Oracle8 i

Application Developer’s Guide - Large Objects (LOBS)

Release 8.1.5

February, 1999
Part No. A68004-01

ORrRACLE

Oracle8i Application Developer’s Guide - Large Objects (LOBs), Release 8.1.5
Part No. A68004-01

Copyright © 1999, Oracle Corporation. All rights reserved.

Primary Author: Denis Raphaely, Susan Kotsovolos

Contributing Authors: Rosanne Park, John Gibb

Contributors: Michael Chiocca, R. Govindarajan, Gopal Kirsur, Anindo Roy

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be the licensee’s responsibility to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and dis-
closure and are also protected by copyright, patent, and other intellectual and industrial property laws.
Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these Pro-
grams, no part of these Programs may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on behalf
of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial com-
puter software" and use, duplication, and disclosure of the Programs including documentation, shall be
subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Pro-
grams delivered subject to the Federal Acquisition Regulations are "restricted computer software" and
use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19, Com-
mercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065.

Oracle, Pro*Ada, Pro*COBOL, Pro*FORTRAN, SQL*Loader, SQL*Net and SQL*Plus are registered trade-
marks of Oracle Corporation, Redwood City, California.

Designer/2000, Developer/2000, Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle8i, Oracle Forms,
Oracle Parallel Server, PL/SQL, Pro*C, Pro*C/C++ and Trusted Oracle are trademarks of Oracle Corpora-
tion, Redwood City, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Send US YOUI COMMEBNES ...ttt Xxiii
PIEIACE ..ottt en ettt XXV
USE CASE DIAGIAMIS.cueitiiiiitiiterie sttt sttt ettt ettt e st sb e besbesb e besbe e e e esseseeseebeabesbeebesbenbeseens XXX

1 Introduction to Working With LOBs

THE LOB DATALYIE -...ccveeieieiiieteite sttt sttt ettt b e bbb b et e e e et e e et e s e e b e e st abe et e sbesbesbe b ee 1-2
LY (=T g LT 2 S 1-2
EXtErnal LOBS (BFILES)cviiiiiiiie ettt sttt sttt a e s tesnesnesnesnennens 1-2

Varying-Width CharaCter Data..........cocooeiiiiiiiiiee et sb e 1-3
DBIMS_LOB PACKAJE ... vttt bbbt b bbbt 1-3
O R Rt 1-4

LOBs in Comparison to LONG and LONG RAW TYPESccuiiriirerieiieieeieieieee s sie e 1-5

@ = =] 4 Tod A o 1P 1-6

DBA Actions Required Prior to Working With LOBS...........ccccccoviviieie e 1-8
Set Maximum Number of Open BFILES ... 1-8

Using SQL DML for Basic Operations 0N LOBS ...t 1-8

Programmatic Environments for Operating on LOBS.........cccccciiieiencieieeiececese e 1-9
Comparison Of SIX INTEITACEScoui i 1-10
Using the DBMS_LOB Package for Working With LOBS...........ccccceviiniiniinnecseens 1-12
Using the Oracle Call Interface (OCI) With LOBS........c.ccccciviiiiiiii e 1-15
Using C++ (Pro*C/C++) 1o WOrk With LOBS ..o 1-23
Using COBOL (Pro*COBOL) to WOrk With LOBS.........cccccoiviiiiiieiecceceens 1-26
Using Visual Basic (O040) to WOrk With LOBS..........cccccvviiieiiiece e 1-29

Using Java (JDBC) t0 WOrk With LOBScccoiiiieie e 1-34

AN EXample APPHICATIONcoiiiiiiii e 1-39
The Multimedia Content-Collection SYStEMcccviiviiiiicse e 1-39
Applying an Object-Relational Design to the Application.........c.ccocoeiiiiiciiiiiciine 1-41
The Structure of the Multimedia_tab Table ... 1-42

The Most Basic Operation: Getting and Using the LOB LOCAtOrccccererevierierieieeeeeneenns 1-47
LOB ValUg @Nd LOCALOISciuiiiiieiiiieiie ettt s ne et sbe b 1-47
LOB LOCAEOr OPEIALIONSeueviiitiietiieteseeiesteie sttt bttt b et n e 1-47
LOB Locators and Transaction BOUNAANIESccoviiriiiniiineeneiseese e 1-49
Open, Close and I1sOpen Interfaces for Internal LOBS ..o, 1-52

INAEXING @ LOB COIUMN ...ttt ene e 1-55

2 Advanced Topics

REAA-CONSISIENT LOCATOISuiitiitiitiiie sttt sttt ettt en et esbesaesbe st e 2-2
(010 F 1 (=0 [Lo o= 1 (o = 2-5
LOB BiNd VArIADIESccuiiiiiiiiiee ettt ettt ettt sae s 2-9
LOB locators cannot SPan tranSaCtiONS.couiiiiiriree e 2-12

LOBS in the OBJECt CACNEcevciie e et sne s 2-14

LOB BUTFEring SUDSYSTEIMooiiiie ittt st ettt nne e sne e 2-14
Advantages 0f LOB BUFEIING.........ccoiiiiiiiiice e 2-15
Considerations in the Use of LOB BUFFEIINGccoovevieiciieic e 2-15
LOB BUFfering OPEratiONS........cccciuiiiiiie ettt bbbt ebe e b b 2-17
Example of LOB BUFTEIINGcoooiiiiiiiiicereeree et 2-21

User Guidelines for Best Performance PractiCes ... 2-24

Working with Varying-Width Character Data.............cccccove i 2-25

LOBs in INndex Organized TabIES ...t 2-25

3 Internal Persistent LOBs

Use Case Model: Internal Persistent LOBS..........ccoiiiiiiiiiiesese e 3-2
Three Ways to Create a Table Containing @ LOB.........ccccviivvivii v 3-6
Issues to Consider in Creating Tables that Will Contain LOBS..........c.ccccoeveviviiivi e, 3-7
Initializing Internal LOBS t0 NULL OF EMPLY ..o 3-7
Stipulating Tablespace and Storage Characteristics for Internal Lobscccccccvvvivinnenn 3-8
CREATE a Table Containing One or More LOB ColumMNSccccoiviviiic v 3-14
R 1or=] o T= U o TSSOSO PRTRR 3-14

Example: Create a Table Containing One or More LOB Columns using SQL DDL 3-15
CREATE a Table Containing an Object Type with a LOB Attribute...........cccccoeoiininnn, 3-18
Kol = o SO 3-18

Example: Create a Table Containing an Object Type with a LOB Attribute Using SQL DDL ..
3-19

CREATE a Table with a Nested Table Containing a LOB..........c.ccccooeiiiiiiiienneceeeee 3-22
Kol = o SO 3-22
Example: Create a Table with a Nested Table Containing a LOB Using SQL DDL 3-23

Three Ways Of Inserting One or More LOB Values into a ROW.........ccccoccoveineniennencenne 3-25
INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() ...ccoovvvevveieieeereesese e 3-26
Making a LOB Column NON-NUIL..........c.cccooiiiiie et 3-27
Example: Insert a Value by means of EMPTY_CLOB() / EMPTY_BLOB() using SQL ... 3-27
INSERT a Row Containing @a LOB @s SELECT ... 3-28
R1=] o F- 1 o BTSSP PO TSRS PRURURPRTRTN 3-28
Example: Insert a Row by Selecting from Another Table Using SQL DML 3-29
INSERT a Row by Initializing a LOB Locator Bind Variablec.cccccoceveieiiiciccsccncnn, 3-30
R 1=] o F- 1 o OSSO TTUU PO TOOUSORSOPRURURPRURN 3-30
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using SQL DML ... 3-31
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C (OCI) 3-31

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Pro*COBOL 3-33
Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)
3-35

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Visual Basic
(O040) 3-36

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Java (JDBC) 3-36

Load Data into an Internal LOB (BLOB, CLOB, NCLOB).......ccccevotiiiinieeieeeeeese e 3-38
3 o7=] = U o SRS SRSR 3-38
LOB Data in Predetermined Size FIeldS.........cccoviiiiii i 3-39
LOB Data in Delimited FIelAS..........cooiiiiiicece et 3-39
LOB Data in Length-value Pair FIelds.........cccccoeviiiieiiccesc e 3-40
ONE LOB PEF Il .. ettt re 3-41
PredeterMined SIiZ8 LOBS.......c.coi ittt st re e be e re e be s 3-42
DEIIMITEA LOBS........ciiicictece sttt ettt et st st e e e e e enses s e e eneaneeresneanenes 3-43
Length-Value Pair SPecified LOBS.........cooiiiiiieieeecee e 3-44

Load a LOB with Data from a BFILE ..ot 3-46
Character SEt CONVEISIONccvieiieviree ettt sttt sr e e e e e e eneeseeneenaerenresnens 3-47

vi

R 1x=] o F- 1 o TSP TP STPRPRUPUR 3-47
Example: Load a LOB with Data from a BFILE Using the DBMS_LOB Package.............. 3-47
Example: Load a LOB with Data from a BFILE Using C (OCI)cccccoovvvveveveceeeereeen, 3-48
Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL).................. 3-50
Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)cccoceevreennen 3-52
Example: Load a LOB with Data from a BFILE Using Visual Basic (O040)..........c.......... 3-53
Example: Load a LOB with Data from a BFILE Using Java (JDBC)ccccoceeeiinieninnne. 3-54
SEE IT A LOB IS OPEN ..ttt bbb bbbt b et bbbt bbb 3-56
RS 1ol=T o =T o T OO URPPRRRN 3-56
Example: See If a LOB IS Open UsSiNg PLZSQLcccoiiiiiiiiii e 3-57
Example: See If a LOB Is Open USING C (OCH) ..ot 3-57
Example: See If a LOB Is Open Using COBOL (Pro*COBOL)cccccevvverierierieieeeiese e 3-59
Example: See If a LOB Is Open Using C++ (Pro*C/CH+) ..o 3-60
Example: See If a LOB Is Open Using Visual Basic (OO40)cccovenniennieneieneeneene 3-61
Example: See If a LOB Is Open Using Java (JIDBC)........ccccivviviivinene e 3-61
100] o) V@ 1NN T (o 11 I] OSSOSO 3-64
R 1or=] o T= U o TSSOSO 3-64
Example: Copy Long to LOB USING SQL ...c..cvoioiciie e 3-65
CRECKOUL 8 LOB.......cceicie et bbb bbb ettt b e bt et et e 3-68
Streaming MECIHANISITI.........ciiiiiii ettt 3-68
1ol =T o T SO SO PRSPPSO 3-69
Example: CheckOut a LOB Using PL/SQL (DBMS_LOB Package).......ccccocevveiriniencnnnne. 3-69
Example: CheckOut a LOB USING C (OCI) ...covciiiiiiiiniciieiisicese e 3-70
Example: CheckOut a LOB Using COBOL (Pro*COBOL)......cccocvvvrerieniererieeeeeesese e 3-72
Example: CheckOut a LOB UsSiNg C++ (Pro*C/CH) ..o 3-74
Example: CheckOut a LOB Using Visual BasiC (OO40)........ccccooeriinnennieneeneenee e 3-76
Example: CheckOut a LOB Using Java (JDBC)ccccovviiviiiniie i 3-77
CRECKIN B LOB.... .ottt b bbbt bbb bbbt et e st e bt e b e ebeeb e b e 3-79
Streaming MECHANISITI.........ciiii et ene e 3-79
RS 1ol =T = U o TSSOSO PRSP PRRRN 3-80
Example: Checkin a LOB Using PL/SQL (DBMS_LOB Package)ccccoeveveininennninne. 3-80
Example: Checkin a LOB USING C (OCI) ...ttt 3-81
Example: Checkin a LOB Using COBOL (Pro*COBOL)cccoevverereieerieiereeseeesese s 3-84
Example: Checkin a LOB UsSiNg CH++ (Pro*C/CH) ..c.iiiiiiiiiie e 3-87
Example: Checkin a LOB Using Visual BasiC (OO40)ccccoienrennenineneenee e 3-89

Example: Checkin a LOB Using Java (JIDBC)cccceiiiiiiiiiie e 3-91
DisSplay the LOB Data.........ccccieiiiiiieinieiisie ettt 3-93
Streaming MECHANISITcuiii et e e eneerenrearens 3-94
R1=] o F- 1 o BT U UPO TS OUSTPSOPRURURPRTRTIN 3-94
Example: Display the LOB Data USing PL/SQL ..o 3-94
Example: Display the LOB Data Using C (OCI)c.ccooviiviiviie e 3-95
Example: Display the LOB Data Using COBOL (Pro*COBOL).......ccceceieiinciciiicicen 3-97
Example: Display the LOB Data Using C++ (Pro*C/C++) ...ccoiiiiiiiieiieinieineseenis 3-99
Example: Display the LOB Data Using Visual Basic (OO40).........ccocvvvrererierereereeieennnns 3-100
Example: Display the LOB Data Using Java (JDBC)c.ccccviiininenineieseeeeeeeeeeees 3-101
Read Data from the LOB ...ttt 3-104
SEFEAM REAA. ... ettt bbbttt bbbt benes 3-105
CRIUNKSIZE ...t bbb bbb e bbbttt b et st 3-105
1] o T= L o SRRSO PR PSR 3-106
Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)ccccevevunee. 3-106
Example: Read Data from a LOB USING C (OCH)cccoiiiiiiiiiiieiiie e 3-107
Example: Read Data from a LOB Using COBOL (Pro*COBOL).......c.ccoceeriiriinccicene 3-109
Example: Read Data from a LOB Using C++ (Pro*C/C++) ...ccccvvivvivvinineiesceeeneeeeeens 3-111
Example: Read Data from a LOB Using Visual Basic (OO40)cccocereieneiciesienieene 3-112
Example: Read Data from a LOB Using Java (JDBC)ccoccovviineiiieiiieiseiec e 3-112
Read a Portion of the LOB (SUDSLE)ccciiiiiie et 3-115
1=] o F- 1 o BT PO RSO PR PRSPPI 3-116
Example: Read a Portion of the LOB (substr) Using PL/SQL (DBMS_L OB Package)... 3-116
Example: Read a Portion of the LOB (substr) Using COBOL (Pro*COBOL)................... 3-117
Example: Read a Portion of the LOB (substr) Using C++ (Pro*C/C++)ccccoevvvieennn. 3-118
Example: Read a Portion of the LOB (substr) Using Visual Basic (OO40)............c.ccc.... 3-120
Example: Read a Portion of the LOB (substr) Using Java (JDBC)cccccocevevvcrieivcvennnnn, 3-120
Compare All or Part 0f TWO LOBS......cccoiiiiie e e 3-123
31T o T= L o SRS RSOPR PSP 3-123
Example: Compare All or Part of Two LOBs Using PL/SQL (DBMS_LOB Package) ... 3-124
Example: Compare All or Part of Two LOBs Using COBOL (Pro*COBOL) 3-125
Example: Compare All or Part of Two LOBs Using C++ (Pro*C/C++)coeevnvvnennnne 3-127
Example: Compare All or Part of Two LOBs Using Visual Basic (O040)ccccoeune. 3-128
Example: Compare All or Part of Two LOBs Using Java (JDBC).......cccccceveveiciiniiniennne. 3-128
See If a Pattern EXists iN the LOB (INSTr)ccoiiiiiiiiiieiececneesee e 3-131

Vii

Yot =] o PV [0 T 3-132

Example: See If a Pattern Exists in the LOB (instr) Using PL/SQL (DBMS_LOB Package).......
3-132
Example: See If a Pattern Exists in the LOB (instr) Using COBOL (Pro*COBOL) 3-133
Example: See If a Pattern Exists in the LOB (instr) Using C++ (Pro*C/C++)........c........ 3-134
Example: See If a Pattern Exists in the LOB (instr) Using Visual Basic (O040)............. 3-136
Example: See If a Pattern Exists in the LOB (instr) Using Java (JDBC)........c.ccccevververvenene. 3-136
Getthe LENGtN OF @ LOB ..ottt esae e sae e 3-138
R 1o3=] o T= U o LTSRS 3-138
Example: Get the Length of a LOB Using PL/SQL (DBMS_LOB Package)..........c.c....... 3-139
Example: Get the Length of a LOB USING C (OCI)....cccoiiiiiiiiiiiiirenee e 3-139
Example: Get the Length of a LOB Using COBOL (Pro*COBOL).........cccocevreereenieenen. 3-141
Example: Get the Length of a LOB Using C++ (Pro*C/C++) ..o 3-142
Example: Get the Length of a LOB Using Visual Basic (OO40).......c.ccceevvenerencieciinenn 3-143
Example: Get the Length of a LOB Using Java (IDBC)ccccoeeirinnenneneenieeseesie e 3-144
Copy All or Part of a LOB to another LOB.........ccccooiiice e 3-146
Locking the ROW Prior t0 UpPdating..........cccooeiiiiiiiniiiee e 3-146
R 1o3=] o T= U o LTSRS 3-147
Example: Copy All or Part of a LOB to another LOB Using PL/SQL (DBMS_LOB Package)...
3-147
Example: Copy All or Part of a LOB to another LOB Using C (OCI).......cccceoeveicicinnene 3-148
Example: Copy All or Part of a LOB to another LOB Using COBOL (Pro*COBOL)...... 3-150
Example: Copy All or Part of a LOB to another LOB Using C++ (Pro*C/C++) 3-152
Example: Copy All or Part of a LOB to another LOB Using Visual Basic (O040)......... 3-154
Example: Copy All or Part of a LOB to another LOB Using Java (JDBC)ccccooeeuee. 3-154
(07070} V2= W K@] = 38 10 Tox 1 (o] PSS 3-157
13T o F- L o TSSOSO T U RUTTT PR UTPTPRORPRPRN 3-157
Example: Copy a LOB Locator USing PLZSQL ... 3-158
Example: Copy a LOB Locator Using C (OCI)cccceeveiciececccese e 3-158
Example: Copy a LOB Locator Using COBOL (Pro*COBOL)........c.ccccvverineneieeeeee 3-160
Example: Copy a LOB Locator Using C++ (Pro*C/ZC+4) ..o 3-161
Example: Copy a LOB Locator Using Visual Basic (OO40).......c..ccceevivrivrenenereneeseerenenns 3-162
Example: Copy a LOB Locator Using Java (JDBC) ..o 3-163
See If One LOB Locator Is Equal t0 ANOTNEN ... 3-165
RS 1o0=T o =T o T O OO OSSOSO PRSP 3-165
Example: See If One LOB Locator Is Equal to Another Using C (OCI)cccceoeveiennene 3-166

viii

Example: See If One LOB Locator Is Equal to Another Using C++ (Pro*C/C++)........... 3-167

Example: See If One LOB Locator Is Equal to Another Using Java (JDBC)..........cccce.... 3-169
See If a LOB Locator IS INItIAlIZEd ..o 3-171
R 1=] o F- 1 o BT TP SOPR PRSPPI 3-171
Example: See If a LOB Locator Is Initialized UsSing C (OCI)ccccceoviiiiirniciiiiccneeee 3-172
Example: See If a LOB Locator Is Initialized Using C++ (Pro*C/C++)cccccevevvevvcvennnn. 3-173
GEL ChAraCter SEE D ... bbb bbb ettt e 3-175
1] o T= L o SRRSO PR PSR 3-175
Example: Get Character Set ID USING C (OCH) ...cooviieiiiiiicere e 3-176
Get CharaCter SEE FOMMt ettt 3-178
1] o T= L o SRRSO PR PSR 3-178
Example: Get Character Set FOrm Using C (OC).....ccovvivivvivviinenese e 3-179
AppPeNnd ONe LOB 10 ANOTNET ..o s 3-181
Locking the ROW Prior 10 Updating..........cccuieiieiiiiiiieiiensersese e 3-182
RS (o0=T o =T o J OSSO 3-182
Example: Append One LOB to Another Using PL/SQL (DBMS_LOB Package) 3-182
Example: Append One LOB to Another UsSing C (OCI).......cccveiiiiiiiiiiieniieiec e 3-183
Example: Append One LOB to Another Using COBOL (Pro*COBOL)ccccevevvevennnne. 3-185
Example: Append One LOB to Another Using C++ (Pro*C/C++)....ccoeveniiciiiciennn, 3-186
Example: Append One LOB to Another Using Visual Basic (OO40)ccccevevneennae 3-187
Example: Append One LOB to Another Using Java (JDBC)........cccccocvvvvevererericneeeennn 3-188
WIItE APPENA 10 @ LOB ..ottt bbb bbb ettt ere e 3-191
WIItiNg SINGIY OF PIECEWISEoviiiieiiiieie e 3-191
Locking the ROW Prior to Updating..........cccceieiiiiieicecesese s ene s 3-192
1=] o F- 1 o BT PO RSO PR PRSPPI 3-192
Example: Write Append to a LOB USiNG PL/SQLc.cviiiiiiiiiiceieeeese e 3-192
Example: Write Append to a LOB USIiNg C (OCI)ocovvvivvivieiicese e 3-193
Example: Write Append to a LOB Using COBOL (Pro*COBOL)........cccccevereicinicieene, 3-195
Example: Write Append to a LOB Using C++ (Pro*C/C++)coveiiiiiiiiciecrec e 3-196
Example: Write Append to a LOB Using Visual Basic (OO40)ccccvevververiereeiveivennnn 3-197
Example: Write Append to a LOB Using Java (JDBC).........ccocvenineiineneieeeeeeeeee 3-197
WWIILE DAta t0 @ LOB......oci ittt sttt sttt s neeneeteneas 3-200
SEFEAIM WWEITE ...ttt bbbttt ettt et ntenes 3-201
CRIUNKSIZE ...t bbb bbb e bttt et be et b 3-201
Locking the ROW Prior t0 Updating........c.cccuieiiiiiiiiieiseise e 3-201

1] o F- o TSSO TR PR USPOTPRORPRPRN 3-202
Example: Write Data to a LOB Using the DBMS_LOB Package..........cccoveneiineinennnen. 3-202
Example: Write Data to a LOB USING C (OCH)..c.civiiieiiiiceeeseee et 3-203
Example: Write Data to a LOB Using COBOL (Pro*COBOL)ccccovvrerinenieriecieenn 3-207
Example: Write Data to a LOB Using C++ (Pro*C/C+) ..o 3-209
Example: Write Data to a LOB Using Visual Basic (OO40).......c.ccccevvvrivrenenereneesierinenns 3-212
Example: Write Data to a LOB Using Java (JDBC)ccccceiiiiiiiinineiene e 3-213
TrIM the LOB DAla......iiiiiiiiieieeeeee ettt ettt sttt st b et st e e e eneeneenas 3-216
Locking the ROW Prior t0 Updating..........ccccceieiiiicinisc s 3-217
1] o F- L o T OO PTUTPOTPRORPRPRN 3-217
Example: Trim the LOB Data Using PL/SQL (DBMS_LOB Package).........c.cccccoevvrvennnen. 3-217
Example: Trim the LOB Data USIiNg C (OCH).....cccovieieriiieisese et 3-218
Example: Trim the LOB Data Using COBOL (Pro*COBOL)ccocevireniinienie e 3-219
Example: Trim the LOB Data Using C++ (Pro*C/C+)....ccooiiiiiiiiiiiieeeeeeee e 3-221
Example: Trim the LOB Data Using Visual Basic (OO40)ccccvrvrivrivrenienerereesieenenns 3-223
Example: Trim the LOB Data Using Java (JDBC)........ccccieiiiiiiinene e 3-223
Erase Part OF @ LOB ...ttt bbb sttt s e ene s 3-226
Locking the ROW Prior t0 Updating..........cccccverueiiiiciiiesn e 3-227
1] o F- 1 o TSSO TSR PR UTPOTPRORPRPRN 3-227
Example: Erase Part of a LOB Using PL/SQL (DBMS_LOB Package)ccccooeevrvennen. 3-227
Example: Erase Part of a LOB USING C (OCH) ...cccoiiiiieiiieecesc e 3-228
Example: Erase Part of a LOB Using COBOL (Pro*COBOL)ccoceviienineneiieeceen 3-229
Example: Erase Part of a LOB Using C++ (Pro*C/C++) ..o 3-231
Example: Erase Part of a LOB Using Visual Basic (OO40)cccceevvivvivrenenereneenieinenns 3-232
Example: Erase Part of a LOB Using Java (JDBC).......ccoeieiiiiiiinene e 3-232
ENable LOB BUFTEIINGciiiiieiiiie ettt 3-235
RS 1o0T o =T o T OO OSSOSO PRSP 3-236
Example: Enable LOB Buffering Using C (OCI)......cccocoviieiiiiiiinene e 3-236
Example: Enable LOB Buffering Using COBOL (Pro*COBOL)ccocvcenveneenecnieeen 3-236
Example: Enable LOB Buffering Using C++ (Pro*C/C++) ..o 3-238
Example: Enable LOB Buffering Using Visual Basic (OO40)........c.ccorvinineneieicieinenn 3-239
FIUSI BUTFEE ...ttt ettt st st b et st e e bt e e eneeseaneenens 3-241
1ol =T o T O OO OSSPSR 3-242
Example: Flush Buffer USiNg C (OC)......ccooiiiiiiiieeiee e 3-242
Example: Flush Buffer Using COBOL (Pro*COBOL)cccceoiieirenieinienieeneese e 3-242

Example: Flush Buffer Using C++ (Pro*C/CH) .ot 3-244

Example: Flush Buffer Using Visual Basic (OO40).........cccreireineiineiieiesenesie e 3-245
Disable LOB BUTFTEIING ..ottt et ne e nnenns 3-246
R 1=] o F- 1 o BT TP SOPR PRSPPI 3-247
Example: Disable LOB Buffering USing C (OCI)cccociiiiiniiineincieieiseseee e 3-247
Example: Disable LOB Buffering Using COBOL (Pro*COBOL)........ccccevvververierieieeeennnn 3-249
Example: Disable LOB Buffering Using C++ (Pro*C/C++) ..o 3-251
Example: Disable LOB Buffering Using Visual Basic (OO40).........cccovernennereeneiennas 3-252
Three Ways t0 Update @ LOB.........ccov ittt sa e ene e sneanens 3-254
UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()....ccccceveiisiieeneie e 3-255
1] o T= L o SRRSO PR PSR 3-256
Example: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() Using SQL......... 3-256
UPDATE @S SELECT ..ottt sttt sttt sttt st n e st b e nnens 3-257
1] o T= L o SRRSO PR PSR 3-257
Example: Update as Select Using SQL DMLcooovoiiiiivii e 3-257
UPDATE by Initializing a LOB Locator Bind Variable............ccccocoviiiiiii e 3-258
1] o T= L o SRRSO PR PSR 3-258
Example: Update by Initializing a LOB Locator Bind Variable Using SQL DML 3-259
Example: Update by Initializing a LOB Locator Bind Variable Using C (OCI) 3-259
Example: Update by Initializing a LOB Locator Bind Variable Using COBOL (Pro*COBOL)..
3-261
Example: Update by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)
3-262
Example: Update by Initializing a LOB Locator Bind Variable Using Visual Basic (O040).....
3-263
Example: Update by Initializing a LOB Locator Bind Variable Using Java (JDBC) 3-264
DELETE the Row of a Table Containing a LOBcccooviiviivinie v 3-266
1=] o F- 1 o BT PO RSO PR PRSPPI 3-266
Example: Delete a LOB USING SQL DML.....coooiiiiiiiiiiieene s 3-267

4 Temporary LOBs

Use Case Model: Internal Temporary LOBS ...ttt 4-2
Programmatic ENVIFONMENTSccccviiiiiieiecicie s esne e nnens 4-5
The Location of TEMPOrary LOBS ... e 4-6
The Lifetime and Duration of Temporary LOBS.........ccccciiiiiiiiiiiicseeseeseeseesea 4-6

Xi

Xii

Y/ [T g1 YAl F= 1 T | 11 0V [SRR 4-6

LOCALOrS @Nd SEIMANTICS.eiiiiiieiie ettt sttt et se s se st et enbesnesaeneas 4-7
Security Issues With TemMPOrary LOBS ... 4-9
Managing TemMPOTFary LOBS........coi ittt sbe s 4-10
Create a TEMPOrary LOB ... e 4-11
RS 1ol=T o =T o T OO URPPRRRN 4-11
Example: Create a Temporary LOB Using PL/SQL (DBMS_LOB Package)c.c........ 4-12
Example: Create a Temporary LOB UsSiNg C (OCI)cccoviiiiiinieieniseeeee e 4-12
Example: Create a Temporary LOB Using COBOL (Pro*COBOL)cccccevvvvveveveieenennnn, 4-14
Example: Create a Temporary LOB Using C++ (Pro*C/C++) ..o 4-16
SEE IT 8 LOB IS TEIMPOIAIYcviiiiiiiiiteieteiiete ettt sttt eb et b ettt sttt b e 4-18
RS 1ol=T o =T o T OO TRTUURPPRRN 4-18
Example: See If a LOB is Temporary Using PL/SQL (DBMS_LOB Package) 4-19
Example: See If a LOB is Temporary Using C (OCI)ccoeiiiinieniiineneense e 4-19
Example: See If a LOB is Temporary Using COBOL (Pro*COBOL)cccccovvvevveiveiveneennnn, 4-20
Example: See If a LOB is Temporary Using C++ (Pro*C/C++) ..o, 4-21
Free a TeEMPOrary LOB ... e 4-23
RS 1ol=T o =T o TSSOSO RTUURPPRRN 4-23
Example: Free a Temporary LOB Using PL/SQL (DBMS_LOB Package)ccccceveunee. 4-24
Example: Free a Temporary LOB USIiNG C (OCI) ... 4-24
Example: Free a Temporary LOB Using COBOL (Pro*COBOL)cccceeeverveveeicieeeeeienn, 4-25
Example: Free a Temporary LOB Using C++ (Pro*C/C++)...cccooiiiiiiieieeeeeeeee 4-26
Load a Temporary LOB with Data from a BFILE............cccoviiiiiiieees 4-28
3ol =T o TSRS P T TUURPPRRN 4-28

Example: Load a Temporary LOB with Data from a BFILE Using PL/SQL (DBMS_LOB
Package) 4-29

Example: Load a Temporary LOB with Data from a BFILE Using C (OCI)c.c..... 4-30
Example: Load a Temporary LOB with Data from a BFILE Using COBOL (Pro*COBOL)........
4-32
Example: Load a Temporary LOB with Data from a BFILE Using C++ (Pro*C/C++).... 4-33
See IT a TeEMPOrary LOB IS OPENcociiiiieieiieie ettt 4-36
RS (ol=T o =T o T SO SO PRSPPSO 4-36
Example: See If a Temporary LOB Is Open Using PL/SQLccccooiiiiiiiiieceeeee, 4-37
Example: See If a Temporary LOB Is Open Using C (OCI)cooveviennincieneenee e 4-37
Example: See If a Temporary LOB Is Open Using COBOL (Pro*COBOL)c.cccccvevnnee. 4-38
Example: See If a Temporary LOB Is Open Using C++ (Pro*C/C++) ...cccoovviciniennninnne. 4-40

Display the Temporary LOB Dataccoeieiiiiiiiieiiinese et 4-42

R 1o3=] o F- L o OSSOSO USRI 4-43
Example: Display the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)...... 4-43
Example: Display the Temporary LOB Data Using C (OCI)......c.ccocerinineiencicnecceenee 4-44
Example: Display the Temporary LOB Data Using COBOL (Pro*COBOL)...........c.cco...... 4-47
Example: Display the Temporary LOB Data Using C++ (Pro*C/C++)ccccoevvvvevcnnnnn, 4-49
Read Data from a TEMPOKary LOBccooiiiiiiiiiecee ettt 4-52
STIEAM REAM. ...ttt sttt se e e e et e e e e e s e s e neebenbenbe e 4-53
Kol = o SO 4-53
Example: Read Data from a Temporary LOB Using PL/SQL (DBMS_LOB Package) ... 4-54
Example: Read Data from a Temporary LOB Using C (OCI)ccccovvriinniniincinenens 4-54
Example: Read Data from a Temporary LOB Using COBOL (Pro*COBOL)..........c.......... 4-57
Example: Read Data from a Temporary LOB Using C++ (Pro*C/C++)cccovvviviiinnnnn 4-59
Read a Portion of the Temporary LOB (SUDSTI).........cccooiiiiiiiiiccccesee 4-61
Kol = o TSRO RTS ST 4-62

Example: Read a Portion of the Temporary LOB (substr) Using PL/SQL (DBMS_LOB
Package) 4-62
Example: Read a Portion of the Temporary LOB (substr) Using COBOL (Pro*COBOL) 4-62

Example: Read a Portion of the Temporary LOB (substr) Using C++ (Pro*C/C++) 4-65
Compare All or Part of TWo (TEMPOrary) LOBS ..o 4-67
R101=] o =1 o OO PRPPR 4-68

Example: Compare All or Part of Two (Temporary) LOBs Using PL/SQL (DBMS_LOB
Package) 4-68

Example: Compare All or Part of Two (Temporary) LOBs Using COBOL (Pro*COBOL).........

4-69

Example: Compare All or Part of Two (Temporary) LOBs Using C++ (Pro*C/C++) 4-71
See If a Pattern Exists in a Temporary LOB (INStr)ccoooviiiivieiiinn e 4-74

R 1=] o F- 1 o TSP STUSOPRURURPRURIN 4-75

Example: See If a Pattern Exists in a Temporary LOB (instr) Using PL/SQL (DBMS_LOB

Package) 4-75

Example: See If a Pattern Exists in a Temporary LOB (instr) Using COBOL (Pro*COBOL)......

4-76

Example: See If a Pattern Exists in a Temporary LOB (instr) Using C++ (Pro*C/C++).. 4-78
Get the Length of a TEMPOrary LOB ...ttt 4-80

Kol = o TSRO RTS ST 4-81

Example: Get the Length of a Temporary LOB Using PL/SQL (DBMS_LOB Package).. 4-81

Xiii

Xiv

Example: Get the Length of a Temporary LOB Using C (OCI)......cccceoeviieiiniiiinciceee, 4-82

Example: Get the Length of a Temporary LOB Using COBOL (Pro*COBOL).................. 4-84
Example: Get the Length of a Temporary LOB Using C++ (Pro*C/C++)ccccovvvvevennnnn. 4-86
Copy All or Part of One (Temporary) LOB to ANOthEr ... 4-88
R 1or=] o T= U o TSSOSO PRTRR 4-88

Example: Copy All or Part of One (Temporary) LOB to Another Using PL/SQL (DBMS_
LOB Package) 4-89

Example: Copy All or Part of One (Temporary) LOB to Another Using C (OCl)............. 4-90

Example: Copy All or Part of One (Temporary) LOB to Another Using COBOL
(Pro*COBOL) 4-93

Example: Copy All or Part of One (Temporary) LOB to Another Using C++ (Pro*C/C++)
4-95

Copy a LOB Locator for a Temporary LOB ..o 4-98
R 1or=] o T= U o TSSOSO PRTRR 4-98
Example: Copy a LOB Locator (Temporary LOBs) Using PL/SQLcccccovvvveveivieceenn, 4-99
Example: Copy a LOB Locator for a Temporary LOB Using C (OCI)ccccoeveiiieinnene 4-100
Example: Copy a LOB Locator for a Temporary LOB Using COBOL (Pro*COBOL)..... 4-102
Example: Copy a LOB Locator for a Temporary LOB Using C++ (Pro*C/C++) 4-104

See If One LOB Locator for a Temporary LOB Is Equal to Another...........cccoocoeiiiiene. 4-107
R 1o3=] o T= U o LTSRS 4-107

Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C (OCI) ..
4-108

Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C++
(Pro*C/C++) 4-109

See If a LOB Locator for a Temporary LOB Is Initialized.............ccccooeoviininiiniiiiee 4-111
RS 1o0T o =T o T OO OSSOSO PRSP 4-111
Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C (OCI) 4-112

Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C++ (Pro*C/C++)..
4-112

Get Character Set ID of a TEMPOrary LOB.........cccciiiiicirece e 4-114
1] o F- o TSSO TSP TP TP SPRORURPRUN 4-115
Example: Get Character Set ID of a Temporary LOB Using C (OCI)......c.ccccooevvveinennne. 4-115

Get Character Set Form of @a Temporary LOB ... 4-116
1] o F- o TSSO TSP TP TP SPRORURPRUN 4-117
Example: Get Character Set Form of a Temporary LOB Using C (OCl)........cccccceevreene. 4-117

Append One (Temporary) LOB to ANOLNENcoooivie e 4-118

Yot =] o P [0 R 4-119

Example: Append One (Temporary) LOB to Another Using PL/SQL (DBMS_LOB Package).
4-119

Example: Append One (Temporary) LOB to Another Using C (OCI)ccccccevevvevvevennnne. 4-120
Example: Append One (Temporary) LOB to Another Using COBOL (Pro*COBOL).... 4-122
Example: Append One (Temporary) LOB to Another Using C++ (Pro*C/C++) 4-125
Write Append to a TeEmMPOrary LOB........cooioeecec s 4-127
R 1=] o F- 1 o BT TP SOPR PRSPPI 4-128
Example: Write Append to a Temporary LOB Using PL/SQLcccooiiiiiiiiciicenne 4-128
Example: Write Append to a Temporary LOB Using C (OCI)cccovvvvevevcicrieieeeeenn, 4-129
Example: Write Append to a Temporary LOB Using COBOL (Pro*COBOL)................. 4-130
Example: Write Append to a Temporary LOB Using C++ (Pro*C/C++)cccoovvreenne 4-132
Write Data to a TeEMPOrary LOB ..ottt ne e snenns 4-134
STFEAM WWITTE ...t bbb bbb e bbbttt ebe b b 4-135
1] o T= L o SRRSO PR PSR 4-135
Example: Write Data to a Temporary LOB Using the DBMS_LOB Package................... 4-135
Example: Write Data to a Temporary LOB Using C (OCI)cccocviiinininincceeee, 4-136
Example: Write Data to a Temporary LOB Using COBOL (Pro*COBOL)..........ccccceuene. 4-139
Example: Write Data to a Temporary LOB Using C++ (Pro*C/C++) ...ccocevvevcvvcivcvennnnn, 4-140
Trim the TemMpPOorary LOB Data.........ccocoiiiiiiiiieieeeeee et 4-144
1] o T= L o SRRSO PR PSR 4-145
Example: Trim the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)......... 4-145
Example: Trim the Temporary LOB Data Using C (OCI).......ccocvviiiiinineneceeeeceee 4-146
Example: Trim the Temporary LOB Data Using COBOL (Pro*COBOL).........cccccereuenee 4-148
Example: Trim the Temporary LOB Data Using C++ (Pro*C/C++) ..ccccvevvecreiecvennnnn, 4-150
Erase Part of @ TEMPOFAry LOBcooiiiiiiiie et 4-152
31T o T= L o SRS RSOPR PSP 4-153
Example: Erase Part of a Temporary LOB Using PL/SQL (DBMS_LOB Package)........ 4-153
Example: Erase Part of a Temporary LOB USIing C (OCI)ccoceiiiiiininiiecceeeeee 4-154
Example: Erase Part of a Temporary LOB Using COBOL (Pro*COBOL)c.ccccvveuenee 4-156
Example: Erase Part of a Temporary LOB Using C++ (Pro*C/C++)..cccvvvevcreivenennnnn, 4-158
Enable LOB Buffering for a Temporary LOB ... 4-160
31T o T= L o SRS RSOPR PSP 4-160
Example: Enable LOB Buffering for a Temporary LOB Using C (OCI)cccccoevvevennnne. 4-161
Example: Enable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL).. 4-163
Example: Enable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++) 4-164

XV

XVi

Flush Buffer for a TEMPOrary LOB ..ot 4-166

R 1o3=] o T= U o LTSRS 4-166
Example: Flush Buffer for a Temporary LOB Using C (OCl)........ccocvivvivvevvneiencieeenen 4-167
Example: Flush Buffer for a Temporary LOB Using COBOL (Pro*COBOL).................... 4-168
Example: Flush Buffer for a Temporary LOB Using C++ (Pro*C/C++)cccecvvviienne. 4-170
Disable LOB Buffering for a Temporary LOB..........ccccoviiieiciisinscse e 4-172
1] o F- L o T OO PTUTPOTPRORPRPRN 4-172
Example: Disable LOB Buffering USing C (OCI)ccccieiiiiiniiireseeeeesee e 4-173
Example: Disable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL). 4-175
Example: Disable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++) 4-176
... 4-178

External LOBs (BFILES)

Use Case Model: EXTEINAl LOBS........cocuiiiiiiee ettt ettt sre e 5-2
Accessing External LOBS (SQL DIML) ..ovviiiiiiceiccse st e 5-5
BFILE SECUTTLY ..ttt sttt ettt et ettt et st e b st et e st e s e sbeseabesesbe e 5-7
Catalog VIEWS ON DIFECLOTIESciiveiiriiiiteiiteiet ettt ettt bbbttt e 5-9
Guidelines for DIRECTORY USAQE......cccciireiierieieiereeeeresiesesteseseessesiesaessessessesesssssessessessessenes 5-9
BFILEs in Multi-Threaded Server (MTS) MOUEcccoiiieiiciccice e 5-10

Three Ways to Create a Table Containing a BFILE............cccoooiiiiiiiniicccce i 5-12

CREATE a Table Containing a BFILEcccoooiiiiiicce et 5-13
R1=] o F- 1 o TSP U TS PR PSRRI 5-13
Example: Create a Table Containing a BFILE Using SQL DDLccccoceviiineiineieneene 5-14

CREATE a Table of an Object Type with a BFILE Attributeccccocovvviieicicecc 5-16
R1=] o F- 1 o TSP U TS PR PSRRI 5-16
Example: Create a Table of an Object Type with a BFILE Attribute Using SQL DDL 5-17

CREATE a Table with a Nested Table Containing a BFILEccccoce v 5-19
R1=] o F- 1 o TSP U TS PR PSRRI 5-19
Example: Create a Table with a Nested Table Containing a BFILE Using SQL DDL 5-20

Three Ways to Insert a Row Containing a BFILE ..o 5-21

INSERT a Row by means of BEILENAME()ccooiiiiiiiiiieiiceie et 5-22
R 1ox=] o T= L o TSSOSO 5-23
Example: Insert a Row by means of BFILENAME() USing SQL......ccccccevveveveeveeieieeecene, 5-23
Example: Insert a Row by means of BFILENAME() Using C (OCI)cccceovvivinieninnnne. 5-24
Example: Insert a Row by means of BFILENAME() Using COBOL (Pro*COBOL).......... 5-24

Example: Insert a Row by means of BFILENAME() Using C++ (Pro*C/C++)................. 5-25

Example: Insert a Row by means of BFILENAME() Using Visual Basic (O0O40)............. 5-26
Example: Insert a Row by means of BFILENAME() Using Java (JDBC)ccccccevvevennenn 5-27
INSERT a Row Containing a BFILE @S SELECTcccccoiiieiiiiececese e 5-29
R 1o3=] o F- L o OSSOSO USRI 5-29
Example: Insert a Row Containing a BFILE as Select Using SQLccccceveveiciviivcvcnnnn 5-29
INSERT a Row Containing a BFILE by Initializing a BFILE Locator............cccccceevvivenienen. 5-30
R 1o3=] o F- L o OSSOSO USRI 5-31

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using PL/SQL....
5-31

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C (OCl).....
5-31

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using COBOL
(Pro*COBOL) 5-33

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C++
(Pro*C/C++) 5-34

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Visual
Basic (O040) 5-35

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Java
(JDBC) 5-35

Load External LOB (BFILE) Data into a Table..........ccccooviviiiininic e 5-38
R 1=] o F- 1 o TSP STUSOPRURURPRURIN 5-38
Load a LOB with Data from @ BFILE ... e 5-41
Kol = o TSRO RTS ST 5-42
Example: Load a LOB with Data from a BFILE Using PL/SQL (DBMS_LOB Package). 5-42
Example: Load a LOB with Data from a BFILE USing C (OCI)ccccoviniinniineniinns 5-43
Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL) 5-44
Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++).....ccccccvvvinnnnnn 5-46
Example: Load a LOB with Data from a BFILE Using Visual Basic (OO40) 5-47
Example: Load a LOB with Data from a BFILE Using Java (JDBC)........ccccovevveivnvcvennnnnn 5-48
TWo Ways 10 OpPen @ BFILE.........co e e 5-51
Maximum Number of Open BFILES..........ccooiiiiiiie e 5-52
Open a BFILE With FILEOPENccoiiiiiiiiiece st 5-53
R 1=] o F- 1 o TSP STUSOPRURURPRURIN 5-54
Example: Open a BFILE with FILEOPEN USiNg PLZSQLc.ccooiiiiiiiincici s 5-54
Example: Open a BFILE with FILEOPEN Using C (OC)....cccccooviviivineieseeeese e 5-54

XVii

Xviii

Example: Open a BFILE with FILEOPEN Using Visual Basic (O040)ccccceovvervnunne. 5-56

Example: Open a BFILE with FILEOPEN Using Java (JDBC).........cccceceveiiniiineieneeneeee 5-56
Open aBFILE With OPEN ...ttt st neenenne s 5-59
R1x=] o F- 1 o TSP U PSR PRPRTUPUR 5-60
Example: Open a BFILE with OPEN USIiNg PLZSQLcccooiiiiiiiieneeee e 5-60
Example: Open a BFILE with OPEN USIiNg C (OCI)cccooviiiiiiiieneie e 5-60
Example: Open a BFILE with OPEN Using COBOL (Pro*COBOL)........ccccoceveirineniniene. 5-62
Example: Open a BFILE with OPEN Using C++ (Pro*C/C++) ..o 5-63
Example: Open a BFILE with OPEN Using Visual Basic (OO40)........ccccccevvrerveivnivnnnnnnn. 5-64
Example: Open a BFILE with OPEN Using Java (JDBC)ccccoceiiiiiineieieeeeeeee 5-64
Two Ways t0 See 1T @ BFILE IS OPENccoiiiiiiiiiiiieisie sttt 5-67
Maximum Number of OPen BFILES ..o ene s 5-67
See If the BFILE is Open With FILEISOPEN ..ot 5-69
R 1or=] o T= U o TSSOSO 5-69

Example: See If the BFILE is Open with FILEISOPEN Using PL/SQL (DBMS_LOB Package).
5-70

Example: See If the BFILE is Open with FILEISOPEN Using C (OCI)ccccceoeinienininne. 5-70
Example: See If the BFILE is Open with FILEISOPEN Using Visual Basic (O040)......... 5-72
Example: See If the BFILE is Open with FILEISOPEN Using Java (JDBC)ccccceevevnee. 5-72
See If the BFILE is Open USiNg ISOPEN ... 5-74
R 1or=] o T= L o TSSOSO 5-74
Example: See If the BFILE is Open with ISOPEN Using PL/SQL (DBMS_LOB Package).........
5-75
Example: See If the BFILE is Open with ISOPEN Using C (OCI).......ccoceieiiniiniiiee, 5-75
Example: See If the BFILE is Open with ISOPEN Using COBOL (Pro*COBOL) 5-76
Example: See If the BFILE is Open with ISOPEN Using C++ (Pro*C/C++)......cccccvevnnee. 5-78
Example: See If the BFILE is Open with ISOPEN Using Visual Basic (O040)................. 5-79
Example: See If the BFILE is Open with ISOPEN Using Java (JDBC).........cccccceeereieniennnn. 5-80
Display the BFILE DaAtaccccoviviiiiieiise et e ettt st saensensesaenaesessesnesnens 5-82
R1x=] o F- 1 o T OO TP T TP SOPR PSRRI 5-83
Example: Display the BFILE Data USiNg PLZSQL........cccoiiiiiiienneseeeee e 5-83
Example: Display the BFILE Data USiNg C (OCI)......cccooviviininiinisese e 5-84
Example: Display the BFILE Data Using COBOL (Pro*COBOL)cccceieiiiieicineiceiee, 5-86
Example: Display the BFILE Data Using C++ (Pro*C/C+) ... 5-88
Example: Display the BFILE Data Using Visual Basic (OO40)cccccocvverereerreivniesnsnnnns 5-90
Example: Display the BFILE Data Using Java (JDBC).......ccccociririnineiceeeeeeeeseees 5-90

Read the Data from @ BFILEooo ottt 5-93

R 1o3=] o F- L o OSSOSO USRI 5-94
Example: Read the Data from a BFILE Using PL/SQL (DBMS_LOB Package)................ 5-95
Example: Read the Data from a BFILE USIiNg C (OCI)......ccccooiiininiiiniieeeeeeceee e 5-95
Example: Read the Data from a BFILE Using COBOL (Pro*COBOL)ccocecvrevririnene 5-97
Example: Read the Data from a BFILE Using C++ (Pro*C/C++).....cccccvveiiivciveinnninsnsins 5-98
Example: Read the Data from a BFILE Using Visual Basic (OO40)ccccoccoeiviinnnnenn 5-99
Example: Read the Data from a BFILE Using Java (JDBC).........ccccceovieiienncnicneeneienas 5-100
Read a Portion of the BFILE Data (SUDSLE) ... 5-103
R 1=] o F- 1 o BT TP SOPR PRSPPI 5-104

Example: Read a Portion of the BFILE Data (substr) Using PL/SQL (DBMS_LOB Package) ...
5-104

Example: Read a Portion of the BFILE Data (substr) Using COBOL (Pro*COBOL)....... 5-105
Example: Read a Portion of the BFILE Data (substr) Using C++ (Pro*C/C++).............. 5-106
Example: Read a Portion of the BFILE Data (substr) Using Visual Basic (O0O40) 5-107
Example: Read a Portion of the BFILE Data (substr) Using Java (JDBC).........cccccveevevnnne. 5-107
Compare All or Parts of TWO BFILES..........ccco oo 5-110
1] o T= L o SRRSO PR PSR 5-111
Example: Compare All or Parts of Two BFILES Using PL/SQL (DBMS_LOB Package)
5-111
Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL) 5-112
Example: Compare All or Parts of Two BFILES Using C++ (Pro*C/C++)......cccccvveenee 5-114
Example: Compare All or Parts of Two BFILES Using Visual Basic (O040) 5-115
Example: Compare All or Parts of Two BFILES Using Java (JDBC)ccccceeeiiieniennne. 5-116
See If a Pattern Exists (instr) in the BRILE ... 5-119
RS 1o0=T o =T o J OSSR 5-120

Example: See If a Pattern Exists (instr) in the BFILE Using PL/SQL (DBMS_LOB Package)....
5-120

Example: See If a Pattern Exists (instr) in the BFILE Using COBOL (Pro*COBOL)....... 5-121
Example: See If a Pattern Exists (instr) in the BFILE Using C++ (Pro*C/C++)............... 5-123
Example: See If a Pattern Exists (instr) in the BFILE Using Visual Basic (O040).......... 5-124
Example: See If a Pattern Exists (instr) in the BFILE Using Java (IDBC)..........ccccccvveenae 5-124
SEE 1T the BFILE EXISES .uiiiiiiciiiicireie ettt ettt 5-127
1=] o F- 1 o BT PO RSO PR PRSPPI 5-128
Example: See If the BFILE Exists Using PL/SQL (DBMS_LOB Package)ccccoeuenee 5-128
Example: See If the BFILE EXists USING C (OCI) ..o 5-128

Xix

Example: See If the BFILE Exists Using COBOL (Pro*COBOL)c.ccooerinenieiieicieeen 5-130

Example: See If the BFILE EXists Using C++ (Pro*C/C++) ..o 5-131
Example: See If the BFILE Exists Using Visual Basic (OO40)ccccvivvvnvnernnicrierennenns 5-132
Example: See If the BFILE Exists Using Java (JDBC).........cccooiiiinininiie e 5-133
Getthe LENGEN OF @ BFILEccociiiiiiciic e 5-136
RS 1o0T o =T o T OO OSSOSO PRSP 5-137
Example: Get the Length of a BFILE Using PL/SQL (DBMS_LOB Package).................. 5-137
Example: Get the Length of a BFILE USING C (OCI)......c.cccviiiniiiniieeeeseese e 5-138
Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)ccccvvvievierieieiannn 5-139
Example: Get the Length of a BFILE Using C++ (Pro*C/C++)cccviiiineneieicee 5-140
Example: Get the Length of a BFILE Using Visual Basic (OO40)..........ccoceoereieneiinenennen. 5-141
Example: Get the Length of a BFILE Using Java (JDBC).......cccccoovvivvieninnienencneieereeeeesens 5-142
Copy @ LOB LoCator fOr @ BFILEcccoiiiiieeee et 5-145
R 1o3=] o T= U o LTSRS 5-146
Example: Copy a LOB Locator for a BFILE USing PL/ZSQLcccocvvovviviivvivine e 5-146
Example: Copy a LOB Locator for a BFILE USing C (OCI)ccccocviiiiiiiineieiecee 5-146
Example: Copy a LOB Locator for a BFILE Using COBOL (Pro*COBOL)............c.ceuu... 5-148
Example: Copy a LOB Locator for a BFILE Using C++ (Pro*C/C++) ...cccccvvvvvvvcvceennn, 5-149
Example: Copy a LOB Locator for a BFILE Using Visual Basic (O040)..........ccccccueenene. 5-150
Example: Copy a LOB Locator for a BFILE Using Java (JDBC)cccccorvineieneieneinnen, 5-150
See If a LOB Locator for a BFILE Is Initialized..........cccoviiiiiiiiiiiiese e 5-153
13T o F- L o TSSOSO T U RUTTT PR UTPTPRORPRPRN 5-154
Example: See If a LOB Locator for a BFILE Is Initialized Using C (OCI)cc.cccvveenne. 5-154
Example: See If a LOB Locator for a BFILE Is Initialized Using C++ (Pro*C/C++) 5-154
See If One LOB Locator for a BFILE Is Equal to ANOther ..., 5-156
R 1o3=] o T= U o LTSRS 5-157
Example: See If One LOB Locator for a BFILE Is Equal to Another Using C (OCI) 5-157

Example: See If One LOB Locator for a BFILE Is Equal to Another Using C++ (Pro*C/C++) ..
5-157

Example: See If One LOB Locator for a BFILE Is Equal to Another Using Java (JDBC) 5-159

Get Directory Alias and FIENAMIEcccovieie e 5-161
1] o F- o TSSO TSP TP TP SPRORURPRUN 5-162
Example: Get Directory Alias and Filename Using PL/ZSQLcccoiviiniieneieneinee, 5-162
Example: Get Directory Alias and Filename Using C (OCI)ccocvevvivvivvevene e 5-162
Example: Get Directory Alias and Filename Using COBOL (Pro*COBOL)..................... 5-164

Example: Get Directory Alias and Filename Using C++ (Pro*C/C++)ccccecvveiienne. 5-165

Example: Get Directory Alias and Filename Using Visual Basic (O040)cccccceeuenee. 5-166

Example: Get Directory Alias and Filename Using Java (JDBC)........ccccocevvniiicicncnnnne 5-167
Three Ways to Update a Row Containing a BFILE..........c.ccoovov i 5-169
UPDATE a BFILE USing BFILENAME() ...ccooeiiiiiieieseiesee e 5-170

BFILENAME() FUNCEION ..ottt sb e sb ettt nne e 5-170

3ol =T o J OSSO 5-172

Example: Update a BFILE by means of BFILENAME() Using SQL........ccccoeieiiiiinnne. 5-172
UPDATE @ BFILE @S SELECToviiiiieiiee ettt sttt sttt s 5-173

3ol =T o J OSSO 5-173

Example: Update a BFILE as Select USING SQLccooiiiiiiiniininiie e 5-173
UPDATE a BFILE by Initializing @ BFILE LOCATONcccoeiiieiiierineneereesee e 5-174

3ol =T o J OSSO 5-175

Example: Update a BFILE by Initializing a BFILE Locator Using PL/SQL..................... 5-175

Example: Update a BFILE by Initializing a BFILE Locator Using C (OCI)ccccoeuenee 5-175

Example: Update a BFILE by Initializing a BFILE Locator Using COBOL (Pro*COBOL).........

