note:
	Data file (sample10.dat):
	Note:

	Load a LOB with Data from a BFILE
	Scenario
	Example: Load a LOB with Data from a BFILE Using PL/SQL (DBMS_LOB Package)
	Example: Load a LOB with Data from a BFILE Using C (OCI)
	Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)
	Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)
	Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)
	Example: Load a LOB with Data from a BFILE Using Java (JDBC)

	Two Ways to Open a BFILE
	Maximum Number of Open BFILEs

	Open a BFILE with FILEOPEN
	Scenario
	Example: Open a BFILE with FILEOPEN Using PL/SQL
	Example: Open a BFILE with FILEOPEN Using C (OCI)
	Example: Open a BFILE with FILEOPEN Using Visual Basic (OO4O)
	Example: Open a BFILE with FILEOPEN Using Java (JDBC)

	Open a BFILE with OPEN
	Scenario
	Example: Open a BFILE with OPEN Using PL/SQL
	Example: Open a BFILE with OPEN Using C (OCI)
	Example: Open a BFILE with OPEN Using COBOL (Pro*COBOL)
	Example: Open a BFILE with OPEN Using C++ (Pro*C/C++)
	Example: Open a BFILE with OPEN Using Visual Basic (OO4O)
	Example: Open a BFILE with OPEN Using Java (JDBC)

	Two Ways to See If a BFILE is Open
	Maximum Number of Open BFILEs

	See If the BFILE is Open with FILEISOPEN
	Scenario
	Example: See If the BFILE is Open with FILEISOPEN Using PL/SQL (DBMS_LOB Package)
	Example: See If the BFILE is Open with FILEISOPEN Using C (OCI)
	Example: See If the BFILE is Open with FILEISOPEN Using Visual Basic (OO4O)
	Example: See If the BFILE is Open with FILEISOPEN Using Java (JDBC)

	See If the BFILE is Open Using ISOPEN
	Scenario
	Example: See If the BFILE is Open with ISOPEN Using PL/SQL (DBMS_LOB Package)
	Example: See If the BFILE is Open with ISOPEN Using C (OCI)
	Example: See If the BFILE is Open with ISOPEN Using COBOL (Pro*COBOL)
	Example: See If the BFILE is Open with ISOPEN Using C++ (Pro*C/C++)
	Example: See If the BFILE is Open with ISOPEN Using Visual Basic (OO4O)
	Example: See If the BFILE is Open with ISOPEN Using Java (JDBC)

	Display the BFILE Data
	Scenario
	Example: Display the BFILE Data Using PL/SQL
	Example: Display the BFILE Data Using C (OCI)
	Example: Display the BFILE Data Using COBOL (Pro*COBOL)
	Example: Display the BFILE Data Using C++ (Pro*C/C++)
	Example: Display the BFILE Data Using Visual Basic (OO4O)
	Example: Display the BFILE Data Using Java (JDBC)

	Read the Data from a BFILE
	Scenario
	Example: Read the Data from a BFILE Using PL/SQL (DBMS_LOB Package)
	Example: Read the Data from a BFILE Using C (OCI)
	Example: Read the Data from a BFILE Using COBOL (Pro*COBOL)
	Example: Read the Data from a BFILE Using C++ (Pro*C/C++)
	Example: Read the Data from a BFILE Using Visual Basic (OO4O)
	Example: Read the Data from a BFILE Using Java (JDBC)

	Read a Portion of the BFILE Data (substr)
	Scenario
	Example: Read a Portion of the BFILE Data (substr) Using PL/SQL (DBMS_LOB Package)
	Example: Read a Portion of the BFILE Data (substr) Using COBOL (Pro*COBOL)
	Example: Read a Portion of the BFILE Data (substr) Using C++ (Pro*C/C++)
	Example: Read a Portion of the BFILE Data (substr) Using Visual Basic (OO4O)
	Example: Read a Portion of the BFILE Data (substr) Using Java (JDBC)

	Compare All or Parts of Two BFILES
	Scenario
	Example: Compare All or Parts of Two BFILES Using PL/SQL (DBMS_LOB Package)
	Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL)
	Example: Compare All or Parts of Two BFILES Using C++ (Pro*C/C++)
	Example: Compare All or Parts of Two BFILES Using Visual Basic (OO4O)
	Example: Compare All or Parts of Two BFILES Using Java (JDBC)

	See If a Pattern Exists (instr) in the BFILE
	Scenario
	Example: See If a Pattern Exists (instr) in the BFILE Using PL/SQL (DBMS_LOB Package)
	Example: See If a Pattern Exists (instr) in the BFILE Using COBOL (Pro*COBOL)
	Example: See If a Pattern Exists (instr) in the BFILE Using C++ (Pro*C/C++)
	Example: See If a Pattern Exists (instr) in the BFILE Using Visual Basic (OO4O)
	Example: See If a Pattern Exists (instr) in the BFILE Using Java (JDBC)

	See If the BFILE Exists
	Scenario
	Example: See If the BFILE Exists Using PL/SQL (DBMS_LOB Package)
	Example: See If the BFILE Exists Using C (OCI)
	Example: See If the BFILE Exists Using COBOL (Pro*COBOL)
	Example: See If the BFILE Exists Using C++ (Pro*C/C++)
	Example: See If the BFILE Exists Using Visual Basic (OO4O)
	Example: See If the BFILE Exists Using Java (JDBC)