5-176

Example: Update a BFILE by Initializing a BFILE Locator Using C++ (Pro*C/C++).... 5-178
Example: Update a BFILE by Initializing a BFILE Locator Using Visual Basic (O040) 5-179

Example: Update a BFILE by Initializing a BFILE Locator Using Java (JDBC)............... 5-180
TWOo Ways t0 Cl0SE @ BFILE.........c.ooioe ettt 5-182
Close a BFILE With FILECLOSEcccoviiiiiiiiiiie sttt sae s sve s sne v sasnesnese e 5-184

RS 1o0=T o =T o J OSSR 5-185

Example: Close a BFile with FILECLOSE Using PL/SQL (DBMS_L OB Package) 5-185

Example: Close a BFile with FILECLOSE UsiNg C (OCI)cccoceoiiiiiiiiiiiiiciec e 5-185

Example: Close a BFile with FILECLOSE Using Visual Basic (O040)ccccocevververnne. 5-187

Example: Close a BFile with FILECLOSE Using Java (JDBC).......c.ccocoveniieneieicieceee 5-187
Close a BFILE With CLOSE.........ccoiiiiiiiiiiesese sttt sttt a bt sn et 5-189

RS 1o0=T o =T o J OSSR 5-190

Example: Close a BFile with CLOSE Using PL/SQL (DBMS_LOB Package).................. 5-190

Example: Close a BFile with CLOSE USIiNG C (OCI)ccocoiiiiniiiiiieeiesesie e 5-190

Example: Close a BFile with CLOSE Using COBOL (Pro*COBOL).......cccccevvevververvenennnnn 5-192

Example: Close a BFile with CLOSE Using C++ (Pro*C/C++) ..o 5-193

Example: Close a BFile with CLOSE Using Visual Basic (OO40).........cccocuveriireeneiennas 5-194

Example: Close a BFile with CLOSE Using Java (JDBC)cccccocvvivvineneierceeereee e 5-195
C10SE Al OPEN BFILES ...ttt bbb bbb ettt 5-197

31T o T= L o SRS RSOPR PSP 5-198

XXi

Example: Close All Open BFiles Using PL/SQL (DBMS_LOB Package).........cccccceeunee. 5-198

Example: Close All Open BFiles USIiNG C (OCH) ..o 5-198
Example: Close All Open BFiles Using COBOL (Pro*COBOL)cccovevvvverierienicieieneens 5-199
Example: Close All Open BFiles Using C++ (Pro*C/C++).....cccooviiiiniiiiieneieieeeeee 5-200
Example: Close All Open BFiles Using Visual Basic (OO40)cccccoviniieneienecnenennen, 5-201
Example: Close All Open BFiles Using Java (JDBC).......ccccovviviieinieniennne e 5-202
DELETE the Row of a Table Containing a BFILE............cccccoo oo 5-205
R 1o3=] o T= U o LTSRS 5-205
Example: Delete a Row from a Table USiNg SQL......c.ccoeveviiir e 5-206

6 LOBs and Partitioned Tables

USING LOBS IN PartitiONS.......oov it sttt re e sre e s 6-2
Creating and Partitioning a Table Containing LOB Data..........c.ccccocevvviieviiieneee e 6-3
Creating an Index on a Table Containing LOB COIUMNSccccceoiiiiiniinciccec s 6-5
Exchanging Partitions Containing LOB Data...........ccccvevviviiinnienenese e 6-5
Adding Partitions to Tables Containing LOB Datacccccevivviieieiesieeccee e 6-6
Moving Partitions Containing LOBS..........ccouiiiiiiineeniee et 6-6
Splitting Partitions Containing LOBSccccoviiiiieiececese s 6-6
Merging Partitions Containing LOBSccccciiiiiiiicie e 6-6
Populating the Script CLOB and Photo BLOB ..ot 6-7
Index

XXii

Send Us Your Comments

Oracle8 i Application Developer’'s Guide - Large Objects (LOBs), Release 8.1.5
Part No. A68004-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Is the information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to the Information Development
department in the following ways:

« Electronic mail - infodev@us.oracle.com

« FAX-(650) 506-7228 Attn: Oracle Server Documentation

« Postal service:
Oracle Corporation
Server Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

XXili

XXiV

Preface

This Guide describes features of application development on the Oracle Server
having to do with Large Objects (LOBs). Information in this Guide applies to
versions of the Oracle Server that run on all platforms, and does not include
system-specific information.

The Preface includes the following sections:
« Information in This Guide

« [Feature Coverage and Availability

= New Features Introduced with Oracle8i
» Other Guides

« How This Book Is Organized

« Visual Modeling

=« Conventions Used in this Guide

Information in This Guide

The Oracle8i Application Developer’s Guide - Large Objects (LOBS) is intended for
programmers developing new applications that use LOBs, as well as those who
have already implemented this technology and now wish to take advantage of new
features.

The increasing importance of multimedia data as well as unstructured data has led
to this topic being presented as an independent volume within the Oracle
Application Developers documentation set.

XXV

Feature Coverage and Availability

The Oracle8i Application Developer’s Guide - Large Objects (LOBs) contains information
that describes the features and functionality of the Oracle8 and the Oracle8
Enterprise Edition products. Oracle8 and Oracle8 Enterprise Edition have the same
basic features. However, several advanced features are available only with the
Enterprise Edition, and some of these are optional. For example, to use object
functionality, you must have the Enterprise Edition and the Objects Option.

There are no special restrictions in dealing with LOBs. However, you will need the
Partitioning option to use LOBs in partitioned tables. Also, you will not be able to
use LOBs with object types unless you have purchased the object option. For
information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8i and the Oracle8i Enterprise Edition.

New Features Introduced with Oracle8 i
The new features included in the Oracle8i, release 8.1.5 are as follows:
« Temporary LOBs
« Varying width CLOBand NCLOBsupport
« Support for LOBs in partitioned tables
« New API for LOBs (open /close Zisopen , writeappend , getchunksize)
« Support for LOBs in non-partitioned index-organized tables

« Copying the value of a LONG to a LOB

Other Guides

Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete
description of this high-level programming language, which is Oracle Corporation’s
procedural extension to SQL.

The Oracle Call Interface (OCI) is described in theOracle Call Interface Programmer’s
Guide. You can use the OCI to build third-generation language (3GL) applications
that access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you
to embed SQL and PL/SQL in your application programs. If you write 3GL

XXVi

application programs in Ada, C, C++, COBOL, or FORTRAN that incorporate
embedded SQL, refer to the corresponding precompiler manual. For example, if
you program in C or C++, refer to the Pro*C/C++ Precompiler Programmer’s Guide..

Oracle 8i offers the opportunity of working with Java in the database. The Oracle
Java documentation set includes the Enterprise JavaBeans and CORBA Developer’s
Guide, the Oracle8i JDBC Developer’s Guide and Reference , the Oracle8i Java Developer’s
Guide , the Oracle8i JPublisher User’s Guide and the Oracle8i Java Stored Procedures
Developer’s Guide.You can access Oracle’s development environment for multimedia
technology in a number of different ways.

« To build self-contained applications that integrate with the database, you can
learn about how to use Oracle’s extensibility framework in Oracle8i Data
Cartridge Developer’s Guide

« To utilize Oracle’s own intermedia applications, refer to Oracle8i interMedia
Audio, Image, and Video User’s Guide and Reference.

For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide. If you need information about Oracle replication with LOB data, refer to
Oracle8i Replication. LOBsFor basic Oracle concepts, see Oracle8i Concepts..

How This Book Is Organized

The Oracle8i Application Developer’s Guide - Large Objects (LOBs) contains six
chapters organized into two volumes. A brief summary of what you will find in
each chapter follows:

VOLUME |

Chapter 1, "Introduction to Working With LOBs"

In this chapter we describe the LOBdatatype in terms of three main kinds of LOBs:
Internal persistent LOBs, Internal temporary LOBs, and External LOBs (BFILES). We
discuss the use of LOBs to promote internationalization by way of CLOBS and the

advantages of using LOBs over LONG. We then turns to the various programmatic
environments by which you can operate on LOBs

« The PL/SQL language by means of the DBMS_LOB package as described in
Oracle8i Application Developer’s Reference - Packages.

« The C language by means of the Oracle Call Interface (OCI) described in the
Oracle Call Interface Programmer’s Guide

XXVil

« The C++ language by means of the Pro*C/C++ precompiler as described in the
Pro*C/C++ Precompiler Programmer’s Guide

« The COBOL language by means of the Pro*COBOL precompiler as described
in the Pro*COBOL Precompiler Programmer’s Guide

« The Visual Basic language by means of Oracle Objects For OLE (O040) as
described in its accompanying online documentation.

« ThelJava language by means of the JDBC Application Programmers Interface
(API) as described in the Oracle8i JDBC Developer’s Guide and Reference .

The chapter also includes an example scenario that frames examples provided
throughout the rest of the book. Various general topics that underlie LOB
operations are discussed as an introduction to the later chapters.

Chapter 2, "Advanced Topics"

The last chapter in the book covers advanced topics that touch on all the other
chapters. Specifically, we focus on:

« Read consistency

« The LOBbuffering subsystem

« LOBs and the issue of spanning transactions
« LOBs in the object cache

« Working with varying-width character data

« Guidelines for optimal performance

VOLUME I

Chapter 3, "Internal Persistent LOBs"

The basic operations concerning internal persistent LOBs are discussed, along with
pertinent issues in the context of the scenario outlined in Chapter 1. We introduce
the Unified Modeling Language (UML) notation with a special emphasis on use
cases. Specifically, each basic operation is described as a use case. A full description
of UML is beyond the scope of this book, but the small set of conventions used in
this book appears later in the Preface. Wherever possible, we provide the same
example in each of the programmatic environments.

XXViii

Chapter 4, "Temporary LOBs"

This chapter follows the same pattern as Chapter 2 but here focuses on the new
feature of temporary LOBs. The new API and its attendant issues are discussed in
detail.

Chapter 5, "External LOBs (BFILEs)"

The focus in this chapter is on external LOBs, also known as BFILEs. The same
treatment is provided here as in Chapters 2 and 3, namely every operation is treated
as a use case, and we provide matching code examples in every available
programmatic environment.

Chapter 6, "LOBs and Partitioned Tables"

This new feature is also presented in terms of the overarching scenario. Please note
that using LOBs in partitioned tables requires that you purchase the partition
option.

XXiX

Visual Modeling

This release of the documentation introduces the Universal Modeling Language
(UML) as a way of explaining the technology that we hope will help you develop
applications. A full presentation of the UML is beyond the scope of this
documentation set, however we do provide a description of the subset of UML
notation that we use in a chapter devoted to visual modeling inOracle8i Application
Developer’s Guide - Fundamentals. What follows here is a selection from that chapter
of those elements that are used in this book.

Use Case Diagrams

Graphic Element Description

This release of the documentation
introduces and makes heavy use of the
Use Case Diagram. Each primary use
case is instigated by an actor
(’stickman’) that could be a human
user, an application, or a sub-program.
The actor is connected to the primary
use case which is depicted as an oval
(bubble) enclosing the use case action.

User/
Program

The totality of primary use cases is
described by means of a Use Case
Model Diagram.

Primary use cases may require other
operations to complete them. In this
Operational Interface diagram fragment

« specify queue name

.

User/
Program

is one of the sub-operations, or
secondary use cases, needed to
complete

e = ENQUEUR message

The downward lines from the primary
use case lead to the other required
operations (not shown).

specify
gueue name

ENQUEUE
a message

XXX

Graphic Element

Description

User/
Program

ENQUEUE
a message

Operational Interface

specify

ENQUEUE
queue name

a message

e

specify

properties

.
H
.
H
: message
.
H
.
.

specify
options

add
payload

Operational Interface

add
payload

Secondary use cases that have drop
shadows "expand’ in that they are
described by means of their own use
case diagrams. There are two reasons
for doing this:

(a) it makes it easier to understand the
logic of the operation;

(b) it would not have been possible to
place all the operations and
sub-operations on the same page.

In this example

« specify message
properties,

« specify options
« add payload

are all expanded in separate use case
diagrams.

This diagram fragment shows the use
case diagram ad expanded. While the
standard diagram has the actor as the
initiator), here the use case itself is the
point of departure for the
sub-operation. In this example, the
expanded view of

« add payload
represents a constituent operation of
« ENQUEUR message

XXXi

Graphic Element

Description

Internal persistent LOBs

CREATE
a table
(LOB)

User/
Program

CREATE
a table (LOB

- _|é| e CREATE table with one or more LOBs
columns)

This convention (a, b, ¢) shows that
there are three different ways of
creating a table that contains LOBs.

This fragment shows one of the uses of
a NOTE box, here distinguishing the
first of a number of ways of creating a
table containing LOBs.

XXX

Graphic Element

list ; List at
SELECT -) list
- propag schedules - - Bg‘gg I%\%EUE all pr?]pc()jg?tlon attribute - Ieasttjone
User/ in user schema SCHEBULES — ;:triﬁu?ei names attribute
Program
:) A
iOR :
Description
This drawing shows two other common use of NOTE boxes:
(a) as a way of presenting an alternative name, as in this case the action SELECTpropagation schedules in
the user schema is represented by the view USER_QUEUE_SCHEDULES
(b) the action list attribute names is qualified by the note to the user that you must list at least one

attribute if you elect not to list all the propagation schedule attributes.

Xxxiii

Graphic Element

User/
Program

v

REGISTER

for

notification

create

a temporary
LOB

free
a temporary
LOB

receive

notification

Description

The dotted arrow in the use case
diagram indicates dependency. In
this example

« free atemporary LOB
requires that you first
« Ccreate atemporary LOB

Put another way: you should not
execute the free operation on a
LOBthat is not temporary.

What you need to remember is
that the target of the arrow shows
the operation that must be
performed first.

Use cases and their sub-operations
can be linked in complex
relationships. In this example of a
callback, you must earlier

. REGISTERfor
notification

in order to later
. receive a notification

Graphic Element

User/
Program

XXXIV

SELECT - list
_ _f— Userview: all propogation
e e, USER QUEUE_ | | " schedule
SCHEDULES attributes
et mmeeeeemmeeernmeaeeenneeeennannns A

list List at
; least one
ttributi - >
attribute attribute

names

Description

In this case the branching paths of an OR condition are shown. In invoking the view, you may choose either to
list all the attributes or you may view one or more attributes. The fact that you may stipulate which of the
attributes you wish made visible is indicated by the grayed arrow.

XXXV

Graphic Element

OPEN
alLOB

CLOSE
alLOB

append
SELECT < :

alLOB %

User/
Program

get
chunk size

Description

Not all lined operations are mandatory. While the black dashed-line and arrow indicate that you must perform
the targeted operation to complete the use case, actions that are optional are shown by the grey dashed-line and
arrow. In this example, executing

« write append

on a LOBrequires that you first

. SELECTa LOB

As a facilitating operations, you may choose to

« OPENa LOB and/or get chunk size

However, note that if you OPENa LOB you will later have to CLOSEi.

XXXVI

Graphic Element Description

Use Case Model Diagrams summarize all

the use cases in a particular domain,

Internal temporary LOBs (part 1 of 2) such as Internal temporary LOBs.
Often these diagrams are too complex
to contain within a single page. When
that happens we have resorted to
dividing the diagram into two parts.
Please note that there is no sequence
implied in this division.

In some cases we have had to splita

diagram simply because it is too long
continued on next page
for the page. In such cases, we have

included this marker.

Conventions Used in this Guide

The following notational and text formatting conventions are used in this guide:

[]

Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{}

Braces enclose items of which only one is required.

A vertical bar separates items within braces, and may also be used to indicate that
multiple values are passed to a function parameter.

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

XXXVii

UPPERCASE
Uppercase is used for SQL keywords, like SELECTor UPDATE

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The "Note" flag indicates that the reader should pay particular attention
to the information to avoid a common problem or increase understanding of a
concept.

Warning: An item marked as "Warning" indicates something that an OCI
programmer must be careful to do or not do in order for an application to work
correctly.

See Also: Text marked "See Also" points you to another section of this guide, or
to other documentation, for additional information about the topic being
discussed.

Your Comments Are Welcome

XXXViii

We value and appreciate your comment as an Oracle user and reader of our
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail
address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the
following address:

Server Technologies Documentation Manager
Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228

1

Introduction to Working With LOBs

This introductory chapter discusses with the following topics:

« The LOB Datatype

« Varying-Width Character Data

« LOBsin Comparison to LONG and LONG RAW Types

« LOB Restrictions

« Using SQL DML for Basic Operations on LOBs

« Programmatic Environments for Operating on LOBs

« An Example Application

« The Most Basic Operation: Getting and Using the LOB Locator
« Indexing a LOB Column

Introduction to Working With LOBs 1-1

The LOB Datatype

The LOB Datatype

Internal LOBs

Oracle8 regards LOBs as being of two kinds depending on their location with regard
to the database — internal LOBs and external LOBs, also referred to as BFILEs
(binary files). Note that when we discuss some aspect of working with LOBs
without specifying whether the LOB is internal or external, the characteristic under
discussion pertains to both internal and external LOB:s.

Internal LOBs are further divided into those that are persistent and those that are
temporary.

Internal LOBs, as their name suggests, are stored inside database tablespaces in a
way that optimizes space and provides efficient access. Internal LOBs use copy
semantics and participate in the transactional model of the server. You can recover
internal LOBs in the event of transaction or media failure, and any changes to a
internal LOBvalue can be committed or rolled back. In other words, all the ACID
properties that pertain to using database objects pertain to using internal LOBs.

Internal LOB Datatypes
There are three SQL datatypes for defining instances of internal LOB:s:

« BLOB a LOBwhose value is composed of unstructured binary ("raw") data.

« CLOBalLOBwhose value is composed of character data that corresponds to the
database character set defined for the Oracle8 database.

« NCLOBaLOBwhose value is composed of character data that corresponds to
the national character set defined for the Oracle8 database.

External LOBs (BFILEs)

External LOBs (BFILES) are large binary data objects stored in operating system files
outside of database tablespaces. These files use reference semantics. Apart from
conventional secondary storage devices such as hard disks, BFILEs may also be
located on tertiary block storage devices such as CD-ROM, PhotoCDs and DVDs.
But note that you cannot locate a single BFILE on more than one device, for
instance, striped across a disk array.

The SQL datatype BFILE allows read-only byte stream 1/0 access to large files
existing on the filesystem of the database server. The Oracle Server can access

1-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Varying-Width Character Data

BFILE s provided the underlying server operating system supports a stream-mode
access to these operating system (OS) files.

Note: External LOBs do not participate in transactions. Any
support for integrity and durability must be provided by the
underlying file system as governed by the operating system.

External LOB Datatype
There is one external SQL LOBdatatype:

« BFILE, a LOBwhose value is composed of binary ("raw") data, and is stored
outside of the database tablespaces in a server-side operating system file.

Varying-Width Character Data

You can create a table with CLOB/NCLOBcolumns even if the CHARRNCHAR
database character set is varying width. You can also create a table with a type that
has a CLOBattribute irrespective of whether the CHARdatabase character set is of
varying width. However, NCLOB are not allowed as attributes in object types.

The CLOB/NCLOBvalue is stored in the database using the 2 byte Unicode character
set which is fixed width. The stored Unicode value is translated to the (possibly
varying width) character set that you request on either the client or the server.
When you insert data into the CLOB/NCLOBthe data input can be in a varying
width character set. This varying width character data is implicitly converted into
Unicode before the data is stored in the database. Note that all translations to and
from Unicode are implicitly performed by Oracle.

You can perform the full gamut of LOB operations on CLOB/NCLOR (read , write
trim , erase , compare , etc.) All programmatic environments that provide access
to CLOB/NCLOB work on CLOB/NCLOR in databases where the CHARFNCHAR
character set is of varying width. This includes SQL, PL/SQL, OCI, PRO*C, DBMS _
LOB and so on. However, you should take note of the following issue that pertain
to specific environments.

DBMS_LOB Package

Regardless of the client-side character set, the offset and amount parameters are
always in characters for CLOBs/NCLOBs and in bytes for BLOBs/BFILEs.

Introduction to Working With LOBs 1-3

Varying-Width Character Data

OCl

The following decisions only apply to varying-width client-side character sets. For
fixed-width client side character sets, the offset and amount parameters are always
in characters for CLOB and NCLOR and in bytes for BLOB and BFILE s.

General Rule:

The amount parameter: When the amount parameter refers to the server-side
LOB, the amount is in characters. When the amount parameter refers to the
client-side buffer, the amount is in bytes.

The offset parameter: Regardless of whether the client-side character set is
varying-width, the offset parameter is always in characters for CLOB and
NCLOB, and in bytes for BLOB and BFILE s.

OCIlLobFileGetLength : Regardless of whether the client-side character set is
varying-width, the output length is in characters for CLOB and NCLOB and in
bytes for BLOB and BFILE s.

OCIlLobRead: If the client-side character set is varying-width, for CLOB

and NCLORB, the input amount is in characters and the output amount is in
bytes. The input amount refers to the number of characters to read from the
server-side CLOBor NCLOBThe output amount indicates how many bytes were
read into the buffer 'bufp .

OClLobWrite : If the client-side character set is varying-width, for CLOB and
NCLOB, the input amount is in bytes and the output amount is in characters.
The input amount refers to the number of bytes of data that are in the input
buffer 'bufp '. The output amount refers to the number of characters written
into the server-side CLOBor NCLOB

Other Operations:

For all other LOB operations, irrespective of the client-side character set, the amount
parameter is in characters for CLOB and NCLOB. These include OCILobCopy,
OClLobErase , OCILobLoadFromFile ,and OCILobTrim . All these operations
refer to the amount of LOBdata on the server.

For more information, see: Oracle8i National Language Support Guide

1-4 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

LOBs in Comparison to LONG and LONG RAW Types

LOBs in Comparison to LONG and LONG RAW Types

LOBsare similar to LONGand LONG RAWYpes, but differ in the following ways:

You can store multiple LOBs in a single row but you can store only one LONCGor
LONG RAWer row.

A LOB can be attributes of a user-defined datatype but this is not possible with
either a LONGor LONG RAW

Only the LOB locator is stored in the table column; BLOBand CLOBdata can be
stored in separate tablespaces and BFILE data is stored as an external file. In
the case of a LONGor LONG RAWt%e entire value is stored in the table column.
For inline LOBs, Oracle will store up to 3964 bytes of data in the table column.

When you access a LOBcolumn, it is the locator which is returned. When you
access a LONGor LONG RAWthe entire value is returned.

A LOB can be up to 4 gigabytes in size. The BFILE maximum is operating
system dependent, but cannot exceed 4 gigabytes. The valid accessible range is
1 to (2%2-1). By contrast, a LONGor LONG RAW¥ limited to 2 gigabytes.

There is greater flexibility in manipulating data in a random, piece-wise manner
with LOBs than there is with LONGor LONG RAWWata. LOBs can be accessed at
random offsets while LONGs must be accessed from the beginning to the
desired location

You can replicate LOBs in both local and distributed environments, but this is
not possible with aLONGor LONG RA\(¢ee Oracle8i Replication).

Existing LONGcolumns can be converted to LOBs using the TO_LOR) function (see
"Copy LONG to LOB" on page 2-62 in Chapter 2, ". Internal Persistent LOBs").
However note that Oracle8i does not support conversion of LOBs back to LONG.

Introduction to Working With LOBs 1-5

LOB Restrictions

LOB Restrictions

The use of LOBs are subject to some restrictions:

Distributed LOBs are not supported. Specifically, this means that the user
cannot use a remote locator in the SELECTand WHERElauses. This includes
using DBMS_LOBackage functions. In addition, references to objects in remote
tables with or without LOBattributes is not allowed.

For example, the following operations are invalid:

— SELECTIobcol from tablel@remote_site;

— INSERT INTO lobtable select typel.lobattr from tablel@remote_site;
— SELECTdbms_lob.getlength(lobcol) from tablel@remote_site;
Valid operations on LOBcolumns in remote tables include:

— CREATE TABLBs select * from tablel@remote_site;

— INSERT INTO t select * from tablel@remote_site;

— UPDATH set lobcol = (select lobcol from tablel@remote_site);
— INSERT INTO tablel@remote...

— UPDATRHRablel@remote...

— DELETEtablel@remote...

When binding an internal LOBin order to use piece-wise INSERT/UPDATE
the bind variable may be of type SQLT_CHFor SQLT_LBI but is limited to 4k.
You cannot bind a SQLT_LNG to a LOBor a SQLT_LBI that is longer than 4k.

Also, LOBs are not allowed in the following places:

LOBs are not allowed in clustered tables and thus cannot be a cluster key.

LOBs are not allowed in GROUP BYORDER BYSELECT DISTINCT, aggregates
and JOINS. However, UNION ALLis allowed on tables with LOBs. UNION
MINUS and SELECT DISTINCT are allowed on LOBattributes if the object type
has a MAPor ORDERunction.

LOBSare not analyzed in ANALYZE.. COMPUTEESTIMATE STATISTICS
statements.

LOBs are not allowed in partitioned index organized tables but are allowed
non-partitioned index organized tables.

LOBs are not allowed in VARRAYs

1-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Restrictions

« NCLOB are not allowed as attributes in object types but NCLOBparameters are
allowed in methods.

= You can use the LOB column/attribute in a trigger body subject to the following
conditions. In general, the :new and :old LOB values bound in the trigger are
read-only which means that you cannot write to the LOB More specifically:

a. In before row and after row triggers -
* you can read the :old value of a LOB in both the triggers.
* you can read the :new value of the LOBonly in an after-row trigger.

b. InINSTEAD OFtriggers on views, you can read both the :new and :old
values.

c. You cannot specify the LOBcolumn in an OFclause (Note that a BFILE can
be modified without updating the underlying tables on which it is based).

d. If you use OCI functions or DBMS_LOBoutines to update LOBvalues or
LOBattributes on object columns, the functions or routines will not fire the
triggers defined on the tables containing the columns or attributes.

For more information about firing triggers on extensible indexes
see:

« Oracle8i Data Cartridge Developer’s Guide

« Client-side PL/SQL procedures may not call the DBMS_LOBackage routines.
However, you can use server-side PL/SQL procedures or anonymous blocks in
Pro*C/C++ to call the DBMS_LOBRackage routines.

Introduction to Working With LOBs 1-7

DBA Actions Required Prior to Working with LOBs

DBA Actions Required Prior to Working with LOBs

Set Maximum Number of Open BFILES

A limited number of BFILE s can be open simultaneously per session. The
initialization parameter, SESSION_MAX_OPEN_FILESlefines an upper limit on the
number of simultaneously open files in a session.

The default value for this parameter is 10. That is, you can open a maximum of 10
files at the same time per session if the default value is utilized. If you want to alter
this limit, the database administrator can change the value of this parameter in the
init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILESalue then
you will not be able to open any more files in the session. To close all open files, use
the FILECLOSEALL call.

Using SQL DML for Basic Operations on LOBs

SQL DML provides basic operations — INSERT, UPDATE, SELECT, DELETE—
that let you make changes to the entire values of internal LOBs within the Oracle
ORDBMS. To work with parts of internal LOBs, you will need to use one of the
interfaces that have been developed to handle more complex requirements.

Oracle8 supports read-only operations on external LOBs. So if you need to
update/write to external LOBs, you will have to develop client side applications
suited to your needs

1-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

Programmatic Environments for Operating on LOBs

Oracle now offers you six different environments for working with LOB:s:

The PL/SQL language by means of the DBMS_LOB package as described in
Oracle8i Application Developer’s Reference - Packages (see "Using the DBMS_LOB
Package for Working With LOBs" on page 1-12).

The C language by means of the Oracle Call Interface (OCI) as described in the
Pro*COBOL Precompiler Programmer’s Guide(see "Using the Oracle Call Interface
(OCI) with LOBs" on page 1-15).

The C++ language by means of the Pro*C/C++ precompiler as described in the
Pro*C/C++ Precompiler Programmer’s Guide (see "Using C++ (Pro*C/C++) to
Work with LOBs" on page 1-23).

The COBOL language by means of the Pro*COBOL precompiler as described
in the Pro*COBOL Precompiler Programmer’s Guide (see "Using COBOL
(Pro*COBOL) to Work with LOBs" on page 1-26).

The Visual Basic language by means of Oracle Objects For OLE (O040) as
described in its accompanying online help (see "Using Visual Basic (O040) to
Work with LOBs" on page 1-29).

The Java language by means of the JDBC Application Programmers Interface
(API) as described in the Oracle8i Java Developer’s Guide (see "Using Java (JDBC)
to Work with LOBs" on page 1-34).

Introduction to Working With LOBs 1-9

Programmatic Environments for Operating on LOBs

Comparison of Six Interfaces
The following chart compares the six LOB interfaces.

Table 1-1 Comparison of Interfaces for working with LOBs

DBMS_LOB Pro*C &
OCI (ociap.h) (dbmslob.sql) Pro*COBOL Visual Basic Java
N/A DBMS _ N/A ORALOB.Compare use DBMS _
LOB.COMPARE LOB.COMPARE
N/A DBMS_LOB.INSTR N/A ORALOB.Matchpos position
N/A DBMS_LOB.SUBSTR N/A N/A getBytes
OCILobAppend DBMS_LOB.APPEND APPEND ORALOB.Append use length and then
putBytes
OCILobAssign N/A [use PI/SQL ASSIGN ORALOB.Clone N/A [use equal
assign operator] sign]
OClILobCharSetForm N/A N/A N/A N/A
OClILobCharSetid N/A N/A N/A N/A
OCILobClose DBMS_LOB.CLOSE CLOSE N/A BLOB/CLOB: uze
close() on stream
object
BFILE: use DBMS_
LOB.CLOSE
OCILobCopy DBMS_LOB.COPY COPY ORALOB.Copy use read and write
OClLobDisableBuffering N/A DISABLE ORALOB.DisableBuffering N/A
BUFFERING
OClLobEnableBuffering N/A ENABLE ORALOB.EnableBuffering N/A
BUFFERING
OCILobErase DBMS_LOB.ERASE ERASE ORALOB.Erase use DBMS_
LOB.ERASE
OCILobFileClose DBMS _ CLOSE ORABFILE.Close closeFile
LOB.FILECLOSE
OCILobFileCloseAll DBMS_ FILE CLOSE ORABFILE.CloseAll use DBMS_
LOB.FILECLOSEALL ALL LOB.FILECLOSEALL
OCILobFileExists DBMS_ DESCRIBE ORABFILE.Exist fileExists

LOB.FILEEXISTS

[FILEEXISTS]

1-10 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Programmatic Environments for Operating on LOBs

Table 1-1 Comparison of Interfaces for working with LOBs (Cont.)

DBMS_LOB Pro*C &
OCI (ociap.h) (dbmslob.sql) Pro*COBOL Visual Basic Java
OCILobFileGetChunkSize DBMS_ DESCRIBE ORALOB.ChunksSize N/A
LOB.GETCHUNKSIZE [CHUNKSIZE]
OCILobFileGetName DBMS_ DESCRIBE ORABFILE.DirectoryName getDirAlias
LOB.FILEGETNAME [DIRECTORY, :
FILENAME] ORABFILE.FileName getName
OClILobFilelsOpen DBMS_ DESCRIBE ORABFILE.IsOpen use DBMS_
LOB.FILEISOPEN [ISOPEN] LOB.ISOPEN
OCILobFileOpen DBMS_ OPEN ORABFILE.Open openFile
LOB.FILEOPEN
OCIlLobFileSetName N/A (use BFILENAME FILE SET DirectoryName use BFILENAME

operator)

FileName
OClILobFlushBuffer N/A FLUSH BUFFER ORALOB.FlushBuffer N/A
OClILobGetLength DBMS_ DESCRIBE ORALOB:.Size length
LOB.GETLENGTH [LENGTH]
OClLoblsEqual N/A N/A N/A equals
OClLoblsOpen DBMS_LOB.ISOPEN DESCRIBE ORALOB.IsOpen BLOB/CLOB: create
[ISOPEN] stream object
BEILE: use
DBMS_LOB.ISOPEN
OClLobLoadFromFile DBMS_ LOAD FROM ORALOB.CopyFromBfile use read and then
LOB.LOADFROMFILE FILE write
OClLobLocatorlslInit N/A [always initialize] N/A ORALOB.IsNull N/A
OClILobOpen DBMS_LOB.OPEN OPEN ORALOB.open use DBMS_
LOB.OPEN
OCILobRead DBMS_LOB.READ READ ORALOB.Read getBytes
OCILobTrim DBMS_LOB.TRIM TRIM ORALOB.Trim use DBMS_
LOB.TRIM
OClILobWrite DBMS_LOB.WRITE WRITEORALOB. Write putBytes

OClILobWriteAppend

DBMS_
LOB.WRITEAPPEND

WRITE APPEND

N/A

use length and then
putBytes

The following subsections describe each of the interfaces in more detail.

Introduction to Working With LOBs 1-11

Programmatic Environments for Operating on LOBs

Using the DBMS_LOB Package for Working With LOBs

The DBMS_LOB package can be used to read and modify internal LOBs (persistent
and temporary) either entirely or in a piece-wise manner. This package can also be
used for read operations on BFILEs.

For more information see:

« Oracle8i Application Developer’s Reference - Packages for detailed
documentation, including parameters, parameter types, return
values, and example code.

As described in more detail below, DBMS_LOBoutines work based on LOBIlocators.
For the successful completion of DBMS_LOBoutines, you must provide an input
locator that represents a LOBthat exists in the database tablespaces or external
filesystem before you invoke the routine.

For internal LOBs, you must first use SQL DDL to define tables that contain LOB
columns, and subsequently SQL DML to initialize or populate the locators in these
LOBcolumns.

For external LOBs, you must define a DIRECTORYobject that maps to a valid
physical directory containing the external LOBs that you intend to access. Also,
these files must exist, and must be set to have read permissions for the Oracle server
process. If your operating system uses case-sensitive path names, be sure you
specify the directory in the correct format.

Once the LOBs are defined and created, you may then SELECTa LOBJlocator into a
local PL/SQL LOBvariable and use this variable as an input parameter to DBMS _
LOBfor access to the LOBvalue. Examples provided with each DBMS_LOBoutine

will illustrate this in the following sections.

The routines that can modify BLOB CLOB and NCLOBvalues are:

Table 1-2 DBMS_LOB Routines that Modify BLOB, CLOB, and NCLOB values

Function/Procedure Description

APPEND() appends the LOBvalue to another LOB

COPY() copies a portion of a LOBto another LOB
ERASE() erases part of a LOB, starting at a specified offset
LOADFROMFILE() load BFILE data into an internal LOB

1-12 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Programmatic Environments for Operating on LOBs

Table 1-2 (Cont) DBMS_LOB Routines that Modify BLOB, CLOB, and NCLOB

Function/Procedure Description

TRIM() trims the LOBvalue to the specified shorter length
WRITE() writes data to the LOBat a specified offset
WRITEAPPEND() writes data to the end of the LOB

The routines involved in reading or examining LOB values are:

Table 1-3 DBMS_LOB Routines Involved in Reading or Examining LOB values

Function/Procedure Description

COMPARE() compares the value of two LOBs

GETCHUNKSIZE() gets the chunk size for reading and writing

GETLENGTH() gets the length of the LOBvalue

INSTR() returns the matching position of the nth occurrence of the
pattern in the LOB

READ() reads data from the LOBstarting at the specified offset

SUBSTR() returns part of the LOBvalue starting at the specified offset

The following routines have to do with temporary lobs:

Table 1-4 DBMS_LOB Routines that Operate on Temporary LOBs

Function/Procedure Description

CREATETEMPORARY() creates a temporary LOB

ISTEMPORARY() checks if a LOB locator refers to a temporary LOB
FREETEMPORARY() frees a temporary LOB

The read-only routines specific to BFILE s are:

Introduction to Working With LOBs 1-13

Programmatic Environments for Operating on LOBs

Table 1-5 DBMS_LOB Read-Only Routines that are Specificto BFILE s

Function/Procedure Description

FILECLOSE() closes the file

FILECLOSEALL() closes all previously opened files

FILEEXISTS() checks if the file exists on the server

FILEGETNAME() gets the directory alias and file name

FILEISOPEN() checks if the file was opened using the input BFILE
locators

FILEOPEN() opens a file

The following routines have to do with opening and closing LOBs:

Table 1-6 DBMS_LOB Open and Close Routines

Function/Procedure Description

OPEN() opens a LOB
ISOPEN() sees if a LOB is open
CLOSE() closes a LOB

We will describe these routines in greater detail as we explore specific LOB
operations (e.g., INSERT a row containing a LOB).

1-14 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

Using the Oracle Call Interface (OCI) with LOBs

You can make changes to an entire internal LOB, or to pieces of the beginning,
middle or end of it through the OCI API. You can access both internal and external
LOBs for read purposes, and you can also write to internal LOB:s.

The OCI includes functions that you can use to access data stored in BLOB, CLOB,
NCLOB, and BFILE s. These functions are listed in the tables below, and are
discussed in greater detail later in the chapter.

Users who want to read or write data in UCS2 format can set the ‘csid ' parameter
in OCILobRead and OCILobWrite to OCI_UCS2ID. The 'csid ' parameter
indicates the csid for the buffer parameter. You can set the ‘csid ' parameter to any
character set id. If the csid parameter is set, it will override the NLS_LANG
environment variable.

For more information see:

« Oracle Call Interface Programmer’s Guide for detailed
documentation, including parameters, parameter types, return
values, and example code.

« Oracle8i National Language Support Guide for detailed
information about implementing applications in different
languages.

The routines that can modify BLOB CLOB and NCLOBvalues are:

Table 1-7 OCI Functions that Modify BLOB, CLOB, and NCLOB values

Function/Procedure Description

OCILobAppend() appends LOBvalue to another LOR
OCILobCopy() copies a portion of a LOB into another LOR
OCILobErase() erases part of a LOB starting at a specified offset.

OCILobLoadFromFile() loads BFILE data into an internal LOB.
OCILobTrim() truncates a LOB

OCILobWrite() writes data from a buffer into a LOB, overwriting
existing data

Introduction to Working With LOBs 1-15

Programmatic Environments for Operating on LOBs

Table 1-7 OCI Functions that Modify BLOB, CLOB, and NCLOB values

Function/Procedure Description

OCILobWriteAppend() writes data from a buffer to the end of the LOB.

The routines that read or examine LOBvalues are:

Table 1-8 OCI Routines that Read or Examine LOB Values

Function/Procedure Description

OCILobGetChunkSize() gets the size of the Chunk for reading and writing

OCILobGetLength() returns the length of a LOBor a BFILE .
OCILobRead() reads a specified portion of a non-null LOBor a BFILE into a
buffer.

The following routines are have to do with temporary lobs:

Table 1-9 OCI Routines that Operate on Temporary LOBs

Function/Procedure Description
OClILobCreateTemporary creates a temporary LOB

0

OCILoblsTemporary() sees if a temporary LOB exists

OCILobFreeTemporary() frees a temporary LOB

Read-only routines specific to BFILE s are:

Table 1-10 OCI Read-Only Routines that are Specific to BFILES

Function/Procedure Description

OCILobFileClose() closes an open BFILE .
OCILobFileCloseAll() closes all open BFILE s.
OCILobFileExists() checks whether a BFILE exists.

1-16 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Programmatic Environments for Operating on LOBs

Table 1-10 (Cont.) OCI Read-Only Routines that are Specific to BFILES

Function/Procedure Description
OCILobFileGetName() returns the name of a BFILE .
OCILobFilelsOpen() checks whether a BFILE is open.
OCILobFileOpen() opens a BFILE .

These routines are used for working with LOBlocators:

Table 1-11 OCI LOB-Locator Routines

Function/Procedure Description

OCILobAssign() assigns one LOBlocator to another.
OCILobCharSetForm() returns the character set form of a LOB
OCILobCharSetld() returns the character set ID of a LOB
OCILobFileSetName() sets the name of a BFILE in a locator.

OClLoblsEqual() checks whether two LOBIlocators refer to the same LOB
OCILobLocatorlslnit() checks whether a LOBlocator is initialized.

The following three routines have to do with LOB-buffering:

Table 1-12 OCI LOB-Buffering Routines

Function/Procedure Description

OCILobDisableBuffering disables the buffering subsystem use.

0

OCILobEnableBuffering(uses the LOBbuffering subsystem for subsequent reads and
) writes of LOBdata.

OCILobFlushBuffer() flushes changes made to the LOBbuffering subsystem to the

database (sever)

The following routines have to do with opening and closing LOBs:

Introduction to Working With LOBs 1-17

Programmatic Environments for Operating on LOBs

Table 1-13 OCI LOB-Buffering Routines

Function/Procedure Description
OCILobOpen() opens a LOB
OCILoblsOpen() sees if a LOB is open
OCILobClose() closes a LOB

A sample main() and LOB procedure

In order to work with the OCI examples in the remainder of the book, you could
use a main() like the following. Here, its use with the seelfLOBIsOpen procedure is
shown as an example.

int main(char *argv, int argc)
{
/* Declare OCI Handlles to be used %/
OCIEnv *envhp;
OClServer *srvhp;
OCISvcCix *svchp;
OCIEmor *enthp;
OClSession *authp;
OCIStmt *stmthp;
OClLobLocator*Lob_loc;

/* Create and Initalize an OCI Environment: %/
(void) OCIENnvCreate(&envhp, (ub4)OCI_DEFAULT, (dvoid *)0,
(dvoid * (*)(dvoid *, size_t)) O,
(dvoid * (*)(dvoid *, dvoid *, size_1))0,
(void (*)(dvoid *, dvoid)0,
(size_1) 0, (dvoid **) O);

/*Allocate error handle: %/
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &erhp, OCl HTYPE_ERROR,
(size_t) O, (dvoid **) 0);

/*Allocate server contexts:
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
(size_t) O, (dvoid **) 0);

/*Allocate service context %/

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
(size_t) O, (dvoid *¥) O);

1-18 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

/*Attach to the Oracle database: */
(void) OClServerAttach(srvhp, erhp, (text *)™, stien(™), 0);

/* Set the server context attribuite in the service context: ¥/
(void) OCIAttrSet ((dvoid *) svchp, OCl HTYPE_SVCCTX,
(dvoid ®)srvhp, (ub4) O,
OCI_ATTR_SERVER, (OCIEnor *) erthp);

/*Allocate the session handle: %/

(void) OCIHandleAlloc((dvoid *) envhp,
(dvoid *)&authp, (ub4) OCI_HTYPE_SESSION,
(size_t) O, (dvoid **) 0);

/* Set the usemame in the session handle:*/

(void) OCIAtrSet((dvoid *) authp, (Ub4) OCI HTYPE_SESSION,
(dvoid *) "samp", (Ub4)4,
(ub4) OCI_ATTR_USERNAME, erthp);

/* Set the password in the session handle: %/

(void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "samp", (ub4) 4,
(ub4) OCI_ATTR_PASSWORD, enthp);

/*Authenticate and begin the session:
checkem(errhp, OClSessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
(ub4) OC|_DEFAULT));

/* Set the session attribute in the service context

(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
(dvoid *) authp, (ub4) 0,
(ub4) OCI_ATTR_SESSION, erthpy;

*—— At this point a valid session has been created ———%
printf ("user session created \n");

/*Allocate a statement handle: %/
checkenr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *) &stmthp,
OCI_HTYPE_STMT, (size_t)0, (dvoid **) O));

¥ ==———=———-= Samplle procedure call begins here v

printf (‘calling seelfLOBIsOpen..\n");
seelfLOBIsOpen(envhp, errhp, svchp, stmthp);

retum O;

}

Introduction to Working With LOBs 1-19

Programmatic Environments for Operating on LOBs

void checkerr(errhp, status)
OCIEnor *erthp;
sword status;
{
text emrbuf[512];
sh4 errcode =0;

switch (status)

{

case OCl_SUCCESS:
break;

case OCl_SUCCESS WITH_INFO:
(void) printf("Eor - OCl_SUCCESS_WITH_INFO\n");
break;

case OCl_NEED_DATA:
(void) printf("Emor - OCI_NEED_DATA'Y);
break;

case OCI_NO_DATA:
(void) printf("Error - OCI_NODATAWN');
break;

case OC|_ERROR:
(void) OCIEmorGet((dvoid *)erhp, (ub4) 1, (text *) NULL, &errcode,

enbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);

(void) printf("Error - %.*s\n", 512, enbuf);
break;

case OCl_INVALID_HANDLE:
(void) printf("Error - OCI_INVALID_HANDLE\N");
break;

case OCl_STILL_EXECUTING:
(void) printf("Eror - OCI_STILL_EXECUTE\N");
break;

case OCl_CONTINUE:
(void) printf("Error - OCI_CONTINUE\n");
break;

default
break;

}

}

P Select the locator into a locator variable */
sb4 select frame_locator(Lob_loc, erhp, svchp, stmthp)

OClLobLocator*Lob _loc;
OCIEmor *enhp;

1-20 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Programmatic Environments for Operating on LOBs

OCISvcCtx *svchp;
OCIStmt *stmthp;
{
text *sglstmt=
(text *"'SELECT Frame FROM Mulimedia_tab WHERE Clip_ID=1";
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sgistmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid ®&Lob _loc, (sb4)0,
(ub2) SQLT_BLOB(dvoid*) 0,
(Ub2%) 0, (ub2*) 0, (ub4) OCI_DEFAULT));

F execute the select and fetch one row */

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot¥) O,
(ub4) OCI_DEFAULT));

retum (Q);
}

void seelfLOBIsOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISveCix *svehp;
OCIStmt *stmthp;
{
OClLobLocator*Lob_loc;
intisOpen;
F* allocate locator resources */
(void) OClIDescriptorAlloc((dvoid *)envhp, (dvoid *)&Lob _loc,
(Ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

* Select the locator */
(void)select_frame_locator(Lob_loc, erhp, svchp, stmthp);

Seeifthe LOBis Open*/
checkerr (errhp, OCILoblsOpen(svchp, errhp, Lob_loc, &isOpen));

if sOpen)
{

Introduction to Working With LOBs 1-21

Programmatic Environments for Operating on LOBs

printf(" Lob is Open\n’Y);
* .. Processing given that the LOB has already been Opened */

else

{

printf(" Lob is not Open\n®);

* .. Processing given that the LOB has not been Opened */
}

 Free resources held by the locators*/
(void) OClIDescriptorFree((dvoid *) Lob _loc, (ub4) OCI_DTYPE_LOB);

retum;

1-22 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Programmatic Environments for Operating on LOBs

Using C++ (Pro*C/C++) to Work with LOBs

You can make changes to an entire internal LOB, or to pieces of the beginning,
middle or end of it by using embedded SQL. You can access both internal and
external LOBs for read purposes, and you can also write to internal LOBs.

Embedded SQL statements allow you to access data stored in BLOB, CLOB,
NCLOB, and BFILE s. These statements are listed in the tables below, and are
discussed in greater detail later in the chapter.

For more information see:

« Pro*C/C++ Precompiler Programmer’s Guide for detailed
documentation, including syntax, host variables, host variable
types and example code.

Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers
which are then used to refer to the LOB or BFILE value. For the successful
completion of an embedded SQL LOB statement you must provide an allocated
input locator pointer that represents a LOB that exists in the database tablespaces or
external file system before you execute the statement.

Once a locator pointer has been allocated, you may then SELECT a LOB locator into
a LOB locator pointer variable and use that variable in an embedded SQL LOB
statement to access and manipulate the LOB value. Examples provided with each
embedded SQL LOB statement will illustrate this in the following sections.

The statements that can modify BLOB CLOB and NCLOBvalues are:

Table 1-14 Embedded SQL Statements that Modify BLOB, CLOB, and NCLOB values

Statement Description

APPEND appends a LOB value to another LOB

COPY copies all or a portion of a LOB into another LOB

ERASE erases part of a LOB starting at a specified offset.

LOAD FROM FILE loads BFILE data into an internal LOB at a specified offset.
TRIM truncates a LOB

WRITE writes data from a buffer into a LOBat a specified offset.
WRITE APPEND writes data from a buffer into a LOB at the end of the LOB.

Introduction to Working With LOBs 1-23

Programmatic Environments for Operating on LOBs

The statements that read or examine LOBvalues are:

Table 1-15 Embedded SQL Statements that Read or Examine LOB Values

Statement Description

DESCRIBE [CHUNKSIZE] gets the size of the Chunk for writing.

DESCRIBE [LENGTH] returns the length of a LOBor a BFILE .

READ [)eaf?s a specified portion of a non-null LOBor a BFILE into a
uffer.

The statements that deal with temporary LOBs are:

Table 1-16 Embedded SQL Statements that Operate on Temporary LOBs

Statement Description

CREATE TEMPORARY creates a temporary LOB.

DESCRIBE sees if a LOB locator refers to a temporary LOB.
[ISTEMPORARY]
FREE TEMPORARY frees a temporary LOB.

The statements specific to BFILE s are:

Table 1-17 Embedded SQL Statements that are Specific to BFILES

Statement Description

FILE CLOSE ALL closes all open BFILE s.
DESCRIBE checks whether a BFILE exists.
[FILEEXISTS]

DESCRIBE [DIRECTORY, returns the directory alias and/or filename of a BFILE .
FILENAME]

These statements are used for working with LOBlocators:

1-24 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

Table 1-18 LOB Locator Embedded SQL Statements

Statement Description
ASSIGN assigns one LOBIlocator to another.
FILE SET sets the directory alias and filename of a BFILE in a locator.

The following three statements have to do with the LOB Buffering Subsystem:

Table 1-19 LOB Buffering Subsystem Embedded SQL statements

Statement Description
DISABLE BUFFERING disables the use of the buffering subsystem.
ENABLE BUFFERING uses the LOBbuffering subsystem for subsequent reads and

writes of LOBdata.

FLUSH BUFFER flushes changes made to the LOBbuffering subsystem to the
database (server)

The following statements have to do with opening and closing LOBs and BFILEs:

Table 1-20 Embedded SQL Statements for Opening and CLosing LOBs and BFILEs

Statement Description

OPEN opens a LOB or BFILE.
DESCRIBE [ISOPEN] sees if a LOB or BFILE is open.
CLOSE closes a LOB or BFILE.

Introduction to Working With LOBs 1-25

Programmatic Environments for Operating on LOBs

Using COBOL (Pro*COBOL) to Work with LOBs

You can make changes to an entire internal LOB, or to pieces of the beginning,
middle or end of it by using embedded SQL. You can access both internal and
external LOBs for read purposes, and you can also write to internal LOBs.

Embedded SQL statements allow you to access data stored in BLOB, CLOB,
NCLOB, and BFILE s. These statements are listed in the tables below, and are
discussed in greater detail later in the chapter.

Unlike locators in PL/SQL, locators in Pro*xCOBOL are mapped to locator pointers
which are then used to refer to the LOB or BFILE value. For the successful
completion of an embedded SQL LOB statement you must provide an allocated
input locator pointer that represents a LOB that exists in the database tablespaces or
external file system before you execute the statement.

Once a locator pointer has been allocated, you may then SELECT a LOB locator into
a LOB locator pointer variable and use that variable in an embedded SQL LOB
statement to access and manipulate the LOB value. Examples provided with each
embedded SQL LOB statement will illustrate this in the following sections.

In cases in which the Pro*COBOL interface does not supply the required
functionality, you can call the OCI via C. We do not provide an example because
such programs are operating system dependent.

For more information see:

« Pro*COBOL Precompiler Programmer’s Guide for detailed
documentation, including syntax, host variables, host variable
types and example code.

The statements that can modify BLOB CLOB and NCLOBvalues are:

Table 1-21 Embedded SQL Statements that Modify BLOB, CLOB, and NCLOB values

Statement Description

APPEND appends a LOB value to another LOB

COPY copies all or a portion of a LOB into another LOB

ERASE erases part of a LOB starting at a specified offset.

LOAD FROM FILE loads BFILE data into an internal LOB at a specified offset.
TRIM truncates a LOB

1-26 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Programmatic Environments for Operating on LOBs

Table 1-21 Embedded SQL Statements that Modify BLOB, CLOB, and NCLOB values

Statement Description
WRITE writes data from a buffer into a LOBat a specified offset.
WRITE APPEND writes data from a buffer into a LOB at the end of the LOB.

The statements that read or examine LOBvalues are:

Table 1-22 Embedded SQL Statements that Read or Examine LOB Values

Statement Description

DESCRIBE [CHUNKSIZE] gets the size of the Chunk for writing.

DESCRIBE [LENGTH] returns the length of a LOBor a BFILE .

READ lr;eaf?s a specified portion of a non-null LOBor a BFILE into a
uffer.

The statements that deal with temporary LOBs are:

Table 1-23 Embedded SQL Statements that Operate on Temporary LOBs

Statement Description

CREATE TEMPORARY creates a temporary LOB.

DESCRIBE sees if a LOB locator refers to a temporary LOB.
[[STEMPORARY]
FREE TEMPORARY frees a temporary LOB.

The statements specific to BFILE s are:

Table 1-24 Embedded SQL Statements that are Specific to BFILES

Statement Description

FILE CLOSE ALL closes all open BFILE s.
DESCRIBE checks whether a BFILE exists.
[FILEEXISTS]

Introduction to Working With LOBs 1-27

Programmatic Environments for Operating on LOBs

Table 1-24 (Cont.) Embedded SQL Statements that are Specific to BFILES

Statement Description
DESCRIBE [DIRECTORY, returns the directory alias and/or filename of a BFILE .
FILENAME]

These statements are used for working with LOBlocators:

Table 1-25 LOB Locator Embedded SQL Statements

Statement Description
ASSIGN assigns one LOBlocator to another.
FILE SET sets the directory alias and filename of a BFILE in a locator.

The following three statements have to do with the LOB Buffering Subsystem:

Table 1-26 LOB Buffering Subsystem Embedded SQL statements

Statement Description
DISABLE BUFFERING disables the use of the buffering subsystem.
ENABLE BUFFERING uses the LOBbuffering subsystem for subsequent reads and

writes of LOBdata.

FLUSH BUFFER flushes changes made to the LOBbuffering subsystem to the
database (server)

The following statements have to do with opening and closing LOBs and BFILEs:

Table 1-27 Embedded SQL Statements for Opening and CLosing LOBs and BFILEs

Statement Description

OPEN opens a LOB or BFILE.
DESCRIBE [ISOPEN] sees if a LOB or BFILE is open.
CLOSE closes a LOB or BFILE.

1-28 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

Using Visual Basic (0040) to Work with LOBs

You can make changes to an entire internal LOB, or to pieces of the beginning,
middle or end of it via the OO40 API. Specifically, you employ the OraBlob ,
OraClob and OraBFile objects. You can access both internal and external LOBs for
read purposes, and you can also write to internal LOBs.

The OraBlob , OraClob interfaces in OO40 provides methods for performing
operations on large objects in the database including BLOB, CLOB and NCLOB data
types. The OraBFile interface provides methods for performing operations on
BFILE data in the database. These interfaces (OraBlob , OraClob , OraBFile)
encapsulate LOB locators, so the user does not deal with locators but instead uses
the methods and properties provided to perform operations and get state
information.

OraMyBFile refers to the locator obtained from a PL/SQL "OUT parameter as a
result of executing a PL/SQL procedure (either by doing an OraDatabase .Exe-
cuteSQL or by using the OraSqlStmt object). Note that an OraConnect.Begin-

Trans has been called since the locator became invalid after the COMMIT

When OraBlob , OraClob objects are retrieved as a part of a dynaset, these objects
represent LOB locators of the dynaset current row. If the dynaset current row
changes due to move operation, OraBlob , OraClob objects will represent LOB
locator for the new current row. In order to retain the LOB locator of the OraBlob
OraClob object independent of the dynaset move operation, use the Clone
method. This method returns the OraBlob and OraClob object. One could also use
these objects as PL/SQL bind parameters. Here is an example which shows both
types of usage. The functions and samples are explained in greater detail as part of
the reference documentation.

Dim OraDyn as OraDynaset, OraSound1 as OraBLOB, OraSoundClone as CraBlob,
OraMyBfile as OraBFile

OraConnection.BeginTrans

set OraDyn = OraDb.CreateDynaset("select * from Mulimedia._tab order by clip
id', ORADYN_DEFAULT)

set OraSound1 = OraDyn.Fields('Sound").value

set OraSoundClone = OraSound1

OraParameters.Add "id", 1, O0RAPARAM_INPUT

OraParameters.Add "mybfile”, Empty, ORAPARAM_OUTPUT
OraParameters(‘mybfile”).ServerType = ORATYPE_BFILE

Introduction to Working With LOBs 1-29

Programmatic Environments for Operating on LOBs

OraDatabase.ExecuteSQL ("begin GetBFile(id, :mybfile ") end")

Set OraMyBFile = OraParameters("'myhbifile”).value
‘Go to Next row
OraDyn.MoveNext

OraDyn.Edit
Lets update OraSound1 data with that from the BFILE
OraSoundl. CopyFromBFie OraMyBFie

OraDyn.Update

OraDyn.MoveNext

‘Go to Next row

OraDyn.Edit

Lets update OraSound1 by appending with LOB data from 1st row represenetd by
‘OraSoundClone

OraSoundl.Append OraSoundClone

OraDyn.Update
OraConnection.CommitTrans

In the above example OraSoundl represents the locator for the current row in the
dynaset where as OraSoundClone represents the locator for the 1st row. A change
in the current row (say a OraDyn.MoveNext) will mean that OraSound1 will
actually represent locator for the 2nd row whereas OraSoundClone will represent
the locator in the 1st row (OraSoundClone only refers the locator for the 1st row
irrespective of any OraDyn row navigation).

OraMyBFile refers to the locator got an PL/SQL "OUT" parameter as a result of
executing a PL/SQL procedure (either by doing an OraDatabase .ExecuteSQL or
by using the OraSqIStmt object). Note that an OraConnect .BeginTrans has
been called since with a database "COMMIT" the locator becomes invalid.

0040 includes methods and properties that you can use to access data stored in
BLOB, CLOB, NCLORB, and BFILE s. These methods and properties are listed in the
tables below, and are discussed in greater detail later in the chapter.

See Also: 0040 online help for detailed information including
parameters, parameter types, return values, and example code.

The routines that can modify BLOB CLOB and NCLOBvalues are:

1-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

Table 1-28 0040 Methods That Modify BLOB, CLOB, and NCLOB Values

Function/Procedure Description

OraBlob.Append, appends LOBvalue to another LOR
OraClob.Append

OraBlob.Copy, copies a portion of a LOB into another LOB
OraClob.Copy

OraBlob.Erase, erases part of a LOB starting at a specified offset.
OraClob.Erase

OraBlob.CopyFromBFile, loads BFILE data into an internal LOB.
OraClob.CopyFromBFile

OraBlob.Trim, truncates a LOB

OraClob.Trim

OraBlob.CopyFromFile, writes data from a file to a LOB
OraClob.CopyFromFile

OraBlob.Write, writes data from a file to a LOB
OraClob.Write

The routines that read or examine LOBvalues are:

Table 1-29 0Oo4o0 Methods that Read or Examine LOB Values

Function/Procedure Description

OraBlob.Read, reads a specified portion of a non-null LOB into a buffer
OraClob.Read,
OraBFile.Read

OraBlob.CopyTokFile, reads a specified portion of a non-null LOB to a file.
OraClob.CopyToFile

The following methods have to do with opening and closing LOBs:

Table 1-30 0040 Methods for Operating on BFILEs

Methods Description

OraBFile.Open opens BFILE

Introduction to Working With LOBs 1-31

Programmatic Environments for Operating on LOBs

Table 1-30 0040 Methods for Operating on BFILEs

Methods Description

OraBFile.Close closes BFILE

The following methods have to do with LOB-buffering:

Table 1-31 0040 LOB-Buffering methods

Function/Procedure Description

OraBlob.FlushBuffer, flushes changes made to the LOBbuffering subsystem to the
OraClob.FlushBuffer database (sever)
OraBlob.EnableBufferin Enables buffering of LOB operations
g

OraClob.EnableBufferin

g

OraBlob.DisableBufferi Disables buffering of LOB operations
ng

OraClob.DisableBufferi

ng

Table 1-32 OO0O40 LOB- properties

Property Description

IsNull (Read) indicates when a LOB is Null
PollingAmount(Read/Write) Get/Set the total amount for Read/Write polling operation

Offset(Read/Write) Get/Set the offset for Read/Write operation. By default, it is
setto 1.
Status(Read) Returns the polling status.Possible values are

ORALOB_NEED_DATA There is more data to
be read/written

ORALOB_NO_DATA There is no more data to
be read/written

ORALOB_SUCCESS LOB data read/written
successfully

Size(Read) Returns the length of the LOB data

1-32 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

Methods specific to BFILE s are:

Table 1-33 0040 Read-Only methods that are Specific to BFILES

Methods Description

OraBFile.Close closes an open BFILE .
OraBFile.CloseAll closes all open BFILE s.
OraBFile.Open opens a BFILE .
OraBFile.IsOpen determine if a BFILE is open

Table 1-34 OO40 Properties that are Specific to BFILES

Properties Description

OraBFile.DirectoryNa gets/Sets the server side directory alias name.
me

OraBFile.FileName(Re gets/Sets the server side filename.

ad/Write)

OraBFile.Exists checks whether a BFILE exists.

Introduction to Working With LOBs 1-33

Programmatic Environments for Operating on LOBs

Using Java (JDBC) to Work with LOBs

You can make changes to an entire internal LOB, or to pieces of the beginning,
middle or end of an internal LOBin Java by means of the JDBC API via the

Oracle .sgl .BLOBand Oracle .sql .CLOBobjects. These objects also implement the
java .sgl .Blob and java .sql .Clob interfaces according to the JDBC 2.0
specification. With this implementation, an Oracle .sql .BLOBcan be used
wherever a java.sql.Blob is expected and an Oracle.sql.CLOB can be used
wherever a java .sql .Clob is expected.

The JDBC interface will let you access both internal and external LOBs for read
purposes, and you can also write to internal LOB:s.

The BLOBand CLOBclasses in JDBC provide methods for performing operations on
large objects in the database including BLOB CLOBand NCLOBdata types. The
BFILE class provides methods for performing operations on BFILE data in the
database. These classes (BLOB CLOB BFILE) encapsulate LOBlocators, so the user
does not deal with locators but instead uses the methods and properties provided to
perform operations and get state information. Any of Oracle’s LOBfunctionality not
provided by these classes can be accessed by a call to the DBMS_LOB PL/SQL
package. This technique is used repeatedly in the examples throughout the book.

You can get a reference to any of the above LOBs either as a column of an
OracleResultSet or as an "OUT" type PL/SQL parameter from an
OraclePreparedStatement . When BLOBand CLOBobjects are retrieved as a
part of aN OracleResultSet , these objects represent LOBlocators of the currently
selected row. If the current row changes due to a move operation (for example,

rset .next (), the retrieved locator still refers to the original LOBrow. In order to
retrieve the locator for the most current row, you must call getXXXX() on the
OracleResultSet each time a move operation is made (where XXXXis a BLOB
CLOBor BFILE).

For more information see:

. Oracle8i JDBC Developer’s Guide and Reference for detailed
documentation, including parameters, parameter types, return values,
and example code.

1-34 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

oracle .sgl .BLOBmethods for modifying values:

Table 1-35 oracle.sql.BLOB Methods for Modifying Values

Function/Procedure Description
int putBytes(long, byte[]) inserts the byte array into the LOB starting at the
given offset

oracle .sql .BLOBmethods for reading or examining values:

Table 1-36 oracle.sql. BLOB Methods for Reading or Examining Values

Function/Procedure Description

byte[] getBytes(long, int) gets the contents of the LOBas an array of bytes,
given an offset

long position(byte[], long) finds the given byte array within the LOB given an
offset

long finds the given BLOBwithin the LOB

position(oracle.jdbc2.Blob,

long)

public boolean compares this LOBwith another

equals(java.lang.Object)

public long length() returns the length of the LOB

public int getChunkSize() returns the ChunkSize of the LOB

oracle .sgl .BLOB LOBbuffering methods and properties:

Table 1-37 oracle.sql.BLOB LOB-Buffering Methods and Properties

Function/Procedure Description

public java.io.InputStream streams the LOBas a binary stream
getBinaryStream())

public java.io.OutputStream writes to LOBas a binary stream
getBinaryOutputStream()

Introduction to Working With LOBs 1-35

Programmatic Environments for Operating on LOBs

oracle.sql.CLOB methods for modifying values

Table 1-38 oracle.sql. CLOB Methods for Modifying Values

Function/Procedure Description

int putString(long, inserts the string into the LOB starting at the
java.lang.String) given offset

int putChars(long, inserts the character array into the LOB starting at
charf]) the given offset

oracle .sgl .CLOBmethods for reading or examining values:

Table 1-39 oracle.sql. CLOB Methods for Reading or Examining Values

Function/Procedure Description

byte[] getBytes() gets the contents of the LOBas an array of bytes
java.lang.String returns a substring of the LOBas a string
getSubString(long, int)

int getChars(long, int, reads a subset of the LOBinto a character array
charf])

long finds the given String within the LOB given an offset
position(java.lang.String

, long)

long finds the given CLOBwithin the LOB given an offset
position(oracle.jdbc2.Clo

b, long)

boolean compares this LOBwith another
equals(java.lang.Object)

long length() returns the length of the LOB

int getChunkSize() returns the ChunkSize of the LOB

oracle.sql.CLOB LOB -buffering methods and properties:

1-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments for Operating on LOBs

Table 1-40 oracle.sql. CLOB LOB-Buffering Methods and Properties

Function/Procedure

Description

java.io.lnputStream
getAsciiStream()

java.io.InputStream
getStream()

java.io.OutputStream
getAsciiOutputStream()

java.io.Reader
getCharacterStream()

java.io.Writer

getCharacterOutputStream()

streams the LOB as an ASCII stream
streams the LOB as a byte array
writes to the LOB as an ASCII stream
streams the LOB as a character stream

writes to LOB as a character stream

oracle .sgl .BFILE methods for reading or examining values

Table 1-41 oracle.sql. BFILE Methods for reading or Examining Values

Function/Procedure

Description

byte[] getBytes()

byte[] getBytes(long,
int)

int getBytes(long, int,
byte[])

long
position(oracle.sqgl.BFILE

, long)

long position(byte[],
long)

boolean
equals(java.lang.Object)

long length()
boolean fileExists()

public void openFile()

gets the contents of the LOB as an array

of bytes

gets the contents of the LOB as an
array of bytes, given an offset

reads a subset of the LOB into a byte
array

finds the given BFILE contents within
the LOB, given an offset
finds the given byte array within the

LOB, given an offset

compares this LOB with another

returns the length of the LOB
checks if the OS file referenced by this BFILE exists
opens the OS file referenced by this BFILE

Introduction to Working With LOBs 1-37

Programmatic Environments for Operating on LOBs

Table 1-41 oracle.sql. BFILE Methods for reading or Examining Values

Function/Procedure Description

public void closeFile() closes the OS file referenced by this BFILE
public boolean checks if this BFILE is already open
isFileOpen()

public java.lang.String gets the directory alias for this BFILE
getDirAlias()

public java.lang.String gets the file name referenced by this BFILE
getName()

oracle .sgl .BFILE methods for LOB-buffering methods and properties:

Table 1-42 oracle.sql. CLOB Methods for Modifying Values

Function/Procedure Description

public streams the LOB as a binary stream
java.io.InputStream
getBinaryStream()

public streams the LOB as a byte array
java.io.InputStream
getStream()

1-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

An Example Application

An Example Application

Oracle8 supports LOBs, large objects which can hold up to 4 gigabytes of binary or
character data. What does this mean for you, the application developer?

Consider the following hypothetical application:

The Multimedia Content-Collection System

Multimedia data is used in an increasing variety of media channels — film,
television, webpages, and CD-ROM being the most prevalent. The media
experiences having to do with these different channels vary in many respects
(interactivity, physical environment, the structure of information, to name a few).
Yet despite these differences, there is often considerable similarity in the multimedia
authoring process, especially with regard to assembling content.

Figure 1-1 The Multimedia Authoring Process

Story Media Programming Media
Board Content the Experience
Development Collection Composition

For instance, a television station that creates complex documentaries, an advertising
agency that produces advertisements for television, and a software production
house that specializes in interactive games for the web could all make good use of a
database management system for collecting and organizing the multimedia data.
Presumably, they each have sophisticated editing software for composing these
elements into their specific products, but the complexity of such projects creates a
need for a pre-composition application for organizing the multimedia elements into
appropriate groups.

Taking our lead from movie-making, our hypothetical application for collecting
content uses the clip as its basic unit of organization. Any clip is able to include one
or more of the following media types:

« character text (e.g.,storyboard, transcript, subtitles,),
« images (e.g., photographs, video frames),

« line drawings (e.g., maps),

Introduction to Working With LOBs 1-39

An Example Application

« audio (e.g., sound-effects, music, interviews)

Since this is a pre-editing application, the precise relationship of elements within a
clip (such as the synchronization of voice-over audio with a photograph) and
between clips (such as the sequence of clips) is not defined.

The application should allow multiple editors working simultaneously to store,
retrieve and manipulate the different kinds of multimedia data. We assume that
some material is gathered from in-house databases. At the same time, it should also
be possible to purchase and download data from professional services.

Note: The Example is Only An Example

Our mission in this chapter is not to create this real-life application, but to describe
everything you need to know about working with LOBs. Consequently, we only
implement the application sufficiently to demonstrate the technology. For example,
we deal with only a limited number of multimedia types. We make no attempt to
create the client-side applications for manipulating the LOBs. And we do not deal
with deployment issues such as, the fact that you should implement disk striping of
LOBfiles, if possible, for best performance.

1-40 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

An Example Application

Applying an Object-Relational Design to the Application

Figure 1-2 Schema Plan for Table MULTIMEDIA_TAB

Column Name

Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table | Audio | Object Type ¢
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—§
|— PK |
Key Reference to a row Type
object of a table of
the defined type)
| Column Object of
| the defined type
Table VOICEOVER_TAB (of VOICED_TYP)
ORIGINATOR | SCRIPT | ACTOR TAKE RECORDING
Text Text Text Number Audio l(;lefstetzlj Table of the
VARCHAR2(30) [cLOB | vARCHAR2(30)| NUMBER | BFILE efined type
PK PK
Table INTERVIEWSEGMENTS_NTAB
SEGMENT INTERVIEW_DATE | INTERVIEWER | INTERVIEWEE RECORDING | TRANSCRIPT
Number Date Text Text Audio Text
NUMBER DATE VARCHAR2(30) | VARCHAR2(30) | BFILE CLOB
PK
Column Object MAP_OBJ (of MAP_TYP)
REGION | NwW | NE | Sw | SE | DRAWING | AERIAL
Text Number Number Number Number Map Photo
VARCHAR2(30) | NUMBER NUMBER NUMBER NUMBER BLOB BFILE

Introduction to Working With LOBs 1-41

An Example Application

The Structure of the Multimedia_tab Table

Figure 1-3 Schema Plan for Table MULTIMEDIA TAB

Column Name Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table Audio | Object Type 1
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—

I’ PK

Key Type

CLIP_ID : Every row (clip object) must have a number which identifies the clip.
This number is generated by the Oracle number SEQUENCERs a matter of
convenience, and has nothing to do with the eventual ordering of the clip.

STORYThe application design requires that every clip must also have text, that
is a storyboard, that describes the clip. Since we do not wish to limit the length
of this text, or restrict its format, we use a CLOBdatatype.

FLSUB Subtitles have many uses — for closed-captioning, as titles, as overlays
that draw attention, and so on. A full-fledged application would have columns
for each of these kinds of data but we are considering only the specialized case
of a foreign language subtitle, for which we use the NCLOBdatatype.

PHOTOPhotographs are clearly a staple of multimedia products. We assume
there is a library of photographs stored in the PhotoLib_tab archive. Since a
large database of this kind would be stored on tertiary storage that was
periodically updated, the column for photographs makes use of the BFILE
datatype.

FRAMEIt is often necessary to extract elements from dynamic media sources for
further processing For instance, VRML game-builders and animation
cartoonists are often interested in individual cells. Our application takes up the
need to subject film/video to frame-by-frame analysis such as was performed
on the film of the Kennedy assassination. While it is assumed that the source is
on persistent storage, our application allows for an individual frame to be
stored as a BLOB.

1-42 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

An Example Application

SOUNDThe table includes a column for sound-effects in the form of a BLOB

VOICED_REFEThis column allows for a reference to a specific row in a table
which must be of the type Voiced typ . Inour application, this is a reference
to arow in the table VoiceOver_tab whose purpose is to store audio
recordings for use as voice-over commentaries. For instance, these might be
readings by actors of words spoken or written by people for whom no audio
recording can be made, perhaps because they are no longer alive, or because
they spoke or wrote in a foreign language.

This structure offers the application builder a number of different strategies
from those discussed thus far. Instead of loading material into the row from an
archival source, an application can simply reference the data. This means that
the same data can be referenced from other tables within the application, or by
other applications. The single stipulation is that the reference can only be to
tables of the same type. Put another way: the reference, Voiced_ref , can refer
to row objects in any table which conforms to the type, Voiced_typ

Note that Voiced_typ combines the use of two LOB datatypes: a CLOB to
store the script which the actor reads, and a BFILE for the audio recordings.

Introduction to Working With LOBs 1-43

An Example Application

Figure 1-4 Schema Design for Inclusion of VOICED_REF Reference

Column Name Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table | Audio | Object Type ¢
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—§

|— PK |

Key Reference to a row Type

object of a table of
the defined type

Table VOICEOVER_TAB (of VOICED_TYP)

ORIGINATOR | SCRIPT | ACTOR TAKE RECORDING
Text Text Text Number Audio
VARCHAR2(30) | CLOB | VARCHAR2(30) [NUMBER | BFILE

PK PK

« INSEG_NTAB While it is not possible to store a Varray of LOBs, application
builders are able to store a variable number of multimedia elements in a single
row by means of nested tables. In the case of our application, a nested table
InSeg_ntab of the predefined type InSeg_typ can be used to store zero, one
or many interview segments in a given clip. So, for instance, a hypothetical user
could use this facility to collect together one or more interview segments having
to do with the same theme that occurred at different times.

In this case, the nested table makes use of two LOB datatypes — a BFILE to
store the audio recording of the interview, and a CLOB for transcript. Since such
segments might be of great length, it is important to keep in mind that LOBs
cannot be more than 4 gigabytes in size.

1-44 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

An Example Application

Figure 1-5 Schema Design for Inclusion of a Nested Table INTERVIEWSEGMENTS _

TAB
Column Name Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table | Audio | Object Type ¢
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—H
I’PK
Key Type
Nested Table of the
defined type
Table INTERVIEWSEGMENTS_NTAB
SEGMENT INTERVIEW_DATE | INTERVIEWER | INTERVIEWEE | RECORDING | TRANSCRIPT
Number Date Text Text Audio Text
NUMBER DATE VARCHAR2(30) | VARCHAR2(30) | BFILE CLOB
PK

MUSIC The ability to handle music must be one of the basic requirements of
any multimedia database management system. In this case, the BFILE datatype
is used to store the audio as an operating system file.

MAP_OBJMultimedia applications must be be able to handle many different
kinds of line art — cartoons, diagrams, and fine art, to name a few. In our
application, provision is made for a clip to contain a map as a column object,
MAP_OBJof the object type MAP_TYPIn this case, the object is contained by
value, being embedded in the row. As defined in our application, MAP_TYPhas
only one LOB in its structure — a BLOB for the drawing itself. However, as in
the case of the types underlying REFs and nested tables, there is no restriction
on the number of LOBs that an object type may contain.

Introduction to Working With LOBs 1-45

An Example Application

Figure 1-6 Schema Design for Inclusion of a Column Object MAP_OBJ

Column Name Kind of Data

Table MULTIMEDIA_TAB

CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ

Number Text Text Photo Video Audio Reference Nested Table Audio | Object Type
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—]

(PK |

Key

Reference to a row Type
object of a table of
the defined type
Column Object of
the defined type
Column Object MAP_OBJ (of MAP_TYP)
REGION | NW | NE | SW | SE | DRAWING AERIAL
Text Number Number Number Number Map Photo
VARCHAR2(30) | NUMBER NUMBER NUMBER NUMBER BLOB BFILE

1-46 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

The Most Basic Operation: Getting and Using the LOB Locator

The Most Basic Operation: Getting and Using the LOB Locator

LOB Value and Locators

Inline storage of the LOB value

Data stored in a LOBis termed the LOBSs value. The value of an internal LOBmay or
may not be stored inline with the other row data. If the internal LOBvalue is less
than approximately 4000 bytes, then the value is stored inline; otherwise it is stored
outside the row. Since LOBs are intended to be large objects, inline storage will only
be relevant if your application mixes small and large LOBs.

As mentioned below ("ENABLE | DISABLE STORAGE IN ROW" on page 1-45), the
LOBvalue is automatically moved out of the row once it extends beyond
approximately 4000 bytes.

LOB locators

Regardless of where the value of the internal LOBis stored, a locator is stored in the
row. You can think of a LOBlocator as a pointer to the actual location of the LOB
value. A LOBIocator is a locator to an internal LOBwhile a BFILE locator is a locator
to an external LOB When the term locator is used without an identifying prefix term,
it refers to both LOBIlocators and BFILE locators.

Internal LOB Locators

For internal LOBs, the LOBcolumn stores a locator to the LOB’s value which is
stored in a database tablespace. Each LOBcolumn/attribute for a given row has its
own distinct LOBlocator and copy of the LOBvalue stored in the database
tablespace.

LOB Locator Operations

Setting the LOB Column/Attribute to contain a locator

Before you can start writing data to an internal LOB the LOBcolumn/attribute must
be made non-null, that is, it must contain a locator. Similarly, before you can start
accessing the BFILE value, the BFILE column/attribute must be made non-null.

« Forinternal LOBs, you can accomplish this by initializing the internal LOBto
empty in an INSERT/UPDATEstatement using the functions EMPTY_BLOB for
BLOB or EMPTY_CLO@ for CLOB and NCLOB.

Introduction to Working With LOBs 1-47

The Most Basic Operation: Getting and Using the LOB Locator

For more information see:

= "INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()" on
page 3-26

« For external LOBs, you can initialize the BFILE column to point to an external
file by using the BFILENAME) function.

For more information see:

« "INSERT a Row by means of BFILENAME()" on page 5-22.

Invoking the EMPTY_BLOB or EMPTY_CLO@ function in and of itself does not
raise an exception. However, using a LOBIlocator that was set to empty to access or
manipulate the LOBvalue in any PL/SQL DBMS_LOBr OCI routine will raise an
exception. Valid places where empty LOBlocators may be used include the VALUES
clause of an INSERT statement and the SET clause of an UPDATEstatement.

The following INSERT statement
— populates story with the character string "JFK interview’,
— sets flsub, frame and sound to an empty value,
— sets photo to NULL, and

— initializes music to point to the file "JFK_interview’ located under the logical
directory ’AUDIO_DIR’ (see the CREATE DIRECTORdmmand in the
Oracle8i Reference. Character strings are inserted using the default character
set for the instance.

INSERT INTO Muttimedia_tab VALUES (101, 'JFK interview’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL,
BFILENAME(CAUDIO_DIR',"JFK_interview’), NULL);

Similarly, the LOBattributes for the Map_typ column in Multimedia_tab can be
initialized to NULL or set to empty as shown below. Note that you cannot initialize a
LOB object attribute with a literal.

INSERT INTO Mutimedia._tab
VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(),
EMPTY_BLOB(), NULL, NULL, NULL,
Map_typ(Moon Mountair, 23, 34, 45, 56, EMPTY_BLOB(), NULL);

1-48 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

The Most Basic Operation: Getting and Using the LOB Locator

Accessing a LOB through a locator

SELECTing a LOB Performing a SELECTon a LOBreturns the locator instead of the
LOBvalue. In the following PL/SQL fragment you select the LOBlocator for story
and place it in the PL/SQL locator variable Imagel defined in the program block.
When you use PL/SQL DBMS_LOBunctions to manipulate the LOBvalue, you refer
to the LOBusing the locator.

DECLARE

Imagel BLOB;
ImageNum INTEGER :=101;
BEGIN

SELECT story INTO Imagel FROM Mulimedia_tab
WHERE clip_id = ImageNum;
DBMS_OUTPUT.PUT_LINE('Size of the Imageis:” ||
DBMS_LOB.GETLENGTH(Imagel));
Fmore LOB routines */
END;

In the case of OCI, locators are mapped to locator pointers which are used to
manipulate the LOBvalue. As mentioned before, the OCI LOBinterface is described
briefly in "Support Libraries” on page 1-309, and more extensively in the Oracle Call
Interface Programmer’s Guide.

LOB Locators and Transaction Boundaries

If you begin a transaction and then select a locator, the locator contains the
transaction ID. Note that you can implicitly be in a transaction without explicitly
beginning one. For example, SELECT... FOR UPDATHEMplicitly begins a transaction.
In such a case, the locator will contain a transaction ID. By contrast, if you select a
locator outside of a transaction, the locator does not contain a transaction ID. Note
that a transaction ID will not be assigned until the first DML statement executes.
Therefore, locators that are selected out prior to such a DML statement will not
contain a transaction ID.

You can always read the LOBdata using the locator irrespective of whether the
locator contains a transaction id. However, if the locator contains a transaction id,
you cannot write to the LOBoutside of that particular transaction. If the locator does
not contain a transaction id, you can write to the LOBafter beginning a transaction
either explicitly or implicitly. We can show the relationship between transactions
and locators by considering a few examples. However, if the locator contains a
transaction id and the transaction is serializable, you cannot read or write outside of

Introduction to Working With LOBs 1-49

The Most Basic Operation: Getting and Using the LOB Locator

that particular transaction. If the transaction is non-serializable, you can read, but
not write outside of that transaction. The following examples show the relationship
between locators and non-serializable transactions

Select the Locator with No Current Transaction

Case 1:
1. Select the locator with no current transaction.

At this point, the locator does not contain a transaction id.
Begin the transaction.

Use the locator to read data from the LOB.

Commit or rollback the transaction.

Use the locator to read data from the LOB.

o o oA w N

Begin a transaction.
The locator does not contain a transaction id.
7. Use the locator to write data to the LOB.

This operation is valid because the locator did not contain a transaction id
prior to the write. After this call, the locator contains a transaction id.

Case 2:
1. Select the locator with no current transaction.

At this point, the locator does not contain a transaction id.
2. Begin the transaction.

The locator does not contain a transaction id.
3. Use the locator to read data from the LOB.

The locator does not contain a transaction id.
4. Use the locator to write data to the LOB

This operation is valid because the locator did not contain a transaction id
prior to the write. After this call, the locator contains a transaction id. You
can continue to read from and/or write to the LOB.

5. Commit or rollback the transaction.

1-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

The Most Basic Operation: Getting and Using the LOB Locator

The locator continues to contain the transaction id.

Use the locator to read data from the LOB.

This is a valid operation.

Begin a transaction.

The locator already contains the previous transaction’s id.
Use the locator to write data to the LOB.

This write operation will fail because the locator does not contain the
transaction id that matches the current transaction.

Select the Locator within a Transaction

Case 3:
1.

Case 4:
1.

2.

Select the locator within a transaction.

At this point, the locator contains the transaction id.
Begin the transaction.

The locator contains the previous transaction’s id.
Use the locator to read data from the LOB.

This operation is valid even though the transaction id in the locator does
not match the current transaction.

For more information on the LOB value that is Read see:

« "Read-Consistent Locators" on page 2-2

Use the locator to write data to the LOB

This operation fails because the transaction id in the locator does not match
the current transaction.

Begin a transaction.

Select the locator.

Introduction to Working With LOBs 1-51

The Most Basic Operation: Getting and Using the LOB Locator

The locator contains the transaction id because it was selected within a
transaction.

3. Use the locator to read from and/or write to the LOB.
These operations are valid.
4. Commit or rollback the transaction.
The locator continues to contain the transaction id.
5. Use the locator to read data from the LOB.

This operation is valid even though there’s a transaction id in the locator
and the transaction was previously committed or rolled back.

For more information on the LOB value that is Read see:

« "Read-Consistent Locators" on page 2-2

6. Use the locator to write data to the LOB

This operation fails because the transaction id in the locator is for a
transaction that was previously committed or rolled back.

Open, Close and IsOpen Interfaces for Internal LOBs

These interfaces let you open and close an internal LOBand test whether an internal
LOBis already open.

It is not mandatory that you wrap all LOBoperations inside the Open/Close APIs.
The addition of this feature will not impact already-existing applications that write
to LOBs without first opening them, since these calls did not exist in 8.0.

It is important to note that openness is associated with the LOB not the locator. The
locator does not save any information as to whether the LOBto which it refers is
open.

Open and Close with Extensible Indexes

If you do not wrap LOBoperations inside an Open/Close call, each modification to
the LOBwill implicitly open and close the LOBthereby firing any triggers on an
extensible index. Note that in this case, any extensible indexes on the LOBwill
become updated as soon as LOBmodifications are made. Therefore, extensible LOB
indexes are always valid and may be used at any time. By contrast, if you wrap
your LOBoperations inside the Open/Close operations, triggers will not be fired

1-52 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

The Most Basic Operation: Getting and Using the LOB Locator

for each LOBmodification. Instead, the trigger on extensible indexes will be fired at
the Close call. For example, you might design your application so that extensible
indexes are not be updated until you call Close . However, this means that any
extensible indexes on the LOBwill not be valid in-between the Open/Close calls.

Note that the definition of a 'transaction’ within which an open LOBvalue must be
closed is one of the following:

« between 'DML statements that start a transaction (including SELECT... FOR
UPDATE) and COMMIT

« within an autonomous transaction block

A LOBopened when there is no transaction must be closed before the end of the
session. If there are still open lobs at the end of the session, the openness will be
discarded and no triggers on extensible indexes will be fired.

Errors

It is an error to commit the transaction before closing all opened LOBs that were
opened by the transaction. When the error is returned, the openness of the open
LOBs is discarded. At this point, the user must decide whether to close all the LOBs
and reissue the call to commit, or rollback the transaction. Note that the changes to
the LOBare not discarded if the COMMITreturns an error. At transaction rollback
time, the openness of all open LOBs that are still open for that transaction will be
discarded. Discarding the openness means that the LOBs won't be closed, thereby
firing the triggers on extensible indexes.

It is also an error to open/close the same LOBtwice either with different locators or
with the same locator.

Example 1

DECLARE
Lob loc1 CLOB;
Lob loc2 CLOB;
Buffer VARCHAR2(32767);
Amount BINARY_INTEGER :=32767;
Position INTEGER =1,
BEGIN
/*Selecta LOB: %/
SELECT Story INTO Lob_loc1 FROM Mulimedia_tab WHERE Clip_ID=1;

/* The following staterment opens the LOB outside of a transaction

so it must be closed before the session ends: %/
DBMS_LOB.OPEN(Lob loc1, DBMS_LOB.LOB _READONLY);

Introduction to Working With LOBs 1-53

The Most Basic Operation: Getting and Using the LOB Locator

/* The following statement begins a transaction. Note that Lob_loc1 and
Lob loc2 point to the same LOB: %
SELECT Story INTO Lob_loc2 FROM Mulimedia._tab WHERE Clip_ID = 1 for update;
/* The following LOB open operation is allowed since this lob has
ot been opened in this transaction: %/
DBMS_LOB.OPEN(Lob _loc2, DBMS_LOB.LOB_READWRITE);
/*Fill the buffer with data to write to the LOB %/
buffer := ‘A good story’;
Amount :=12;
/*Wiite the buffer to the LOB: %/
DBMS_LOB.WRITE(Lob_loc2, Amount, Position, Buffer);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE(Lob_loc2);
FThe COMMIT ends the transaction. It is allowed because all LOBs
opened in the transaction were closed. */
COMMIT;
/* The the following staterment closes the LOB that was opened
before the transaction started: %/
DBMS_LOB.CLOSE(Lob_loc);
END;

Example 2:

DECLARE
Lob_loc CLOB;
BEGIN
/* Note that the FOR UPDATE clause starts a transaction: ¥/
SELECT Story INTO Lob_loc FROM Muttimedia._tab WHERE Clip_ID =1 for update;
DBMS_LOB.OPEN(Lob loc, DBMS_LOB.LOB_READONLY);
/*COMMIT retums an error because there is still an gpen LOB associated
with this transaction: %/
COMMIT;
END;

1-54 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Indexing a LOB Column

Indexing a LOB Column

You cannot build B-tree or bitmap indexes on a LOB column. However, depending
on your application and its usage of the LOB column, you might be able to improve
the performance of queries by building indexes specifically attuned to your domain.
Oracle’s extensibility interfaces allow for Extensible Indexing, a framework for
implementing such domain specific indexes.

For more information regarding building domain specific indexes,
see: Oracle8i Data Cartridge Developer’s Guide.

Depending on the nature of the contents of the LOB column, one of the Oracle
intermedia options could also be used for building indexes. For example, if a text
document is stored in a CLOB column, you can build a text index (provided by
Oracle) to speed up the performance of text-based queries over the CLOB column.

For more information regarding Oracle’s intermedia options,
see: Oracle8i interMedia Audio, Image, and Video User’s Guide and
Reference and Oracle8i Context Cartridge Reference.

Introduction to Working With LOBs 1-55

Indexing a LOB Column

1-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

2

Advanced Topics

The material in this chapter is a supplement and elaboration of the use cases
described in the following chapters.You will probably find the topics discussed here
to be more relevant once you have explored the use cases.

Read-Consistent Locators
LOBs in the Object Cache
LOB Buffering Subsystem
User Guidelines for Best Performance Practices

Working with Varying-Width Character Data

Advanced Topics 2-1

Read-Consistent Locators

Read-Consistent Locators

Oracle provides the same read consistency mechanisms for LOBs as for all other
database reads and updates of scalar quantities (refer to Oracle8i Concepts for
general information about read consistency). However, read consistency has some
special applications to LOBlocators that need to be understood.

A SELEC®Ed locator, regardless of the existence of the FOR UPDATElause, becomes
a read consistent locator, and remains a read consistent locator until the LOBvalue is
updated through that locator. A read consistent locator contains the snapshot
environment as of the point in time of the SELECT

This has some complex implications. Let us say that you have created a read
consistent locator (L1) by way of a SELECToperation. In reading the value of the
internal LOBthrough L1, the LOBis read as of the point in time of the SELECT
statement even if the SELECTstatement includes a FOR UPDATH-urther, if the LOB
value is updated through a different locator (L2) in the same transaction, L1 does
not see L2's updates. In addition, L1 will not see committed updates made to the
LOBthrough another transaction.

Furthermore, if the read consistent locator L1 is copied to another locator L2 (for
example, by a PL/SQL assignment of two locator variables — L2:= L1), then L2
becomes a read consistent locator along with L1 and any data read is read as of the
point in time of the SELECTfor L1.

Clearly you can utilize the existence of multiple locators to access different
transformations of the LOBvalue. However, in taking this course, you must be
careful to keep track of the different values accessed by different locators. The
following code demonstrates the relationship between read-consistency and
updating in a simple example.

Using Multimedia_tab as defined previously and PL/SQL, three CLOB are
created as potential locators: clob_selected , clob_updated and clob_
copied .

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_selected.

« Inthe second operation (at t2), the value in story is associated with the locator
clob_updated. Since there has been no change in the value of story between t1 and
t2, both clob_selected and clob_updated are read consistent locators that effectively
have the same value even though they reflect snapshots taken at different
moments in time.

2-2 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Read-Consistent Locators

« The third operation (at t3) copies the value in clob_selected to clob_copied. At this
juncture, all three locators see the same value. The example demonstrates this

with a series of DBMS_LOBREAL) calls.

« Attime t4, the program utilizes DBMS_LOBVRITE) to alter the value in clob_

updated, and a DBMS_LOBREAL) reveals a new value.

« However,a DBMS_LOBREAL) of the value through clob_selected (at t5) reveals
that it is a read consistent locator, continuing to refer to the same value as of the

time of its SELECT

« Likewise, a DBMS_LOBREAL) of the value through clob_copied (at t6) reveals
that it is a read consistent locator, continuing to refer to the same value as clob_

selected.

Example of a Read Consistent Locator

INSERT INTO Mulimedia._tab VALUES (1, abed’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num_var INTEGER,;
clob_selected CLOB;
clob_updated CLOB;
clob_copied CLOB;
read amount INTEGER,;
read offset INTEGER,;
write_amount INTEGER;
wite_offset INTEGER;
buffer VARCHAR2(20);

BEGIN
- Attimetl:
SELECT story INTO clob_selected
FROM Mulimedia_tab
WHERE clip_id =1,

- Attmetz:

SELECT story INTO clob_updated
FROM Mulimedia._tab
WHERE clip_id=1
FOR UPDATE;

Advanced Topics 2-3

Read-Consistent Locators

- Attimet3:

clob_copied :=clob_selected;

- Afterthe assignment, both the clob_copied andthe
—clob_selecte d have the same snapshot as of the point in time

- ofthe SELECT into clob_selected

- Reading from the clob_selected andthe clob_copied — will
- retum the same LOB value .clob_updated also sees the same

- LOB value as of its select

read_amount :=10;

read_offset:=1;

dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);

dbms_output.put_line(clob_selected value: ' || buffer);

— Producesthe output ‘abed'

read_amount :=10;

dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);

- Produces the output ‘abed'

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_outputput_line(clob_updated value: ' || buffer);

-~ Produces the output ‘abed

- Attmed:

write_amount = 3;

write_offset :=5;

buffer :='efg’;

dbms_lob.write(clob_updated, write_amount, write_offset,
buffer);

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_output.put_line(clob_updated value: ' || buffer);

-~ Produces the output ‘abedefy’

- Attimets:

read_amount :=10;

dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);

dbms_output.put_line(clob_selected value: ' || buffer);

- Produces the output ‘abed'

2-4 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Read-Consistent Locators

- Attimet6:
read_amount = 10;
dbms _lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);
- Produces the output ‘abed'
END;
/

Updated locators

When you update the value of the internal LOBthrough the LOBlocator (L1), L1
(that is, the locator itself) is updated to contain the current snapshot environment as
of the point in time after the operation was completed on the LOBvalue through the
locator L1. L1 is then termed an updated locator. This operation allows you to see
your own changes to the LOBvalue on the next read through the same locator, L1.

Note: the snapshot environment in the locator is not updated if
the locator is used to merely read the LOBvalue. It is only updated
when you modify the LOBvalue through the locator via the PL/SQL
DBMS_LOBRackage or the OCI LOBAPIs.

Any committed updates made by a different transaction are seen by L1 only if your
transaction is a read-committed transaction and if you use L1 to update the LOB
value after the other transaction committed.

Note: When you update an internal LOB’s value, the modification
is always made to the most current LOBvalue.

Updating the value of the internal LOBthrough the OCI LOBAPIs or the PL/SQL
DBMS_LOBackage can be thought of as updating the LOBvalue and then reselecting
the locator that refers to the new LOBvalue.

Note that updating the LOBvalue through SQL is merely an UPDATEstatement. It is
up to you to do the reselect of the LOBIlocator or use the RETURNING lause in the
UPDATEstatement (see the PL/SQL User’s Guide and Reference) so that the locator can
see the changes made by the UPDATEstatement. Unless you reselect the LOBlocator
or use the RETURNINGlause, you may think you are reading the latest value when
this is not the case. For this reason you should avoid mixing SQL DML with OCI
and DBMS_LOBiecewise operations.

Advanced Topics 2-5

Read-Consistent Locators

Using the Multimedia_tab as defined previously, a CLOBIocator is created: clob_
selected

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_selected.

« Inthe second operation (at t2), the value in story is modified through the SQL
UPDATEcommand, bypassing the clob_selected locator. The locator still sees the
value of the LOBas of the point in time of the original SELECT In other words,
the locator does not see the update made via the SQL UPDATEcommand. This is
illustrated by the subsequent DBMS_LOBREAL) call.

« The third operation (at t3) re-selects the LOBvalue into the locator clob_selected.
The locator is thus updated with the latest snapshot environment which allows
the locator to see the change made by the previous SQL UPDATEcommand.
Therefore, in the next DBMS_LOBREAL), an error is returned because the LOB
value is empty (i.e., it does not contain any data).

Example of Repercussions of Mixing SQL DML with DBMS_LOB

INSERT INTO Multimedia_tab VALUES (1, 'abed’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num_var INTEGER,;
clob_selected CLOB;
read_ amount INTEGER;
read offset INTEGER,;
buffer VARCHAR2(20);

BEGIN

- Attimetl:

SELECT story INTO clob_selected
FROM Mulimedia._tab

WHERE clip_id=1;

read_amount :=10;

read_offset =1,

dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);

dbms_outputput_line(clob_selected value: ' || buffer);

- Produces the output ‘abed'

2-6 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Read-Consistent Locators

- Attmetz:

UPDATE Multimedia._tab SET story =empty_clob()
WHERE clip_id=1;

—although the most current currentt LOB value is now emply,

—Clob_selected still sees the LOB value as of the point

—intime of the SELECT

read_amount :=10;

dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);

dbms_output.put_line(clob_selected value: ' || buffer);

- Produces the output abed'

- Attimet3:

SELECT story INTO clob_selected FROM Mulimedia_tab WHERE
clip_id=1;

—the SELECT allows clob_selected to see the most current

- LOB value

read_amount :=10;
dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);
— ERROR: ORA-01403: no data found
END;
/

Note: We advise that you avoid updating the same LOBwith
different locators. You will avoid many pitfalls if you use only one
locator to update the same LOBvalue.

Using the table Multimedia_tab as defined previously, two CLOB are created as
potential locators: clob_updated and clob_copied

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_updated.

« The second operation (at t2) copies the value in clob_updated to clob_copied. At
this juncture, both locators see the same value. The example demonstrates this
with a series of DBMS_LOBREAL) calls.

« At this juncture (at t3), the program utilizes DBMS_LOBVRITE) to alter the
value in clob_updated, and a DBMS_LOB.READ reveals a new value.

Advanced Topics 2-7

Read-Consistent Locators

« However, a DBMS_LOBREAD) of the value through clob_copied (at t4) reveals
that it still sees the value of the LOBas of the point in time of the assignment
from clob_updated (at t2).

« Itis not until clob_updated is assigned to clob_copied (t5) that clob_copied sees the
modification made by clob_updated.

Example of an Updated LOB Locator

INSERT INTO Mulimedia._tab VALUES (1, abcd’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULLY);

COMMIT;

DECLARE
num_var INTEGER;
clob_updated CLOB;
clob_copied CLOB;
read_amount INTEGER;;
read offset INTEGER,;
write_amount INTEGER,;
write_offset INTEGER,;
buffer VARCHAR2(20y;

BEGIN

- Attime t1:
SELECT story INTO clob_updated FROM Mulimedia_tab
WHERE clip_id=1
FOR UPDATE;

—Attime 2:

clob_copied :=clob_updated;

— after the assign, clob_copied and clob_upaated see the same
- LOB value

read_amount :=10;

read_offset =1,

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_output.put_line(clob_updated value: ' || buffer);

— Produces the ouput abed

read_amount :=10;

dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);

— Produces the output abed'

2-8 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Read-Consistent Locators

—Attime t3:

write_amount = 3;

write_offset :=5;

buffer :='efg’;

dbms_lob.write(clob_updated, write_amount, write_offset,
buffer);

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_outputput_line(clob_updated value: ' || buffer);

— Produces the output abedefy'

—-Attime 4.

read_amount :=10;

dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);

- Produces the output abed'

—-Attime t5:
clob_copied :=clob_updated;

read amount = 10;
dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_outputput_line(clob_copied value: ' || buffer);
- Produces the output abedefy'
END;
/

LOB Bind Variables

When a LOBIlocator is used as the source to update another internal LOB(as in a
SQL INSERT or UPDATEstatement, the DBMS_LOECOPY) routine, and so on), the
snapshot environment in the source LOBlocator determines the LOBvalue that is
used as the source. If the source locator (for example L1) is a read consistent locator,
then the LOBvalue as of the point in time of the SELECTof L1 is used. If the source
locator (for example L2) is an updated locator, then the LOBvalue associated with
L2’s snapshot environment at the time of the operation is used.

Using the table Multimedia_tab as defined previously, three CLOB are created as
potential locators: clob_selected , clob_updated and clob_copied

Advanced Topics 2-9

Read-Consistent Locators

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_updated.

« The second operation (at t2) copies the value in clob_updated to clob_copied. At
this juncture, both locators see the same value.

« Then (at t3), the program utilizes DBMS_LOBVRITE) to alter the value in clob_
updated, and a DBMS_LOHBREAL) reveals a new value.

« However, a DBMS_LOBREADof the value through clob_copied (at t4) reveals that
clob_copied does not see the change made by clob_updated.

« Therefore (at t5), when clob_copied is used as the source for the value of the
INSERT statement, we insert the value associated with clob_copied (i.e. without
the new changes made by clob_updated). This is demonstrated by the subsequent
DBMS_LOBREAL) of the value just inserted.

Example of Updating a LOB with a PL/SQL Variable

INSERT INTO Mulimedia._tab VALUES (1, abed’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULLY);

COMMIT;

DECLARE
num_var INTEGER;
clob_selected CLOB;
clob_updated CLOB;
clob_copied CLOB;
read amount INTEGER;
read offset INTEGER;
wriite_amount INTEGER;
wiite_offset INTEGER,;
buffer VARCHAR2(20);

BEGIN

—~Attimetl:

SELECT story INTO clob_updated FROM Muttimedia._tab
WHERE clip_id=1
FOR UPDATE;

read_amount :=10;

read offset:=1;

dbms_lob.read(clob_updated, read_amount, read _offset, buffer);
dbms_outputput_line(clob_updated value: ' || buffer);

- Produces the ouput abed'

2-10 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Read-Consistent Locators

—-Attime 2:
clob_copied :=clob_updated;

—Attime t3:

write_amount :=3;

write_offset :=5;

buffer .= 'efg’;

dbms_lob.write(clob_updated, write_amount, write_offset,
buffer);

read_amount = 10;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_output.put_line(clob_updated value: ' || buffer);

— Prodlces the output abcdefy’

- note that clob_copied doesn't see the write made before
—clob_updated

—-Attime 4:

read_amount :=10;

dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);

— Produces the output abed'

—-Attime t5:

—the insert uses clob_copied view of the LOB value which does

- notinclude clob_updated changes

INSERT INTO Mulimedia_tab VALUES (2, clob_copied, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL)
RETURNING story INTO clob_selected!;

read_amount :=10;
dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);
dbms_output.put_line(clob_selected value: ' || buffer);
— Produces the output abcd'
END;
/

Advanced Topics 2-11

Read-Consistent Locators

LOB locators cannot span transactions

Modifying an internal LOBs value through the LOBIlocator via DBMS_LOBOCI, or
SQL INSERT or UPDATEstatements changes the locator from a read consistent
locator to an updated locator. Further, the INSERT or UPDATEstatement
automatically starts a transaction and locks the row. Once this has occurred, the
locator may not be used outside the current transaction to modify the LOBvalue. In
other words, LOBIlocators that are used to write data cannot span transactions.
However, the locator may be used to read the LOBvalue unless you are in a
serializable transaction.

For more information about the relationship between LOBs and
transaction boundaries see:

« "LOB Locators and Transaction Boundaries" on page 1-49

Using the table Multimedia_tab defined previously, a CLOBIocator is created: clob_
updated .

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_updated.

« The second operation (at t2), utilizes the DBMS_LOBNRITH) command to alter
the value in clob_updated, and a DBMS_LOBREAL) reveals a new value.

« Thecommit statement (at t3) ends the current transaction.

« Therefore (at t4), the subsequent DBMS_LOBVRITH) operation fails because the
clob_updated locator refers to a different (already committed) transaction. This is
noted by the error returned. You must re-select the LOBIlocator before using it
in further DBMS_LORand OCI) modify operations.

Example of Locator Not Spanning a Transaction

INSERT INTO Muttimedia._tab VALUES (1, 'abed’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num_var INTEGER;
clob_updated CLOB;
read amount INTEGER;
read offset INTEGER,;

2-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators

write_amount INTEGER,;
wiite_offset INTEGER;
buffer VARCHAR2(20y);

BEGIN
-Attmetl:
SELECT story
INTO clob_updated
FROM Mulimedia_tab
WHERE dlip id=1
FOR UPDATE;

read amount := 10;

read offset:=1;

dbms _lob.read(clob_updated, read_amount, read_offset,
buffer);

dbms_outputput_line(clob_updated value: ' || buffer);

- This produces the output ‘abed'

-Attime ©2:

write_amount :=3;

write_offset :=5;

buiffer :=efg’;

dbms_lobwrite(clob_updated, write_amount, write_offset,
buffer);

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset,
buffer);

dbms_outputput_line(clob_updated value: ' || buffer);

- This prodlces the output ‘abcdefg’

-Attimet3:
COMMIT;

—Attimet4:
dbms_lob.write(clob_updated , wiite_amount, write_offset,
buffer);
— ERROR: ORA-22990: LOB locators cannot span transactions
END;
/

Advanced Topics 2-13

LOBs in the Object Cache

LOBs in the Object Cache

When you create an object in the object cache that contains an internal LOB
attribute, the LOBattribute is implicitly set to empty. You may not use this empty
LOBIlocator to write data to the LOB You must first flush the object, thereby
inserting a row into the table and creating an empty LOB— that is, a LOBwith 0
length. Once the object is refreshed in the object cache (use OCI_PIN_LATEST), the
real LOBlocator is read into the attribute, and you can then call the OCI LOBAPI to
write data to the LOB

When creating an object with a BFILE attribute, the BFILE is set to NULL It must
be updated with a valid directory alias and filename before reading from the file.