	Get the Length of a BFILE
	Scenario
	Example: Get the Length of a BFILE Using PL/SQL (DBMS_LOB Package)
	Example: Get the Length of a BFILE Using C (OCI)
	Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)
	Example: Get the Length of a BFILE Using C++ (Pro*C/C++)
	Example: Get the Length of a BFILE Using Visual Basic (OO4O)
	Example: Get the Length of a BFILE Using Java (JDBC)

	Copy a LOB Locator for a BFILE
	Scenario
	Example: Copy a LOB Locator for a BFILE Using PL/SQL
	Example: Copy a LOB Locator for a BFILE Using C (OCI)
	Example: Copy a LOB Locator for a BFILE Using COBOL (Pro*COBOL)
	Example: Copy a LOB Locator for a BFILE Using C++ (Pro*C/C++)
	Example: Copy a LOB Locator for a BFILE Using Visual Basic (OO4O)
	Example: Copy a LOB Locator for a BFILE Using Java (JDBC)

	See If a LOB Locator for a BFILE Is Initialized
	Scenario
	Example: See If a LOB Locator for a BFILE Is Initialized Using C (OCI)
	Example: See If a LOB Locator for a BFILE Is Initialized Using C++ (Pro*C/C++)

	See If One LOB Locator for a BFILE Is Equal to Another
	Scenario
	Example: See If One LOB Locator for a BFILE Is Equal to Another Using C (OCI)
	Example: See If One LOB Locator for a BFILE Is Equal to Another Using C++ (Pro*C/C++)
	Example: See If One LOB Locator for a BFILE Is Equal to Another Using Java (JDBC)

	Get Directory Alias and Filename
	Scenario
	Example: Get Directory Alias and Filename Using PL/SQL
	Example: Get Directory Alias and Filename Using C (OCI)
	Example: Get Directory Alias and Filename Using COBOL (Pro*COBOL)
	Example: Get Directory Alias and Filename Using C++ (Pro*C/C++)
	Example: Get Directory Alias and Filename Using Visual Basic (OO4O)
	Example: Get Directory Alias and Filename Using Java (JDBC)

	Three Ways to Update a Row Containing a BFILE
	UPDATE a BFILE Using BFILENAME()
	BFILENAME() Function
	Scenario
	Example: Update a BFILE by means of BFILENAME() Using SQL

	UPDATE a BFILE as SELECT
	Scenario
	Example: Update a BFILE as Select Using SQL

	UPDATE a BFILE by Initializing a BFILE Locator
	Scenario
	Example: Update a BFILE by Initializing a BFILE Locator Using PL/SQL
	Example: Update a BFILE by Initializing a BFILE Locator Using C (OCI)
	Example: Update a BFILE by Initializing a BFILE Locator Using COBOL (Pro*COBOL)
	Example: Update a BFILE by Initializing a BFILE Locator Using C++ (Pro*C/C++)
	Example: Update a BFILE by Initializing a BFILE Locator Using Visual Basic (OO4O)
	Example: Update a BFILE by Initializing a BFILE Locator Using Java (JDBC)

	Two Ways to Close a BFILE
	Close a BFILE with FILECLOSE
	Scenario
	Example: Close a BFile with FILECLOSE Using PL/SQL (DBMS_LOB Package)
	Example: Close a BFile with FILECLOSE Using C (OCI)
	Example: Close a BFile with FILECLOSE Using Visual Basic (OO4O)
	Example: Close a BFile with FILECLOSE Using Java (JDBC)

	Close a BFILE with CLOSE
	Scenario
	Example: Close a BFile with CLOSE Using PL/SQL (DBMS_LOB Package)
	Example: Close a BFile with CLOSE Using C (OCI)
	Example: Close a BFile with CLOSE Using COBOL (Pro*COBOL)
	Example: Close a BFile with CLOSE Using C++ (Pro*C/C++)
	Example: Close a BFile with CLOSE Using Visual Basic (OO4O)
	Example: Close a BFile with CLOSE Using Java (JDBC)

	Close All Open BFILEs
	Scenario
	Example: Close All Open BFiles Using PL/SQL (DBMS_LOB Package)
	Example: Close All Open BFiles Using C (OCI)
	Example: Close All Open BFiles Using COBOL (Pro*COBOL)
	Example: Close All Open BFiles Using C++ (Pro*C/C++)
	Example: Close All Open BFiles Using Visual Basic (OO4O)
	Example: Close All Open BFiles Using Java (JDBC)

	DELETE the Row of a Table Containing a BFILE
	Scenario
	Example: Delete a Row from a Table Using SQL

	6 LOBs and Partitioned Tables
	Using LOBs in Partitions
	Creating and Partitioning a Table Containing LOB Data
	Creating an Index on a Table Containing LOB Columns
	Exchanging Partitions Containing LOB Data
	Adding Partitions to Tables Containing LOB Data
	Moving Partitions Containing LOBs
	Splitting Partitions Containing LOBs
	Merging Partitions Containing LOBs
	Populating the Script CLOB and Photo BLOB
	Populating the BLOB:
	Populate the CLOB:
	Reading the LOB Value:

	Index