When you copy one object to another in the object cache with a LOBlocator
attribute, only the LOBIlocator is copied. This means that the LOBattribute in these
two different objects contain exactly the same locator which refers to one and the
same LOBvalue. Only when the target object is flushed is a separate, physical copy of
the LOBvalue made, which is distinct from the source LOBvalue.

See Also: "Example of a Read Consistent Locator" on page 2-3 for
a description of what version of the LOBvalue will be seen by each
object if a write is performed through one of the locators.

Therefore, in cases where you want to modify the LOBthat was the target of the
copy, you must flush the target object, refresh the target object, and then write to the LOB
through the locator attribute.

LOB Buffering Subsystem

Oracle8 provides a LOBbuffering subsystem (LBS) for advanced OCI based
applications such as DataCartridges, Web servers, and other client-based
applications that need to buffer the contents of one or more LOBs in the client’s
address space. The client-side memory requirement for the buffering subsystem
during its maximum usage is 512K bytes. It is also the maximum amount that you
can specify for a single read or write operation on a LOBthat has been enabled for
buffered access.

2-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

Advantages of LOB Buffering

The advantages of buffering, especially for client applications that perform a series
of small reads and writes (often repeatedly) to specific regions of the LOB are:

Buffering enables deferred writes to the server. You can buffer up several writes
in the LOBs buffer in the client’s address space and eventually flush the buffer
to the server. This reduces the number of network roundtrips from your client
application to the server, and hence, makes for better overall performance for
LOBupdates.

Buffering reduces the overall number of LOBupdates on the server, thereby
reducing the number of LOBversions and amount of logging. This results in
better overall LOBperformance and disk space usage.

Considerations in the Use of LOB Buffering
The following caveats hold for buffered LOBoperations:

Oracle8 provides a simple buffering subsystem, and not a cache. To be specific,
Oracle8 does not guarantee that the contents of a LOBSs buffer are always in
synchronize with the LOBvalue in the server. Unless you explicitly flush the
contents of a LOBSs buffer, you will not see the results of your buffered writes
reflected in the actual LOBon the server.

Error recovery for buffered LOBoperations is your responsibility. Owing to the
deferred nature of the actual LOBupdate, error reporting for a particular
buffered read or write operation is deferred until the next access to the server
based LOB

Transactions involving buffered LOBoperations cannot migrate across user
sessions — the LBS is a single user, single threaded system.

Oracle8 does not guarantee transactional support for buffered LOBoperations.
To ensure transactional semantics for buffered LOBupdates, you must maintain
logical savepoints in your application to rollback all the changes made to the
buffered LOBin the event of an error. You should always wrap your buffered
LOBupdates within a logical savepoint (see "Example of LOB Buffering"” on
page 2-21).

In any given transaction, once you have begun updating a LOBusing buffered
writes, it is your responsibility to ensure that the same LOBIis not updated
through any other operation within the scope of the same transaction that
bypasses the buffering subsystem.

Advanced Topics 2-15

LOB Buffering Subsystem

You could potentially do this by using an SQL statement to update the
server-based LOB Oracle8 cannot distinguish, and hence prevent, such an
operation. This will seriously affect the correctness and integrity of your
application.

« Buffered operations on a LOBare done through its locator, just as in the
conventional case. A locator that is enabled for buffering will provide a
consistent read version of the LOB until you perform a write operation on the
LOBthrough that locator.

See Also: "Read-Consistent Locators" on page 2-2.

Once the locator becomes an updated locator by virtue of its being used for a
buffered write, it will always provide access to the most up-to-date version of
the LOBas seen through the buffering subsystem. Buffering also imposes an
additional significance to this updated locator — all further buffered writes to
the LOBcan be done only through this updated locator. Oracle8 will return an error
if you attempt to write to the LOBthrough other locators enabled for buffering.

See Also: "Updated locators" on page 2-5.

= You can pass an updated locator that was enabled for buffering as an IN
parameter to a PL/SQL procedure. However, passing an IN OUT or an OUT
parameter will produce an error, as will an attempt to return an updated
locator.

« You cannot assign an updated locator that was enabled for buffering to another
locator. There are a number of different ways that assignment of locators may
occur — through OCILobAssign (), through assignment of PL/SQL variables,
through OCIObjectCopy () where the object contains the LOBattribute, and so
on. Assigning a consistent read locator that was enabled for buffering to a
locator that did not have buffering enabled, turns buffering on for the target
locator. By the same token, assigning a locator that was not enabled for
buffering to a locator that did have buffering enabled, turns buffering off for the
target locator.

Similarly, if you SELECTinto a locator for which buffering was originally
enabled, the locator becomes overwritten with the new locator value, thereby
turning buffering off.

2-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

« Appending to the LOBvalue using buffered write(s) is allowed, but only if the
starting offset of these write(s) is exactly one byte (or character) past the end of
the BLOB(or CLOB/NCLOB. In other words, the buffering subsystem does not
support appends that involve creation of zero-byte fillers or spaces in the server
based LOB

« For CLOB, Oracle8 requires that the character set form for the locator bind
variable on the client side be the same as that of the LOBin the server. This is
usually the case in most OCI LOBprograms. The exception is when the locator
is SELECEd from a remote database, which may have a different character set
form from the database which is currently being accessed by the OCI program.
In such a case, an error is returned. If there is no character set form input by the
user, then we assume it is SQLCS _IMPLICIT.

LOB Buffering Operations

The Physical Structure of the LOB Buffer

Each user session has a fixed page pool of 16 pages, which are to be shared by all
LOBs accessed in buffering mode from that session. Each page has a fixed size of up
to 32K bytes (not characters) — to be precise, pagesize = n x CHUNKSIZE~= 32K. A
LOBs buffer consists of one or more of these pages, up to a maximum of 16 per
session. The maximum amount that you ought to specify for any given buffered
read or write operation is 512K bytes, remembering that under different
circumstances the maximum amount you may read/write could be smaller.

Using the LOB Buffering System

Consider that a LOBis divided into fixed-size, logical regions. Each page is mapped
to one of these fixed size regions, and is in essence, their in-memory copy.
Depending on the input offset and amount specified for a read or write operation,
Oracle8 allocates one or more of the free pages in the page pool to the LOBs buffer.
A free page is one that has not been read or written by a buffered read or write
operation.

For example, assuming a page size of 32K, for an input offset of 1000 and a specified
read/write amount of 30000, Oracle8 reads the first 32K byte region of the LOBinto
a page in the LOBs buffer. For an input offset of 33000 and a read/write amount of
30000, the second 32K region of the LOBis read into a page. For an input offset of
1000, and a read/write amount of 35000, the LOB's buffer will contain two pages —
the first mapped to the region 1 — 32K, and the second to the region 32K+1 — 64K
of the LOB

Advanced Topics 2-17

LOB Buffering Subsystem

This mapping between a page and the LOBregion is temporary until Oracle8 maps
another region to the page. When you attempt to access a region of the LOBthat is
not already available in full in the LOBs buffer, Oracle8 allocates any available free
page(s) from the page pool to the LOBs buffer. If there are no free pages available in
the page pool, Oracle8 reallocates the pages as follows. It ages out the least recently
used page among the unmodified pages in the LOBs buffer and reallocates it for the
current operation.

If no such page is available in the LOBSs buffer, it ages out the least recently used
page among the unmodified pages of other buffered LOBs in the same session. Again,
if no such page is available, then it implies that all the pages in the page pool are
dirty (i.e. they have been modified), and either the currently accessed LOB or one of
the other LOBs, need to be flushed. Oracle8 notifies this condition to the user as an
error. Oracle8 never flushes and reallocates a dirty page implicitly — you can either
flush them explicitly, or discard them by disabling buffering on the LOB

To illustrate the above discussion, consider two LOBs being accessed in buffered
mode — L1 and L2, each with buffers of size 8 pages. Assume that 6 of the 8 pages
in L1’s buffer are dirty, with the remaining 2 contain unmodified data read in from
the server. Assume similar conditions in L2’s buffer. Now, for the next buffered
operation on L1, Oracle8 will reallocate the least recently used page from the two
unmodified pages in L1’s buffer. Once all the 8 pages in L1’s buffer are used up for
LOBwrites, Oracle8 can service two more operations on L1 by allocating the two
unmodified pages from L2’s buffer using the least recently used policy. But for any
further buffered operations on L1 or L2, Oracle8 returns an error.

If all the buffers are dirty and you attempt another read from or write to a buffered
LOB you will receive the following error:

Error 22280: no more buffers available for operation

There are two possible causes:
1. All buffers in the buffer pool have been used up by previous operations.

In this case, flush the LOB(S) through the locator that is being used to
update the LOB

2. You are trying to flush a LOBwithout any previous buffered update
operations.

In this case, write to the LOBthrough a locator enabled for buffering before
attempting to flush buffers.

2-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

Flushing the LOB Buffer

The term flush refers to a set of processes. Writing data to the LOBin the buffer
through the locator transforms the locator into an updated locator. Once you have
updated the LOBdata in the buffer through the updated locator, a flush call will

« write the dirty pages in the LOBs buffer to the server-based LOB thereby
updating the LOBvalue,

« reset the updated locator to be a read consistent locator, and

« either free the flushed buffers or turn the status of the buffer pages back from
dirty to unmodified.

After the flush, the locator becomes a read consistent locator and can be assigned to
another locator (L2 := L1).

For instance, suppose you have two locators, L1 and L2. Let us say that they are
both read consistent locators and consistent with the state of the LOBdata in the
server. If you then update the LOBby writing to the buffer, L1 becomes an updated
locator. L1 and L2 now refer to different versions of the LOBvalue. If you wish to
update the LOBIn the server, you must use L1 to retain the read consistent state
captured in L2. The flush operation writes a new snapshot environment into the
locator used for the flush. The important point to remember is that you must use
the updated locator (L1), when you flush the LOBbuffer. Trying to flush a read
consistent locator will generate an error.

This raises the question: What happens to the data in the LOBbuffer? There are two
possibilities. In the default mode, the flush operation retains the data in the pages
that were modified. In this case, when you read or write to the same range of bytes
no roundtrip to the server is necessary. Note that flush in this context does not clear
the data in the buffer. It also does not return the memory occupied by the flushed
buffer to the client address space.

Note: Unmodified pages may now be aged out if necessary.

In the second case, you set the flag parameter in OCILobFlushBuffer () to OCI_
LOB_BUFFER_FREH free the buffer pages, and so return the memory to the client
address space. Note that flush in this context updates the LOBvalue on the server,
returns a read consistent locator, and frees the buffer pages.

Advanced Topics 2-19

LOB Buffering Subsystem

Flushing the Updated LOB

It is very important to note that you must flush a LOBthat has been updated
through the LBS:

« before committing the transaction,
« before migrating from the current transaction to another,
« before disabling buffering operations on a LOB

« before returning from an external callout execution into the calling
function/procedure/method in PL/SQL.

Note: When the external callout is called from a PL/SQL block
and the locator is passed as a parameter, all buffering operations,
including the enable call, should be made within the callout itself.
In other words, we recommend that you adhere to the following
sequence:

« call the external callout,

« enable the locator for buffering,

« read/write using the locator,

« flush the LOB

« disable the locator for buffering, and

« return to the calling function/procedure/method in PL/SQL.

Remember that Oracle8 never implicitly flushes the LOB

Using Locators Enabled for Buffering

Note that there are several cases in which you can use buffer-enabled locators and
others in which you cannot.

« Alocator that is enabled for buffering can only be used with the following OCI
APIs:

OCILobRead (), OCILobWrite (), OCILobAssign (), OClLoblsEqual (),
OClLobLocatorlsInit (), OClLobCharSetld (), OClILobCharSetForm ().

« The following OCI APIs will return errors if used with a locator enabled for
buffering:

2-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

OCILobCopy (), OCILobAppend (), OCILobErase (), OCILobGetLength (),
OCILobTrim ().

These APIs will also return errors when used with a locator which has not been
enabled for buffering, but the LOBthat the locator represents is already being
accessed in buffered mode through some other locator.

« Anerroris returned from DBMS_LOBAPIs if the input lob locator has buffering
enabled.

« Asinthe case of all other locators, locators enabled for LOBbuffering cannot
span transactions.

Saving Locator State so as to Avoid a Reselect

Suppose you want to save the current state of the LOBbefore further writing to the
LOBbuffer. In performing updates while using LOBbuffering, writing to an existing
buffer does not make a roundtrip to the server, and so does not refresh the snapshot
environment in the locator. This would not be the case if you were updating the
LOBdirectly without using LOBbuffering. In that case, every update would involve
a roundtrip to the server, and so would refresh the snapshot in the locator. In order
to save the state of a LOBthat has been written through the LOBbuffer, you
therefore need to

1. Flush the LOB thereby updating the LOBand the snapshot environment in the
locator (L1). At this point, the state of the locator (L1) and the LOBare the same.

2. Assign the locator (L1) used for flushing and updating to another locator (L2).
At this point, the states of the two locators (L1 and L2), as well as the LOB are
all identical.

L2 now becomes a read consistent locator with which you are able to access the
changes made through L1 up until the time of the flush, but not after! This
assignment avoids incurring a roundtrip to the server to reselect the locator into L2.

Example of LOB Buffering

The following pseudocode for an OCI program based on the Multimedia_tab
schema briefly explains the concepts listed above.

OCI_BLOB_buffering_program ()

{
int amount;
int offset;
OClLobLocator Ibs_locl, Ibs_loc2, Ibs_loc3;
void *buffer;

Advanced Topics 2-21

LOB Buffering Subsystem

int bufl;

- Standard OCl initalization operations - logging on to
- server, creating and initializing bind variables etc.

it ocl ();

- Establish a savepoint before start of LBS operations
exec_statement("savepoint lbs_savepoint’);

- Initalize bind variable to BLOB columns from buffered
—access:

exec_statement('select frame into Ibs_loc1 from Mulimedia._tab
where clip_id =12";

exec_statement('select frame into lbs_loc2 from Mulimedia_tab
where clip_id =12 for update”);

exec_statement('select frame into Ibs_loc2 from Multimedia._tab
where clip_id =12 for update");

- Enabile locators for buffered mode access to LOB:
OCILobEnableBuffering(lbs_locl);
OCILobEnableBuffering(lbs_loc2);
OClILobEnableBuffering(lbs_loc3);

- Read 4K bytes through Ibs_loc1 starting from offset 1:
amount = 4096; offset = 1; bufl = 4096;
OCILobRead(.., Ibs_loc1, offset, &amount, buffer, buf,
-
if (exception)
goto exception_handler;
- This will read the first 32K bytes of the LOB from
—the server into a page (call it page_A) inthe LOB's

— client-side buiffer.

—lbs locl is a read consistent locator.

-W nite 4K of the LOB throgh lbs loc2 starting from
—offset1:

amount = 4096; offset = 1; bufl = 4096;

buffer = populate_buffer(4096);

OCILobWrite(.., Ibs_loc2, offset, amount, buffer,
bu, ..),

if (exception)

goto exception_handler;
- This will read the first 32K bytes of the LOB from

2-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

- the server into a new page (call it page_B) in the

-L OB’s buffer, and modiify the contents of this page
- with inputt buffer contents.
—lbs_loc2 is an updated locator.

- Read 20K bytes through Ibs_locl starting from
- offset 10K
amount = 20480; offset = 10240;
OCILobRead(.., Ibs_locl, offset, &amount, buffer,
bufl,)

if (exception)
goto exception_handler;
- Read directly from page A into the user buffer.
— There is no round-trip to the server becauise the

- data is already in the client-side buffer.
—Wii te 20K bytes through Ibs_loc2 starting from offset
10K

amount = 20480; offset = 10240; bufl = 20480;

buffer = populate_buiffer(20480);

OCILobWrite(.., Ibs_loc2, offset, amount, buffer,
bu, ..),

if (exception)
goto exception_handler;
- The contents of the user buffer will now be written
- into page_B without involving a round-trip to the
- server. This avoids making a new LOB version on the
— server and wiiting redo to the log.

- The following write through lbs_loc3 will also
- resultin an error:
amount = 20000; offset = 1000; bufl = 20000;
buffer = populate_buffer(20000);
OCILobWrite(.., Ibs_loc3, offset, amount, buffer,
bufl, ..);

if (exception)
goto exception_handler;
- No two locators can be used to update a buffered LOB
— through the buffering subsystem

- The following update through Ibs_loc3 willalso
—resultin aneror

Advanced Topics 2-23

User Guidelines for Best Performance Practices

OCILobFieCopy(.., Ibs loc3, Ibs loc2, .);

if (exception)
goto exception_handler,
- Locators enabled for buffering cannot be used with

- gperations like Append, Copy, Triim etc.

- When done, flush LOB's buffer to the server:
OCILobFushBuffer(.., Ios _loc2, OCl LOB BUFFER_NOFREE);

if (exception)
goto exception_handler;
- This flushes all the modiiied pages in the LOB's buffer,
- andresets Ibs loc2 from updated to read consistent
- locator. The modiified pages remain in the buffer
- without freeing memory. These pages can be aged
—outifnecessary.

— Disable locators for buffered mode access to LOB */
OClLobDisableBuffering(lbs_locl);
OClLobDisableBuffering(bs_loc2);
OClLobDisableBuffering(lbs_loc3);

if (exception)
goto exception_handler;
- This disables the three locators for buffered access,
- and frees up the LOB's buiffer resouirces.

exception_handler:
handle_exception_reporting 0;
exec_statement('rollback to savepoint lbs_savepoint’);

User Guidelines for Best Performance Practices

» Since LOBs are big, you can obtain the best performance by reading and writing
large chunks of a LOBvalue at a time. This helps in several respects:

a. Ifaccessing the LOBfrom the client side and the client is at a different node
than the server, large reads/writes reduce network overhead.

b. If using the 'NOCACHHption, each small read/write incurs an 1/0.
Reading/writing large quantities of data reduces the 1/0.

2-24 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

LOBs in Index Organized Tables

c. Writing to the LOBcreates a new version of the LOB CHUNKTherefore,
writing small amounts at a time will incur the cost of a new version for each
small write. If logging is on, the CHUNKs also stored in the redo log.

« If you need to read/write small pieces of LOBdata on the client, use LOB
buffering — see OCILobEnableBuffering (), OClLobDisableBuffering 0,
OCILobFlushBuffer (), OClLobWrite (), OCILobRead (). Basically, turn on
LOBbuffering before reading/writing small pieces of LOBdata.

See Also: "LOB Buffering Subsystem" on page 2-14 for more
information on LOBbuffering.

« Use OClLobWrite () and OCILobRead () with a callback so data is streamed
to/from the LOB Make sure that the length of the entire write is set in the
‘amount ' parameter on input. Whenever possible, read and write in multiples
of the LOBchunk size.

« Use a checkout/checkin model for LOBs. LOBs are optimized for the following:
a. SQL UPDATEwhich replaces the entire LOBvalue

b. Copy the entire LOBdata to the client, modify the LOBdata on the client
side, copy the entire LOBdata back to the database. This can be done using
OCIlLobRead () and OCILobWrite () with streaming.

Working with Varying-Width Character Data

In using the OCI, or any of the programmatic environments that access OCI
functionality, character set conversions are implicitly performed when translating
from one character set to another. However, no implicit translation is ever
performed from binary data to a character set. When you use the loadfromfile
operation to populate a CLOBor NCLOByou are populating the LOBwith binary
data from the BFILE . In that case, you will need to perform character set
conversions on the BFILE data before executing loadfromfile

LOBs in Index Organized Tables

Index Organized Tables now support internal and external LOB columns. The SQL
DDL, DML and piecewise operations on LOBs in index organized tables exhibit the

Advanced Topics 2-25

LOBs in Index Organized Tables

same behavior as that observed in conventional tables. The only exception is the
default behavior of LOBs during creation. The main differences are:

« Tablespace mapping: By default, or unless specified otherwise, the LOBs data
and index segments will be created in the tablespace in which the primary key
index segments of the index organized table are created.

« Inline as compared to Out-of-line storage: By default, all LOBs in an index
organized table created without an overflow segment will be stored out of line.
In other words, if an index organized table is created without an overflow
segment, the LOBs in this table have their default storage attributes as DISABLE
STORAGE IN RQWY you forcibly try to specify an ENABLE STORAGE IN ROW
clause for such LOBs, SQL will raise an error.

On the other hand, if an overflow segment has been specified, LOBs in index
organized tables will exactly mimic their behavior in conventional tables (see
"Stipulating Tablespace and Storage Characteristics for Internal Lobs" on
page 3-8 in Chapter 3, "Internal Persistent LOBs").

Consider the following example:

CREATE TABLE iotiob_tab (c1 INTEGER primary key, c2 BLOB, ¢3 CLOB, ¢4
VARCHAR2(20))
ORGANIZATION INDEX
TABLESPACE iot ts
PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
PCTTHRESHOLD 50 INCLUDING c2
OVERFLOW
TABLESPACE ioto_ts
PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
STORE AS lobseg (TABLESPACE lob_ts DISABLE STORAGE INROW
CHUNK 1 PCTVERSION 1 CACHE STORAGE (INITIAL 2m)
INDEX LOBIDX_C1 (TABLESPACE lobidx_ts STORAGE (INITIAL

4AK));

Executing these statements will result in the creation of an index organized table
iotlob_tab with the following elements:

« A primary key index segment in the tablespace iot_ts ,
« Anoverflow data segment in the tablespace ioto_ts

« Columns starting from column C3 being explicitly stored in the overflow data
segment,

« BLOB(column C2) data segments in the tablespace lob_ts

2-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOBs in Index Organized Tables

« BLOB (C2) index segments in the tablespace lobidx_ts

« CLOB (C3) data segments in the tablespace iot_ts ,

« CLOB (C3) index segments in the tablespace iot_ts ,

« the CLOB (C3) stored in line by virtue of the IOT having an overflow segment,
« the BLOB (C2) column explicitly forced to be stored out of line.

Note that, if no overflow had been specified, both C2 and C3 would have been
stored out of line by default.

Other LOBfeatures, such as BFILE s and varying character width LOBs, are also
supported in index organized tables, and their usage is the same as conventional
tables.

Note: Support for LOBs in partitioned index organized tables will
be provided in a future release.

Advanced Topics 2-27

LOBs in Index Organized Tables

2-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

3

Internal Persistent LOBS

In this chapter we describe how to work with internal persistent LOBs in terms of
use cases. That is, we discuss each operation on a LOB(such as "See If a LOBis
Open") in terms of a use case by that name. The table listing all the use cases is
provided at the head of the chapter (see "Use Case Model: Internal Persistent LOBs"
on page 2-2). A summary figure, "Use Case Model Diagram: Internal Persistent
LOBs", locates all the use cases in single drawing. If you are using the HTML
version of this document, you can use this figure to navigate to the use case in
which you are interested by clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

« A figure that depicts the use case (see "Preface" for a description of how to
interpret these diagrams).

« A scenario that portrays one implementation of the use case in terms of the
hypothetical multimedia application described above (see "An Example
Application” on page 1-39 in Chapter 1, "Introduction to Working With LOBs").

« Code examples in each of the programmatic environments which can be
utilized to implement the use case (see "Programmatic Environments for
Operating on LOBs" on page 1-9 in Chapter 1, "Introduction to Working With
LOBs").

Internal Persistent LOBs 3-1

Use Case Model: Internal Persistent LOBs

Use Case Model: Internal Persistent LOBS

Table 3-1 Use Case Model: Internal Persistent LOBs Basic Operations

Use Case and Page

Three Ways to Create a Table Containing a LOB on page 3-6

CREATE a Table Containing One or More LOB Columns on page 3-14
CREATE a Table Containing an Object Type with a LOB Attribute on page 3-18
CREATE a Table with a Nested Table Containing a LOB on page 3-22
Three Ways Of Inserting One or More LOB Values into a Row on page 3-25
INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() on page 3-26
INSERT a Row Containing a LOB as SELECT on page 3-28

INSERT a Row by Initializing a LOB Locator Bind Variable on page 3-30
Load Data into an Internal LOB (BLOB, CLOB, NCLOB) on page 3-38
Load a LOB with Data from a BFILE on page 3-46

See If a LOB Is Open on page 3-56

Copy LONG to LOB on page 3-64

Checkout a LOB on page 3-68

Checkin a LOB on page 3-79

Display the LOB Data on page 3-93

Read Data from the LOB on page 3-104

Read a Portion of the LOB (substr) on page 3-115

Compare All or Part of Two LOBs on page 3-123

See If a Pattern Exists in the LOB (instr) on page 3-131

Get the Length of a LOB on page 3-138

Copy All or Part of a LOB to another LOB on page 3-146

Copy a LOB Locator on page 3-157

See If One LOB Locator Is Equal to Another on page 3-165

See If a LOB Locator Is Initialized on page 3-171

Get Character Set ID on page 3-175

Get Character Set Form on page 3-178

Append One LOB to Another on page 3-181

3-2 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Use Case Model: Internal Persistent LOBs

Use Case and Page

Write Append to a LOB on page 3-191

Write Data to a LOB on page 3-200

Trim the LOB Data on page 3-216

Erase Part of a LOB on page 3-226

Enable LOB Buffering on page 3-235

Flush Buffer on page 3-241

Disable LOB Buffering on page 3-246

Three Ways to Update a LOB on page 3-254

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() on page 3-255
UPDATE as SELECT on page 3-257

UPDATE by Initializing a LOB Locator Bind Variable on page 3-258
DELETE the Row of a Table Containing a LOB on page 3-266

Internal Persistent LOBs 3-3

Use Case Model: Internal Persistent LOBs

Figure 3—-1 Use Case Model Diagram

: Internal Persistent LOBs (part 1 of 2)

CREATE
atable
(LOB)

UPDATE
the row/entire
LOB data

DELETE
the row

L

-

Internal persistent LOBs (part 1 of 2)

open
a BFILE

load a LOB
with data
from a BFILE

INITIALIZE
BFILE
locator

“

H OCI Lob
R" FileSet Name

checkin

alLOB

checkout

alLOB

write data
to the LOB

LR TN

S
&
=

read data
from the LOB

L R PN
Q
o
e}
®
>
(o8

3
-

I
k:

User/

enable
buffering

get
chunk size

Program

H

display
the LOB
data

A

disable
buffering

close
a BFILE

close

all BFILES

3-4 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Use Case Model: Internal Persistent LOBs

User/
Program

Figure 3-2 Use Case Model Diagram: Internal Persistent LOBs (part 2 of 2)

Internal persistent LOBs (part 2 of 2)

OPEN
alLOB

CLOSE
alLOB

SELECT
alLOB

load
initial data into

the LOB

copy
LONG to LOB

4'4. see if locators
4"4'_:" are equal
+¢

4----

get character
set ID

get character
set form

see if locator
is initialized

copy
LOB locator

see if
LOB is open

<%

copy all or
part of a LOB to
another LOB

get the
length of
the LOB

—1l

User/
Program
compare all
or parts of ||
2 LOBs

erase part
of a LOB

see where/if
a pattern exists
in the LOB
(instr)

read a
portion of the
LOB from the
table (substr)

trim the
LOB data

append one
LOB to
another

Internal Persistent LOBs 3-5

Three Ways to Create a Table Containing a LOB

Three Ways to Create a Table Containing a LOB

Figure 3-3 Use Case Diagram: Three ways to CREATE a Table Containing a LOB

Internal persistent LOBs

CREATE
a table
(LOB)

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

It is possible to incorporate LOBs into tables in three ways.

a. LOBs may be columns in a table — see "CREATE a Table Containing One or
More LOB Columns" on page 3-14.

b. LOBs may be attributes of an object type — see "CREATE a Table
Containing an Object Type with a LOB Attribute" on page 3-18.

c. LOBs may be contained within a nested table — see "CREATE a Table with
a Nested Table Containing a LOB" on page 3-22.

In all cases SQL DDL is used — to define LOBcolumns in a table and LOBattributes
in an object type.

3-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Issues to Consider in Creating Tables that Will Contain LOBs

Issues to Consider in Creating Tables that Will Contain LOBs

Initializing Internal LOBs to NULL or Empty

You can set an internal LOB— that is, a LOBcolumn in a table, or a LOBattribute in
an object type defined by you— to be NULLor empty. A LOB set to NULL has no
locator. By contrast, an empty LOBstored in a table is a LOBof zero length that has a
locator. So, if you SELECTfrom an empty LOBcolumn 7 attribute, you get back a
locator which you can use to populate the LOBwith data via the OCl or DBMS_LOB
routines. This is discussed in more detail below.

Alternatively, LOBcolumns, but not LOBattributes, may be initialized to a value.
Which is to say — internal LOBattributes differ from internal LOBcolumns in that
LOBattributes may not be initialized to a value other than NULL or empty. As
discussed below, an external LOB(i.e. BFILE) can be initialized to NULLor to

a filename.

You can initialize the LOBs in Multimedia_tab by using the following SQL
INSERT statement:

INSERT INTO Mulimedia._tab VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of story, flsub, frame and sound to an empty value, and sets photo,
and music to NULL

Setting a LOB to NULL

You may want to set the internal LOBvalue to NULL upon inserting the row in cases
where you do not have the LOBdata at the time of the INSERT and/or if you want
to issue a SELECTstatement at some later time such as:

SELECT COUNT (*) FROM Voiced_tab WHERE Recording IS NOT NULL;

because you want to see all the voice-over segments that have been recorded, or
SELECT COUNT (*) FROM Voiced_tab WHERE Recording IS NULL;

if you wish to establish which segments still have to be recorded.

However, the drawback to this approach is that you must then issue a SQL UPDATE
statement to reset the null LOBcolumn — to EMPTY_BLOB /JEMPTY_CLOB or to a
value (e.g. 'Denzel Washington’) for internal LOBs, or to a filename for external
LOBs. The point is that you cannot call the OCI or the PL/SQL DBMS_LOBunctions

Internal Persistent LOBs 3-7

Issues to Consider in Creating Tables that Will Contain LOBs

on a LOBthat is NULL. These functions only work with a locator, and if the LOB
column is NULL, there is no locator in the row.

Setting an Internal LOB to Empty

If you do not want to set an internal LOBcolumn to NULL, another option is for you
to set the LOBvalue to empty by using the function EMPTY_BLOH) /JEMPTY _
CLOR) in the INSERT statement:

INSERT INTO a_table VALUES (EMPTY_BLOBY();

Even better is to use the returning clause (thereby eliminating a round trip that is
necessary for the subsequent SELECT), and then immediately call OCI or the
PL/SQL DBMS_LOBunctions to populate the LOBwith data.

DECLARE
Lob_loc BLOB;

BEGIN
INSERT INTO a_table VALUES (EMPTY_BLOB()) RETURNING blob_col INTO Lob_loc;
/*Now use the locator Lob _loc to populate the BLOB with data %/

END;

Stipulating Tablespace and Storage Characteristics for Internal Lobs

When defining LOBs in a table, you can explicitly indicate the tablespace and
storage characteristics for each internal LOB There are no extra tablespace or
storage characteristics for external LOBs since they are not stored in the database. If
you later wish to modify the LOBstorage parameters, use the MODIFY LOB:lause of
the ALTER TABLEcommand. For example:

CREATE TABLE ContainsLOB._tab (n NUMBER, ¢ CLOB)
lob () STORE AS (CHUNK 4096
PCTVERSION 5
NOCACHE LOGGING
STORAGE (MAXEXTENTS 5)

)

Specifying a name for the LOBdata segment makes for a much more intuitive
working environment. When querying the LOBdata dictionary views USER_LOBS
ALL_LOBS DBA_LOBSYsee Oracle8i Reference), you see the LOBdata segment that
you chose instead of system-generated names.

The LOBstorage characteristics that can be specified for a LOBcolumn or a LOB
attribute include PCTVERSIONCACHENOCACHHE.OGGINGNOLOGGINGCHUNK

3-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Issues to Consider in Creating Tables that Will Contain LOBs

and ENABLEDISABLE STORAGE IN RQWbr most users, defaults for these storage
characteristics will be sufficient. If you want to fine-tune LOB storage, you should
consider the following guidelines.

Tablespace and LOB Index

Best performance for LOBs can be achieved by specifying storage for LOBs in a
tablespace that is different from the one used for the table that contains the LOB If
many different LOBs will be accessed frequently, it may also be useful to specify a
separate tablespace for each LOBcolumn/attribute in order to reduce device
contention.

The LOBindex is an internal structure that is strongly associated with the LOB
storage. This implies that a user may not drop the LOBindex and rebuild it. Note
that the LOBindex cannot be altered. The system determines which tablespace to
use for the LOBdata and LOBindex depending on the user specification in the LOB
storage clause:

« If you do not specify a tablespace for the LOBdata, the table's tablespace is used
for the LOBdata and index.

« If you specify a tablespace for the LOBdata, both the LOBdata and index use
the tablespace that was specified.

If in creating tables in 8.1 you specify a tablespace for the LOBindex for a
non-partitioned table, your specification of the tablespace will be ignored and the
LOBindex will be co-located with the LOBdata. Partitioned LOBs do not include the
LOBindex syntax.

Specifying a separate tablespace for the LOBstorage segments will allow for a
decrease in contention on the table's tablespace.

PCTVERSION

When a LOBis modified, a new version of the LOBpage is made in order to support
consistent read of prior versions of the LOBvalue.

PCTVERSIONs the percentage of all used LOBdata space that can be occupied by
old versions of LOBdata pages. As soon as old versions of LOBdata pages start to
occupy more than the PCTVERSIONamount of used LOBspace, Oracle will try to
reclaim the old versions and reuse them. In other words, PCTVERSIONSs the
percent of used LOBdata blocks that is available for versioning of old LOBdata.

Default: 10 (%) Minimum: 0 (%) Maximum: 100 (%)

Internal Persistent LOBs 3-9

Issues to Consider in Creating Tables that Will Contain LOBs

In order to decide what value PCTVERSIONshould be set to, you should consider
how often LOBs are updated, and how often you read the updated LOB:s.

Table 3-2 Recommended PCTVERSION Settings in Different Cases

LOB Update Pattern LOB Read Pattern PCTVERSION
Updates XX% of LOBdata Reads updated LOBs XX%
Updates XX% of LOBdata Reads LOBs but not the updated LOBs 0%

Updates XX% of LOBdata Reads both LOBs and non-updated LOB ~ XX%
Never updates LOB Reads LOBs 0%

Example 1:
Several LOB updates concurrent with heavy reads of LOBs.

set PCTVERSION: 20%

Setting PCTVERSIONo twice the default allows more free pages to be used for old
versions of data pages. Since large queries may require consistent reads of LOBs, it
may be useful to retain old versions of LOBpages. In this case LOBstorage may
grow because Oracle will not reuse free pages aggressively.

Example 2:
LOBs are created and written just once and are primarily read-only afterwards.
Updates are infrequent.

set PCTVERSION = 5% or lower

The more infrequent and smaller the LOBupdates are, the less space needs to be
reserved for old copies of LOBdata. If existing LOBs are known to be read-only, you
could safely set PCTVERSIONO 0% since there would never be any pages needed
for old versions of data.

CACHE / NOCACHE

Use the CACHEBEoption on LOBs if the same LOBdata will be accessed frequently. Use
the NOCACHRBption (the default) if LOBdata will be read only once, or infrequently.

LOGGING / NOLOGGING

[N LOGGINGhas a similar application with regard to using LOBs as it does for
other table operations. In the normal case, if the [NQLOGGING:lause is omitted, this
means that neither NO LOGGIN@Gor LOGGINGS specified and the logging attribute

3-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Issues to Consider in Creating Tables that Will Contain LOBs

of the table or table partition defaults to the logging attribute of the tablespace in
which it resides.

For LOBs, there is a further alternative depending on how CACHBHs stipulated.

. If the [NQLOGGINGelause is omitted and CACHBHs specified, LOGGINGSs
automatically implemented (because you cannot have CACHE NOLOGGING

« If the [NQLOGGINGlause is omitted and CACHBHSs not specified, the process
defaults in the same way as it does for tables and partitioned tables. That is, the
[NQLOGGINGvalue is obtained from the tablespace in which the LOBvalue
resides.

The following issues should also be kept in mind.

« LOBs will always generate undo for LOBindex pages. Regardless of whether
LOGGINGor NOLOGGINGs set LOBs will never generate rollback information
(undo) for LOBdata pages because old LOBdata is stored in versions. Rollback
information that is created for LOBs tends to be small because it is only for the
LOBindex page changes.

« When LOGGINGS set Oracle will generate full redo for LOBdata pages.
NOLOGGINGs intended to be used when a customer does not care about media
recovery. Thus, if the disk/tape/storage media fails, you will not be able to
recover your changes from the log since the changes were never logged.

An example of when NOLOGGINGs useful is bulk loads or inserts. For instance,
when loading data into the LORB if you don't care about redo and can just start
the load over if it fails, set the LOBs data segment storage characteristics to
NOCACHE NOLOGGINKhis will give good performance for the initial load of
data. Once you have completed loading the data, you can use ALTER TABLEto
modify the LOBstorage characteristics for the LOBdata segment to be what you
really want for normal LOBoperations -- i.e. CACHEOr NOCACHE LOGGING

Note: CACHEmMplies that you also get LOGGING

CHUNK

Set CHUNKo the number of blocks of LOBdata that will be accessed at one time i.e.
the number of blocks that will be read/written via OCILobRead() ,

OClLobWrite() ,DBMS_LOBREAD(), or DBMS_LOBVRITE() during one access of
the LOBvalue. Note that the default value for CHUNKs one Oracle block and does
not vary across platforms. For example, if only one block of LOBdata is accessed at

Internal Persistent LOBs 3-11

Issues to Consider in Creating Tables that Will Contain LOBs

a time, set CHUNHKo the size of one block. For example, if the database block size is
2K, then set CHUNKo 2K.

If you explicitly specify the storage characteristics for the LOB make sure that
INITIAL and NEXTfor the LOBdata segment storage are set to a size that is larger
than the CHUNISize. For example, if the database block size is 2K and you specify a
CHUNKof 8K, make sure that the INITIAL and NEXTare bigger than 8K and
preferably considerably bigger (for example, at least 16K).

Put another way: If you specify a value for INITIAL, NEXT or the LOB CHUNK
size, make sure that:

« CHUNK=NEXT
and
« CHUNK-=INITIAL

ENABLE | DISABLE STORAGE IN ROW

You use the ENABLE| DISABLE STORAGE IN ROWause to indicate whether the
LOBshould be stored inline (i.e. in the row) or out of line. You may not alter this
specification once you have made it: if you ENABLE STORAGE IN ROYgu cannot
alter it to DISABLE STORAGE IN RO¥vd vice versa. The default is ENABLE
STORAGE IN RQW

The maximum amount of LOBdata that will be stored in the row is the maximum
VARCHARIze (4000). Note that this includes the control information as well as the
LOBvalue. If the user indicates that the LOBshould be stored in the row, once the
LOBvalue and control information is larger than 4000, the LOBvalue is
automatically moved out of the row.

This suggests the following guideline. If the LOBis small (i.e. < 4000 bytes), then
storing the LOBdata out of line will decrease performance. However, storing the
LOBIn the row increases the size of the row. This will impact performance if the
user is doing a lot of base table processing, such as full table scans, multi-row
accesses (range scans) or many UPDATEZ SELECTto columns other than the LOB
columns. If the user doesn't expect the LOBdata to be < 4000, i.e. if all LOBs are big,
then the default is the best choice since

(a) the LOBdata is automatically moved out of line once it gets bigger than 4000
(which will be the case here since the LOBdata is big to begin with), and

(b) performance will be slightly better since we still store some control
information in the row even after we move the LOBdata out of the row.

3-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Issues to Consider in Creating Tables that Will Contain LOBs

For LOBs in index organized tables, inline LOB storage is allowed only if the table is
created with an overflow segment (see "LOBs in Index Organized Tables" on
page 2-25 in Chapter 2, "Advanced Topics").

Internal Persistent LOBs 3-13

CREATE a Table Containing One or More LOB Columns

CREATE a Table Containing One or More LOB Columns

Figure 3—4 Use Case Diagram: CREATE a Table Containing a LOB Column

Internal persistent LOBs

CREATE
a table (LOB
columns)

- _fl e CREATE table with one or more LOBs

X

User/
Program
To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:
« "Use Case Model: Internal Persistent LOBs" on page 3-2
Scenario

The heart of our hypothetical application is the table Multimedia_tab . The varied
types which make up the columns of this table make it possible to collect together
the many different kinds multimedia elements used in the composition of clips.

3-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing One or More LOB Columns

Figure 3-5 MULTIMEDIA_TAB as Example of Creating a Table Containing a LOB
Column

Column Name Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table Audio | Object Type ¥
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—H

I’ PK

Key Type

Example: Create a Table Containing One or More LOB Columns using SQL DDL

Note:

certain examples to work:

CONNECT system/manager;
DROP USER samp CASCADE;
DROP DIRECTORY AUDIO _DIR;
DROP DIRECTORY FRAME DIR;
DROP DIRECTORY PHOTO _DIR;

CREATE USER samp identified by samp;
GRANT CONNECT, RESOURCE to samp;
CREATE DIRECTORY AUDIO_DIR AS "fmp/;
CREATE DIRECTORY FRAME _DIR AS 'tmp/;
CREATE DIRECTORY PHOTO_DIR AS 'fmp/;

GRANT READ ON DIRECTORY AUDIO_DIR to samp;

GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;

You may need to set up the following data structures for

Internal Persistent LOBs 3-15

CREATE a Table Containing One or More LOB Columns

Note (continued):
CONNECT samp/samp
CREATE TABLE a_table (blob_col BLOB);
CREATE TYPE Voiced_typ AS OBJECT (
Originator VARCHAR2(30),
Script CLOB,
Actor VARCHAR2(30),
Take NUMBER,
Recording BFILE

)

CREATE TABLE VoiceoverLib_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB),
CONSTRAINT TakeLio CHECK (Take IS NOT NULL),
Recording DEFAULT NULL

)

CREATE TYPE InSeg_typ AS OBJECT (
Segment NUMBER,
Interview_Date DATE,

Interviewer VARCHAR2(30),
Interviewee VARCHAR2(30),
Recording BFILE,
Transcript CLOB

)

CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;
CREATE TYPE Map_typ AS OBJECT (
Region VARCHAR2(30),
NW NUMBER,
NE NUMBER,
SW NUMBER,
SE NUMBER,
Drawing BLOB,
Aerial BFILE
)
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced typ (
Script DEFAULT EMPTY_CLORB(),
CONSTRAINT Take CHECK (Take IS NOT NULL),
Recording DEFAULT NULL

)

3-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing One or More LOB Columns

Since one can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS_LOBRackage.

CREATE TABLE Mulimedia_tab (
Clp ID NUMBER NOT NULL,
Story CLOB default EMPTY_CLOB),
FLSub NCLOB default EMPTY_CLOB(),
Photo BFILE default NULL,
Frame BLOB default EMPTY_BLOBY(),
Sound BLOB default EMPTY_BLOBY(),
Voiced ref REF Voiced typ,
INSeg_ntab InSeg_tab,
Music BFILE default NULL,
Map_obj Map_typ

)NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

Notes

« The result of using the functions EMPTY_BLOR) and EMPTY_CLO@g means
that the LOB is initialized, but not populated with data. LOBs that are empty
are not null, and vice versa. This topic is discussed in more detail in "INSERT a
LOB Value using EMPTY_CLOB() or EMPTY_BLOB()" on page 3-26.

« For information about creating nested tables that have ore or more columns of
LOB datatype see "CREATE a Table with a Nested Table Containing a LOB" on
page 3-22

« The creation of an object column containing one or more LOBs is discussed
under the heading "CREATE a Table Containing an Object Type with a LOB
Attribute" on page 3-18.

For more information see:

« Oracle8i SQL Reference for a complete specification of the
syntax for using LOBs in the DDL commands CREATE TABLE
and ALTER TABLEwith:

- BLOB , CLOB NCLOBand BFILE columns
- EMPTY_BLOB and EMPTY_CLOBunctions

-LOB storage clause for internal LOBcolumns, and LOB
attributes of embedded objects

Internal Persistent LOBs 3-17

CREATE a Table Containing an Object Type with a LOB Attribute

CREATE a Table Containing an Object Type with a LOB Attribute

Figure 3-6 Use Case Diagram: Create a table Containing an Object Type as a LOB
Attribute

Internal persistent LOBs

CREATE
a table
(Object Type)

- [@) CREATE table with an object
type containing a LOB

CREATE
> Obiject Type

User/
Program

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

As shown in the diagram, you must create the object type that contains the LOB
attributes before you can proceed to create a table that makes use of that object type.

Our example application contains examples of two different ways in which object
types can contain LOBs:

« Multimedia_tab contains a column Voiced_ref that references row objects
in the table VoiceOver_tab which is based on the type Voiced_typ . This
type contains two kinds of LOBs — a CLOBto store the script that’s read by the
actor, and a BFILE to hold the audio recording.

3-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute

« The table Multimedia_tab

contains a column Map_obj that contains column

objects of the type Map_typ. This type utilizes the BLOBdatatype for storing
maps in the form of drawings.

Figure 3—-7 VOICED_TYP As An Example of Creating a Type Containing a LOB

Column Name

Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table | Audio | Object Type§-
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE [MAP_TYP—F
I’ PK |
Key Reference to a row Type

object of a table of

the defined type
|
Table VOICEOVER_TAB (of VOICED_TYP)
ORIGINATOR | SCRIPT | ACTOR TAKE RECORDING
Text Text Text Number Audio
VARCHAR2(30) [cLOB | vARCHAR2(30)| NUMBER | BFILE
PK PK

Example: Create a Table Containing an Object Type with a LOB Attribute Using SQL

DDL

/*Create type Voiced typ as a basis for tables that can contain recordings of
voice-over readings using SQL DDL: %/
CREATE TYPE Voiced_typ AS OBJECT (

Originator VARCHAR2(30),
Scipt CLOB,

Actor VARCHAR2(30),
Take NUMBER,

Recording BFILE

Internal Persistent LOBs 3-19

CREATE a Table Containing an Object Type with a LOB Attribute

/*Create table Voiceover_tab Using SQL DDL: %
CREATE TABLE Voiceover_tab of Voiced typ (
Script DEFAULT EMPTY_CLORB(),
CONSTRAINT Take CHECK (Take IS NOT NULL),
Recording DEFAULT NULL
)

Figure 3-8 MAP_TYP As An Example of Creating a Type Containing a LOB

Column Name

Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table Audio | Object Type §
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—f
I’ PK |
Key Reference to a row Type
object of a table of
the defined type)
Column Object of
the defined type
Column Object MAP_OBJ (of MAP_TYP)
REGION | NW | NE | SwW | SE | DRAWING | AERIAL
Text Number Number Number Number Map Photo
VARCHAR2(30) | NUMBER NUMBER NUMBER NUMBER BLOB BFILE
To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:
« "Use Case Model: Internal Persistent LOBs" on page 3-2
3-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute

/*Create Type Map _typ using SQL DDL as a basis for the table that will contain
the column object:
CREATE TYPE Map_typ AS OBJECT (
Region VARCHAR2(30),
NW NUMBER,
NE NUMBER,
SW NUMBER,
SE NUMBER,
Drawing BLOB,
Aerial BFILE
)

/*Create support table MapLib_tab as an archive of maps using SQL DDL: %
CREATE TABLE MapLib_tab of Map_typ;

For more information see:

« Oracle8i SQL Reference for a complete specification of the
syntax for using LOBs in the DDL commands CREATE TYPE
and ALTER TYPEwith BLOB CLOB and BFILE attributes
(noting that NCLOB cannot be attributes of an object type).

Internal Persistent LOBs 3-21

CREATE a Table with a Nested Table Containing a LOB

CREATE a Table with a Nested Table Containing a LOB

Scenario

User/
Program

Figure 3-9 Use Case Diagram: Create a table with a Nested Table Containing a LOB

Internal Persistent LOBs

CREATE
a table
(Nested Table)

- e CREATE table with an nested
table containing a LOB

CREATE
> Object Type

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

As shown in the diagram, you must create the object type that contains the LOB
attributes before you can proceed to create a nested table based on that object type.

In our example, Multimedia_tab contains a nested table Inseg_ntab thatis
based on the type InSeg_typ . This type makes use of two LOB datatypes — a
BFILE for audio recordings of the interviews, and a CLOBshould the user wish to
make transcripts of the recordings.

We have already described how to create a table with LOB columns (see "CREATE a
Table Containing One or More LOB Columns" on page 3-14), so here we only
describe the SQL DDL syntax the creating the underlying type:

3-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table with a Nested Table Containing a LOB

Figure 3-10 INTERVIEWSEGMENTS_NTAB As An Example of Creating a Nested Table
Containing a LOB

Column Name Kind of Data

Table MULTIMEDIA_TAB

CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ

Number Text Text Photo Video Audio Reference Nested Table | Audio | Object Type-
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—

I—PK

Key

Type
Nested Table of the
defined type

Table INTERVIEWSEGMENTS_NTAB

SEGMENT INTERVIEW_DATE | INTERVIEWER | INTERVIEWEE | RECORDING | TRANSCRIPT
Number Date Text Text Audio Text
NUMBER DATE VARCHAR2(30) | VARCHAR2(30) | BFILE CLOB

PK

Example: Create a Table with a Nested Table Containing a LOB Using SQL DDL

/*Create atype InSeg_typ as the base type for the nested table containing
alLoB:%

CREATE TYPE InSeg_typ AS OBJECT (
Segment NUMBER,
Interview_Date DATE,
Interviewer VARCHAR2(30),
Interviewee VARCHAR2(30),
Recording BFILE,
Transcript CLOB
)
/* Type created, but need a nested table of that type to embed in

muli_media_tab; so: %
CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;

Internal Persistent LOBs 3-23

CREATE a Table with a Nested Table Containing a LOB

The actual embedding of the nested table is accomplished when the structure of the
containing table is defined. In our example, this is effected by means of the
following statement at the time that Multimedia_tab is created.

NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

3-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways Of Inserting One or More LOB Values into a Row

Three Ways Of Inserting One or More LOB Values into a Row

Figure 3—-11 Three Ways of Inserting LOB Values into a Row

Internal persistent LOBs

User/
Program

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBSs" on page 3-2

There are three different ways of inserting LOB values into a row:

a. LOBs may be inserted into a row by first initializing a locator — see
"INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()" on
page 3-26

b. LOBs may be inserted by selecting a a row from another table— see
"INSERT a Row Containing a LOB as SELECT" on page 3-28.

c. LOBs may be inserted by first initializing a LOB locator bind variable — see
"INSERT a Row by Initializing a LOB Locator Bind Variable" on page 3-30.

Internal Persistent LOBs 3-25

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

Figure 3-12 Use Case Diagram: INSERT a Row using EMPTY_CLOB() or EMPTY _
BLOB()

Internal Persistent LOBs

- |é| @ INSERT using Empty_CLOB() or Empty_BLOB()

3-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Making a LOB Column Non-Null

Before you can start writing data to an internal LOB the LOBcolumn must be made
non-null; that is, it must contain a locator that points to an empty or populated LOB
value. You can initialize a BLOBcolumn’s value by using the function EMPTY _
BLOR) as a default predicate. Similarly, a CLOBor NCLOBcolumn’s value can be
initialized by using the function EMPTY_CLOB. You can perform this initialization
during CREATE TABLE(see "CREATE a Table Containing One or More LOB
Columns") or, as in this case, by means of an INSERT.

Example: Insert a Value by means of EMPTY_CLOB() / EMPTY_BLOB() using SQL

These functions are available as special functions in Oracle8 SQL DML, and are not
part of the DBMS_LOBRpackage.

/*Inthe new row of table Multimedia_tab,
the columns STORY and FLSUB are initialized using EMPTY _CLOB(),
the columns FRAME and SOUND are initialized using EMPTY _BLOB(),
the column TRANSSCRIPT in the nested table is initalized using EMPTY _CLOB(),
the column DRAWING in the column object is inifalized using EMPTY _BLOB(): %/
INSERT INTO Muttimedia._tab
VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(), EMPTY_BLOB(),
NULL, InSeg_tab(InSeg_typ(1, NULL, Ted Koppell, "Jimmy Carter’, NULL,
EMPTY_CLOB())), NULL, Map_typ(Moon Mountain', 23, 34, 45, 56, EMPTY_BLOB(),
NULL));

/*Inthe new row of table Voiceover _tab, the column SCRIPT is initialized using
EMPTY _CLOB(): %

INSERT INTO Voiceover_tab
VALUES (Abraham Lincoln’, EMPTY_CLOBY(), James Earl Jones, 1, NULL);

Internal Persistent LOBs 3-27

INSERT a Row Containing a LOB as SELECT

INSERT a Row Containing a LOB as SELECT

Scenario

Figure 3-13 Use Case Diagram: Insert a Row as SELECT

Internal Persistent LOBs

- |A @ NsERTas SELECT

SELECT
alLOB

v

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

With regard to LOBs, one of the advantages of utilizing an object-relational
approach is that you can define a type as a common template for related tables. For
instance, it makes sense that both the tables that store archival material and the
working tables that use those libraries share a common structure. The following
code fragment is based on the fact that a library table VoiceoverLib_tab is of the
same type (Voiced_typ) as Voiceover_tab referenced by the Voiced_ref
column of the Multimedia_tab table. It inserts values into the library table, and
then inserts this same data into Multimedia_tab by means of a SELECT
operation.

Note that the internal LOBtypes — BLOB CLOB and NCLOB— use copy semantics, as
opposed to the reference semantics that apply to BFILE s. When a BLOB CLOB or
NCLOBs copied from one row to another row in the same table or in a different
table, the actual LOBvalue is copied, not just the LOBIlocator. For example,
assuming Voiceover_tab and VoiceoverLib_tab have identical schemas, the

3-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a LOB as SELECT

statement creates a new LOBIlocator in the table Voiceover_tab , and copies the
LOBdata from VoiceoverLib_tab to the location pointed to by a new LOBIlocator
which is inserted in table Voiceover_tab

Example: Insert a Row by Selecting from Another Table Using SQL DML

/*Store records in the archive table VoiceoverLib_tab: %/
INSERT INTO VoiceoverLib_tab
VALUES (George Washington', EMPTY_CLOB(), 'Robert Redford’, 1, NULL);

/*Insert values into Voiceover_tab by selecting from VoiceoverLib_tab: %/
INSERT INTO Voiceover_tab
(SELECT *from VoiceoverLib_tab
WHERE Take = 1);

Internal Persistent LOBs 3-29

INSERT a Row by Initializing a LOB Locator Bind Variable

INSERT a Row Dby Initializing a LOB Locator Bind Variable

Figure 3-14 Use Case Diagram: INSERT a Row by Initializing a LOB Locator Bind
Variable

Internal Persistent LOBs

- - |é| O INSERT by Initializing a LOB locator bind variable

Initialize
a LOB locator
bind variable

SELECT
alLOB

v

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

In this example we use a LOBlocator bind variable to take Sound data that is in one
row of Multimedia_tab and insert it into another row.

« "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using SQL
DML" on page 3-31

« "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C
(OCI)" on page 3-31

« "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using
Pro*COBOL" on page 3-33

3-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Initializing a LOB Locator Bind Variable

« "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C++
(Pro*C/C++)" on page 3-35

« "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using
Visual Basic (O040)" on page 3-36

« "Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Java
(JDBC)" on page 3-36

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using SQL DML

/* Note that the example procedure insertUseBindVariable_proc is not part of the
DBMS_LOB package: ¥/

CREATE OR REPLACE PROCEDURE insertUseBindVariable_proc
(Rownum IN NUMBER, Blob_loc IN BLOB) IS

BEGIN
INSERT INTO Mulimedia._tab (Clip_ID, Sound) VALUES (Rownum, Blob_loc);

END;

DECLARE
Blob_loc BLOB;
BEGIN
/* Select the LOB from the row where Clip_ID =1,
Initalize the LOB locator bind variable: %/
SELECT Sound INTO Blob_loc
FROM Mulimedia_tab
WHERE Clip_ID=1;
/Insertinto the rowwhere Clip_ID=2:%
insertUseBindVariable_proc (2, Blob_loc);
COMMIT;
END;

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C (OCl)
/* Select the locator into a locator variable %/

sb4 select Multimedialocator (Lob_loc, ehp, stmthp, svchp)
OClLobLocator*Lob _loc;

OCIEmor *enhp;

OCIstmt *stmthp;

OCISveCtx *svchp;

{

OCIDefine *defnpl;

Internal Persistent LOBs 3-31

INSERT a Row by Initializing a LOB Locator Bind Variable

text *sqlstmt =
(text*)'SELECT Sound FROM Mutimedia_tab WHERE Clip_ID=1"

/* Prepare the SQL staterment ¥/

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sglstmt,
(ub4)strien((char *)sqlstmt),
(UbAOCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Define the column being selected ¥/
checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, erhp, (ub4) 1,
(dvoid *&Lob_loc, (sb4)0,
(Ub2)SQLT_BLOB,(dvoid *0, (ub2 *0, (ub2 0,
(ub4)OCI_DEFAULT));

/* Executte and fetch one row ¥/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, erhp, (ub4) 1, (ub4) O,
(CONST OClISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT));

retum (Q);

}
/*Insert the selected Locator into table using Bind Variables.

This function selects a locator from the Mulimedia_tab and inserts
itinto the same table in another row.
4
void insertUseBindVariable (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIEmor *enhp;
OCISvcCtx *svchp;
OCISmt *stmthp;
{
int clipid;
OCILobLocator *Lob_loc;
OCIBind *bndhp2;
OCIBind *bndhpl;

text *insstmt=
(text*) "INSERT INTO Muttimedia_tab (Clip_ID, Sound) VALUES (1, 2)";

/*Allocate locator resources %
(void) OClIDescriptorAlloc((dvoid *) envhp,
(dvoid *) &Lob loc, (Ub4)OCI_DTYPE_LOB,

3-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Initializing a LOB Locator Bind Variable

(size_1) 0, (dvoid **) O);

/* Select a LOB locator from the Mulimedia Table %/
select_ Mulimedialocator(Lob_loc, errhp, stmthp, svchp);

/* Insert the locator into the Multimedia_tab with Clip_ID=2%
clipid=2;

/* Prepare the SQL statement ¥/

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (Ub4)
stien((char *) insstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/*Binds the bind positions %
checkerr (errhp, OCIBindByPos(stmthp, &bndhpl, errhp, (Ub4) 1,
(dvoid *) &clipid, (sh4) sizeof{clipid),
SQLT_INT, (dvoid *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4*) O, (Ub4) OCI_DEFAULT));
checkerr (errhp, OCIBindByPos(stmthp, &bndhp2, errhp, (ub4) 2,
(dvoid*) &Lab_loc, (sb4) 0, SQLT_BLOB,
(cdvoid*) O, (b2)0, (ub2*)0,
(ub4) O, (Ub4*) 0, (ub4) OCI_DEFAULT));

/* Execute the SQL staterment ¥/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, erhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

/* Free LOB resources”/
OClDescriptorFree((dvoid *) Lob_loc, (ub4) OCl_ DTYPE_LOBY);

}

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Pro*COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. INSERT-LOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 BLOB1 SQL-BLOB.
01 USERID PIC X(11) VALUES "USERT/USER1".

Internal Persistent LOBs 3-33

INSERT a Row by Initializing a LOB Locator Bind Variable

EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
INSERT-LOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Initialize the BLOB locator
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

*Popuiate the LOB
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL
SELECT SOUND INTO :BLOBL
FROM MULTIMEDIA TABWHERE CLIP_ID=1
END-EXEC.

* Insert the value with CLIP_ID of 2.
EXEC SQL
INSERT INTO MULTIMEDIA _TAB (CLIP_ID, SOUND)
VALUES (2, :-BLOB1)
END-EXEC.

* Free resources held by locator

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.

EXEC SQL COMMIT WORK END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.

3-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Initializing a LOB Locator Bind Variable

STOP RUN.

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C++

(Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglerm.sglenml, sglca.sglermm.saglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void insertUseBindVariable_proc(Rownum, Lob_loc)
int Rownum;
OCIBlobLocator *L.ob _loc;
{
EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL INSERT INTO Mulimedia_tab (Clip_ID, Sound)
VALUES (:Rownum, :Lob_loc);
}

void insertBLOB_procy()

{
OCIBlobLocator *Lob _loc;

/* Initialize the BLOB Locator:

EXEC SQL ALLOCATE :Lob_loc;

/* Select the LOB from the rowwhere Clip_ID=1:%

EXEC SQL SELECT Sound INTO :Lob_loc
FROM Multimedia_tab WHERE Clip_ID =1,

/*Insertinto the rowwhere Clip_ID=2:%

insertUseBindVariable_proc(2, Lob_loc);

/* Release resources held by the locator: %/

EXEC SQL FREE :Lob loc;

}

void main()

{

Internal Persistent LOBs 3-35

INSERT a Row by Initializing a LOB Locator Bind Variable

char *samp ="samp/samp";

EXEC SQL CONNECT :samp;
insertBLOB_proc();

EXEC SQL ROLLBACK WORK RELEASE;

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Visual Basic

(0040)

Dim OraDyn as OraDynaset, OraSoundl as OraBLOB, OraSoundClone as OraBLOB

Set OraDyn = OraDb.CreateDynaset(
"SELECT * FROM Mulimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)

Set OraSound1 = OraDyn.Fields('Sound").Value
‘Clone it for future reference
Set OraSoundClone = OraSound1

‘Go to Next row
OraDyn.MoveNext

Lets update the current row and set the LOB to OraSoundClone
OraDyn.Edit

Set OraSound1 = OraSoundClone

OraDyn.Update

Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Java (JDBC)

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver,

public class Ex2_31

{
public static void main (String args [])

3-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Initializing a LOB Locator Bind Variable

throws Exception

// Load the Oracle JDBC diiver
Class.forName ("oracle jdbc.driver.OracleDriver");

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp’);

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try
{
ResultSet rset = stmt.executeQuery (
"SELECT sound FROM mulimedia._tab WHERE clip_id=1");
if (rsetnext())

I retrieve the LOB locator from the ResultSet
BLOB sound_blob = ((OracleResultSet)rset).getBLOB (1);

OraclePreparedStatement ops =
(OraclePreparedStatement) conn.prepareStatement(
"INSERT INTO muttimedia_tab (clip_id, sound) VALUES (2, ?)");

ops.setBlob(1, sound_blob);
ops.execute();
conn.commit();
conn.close();
}
}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-37

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

Figure 3-15 Use Case Diagram: Load the Initial Data into the Internal LOB

Internal persistent LOBs

X

User/
Program

load
initial data into
the LOB

To refer to the table of all basic operations having to do with Inter-

nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

Since LOBs can be quite large in size, it makes sense that SQL*Loader can load LOB
data from either the main datafile (that is, in-line with the rest of the data) or from

one or more secondary datafiles.

3-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

To load LOBdata from the main datafile, the usual SQL*Loader formats can be
used. The LOBdata instances can be in predetermined size fields, delimited fields,
or length-value pair fields.

LOB Data in Predetermined Size Fields

« Thisis a very fast and conceptually simple way to load LOBs; unfortunately, the
LOBs to be loaded will not usually be of the same size (note: a possible
work-around to this problem is to pad the LOBdata with white space to make
all of the LOBs the same length within the particular datafield; for information
on the trimming of trailing white spaces see "Trimming of Blanks and Tabs" in
the Oracle8i Utilities). To load LOBs using this format, use either CHARor RAWAs
the loading datatype. For example:

Control File:

LOAD DATA
INFILE 'sample.dat’ "fix 21"
INTO TABLE Multimedia_tab
(Clip_ID POSITION(1:3) INTEGER EXTERNAL,
Story POSITION(5:20) CHAR DEFAULTIF Story=BLANKS)

Data file (sample.dat):
007 Once upon a time

Note:

« One space separates the Clip_ID,(007) from the beginning of the story. The
story is 20 characters long.

« If the datafield containing the story is empty, then an empty LOBinstead of a
null LOBis produced. A null LOBis produced if the NULLIF directive was used
instead of the DEFAULTIF directive. Also note that you can use loader
datatypes other than CHARto load LOBS. When loading BLOB you would
probably want to use the RAWHatatype.

LOB Data in Delimited Fields

In this format, having different size LOBs within the same column (that is, datafile
field) is not a problem. The trade-off for this added flexibility is performance.
Loading in this format is somewhat slower because the loader has to scan through
the data, looking for the delimiter string. For example:

Internal Persistent LOBs 3-39

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

Control File:

LOAD DATA

INFILE 'samplel.dat’ "str X'7c0a™
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY '/

(
Clip_ID CHAR(3),
Story CHAR(507) ENCLOSED BY ’<startlob>" AND '<endlob>"’

)

Data file(samplel.dat):

007, <stariob> Onceuponatime,Theend. <endiob>|
008, <stariob> Once uponanothertime...Theend. <endlob>|

Note:

« <startlob> and <endlob> are the delimiting strings. Note that the
maximum length for a LOBthat can be read using the CHAR (507) is 507 bytes.

« Ifthe record separator ' | ' was placed right after <endlob> and followed with
the newline character, the newline would have been interpreted as part of the
next record. One way around this problem would be to make the newline part
of the record separator (for example, "] \n" or in hexadecimal notation:
X"7c0a").

LOB Data in Length-value Pair Fields

You could use VARCHARSsee Oracle8i Utilities), VARCHAR@r VARRAWatatypes to
load LOBdata organized in this way. Note that this method of loading produces
better performance over the previous method, however, it removes some of the
flexibility (that is, it requires you to know the LOBlength for each LOBbefore
loading).

Control File:

LOAD DATA
INFILE 'sample2.dat "str X'3c656e647265633¢0a™
INTO TABLE Multimedia_ tab

FIELDS TERMINATED BY *;

(

Clip ID INTEGER EXTERNAL (3),

Story VARCHARC (3,500)

3-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

Data file (sample2.dat):

007,041 Onceuponatme.. ... Theend. <endrec>
008,000<endrec>

Note:

« If the escape character was not supported, the string used as a record separator
in the example could have been expressed in hexadecimal.

« Story isafield corresponding to a CLOBcolumn. In the control file, it is
described as a VARCHAR®@/hose length field is 3 characters long and maximum
size is 500 bytes.

« The length subfield of the VARCHARG® 0 (that is, the value subfield is empty);
consequently, the LOBinstance is initialized to empty.

« Make sure the last character of the last line of the data file above is a line feed.

As mentioned earlier, LOBdata can be so large that it is very reasonable to want to
load it from secondary datafile(s). While you can use secondary data files as the
source of LOBdata, it is better to use LOBFILESs instead.

In the LOBFILE, LOBdata instances are still thought to be in fields (predetermined
size, delimited, length-value), but these fields are not organized into records (the
concept of a record does not exist within LOBFILES); thus, the processing overhead
of dealing with records is avoided. This type of organization of data is ideal for LOB
loading.

One LOB per file

Each LOBFILE clause is the source of just one LOB. To load LOB data organized in
this manner into the control file, follow the column/field name with the LOBFILE
specification and the datatype specification. The following example illustrates
loading LOBS with one LOBper file.

Control File:

LOAD DATA

INFILE 'sample3.dat’

INTO TABLE Mulimedia._tab
REPLACE

Internal Persistent LOBs 3-41

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

FIELDS TERMINATED BY ',

(
Clip ID INTEGER EXTERNAL(),

ext FleName FILLER CHAR(40),
Story LOBFILE(ext_FileName) TERMINATED BY EOF

)

Data file (sample3.dat):

007 FirstStory xt,
008,/fimp/SecondStory.txt,

Secondary Data file (FirstStory.txt):

Once uponatime....
Theend.

Secondary Data file (SecondStory.txt):

Once upon another time ...
Theend.

Note:

« TheFILLER field is mapped to the 40-byte long datafield which is read using
the SQL*Loader CHARdatatype.

« The SQL*Loader gets the LOBFILE file name from the ext-FileName FILLER
field. The data from a specified LOBFILE file (that is, from the first byte to the
EOFcharacter) is loaded to make a LOBinstance. Note that if you specify a
LOBFILE file that doesn't exist, the Story field is initialized to empty. Also note
that since no SQL*Loader datatype is specified, the CHARdatatype is used.

Predetermined Size LOBs

In the control file, the size of the LOBs to be loaded into a particular column is
specified. During the load, any LOBdata loaded into that particular column is
assumed to be of the specified size. The predetermined size of the fields allows the
dataparser to perform very well. Unfortunately, it is often hard to guarantee that all
of the LOBs are of the same size.

Control File:
LOAD DATA

3-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

INFILE 'sample4.dat
INTO TABLE Mulimedia_tab
FIELDS TERMINATED BY

(
Clip ID INTEGER EXTERNAL(S),

Story LOBFILE (CONSTANT ‘FirstStoryLtxt) CHAR(32)
)

Data file (sample4.dat):

007,
008,

Secondary Data file (FirstStory1.txt):

Once uponthetime ...
Theend,

Upon another time ...
Theend,

Note:

« The loader loads 2000 bytes of data from the FirstStory. txt LOBFILE ,
using CHARdatatype, starting with the byte following the byte loaded last
during the current loading session.

« There is a newline after the comma in the last line of the data file.

Delimited LOBs

The LOB data instances in the LOBFILE files are delimited. In this format, loading
different size LOBs into the same column is not a problem. The trade-off for this
added flexibility is performance. Loading in this format is somewhat slower
because the loader has to scan through the data, looking for the delimiter string. For
example:

Control File:

LOAD DATA
INFILE 'sample5.dat

INTO TABLE Multimedia_ tab

FIELDS TERMINATED BY *;

(Clip_ID INTEGER EXTERNAL(S),

Story LOBFILE (CONSTANT FirstStory2.txt) CHAR(2000)

Internal Persistent LOBs 3-43

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

TERMINATED BY "<endiob>")

Data file (sample5.dat):

007,
008,

Secondary Data file (FirstStory2.txt):
Once uponatime...

The end.<endliob>

Once upon another time...

The end.<endlob>

Note:

Specifying maximum length (that is, 2000) gives a hint to the loader as to the
maximum length of the field. This often results in optimized memory usage. (Note
that if you use this hint, you should not estimate the value too low). The
TERMINATED BYclause specifies the string that terminates the LOBs. You can also
use the ENCLOSED B¥lause. Note that the ENCLOSED B¥lause allows a bit more
flexibility as to the relative positioning of the LOBs in the LOBFILE (that is, the LOBs
in the LOBFILE wouldn't have to follow one after another).

Length-Value Pair Specified LOBs

Each LOBin the LOBFILE is preceded by its length. You can use VARCHARsee
Oracle8 Utilities), VARCHAR®r VARRAWatatypes to load LOB data organized in
this way. The controllable syntax for loading length-value pair specified LOBs is
quite simple.

Note that this method of loading enjoys better performance over the previous one,
but at the same time it takes some of the flexibility away (that is, it requires that you
know the length of each LOBbefore loading).

Control File:

LOAD DATA

INFILE 'sample6.dat

INTO TABLE Mulimedia._tab

FIELDS TERMINATED BY *;

(

Clip ID INTEGER EXTERNAL(5),

Story LOBFILE (CONSTANT 'FirstStory3.txt) VARCHARC(4,2000)

3-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

)

Data file (sample6.dat):

007,
008,

Secondary Data file (FirstStory3.txt):

0031
Once uponatime ... The end.
0000

Note:

The VARCHARC(4, 2000) tells the loader that the LOBs in the LOBFILE are in
length-value pair format and that the first four bytes should be interpreted as the
length. The max_length part (that is, 2000) gives the hint to the loader as to the
maximum size of the field.

« 0031 tells the loader that the next 31 characters belong to the specified LOB.
« 0000 results in an empty LOB(hot a NULL LOB).
Note the following LOBloading details:

« The failure to load a particular LOBdoesn't result in the rejection of the record
containing that LOB instead, the record ends up containing an empty LOB

« Itis not necessary to specify the maximum length of the field corresponding to
a LOBtype column. Nevertheless, if the maximum length is specified, it is taken
as a hint to help optimize memory usage. It is very important that the
maximum length specification doesn't underestimate the true maximum length.

Internal Persistent LOBs 3-45

Load a LOB with Data from a BFILE

Load a LOB with Data from a BFILE

Figure 3-16 Use Case Diagram: Load a LOB with data from a BFILE

Internal persistent LOBs

INITIALIZE
[REEEELLLED > BFILE
. locator
: 45 E> _OCl Lob
E OR FileSet Name
OPEN E...
alLOB open
< e==P\ aBFILE
N load a LOB
LOSE with data
Ca I_OOSB FRCCITTLETPLEITTIETTD from a BFILE
SELECT :
alop)drereee ! %
User/
Program

close close
a BFILE all BFILES

OR

3-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Character Set Conversion

Scenario

In using the OCI, or any of the programmatic environments that access OCI
functionality, character set conversions are implicitly performed when translating
from one character set to another. However, no implicit translation is ever
performed from binary data to a character set. When you use the loadfromfile
operation to populate a CLOBor NCLOByou are populating the LOBwith binary
data from the BFILE . In that case, you will need to perform character set
conversions on the BFILE data before executing loadfromfile

The example procedure assumes that there is an operating system source file
(Washington_audio) that contains the LOB data to be loaded into the target LOB
(Music). The example procedure also assumes that the directory object AUDIO_DIR
already exists and is mapped to the location of the source file.

« "Example: Load a LOB with Data from a BFILE Using the DBMS_LOB Package”
on page 3-47

« "Example: Load a LOB with Data from a BFILE Using C (OCI)" on page 3-48

« "Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)"
on page 3-50

« "Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)" on
page 3-52

« "Example: Load a LOB with Data from a BFILE Using Visual Basic (O040)" on
page 3-53

« "Example: Load a LOB with Data from a BFILE Using Java (JDBC)" on page 3-54

Example: Load a LOB with Data from a BFILE Using the DBMS_LOB Package

/* Note that the example procedure loadLOBFromBFILE_proc is not part of the
DBMS_LOB package: ¥

CREATE OR REPLACE PROCEDURE loadL OBFromBFILE_proc IS
Dest loc BLOB;

Internal Persistent LOBs 3-47

Load a LOB with Data from a BFILE

Src loc BFILE := BFILENAME(FRAME_DIR’, Washington_frame’);
Amount INTEGER :=4000;
BEGIN
SELECT Frame INTO Dest_loc FROM Multimedia._tab
WHERE Clip_ID =3 FOR UPDATE;
F Opening the LOB is mandatory: */
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB _READONLY);
F Opening the LOB is optional: */
DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
DBMS_LOB.LOADFROMFILE(Dest loc, Src_loc, Amount);
F Closing the LOB is mandatory if you have opened it: */
DBMS_LOB.CLOSE(Dest loc);
DBMS_LOB.CLOSE(Src loc);
COMMIT;
END;

Example: Load a LOB with Data from a BFILE Using C (OCl)

/* This example illustrates how to select a BLOB from a Multimedia
table and load it with data from a BFILE
K4

sh4 select _lock frame_locator_3(Lob_loc, erhp, svchp, stmthp)
OClLobLocator *Lob_loc;
OCIEmor *enhp;
OCISvcCtx *svchp;
OCISmt *stmthp;
{
text *sqlstmt=
(text*)'SELECT Frame FROM Multimedia._tab WHERE Clip_ID=3 FOR UPDATE",
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sglstmt,
(ub4)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX; (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid &Lob _loc, (sb4)0,
(ub2) SQLT_BLOB(dvoid *) 0,
(ub2*)0, (Ub2%) 0, (Ubd) OCI_DEFAULT));

/* Execute the select and fetch one row

checkenr(errhp, OCIStmtExecute(svchp, stmthp, erthp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot¥) O,

3-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

(ub4) OCI_DEFAULT));

retum;

}

void LoadLobDataFromBFile(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;

OCIEnor *errhp;

OCISvcCix *svchp;

OCISmt *stmthp;

{

OClLobLocator *bfile;
OClLobLocator *blob;
ub4 amount=4000;

Alocate the Source (biie) & destination (biob) locators desriptors/

OClIDescriptorAlloc((dvoid *Jenvhp, (dvoid *)&bifie,
(Ub4)OCI_DTYPE_FILE, (size_1)0, (dvoid *)0);

OCIDescriptorAlloc((dvoid *Jenvhp, (dvoid *)&blob,
(Ub4)OCI_DTYPE_LOB, (size _1)0, (dvoid *)0):

/* Select a frame locator for update %
printf (" select the frame locator..\n");
select_lock_frame_locator_2(blob, erhp, svchp, stmthp);

/* Setthe Directory Allias and File Name of the frame file %/

printf (* set the file name in bfile\n”);

checkerr (errhp, OCILobFileSetName(envhp, errhp, &bfile, (text*)'FRAME_DIR",
(ub2)strien('FRAME_DIR"),
(text*)"Washington_frame",
(ub2)strlen("Washington_frame")));

printf (* open the bfile\n”);
/*Opening the BFILE locator is Mandatory %
checkerr (errhp, (OCILobOpen(svchp, enhp, bfile, OCI_LOB_READONLY)));

printf(" open the lob\n");
/*Opening the BLOB locator is optional %/
checkerr (errhp, (OCILobOpen(svchp, erhp, blob, OCI_LOB_READWRITE)));

/*Load the data from the audlo file (bfile) into the blob %/

printf (" load the LOB from File\n");

checkerr (errhp, OCILobLoadFromFile(svchp, erthp, blab, bfile, (ub4)amount,
(Ub4)1, (UbA)L));

Internal Persistent LOBs

3-49

Load a LOB with Data from a BFILE

/*Closing the LOBSs is Mandatory if they have been Opened %/
checkerr (errhp, OCILobClose(svchp, erhp, biile));
checkerr (errhp, OCILobClose(svchp, erthp, blob));

/* Free resources held by the locators®/
(void) OClDescriptorFree((dvoid *) bfile, (ub4) OCI_DTYPE_FILE);
(void) OClDescriptorFree((dvoid *) blob, (ub4) OCI_DTYPE_LOB);

retum;

Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-D. LOB-LOAD.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 DEST SQL-BLOB.

01 BFILE1 SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

* Declare the amount to load. The value here

*was chosen arbitrarily

01 LOB-AMT PIC S9(9) COMP VALUE 10.

01 USERID PIC X(11) VALUES "USER1/USER1".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
LOB-LOAD.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

*Set up the directory and file information

MOVE "AUDIO_DIR"TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.

3-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

MOVE "washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :BFILE1 DIRECTORY = DIR-ALIAS,
FILENAME = :FNAME

END-EXEC.

* Allocate and initialize the destination BLOB
EXEC SQL ALLOCATE :DEST END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL
SELECT SOUND INTO :DEST
FROM MULTIMEDIA TABWHERE CLIP_ID =3 FOR UPDATE
END-EXEC.

*Open the source BFILE for READ
EXEC SQL
LOB OPEN :BFILE1 READ ONLY
END-EXEC.

* Open the destination BLOB for READM/RITE
EXEC SQL
LOB OPEN :DEST READ WRITE
END-EXEC.

* L oad the destination BLOB from the source BFILE
EXEC SQL
LOB LOAD :LOB-AMT FROM FILE :BFILE1 INTO :DEST
END-EXEC.

* Close the source and destination LOBs
EXEC SQL LOB CLOSE :BFILE1 END-EXEC.
EXEC SQL LOB CLOSE :DEST END-EXEC.

END-OF-BLOB.
EXEC SQL FREE :DEST END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOPRUN.

SQL-ERROR.
EXEC SQL

Internal Persistent LOBs 3-51

Load a LOB with Data from a BFILE

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void loadLOBFromBFILE_proc()
{
OClBlobLocator *Dest_loc;
OCIBFileLocator *Src_loc;
char *Dir ="FRAME_DIR", *Name ="Washington_frame";
int Amount = 4000;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();

F Initialize the BFILE Locator */

EXEC SQL ALLOCATE :Src_loc;

EXEC SQL LOBFILE SET :Src_loc DIRECTORY =:Dir, FILENAME =:Name;

 Initialize the BLOB Locator */

EXEC SQL ALLOCATE :Dest loc;

EXEC SQL SELECT frame INTO :Dest_loc FROM Multimedia_tab
WHERE Clip_ID =3 FOR UPDATE;

F Opening the BFILE is Mandatory */

EXEC SQL LOB OPEN :Src_loc READ ONLY;

F Opening the BLOB is Optional */

EXEC SQL LOB OPEN :Dest_loc READ WRITE;

3-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

EXEC SQL LOB LOAD :Amount FROM FILE :Src_loc INTO :Dest loc;
 Closing LOBs and BFILES is Mandatory if they have been OPENed */
EXEC SQL LOB CLOSE :Dest loc;

EXEC SQL LOB CLOSE :Src_loc;

P Release resources held by the Locators */

EXEC SQL FREE :Dest _loc;

EXEC SQL FREE :Src_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
loadLOBFromBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Load a LOB with Data from a BFILE Using Visual Basic (0040)
Dim OraDyn as OraDynaset, OraSoundl as OraBLOB, OraMyBfile as OraBFile

OraConnection.BeginTrans
Set OraDyn = OraDb.CreateDynaset(

"SELECT * FROM Mulimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields('Sound").Value

OraParameters.Add "id", 1, ORAPARAM_INPUT
OraParameters.Add "mybfile”, Empty, ORAPARAM_OUTPUT
OraParameters("myhbfile”).ServerType = ORATYPE_BFILE

OraDatabase ExecuteSQL (‘begin GetBFile(id, mybfile ") end")

Set OraMyBFile = OraParameters(‘mybfile”).Value
‘Go to Next row
OraDyn.MoveNext

OraDyn.Edit
Lets update OraSound1 data with that from the BFILE
OraSound1.CopyFromBFie OraMyBFile

OraDyn Update

OraConnection.CommitTrans

Internal Persistent LOBs 3-53

Load a LOB with Data from a BFILE

Example: Load a LOB with Data from a BFILE Using Java (JDBC)

//Java lO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex2_45
{
public static void main (String args [])
throws Exception
{
// Load the Oracle JDBC dnver:
Class.forName (‘oracle.jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =

DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp’);
conn.setAutoCommit (false);

// Create a Statement:
Staterment stmt = conn.createStatement ();

y

{

BFILE src_lob =null;
BLOB dest_lob=null;
InputStream in = null;
OutputStream out = null;
byte buf]] = new byte[1000];
ResultSet rset = null;

rset = stmt.executeQuery (
"SELECT BFILENAME(AUDIO_DIR', Washington_audio) FROM DUAL');

3-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

if (rsetnext()

src_lob = ((OracleResuitSet)rset).getBFILE (1);
src_lob.openFile();
in=src_lob.getBinaryStream();

}

rset = stmt.executeQuery (
"SELECT sound FROM multimedia._tab WHERE clip_id = 99 FOR UPDATE');
if (rsetnext())
{

dest_lob = ((CracleResultSet)rset).getBLOB (2);

A Fetch the output stream for dest lob:
out=dest_lob.getBinaryOutputStream();
}

intlength=0;

intpos=0;

while ((in '= null) && (out = null) && ((length = in.read(buf)) '=-1))
{

System.out.printin(
"Pos ="+ Integer.toString(pos) +". Length="+
Integer.toString(length));
pos += length;
outwrite(buf, pos, length);
}

// Close all streams and file handlles:
in.close();

outfiush();

out.close();

src_lob.closeFile();

// Commit the transaction:
conn.commit();
conn.close();

}
catch (SQLException €)

e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-55

See Ifa LOB Is Open

See Ifa LOB Is Open

Figure 3-17 Use Case Diagram: See If a LOB Is Open

Internal persistent LOBs

SELECT
aLoB Dt :

see if
LOB is open

X

User/
Program

Scenario

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

« "Example: See If a LOB Is Open Using PL/SQL" on page 3-57

« "Example: See If a LOB Is Open Using C (OCI)" on page 3-57

« "Example: See If a LOB Is Open Using COBOL (Pro*COBOL)" on page 3-59
« "Example: See If a LOB Is Open Using C++ (Pro*C/C++)" on page 3-60

« "Example: See If a LOB Is Open Using Java (JDBC)" on page 3-61

The following example opens a Video frame (Frame), and then evaluates to see if
the LOBIs open.

3-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See Ifa LOB Is Open

Example: See If a LOB Is Open Using PL/SQL

/* Note that the example procedure loblsOpen_proc is not part of the
DBMS_LOB package: %/
CREATE OR REPLACE PROCEDURE loblsOpen_proc IS

Lob loc BLOB;
Retval INTEGER,;
BEGIN

SELECT Frame INTO Lob_loc FROM Multimedia_tab where Clip_ID=1;

/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS LOB.LOB_READONLY);

/*Seeifthe LOB s open: %/

Retval .= DBMS_LOB.ISOPEN(Lob _loc);

/* The value of Retval will be 1 meaning that the LOB is open. %/
END;

Example: See If a LOB Is Open Using C (OCl)
/* Select the locator into a locator variable %/

sb4 select frame_locator(Lob_loc, erhp, svchp, stmthp)
OClLobLocator*Lob _loc;
OCIEmor *enhp;
OCISveCtx *svchp;
OCIStmt *stmthp;
{
text *sqlstmt=
(text *)"SELECT Frame FROM Mulimedia__tab WHERE Clip_ID=1",
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, saistmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ubd) OC|_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid ®&Lob_loc, (sb4)0,
(ub2) SQLT_BLOB,(dvoid *) 0,
(Ub2%) 0, (Ub2*) O, (ub4) OCI_DEFAULT));

/* Execute the select and fetch one row %/

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OClISnapshot*) O,

Internal Persistent LOBs 3-57

See Ifa LOB Is Open

(ub4) OCI_DEFAULT));

retum (Q);
}

void seelfLOBIsOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *errhp;
OCISvcCix *svehp;
OCIStmt *stmthp;
{
OClILobLocator*Lob_loc;
intisOpen;

/*Allocate locator resources %/
(void) OClDescriptorAlloc((dvoid *)envhp, (dvoid *)&Lob loc,
(Ub)OCI_DTYPE_LOB, (size_t)0, (dvoid *)0);

/* Select the locator %/
(void)select_frame_locator(Lob_loc, erhp, svehp, stmthp);

/*Seeifthe LOBis Open ¥/
checkerr (errhp, OCILoblsOpen(svchp, erhp, Lob_loc, &isOpen));

if sOpen)

printf(" Lobis Open\n";
/... Processing given that the LOB has alreadly been Opened %/

else

{

printf(* Lobis not Open\n’);

/*... Processing given that the LOB has not been Opened ¥/
}

/* Free resources held by the locators®/
(void) OClDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

retum;

3-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See Ifa LOB Is Open

Example: See If a LOB Is Open Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. LOB-OPEN.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 BLOBL SQL-BLOB.
01 LOB-ATTR-GRP.
05ISOPN PIC S9(9) COMP.

01 SRC SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 DIRIND PIC S9(4) COMP.

01 FNAME-ND PIC S9(4) COMP.

01 USERID PIC X(11) VALUES "USERIUSERY".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
LOB-OPEN.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initalize the target BLOB
EXEC SQL ALLOCATE :BLOB1 END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL
SELECT FRAME INTO :BLOB1
FROM MULTIMEDIA TABWHERE CLIP_ID=1
END-EXEC.

*See ifthe LOB is OPEN
EXEC SQL
LOB DESCRIBE :BLOB1 GET ISOPEN INTO :ISOPN
END-EXEC.

IFISOPN=1
* <Processing for the LOB OPEN case>
DISPLAY "The LOB is open”
ELSE

Internal Persistent LOBs 3-59

See Ifa LOB Is Open

* <Processing forthe LOB NOT OPEN case>
DISPLAY "The LOBis not open"
END-IF.

* Free the resources used by the BLOB
END-OF-BLOB.
EXEC SQL FREE :BLOB1 END-EXEC.

EXEC SQL
COMMIT WORK RELEASE

END-EXEC.

STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED!"
DISPLAY ™",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: See If a LOB Is Open Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglemm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void seelfLOBIsOpen()

{
OCIBlobLocator *Lob_loc;

intisOpen=1;

3-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See Ifa LOB Is Open

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Frame INTO :Lob _loc
FROM Mulimedia_tab WHERE Clip_ID=1,

/*Seeifthe LOB s Open: ¥
EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN INTO :isOpen;
if sOpen)

printf("LOB is open\n®);
else

printf("LOB is not open\n®);
/* Note that in this example, the LOB is not open ¥/
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
seelfLOBIsOpen();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: See If a LOB Is Open Using Visual Basic (O040)

Note: An example will be made available in a subsequent release.

Example: See If a LOB Is Open Using Java (JDBC)

//Java IO classes:
import javavio.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement,

import java.sql. Types;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

Internal Persistent LOBs 3-61

See Ifa LOB Is Open

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver.¥;

public class Ex2_48
{

public Ex2_48 ()

{

}

public static void main (String args [])
throws Exception
{
//Load the Oracle JDBC dhiver:
Class.forName ("oracle.jdbc.driver.OracleDriver”);

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp’);

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Staternent stmt = conn.createStatement ();

try
{

BLOB blob =nul;

ResultSet rset = stmt.executeQuery (
"SELECT frame FROM mulimedia._tab WHERE clip_id =1");
if (rsetnext())
{
blob = ((OracleResultSef)rset).getBLOB (1);

}

OracleCallableStatement cstmt =
(OracleCallableStatement) conn.prepareCall (
"BEGIN ?:= DBMS_LOB.ISOPEN(?); END;");

cstmtregisterOutParameter (1, Types.NUMERIC);
cstmt.setBLOB(2, bloby);

cstmt.execute();

int result = cstmt.getint(1);

3-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See Ifa LOB Is Open

System.outprintin(The resultis: " + Integer.toString(result));

OracleCallableStatement cstmt2 = (OracleCallableStatement)
conn.prepareCall (
"BEGIN DBMS_LOB.OPEN(?,DBMS_LOB.LOB_READONLY); END;");
cstmi2.setBLOB(1, blob);
cstmt2.execute();

System.out.printin(The LOB has been opened with a call to DBMS_LOB.OPEN()");

// Use the existing cstmt handle to re-query the status of the locator:
cstmt.setBLOB(2, blob);

cstmt.execute();

result = cstmt.getint(1);

System.out.printin("This resultis: " + Integer.toString(result));

stmt.close();
cstmt.close();
cstmt2.close();
conn.commit();
conn.close();

}

catch (SQLException €)
{

e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-63

Copy LONG to LOB

Copy LONG to LOB
Figure 3-18 Use Case Diagram: Copy LONG to LOB
Internal persistent LOBs
User/
Program
copy
LONG to LOB

To refer to the table of all basic operations having to do with Inter-

nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2
Scenario

Assume that the following archival source table SoundsLib_tab was defined and
contains data:

3-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy LONG to LOB

CREATE TABLE SoundsLib _tab
(
Id NUMBER,
Descripton VARCHAR2(30),
SoundEffects LONG RAW
)

The example assumes that you want to copy the data from the LONG RAWbIumn
(SoundEffects) into the BLOBcolumn (Sound) of the multimedia table, and uses
the SQL function TO_LOBto accomplish this.

For more information see:

« Oracle8i SQL Reference for syntax of the function TO_LOB

Example: Copy Long to LOB Using SQL

INSERT INTO Mulimedia. tab (clip_id,sound) SELECT id, TO_LOB(SoundEffects)
FROM SoundsLib_tab WHERE id =1;

Note: in order for the above to succeed, execute:

CREATE TABLE SoundsLib_tab (
id NUMBER,
SoundEffects LONG RAW);

This functionality is based on using an operator on LONG called TO_LOBthat
converts the LONGo a LOB The TO_LOBoperator copies the data in all the rows of
the LONGcolumn to the corresponding LOBcolumn, and then lets you apply the
LOBfunctionality to what was previously LONGdata. Note that the type of data that
is stored in the LONCGcolumn must match the type of data stored in the LOB For
example, LONG RAWata must be copied to BLOBdata, and LONGdata must be
copied to CLOBdata.

Once you have completed this one-time only operation and are satisfied that the
data has been copied correctly, you could then drop the LONGcolumn. However,
this will not reclaim all the storage originally required to store LONGsin the table.
In order to avoid unnecessary, excessive storage, you are better advised to copy the
LONGdata to a LOBin a new or different table. Once you have made sure that the
data has been accurately copied, you should then drop the original table.

Internal Persistent LOBs 3-65

Copy LONG to LOB

One simple way to effect this transposing of LONGSs to LOBs is to use the CREATE
TABLE.. SELECTstatement, using the TO_LOBoperator on the LONGcolumn as part
of the SELECTstatement. You can also use INSERT... SELECT

In the examples in the following procedure, the LONGcolumn named LONG_COlin
table LONG_TAHSs copied to a LOBcolumn named LOB_COLin table LOB_TAB
These tables include an ID column that contains identification numbers for each
row in the table.

Complete the following steps to copy data from a LONGcolumn to a LOBcolumn:

1. Create a new table with the same definition as the table that contains the LONG
column, but use a LOBdatatype in place of the LONGdatatype.

For example, if you have a table with the following definition:

CREATE TABLE Long_tab (
id NUMBER,
long_col LONG);

Create a new table using the following SQL statement:

CREATE TABLE Lob_tab (
id NUMBER,
blob_col BLOB);

Note: When you create the new table, make sure you preserve the
table’s schema, including integrity constraints, triggers, grants, and
indexes. The TO_LOBoperator only copies data; it does not
preserve the table’s schema.

2. lIssue an INSERT command using the TO_LOBoperator to insert the data from
the table with the LONGdatatype into the table with the LOBdatatype.

For example, issue the following SQL statement:

INSERT INTO Lob _tab
SELECT d,
TO_LOB(long_col)
FROM long_tab;

3. When you are certain that the copy was successful, drop the table with the
LONGCcolumn.

For example, issue the following SQL command to drop the LONG_TARBable:

3-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy LONG to LOB

DROP TABLE Long_tab;

Create a synonym for the new table using the name of the table with LONCGdata.
The synonym ensures that your database and applications continue to function

properly.
For example, issue the following SQL statement:
CREATE SYNONYM Long_tab FOR Lob tab;

Once the copy is complete, any applications that use the table must be modified to
use the LOBdata.

You can use the TO_LOBoperator to copy the data from the LONGo the LOB in
statements that employ CREATE TABLEAS SELECTor INSERT...SELECT In the
latter case, you must have already ALTERed the table and AD:d the LOBcolumn
prior to the UPDATEIf the UPDATEeturns an error (because of lack of undo space),
you can incrementally migrate LONGdata to the LOBusing the WHERElause. The
WHERI[Elause cannot contain functions on the LOBbut can test the LOBSs nuliness.

Note that use of TO_LOBIs subject to the following limitations:

You can use TO_LOBto copy data to a LOB column, but not to a LOB attribute.

You cannot use TO_LOBwith any remote table. Consequently, all the following
statements will fail:

INSERT INTO th1@dbiink (lob_col) SELECT TO_LOB(ong_col) FROM th2;
INSERT INTO th1 (ob_col) SELECT TO_LOB(ong_col) FROM th2@dbiink;
CREATE table th1 AS SELECT TO_LOB(ong_col) FROM th2@dblink;

If the target table (the table with the lob column) has a trigger — such as
BEFORE INSERDr INSTEAD OF INSERT— the :NEW.lob_col variable can't
be referenced in the trigger body.

You cannot deploy TO_LOBinside any PL/SQL block.

Internal Persistent LOBs 3-67

Checkout a LOB

Checkout a LOB

Figure 3—-19 Use Case Diagram: Checkout a LOB

Internal persistent LOBs

OPEN
alLOB

checkout
alLOB

CLOSE
alLOB

SELECT
aLloB)esrenes .

read data
from the LOB) #=*

Lasssssssssssssssssnsamnn,

X

User/
Program

get
chunk size

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Streaming Mechanism

The most efficient way to write large amounts of LOB data is to use OCILobRead ()
with the streaming mechanism enabled via polling or a callback. You should use the

3-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB

OCI or PRO*C interface with streaming for the underlying read operation; using
DBMS_LOBREADwill result in non-optimal performance.

Scenario

In the typical use of the checkout-checkin operation, the user wants to checkout a
version of the LOB from the database to the client, modify the data on the client
without accessing the database, and then in one fell swoop, checkin all the
modifications that were made to the document on the client side.

Here we portray the checkout portion of the scenario: the code lets the user read the
CLOB Transcript ~ from the nested table InSeg_ntab which contains interview
segments for the purpose of processing it in some text editor on the client. The
checkin portion of the scenario is described in "Checkin a LOB" on page 3-79.

« "Example: CheckOut a LOB Using PL/SQL (DBMS_LOB Package)" on
page 3-69

« "Example; CheckOut a LOB Using C (OCI)" on page 3-70

« "Example; CheckOut a LOB Using COBOL (Pro*COBOL)" on page 3-72
« "Example: CheckOut a LOB Using C++ (Pro*C/C++)" on page 3-74

« "Example: CheckOut a LOB Using Visual Basic (O040)" on page 3-76

« "Example; CheckOut a LOB Using Java (JDBC)" on page 3-77

Example: CheckOut a LOB Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure checkOutLOB_proc is not part of the
DBMS _LOB package: ¥/
CREATE OR REPLACE PROCEDURE checkOutLOB_proc IS
Lob loc CLOB;
Buffer VARCHAR2(32767);
Amount BINARY_INTEGER :=32767;
Position INTEGER := 2147483647,
BEGIN
/*Selectthe LOB: ¥/
SELECT Intab.Transcript INTO Lob_loc
FROM TABLE(SELECT Mtab.InSeg_ntab FROM Mulimedia._tab Mtab
WHERE Mtab.Clip_ID = 1) Intab
WHERE Intab.Segment =1,
*QOpening the LOB is optional:
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
LOOP

Internal Persistent LOBs 3-69

Checkout a LOB

DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
* Process the buffer: */
Position := Position + Amount;
END LOOP,;
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob_loc);
EXCEPTION
WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE(ENnd of data);
END;

Example: CheckOut a LOB Using C (OCI)

/* This example will READ the entire contents of a BLOB piecewise into a
buffer using a standard polling method, processing each buffer piece
after every READ operation until the entire BLOB has been read.: %/

#define MAXBUFLEN 32767

/*Select the locator into a locator variable: %/
sb4 select transcript _locator(Lob_loc, errhp, stmthp, svchp)
OClLobLocator*Lob _loc;
OCIEmor *enhp;
OCISveCtx *svchp;
OCIStmt *stmthp;
{

text *sqlstmt =

(text*) "SELECT Intab.Transcript\
FROM TABLE(SELECT Mtab.InSeg_ntab FROM Mulimedia._tab Mtab\
WHERE Mtab.Clip_ID=1) Intab\
WHERE Intab.Segment =1",
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sgistmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid *)&Lob_loc, (sh4)0,
(ub2) SQLT_CLOB,(dvoid*) O,
(ub2%) 0, (ub2*) 0, (Ub4) OCI_DEFAULT));

/* Execulte the select and fetch one row: ¥/
checkerr(errhp, OCIStmtExecute(svchp, stmthp, erhp, (ub4) 1, (ub4) O,

3-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB

(CONST OCISnapshot) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retumQ;

}

void checkoutlob(envhp, errhp, svchp, stmthp)

OCIEnv *envhp;

OCIEnor *erhp;

OCISvcCix *svchp;

OCIStmt *stmthp;

{
OClLobLocator*Lob_loc;
ub4 amt;
ub4 offset,;
sword retval;
boolean done;
ubl bufp[MAXBUFLEN];
ub4 buflen;

/* Allocate locators desriptors: %

(void) OClDescriptorAlloc((dvoid *)envhp, (dvoid *¥) &Lob_loc,
(Ub4)OCI_DTYPE_LOB(size_t) 0, (dvoid **) O);

/* Selectthe BLOB: %/

printf(" select the transcript locator..\n'Y);

select_transcript_locator(Lob_loc, errhp, stmthp, svchp);

/*Openthe CLOB: ¥
printf (" open lob in checkOutLOB_proc\n';
checkerr (errhp, (OCILobOpen(svchp, erhp, Lob_loc, OCI_LOB_READONLY)));

/* Setting amt = 0 will read till the end of LOB: %/
amt=0;

buflen = sizeof(bufp);

/* Process the data in pieces: ¥/

printf (" read lob in pieces\n”);

offset=1;

memset(bufp, \0', MAXBUFLEN);

done =FALSE;

while ('done)

{

retval = OCILobRead(svchp, errhp, Lob_loc, &amt, offset, (dvoid *)bufp,

buflen, (dvoid *)0,(sb4 (*)(dvoid *, dvoid *, ub4,
ubl)) 0, (Ub2) 0, (Ub1) SQLCS IMPLICIT);

Internal Persistent LOBs 3-71

Checkout a LOB

switch (retval)
{
case OCl_SUCCESS: F Only one piece or last piece */
/* Process the data in bufp. amt will give the amount of data just read in
bufp. This is in bytes for BLOBs and in characters for fixed
width CLOBS and in bytes for variable width CLOBs %/
done=TRUE;
break;
case OC|_ERROR:
checkerr (emrhp, OCl_ERROR);
done =TRUE;
break;
case OCI_NEED DATA: /* There are 2 or more pieces
/* Process the data in bufp. amt will give the amount of data just read in
bufp. This is in bytes for BLOBs and in characters for fixed
width CLOBS and in bytes for variable width CLOBs. ¥/
break;
default
checkerr (errhp, retval);
done=TRUE;
break;
}Hwhile*
}
/*Closing the CLOB Is mandatory if you have opened it %/
printf (" close lob in checkOutLOB_proc\n®);
checkerr (errhp, OCILobClose(svchp, errhp, Lob _loc));

/* Free resources held by the locators: %/
(void) OClIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

retum;
}

Example: CheckOut a LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. CHECKOUT.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERI/USER1".

01 CLOB1 SQL-CLOB.

3-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB

01 BUFFER PIC X(5) VARYING.
01 AMT PIC S9(9) COMP.

01 OFFSET PIC S9(9) COMP VALUE 1.

01 D-BUFFER-LEN PICO.
01 D-AMT PICO.

EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
READ-CLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

EXEC SQL
CONNECT :USERID
END-EXEC.
* Allocate and initialize the CLOB locator:

EXEC SQL ALLOCATE :CLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.

EXEC SQL

SELECT STORY INTO :CLOB1 FROM MULTIMEDIA_TAB

WHERECLIP_ID=2
END-EXEC.

* Initiate polling read:
MOVE 0 TO AMT.

* Read first piece of the CLOB into the buffer:
EXEC SQL

LOB READ :AMT FROM :CLOB1 AT :OFFSET INTO :BUFFER

END-EXEC.

DISPLAY "Readinga CLOB ...".

DISPLAY "".

MOVE BUFFER-LEN TO D-BUFFER-LEN.

DISPLAY "firstread (", D-BUFFER-LEN, ") "
BUFFER-ARR(LBUFFER-LEN).

* Read subsequent pieces of the CLOB:
READ-LOOP.
MOVE" "TOBUFFER-ARR.
EXEC SQL

LOB READ :AMT FROM :CLOB1 INTO :BUFFER

END-EXEC.
MOVE BUFFER-LEN TO D-BUFFER-LEN.

Internal Persistent LOBs 3-73

Checkout a LOB

DISPLAY "nextread (', D-BUFFER-LEN,). "
BUFFER-ARR(LBUFFER-LEN).

GO TO READ-LOORP.

*Read the last piece of the CLOB:
END-OF-CLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :CLOB1 END-EXEC.
MOVE BUFFER-LEN TO D-BUFFER-LEN.
DISPLAY "last read (', D-BUFFER-LEN, "): "
BUFFER-ARR(LBUFFER-LEN).
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY """,
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: CheckOut a LOB Using C++ (Pro*C/C++)

3-74

/* This example will READ the entire contents of a CLOB piecewise into a
buffer using a standard polling method, processing each buffer piece
after every READ operation until the entire CLOB has been read: %/

#include <oci.h>

#include <stdio.h>

#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglemm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Checkout a LOB

}

#define BufferLength 256

void checkOutLOB_proc()
{
OCIClobLocator *Lob loc;
int Amount;
int Clip_ID, Segment;
VARCHAR BufferBuffer_ength];

EXEC SQL WHENEVER SQLERROR DO Sample_Ermor();
EXEC SQL ALLOCATE :Lob_loc;

/*Use Dynamic SQL to retrieve the LOB: %
EXEC SQL PREPARE S FROM
'SELECT Intab.Transcript\
FROM TABLE(SELECT Mtab.InSeg_ntab FROM Mulimedia_tab Mtab\
WHERE Mtab.Clip_ID = :cid) Intab\

WHERE Intab.Segment = :seg;

EXEC SQL DECLARE C CURSORFOR S;

Clip_ID=Segment=1;

EXEC SQL OPEN C USING :Clip_ID, :Segment;

EXEC SQL FETCH CINTO :Lob _loc;

EXEC SQL CLOSEC;

/*QOpenthe LOB: ¥/
EXEC SQL LOB OPEN :Lob _loc READ ONLY;

/* Setting Amount = O will initiate the polling method: %/
Amount=0;

/* Set the maximum size of the Buffer: %

Buffer.len = BufferLength;

EXEC SQL WHENEVER NOT FOUND DO break;

while (TRUE)

{

/*Read a piece of the LOB into the Buffer: %/
EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
printf("Checkout %d characters\n”, Buffer.len);

}
printf("Checkout %od characters\n', Amount);

/*Closing the LOB is mandatory if you have opened it %/
EXEC SQL LOB CLOSE :Lob _loc;

Internal Persistent LOBs 3-75

Checkout a LOB

EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
checkOutLOB_procy();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: CheckOut a LOB Using Visual Basic (0040)

Note that this code fragment assumes an orablob object as the result of a
‘dynaset gperation. This object could have been an OUT parameter of a PL/SQL
Jprocedure. For more information please refer to chapter 1. There are two ways
of reading a lob using orablob.read or orablob.copytofile

‘Using OraBlob.Read mechanism
Dim OraDyn as OraDynaset, OraSound as OraBlob, amount_read%, chunksize%o, chunk

chunksize = 32767
set OraDyn = OraDb.CreateDynaset('select * from Multimedia_tab", ORADYN_DEFAULT)
set OraSound = OraDyn.Fields("Sound")

OraSound.PolingAmount = OraSound.Size ‘Read entire BLOB contents
Do
amount_read = OraSound.Read(chunk,chunksize) chunk retumed is a varnant of
fpe byteamay
Ifamount_read =0 Then
Exit Do
End If

OraMusic.offset = OraSound.offset + amount_read +1
Loop Until amount_read =0

‘Using OraBlob.Copy ToFile mechanism
Dim OraDyn as OraDynaset, OraSound as OraBlob, amount_read%, chunksize%, chunk

Set OraDyn = OraDb.CreateDynaset('select * from Mulimedia_tab", ORADYN_DEFAULT)
Set OraSound = OraDyn.Fields('Sound") .Value

OraSound.polingAmount = OraSound.Size
‘Read entire BLOB contents

3-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB

OraSound.CopyToFile "c:\mysound.aud"

Example: CheckOut a LOB Using Java (JDBC)

//Java IO classes:
import javaLio.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sql.DriverManager;
import java.sgl.Connection;

import java.sql.Statement,

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.;
import oracle.jdbc.driver.;

public class Ex2_59
{

static final int MAXBUFSIZE = 32767,

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC diver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =
DriverManager.getConnection (‘jdbc:oracle:oci8:@", "samp”, "samp');

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
CLOB src_lob=null;

Internal Persistent LOBs 3-77

Checkout a LOB

InputStream in = null;
byte buff] = new byte[MAXBUFSIZE];

ResultSet rset = stmt.executeQuery (
"SELECT intab.transcript FROM TABLE(
SELECT mtab.inseg_ntab FROM muttimedia._tab mtab
WHERE mtab.clip_id = 1) intab WHERE intab.segment = 1");
if (rsetnext())

src_lob = ((OracleResultSet)rset).getCLOB (1);
in=src_lob.getAsciiStream();
}

intlength =0;
intpos=0;
while ((in'= null) && ((length =in.read(buf)) I=-1))
{
pos +=length;
System.out printin(integer.toString(pos));
// Process the bufier:
}

in.close();
stmt.close();
conn.commit();
conn.close();
}
catch (SQLException €)
{
e.printStackTrace();

}

}

}

3-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

Checkin a LOB

Figure 3-20 Use Case Diagram: Checkin a LOB

Internal persistent LOBs

OPEN

alLOB _
checkin

alLOB

CLOSE
alLOB

write data
to the LOB

SELECT

alOB < : i

User/
Program

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Streaming Mechanism

The most efficient way to write large amounts of LOB data is to use
OClLobWrite () with the streaming mechanism enabled via polling or a callback

Internal Persistent LOBs 3-79

Checkin a LOB

Scenario

The checkin operation demonstrated here follows from "Checkout a LOB" on
page 3-68. In this case, the procedure writes the data back into the CLOB
Transcript ~ column within the nested table InSeg_ntab that contains interview
segments. As noted above, you should the OCI or PRO*C interface with streaming
for the underlying write operation; using DBMS_LOB.WRITEwill result in
non-optimal performance.

Example: Checkin a LOB Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure checkinLOB_proc s not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE checkinLOB_proc IS
Lob loc CLOB;
Buffer ~ VARCHAR2(32767);
Amount BINARY_INTEGER :=32767,
Posiion INTEGER := 2147483647,
i INTEGER,;
BEGIN
/*Selectthe LOB: %/
SELECT Intab. Transcript INTO Lob _loc
FROM TABLE(SELECT m.InSeg_ntab FROM Mulimedia_tab Mtab
WHERE Clip_ID =2) Intab
WHERE Intab.Segment =1
FOR UPDATE;
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE)
FORIIN 1.3LOOP
F* Fill the Buffer with data to be written. */
F*Wihite data: */
DBMS_LOBWRITE (Lob_loc, Amount, Position, Buffer);
Position := Position + Amount,
END LOOP;
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob loc);

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT _LINE(Operation failed);
END;

3-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

Example: Checkin a LOB Using C (OCl)

/* This example demonstrates how OCI provides for the ability to write
arbitrary amounts of data to an Intemal LOB in either a single piece
of in multiple pieces using a streaming mechanism that utiizes standard
poling. A statically allocated Buffer is used to hold the data being
written to the LOB. ¥

#define MAXBUFLEN 32767

/* Select the locator into a locator variable %

sh4 select_lock transcript_locator(Lob_loc, erhp, stmthp,svchp)
OClLobLocator *Lob_loc;

OCIEmor *enhp;

OCISvcCtx *svchp;

OCISmt *stmthp;

OCIDefine *defnp1;

text *sqlstmt =
(text*) "SELECT Intab. Transcript\
FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia._tab Mtab\
WHERE Mtab.Clip_ID=2) Intab)\
WHERE Intab.Segment = 1 FOR UPDATE";

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sistmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, erhp, (ub4) 1,
(dvoid ®&Lob_loc, (sb4)o,
(ub2) SQLT_CLOB,(dvoid*) 0,
(ub2#)0, (Ub2*) 0, (Ubd) OC|_DEFAULT));

/* Executte and fetch one row ¥/

checkenr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retum OC|_SUCCESS;
}

void checkinLob(envhp, erhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;

Internal Persistent LOBs 3-81

Checkin a LOB

OCISvcCix *svchp;
OCISimt *stmthp;

OCIClobLocator *Lob _loc;

ub4 Total = 2.5*MAXBUFLEN,;
ub4 amtp;

ub4 offset;

ub4 remainder;

ub4 nbytes;

boolean last;

ubl bufp[MAXBUFLEN];

sbhderm;

/*Allocate locators desriptors™/

(void) OClDescriptorAlloc((dvoid *)envhp, (dvoid *¥) &Lob_loc,
(ub4)OCI_DTYPE_LOB(size_t) 0,(dvoid **) 0);

/*Selectthe CLOB ¥

printf(" select the transcript locator...\n");

select_lock_transcript_locator(Lob_loc, errhp, stmthp, svchp);

/Openthe CLOB Y
printf (" open the locator.\n");
checkerr (errhp, (OCILobOpen(svchp, erhp, Lob_loc, OCI_LOB_READWRITE)));

printf (" write the lob in pieces\n’);
if (Total > MAXBUFLEN)
nbytes = MAXBUFLEN,; /*We will use streaming via standard polling %
else
nbytes =Total; /*Only a single wiite is required ¥/

/* Fill the buffer with nbytes worth of data */
remainder = Total - nbytes;

/* Setting Amounit to 0 streams the data until use specifies OCl_LAST _PIECE %/
amip=0;

/*offset = <Starting position where to begin writing the data>; %/

offset=1,

if (0 ==remainder)
{
amtp = nbytes;
/*Here, (Total <= MAXBUFLEN) so we can wite in one piece %/

3-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

checkerr (errhp, OCILobWiite (svchp, erthp, Lob_loc, amtp,
offset, bufp, nbytes,
OCI_ONE_PIECE, (dvoid *) 0,
(sb4 (*)(dvoid *,dvoid *,ub4 *,ub1 %) O,
0, SQLCS_IMPLICIT));

else
{
/*Here (Total > MAXBUFLEN) so we use streaming via standard polling %/
Fwrite the first piece. Specifying first initiates polling. %/
err = OClLobWite (svchp, errhp, Lob_loc, &amtp, offset, bufp, nbytes,
OCI_FIRST_PIECE, (dvoid %) 0,
(sb4 (*)(dvoid *,dvoid *,ub4 *,ubl %) O,
0,SQLCS_IMPLICIT);
if e '=OCl_NEED DATA)
checkerr (errhp, er);

last =FALSE;
/*wuite the next (interim) and last pieces %/
do

if (remainder > MAXBUFLEN)

nbytes = MAXBUFLEN,; /* Still have more pieces to go %

else

{

nbytes = remainder; /*Here, (remainder <= MAXBUFLEN) %
last=TRUE; /*This is going to be the Final piece ¥

}

/* Fill the buffer with nbytes worth of data */

;f (last)

/* Specifying LAST terminates polling %

e = OClLobWite (svchp, emrhp, Lob_loc, &amitp,
offset, bufp, nbytes,
OCI_LAST_PIECE, (dvoid*) 0,

(sh4 (*)(dvoid* dvoid*,ub4*,ub1)0,
0, SQLCS_IMPLICIT);
if (er '=OCl_SUCCESS)
checken(errhp, er);

else

{
err = OCILobWite (svchp, emrhp, Lob _loc, &amitp,

Internal Persistent LOBs 3-83

Checkin a LOB

offset, bufp, nbytes,
OCI_NEXT_PIECE, (dvoid*) 0,
(sb4 (*)(dvoid*,dvoid*,ub4*,ubl *)0,
0, SQLCS_IMPLICIT);
if e '=OCI_NEED_DATA)
checkerr (errhp, em);

}

/* Determine how much is left to write %/

remainder = remainder - nbytes;

}while (llast);
}

/*Atthis poirtt, (remainder = 0) %/

/*Closing the BLOB is mandatory if you have opend it %/
checkerr (erhp, OCILobClose(svchp, errhp, Lob_loc));

/* Free resources held by the locators®/
(void) OClIDescriptorFree((dvoid *) Lob _loc, (ub4) OCI_DTYPE_LOB);

Example: Checkin a LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. CHECKIN.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INFILE

ASSIGN TO "datfile.dat"

ORGANIZATION IS SEQUENTIAL.
DATADIVISION.
FILE SECTION.

FD INFILE
RECORD CONTAINS 80 CHARACTERS.
01INREC PIC X(80).

WORKING-STORAGE SECTION.
01 USERID PIC X(11) VALUES "USERIUSERL".
01 CLOB1 SQL-CLOB.

01 BUFFER PIC X(80) VARYING.

0LAMT PIC S99) COMP VALUEO.

3-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

01 OFFSET PIC S9(9) COMP VALUE 1.
01 END-OFFILE PIC X(1) VALUES"N".

01 D-BUFFER-LEN PICO.
01 D-AMT PICO.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.

WRITE-CLOB.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL CONNECT :USERID END-EXEC.

* Allocate and initialize the CLOB locator:
EXEC SQL ALLOCATE :CLOB1 END-EXEC.

EXEC SQL
SELECT STORY INTO :CLOB1 FROM MULTIMEDIA TAB
WHERE CLIP_ID =1 FOR UPDATE

END-EXEC.

*QOpen the inpLit file for reading:
OPEN INPUT INFILE.

* Either write entire record or write first piece.
* Read a data file here and populate BUFFER-ARR and BUFFER-LEN.
* END-OF-FILE will be set to "Y" when the entire file has been
*read,
PERFORM READ-NEXT-RECORD.
MOVE INREC TO BUFFER-ARR.
MOVE 80 TO BUFFER-LEN.
IF (END-OFFILE="Y")
MOVE 80 TO AMT
EXEC SQL
LOB WRITE ONE :AMT FROM :BUFFER
INTO :CLOB1 AT :OFFSET
END-EXEC
ELSE
DISPLAY "LOBWRITE FIRST"
DISPLAY BUFFER-ARR
MOVE 321 TO AMT
EXEC SQL
LOB WRITE FIRST :AMT FROM :BUFFER INTO :CLOB1
END-EXEC

Internal Persistent LOBs 3-85

Checkin a LOB

END-IF.

* Continue readling from the input data fie
*and wriing to the CLOB:
PERFORM READ-WRITE
UNTIL END-OF-FILE ="Y".
PERFORM SIGN-OFF.
STOPRUN.

READ-WRITE.
PERFORM READ-NEXT-RECORD.
MOVE INREC TO BUFFER-ARR.
DISPLAY "READ-WRITE".
DISPLAY INREC.
MOVE 80 TO BUFFER-LEN.
IF END-OF-FILE ="Y"
DISPLAY "LOBWRITE LAST: ", BUFFER-ARR
MOVE 1 TO BUFFER-LEN
EXEC SQL
LOB WRITE LAST :AMT FROM :BUFFER INTO :CLOB1
END-EXEC
ELSE
DISPLAY "LOB WRITE NEXT: ", BUFFER-ARR
MOVE 0 TO AMT
EXEC SQL
LOB WRITE NEXT :AMT FROM :BUFFER INTO :CLOB1
END-EXEC
END-IF.

READ-NEXT-RECORD.
MOVE SPACES TO INREC.
READ INFILE NEXT RECORD
AT END
MOVE "Y" TO END-OF-FILE.

SIGN-OFF.
CLOSE INFILE.
EXEC SQL FREE :CLOB1 END-EXEC.

EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL
WHENEVER SQLERROR CONTINUE

3-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Checkin a LOB Using C++ (Pro*C/C++)

/* This example demonstrates how Pro*C/C++ provides for the abilily to WRITE
arbitrary amounts of data to an Intemal LOB in either a single piece
or in multiple pieces using a Streaming Mechanism that utilizes standard
poling. A static Buffer is used to hold the daia being written: %/

#include <oci.h>

#include <stdio.h>
#include <string.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 512

void checkinLOB_proc(multtiple) int muttiple;
{

OCIClobLocator *Lob _loc;

VARCHAR Buffer{BufferLengthl;

unsigned int Total;

unsigned int Amount;

unsigned int remainder, nbytes;

boolean last;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
* Allocate and Initialize the Locator: */
EXEC SQL ALLOCATE :Lob_loc;

Internal Persistent LOBs 3-87

Checkin a LOB

EXEC SQL SELECT Story INTO :Lob _loc
FROM Mulimedia._tab WHERE Clip_ID =1 FOR UPDATE;
/Openthe LOB: ¥
EXEC SQL LOB OPEN :Lob_loc READ WRITE;
Total = Amount = (multiple * BufferL_ength);

if (Total > BufferLength)
nbytes = BufferLength; /*We will use streaming via standard poling %/
else
nbytes = Total; /*Only a single WRITE is required %/

/* Fill the Buffer with nbytes worth of data: %/
memset((void *)Buffer.arr, 32, nbytes);
Buffer.len = nbytes; /*Setthe Length %/
remainder = Total - nbytes;
if (0 == remainder)
{
/*Here, (Total <= Bufferi_ength) so we can WRITE in ONE piece: ¥
EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob _loc;
printf("Write ONE Total of %d characters\n”, Amount);
}
else
{
/*Here (Total > BufferLength) so use streaming via standard polling:
WRITE the FIRST piece. Specifying FIRST initiates polling: */
EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
printf(Write FIRST %d characters\n”, Buffer.len);
last=FALSE;
A WRITE the NEXT (interim) and LAST pieces: %/
do

if (remainder > BufferLength)
nbytes = BufferLength; /* Still have more pieces to go ¥/
else
{
nbytes = remainder;
last=TRUE; /*This Is going to be the Final piece

}
/* Fill the Buffer with nbytes worth of data:
memset((void *)Buffer.arr, 32, nbytes);
Bufferlen=nbytes; /*Setthe Length*/
if (ast)
{
EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Specifying LAST terminates poling: %/
EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
printf(White LAST Total of %d characters\n”, Amount);

3-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

}

else
{
EXEC SQL WHENEVER SQLERROR DO break;
EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
printf(Write NEXT %d characters\n”, Buffer.len);
}
/*Determine how much is left to WRITE: %/
remainder = remainder - nbytes;
}while (llast);
}
EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* At this point, (Amount = Total), the total amount that was written %/
/Close the LOB: %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
checkinLOB_proc(l);
EXEC SQL ROLLBACK WORK;
checkinLOB_proc(4);
EXEC SQL ROLLBACK WORK RELEASE;

Example: Checkin a LOB Using Visual Basic (0040)

Note that this code fragment assumes an orablob object as the result of a
‘dynaset gperation. This object could have been an OUT parameter of a PL/SQL
Jprocedure. For more information please refer to chapter 1. there are two ways
of writing a lob using orablob.write or orablob.copyfromfile

‘Using OraBlob.Wihite mechanism

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim fnum As Integer

Dim OraDyn As OraDynaset, OraSound As OraBlob, amount_written%o, chunksize%s,
curchunk() As Byte

Set MySession = CreateObject('OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “samp/samp”, 0&)

Internal Persistent LOBs 3-89

Checkin a LOB

chunksize =500

ReDim curchunk(chunksize)

Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Mulimedia._tab", ORADYN_DEFAULT)
Set OraSound = OraDyn.Fields('Sound").Value

fnum = FreeFie

Open "c\imp\washington_audio" For Binary As #num
OraSound.offset=1

OraSound.pollingAmount = LOF(fnum)

remainder = LOF(fnum)

Dim piece As Byte
Get#fnum, , curchunk

OraDyn Edit

piece = ORALOB_FIRST_PIECE
amount_written = OraSound.White(curchunk, chunksize, ORALOB_FIRST_PIECE)

While OraSound.Status = ORALOB_NEED_DATA
remainder = remainder - chunksize
If amount_written <= chunksize Then
chunksize =remainder
piece =ORALOB _LAST PIECE
Else
piece = ORALOB_NEXT_PIECE
End If

Get #num, , curchunk
amount_written = OraSound Write(curchunk, chunksize, piece)
Wend

OraDyn.Update

'Using OraBlob.CopyFromfFile mechanism

Set OraDyn = OraDb.CreateDynaset('select * from Mulimedia_tab order by clip_
id", ORADYN_DEFAULT)

Set OraSound = OraDyn.Fields('Sound").Value

OraDyn.Edit

OraSound.CopyFromFile "c\imp\washington_audio”
OraDyn.Update

3-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

Example: Checkin a LOB Using Java (JDBC)

//Java lO classes:
import javaio.InputStream;
import java.io.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver ¥,

public class Ex2_66

{
static final int MAXBUFSIZE = 32767;

public static void main (String args [)
throws Exception

{
//Load the Oracle JDBC dfiver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Staterment:
Statement stmt = conn.createStatement ();

fry

{
CLOB Iob_loc=null;

String buf = new String ("Some Text To White");

ResultSet rset = stmt.executeQuery (
"SELECT story FROM mulimedia._tab WHERE clip_id =2 FOR UPDATE');

Internal Persistent LOBs 3-91

Checkin a LOB

if (rsetnext())
{
lob_loc = ((OracleResultSet)rset).getCLOB (1);
}
long pos=0; // Offset within the CLOB where the data is to be writien
long length=0; // This is the size of the buffer to be written

// This loop wites the buiffer three times consecutively:
for (inti=0;i<3;i++)

pos =lob_loc.length();

/ an alfemative is: lob_loc.putString(pos, buf);
lob_loc.putChars(pos, buf.toCharAray());

// Some debug information:
System.out.printin(* putChars(" + Long.toString(pos) + ",
buftoCharArray());");
}

stmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

3-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data

Display the LOB Data

Figure 3-21 Use Case Diagram: Display the LOB data

Internal persistent LOBs

OPEN
alOB

CLOSE
alLOB

SELECT
aLOB <

read data

from the LOB

jusssssssssssssnanunnnd

X

User/
Program

display
the LOB
data

Internal Persistent LOBs 3-93

Display the LOB Data

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Streaming Mechanism

The most efficient way to read large amounts of LOB data is to use OCILobRead ()
with the streaming mechanism enabled.

Scenario

As an example of displaying a LOB, our scenario stream-reads the image Drawing
from the column object Map_obj onto the client-side in order to view the data.

« "Example: Display the LOB Data Using PL/SQL" on page 3-94

« "Example: Display the LOB Data Using C (OCI)" on page 3-95

« "Example: Display the LOB Data Using COBOL (Pro*COBOL)" on page 3-97
« "Example: Display the LOB Data Using C++ (Pro*C/C++)" on page 3-99

« "Example: Display the LOB Data Using Visual Basic (OO40)" on page 3-100
« "Example: Display the LOB Data Using Java (JDBC)" on page 3-101

Example: Display the LOB Data Using PL/SQL

/* Note that the example procedure displayLOB_proc is not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE displaylL OB_proc IS
Lob_loc BLOB;
Buffer RAW(1024);
Amount BINARY_INTEGER :=1024;
Position INTEGER :=1;
BEGIN
/*Selectthe LOB: %
SELECT m.Map_obj.Drawing INTO Lob _loc
FROM Mulimedia_tab m WHERE m.Clip_ID =1,
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
LOOP
DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
/*Display the buffer contents: %/

3-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data

DBMS_OUTPUT.PUT_LINE(ul_raw.cast to_varchar2(Buffer));
Position ;= Pasition + Amount;

END LOOP,;

/*Closing the LOB is mandatory if you have opened it %/

DBMS_LOB.CLOSE (Lob_loc);

EXCEPTION
WHEN NO_DATA FOUND THEN

DBMS_OUTPUT.PUT_LINE(ENd of data);
END;

Example: Display the LOB Data Using C (OCl)

/* This example will READ the entire contents of a BLOB piecewise into a
buffer using a standard polling method, processing each buffer piece
after every READ operation until the entire BLOB has been read.

#define MAXBUFLEN 32767

/* Select the locator into a locator variable %/

sb4 select mapobjectdrawing_locator(Lob_loc, erhp, svchp, stmthp)
OClLobLocator*Lob _loc;

OCIEnmor *errhp;

OCISveCtx *svchp;

OCIStmt *stmthp;

OCIDefine *defnpl;

text *sglstmt =
(text*) "SELECT m.Map_obj.Drawing \
FROM Mulimedia_tab m WHERE m.Clip_ID=1",

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sgistmt,
(ub4)strien((char *)sglstmt),
(ub4) OCI_NTV_SYNTAX; (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, erhp, (ub4) 1,
(dvoid ®&Lob_loc, (sb4)0,
(ub2) SQLT_BLOB(dvoid *) 0,
(Ub2#0, (Ub2*) 0, (ub4) OCI_DEFAULT));

/* Executte the select and fetch one row ¥/

checkenr(errhp, OCIStmtExecute(svchp, stmthp, erthp, (ub4) 1, (ub4) O,
(CONST OClSnapshat*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

Internal Persistent LOBs 3-95

Display the LOB Data

retum O;

}

void displayLob(envhp, emhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCIStmt *stmthp;
{

OCIBlobLocator *Lob_loc;

ub4 amt;

ub4 offset;

sword retval;

boolean done;

ubl bufp[MAXBUFLEN];
ub4 buflen;

OCILobLocator *Lob_Loc;

/* Allocate the Source (bfile) & destination (blob) locators desriptors®/
(void) OClIDescriptorAlloc((dvoid *) envhp,
(dvoid *) &Lob_loc, (ub4)OCI_DTYPE_LOB,
(size_1) O, (dvoid *¥) 0);
/*Select the BLOB %/
printf(" select the mapobjectdrawing locator...\n");
select_ mapobjectdrawing_locator(Lob_loc, enhp, svchp, simthp);

/*Openthe BLOBY
printf(" open the lob\n";
checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY)));

/* Setting amt = 0 will read till the end of LOB%
amt=0;
buflen = sizeof(bufp);

/* Process the data in pieces ¥/
printf(" Process the data in pieces\n®);
offset=1;
memset(bufp, \0', MAXBUFLEN);
done =FALSE;
while (Idone)
{
retval = OClLobRead(svchp, errhp, Lob_loc, &amt, offset, (dvoid *) bufp,
buflen, (dvoid *)0,

3-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data

(sb4 (*)(dvoid *, dvoid *, ub4, ub1)) O,
(ub2) 0, (ubl) SQLCS_IMPLICIT);
switch (retval)
{
case OCI_SUCCESS: /*Only one piece or last piece?/
/* Process the data in bufo. amt will give the amount of data just read in
bufp. This is in bytes for BLOBs and in characters for fixed
width CLOBS and in bytes for variable width CLOBs
¥4
done =TRUE;
break;
case OCl_ERROR:
checkerr (errhp, retval);
done=TRUE;
break;
case OCI_NEED DATA: /* There are 2 or more pieces %/
/* Process the data in bufo. amt will give the amount of data just read in
bufp. This is in bytes for BLOBSs and in characters for fixed
width CLOBS and in bytes for vaniable width CLOBs
4
break;
default:
checkerr (errhp, retval);
done =TRUE;
break;
}
Y Awhie¥

/*Closing the BLOB is mandatory if you have opend it %/
printf{" close the lob \n");
checkerr (erthp, OCILobClose(svchp, errhp, Lob_loc));

/* Free resources held by the locators®/
(void) OCIDescriptorFree((dvoid *) Lob _loc, (ub4) OCI_DTYPE_LOB);

Example: Display the LOB Data Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAMHD. DISPLAY-BLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

Internal Persistent LOBs 3-97

Display the LOB Data

01 USERID PIC X(11) VALUES "USERLUSERY".
01 BLOB1 SQL-BLOB.

01 BUFFER2 PIC X(5) VARYING.

0L AMT PIC S9(9) COMP.

01 OFFSET PIC S9(9) COMP VALUE 1.
01 D-AMT PICO.

EXEC SQL VAR BUFFER?2 IS RAW/(5) END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.

DISPLAY-BLOB.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID

END-EXEC.

* Allocate and iniialize the BLOB locator:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

EXEC SQL
SELECT M.SOUND INTO :BLOB1

FROM MULTIMEDIA_ TABMWHEREM.CLIP_ID=1
END-EXEC.
DISPLAY "Found column SOUND".
* Initate polling read:
MOVE 0 TO AMT.

EXEC SQL LOB READ :AMT FROM :BLOB1 AT :OFFSET
INTO :BUFFER2 END-EXEC.

DISPLAY ™"

MOVE AMT TO D-AMT.

DISPLAY "firstread (", D-AMT, ") " BUFFER2.

READ-BLOB-LOOP.
MOVE" "TOBUFFER2.

EXEC SQL LOB READ :AMT FROM :BLOB1 INTO :BUFFER2 END-EXEC.
MOVE AMT TO D-AMT.

DISPLAY "nextread (', D-AMT,). " BUFFER2.
GO TO READ-BLOB-LOOP.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

3-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data

EXEC SQL FREE :BLOB1 END-EXEC.
MOVE AMT TO D-AMT.
DISPLAY "lastread (", D-AMT, "): " BUFFER2(L:AMT).
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ™",
DISPLAY "ORACLE ERROR DETECTED".
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Display the LOB Data Using C++ (Pro*C/C++)

/#* This example will READ the entire contents of a BLOB piecewise into a
buffer using a standard polling method, processing each buffer piece
after every READ operation until the entire BLOB has been read.:

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

#define BufferLength 32767

void displayLOB_proc()
{
OCIBlobLocator *Lob_loc;

Internal Persistent LOBs 3-99

Display the LOB Data

int Amount;
struct {
unsigned short Length;
char Data[BufferLength];
}Buffer;
/* Datatype equivalencing is mandatory for this datatype: %/
EXEC SQL VAR Buffer IS VARRAW/(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL ALLOCATE :Lob _loc;
/* Select the BLOB: %/
EXEC SQL SELECT m.Map_obj.Drawing INTO Lob loc
FROM Mulimedia_tab mWHERE m.Clip_ID=1;
/*Openthe BLOB: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/* Setting Amount = 0 will initiate the polling method: %/
Amount=0;
/* Set the maximum size of the Buffer: %
Buffer.Length = BufferLength;
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
/*Read a piece of the BLOB into the Bufffer: %
EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
/* Process (Buffer.Length = BulfferL_ength) amount of Buffer.Data */
}
/* Process (Buffer.Length = Amount) amourit of Buffer. Data ¥/
/*Closing the BLOB is mandatory if you have opened it %/
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL FREE :Lob loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

displayLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Display the LOB Data Using Visual Basic (0040)

‘Using OraClob.Read mechanism
Dim MySession As OraSession

3-100 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data

Dim OraDb As OraDatabase

Set MySession = CreateObject("OraclelnProcServer. XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “samp/samp”, 0&)
Dim OraDyn as OraDynaset, OraStory as OraClob, amount_read%, chunksize%, chunk

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Mulimedia._tab", ORADYN_DEFAULT)
Set OraStory = OraDyn.Fields("Story").Value
OraStory.PolingAmount = OraStory.Size ‘Read entire CLOB corttents
Do

‘chunk retumed is a variant of type byte array:

amount_read = OraStory.Read(chunk, chunksize)

Ifamount_read =0 Then

Exit Do

End If

Display the data here

OraStory.offset = OraStory.offset + amount_read + 1
Loop Until amount_read =0

Example: Display the LOB Data Using Java (JDBC)

//Java IO classes:
import javavio.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement,

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.;
import oracle.jdbc.driver.;

public class BEx2_72
{

static final int MAXBUFSIZE = 32767,

public static void main (String args [])

Internal Persistent LOBs 3-101

Display the LOB Data

throws Exception
{
// Load the Oracle JDBC diver:
Class.forName ("oracle jdbc.driver.OracleDriver”);

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp’);

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BLOB Ilob_loc =nul;

InputStream in = null;

byte buf]] = new byte]MAXBUFSIZE];
intpos =0;

intlength=0;

ResultSet rset = stmt.executeQuery (
"SELECT m.map_obj.drawing FROM muliimedia_tab m WHERE m.clip_id=1");
if (rsetnext())

lob_loc = ((OracleResultSet)rset).getBLOB (1);
}

/A read this LOB through an InputStream:
in=lob_loc.getBinaryStream();

while ((length = in.read(buf)) I=-1)

{
pos +=length;
System.out.printin(Integer.toString(pos));
// Process the conttents of the buffer here.

}

in.close();

stmt.close();
conn.commit();
conn.close();

3-102 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the LOB Data

}
catch (SQLException €)

{
e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-103

Read Data from the LOB

Read Data from the LOB

Figure 3-22 Use Case Diagram: Read data from the LOB

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
aLOB <

read data

from the LOB

enable
buffering

disable
buffering

get
chunk size

3-104 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

X

User/
Program

Read Data from the LOB

Stream Read

Chunksize

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

The most efficient way to read large amounts of LOB data is to use OCILobRead ()
with the streaming mechanism enabled via polling or a callback.

When reading the LOBvalue, it is not an error to try to read beyond the end of the
LOB This means that you can always specify an input amount of 4 gigabytes
regardless of the starting offset and the amount of data in the LOB. You do need to
incur a round-trip to the server to call OCILobGetLength () to find out the length
of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read
the entire LOB value starting at offset 1,000. Also assume that you do not know the
current length of the LOB value. Here's the OCI read call, excluding the
initialization of all parameters:

#define MAX_LOB_SIZE 4294967295

ub4 amount= MAX LOB SIZE;

ub4 offset=1000;

OCILobRead(svchp, emrhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

When using polling mode, be sure to look at the value of the ‘amount ' parameter
after each OCILobRead () call to see how many bytes were read into the buffer since
the buffer may not be entirely full.

When using callbacks, the 'len ' parameter, which is input to the callback, will
indicate how many bytes are filled in the buffer. Be sure to check the 'len *
parameter during your callback processing since the entire buffer may not be filled
with data (see theOracle Call Interface Programmer’s Guide.).

A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB This corresponds to the chunk size
used by Oracle when accessing or modifying the LOBvalue. Part of the chunk is
used to store system-related information and the rest stores the LOBvalue. The
getchunksize function returns the amount of space used in the LOBchunk to
store the LOBvalue.

Internal Persistent LOBs 3-105

Read Data from the LOB

You will improve performance if the you execute read requests using a multiple of
this chunk size. The reason for this is that you’re using the same unit that the Oracle
database uses when reading data from disk. If it is appropriate for your application,
you should batch reads until you have enough for an entire chunk instead of
issuing several LOBread calls that operate on the same LOBchunk.

Scenario
Our example reads the data from a single video Frame.

« "Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)" on
page 3-106

« "Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)" on
page 3-106

« "Example: Read Data from a LOB Using COBOL (Pro*COBOL)" on page 3-109
« "Example: Read Data from a LOB Using C++ (Pro*C/C++)" on page 3-111

« "Example: Read Data from a LOB Using Visual Basic (O040)" on page 3-112

« "Example: Read Data from a LOB Using Java (JDBC)" on page 3-112

Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure readl. OB _proc isnotpart of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE readLOB_proc IS
Lob_loc BLOB;
Buffer RAW(32767);
Amount BINARY_INTEGER :=32767;
Position INTEGER :=1000;
Chunksize INTEGER;
BEGIN
/*Selectthe LOB: ¥/
SELECT Frame INTO Lob _loc
FROM Mulimedia_tab
WHEREClip_ ID=1,
/* Find out the chunksize for this LOB column: %/
Chunksize := DBMS_LOB.GETCHUNKSIZE(Lob_loc);
IF (Chunksize < 32767) THEN
Amount := (32767 / Chunksize) * Chunksize;
ENDIF;
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);

3-106 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Read Data from the LOB

/*Read data from the LOB: %
DBMS_LOB.READ (Laob_loc, Amount, Position, Buffer);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob _loc);

END;

Example: Read Data from a LOB Using C (OClI)

/* This example will READ the enttire contents of a BLOB piecewise into a
buffer using a standard polling method, processing each buffer piece
after every READ operation until the entire BLOB has been read. ¥/

#define MAXBUFLEN 32767

/*Select the locator into a locator variable %/
sb4 select frame_locator(Lob_loc, errhp, svchp, stmthp)
OClLobLocator *Lob_loc;
OCIEmor *enhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{
OCIDefine *defnpl;

text *sgistmt =
(text*) "SELECT Frame\
FROM Mulimedia_tab m WHERE m.Clip_ID=1",

printf(" prepare statementin select frame_locatorn');

checkerr (emrhp, OCISmtPrepare(stmthp, errhp, sglstmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

printf(" OCIDefineByPos in select frame_locatorn');

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid *)&Lob_loc, (sh4)0,
(ub2) SQLT_BLOB,(dvoid *) O,
(Ub2%) 0, (ub2*) 0, (ub4) OCI_DEFAULT));

/* Execute the select and fetch one row ¥/

printf(* OCIStmtExecute in select frame_locatorn’);

checkem(errhp, OCIStmtExecute(svchp, simthp, emrhp, (ub4) 1, (ub4) O,
(CONST OClSsnapshot*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retum O;

Internal Persistent LOBs 3-107

Read Data from the LOB

}

void readLOB_proc(envhp, erthp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *enhp;
OCISvcCix *svchp;
OCIStmt *stmthp;
{

ub4 amt;

ub4 offset;

sword retval;

ubl bufp[MAXBUFLEN];

ub4 buflen;

boolean done;

OCILobLocator *Lob_loc;
OClLobLocator *hlob;

/*Allocate the Source (bfile) & destination (blob) locators desriptors®/

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
(Ub4)OCI_DTYPE_LOB, (size_{) 0, (dvoid *) 0);

* Select the BLOB */

printf(" call select_framedread_locaton\n®);

select_frame_locator(Lob_loc);

#Openthe BLOBY
printf(" call OCILobOpen\n');
checkerr (errhp, (OCILobOpen(svchp, errhp, blob, OCI_LOB_READONLY)));

/* Setting the amit to the buffer length. Note here that amt is in bytes
since we are using a BLOB %/

amt = sizeof(bufp);

buflen = sizeof(bufp);

/*Process the data in pieces
printf(* process the data in piece\n”);
offset=1;
memset(bufp, \0', MAXBUFLEN);

retval = OCILobRead(svchp, erthp, Lob_loc, &amt, offset, (dvoid *) bufp,
buflen, (dvoid *)0,
(sb4 (*)(dvoid *, dvoid *, ub4, ubl)) O,
(Ub2) 0, (ubl) SQLCS_IMPLICIT);
switch (retval)
{

3-108 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Read Data from the LOB

case OCI_SUCCESS: /*Only one piece since amitp == bufp ¥/
/# Process the data in bufp. amt will give the amount of data just read in
bufp. This is in bytes for BLOBs and in characters for fixed
ath CLOBS and in bytes for variable width CLOBs %/
break;
case OC|_ERROR:
/* report_eror(); this function is not shown here %/
break;
default:
(void) printf("Unexpected ERROR: OCILobRead() LOB\n");
done=TRUE;
break;
}

/*Closing the BLOB is mandatory if you have opend it %/
checkerr (emrhp, OCILobClose(svchp, erthp, Lob_loc));

/* Free resources held by the locators®/
(void) OClIDescriptorFree((dvoid *) Lob _loc, (ub4) OCI_ DTYPE_LOB);
}

Example: Read Data from a LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. ONE-READ-BLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 BLOB1 SQL-BLOB.

01 BUFFER2 PICX(32767) VARYING.

01 AMT PIC S9(9) COMP.

01 OFFSET PIC S9(9) COMP VALUE 1.

01 USERID PIC X(11) VALUES "USERLUSERT".
EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

PROCEDURE DIVISION.
ONE-READ-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

EXEC SQL
CONNECT :USERID

Internal Persistent LOBs 3-109

Read Data from the LOB

END-EXEC.

*Allocate and initialize the CLOB locator:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

EXEC SQL
SELECT FRAME INTO :BLOB1
FROM MULTIMEDIA TABMWHERE M.CLIP_ID=1
END-EXEC.

EXEC SQL LOB OPEN :BLOB1 END-EXEC.

* Perform a single read:
MOVE 32767 TO AMT.
EXEC SQL
LOB READ :AMT FROM :BLOB1 INTO :BUFFER2
END-EXEC.
EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

END-OF-BLOB.
DISPLAY "BUFFER2: ", BUFFER2(1:AMT).
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.

EXEC SQL
COMMIT WORK RELEASE

END-EXEC.

STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY "
DISPLAY "ORACLE ERROR DETECTED"
DISPLAY ™",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

3-110 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from the LOB

Example: Read Data from a LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 32767

void readLOB_proc()
{
OCIBlobLocator *Lob_loc;
int Amount = BufferLength;
/*Here (Amount = BufferLength) so only one READ is needed: ¥/
char Buffer{BufferLength];
/* Dalatype equivalencing is mandatory for this datatype: %/
EXEC SQL VAR Buffer IS RAW/(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Frame INTO :Lab loc

FROM Multimedia__tab WHERE Clip_ID=1;
/#Openthe BLOB: ¥/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
/*Read the BLOB data into the Buffer: */
EXEC SQL LOB READ :Amount FROM :Lob _loc INTO :Buffer;
printf('Read %d bytes\n", Amount);
/*Close the BLOB: %/
EXEC SQL LOB CLOSE :Lob _loc;
EXEC SQL FREE :Lob loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
readLOB_proc();

Internal Persistent LOBs 3-111

Read Data from the LOB

EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Read Data from a LOB Using Visual Basic (O040)

‘Using OraClob.Read mechanism
Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OraclelnProcServer.XOraSession')
Set OraDb = MySession.OpenDatabase(‘exampledb”, “samp/samp”, 0&)
Dim OraDyn as OraDynaset, OraStory as OraClob, amount_read%, chunksize%, chunk

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Mulimedia._tab", ORADYN_DEFAULT)
Set OraStory = OraDyn.Fields("Story").Value
OraStory.ChunkSize = chunksize
OraStory.polingAmount = OraStory.Size
‘Read entire CLOB contents
Do

amount_read = OraStory.Read(chunk)

‘chunk retumed is a variant of type byte array

Ifamount_read =0 Then

Exit Do

End If

Display the data here

OraStory.offset = OraStory.offset + amount_read + 1
Loop Until amount _read =0

Example: Read Data from a LOB Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

3-112 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from the LOB

// Oracle Specific JDBC classes:
import oracle.sgl.*;
import oracle.jdbc.driver.*;

public class Ex2_79

{

static final int MAXBUFSIZE = 32767;

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC dhver:

Class.forName (‘oracle jdbc.driver.OracleDriver”);

// Connect to the database:
Connection conn =
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Staterment stmt = conn.createStatement ();

try

{
BLOB lob_loc =nul;

byte buff] = new byte[MAXBUFSIZE];

ResultSet rset = stmt.executeQuery (
"SELECT frame FROM multimedia_tab WHERE clip_id =1");
if (rsetnext())
{
lob_loc = ((OracleResultSet)rset).getBLOB (1);
}

/ MAXBUFSIZE is the number of bytes to read and 1000 is the offset from
//which to start reading
buf=lob_loc.getBytes(1000, MAXBUFSIZE);

/4 Display the contents of the buffer here:
System.outprintin(new String(ouf);

stmt.close();

Internal Persistent LOBs 3-113

Read Data from the LOB

conn.commit();
conn.close();

}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

3-114 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)

Read a Portion of the LOB (substr)

Figure 3-23 Use Case Diagram: Read a portion of the LOB from the Table (substr)

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
aLOB 4y

X

User/
Program

read a
portion of the
LOB from the
table (substr)

Internal Persistent LOBs 3-115

Read a Portion of the LOB (substr)

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

This example demonstrates reading a portion from sound-effect Sound.

« "Example: Read a Portion of the LOB (substr) Using PL/SQL (DBMS_LOB
Package)" on page 3-116

« "Example: Read a Portion of the LOB (substr) Using COBOL (Pro*COBOL)" on

page 3-117

« "Example: Read a Portion of the LOB (substr) Using C++ (Pro*C/C++)" on
page 3-118

« "Example: Read a Portion of the LOB (substr) Using Visual Basic (O0O40)" on
page 3-120

« "Example: Read a Portion of the LOB (substr) Using Java (JDBC)" on page 3-120

Example: Read a Portion of the LOB (substr) Using PL/SQL (DBMS_LOB Package)

3-116

/* Note that the example procedure substingLOB _proc is not part ofthe
DBMS_LOB package: ¥/

CREATE OR REPLACE PROCEDURE substringLOB_proc IS
Lob loc BLOB;
Amount BINARY_INTEGER = 32767,
Position INTEGER :=1024;
Buffer RAW(32767);

BEGIN
/*Selectthe LOB: %/
SELECT Sound INTO Lob_loc FROM Multimedia._tab

WHERE Clip_ID=1;

* Opening the LOB is optional: */
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
Buffer .= DBMS_LOB.SUBSTR(Lob_loc, Amount, Position);
/*Process the data ¥/
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob_loc);

END;

/*Inthe following SQL statement, 255 is the amount to read

Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Read a Portion of the LOB (substr)

and 1 is the starting offset from which to read: %/
SELECT DBMS_LOB.SUBSTR(Sound, 255, 1) FROM Muttimedia._tab WHERE Clip_ID=1;

Example: Read a Portion of the LOB (substr) Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BLOB-SUBSTR.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 BLOB1 SQL-BLOB.

01 BUFFER2 PICX(32767) VARYING.

01 AMT PIC S9(9) COMP.

01 POS PIC S9(9) COMP VALUE 1.

01 USERID PIC X(11) VALUES "USERLUSERT".
EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.

PROCEDURE DIVISION.
BLOB-SUBSTR.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the CLOB locator:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

EXEC SQL
SELECT FRAME INTO :BLOBL
FROM MULTIMEDIA TABMWHERE MCLIP_ID=1
END-EXEC.
DISPLAY "Selected the BLOB".

*Open the BLOB for READ ONLY:
EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.

* Execute PL/SQL to get SUBSTR functionality:
MOVE 5 TO AMT.

Internal Persistent LOBs 3-117

Read a Portion of the LOB (substr)

EXEC SQL EXECUTE
BEGIN
‘BUFFER2 :=DBMS_LOB.SUBSTR(:BLOB1,AMT,POS);
END;
END-EXEC.
EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
DISPLAY "Substr: ", BUFFER2-ARR(POS:AMT).

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Read a Portion of the LOB (substr) Using C++ (Pro*C/C++)

/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS _LOB.SUBSTR()
function. However, Pro*C/C++ can interoperate with PL/SQL using anonymous
PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: %/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;

3-118 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)

exit(1);
}

#define BufferLength 32767

void substringLOB_proc()
{
OClBlobLocator*Lob _loc;
int Position = 1;
int Amount = BufferLength;
struct{
unsigned short Length;
char Data[BufferLength];
}Buffer;
/* Datatype equivalencing is mandatory for this datatype: ¥/
EXEC SQL VAR Buffer IS VARRAW/(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_ErTor();
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Sound INTO Lob_loc
FROM Mutimedia,_tab WHERE Clip ID=1;
/+Open the BLOB: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;

/* Invoke SUBSTR() from within an anonymous PL/SQL block: %/

EXEC SQL EXECUTE
BEGIN
Buffer =DBMS_LOB.SUBSTR(;.Lob _loc, :Amount, :Position);
END;
END-EXEC;
/*Close the BLOB: ¥
EXEC SQL LOB CLOSE :Laob loc;
/*Process the Data
/* Release resources used by the locator: %
EXEC SQL FREE :Lob _loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
substringLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
extt(0);

Internal Persistent LOBs 3-119

Read a Portion of the LOB (substr)

Example: Read a Portion of the LOB (substr) Using Visual Basic (0040)

Note that reading a portion of a LOB (or BFILE) in OO40 is accomplished by

setting the OraBlob.Offset and OraBlob.chunksize properties.

Using OraClob.Read mechanism

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim OraDyn as OraDynaset, OraStory as OraClob, amount_read%, chunksize%, chunk

Set MySession = CreateObject("OraclelnProcServer.XOraSession')
Set OraDb = MySession.OpenDatabase(‘exampledb”, “samp/samp”, 0&)

Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Mutimedia._tab", ORADYN_DEFAULT)
Set OraStory = OraDyn.Fields("Story') Value

Let's read 100 bytes from the 500th byte onwards:

OraStory.Offset =500

OraStory.PolingAmount = OraStory.Size ‘Read entire CLOB conttents
amount_read = OraStory.Read(chunk, 100)

‘chunk retumed is a varnarit of type byte array

Example: Read a Portion of the LOB (substr) Using Java (JDBC)

/Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:
import oracle.sgl.¥;
import oracle.jdbc.driver.;

public class Ex2_79
{

static final int MAXBUFSIZE = 32767;

3-120 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC dhiver:
Class.forName (‘oracle.jdbc.driver.OracleDriver");

// Connectto the database:
Connection conn =
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp’);

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BLOB Iob_loc = nul;

byte buff] = new byte[MAXBUFSIZE];

ResultSet rset = stmt.executeQuery (
"SELECT frame FROM muttimedia._tab WHERE clip_id =1");
if (rsetnext()

lob_loc = ((OracleResultSet)rset).getBLOB (1);
}

OracleCallableStatement cstmt = (OracleCallableStatement)
conn.prepareCall ('BEGIN DBMS_LOB.OPEN(?,
DBMS_LOB.LOB_READONLY); END;";
cstmt.setBLOB(L, lob_loc);
cstmt.execute();

/# MAXBUFSIZE is the number of bytes to read and 1000 is the offset from
/which to start reading:
buf =lob_loc.getBytes(1000, MAXBUFSIZE);
// Display the conttentts of the buffer here.

cstmt = (OracleCallableStatement)
conn.prepareCall ("BEGIN DBMS_LOB.CLOSE(?); END;");

cstmt.setBLOB(1, lob_loc);
cstmt.execute();

stmt.close();

Internal Persistent LOBs 3-121

Read a Portion of the LOB (substr)

cstmt.close();
conn.commit();

conn.close();

}
catch (SQLException €)

{
e.printStackTrace();
}
}
}

3-122 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs

Compare All or Part of Two LOBs

Figure 3-24 Use Case Diagram: Compare All or Part of Two LOBs

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
alLOB

X

User/
Program

|

compare all
or parts of
2LOBs

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

The following example compares two frames from the archival table
VideoframesLib_tab to see whether they are different and, depending on the

Internal Persistent LOBs 3-123

Compare All or Part of Two LOBs

result of the comparison, inserts the Frame into the Multimedia_tab

« "Example: Compare All or Part of Two LOBs Using PL/SQL (DBMS_LOB
Package)" on page 3-124

« "Example: Compare All or Part of Two LOBs Using COBOL (Pro*COBOL)" on
page 3-125

« "Example: Compare All or Part of Two LOBs Using C++ (Pro*C/C++)" on
page 3-127

« "Example: Compare All or Part of Two LOBs Using Visual Basic (O040)" on
page 3-128

« "Example: Compare All or Part of Two LOBs Using Java (JDBC)" on page 3-128

Example: Compare All or Part of Two LOBs Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure compareTwoLOBs_proc is not part of the
DBMS_LOB package: ¥/

CREATE OR REPLACE PROCEDURE compareTwoLOBs_proc IS
Lob_locl BLOB;
Lob_loc2 BLOB;

Amount INTEGER :=32767,
Retval INTEGER,

BEGIN
/*Selectthe LOB: %/

SELECT Frame INTO Lob_locl FROM Mutimedia_tab
WHERE Clip ID=1;
SELECT Frame INTO Lob_loc2 FROM Mulimedia._tab
WHEREClip_ID=2;
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_locl, DBMS_LOB.LOB_READONLY);
DBMS_LOB.OPEN (Lob_loc2, DBMS_LOB.LOB_READONLY);
/*Compare the o frames: %/
retval :=DBMS_LOB.COMPARE(Lob_locl, Lob_loc2, Amount, 1, 1);
IF retval =0 THEN
DBMS_OUTPUT.PUT_LINE(Processing for equal frames));
ELSE
DBMS_OUTPUT.PUT_LINE(Processing for non-equal frames’);
ENDIF;
/*Closing the LOB is manadatory if you have opened it */
DBMS_LOB.CLOSE (Lob_loc);
DBMS_LOB.CLOSE (Lob_loc2);
END;

3-124 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs

Example: Compare All or Part of Two LOBs Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.

PROGRAM-ID. COMPARE.

ENVIRONMENT DIVISION.

DATADIVISION.

WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERI/USERT".

01 BLOB1 SQL-BLOB.
01 BLOB2 SQL-BLOB.

01 BUFFER2 PIC X(32767) VARYING.
OLRET PICS9(9) COMP.

0LAMT PIC S99) COMP.

01 POS PIC S9(9) COMP VALUE 1024.
01 OFFSET PIC S9(9) COMP VALUE 1.

EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
COMPARE-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL
CONNECT :USERID
END-EXEC.
* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.
EXEC SQL ALLOCATE :BLOB2 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

EXEC SQL
SELECT FRAME INTO :BLOBL
FROM MULTIMEDIA TABMWHERE M.CLIP_ID=1
END-EXEC.

EXEC SQL
SELECT FRAME INTO :BLOB2
FROM MULTIMEDIA TABMWHERE M.CLIP_ID=2
END-EXEC.

*QOpen the BLOBS for READ ONLY:
EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.

Internal Persistent LOBs 3-125

Compare All or Part of Two LOBs

EXEC SQL LOB OPEN :BLOB2 READ ONLY END-EXEC.

* Execute PL/SQL to get COMPARE functionality:
MOVE 4 TO AMT.
EXEC SQL EXECUTE
BEGIN
‘RET :=DBMS_LOB.COMPARE(:BLOB1,BLOB2,AMT,1,1);
END;
END-EXEC.

IFRET=0
* Logic for equal BLOBs goes here
DISPLAY "BLOBs are equal’
ELSE
* Logic for unequal BLOBs goes here
DISPLAY "BLOBs are not equal”
END-F.
EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
EXEC SQL LOB CLOSE :BLOB2 END-EXEC.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.
EXEC SQL FREE :BLOB2 END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

3-126 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs

Example: Compare All or Part of Two LOBs Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void compareTwoLobs_proc()

OCIBlobLocator *Lob loc1,*Lob loc2;
int Amount = 32767,
int Retval;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Allocate the LOB locators: %/
EXEC SQL ALLOCATE :Lob locl,;
EXEC SQL ALLOCATE :Lob_loc2;
/* Selectthe LOBs: %/
EXEC SQL SELECT Frame INTO :Lob_locl
FROM Mulimedia_tab WHERE Clip_ID =1,
EXEC SQL SELECT Frame INTO :Lob loc2
FROM Mulimedia_tab WHERE Clip_ID=2;
/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob _loc1 READ ONLY;
EXEC SQL LOB OPEN :Lob loc2 READ ONLY;
/* Compare the wo Frames using DBMS _LOB.COMPARE() from within PL/SQL: %
EXEC SQL EXECUTE
BEGIN
‘Retval =DBMS_LOB.COMPARE(.Lob locl, :Lob_loc2, :Amount, 1, 1);
END,;
END-EXEC;
if (0 = Retval)
printf(The frames are equaln’);
else
printf(The frames are not equaln’’;
/*Closing the LOBs is mandatory if you have opened them: %/
EXEC SQL LOB CLOSE :Lob locl;
EXEC SQL LOB CLOSE :Lab loc2;

Internal Persistent LOBs 3-127

Compare All or Part of Two LOBs

/* Release resources held by the locators: %
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Lob _loc2;

}

void main()
{
char*samp = "samp/samp’,
EXEC SQL CONNECT :samp;
compareTwolobs_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Compare All or Part of Two LOBs Using Visual Basic (0040)

Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “samp/samp”, 0&)
Dim OraDyn as OraDynaset, OraSoundl as OraBLOB, OraSoundClone as OraBLOB

Set OraDyn = OraDb.CreateDynaset(
"SELECT * FROM Mulimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields('Sound").Value
‘Clone it for future reference
Set OraSoundClone = OraSound1

Lets go to the next row and compare LOBs
OraDyn.MoveNext

MsgBox CBool(OraSound1.Compare(OraSoundClone, OraSoundClone.size, 1, 1))

Example: Compare All or Part of Two LOBs Using Java (JDBC)

/Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;
import java.sql. Types;

import java.sgl.Statement;

3-128 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;
import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver*;

public class Ex2_87

{

static final int MAXBUFSIZE = 32767;

public static void main (String args [)

{

throws Exception

//Load the Oracle JDBC diiver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (jdbc.oracle:oci8:@", "samp", "samp');

N It's faster when auto commit s off:
conn.setAutoCommit (false);

// Create a Statermment:
Statement stmt = conn.createStatement ();

fry

{
BLOBlob_locl = null;

BLOB lob_loc2 =nul;

ResultSet rset = stmt.executeQuery (
"SELECT frame FROM muttimedia._tab WHERE clip_id =1");
if (rsetnext())

lob_locl = ((OracleResultSet)rset).getBLOB (1);
}

rset = stmt.executeQuery (
"SELECT frame FROM mulimedia_tab WHERE clip_id =99';
if (rsetnext())
{

Internal Persistent LOBs 3-129

Compare All or Part of Two LOBs

lob_loc2 = ((OracleResultSet)rset).getBLOB (1);
}

if (lob_loc1.length() > lob_loc2.length()
System.out.printin(‘Looking for LOB2 inside LOB1.
resutt ="+ Long.toString(lob_loc1.position(lob_loc2, Q)));
else
System.out.printin(“"Looking for LOB1 inside LOB2.
result="+ Long.toString(lob_loc2.position(lob_loc1, 0)));

stmt.close();
conn.commit();
conn.close();

}

catch (SQLException €)
e.printStackTrace();

}

}
}

3-130 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)

See If a Pattern Exists in the LOB (instr)

Figure 3-25 Use Case Diagram: See If a Pattern EXxists in the LOB (instr)

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
alLOB

X

User/
Program

see wherefif
a pattern exists
in the LOB
instr)

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal Persistent LOBs 3-131

See If a Pattern Exists in the LOB (instr)

Scenario
The example examines the storyboard text to see if the string "children™ is present.

« "Example: See If a Pattern Exists in the LOB (instr) Using PL/SQL (DBMS_LOB
Package)" on page 3-132

« "Example: See If a Pattern Exists in the LOB (instr) Using COBOL
(Pro*COBOL)" on page 3-133

« "Example: See If a Pattern Exists in the LOB (instr) Using C++ (Pro*C/C++)" on
page 3-134

« "Example: See If a Pattern Exists in the LOB (instr) Using Java (JDBC)" on
page 3-136

Example: See If a Pattern Exists in the LOB (instr) Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure instingLOB_proc is not part of the
DBMS_LOB package: %/
CREATE OR REPLACE PROCEDURE instringLOB _proc IS
Lob loc CLOB;
Pattem VARCHAR2(30) :=children;
Posiion INTEGER =0;
Offset INTEGER =1,
Occurrence INTEGER =1,
BEGIN
/*Selectthe LOB: %/
SELECT Story INTO Lob_loc
FROM Mulimedia._tab
WHERE Clip_ID=1;
F Opening the LOB is optional: */
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
/* Seek for the pattem: ¥/
Pasition :=DBMS_LOB.INSTR(Lob_loc, Pattem, Offset, Occurrence);
IF Pasition =0 THEN
DBMS_OUTPUT.PUT_LINE(Pattem not found);
ELSE
DBMS_OUTPUT.PUT_LINE(The pattem occurs at || position);
ENDIF;
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob loc);
END;

3-132 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)

Example: See If a Pattern Exists in the LOB (instr) Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. CLOB-INSTR.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 CLOBL SQL-CLOB.

01 PATTERN PIC X(8) VALUE "chidren”

01 POS PICS9(9) COMP.

01 OFFSET PIC S9(9) COMP VALUE 1.

01 OCCURRENCE PIC S9(9) COMP VALUE 1.

01 USERID PIC X(11) VALUES "USERIUSERL".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
CLOB-INSTR.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

*Allocate and initialize the CLOB locator:
EXEC SQL ALLOCATE :CLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.

EXEC SQL
SELECT STORY INTO :CLOB1
FROM MULTIMEDIA TABWHERE CLIP_ID=1
END-EXEC.

*Open the CLOB for READ ONLY:
EXEC SQL LOB OPEN :CLOB1 READ ONLY END-EXEC.

* Exectite PL/SQL to get INSTR functionaliy:
EXEC SQL EXECUTE
BEGIN
‘POS := DBMS_LOBINSTR(CLOBL, :PATTERN,
‘OFFSET,;OCCURRENCE);
END;
END-EXEC.

Internal Persistent LOBs 3-133

See If a Pattern Exists in the LOB (instr)

IFPOS=0
* Logic for patterm not found here
DISPLAY "Pattem not found.”
ELSE
* Pos contains position where pattem is found
DISPLAY "Pattem found."
ENDAF.

EXEC SQL LOB CLOSE :CLOB1 END-EXEC.

END-OF-CLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :CLOB1 END-EXEC.

EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY "
DISPLAY "ORACLE ERROR DETECTED:"
DISPLAY ™",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: See If a Pattern Exists in the LOB (instr) Using C++ (Pro*C/C++)
#include <oci.h>

#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglemm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

3-134 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)

}
void instringLOB_proc()

OCIClobLocator *Lob_loc;
char *Pattem ="The End";
int Position=0;

int Offset=1,;

int Occurrence =1;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Story INTO :Lab_loc
FROM Mulimedia_tab WHERE Clip_ID=1,

/*Opening the LOB is Optional: %/
EXEC SQL LOB OPEN :Lab _loc;
/*Seek the Pattem using DBMS_LOB.INSTR() in a PL/SQL block: %
EXEC SQL EXECUTE

BEGIN

‘Position :=DBMS_LOB.INSTR(.Lob_loc, :Pattem, :Offset, :Occurrence);

END;
END-EXEC;
if (0 = Position)

printf(Pattern not found\n");
else

printf(The pattem occurs at %d\n”, Pasition);
/*Closing the LOB is mandatory if you have opened it %/
EXEC SQL LOB CLOSE :Lab_loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
instringLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 3-135

See If a Pattern Exists in the LOB (instr)

Example: See If a Pattern Exists in the LOB (instr) Using Visual Basic (0040)

Note: A Visual Basic (O040) example will be made available in a
subsequent release.

Example: See If a Pattern Exists in the LOB (instr) Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sql.DriverManager;
import java.sgl.Connection;

import java.sgl. Types;

import java.sgl.Statement;

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver.¥;

public class Ex2_91
{

static final int MAXBUFSIZE = 32767;

public static void main (String args [)
throws Exception

{
// Load the Oracle JDBC dhnver:

Class.forName (‘oracle.jdbc.driver.OracleDriver”);
// Connect to the database:
Connection conn =
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp');

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:

3-136 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)

Staternent stmt = conn.createStatement ();

try

{

finalint offset=1; // Start looking at the first byte

final int occurence = 1; // Start at the 1st occurrence of the pattem
within the CLOB

CLOBIob_loc=null;
String pattermn = new String("Junk’); // Pattemn to look for within the CLOB.

ResultSet rset = stmt.executeQuery (
"SELECT story FROM mulimedia_tab WHERE clip_id =2");
if (rsetnext())

lob_loc = ((OracleResultSet)rset).getCLOB (1);
}

// Search for location of pattem string in the CLOB, starting at offset 1:

long result=lob_loc.position(pattem, offset);

System.out.printin("Results of Pattem Comparison : " +
Long.toString(resutt));

stmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-137

Get the Length of a LOB

Get the Length of a LOB

Figure 3-26 Use Case Diagram: Get the length of a LOB

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
aloB DR H

CmmmEn

get the
length of
the LOB

X

User/
Program

To refer to the table of all basic operations having to do with Inter-

nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

This example demonstrates how to determine the length of a LOBin terms of the

foreign language subtitle (FLSub).

« "Example: Get the Length of a LOB Using PL/SQL (DBMS_LOB Package)" on

page 3-139

3-138 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Get the Length of a LOB

« "Example: Get the Length of a LOB Using C (OCI)" on page 3-139

« "Example: Get the Length of a LOB Using COBOL (Pro*COBOL)" on page 3-141
« "Example: Get the Length of a LOB Using C++ (Pro*C/C++)" on page 3-142

« "Example: Get the Length of a LOB Using Visual Basic (O040)" on page 3-143

« "Example: Get the Length of a LOB Using Java (JDBC)" on page 3-144

Example: Get the Length of a LOB Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure getLengthLOB_proc s not part ofthe
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE getlengthLOB _proc IS
Lob loc NCLOB;
Length INTEGER,;
BEGIN
/*Selectthe LOB: %/
SELECT FLSub INTO Lob_loc FROM Multimedia. tab
WHEREClip ID=2;
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
/*Getthe length of the LOB: %/
length := DBMS_LOB.GETLENGTH(Lob_loc);
IF length IS NULL THEN
DBMS_OUTPUT.PUT_LINE(LOB is null.);
ELSE
DBMS_OUTPUT.PUT_LINE(The length is || length);
ENDIF;
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob_loc);
END;

Example: Get the Length of a LOB Using C (OCl)

/* Select the locator into a locator variable %/
sb4 select FLSub_locator(Lob_loc, erhp, svchp, stmthp)
OClLobLocator*Lob _loc;
OCIEmor *enhp;
OCISveCtx *svchp;
OCIStmt *stmthp;
{
OCIDefine *defnpl;

Internal Persistent LOBs 3-139

Get the Length of a LOB

text *sqlstmt =
(text *)'SELECT FLSub FROM Multimedia_tab WHERE Clip_ID =2"

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, saistmt,
(ubd)strien((char *)sqlstmt),
(Ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Define the column being selected %/

checkerr (emrhp, OCIDefineByPos(stmthp, &defnpl, emhp, (ub4) 1,
(dvoid *)&Lob loc, (sh4)0,
(Ub2)SQLT_CLOB,(dvoid)0, (ub2 *)0,
(Ub2*)0, (Ub4)OCI_DEFAULT));

/* Execute and fetch one row %/

checkerr (emrhp, OCIStmtExecute(svchp, simthp, erhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retumO;
}

/* This function gets the length of the selected LOB %/
void getlengthLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{
ub4 length;

OClLobLocator *Lob_loc;

/* Allocate Locator resources %/

(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob loc,
(Ub4)OCI_DTYPE_LOB, (size _t) 0, (dvoid **) O);

/*Select a LOB locator from FLSub %/

printf(" select a FLSub locaton’);

select FLSub_locator(Lob_loc, errhp, svchp, stmthp);

/*Opening the LOB is Optional %/

printf(" Open the locator (optional)\n");

checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY)));

printf(" get the length of FLSub.\n');

3-140 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB

checkerr (errhp, OCILobGetlength(svchp, errhp, Lob_loc, &length));

/*Length is undefined ifthe LOB is NULL or undefined ¥/
fprintf(stderr," Length of LOB is %d\n" length);

/*Closing the LOBSs is Mandatory if they have been Opened %
checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

/* Free resources held by the locators®/
(void) OClDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

retum;
}

Example: Get the Length of a LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. LOB-LENGTH.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 CLOB1 SQL-CLOB.
01 LOB-ATTR-GRP.
O5LEN PIC S9(9) COMP.

0L DLEN PIC9®).
01 USERID PIC X(11) VALUES "USERIUSERL".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
LOB-LENGTH.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the target CLOB:
EXEC SQL ALLOCATE :CLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.

EXEC SQL
SELECT STORY INTO :CLOB1

Internal Persistent LOBs 3-141

Get the Length of a LOB

FROM MULTIMEDIA_TABWHERE CLIP_ID=2
END-EXEC.

*Obtain the length of the CLOB:
EXEC SQL
LOB DESCRIBE :CLOB1 GET LENGTH INTO :LEN
END-EXEC.

MOVE LEN TO D-LEN.
DISPLAY "The lengthis ", D-LEN.

* Free the resources used by the CLOB:
END-OF-CLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :CLOB1 END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ™",
DISPLAY "ORACLE ERROR DETECTED?".
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Get the Length of a LOB Using C++ (Pro*C/C++)

3-142

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;

Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Get the Length of a LOB

exit(1);
}

void getlengthLOB_proc()
{
OCIClobLocator *Lob _loc;
unsigned int Length;

EXEC SQL WHENEVER SQLERROR DO Sample_Enor();
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Story INTO :Lob loc

FROM Mulimedia_tab WHERE Clip_ID =1,
/*Opening the LOB is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/#Getthe Length: ¥/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
/Ifthe LOB is NULL or unitialized, then Length is Undefined: %/
printf("Length is %d characters\n”, Length);
/*Closing the LOB is mandatory if you have Opened it: %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char*samp = "samp/samp’,
EXEC SQL CONNECT :samp;
getLengthLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Get the Length of a LOB Using Visual Basic (0040)

Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraSoundl As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OraclelnProcServer.XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb", "samp/samp”, 0&)
Set OraDyn = OraDb.CreateDynaset(
"SELECT * FROM Mulimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields('Sound").Value

Internal Persistent LOBs 3-143

Get the Length of a LOB

Display out size of the lob:
MsgBox "Length of the lob is " & OraSound1.Size

Example: Get the Length of a LOB Using Java (JDBC)

//Java IO classes:
import javaLio.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql. Types;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex2_95
{

static final int MAXBUFSIZE = 32767;

public static void main (String args [)
throws Exception

{
// Load the Oracle JDBC dfiver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connectto the database:
Connection conn =
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

fry

3-144 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Get the Length of a LOB

{
CLOBIob_loc=null;

ResultSet rset = stmt.executeQuery ("SELECT story FROM mulimedia_tab
WHERE clip_id=2";
if (rsetnext())
{
lob_loc = ((OracleResultSet)rset).getCLOB (1);
}

System.out printin(
"Length of this column is : " + Long.toString(lob_loc.length()));

stmt.close();
conn.commit();
conn.close();
}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-145

Copy All or Part of a LOB to another LOB

Copy All or Part of a LOB to another LOB

Figure 3-27 Use Case Diagram: Copy all or part of a LOB to another LOB

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
aloB D IRl

User/
Program

copy all or
part of a LOB to
another LOB

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Locking the Row Prior to Updating

Prior to updating a LOBvalue via the PL/SQL DBMS_LORackage or the OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE

3-146 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB

Scenario

statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT#atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs. For more details on the state of the locator
after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced
Topics".

The code in this example shows you to copy a portion of Sound from one clip to
another.

« "Example: Copy All or Part of a LOB to another LOB Using PL/SQL (DBMS_
LOB Package)" on page 3-147

« "Example: Copy All or Part of a LOB to another LOB Using C (OCI)" on
page 3-148

« "Example: Copy All or Part of a LOB to another LOB Using COBOL
(Pro*COBOL)" on page 3-150

« "Example: Copy All or Part of a LOB to another LOB Using C++ (Pro*C/C++)"
on page 3-152

« "Example: Copy All or Part of a LOB to another LOB Using Visual Basic
(O040)" on page 3-154

« "Example: Copy All or Part of a LOB to another LOB Using Java (JDBC)" on
page 3-154

Example: Copy All or Part of a LOB to another LOB Using PL/SQL (DBMS_LOB

Package)

/* Note that the example procedure copyLOB_proc is not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE copyL OB proc IS
Dest loc BLOB;
Src loc BLOB;
Amount NUMBER;
Dest pos NUMBER,;
Src_ pos NUMBER;
BEGIN
SELECT Sound INTO Dest_loc FROM Mulimedia._tab
WHERE Clip_ID =2 FOR UPDATE;
/*Selectthe LOB: %
SELECT Sound INTO Src_loc FROM Multimedia_tab

Internal Persistent LOBs 3-147

Copy All or Part of a LOB to another LOB

WHERE Clip_ID=1;
/*Opening the LOBs is gptional: %/
DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB READONLY);
/* Copies the LOB from the source position to the destination position: %/
DBMS_LOB.COPY(Dest_loc, Src_loc, Amount, Dest_pos, Src_pos);
/*Closing LOBs is mandatory if you have opened them: %/
DBMS_LOB.CLOSE(Dest loc);
DBMS_LOB.CLOSE(Src loc);
COMMIT;
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(Operation failed);
END;

Example: Copy All or Part of a LOB to another LOB Using C (OCI)

/* Select the locator %/

sb4 select _lock_sound_locator_2(Lob loc, dest_type, erhp, svchp, stmthp)
OClLobLocator*Lob_loc;

ubl dest_type; fwhether destination locator */

OCIEmor *errhp;

OCISveCix *svchp;

OCISmt *stmthp;

{

char sqlstmt150];

OCIDefine *defnpl;

if (dest_type =— TRUE)
{
strepy (sistmt,
(char *"SELECT Sound FROM Mutimedia_tab
WHERE Clip_ID=2 FOR UPDATE");
printf (* select destination sound locator\n’);

else

{
strepy(sglstmt, (char *)"'SELECT Sound FROM Multimedia_tab WHERE Clip_ID=1");
printf (" select source sound locator\n’);

}
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (text *)sqistmt,

(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ubd) OCI_DEFAULT));

3-148 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid *)&Lob_loc, (sh4)0,
(ub2) SQLT_BLOB,(dvoid *) O,
(ub2*) 0, (ub2*) 0, (Ub4) OCI_DEFAULT));

F execute the select and fetch one row*/

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OClSnapshot*) O,
(ub4) OCI_DEFAULT));

retum O;
}

/* This function copies part of the Source LOB into a specified position
inthe destination LOB

¥

void copyAllPartLob(envhp, ehp, svchp, stmthp)

OCIEnv *envhp;

OCIEnor *erhp;

OCISveCix *svehp;

OCIStmt *stmthp;

{

OCIBlobLocator *Dest_loc, *Src_loc;

int Amount = 1000; /*<Amountto Copy>*
int Dest_pos = 100; /4<Position to start copying into>*
intSrc_pos=1, /*<Position to start copying from>*

/*Allocate the LOB locators %/

(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Dest_loc,
(Ub4)OCI_DTYPE_LOB, (size _t) 0, (dvoid **) 0);

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &Src_loc,
(Ub4)OCI_DTYPE _LOB, (size t) 0, (dvoid **) 0);

/* Selectthe LOBs %/
printf{" select the destination and source locators\n'Y);
select_lock_sound _locator_2(Dest_loc, TRUE, errhp, svchp, stmthp);
/* destination locator ¥/
select_lock_sound _locator_2(Src_loc, FALSE, erhp, svchp, stmthp);
/*source locator ¥

/*Opening the LOBs is Optional */

printf (* open the destination locator (optional)\n");

checkerr (errhp, OCILobOpen(svchp, erhp, Dest_loc, OCI LOB_READWRITE));
printf (* open the source locator (optional)\n");

checkerr (errhp, OCILobOpen(svchp, erthp, Src_loc, OCI LOB_ READONLY));

Internal Persistent LOBs 3-149

Copy All or Part of a LOB to another LOB

printf (* copy the lob (amount) from the source to destination\n”);
checkerr (erhp, OCILobCopy(svchp, erthp, Dest_loc, Src_loc,
Amount, Dest_pos, Src_pos));

/*Closing the LOBSs is Mandatory if they have been Opened %
printf(" close the locators\n');

checkerr (errhp, OCILobClose(svchp, errhp, Dest_loc));
checkerr (emrhp, OCILobClose(svchp, erhp, Src_loc));

/* Free resources held by the locators®/
(void) OClIDescriptorFree((dvoid *) Dest_loc, (ub4) OCl_DTYPE_LOB);
(void) OClIDescriptorFree((dvoid *) Src_loc, (ub4) OCI_DTYPE_LOB);

retum;

Example: Copy All or Part of a LOB to another LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BLOB-COPY.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERT/USER1".

0L DEST SQL-BLOB.
0L SRC SQLBLOB.

*Define the amount to copy.
*This value has been chosen arbitrarily:
01 AMT PIC S9(9) COMP VALUE 10.

* Define the source and destination position.

* These values have been chosen arbitrarily:

01 SRCPOS PICS9(9) COMP VALUE 1.
01 DEST-POS PIC S9(9) COMP VALUE 1.

*The retum value from PL/SQL function:
01 RET PIC S9(9) COMP.

EXEC SQL INCLUDE SQLCA END-EXEC.

3-150 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB

PROCEDURE DIVISION.
COPY-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :DEST END-EXEC.
EXEC SQL ALLOCATE :SRC END-EXEC.
DISPLAY "Source and destination LOBs are open.”.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL
SELECT SOUND INTO :SRC
FROM MULTIMEDIA_ TABMWHERE M.CLIP_ID =2
END-EXEC.
DISPLAY "Source LOB populated..
EXEC SQL
SELECT SOUND INTO :DEST
FROM MULTIMEDIA_TAB M WHERE M.CLIP_ID =3 FOR UPDATE
END-EXEC.
DISPLAY "Destination LOB populated.”.

*Open the DESTination LOB readiwrite and SRC LOB read only
EXEC SQL LOB OPEN :DEST READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC READ ONLY END-EXEC.
DISPLAY "Source and destination LOBs are open.”.

*Copy the desired amourit
EXEC SQL
LOB COPY :AMT FROM :SRC AT :SRC-POS
TO :DEST AT :DEST-POS
END-EXEC.
DISPLAY "Src LOB copied to destination LOB.".

* Executte PL/SQL to get COMPARE functionalty
* to make sure that the BLOBs are identical
EXEC SQL EXECUTE
BEGIN
‘RET :=DBMS_LOB.COMPARE(:SRC,.DEST,AMT,1,2);
END;
END-EXEC.

Internal Persistent LOBs 3-151

Copy All or Part of a LOB to another LOB

IFRET=0
* Logic for equal BLOBs goes here
DISPLAY "BLOBs are equal"
ELSE
* Logic for unequal BLOBs goes here
DISPLAY "BLOBs are not equal”
ENDAF.

EXEC SQL LOB CLOSE :DEST END-EXEC.
EXEC SQL LOB CLOSE :SRC END-EXEC.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :DEST END-EXEC.

EXEC SQL FREE :SRC END-EXEC.
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED".
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Copy All or Part of a LOB to another LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;

3-152 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB

exit(1);
}

void copyLOB_proc()
{
OCIBlobLocator *Dest_loc, *Src_loc;
int Amount="5;
int Dest_pos = 10;
intSrc_ pos=1,;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Allocate the LOB locators: %/
EXEC SQL ALLOCATE :Dest loc;
EXEC SQL ALLOCATE :Src _loc;
/* Selectthe LOBs: %
EXEC SQL SELECT Sound INTO :Dest_loc
FROM Mulimedia._tab WHERE Clip_ID =2 FOR UPDATE;
EXEC SQL SELECT Sound INTO :Src_loc
FROM Mulimedia_tab WHERE Clip_ID=1,
/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Dest_loc READ WRITE;
EXEC SQL LOB OPEN :Src_loc READ ONLY;
/* Copies the specified Amount from the source position in the source
LOB to the destination position in the destination LOB: %/
EXEC SQL LOB COPY :Amount
FROM :Src_loc AT :Src_pos TO :Dest _loc AT :Dest _pos;
/*Closing the LOBs is mandatory if they have been opened: ¥/
EXEC SQL LOB CLOSE :Dest loc;
EXEC SQL LOB CLOSE :Src _loc;
/* Release resources held by the locators: %
EXEC SQL FREE Dest_loc;
EXEC SQL FREE :Src_loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
copyLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 3-153

Copy All or Part of a LOB to another LOB

Example: Copy All or Part of a LOB to another LOB Using Visual Basic (0040)

Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject('OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase(‘exampledb”, "samp/samp”, 0&)
Set OraDyn = OraDb.CreateDynaset(
"SELECT * FROM Muitimedia._tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields('Sound").Value

Set OraSoundClone = OraSoundl
‘Go to next row and copy LOB

OraDyn.MoveNext

OraDyn.Edit
OraSound1.Copy OraSoundClone, OraSoundClone.Size, 1, 1

OraDyn Update

Example: Copy All or Part of a LOB to another LOB Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sql.DriverManager;
import java.sgl.Connection;

import java.sql. Types;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.%;
import oracle jdbc.driver*;

public class Ex2_100
{

3-154 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to another LOB

public static void main (String args [)
throws Exception
{
// Load the Oracle JDBC driver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

N It's faster when auto commit s off:
conn.setAutoCommit (false);

// Create a Statermment:
Statement stmt = conn.createStatement ();

fry

{
final int AMOUNT_TO_COPY = 2000;

ResultSet rset = nul;

BLOB dest_loc =null;

BLOB src_loc=nul;

InputStream in = null;

OutputStream out = null;

byte[] buf = new byte] AMOUNT_TO_COPY];

rset = stmt.executeQuery (
"SELECT sound FROM multimedia._tab WHERE clip_id = 1");
if (rsetnext())

src_loc = ((OracleResultSet)rset).getBLOB (1);
}
in=src_loc.getBinaryStream();

rset = stmt.executeQuery (
"SELECT sound FROM multimedia_tab WHERE clip_id =2 FOR UPDATE");
if (rsetnext())

dest_loc = ((OracleResultSet)rset).getBLOB (1);

}
out=dest _loc.getBinaryOutputStream();

Internal Persistent LOBs 3-155

Copy All or Part of a LOB to another LOB

/read AMOUNT_TO_COPY bytes into buf from stream, starting from offset O:
in.read(buf, 0, AMOUNT_TO_COPY);

/ wiite AMOUNT _TO_COPY bytes from buf into output stream, starting at offset
0.

outwrite(buf, 0, AMOUNT_TO_COPY);

// Close all streams and handles
in.close();

outfiush();

out.close();

stmt.close();

conn.commit();

conn.close();

}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

3-156 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Copy a LOB Locator

Copy a LOB Locator

Figure 3-28 Use Case Diagram: Copy a LOB Locator

Internal persistent LOBs

copy
H LOB locator
SELECT \ gor e eee oo :
2 LOB 4 rFl
User/
Program

Scenario

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

This example shows the copying of one locator to another involving the video
frame (Frame). Note how different locators may point to the same/different,
current/outdated data.

"Example: Copy a LOB Locator Using PL/SQL" on page 3-158

"Example: Copy a LOB Locator Using C (OCI)" on page 3-158

"Example: Copy a LOB Locator Using COBOL (Pro*COBOL)" on page 3-160
"Example: Copy a LOB Locator Using C++ (Pro*C/C++)" on page 3-161
"Example: Copy a LOB Locator Using Visual Basic (OO40)" on page 3-162
"Example: Copy a LOB Locator Using Java (JDBC)" on page 3-163

Internal Persistent LOBs 3-157

Copy a LOB Locator

Example: Copy a LOB Locator Using PL/SQL

Note: Assigning one LOB to another using PL/SQL entails using
the ":=" sign. This is an advanced topic that is discussed in more
detail under the heading "Read-Consistent Locators" on page 2-2.

/* Note that the example procedure lobAssign proc is not part of the
DBMS_LOB package. ¥/
CREATE OR REPLACE PROCEDURE lobAssign_procIS
Lob locl blob;
Lob_loc2 blob;
BEGIN
SELECT Frame INTO Lob_loc1 FROM Muttimedia._tab where Clip_ID =1 FOR UPDATE;
/*Assign Lob_locl to Lob _loc2 thereby saving a copy of the value of the lob
atthis point in time. %/
Lob loc2:=Lob locl;

/* When you write some data to the lob through Lob locl , Lob loc2 will not see
the newly written data whereas Lob locl will see the new data.
END;

Example: Copy a LOB Locator Using C (OCl)

/* Select the locator %/
sh4 select_lock frame_locator(Lob_loc, emhp, svchp, stmthp)
OClLobLocator *Lob_loc;
OClErmor *errhp;
OCISvcCtx *svchp;
OCISmt *stmthp;
{
text *sglstmt=
(text*)"'SELECT Frame FROM Mulimedia_tab WHERE Clip_ID=1 FOR UPDATE";
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sgistmt,
(ubd)strlen((char *)sglstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid &Lob _loc, (sb4)0,
(ub2) SQLT_BLOB(dvoid *) 0,
(Ub2%) 0, (ub2*) 0, (ub4) OCI_DEFAULT));

3-158 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Copy a LOB Locator

/* Executte the select and fetch one row %/

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OClSnapshot*) O,
(ub4) OCI_DEFAULT));

retum (O);
}

void assignLob(envhp, erhp, svchp, stmthp)
OCIEnv *envhp;

OCIEnor *enhp;

OCISvcCix *svchp;

OCIStmt *stmthp;

{

OCILobLocator *dest_loc, *src_loc;
boolean isEqual;

/*Allocate the LOB locators ¥/

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest loc,
(Ub4)OCI_DTYPE _LOB, (size)0, (dvoid **) 0);

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid *¥) &src_loc,
(ub4)OCI_DTYPE_LOB, (size_{) 0, (dvoid **) 0);

/*Selectthe LOBs ¥
printf (" select and lock a frame locatorn');
select_lock frame_locator(src_loc, errhp, svehp, stmthp);* source locator */

Assignsrc_locto dest_loc thereby saving a copy of the value of the LOB
atthis point in ime.
¥4
printf(" assign the src locator to dest locator\n®);
checkerr (errhp, OCILobAssign(envhp, enhp, src_loc, &dest_loc));

/*When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
see the newly written data whereas Lob_loc will see the new data.
Y

/*Call OCl to see ifthe two locators are Equal %/

printf (" check if Lobs are Equal\n'Y);
checkerr (errhp, OCILoblsEqual(envhp, src_loc, dest_loc, &isEqual));

if (SEqual)
{
/*... The LOB locators are Equal %/

Internal Persistent LOBs 3-159

Copy a LOB Locator

printf(" Lob Locators are equal\n');

else

/*... The LOB locators are not Equal %/
printf(" Lob Locators are NOT Equal\n");

/*Note that in this example, the LOB locators will be Equal %/

/* Free resources held by the locators®/

(void) OClDescriptorree((dvoid *) dest_loc, (ub4) OCI_DTYPE_LOB);
(void) OClIDescriptorFree((dvoid *) src_loc, (ub4) OCI_DTYPE_LOB);

retum;

Example: Copy a LOB Locator Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. COPY-LOCATOR.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERT/USER1".
01 DEST SQL-BLOB.
01 SRC SQL-BLOB.

EXEC SQL INCLUDE SQLCA END-EXEC.
PROCEDURE DIVISION.
COPY-BLOB-LOCATOR.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL
CONNECT :USERID
END-EXEC.
* Alocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :DEST END-EXEC.
EXEC SQL ALLOCATE :SRC END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

EXEC SQL

3-160 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Copy a LOB Locator

SELECT FRAME INTO :SRC
FROM MULTIMEDIA_TAB WHERE CLIP_ID =2 FOR UPDATE
END-EXEC.

EXEC SQL
LOB ASSIGN :SRC TO :DEST
END-EXEC.

*When you write data to the LOB through SRC, DEST will
* not see the newly wiitten data

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :DEST END-EXEC.

EXEC SQL FREE :SRC END-EXEC.
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Copy a LOB Locator Using C++ (Pro*C/C++)
#include <oci.h>

#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;

Internal Persistent LOBs 3-161

Copy a LOB Locator

exit(1);
}

void lobAssign_proc()
OCIBlobLocator *Lob loc1,*Lob _loc2;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();

EXEC SQL ALLOCATE :Lob_locl,;

EXEC SQL ALLOCATE :Lob_loc2;

EXEC SQL SELECT Frame INTO :Lob_locl

FROM Mulimedia._tab WHERE Clip_ID =1 FOR UPDATE;

/*Assign Lob_locl to Lob_loc2 thereby saving a copy of the value of the
LOB at this point in time: %/

EXEC SQL LOB ASSIGN :Lab_loc1 TO:Lab loc2;

/*When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
see the newly written data whereas Lob_loc1 will see the new data: %

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

lobAssign_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Copy a LOB Locator Using Visual Basic (O040)

Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob
Set MySession = CreateObject("OraclelnProcServer. XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “samp/samp”, 0&)
Set OraDyn = OraDb.CreateDynaset(
"SELECT * FROM Mulimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)

Set OraSound1 = OraDyn.Fields('Sound").Value
Set OraSoundClone = OraSound1

OraDyn.MoveNext

3-162 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Copy a LOB Locator

‘Copy 1000 bytes of LOB values OraSoundClone to OraSound| at OraSound/
offset 100:

OraDyn.Edit

OraSound1.Copy OraSoundClone, 1000, 100

OraDyn.Update

Example: Copy a LOB Locator Using Java (JDBC)

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql. Types;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResuitSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex2_104
{

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC diver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =
DriverManager.getConnection ('jdbc:oracle:oci8:@", "samp", "samp');

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BLOB lob_loc1 =nul;

Internal Persistent LOBs 3-163

Copy a LOB Locator

BLOB lob_loc2 =nul;

ResultSet rset = stmt.executeQuery (
"SELECT frame FROM multimedia_tab WHERE clip_id=1";
if (rsetnext()
{
lob_locl = ((OracleResultSet)rset).getBLOB (1);
}

/#/ When you write some data to the LOB through lob_loc1, lob_loc2 will not
see the changes
lob_loc2=lob _loci;

stmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)
{
e printStackTrace();
}
}
}

3-164 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If One LOB Locator Is Equal to Another

See If One LOB Locator Is Equal to Another

Figure 3-29 Use Case Diagram: See If One LOB Locator Is Equal to Another

Internal persistent LOBs

see if locators
are equal

SELECT

aLOB L T TP PP TP PP T [

Scenario

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" on page 2-2). In this example, the locators are
equal. However, it may be as important to determine that locators do not refer to
same version of the LOB data.

This functionality is available in only a limited number of environments.

« "Example: See If One LOB Locator Is Equal to Another Using C (OCI)" on
page 3-166

« "Example: See If One LOB Locator Is Equal to Another Using C++
(Pro*C/C++)" on page 3-167

« "Example: See If One LOB Locator Is Equal to Another Using Java (JDBC)" on
page 3-169

Internal Persistent LOBs 3-165

See If One LOB Locator Is Equal to Another

Example: See If One LOB Locator Is Equal to Another Using C (OCl)
/*Select the locator: %/

sb4 select lock frame_locator(Lob_loc, errhp, svchp, stmthp)
OClLobLocator *Lob_loc;
OClErmor *erhp;
OCISveCix *svchp;
OCISmt *stmthp;
{
text *sglstmt=
(text*)"SELECT Frame FROM Mulimedia_tab WHERE Clip_ID=1 FOR UPDATE",
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sistmt,
(ub4)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX; (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, erhp, (ub4) 1,
(dvoid ®&Lob_loc, (sb4)0,
(ub2) SQLT_BLOB(dvoid *) 0,
(ub2#)0, (Ub2*) 0, (Ubd) OC|_DEFAULT));

/* Executte the select and fetch one row: %/

checkenr(errhp, OCIStmtExecute(svchp, stmthp, erthp, (ub4) 1, (ub4) O,
(CONST OClSnapshat*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retum (O);
}

void assignLob(envhp, enhp, svchp, stmthp)
OCIEnv *envhp;

OCIEnor *errhp;

OCISvcCix *svehp;

OCIStmt *stmthp;

{

OClILobLocator *dest_loc, *src_loc;
boolean isEqual;

/*Allocate the LOB locators: ¥/

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest loc,
(ub4)OCI_DTYPE_LOB, (size_{) 0, (cdvoid **) 0);

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid *¥) &src_loc,
(Ub4)OCI_DTYPE_LOB, (size 1) 0, (dvoid **) 0);

3-166 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If One LOB Locator Is Equal to Another

/*Selectthe LOBS: %/
printf (" select and lock a frame locatorn');
select_lock frame_locator(src_loc, errhp, svchp, stmthp);* source locator */

/*Assign src_loc to dest_loc thereby saving a copy of the value of the LOB
atthis point in ime: %/

printf(" assign the src locator to dest locator\n®);

checkerr (errhp, OCILobAssign(envhp, enhp, src_loc, &dest_loc));

/*When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
see the newly written data whereas Lob_loc1 will see the new data:

/*Call OCl to see ifthe two locators are Equal: %/

printf (" check if Lobs are Equal\n'Y);
checkerr (errhp, OCILoblsEqual(envhp, src_loc, dest _loc, &isEqual));

if (SEqual)

{
/*... The LOB locators are Equal: %/
printf(" Lob Locators are equal\n'Y);

else

{
/*... The LOB locators are not Equal: %/

printf(" Lob Locators are NOT Equal\n");
}

/* Note that in this example, the LOB locators will be Equal %/

/* Free resources held by the locators: %/
(void) OClIDescriptorFree((dvoid *) dest_loc, (ub4) OCI_DTYPE_LOB);
(void) OClIDescriptorFree((dvoid *) src_loc, (ub4) OCI_DTYPE_LOB);

retum;

Example: See If One LOB Locator Is Equal to Another Using C++ (Pro*C/C++)

/* Pro*C/C++ does not provide a mechanism to test the equality of two
locators. However, by using the OCI directly, two locators can be
compared to determine whether or not they are equial as this example
demonstrates: ¥/

Internal Persistent LOBs 3-167

See If One LOB Locator Is Equal to Another

#include <sgl2oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglermm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void LobLocatorlsEqual_proc()

{
OCIBlobLocator *Lob_loc1,*Lob loc2;
OCIEnv *oeh;
boolean isEqual;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

EXEC SQL ALLOCATE :Lob _loci,;

EXEC SQL ALLOCATE :Lob_loc2;

EXEC SQL SELECT Frame INTO Lob_locl

FROM Mulimedia_tab where Clip_ID =1 FOR UPDATE;

/*Assign Lob_locl to Lob_loc2 thereby saving a copy of the value of the
LOB at this point in time: %/

EXEC SQL LOB ASSIGN :Lob _loc1 TO :Lob_loc2;

/*When you write some data to the lob through Lob _loc1, Lob_loc2 will
not see the newly written data whereas Lob _loc1 will see the new
data. %/

/* Get the OCI Environment Handle using a SQLLIB Routine: %

(void) SQLENVGet(SQL_SINGLE_RCTX, &oeh);

/*Call OCl to see if the two locators are Equal: %/

(void) OCILoblIsEqual(oeh, Lab _locl, Lob loc2, &isEqual);

if (iIsEqual)

printf(The locators are equal\n’);
else
printf(The locators are not equaln’);

/*Note that in this example, the LOB locators will be Equal %/

EXEC SQL FREE :Lob loci,

EXEC SQL FREE :Lob loc2;

}

void main()

{

3-168 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If One LOB Locator Is Equal to Another

char *samp ="samp/samp";

EXEC SQL CONNECT :samp;
LobLocatorlsEqual_proc();

EXEC SQL ROLLBACK WORK RELEASE;

Example: See If One LOB Locator Is Equal to Another Using Java (JDBC)

// Core JDBC classes:

import java.sql.DriverManager;
import java.sgl.Connection;

import java.sgl. Types;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver*;

public class Ex2_108
{

public static void main (String args [])
throws Exception
{
// Load the Oracle JDBC drver:
Class.forName (‘oracle.jdbc.driver.OracleDriver”);

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp’);

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BLOB lob_loc1 =null;
BLOB lob_loc2 =nul;

Internal Persistent LOBs 3-169

See If One LOB Locator Is Equal to Another

ResultSet rset = stmt.executeQuery (
"SELECT sound FROM multimedia._tab WHERE clip_id =2");
if (rsetnext())
{

lob_locl = ((OracleResultSet)rset).getBLOB (1);
}

// When you write some data to the LOB through lob _locl, lob_loc2 will not
see the changes:
lob_loc2=lob _loci;

// Note that in this example, the Locators will be equal.
if (lob_loc1.equals(lob_loc2))

// The Locators are equal:
System.out.printin(‘"Locators are equal”);

else
{
// The Locators are diiferent:
System.out.printin("Locators are NOT equal”);
}

stmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

3-170 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator Is Initialized

See If a LOB Locator Is Initialized

Figure 3-30 Use Case Diagram: See If a LOB Locator Is Initialized

Internal persistent LOBs

see if locator
is initialized

£

User/
Program

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

The operation allows you to determine if the locator has been initialized or not. In
the example shown both locators are found to be initialized.

This functionality is currently available in only two environments.

Internal Persistent LOBs 3-171

See If a LOB Locator Is Initialized

« "Example: See If a LOB Locator Is Initialized Using C (OCI)" on page 3-172

« "Example: See If a LOB Locator Is Initialized Using C++ (Pro*C/C++)" on
page 3-173

Example: See If a LOB Locator Is Initialized Using C (OCI)
/*Select the locator: %/

sh4 select frame_locator(Lob_loc, emhp, svchp, stimthp)
OClLobLocator *Lob_loc;
OCIEnor *enhp;
OCISvcCtx *svchp;
OCISmt *stmthp;
{
text *sqlstmt=
(text *"'SELECT Frame FROM Mulimedia_tab WHERE Clip_ID=1";
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sglstmt,
(ub4)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX; (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid ®)&Lob _loc, (sb4)0,
(ub2) SQLT_BLOB(dvoid *) 0,
(ub2*)0, (Ub2%) 0, (Ubd) OC|_DEFAULT));

/* Executte the select and fetch one row: %/

checkenr(errhp, OCIStmtExecute(svchp, stmthp, erthp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot¥) 0,
(ub4) OCI_DEFAULT));

retum (Q);
}

void isIniiaizedLob(envhp, enhp, svchp, stmthp)
OCIEnv *envhp;

OCIEnor *errhp;

OCISvcCix *svchp;

OCISmt *stmthp;

{

OCILobLocator *Lob_locl, *Lob loc2;

boolean isInitialized;

3-172 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator Is Initialized

/*Allocate the LOB locators: ¥/
printf(" allocate locator 1 and 2\n");
(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid *¥) &Lob_locl,
(ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob _loc2,
(Ub4)OCI_DTYPE_LOB, (size _t) 0, (dvoid **) 0);

/*Selectthe LOBS: %/
printf (" select a frame locator into locator 1\n");
select_frame_locator(Lob_locl, errhp, svchp, stmthp); #locator 1%/

/* Determine if the locator 1 is Initialized -: %/

checkerr(errhp, OCILaobLocatorIsInit(envhp, errhp, Lob_locl, &islnitialized));
/ Isinitialized should retum TRUE here %/

printf{" for Locator 1, isInitialized = %d\n', isinitialized);

/* Determine ifthe locator 2 is Initialized -: %/

checkerr(errhp, OClLobLocatorisInitienvhp, errhp, Lob_loc2, &isinitialized));
/* Isinitialized should retum TRUE here %

printf(" for Locator 2, islnitialized = %d\n", isInitialized);

/* Free resources held by the locators: %/
(void) OClIDescriptorFree((dvoid *) Lob_locl, (ub4) OCI_DTYPE_LOB);
(void) OClIDescriptorFree((dvoid *) Lob_loc2, (ub4) OCI_DTYPE_LOB);

retum;

Example: See If a LOB Locator Is Initialized Using C++ (Pro*C/C++)

/* Pro*C/C++ has no form of embedded SQL statement to determine ifa LOB
locator is initialized. Locators in Pro*C/C++ are initialized when they
are allocated via the EXEC SQL ALLOCATE statement. However, an example
can be witten that uses embedded SQL and the OCl as is shown here: ¥/

#include <sglRocih>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;

Internal Persistent LOBs 3-173

See If a LOB Locator Is Initialized

exit(1);
}

void LobLocatorlsInit_proc()
{
OCIBlobLocator *Lob_loc;
OCIEnv *oeh;
OCIEror *err,
boolean isInitialized:;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lab_loc;
EXEC SQL SELECT Frame INTO Lob _loc
FROM Mulimedia_tab where Clip_ID=1;
/*Get the OCI Environment Handle using a SQLLIB Routine: %/
(void) SQLEnvVGet(SQL_SINGLE_RCTX, &oeh);
/* Allocate the OCI Error Handle: %/
(void) OCIHandleAlloc((dvoid *)oeh, (dvoid *)&err,
(ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid *)0);
/*Use the OCl to determine if the locator is Initialized: %/
(void) OCILobLocatorlsInit(oeh, err, Lob_loc, &islnitialized);
if (islnitialized)
printf(The locator is initialized\n");
else
printf(The locator is not iniialized\n');
/*Note that in this example, the locator is initialized %/
/* Deallocate the OCI Eiror Handle: %/
(void) OCIHandleFree(err, OCI_HTYPE_ERROR);
/* Release resources held by the locator: %
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
LobLocatorlsInit_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

3-174 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Get Character Set ID

Get Character Set ID

Figure 3-31 Use Case Diagram: Get Character Set ID

Internal persistent LOBs

get character
set ID

SELECT
2 LOB el

£

User/
Program

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

The use case demonstrates how to determine the characterset ID of the foreign
language subtitle (FLSub). This functionality is available only in OCI.

Internal Persistent LOBs 3-175

Get Character Set ID

« "Example: Get Character Set ID Using C (OCI)" on page 3-176

Example: Get Character Set ID Using C (OClI)

/* This function takes a valid LOB locator and prinits the character set id of
the LOB. ¥

/* Select the locator *

sbh4 select FLSub_locator(Lob_loc, emhp, svchp, stmthp)
OClLobLocator*Lob_loc;

OCIEmor *erhp;

OCISveCtx *svchp;

OCIStmt *stmthp;

{
OCIDefine *defnpl;

text *sglstmt =
(text*)"SELECT FLSub FROM Multimedia._tab WHERE Clip_ID =2",

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, saistmt,
(ubd)strien((char *)sqlstmt),
(Ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Define the column being selected %/

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, erhp, (ub4) 1,
(dvoid ¥)&Lob_loc, (sb4)0,
(Ub2)SQLT_CLOB,(dvoid %)0, (ub2 *)0,
(Ub2*)0, (Ub4)OCI_DEFAULT));

/* Execute and fetch one row %/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, erhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retum O;

}

sh4 getcsidLob (envhp, erhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCIStmt *stmthp;
{
OClLobLocator *Lob_loc;
ub2 charsetid=0;

3-176 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set ID

(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid #) &Lob _loc,
(Ub4)OCI_DTYPE_LOB, (size 1) 0, (dvoid) O);

printf (" select a FLSub locatorn');
select FLSub_locator(Lob_loc, errhp, svchp, stmthp);

printf (" get the character setid of FLSub_locatorn');

/*Getthe charactersid ID of the LOBY

checkerr (errhp, OCILobCharSetid(envhp, errhp, Lob_loc, &charsetid));
printf(" character Set ID of FLSub is : %d\n”, charsetid);

/* Free resources held by the locators¥/
(void) OClDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

retum;

Internal Persistent LOBs 3-177

Get Character Set Form

Get Character Set Form

Figure 3-32 Use Case Diagram: Get Character Set Form

Internal persistent LOBs

get character

set form

SELECT
a LOB L R PP T,

X

User/
Program

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

The use case demonstrates how to determine the character set form of the foreign
language subtitle (FLSub). This functionality is available only in OCI.

« "Example: Get Character Set Form Using C (OCI)" on page 3-179

3-178 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set Form

Example: Get Character Set Form Using C (OCl)

/* Select the locator *

sb4 select FLSub_locator(Lob_loc, errhp, svchp, stmthp)
OClLobLocator *Lob_loc;

OCIEmor *enhp;

OCISvcCtx *svchp;

OCIStmt *stmthp;

OCIDefine *defnpl;

text *sqistmt =
(text *"SELECT FLSub FROM Multimedia._tab WHERE Clip_ID = 2"

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sgistmt,
(ub4)strien((char *)sqlstmt),
(Ub4OCI_NTV_SYNTAX, (Ub4)OCI_DEFAULT));

/* Define the column being selected ¥/

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid ®&Lob _loc, (sb4)0,
(Ub2)SQLT_CLOB,(dvoid *)0, (ub2 *)0,
(Ub2*)0, (Ub4)OCI_DEFAULT));

/* Executte and fetch one row ¥/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, erhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot¥) 0, (OCISnapshott) 0,
(ub4) OCI_DEFAULT));

retum;

}

/* This function takes a valid LOB locator and prints the character set form
ofthe LOB.
¥4

sb4 getcsformLob(envhp, erhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{
OCILobLocator *Lob_loc;
ubl charset foom=0;

Internal Persistent LOBs 3-179

Get Character Set Form

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
(Ub4)OCI_DTYPE _LOB, (size 1) 0, (dvoid **) 0);

printf (" select a FLSub locatorn');
select FLSub_locator(Lob_loc, erthp, svchp, stmthp);

printf (" get the character set form of FLSub\n");

/*Getthe charactersid ID of the LOBY

checkerr (errhp, OCILobCharSetForm(envhp, erhp, Lob_loc, &charset_form));
printf(" character Set Form of FLSub is : %d\n", charset_form);

/* Free resources held by the locators®/
(void) OClIDescriptorFree((dvoid *) Lob _loc, (ub4) OCI DTYPE_LOB);

retum;

3-180 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Append One LOB to Another

Append One LOB to Another

Figure 3-33 Use Case Diagram: Append one LOB to another

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
aLOB <-

X

User/
Program

append one
LOB to
another

Internal Persistent LOBs 3-181

Append One LOB to Another

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Locking the Row Prior to Updating

Scenario

Prior to updating a LOBvalue via the PL/SQL DBMS_L ORackage or the OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT#&atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs. For more details on the state of the locator
after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced
Topics".

This example deals with the task of appending one segment of Sound to another.
We assume that you use sound-specific editing tools to match the wave-forms.

« "Example: Append One LOB to Another Using PL/SQL (DBMS_L OB Package)"
on page 3-182

« "Example: Append One LOB to Another Using C (OCI)" on page 3-183

« "Example: Append One LOB to Another Using COBOL (Pro*COBOL)" on
page 3-185

« "Example: Append One LOB to Another Using C++ (Pro*C/C++)" on
page 3-186

« "Example: Append One LOB to Another Using Visual Basic (O0O40)" on
page 3-187

« "Example: Append One LOB to Another Using Java (JDBC)" on page 3-188

Example: Append One LOB to Another Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure appendLOB_proc is not part of the
DBMS_LOB package: %/
CREATE OR REPLACE PROCEDURE appendLOB_proc IS

Dest loc BLOB;
Src loc BLOB;
BEGIN

3-182 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Append One LOB to Another

/*Select the LOB, get the destination LOB locator: %/

SELECT Sound INTO Dest_loc FROM Mulimedia._tab
WHERE Clip_ID=2

FOR UPDATE;

/* Select the LOB, get the destination LOB locator: %

SELECT Sound INTO Src_loc FROM Muttimedia._tab
WHERE Clip_ID=1;

/*Opening the LOB is optional: %/

DBMS_LOB.OPEN (Dest_loc, DBMS_LOB.LOB_READWRITE);

DBMS_LOB.OPEN (Src_loc, DBMS_LOB.LOB_READONLY);

DBMS_LOB.APPEND(Dest loc, Src_loc);

/*Closing the LOB is mandatory if you have opened it %/

DBMS_LOB.CLOSE (Dest _loc);

DBMS_LOB.CLOSE (Src_loc);

COMMIT;

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUTPUT _LINE(Operation failed);
END;

Example: Append One LOB to Another Using C (OCI)

/* This function appends the Source LOB to the end of the Destination LOBY/
/* Select the locator %/
sb4 select _lock_sound_locator_2(Lob loc, dest_type, erhp, svchp, stmthp)
OClLobLocator*Lob _loc;
ubl dest type; Fwhether destination locator %
OCIEmor *enhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{

char sqlstmt150];

OCIDefine *defnp;

if (dest_type ==TRUE)
{
strepy (sqistmt,
(char*)"SELECT Sound FROM Multimedia._tab WHERE Clip_ID=2 FOR UPDATE");
printf (" select destination sound locator\n®);
}

else

strepy(sglstmt, (char *)"'SELECT Sound FROM Multimedia_tab WHERE Clip_ID=1");

Internal Persistent LOBs 3-183

Append One LOB to Another

printf (" select source sound locator\n’);
}
checkerr (erhp, OCIStmtPrepare(stmthp, errhp, (text *)saistmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, erhp, (ub4) 1,
(dvoid *)&Lob_loc, (sh4)0,
(ub2) SQLT_BLOB,(dvoid *) O,
(Ub2%) 0, (ub2*) 0, (ub4) OCI_DEFAULT));

/* Execulte the select and fetch one row ¥/

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot¥) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retum O;

}
void appendLob(envhp, erhp, svchp, stimthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{
OCILobLocator *Dest_loc, *Src_loc;

/*Allocate the LOB locators

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &Dest _loc,
(Ub4)OCI_DTYPE_LOB, (size _t) 0, (dvoid **) 0);

(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Src_loc,
(Ub4)OCI_DTYPE_LOB, (size 1) 0, (dvoid **) 0);

/*Selectthe LOBs %
printf{" select source and destination Lobs\n®);
select_lock _sound _locator_2(Dest_loc, TRUE, erthp, svchp, stmthp);
/*destination locator %/
select_lock_sound _locator_2(Src_loc, FALSE, erthp, svchp, stmthp);
* source locator */

/*Opening the LOBs is Optional %
checkerr (errhp, OCILobOpen(svchp, erthp, Dest_loc, OClLOB_READWRITE));
checkerr (errhp, OCILobOpen(svchp, erthp, Src_loc, OCI LOB_READONLY));

/*Append Source LOB to the end of the Destination LOB. %/
printf(" append the source Lob to the destination Lob\n");

3-184 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Append One LOB to Another

checkerr(errhp, OCILobAppend(svchp, errhp, Dest_loc, Src_loc));

/*Closing the LOBs is Mandatory if they have been Opened ¥/
checkerr (erhp, OCILobClose(svchp, erthp, Dest_loc));
checkerr (errhp, OCILobClose(svchp, errhp, Src_loc));

/* Free resources held by the locators®/
(void) OClIDescriptorFree((dvoid *) Dest_loc, (ub4) OCI_DTYPE_LOB);
(void) OClIDescriptorFree((dvoid *) Src_loc, (ub4) OCI_ DTYPE_LOB);

retum;

Example: Append One LOB to Another Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAMH-ID. LOB-APPEND.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERLUSERL".
01 DEST SQL-BLOB.
01 SRC SQL-BLOB.

EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.

APPEND-BLOB.
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL CONNECT :USERID END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :DEST END-EXEC.
EXEC SQL ALLOCATE :SRC END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL

SELECT SOUND INTO :DEST

FROM MULTIMEDIA TAB WHERE CLIP_ID =2 FOR UPDATE
END-EXEC.

EXEC SQL
SELECT SOUND INTO :SRC

Internal Persistent LOBs 3-185

Append One LOB to Another

FROM MULTIMEDIA TABWHERECLIP_ID=1
END-EXEC.

*Open the DESTination LOB readiwrite and SRC LOB read onlly:
EXEC SQL LOB OPEN :DEST READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC READ ONLY END-EXEC.

* Append the source LOB to the destination LOB:
EXEC SQL
LOB APPEND :SRC TO :.DEST
END-EXEC.

EXEC SQL LOB CLOSE :DEST END-EXEC.
EXEC SQL LOB CLOSE :SRC END-EXEC.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :DEST END-EXEC.
EXEC SQL FREE :SRC END-EXEC.
EXEC SQL COMMIT WORK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Append One LOB to Another Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

3-186 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Append One LOB to Another

printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void appendLOB_proc()

{
OClBlobLocator *Dest _loc, *Src_loc;

EXEC SQL WHENEVER SQLERROR DO Sample_Enor();
/* Allocate the locators: %
EXEC SQL ALLOCATE :Dest loc;
EXEC SQL ALLOCATE :Src _loc;
/* Select the destination locator: %/
EXEC SQL SELECT Sound INTO :Dest_loc
FROM Mulimedia_tab WHERE Clip_ID =2 FOR UPDATE;
/* Select the source locator: %/
EXEC SQL SELECT Sound INTO :Src_loc
FROM Mulimedia_tab WHERE Clip_ID=1,
/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Dest_loc READ WRITE;
EXEC SQL LOB OPEN :Src_loc READ ONLY;
/*Append the source LOB to the end of the destination LOB: %/
EXEC SQL LOB APPEND :Src_loc TO :Dest loc;
/* Closing the LOBSs is mandatory if they have been opened: ¥/
EXEC SQL LOB CLOSE :Dest loc;
EXEC SQL LOB CLOSE :Src _loc;
/* Release resources held by the locators: %
EXEC SQL FREE :Dest _loc;
EXEC SQL FREE :Src_loc;
}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

appendLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Append One LOB to Another Using Visual Basic (0040)

Dim MySession As OraSession
Dim OraDb As OraDatabase

Internal Persistent LOBs 3-187

Append One LOB to Another

Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OraclelnProcSenver. XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “samp/samp”, 0&)
Set OraDyn = OraDb.CreateDynaset(
"SELECT * FROM Mulimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields('Sound").Value
Set OraSoundClone = OraSound1

OraDyn.MoveNext

OraDyn.Edit
OraSound1.Append OraSoundClone
OraDyn.Update

Example: Append One LOB to Another Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sql.DriverManager;
import java.sgl.Connection;

import java.sgl. Types;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex2_121
{

static final int MAXBUFSIZE = 32767;

public static void main (String args [)
throws Exception

{
// Load the Oracle JDBC dhnver:

3-188 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Append One LOB to Another

Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (' jdbc:oracle:oci8:@", "samp", "samp');

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

fry
{

ResultSet rset = nul;
BLOB dest_loc =null;
BLOB src_loc=nul;
InputStream in = null;
byte[] buf = new byte[MAXBUFSIZE];
intlength=0;
long pos=0;

rset = stmt.executeQuery (
"SELECT sound FROM multimedia._tab WHERE clip_id = 2");
if (rsetnext())
{
src_loc = ((OracleResultSet)rset).getBLOB (1);

}
in=src_loc.getBinaryStream();

rset = stmt.executeQuery (
"SELECT sound FROM multimedia_tab WHERE clip_id = 1 FOR UPDATE");

if (rsetnext())

{
dest_loc = ((OracleResultSet)rset).getBLOB (1);

}

// Startwriting at the end of the LOB. le. append:
pos =dest_loc.length();

/ populate the buffer:

buf = (new String("Hello World")).getBytes();

while ((length = in.read(buf)) I=-1)

Internal Persistent LOBs

3-189

Append One LOB to Another

{
/#/ White the contents of the buffer into position pos of the output LOB:

dest _loc.putBytes(pos, buf);
}

// Close all streams and handles:
in.close();

stmt.close();

conn.commit();

conn.close();

}
catch (SQLException €)

e.printStackTrace();
}
}
}

3-190 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Append to a LOB

Write Append to a LOB

Figure 3-34 Use Case Diagram: Write Append to a LOB

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

write
append ‘

L D e ;

alLOB %

User/
Program

get
chunk size

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

"Use Case Model: Internal Persistent LOBs" on page 3-2

Writing Singly or Piecewise
The writeappend operation writes a buffer to the end of a LOB. For the OCI, the
buffer can be written to the LOBIn a single piece with this call; alternatively, it can
be rendered piecewise using callbacks or a standard polling method. If the value of

Internal Persistent LOBs 3-191

Write Append to a LOB

the piece parameter is OCI_FIRST_PIECE , data must be provided through
callbacks or polling. If a callback function is defined in the cbfp parameter, then this
callback function will be invoked to get the next piece after a piece is written to the
pipe. Each piece will be written from bufp. If no callback function is defined, then
OCIlLobWriteAppend () returns the OCI_NEED_DAT Aerror code. The application
must call OCILobWriteAppend () again to write more pieces of the LOB In this
mode, the buffer pointer and the length can be different in each call if the pieces are
of different sizes and from different locations. A piece value of OCI_LAST_PIECE
terminates the piecewise write.

Locking the Row Prior to Updating

Scenario

Prior to updating a LOBvalue via the PL/SQL DBMS_LOBRackage or the OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT#atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs. For more details on the state of the locator
after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced
Topics".

This example demonstrates writing to the end of a video frame (Frame).

« "Example: Write Append to a LOB Using PL/SQL" on page 3-192

« "Example: Write Append to a LOB Using C (OCI)" on page 3-193

« "Example: Write Append to a LOB Using COBOL (Pro*COBOL)" on page 3-195
« "Example: Write Append to a LOB Using Visual Basic (O040)" on page 3-197

« "Example: Write Append to a LOB Using Java (JDBC)" on page 3-197

Example: Write Append to a LOB Using PL/SQL

/* Note that the example procedure lobWriteAppend_proc is not part of the
DBMS _LOB package: ¥/
CREATE OR REPLACE PROCEDURE lobWiiteAppend_proc IS
Lob loc BLOB;
Buffer RAW(32767);
Amount Binary_integer := 32767,
BEGIN
SELECT Frame INTO Lob_loc FROM Multimedia._tab where Clip_ID = 1 FOR UPDATE;
/* Fill the buffer with daz... %/

3-192 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Append to a LOB

/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
/* Append the data from the buffer to the end of the LOB: %/
DBMS_LOB.WRITEAPPEND(Lob _loc, Amount, Buffer);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE(Lob_loc);

END;

Example: Write Append to a LOB Using C (OCl)
/* Select the locator into a locator variable: ¥

sbh4 select_lock _frame_locator(Lob_loc, emhp, svchp, stmthp)
OClLabLocator*Lob_loc;
OCIEmor *errhp;
OCISveCitx *svchp;
OCIStmt *stmthp;
{
text *sglstmt =
(text *)"SELECT Frame FROM Mulimedia__tab WHERE Clip_ID=1 FOR UPDATE",
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, saistmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid *)&Lob_loc, (sh4)0,
(ub2) SQLT_BLOB,(dvoid *) O,
(Ub2%) 0, (ub2*) 0, (ub4) OCI_DEFAULT));

/* Executte the select and fetch one row: %/

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OClSnapshot*) O,
(ub4) OCI_DEFAULT));

retum (O);
}

#define MAXBUFLEN 32767
void writeAppendLob(envhp, erthp, svchp, stmthp)

OCIEnv *envhp;
OCIEnor *erhp;

Internal Persistent LOBs 3-193

Write Append to a LOB

OCISvcCix *svchp;
OCISimt *stmthp;

OCIBlobLocator *Lob_loc;
ub4 amt;

ub4 offset,

sword retval;

ubl bufp[MAXBUFLEN;
ub4 buflen;

OCILobLocator *Lob_Loc;

*Alocate the Source (bfie) & destination (blob) locators destiptors: ¥/
(void) OCIDescriptorAlloc((cvoid *) envhp, (dvoid #) &Lob _loc,
(Ub4)OCI_DTYPE_LOB, (size)0, (dvoid #) O);

/* Select the BLOB: %/
printf{" select and lock a frame locatorin'Y);
select_lock_frame_locator(Lob_loc, errhp, svchp, stmthp);

/Openthe BLOB: %
checkerr (errhp, (OCILobOpen(svchp, erhp, Lob_loc, OCI LOB_READWRITE)));

/* Setting the amit to the buffer length. Note here that amt is in bytes
since we are using a BLOB: %/

amt = sizeof(bufp);

buflen = sizeof(bufp);

/* Fill bufp with data: %/
/*Wiite the data from the buffer at the end of the LOB: %/
printf(" write-append data to the frame Lob\n');
checkerr (errhp, OCILobWriteAppend (svchp, errhp, Lob_loc, &amt,
bufp, buflen,
OCI_ONE_PIECE, (dvoid *)0,
(sb4 (*)(dvoid *, dvoid *, ub4 *, ub1 %))0,
0, SQLCS_IMPLICIT));
/* Closing the BLOB is mandatory if you have opened it %/
checkerr (emrhp, OCILobClose(svchp, erhp, Lob_loc));
/* Free resources held by the locators: %/
(void) OClIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

retum;

3-194 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Append to a LOB

Example: Write Append to a LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. WRITE-APPEND-BLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 BLOB1 SQL-BLOB.
01 AMT PIC S9(9) COMP.
01 BUFFER PIC X(32767) VARYING.
EXEC SQL VAR BUFFER IS LONG RAW (32767) END-EXEC.
01 USERID PIC X(11) VALUES "USERT/JUSERT".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
WRITE-APPEND-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initalize the BLOB locators:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL

SELECT FRAME INTO :BLOB1

FROM MULTIMEDIA_TABWHERE CLIP_ID=1FOR UPDATE
END-EXEC.

*QOpen the target LOB:
EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.

* Populate AMT here:
MOVE 5 TO AMT.
MOVE "2424242424" to BUFFER.

* Append the source LOB to the destination LOB:
EXEC SQL
LOB WRITE APPEND :AMT FROM :BUFFER INTO :BLOB1
END-EXEC.

Internal Persistent LOBs 3-195

Write Append to a LOB

EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Write Append to a LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 128

void LobWriteAppend_proc()
{
OCIBlobLocator *Lob_loc;

int Amount = BufferLength;

3-196 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Append to a LOB

/* Amount = Bufferl_ength so only a single WRITE is needed: %/
char Buffer[BufferLength];

/* Datatype equivalencing is mandatory for this datatype: ¥/
EXEC SQL VAR Buffer IS RAW/(BufferLength);

EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Frame INTO :Lob_loc
FROM Mulimedia._tab WHERE Clip_ID =1 FOR UPDATE;
/*Opening the LOB is Optional: %/
EXEC SQL LOB OPEN :Lob_loc;
memset((void *)Buffer, 1, BufferLength);
/*Wiite the data from the bufier at the end of the LOB: %/
EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Lob_loc;
/*Closing the LOB is mandatory if it has been opened.: %/
EXEC SQL LOB CLOSE :Lob _loc;
EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
LobWiriteAppend_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Write Append to a LOB Using Visual Basic (0040)

Note: A Visual Basic example will be made available in a
subsequent release.

Example: Write Append to a LOB Using Java (JDBC)

//Java lO classes:
import java.io.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;
import java.sgl. Types;

Internal Persistent LOBs 3-197

Write Append to a LOB

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResuitSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex2_126
{

static final int MAXBUFSIZE = 32767;

public static void main (String args [)
throws Exception
{
// Load the Oracle JDBC driver:
Class.forName (‘oracle.jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (' jdbc:oracle:oci8:@", "samp”, "samp');

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

fry

{
BLOB dest_loc =nul;

byte[] buf = new byte]MAXBUFSIZE];
long pos=0;

ResultSet rset = stmt.executeQuery (
"SELECT frame FROM mulimedia_tab WHERE clip_id =1 FOR UPDATE");
if (rsetnext())

dest_loc = ((OracleResultSet)rset).getBLOB (1);
}

// Start writing at the end of the LOB. le. append:
pos =dest_loc.length();

3-198 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Append to a LOB

A/l buf with contents to be witten:
buf = (new String("Hello World")).getBytes();

/#/ Wite the contents of the buffer into position pos of the output LOB:
dest_loc.putBytes(pos, buf);

// Close all streams and handles:
stmt.close();

conn.commit();

conn.close();

}
catch (SQLException €)

e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-199

Write Data to a LOB

Write Data to a LOB

Figure 3-35 Use Case Diagram: Write data to a LOB

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
alLOB

write data
to the LOB

enable
buffering

disable
buffering

get
chunk size

User/
Program

3-200 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Data to a LOB

Stream Write

Chunksize

To refer to the table of all basic operations having to do with Tem-
porary LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

The most efficient way to write large amounts of LOB data is to use

OClLobWrite () with the streaming mechanism enabled via polling or a callback. If
you know how much data will be written to the LOB, specify that amount when
calling OCILobWrite (). This will allow for the contiguity of the LOBdata on disk.
Apart from being spatially efficient, the contiguous structure of the LOBdata will
make for faster reads and writes in subsequent operations.

A chunk is one or more Oracle blocks. As noted previously, you can specify the
chunk size for the LOBwhen creating the table that contains the LOB This
corresponds to the chunk size used by Oracle when accessing/modifying the LOB
value. Part of the chunk is used to store system-related information and the rest
stores the LOBvalue. The getchunksize function returns the amount of space
used in the LOBchunk to store the LOBvalue.

You will improve performance if the you execute write requests using a multiple
of this chunk size. The reason for this is that the LOBchunk is versioned for every
write operation. If all writes are done on a chunk basis, no extra or excess
versioning is incurred or duplicated. If it is appropriate for your application, you
should batch writes until you have enough for an entire chunk instead of issuing
several LOBwrite calls that operate on the same LOBchunk.

Locking the Row Prior to Updating

Prior to updating a LOBvalue via the PL/SQL DBMS_LOBRackage or the OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT$atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs. For more details on the state of the locator
after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced
Topics".

Internal Persistent LOBs 3-201

Write Data to a LOB

Scenario

The following example procedure allows the STORYdata (the storyboard for the

clip) to be updated by writing data to the LOB

"Example: Write Data to a LOB Using the DBMS_L OB Package" on page 3-202
"Example: Write Data to a LOB Using C (OCI)" on page 3-203

"Example: Write Data to a LOB Using COBOL (Pro*COBOL)" on page 3-207
"Example: Write Data to a LOB Using C++ (Pro*C/C++)" on page 3-209
"Example: Write Data to a LOB Using Visual Basic (OO40)" on page 3-212
"Example: Write Data to a LOB Using Java (JDBC)" on page 3-213

Example: Write Data to a LOB Using the DBMS_LOB Package

3-202

/* Note that the example procedure

CREATE or REPLACE PROCEDURE writeDataToLOB_proc IS

Lob loc CLOB;

Buffer VARCHAR2(32767);

Amount BINARY_INTEGER = 32767,
Posiion INTEGER =1,

i INTEGER;

BEGIN

/*Selecta LOB: %
SELECT Story INTO Lob_loc
FROM Mulimedia_tab
WHERE Clip_ID=1
FOR UPDATE;

/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
/* Fill the buffer with data to write to the LOB: %/
FORIiIN 1.3LOOP

DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);

/* Fill the buffer with more data to write to the LOB: %/

Position ;= Pasition + Amount;
END LOOP;
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob_loc);

END;

/*We add a second example to show a case in which the buffer size and amounit

differs from the first example: %/

CREATE or REPLACE PROCEDURE wiiteDataToLOB_proc IS

Oracle8i Application Developer’s Guide - Large Objects (LOBS)

writeDataToLOB _proc is not part ofthe

Write Data to a LOB

Laob loc CLOB;
Buffer ~ VARCHAR2(32767);
Amount BINARY_INTEGER = 32767,
Posiion INTEGER;
i INTEGER,;
Chunk_size INTEGER,;
BEGIN

SELECT Story INTO Lob _loc

FROM Mulimedia_tab

WHERE Clip_ID=1
FOR UPDATE;

/*Opening the LOB is optional:
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);

Chunk_size := DBMS_LOB.GETCHUNKSIZE(Lob_loc);

/*Fill the buffer with ‘Chunk_size’ worth of data to write to
the LOB. Use the chunk size (or a mulltiple of chunk size) when wiiting
data to the LOB. Make sure that you write within a chunk boundary and
don't overlap different chunks within a single callto DBMS _LOB.WRITE. %/

Amount ;= Chunk_size;

/*Wiite data starting at the beginning of the second chunk: %
Position := Chunk_size + 1,

FORIIN 1.3LOOP
DBMS_LOBWRITE (Lob_loc, Amount, Position, Buffer);
/*Fill the buffer with more data (of size Chunk_size) to wite to

the LOB: ¥/

Position := Position + Amount;

END LOOP;

/*Closing the LOB is mandatory if you have opened it %/

DBMS_LOB.CLOSE (Lob_loc);

END;

Example: Write Data to a LOB Using C (OCl)

/* This example demonstrates how OCI provides for the ability to write
arbitrary amounts of data to an Intemal LOB in either a single piece
or in multiple pieces using a strearming mechanism that utilizes standard
poling. A dynamically allocated Buffer is used to hold the data being
written to the LOB. ¥

/* Select the locator into a locator variable ¥/

Internal Persistent LOBs 3-203

Write Data to a LOB

sb4 select lock_story locator(Lob_loc, errhp, svchp, stmthp)
OClLobLocator*Lob _loc;
OCIEnmor *errhp;
OCISveCtx *svchp;
OCIStmt *stmthp;
{
text *sqlstmt =
(text*) "SELECT Story FROM Multimedia_tabm \
WHERE m.Clip_ID =1 FOR UPDATE",
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, saistmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, erhp, (ub4) 1,
(dvoid ®&Lob_loc, (sb4)o,
(ub2) SQLT_CLOB,(dvoid*) 0,
(ub2#)0, (Ub2*) 0, (Ubd) OC|_DEFAULT));

/* Executte the select and fetch one row %/
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));
retum (O);
}

void writeDataToLob(envhp, enhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCISimt *stmthp;
{
OCIClobLocator *Lob _loc;
ub4 Total = 2.5*MAXBUFLEN,;
* <total amount of data to write to the CLOB in bytes>*/
unsigned intamt;
unsigned int offset;
unsigned int remainder, nbytes;
boolean last;
ubl bufp[MAXBUFLEN];

sbhderm;

/* Allocate the locators desriptors/
(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,

3-204 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Data to a LOB

(Ub4)OCI_DTYPE_LOB, (size 1) 0, (dvoid **) 0);

/*Selectthe CLOB Y
printf (" select a story Lob\n");
select_lock_story locator(Lob_loc, errhp, svchp, stmthp);

/*Openthe CLOB*
checkerr (errhp, (OCILobOpen(svchp, erhp, Lob_loc, OCI_LOB_READWRITE)));

if (Total > MAXBUFLEN)
nbytes = MAXBUFLEN,; /*We will use streaming via standard polling %/
else
nbytes = Total; /*Only a single wiite is required ¥/

/*Fill the bufer with nbytes worth of data ¥/
remainder = Total - nbytes;

/* Setting Amount to 0 streams the data until use specifies OC|_LAST _PIECE ¥/
amt=0;
offset=1;

printf(" write the Lob data in pieces\n');

if (0 ==remainder)

{
amt = nbytes;
/*Here, (Total <= MAXBUFLEN) so we can wiite in one piece */
checkerr (errhp, OCILobWhite (svchp, erhp, Lob _loc, &amt,

offset, bufp, nbytes,
OCI_ONE_PIECE, (dvoid %0,
(sb4 (*)(dvoid*,dvoid*,ub4*,ubl)0,
0,SQLCS_IMPLICIT));

}

else

{

/*Here (Total > MAXBUFLEN) so we use streaming via standard polling %
Fewrite the first piece. Specifying firstinitiates polling. */
err = OCILobWite (svchp, errhp, Lob_loc, &amt,

offset, bufp, nbytes,

OCI_FIRST_PIECE, (dvoid *)0,

(sb4 (*)(dvoid* dvoid*,ub4*ubl #))0,

0, SQLCS_IMPLICIT);

if e = OC|_NEED_DATA)
checkerr (errhp, er);

Internal Persistent LOBs 3-205

Write Data to a LOB

last = FALSE;
/*Wiite the next (interim) and last pieces
do

if (remainder > MAXBUFLEN)
nbytes = MAXBUFLEN,; /* Still have more pieces togo ¥/
else
{
nbytes =remainder; / *Here, (remainder <= MAXBUFLEN) %/
last=TRUE; /*This is going to be the final piece %/
}

/* Fill the Buffer with nbytes worth of data %/

i{f (last)

/* Specifying LAST terminates polling %

err = OCILobWite (svchp, errhp, Lob_loc, &amt,
offset, bufp, nbytes,
OCI_LAST_PIECE, (dvoid)0,
(sh4 (*)(dvoid* dvoid*,ub4*,ub1)0,
0, SQLCS_IMPLICIT);

if (e '= OCl_SUCCESS)

checken(errhp, er);

else
{
err = OCILobWite (svchp, emrhp, Lob_loc, &amt,
offset, bufp, nbytes,
OCI_NEXT_PIECE, (dvoid %0,
(sb4 (¥)(dvoid*,dvoid*,ub4*,ubl %))0,
0, SQLCS_IMPLICIT);
if e '=OC|_NEED_DATA)
checkerr (errhp, er);
}
/* Determine how much is left to write %/
remainder = remainder - nbytes;
}while (llast);
}

/Atthis poirtt, (remainder = 0) %/

/* Closing the LOB is mandatory if you have opened it ¥/
checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

3-206 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Data to a LOB

/* Free resources held by the locators¥/
(void) OClIDescriptorFree((dvoid *) Lob _loc, (ub4) OCl DTYPE_LOB);

retum;

}

Example: Write Data to a LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. WRITE-CLOB.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INFILE

ASSIGN TO "datfile.dat"

ORGANIZATION IS SEQUENTIAL.
DATADIVISION.
FILE SECTION.

FD INFILE
RECORD CONTAINS 5 CHARACTERS.
01INREC PICX().

WORKING-STORAGE SECTION.

01 CLOB1 SQL-CLOB.
01 BUFFER PICX(5) VARYING.

0L AMT PIC S9(9) COMP VALUES 321.
01 OFFSET PIC S9(9) COMP VALUE 1.
01 END-OF-FILE PICX(1) VALUES"N".

01 D-BUFFER-LEN PICO.

01 D-AMT PICO.

01 USERID PIC X(11) VALUES "USERT/USERT".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
WRITE-CLOB.

EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

Internal Persistent LOBs 3-207

Write Data to a LOB

*QOpen the inptt file:
OPEN INPUT INFILE.
*Allocate and initialize the CLOB locator:
EXEC SQL ALLOCATE :CLOB1 END-EXEC.

EXEC SQL
SELECT STORY INTO :CLOB1 FROM MULTIMEDIA TAB
WHERE CLIP_ID =1 FOR UPDATE

END-EXEC.

* Either write enttire record or write first piece
*Read a data file here and populate BUFFER-ARR and BUFFER-LEN
* END-OF-FILE will be set to "Y" when the entire file has been
*read.
PERFORM READ-NEXT-RECORD.
MOVE INREC TO BUFFER-ARR.
MOVE 5 TO BUFFER-LEN.
IF (END-OF-FILE ="Y")
EXEC SQL
LOB WRITE ONE :AMT FROM :BUFFER
INTO :CLOB1 AT :OFFSET
END-EXEC
ELSE
DISPLAY "LOB WRITE FIRST: ", BUFFER-ARR
EXEC SQL
LOB WRITE FIRST :AMT FROM :BUFFER
INTO :CLOB1 AT :OFFSET
END-EXEC.

*Continue reading from the input data file
*and writing to the CLOB:
PERFORM READ-NEXT-RECORD.
PERFORM WRITE-TO-CLOB
UNTIL END-OF-HLE ="Y".

MOVE INREC TO BUFFER-ARR.
MOVE 1 TO BUFFER-LEN.
DISPLAY "LOB WRITE LAST: *, BUFFER-ARR(L:BUFFER-LEN).
EXEC SQL

LOB WRITE LAST :AMT FROM :BUFFER INTO :CLOB1
END-EXEC.
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

3-208 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Data to a LOB

WRITE-TO-CLOB.
MOVE INREC TO BUFFER-ARR.
MOVE 5 TO BUFFER-LEN.
DISPLAY "LOB WRITE NEXT: ", BUFFER-ARR(L:BUFFER-LEN).
EXEC SQL

LOB WRITE NEXT :AMT FROM :BUFFER INTO :CLOBL

END-EXEC.
PERFORM READ-NEXT-RECORD.

READ-NEXT-RECORD.
MOVE SPACES TO INREC.
READ INFILE NEXT RECORD
AT END
MOVE "Y" TO END-OF-FILE.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Write Data to a LOB Using C++ (Pro*C/C++)

/* This example demonstrates how Pro*C/C++ provides for the ability to write
arbitrary amounts of data to an Intemal LOB in either a single piece
of in multiple pieces using a Strearming Mechanism that utilizes standard
poling. A dynamically allocated Buffer is used to hold the data being
written to the LOB: ¥

#include <oci.h>

#include <stdio.h>

#include <string.h>

#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

Internal Persistent LOBs 3-209

Write Data to a LOB

printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void writeDataToLOB_proc(multiple) int multiple;
{

OCIClobLocator *Lob _loc;

varchar Buffer[BufferLength;

unsigned int Total;

unsigned int Amount;

unsigned int remainder, nbytes;

boolean last;

EXEC SQL WHENEVER SQLERROR DO Sample_Ermor();
/*Allocate and Initialize the Locator: %
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Story INTO Lab _loc
FROM Mulimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/*Openthe CLOB: ¥/
EXEC SQL LOB OPEN :Lob_loc READ WRITE;
Total = Amount = (multiple * BufferLength);

if (Total > BufferLength)

nbytes = BufferLength; /*We will use streaming via standard polling */
else

nbytes =Total; F Only a single write is required */

/* Fill the buffer with nbytes worth of data: %
memset((void *)Buffer.arr, 32, nbytes);
Bufferlen=nbytes; /* Setthe Length*/
remainder = Total - nbytes;
if (0 = remainder)
{
/*Here, (Total <= Buffer_ength) so we can wiite in one piece:
EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob _loc;
printf(Write ONE Total of %d characters\n”, Amount);
}

else
{
/*Here (Total > BufferLength) so we streaming via standard polling %
/wite the first piece. Specifying first initiates polling: %/
EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
printf(Write first %d characters\n”, Buffer.len);
last=FALSE;

3-210 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB

/*White the next (interim) and last pieces: %/

do
if (remainder > Bufferl_ength)
nbytes = BufferLength; /* Still have more piecesto go*/
else
{

nbytes =remainder; /*Here, (remainder <= BufferLength) */
last=TRUE; /Thisis going to be the Final piece */

}
/* Fill the buffer with nbytes worth of data: %/
memset((void *)Buffer.arr, 32, nbytes);
Bufferlen=nbytes; /* Setthe Length*/
if{(last)
EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
P Specifying LAST terminates poliing: */
EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
printf("White LAST Total of %d characters\n”, Amount);
}
else
{
EXEC SQL WHENEVER SQLERROR DO hreak;
EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
printf(Write NEXT %d characters\n”, Buffer.len);
}
F Determine how much is left to write: */
remainder =remainder - nbytes;
}while (last);
}
EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Atthis point, (Amount = Total), the total amount that was written %/
/*Close the CLOB: %/
EXEC SQL LOB CLOSE :Lab_loc;
/* Free resources held by the Locator: %/
EXEC SQL FREE :Lob loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
writeDataToLOB_proc(1);
EXEC SQL ROLLBACK WORK;
writeDataToLOB_proc(4);

Internal Persistent LOBs 3-211

Write Data to a LOB

EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Write Data to a LOB Using Visual Basic (0040)

Note that this code fragment assumes an orablob object as the result of a
‘dynaset gperation. This object could have been an OUT parameter of a PL/SQL
Jprocedure. For more information please refer to chapter 1. There are two ways
of wiiting a lob using orablob.wite or orablob.copyfromifile

Using OraBlob.White mechanism
Dim OraDyn as OraDynaset, OraSound as OraBlob, amount_written%, chunksize%,
curchunk

chunksize = 32768
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Mulimedia_tab", ORADYN_DEFAULT)

Set OraSound = OraDyn.Fields('Sound")

OraSound.offset=1
OraSound.polingAmount = LOF(fnum)

Dim piece As Byte
Get#fnum, , curchunk

piece = ORALOB_FIRST_PIECE
amount_written = OraSound.Write(curchunk, chunksize, ORALOB_FIRST_PIECE)

While OraSound.Status = ORALOB_NEED_DATA
If amount_written <= chunksize Then
piece=ORALOB_LAST PIECE
Else
piece = ORALOB_NEXT_PIECE
End If

Get #fnum, , curchunk
amount_written = OraSound.Wiite(curchunk, chunksize, piece)

Wend

Using OraBlob.CopyFromFile mechanism
Dim OraDyn as OraDynaset, OraSound as OraBlob, amount_read%, chunksize%o, chunk

Set OraDyn = OraDb.CreateDynaset("select * from Mulimedia_tab'", ORADYN_DEFAULT)
Set OraSound = OraDyn.Fields('Sound").Value

3-212 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB

OraSound.CopyFromFile "c:\mysound.aud"

Example: Write Data to a LOB Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver*;

public class Ex2_66

{
static final int MAXBUFSIZE = 32767,

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC diver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =
DriverManager.getConnection ('jdbc:oracle:oci8:@", "samp", "samp');

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
CLOB Iob_loc=null;

Internal Persistent LOBs 3-213

Write Data to a LOB

String buf = new String ("Some Text To White");

ResultSet rset = simt.executeQuery (
"SELECT intab.transcript FROM TABLE(
SELECT mtab.inseg_ntab FROM multimedia._tab mtab
WHERE miab.cip_id = 1) intab WHERE intab.segment=1 FOR UPDATE";

if (rsetnext())

lob_loc = ((OracleResultSet)rset).getCLOB (1);
}

OracleCallableStaterment cstmt = (OracleCallableStatement)
conn.prepareCall ('BEGIN DBMS_LOB.OPEN(?,
DBMS_LOB.LOB_READWRITE); END;");
cstmt.setCLOB(L, lob_loc);

cstmt.execute();

long pos=0; // This is the offset within the CLOB where the data is
to be written

long length=0; / This s the size of the buffer to be written.

4/ This loop writes the buffer three times consecutively:
for (inti=0;i<3;i++)

// Fill the buffer with some data to be written:

length = buflength();

pos +=length;

/ This is an Oracle-specific method:

lob_loc.pisgl write(pos, buftoCharArray());
}

// All OPENed LOBS must be CLOSEd:
cstmt = (OracleCallableStaterent) conn.prepareCall (
"BEGIN DBMS_LOB.CLOSE(?); END;");
cstmt.setCLOB(1, lob_loc);
cstmt.execute();

stmt.close();
cstmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)

3-214 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB

{
e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-215

Trim the LOB Data

Trim the LOB Data

Figure 3-36 Use Case Diagram: Trim the LOB data

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
aLOB <---

trim the

LOB data

X

User/
Program

3-216 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Locking the Row Prior to Updating

Scenario

Prior to updating a LOBvalue via the PL/SQL DBMS_L ORackage or the OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT#atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs. For more details on the state of the locator
after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced
Topics".

Our example accesses text (CLOBdata) that is referenced in the Script column of
the table Voiceover_tab , and trims it.

« "Example: Trim the LOB Data Using PL/SQL (DBMS_LOB Package)" on
page 3-217

« "Example: Trim the LOB Data Using C (OCI)" on page 3-218

« "Example: Trim the LOB Data Using COBOL (Pro*COBOL)" on page 3-219
« "Example: Trim the LOB Data Using C++ (Pro*C/C++)" on page 3-221

« "Example: Trim the LOB Data Using Visual Basic (OO40)" on page 3-223

« "Example: Trim the LOB Data Using Java (JDBC)" on page 3-223

Example: Trim the LOB Data Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure timLOB_proc is not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE timLOB_proc IS

Lob loc CLOB;
BEGIN
/*Select the LOB, get the LOB locator: ¥/

SELECT Mtab.Voiced _ref.Script INTO Lob_loc FROM Mulimedia._tab Mtab
WHERE Mtab.Clip_ID=2
FOR UPDATE;

Internal Persistent LOBs 3-217

Trim the LOB Data

/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
#Trim the LOB data: %/
DBMS_LOB.TRIM(Lob_loc,100);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob_loc);

COMMIT;

/* Exception handling: */

EXCEPTION
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(Operation failed);
END;

Example: Trim the LOB Data Using C (OCI)

/* Select the locator into a locator variable %/
sh4 select_lock voice_locator(Lob _loc, errhp, svchp, stmthp)
OClLobLocator *Lob_loc;
OCIEmor *enhp;
OCISvcCtx *svchp;
OCISmt *stmthp;
{
text *sqlstmt=
(text*) "SELECT Mtab.Voiced_ref.Script\
FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID =2 FOR UPDATE",

OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, saistmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid *)&Lob_loc, (sh4)0,
(ub2) SQLT_CLOB,(dvoid*) 0,
(Ub2%) 0, (ub2*) 0, (ub4) OCI_DEFAULT));

/* Executte the select and fetch one row %/

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OClSnapshot*) O,
(ub4) OCI_DEFAULT));

retum O;

}

3-218 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data

void trimLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *enhp;
OCISveCix *svehp;
OCIStmt *stmthp;
{
OCILobLocator *Lob_loc;
unsigned int rimLength;

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
(Ub4)OCI_DTYPE_LOB, (size _t) 0, (dvoid **) 0);

/*Selectthe CLOB %/
printf{ " select a voice LOB\N");
select_lock voice_locator(Lob_loc, enhp, svchp, stmthp);

/*Openthe CLOB*

checkerr (errhp, (OCILobOpen(svchp, erhp, Lob_loc, OCI_LOB_READWRITE)));

/ Tnimthe LOB to its new length %/

timLength =100; *<New truncated length of the LOB>Y

printf (" trim the lob to %od bytes\n”, timLength);
checkerr (errhp, OCILobTrim (svchp, erhp, Lob_loc, timLength));

/*Closing the CLOB is mandatory if you have opend it ¥/
checkerr (erhp, OCILobClose(svchp, errhp, Lob_loc));

/* Free resources held by the locators®/
(void) OClIDescriptorFree((dvoid *) Lob _loc, (ub4) OCl_ DTYPE_LOB);

Example: Trim the LOB Data Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. TRIM-CLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 CLOB1 SQL-CLOB.

01 NEW-LEN PIC S9(9) COMP.
* Define the source and destination position and location:

Internal Persistent LOBs 3-219

Trim the LOB Data

01 SRC-POS PIC S9(9) COMP.

01 DEST-POS PIC S9(9) COMP.

01 SRCLOC PIC S9(9) COMP.

01 DEST-LOC PIC S9(9) COMP.

01 USERID PIC X(11) VALUES "USERLUSERL".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
TRIM-CLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the CLOB locators:
EXEC SQL ALLOCATE :CLOB1 END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
EXEC SQL
SELECT MTAB.STORY INTO :CLOB1
FROM MULTIMEDIA TAB MTAB
WHERE MTAB.CLIP_ID =2 FOR UPDATE
END-EXEC.

*Qpen the CLOB:
EXEC SQL LOB OPEN :CLOB1 READ WRITE END-EXEC.

* Move some value to NEW-LEN:
MOVE 3 TO NEW-LEN.
EXEC SQL
LOB TRIM :CLOB1 TO :NEW-LEN
END-EXEC.

EXEC SQL LOB CLOSE :CLOB1 END-EXEC.

END-OF-CLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :CLOB1 END-EXEC.

EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL

3-220 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Trim the LOB Data Using C++ (Pro*C/C++)

Note: In addition to the data structures set up above in the section
"Example: Create a Table Containing One or More LOB Columns
using SQL DDL" on page 3-15, you should use DML like this:

INSERT INTO multimedia._tab VALUES (

2, The quick brown fox jumped over the lazy dog’,

empty_clob(), NULL, empty_blob(), empty_blob(), NULL, NULL,
NULL, NULL);

INSERT INTO voiceover_tab VALUES (
voiced_typ(hello’,
(SELECT story FROM multimedia_tab WHERE clip_id =2),
‘world, 1, NULL))

UPDATE mulimedia_tab SET voiced ref=
(SELECT REF(r) FROM voiceover_tab r WHERE r.take = 1)
WHERE clip_id=2
Then create this text file, pers_trim.typ, containing:
case=lower

type voiced_typ

Then run this Object Type Translator command:

ott intyp=pers_rim.typ outtyp=pers_trim_o.yp
hfile=pers_trim.h code=c user=samp/samp

Internal Persistent LOBs 3-221

Trim the LOB Data

#include "pers_trim.h"
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('sglcode = %ld\n", sgica.sglcode);
printf('%.*s\n", sglca.sglenm.sglenm, sgica.sglermm.sglermmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void imLOB_proc()

{
voiced typ ref*vt ref;
voiced_typ*vt_typ;
OCIClobLocator *Lob _loc;
unsigned int Length, rimLength;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL ALLOCATE :mt _ref;
EXEC SQL ALLOCATE :M _typ;
/* Retrieve the REF using Associative SQL %/
EXEC SQL SELECT Mtab.Voiced ref INTO :vt_ref
FROM Multimedia._tab Mtab WHERE Mtab.Clip_ID =2 FOR UPDATE;
/* Dereference the Object using the Navigational Interface */
EXEC SQL OBJECT DEREF vt refINTO :vt_typ FOR UPDATE;
Lob loc=wt_typ->script;
/*Opening the LOB is Optional %/
EXEC SQL LOB OPEN :Lob_loc READ WRITE;
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
printf("Old length was %d\n”, Length);
trimLength = (unsigned int)(Length/ 2);
/ Tnmthe LOB to its new length %/
EXEC SQL LOB TRIM :Lob loc TO trimLength;
/*Closing the LOB is mandatory if it has been opened
EXEC SQL LOB CLOSE :Lob _loc;
/*Mark the Object as Modified (Dirty) %/
EXEC SQL OBJECT UPDATE M _typ;
/*Flush the changes to the LOB in the Object Cache
EXEC SQL OBJECT FLUSH vt _typ;
/* Display the new (modiiied) length %/
EXEC SQL SELECT Mtab.Voiced_ref.Script INTO :Lob_loc

3-222 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data

FROM Mulimedia_tab Mtab WHERE Mtab.Clip_ID=2;
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
printf("New length is now %d\n”, Length);
/* Free the Objects and the LOB Locator ¥
EXEC SQL FREE M ref;
EXEC SQL FREE vt _typ;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
rimLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Trim the LOB Data Using Visual Basic (0040)

Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject('OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “samp/samp”, 0&)
Set OraDyn = OraDb.CreateDynaset(
"SELECT * FROM Mulimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields('Sound").Value

OraDyn.Edit
OraSound1.Trim 10

OraDyn Update

Example: Trim the LOB Data Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import javaio.OutputStream;

// Core JDBC classes:
import java.sgl.DriverManager;

Internal Persistent LOBs 3-223

Trim the LOB Data

import java.sgl.Connection;

import java.sgl. Types;

import java.sql.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:
import oracle.sgl.*;
import oracle.jdbc.driver.;

public class Ex2_141
{

static final int MAXBUFSIZE = 32767;

public static void main (String args [])
throws Exception
{
// Load the Oracle JDBC dhver:
Class.forName ("oracle jdbc.driver.OracleDriver”);

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp’);

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Staternent stmt = conn.createStatement ();

try

{
CLOB Iob_loc=null;

ResultSet rset = stmt.executeQuery (
"SELECT mtab.voiced_ref.script FROM mutimedia._tab mtab

WHERE mtab.clip_id =2 FOR UPDATE");
if (rsetnext())
{

lob_loc = ((OracleResultSet)rset).getCLOB (1);
}

// Open the LOB for READWRITE:

3-224 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim the LOB Data

OracleCallableStatement cstmt = (OracleCallableStatement)
conn.prepareCall ('BEGIN DBMS_LOB.OPEN(?,DBMS_LOB.LOB_READWRITE);
END;");
cstmt.setCLOB(L, lob_loc);
cstmt.execute();

// Trim the LOB to length of 400:
cstmt = (OracleCallableStatement)
conn.prepareCall ("'BEGIN DBMS_LOB.TRIM(?, 400); END;");
cstmt.setCLOB(L, lob_loc);
cstmt.execute();

//Close the LOB:

cstmt = (OracleCallableStaternent) conn.prepareCall (
"BEGIN DBMS_LOB.CLOSE(?); END;");

cstmt.setCLOB(L, lob_loc);

cstmt.execute();

stmt.close();
cstmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

Internal Persistent LOBs 3-225

Erase Part of a LOB

Erase Part of a LOB

Figure 3-37 Use Case Diagram: Erase part of a LOB

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
alLoB ey

erase part

of aLOB

X

User/
Program

3-226 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Locking the Row Prior to Updating

Scenario

Example:

Prior to updating a LOBvalue via the PL/SQL DBMS_L ORackage or the OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT#atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs. For more details on the state of the locator
after an update, refer to "Updated locators" on page 2-5 in Chapter 2, "Advanced
Topics".

The example demonstrates erasing a portion of sound (Sound).

« "Example: Erase Part of a LOB Using PL/SQL (DBMS_LOB Package)" on
page 3-227

« "Example: Erase Part of a LOB Using C (OCI)" on page 3-228

« "Example: Erase Part of a LOB Using COBOL (Pro*COBOL)" on page 3-229
« "Example: Erase Part of a LOB Using C++ (Pro*C/C++)" on page 3-231

« "Example: Erase Part of a LOB Using Visual Basic (O0O40)" on page 3-232

« "Example: Erase Part of a LOB Using Java (JDBC)" on page 3-232

Erase Part of a LOB Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure eraseLOB_proc Is not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE eraselL.OB_proc IS

Lob loc BLOB;
Amount INTEGER = 3000;
BEGIN

/*Selectthe LOB, get the LOB locator: ¥/
SELECT Sound INTO lob_loc FROM Muttimedia_tab
WHERE Clip ID=1
FOR UPDATE;

Internal Persistent LOBs 3-227

Erase Part of a LOB

/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
/*Erase the data: %/
DBMS_LOB.ERASE(Lob_loc, Amount, 2000);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob_loc);

COMMIT;

/* Exception handling: */

EXCEPTION
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(Operation failed);
END;

Example: Erase Part of a LOB Using C (OClI)
/*Select the locator into a locator varniable: %/

sh4 select_lock_sound_locator(Lob_loc, erhp, svchp, stmthp)
OClLobLocator*Lob_loc;
OCIEmor *enhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{
text *sglstmt=
(text*)"SELECT Sound FROM Mulimedia._tab WHERE Clip_ID=1 FOR UPDATE",
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sgistmt,
(ubd)strien((char *)sqlstmt),
(ubd) OCI_NTV_SYNTAX, (ubd) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, erhp, (ub4) 1,
(dvoid *)&Lob_loc, (sb4)o,
(ub2) SQLT_BLOB,(dvoid *) O,
(Ub2%) 0, (ub2*) 0, (ub4) OCI_DEFAULT)),

/* Execulte the select and fetch one row: ¥/

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OClSnapshot*) O,
(ub4) OCI_DEFAULT));

retum O;

3-228 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB

void eraseLob(envhp, erhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCIStmt *stmthp;
{
OClLobLocator*Lob_loc;
ub4 amount = 3000;
ub4 offset = 2000;

OClLobLocator *Lob_Loc;

(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
(Ub4)OCI_DTYPE_LOB, (size)0, (dvoid **) 0);

/*Selectthe CLOB: ¥/
printf(" select and lock a sound LOB\n'");
select_lock_sound_locator(Lob_loc, enhp, svchp, stmthp);

#Openthe BLOB: ¥
checkerr (errhp, (OCILobOpen(svchp, erhp, Lob _loc, OCI LOB_ READWRITE)));

/* Erase the data starting at the specified Offset: %/
printf(" erase %d bytes from the sound Lob\n", amount);
checkerr (errhp, OCILaobErase (svchp, errhp, Lob_loc, &amount, offset));

/*Closing the BLOB is mandatory if you have opened it %/
checkerr (erhp, OCILobClose(svchp, errhp, Lob_loc));

/* Free resources held by the locators: %/
(void) OClIDescriptorFree((dvoid *) Lob _loc, (ub4) OCl_ DTYPE_LOB);

retum;

Example: Erase Part of a LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. ERASE-BLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USER1/USER1".

Internal Persistent LOBs 3-229

Erase Part of a LOB

01 BLOBL SQL-BLOB.
OLAMT PIC S9(9) COMP.
01 OFFSET PIC S9(9) COMP.

EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
ERASE-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL
CONNECT :USERID
END-EXEC.
* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL

SELECT SOUND INTO :BLOB1

FROM MULTIMEDIA TAB MTAB

WHERE MTAB.CLIP_ID =2 FOR UPDATE
END-EXEC.

*QOpen the BLOB:
EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.

* Move some value to AMT and OFFSET:
MOVE 2 TO AMT.
MOVE 1 TO OFFSET.
EXEC SQL
LOB ERASE :AMT FROM :BLOB1 AT :OFFSET
END-EXEC.

EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.

EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL

3-230 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Erase Part of a LOB

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Erase Part of a LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void eraseLob_proc()

{
OCIBlobLocator *Lob _loc;
int Amount=5;
int Offset=5;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Sound INTO :Lob loc

FROM Multimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/*Opening the LOB is Optional: */
EXEC SQL LOB OPEN :Lob_loc READ WRITE;
/* Erase the data starting at the specified Offset: %/
EXEC SQL LOB ERASE :Amount FROM :Lab _loc AT :Offset;
printf('Erased %d bytes\n'", Amount);
/*Closing the LOB is mandatory if it has been opened: %/
EXEC SQL LOB CLOSE :Lob _loc;
EXEC SQL FREE :Lob loc;

Internal Persistent LOBs 3-231

Erase Part of a LOB

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
eraseLob_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Erase Part of a LOB Using Visual Basic (O040)

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OraclelnProcServer.XOraSession')
Set OraDb = MySession.OpenDatabase(‘exampledh”, “samp/samp”, 0&)

Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Mulimedia_tab ORDER BY clip_
id', ORADYN_DEFAULT)

Set OraSound1 = OraDyn.Fields('Sound").Value

Erase 10 bytes begining from the 100th byte:

OraDyn.Edit

OraSound1.Erase 10, 100

OraDyn.Update

Example: Erase Part of a LOB Using Java (JDBC)

/Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql. Types;

import java.sgl.Statement;

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql*;

3-232 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB

import oracle jdbc.driver;

public class BEx2_145
{

static final int MAXBUFSIZE = 32767;

public static void main (String args [)
throws Exception

{
//Load the Oracle JDBC dhiver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

N It's faster when auto commit s off:
conn.setAutoCommit (false);

// Create a Statermment:
Statement stmt = conn.createStatement ();

fry

{
BLOBlob_loc=nul;

int eraseAmount = 30;

ResultSet rset = stmt.executeQuery (
"SELECT sound FROM mutimedia_tab WHERE clip_id =2 FOR UPDATE"),
if (rsetnext())

lob_loc = ((OracleResultSet)rset).getBLOB (1);
}

/ Openthe LOB for READWRITE:
OracleCallableStaterment cstmt = (OracleCallableStatement)
conn.prepareCall ("BEGIN DBMS_LOB.OPEN(?,
DBMS_LOB.LOB _READWRITE); END;");
cstmt.setBLOB(1, lob_loc);
cstmt.execute();

// Erase eraseAmounit bytes starting at offset 2000:
cstmt = (OracleCallableStatement)

Internal Persistent LOBs 3-233

Erase Part of a LOB

conn.prepareCall ('BEGIN DBMS_LOB.ERASE(?, ?, 1); END;");
cstmtregisterOutParameter (1, Oracle Types.BLOB);
cstmtregisterOutParameter (2, Types.INTEGER);
cstmt.setBLOB(L, lob_loc);
cstmt.setint(2, eraseAmount);
cstmt.execute();
lob_loc = cstmt.getBLOB(L);
eraseAmount = cstmt.getint(2);

// Close the LOB:

cstmt = (OracleCallableStatement) conn.prepareCall (
"BEGIN DBMS_LOB.CLOSE(?); END;);

cstmt.setBLOB(L, lob_loc);

cstmt.execute();

conn.commit();
stmt.close();
cstmt.close();
conn.commit();
conn.close();

}
catch (SQLEXxception €)
{
e.printStackTrace();
}
}
}

3-234 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Enable LOB Buffering

Enable LOB Buffering

Figure 3-38 Use Case Diagram: Enable LOB Buffering

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

write data

to the LOB

SELECT
alLOB

read data
from the LOB

enable
buffering

X

User/
Program

disable
buffering

Internal Persistent LOBs 3-235

Enable LOB Buffering

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

You enable buffering in order to perform a small read or write of the data. Once you
have completed these tasks, you must disable buffering before you can continue
with any other LOBoperations. Note that you must flush the buffer in order to make
your modifications persistent. For more information, refer to "LOB Buffering
Subsystem™ on page 2-14 in Chapter 2, "Advanced Topics".

Please note that you would not enable buffering to perform the stream read and
write involved in checkin and checkout.

« "Example: Enable LOB Buffering Using COBOL (Pro*COBOL)" on page 3-236
« "Example: Enable LOB Buffering Using C++ (Pro*C/C++)" on page 3-238
« "Example: Enable LOB Buffering Using Visual Basic (OO40)" on page 3-239

Example: Enable LOB Buffering Using C (OCl)

See:
« "Disable LOB Buffering" on page 3-246

Example: Enable LOB Buffering Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. LOB-BUFFERING.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERJUSERL".
01 BLOBL SQL-BLOB.

0L BUFFER PICX(10).

OLAMT PIC S9(9) COMP.

3-236 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering

EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
LOB-BUFFERING.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initalize the BLOB locator:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL

SELECT SOUND INTO :BLOB1

FROM MULTIMEDIA TAB

WHERE CLIP_ID =1 FOR UPDATE
END-EXEC.

*Open the BLOB and enable buiffering:
EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
EXEC SQL
LOB ENABLE BUFFERING :BLOB1
END-EXEC.

*Wiite some data to the BLOB:
MOVE "242424" TO BUFFER.
MOVE 3TO AMT.
EXEC SQL
LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
END-EXEC.

MOVE "212121" TO BUFFER.
MOVE 3 TO AMT.
EXEC SQL

LOB WRITE :AMT FROM :BUFFER INTO :BLOBL
END-EXEC.

* Now flush the buffered writes:
EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.

EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

Internal Persistent LOBs 3-237

Enable LOB Buffering

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.

EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Enable LOB Buffering Using C++ (Pro*C/C++)

#include <oci.h>

#include <stdio.h>
#include <string.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 256

void enableBufferingLOB_procy()

{
OCIBlobLocator *Lob_loc;

int Amount = BufferLength;
int multiple, Position = 1;

3-238 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Enable LOB Buffering

/* Datatype equivalencing is mandatory for this datatype: %/
char Buffer[BufferLength];
EXEC SQL VAR Buiffer is RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Allocate and Initalize the LOB: %/
EXEC SQL ALLOCATE :Lab_loc;
EXEC SQL SELECT Sound INTO :Lob_loc
FROM Multimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/*Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Lob _loc;
memset((void *)Buffer, 0, BufferLength);
for (muttiple = 0; multiple < 8; multiple++)

P Wiite data to the LOB: ¥/
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Lob_loc AT :Pasition;
Position += BufferLength;
}

/*Flush the contents of the buffers and Free their resources:
EXEC SQL LOB FLUSH BUFFER :Lob _loc FREE;
/* Tum off use of the LOB Buiffering Subsystem: %/
EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
/* Release resources held by the Locator: %
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
enableBufferingLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Enable LOB Buffering Using Visual Basic (0040)

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OraclelnProcSenver.XOraSession')

Set OraDb = MySession.OpenDatabase('exampledb”, "samp/samp”, 0&)
Set OraDyn = OraDb.CreateDynaset(

Internal Persistent LOBs 3-239

Enable LOB Buffering

"SELECT * FROM Mulimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)
Set OraSound1 = OraDyn.Fields('Sound").Value
Enable buffering:
OraSoundl. EnableBuffering

3-240 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer

Flush Buffer

Figure 3-39 Use Case Diagram: Flush Buffer

Internal persistent LOBs

OPEN
alLOB

CLOSE
alLOB

write data

4

to the LOB

SELECT
aLlop)€t

read data
from the LOB

User/
Program

enable
buffering

disable
buffering

Internal Persistent LOBs 3-241

Flush Buffer

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

You enable buffering in order to perform a small read or write of the data. Once you
have completed these tasks, you must disable buffering before you can continue
with any other LOBoperations. Note that you must flush the buffer in order to make
your modifications persistent. For more information, refer to "LOB Buffering
Subsystem™ on page 2-14 in Chapter 2, "Advanced Topics".

Please note that you would not enable buffering to perform the stream read and
write involved in checkin and checkout.

« "Example: Flush Buffer Using C (OCI)" on page 3-242
« "Example: Flush Buffer Using COBOL (Pro*COBOL)" on page 3-242
« "Example: Flush Buffer Using C++ (Pro*C/C++)" on page 3-244

Example: Flush Buffer Using C (OCI)

See:
« "Disable LOB Buffering" on page 3-246

Example: Flush Buffer Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. LOB-BUFFERING.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERJUSERL".
01 BLOBL SQL-BLOB.

0L BUFFER PICX(10).

OLAMT PIC S9(9) COMP.

3-242 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer

EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
LOB-BUFFERING.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initalize the BLOB locator:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL

SELECT SOUND INTO :BLOB1

FROM MULTIMEDIA TAB

WHERE CLIP_ID =1 FOR UPDATE
END-EXEC.

*Open the BLOB and enable buiffering:
EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
EXEC SQL
LOB ENABLE BUFFERING :BLOB1
END-EXEC.

*Wiite some data to the BLOB:
MOVE "242424" TO BUFFER.
MOVE 3TO AMT.
EXEC SQL
LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
END-EXEC.

MOVE "212121" TO BUFFER.
MOVE 3 TO AMT.
EXEC SQL

LOB WRITE :AMT FROM :BUFFER INTO :BLOBL
END-EXEC.

* Now flush the buffered writes:
EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.

EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

Internal Persistent LOBs 3-243

Flush Buffer

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.

EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Flush Buffer Using C++ (Pro*C/C++)

#include <oci.h>

#include <stdio.h>
#include <string.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 256

void flushBufferingLOB_proc()

{
OCIBlobLocator *Lob_loc;

int Amount = BufferLength;
int multiple, Position = 1;

3-244 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Flush Buffer

/* Datatype equivalencing is mandatory for this datatype: %/
char Buffer[BufferLength];
EXEC SQL VAR Buiffer is RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Allocate and Initalize the LOB: %/
EXEC SQL ALLOCATE :Lab_loc;
EXEC SQL SELECT Sound INTO :Lob_loc
FROM Multimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/*Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Lob _loc;
memset((void *)Buffer, 0, BufferLength);
for (muttiple = 0; multiple < 8; multiple++)

/*Wiite data to the LOB: %
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Lob_loc AT :Pasition;
Position += BufferLength;
}
/*Flush the contents of the buffers and Free their resources: %/
EXEC SQL LOB FLUSH BUFFER :Lob _loc FREE;
/* Tum off use of the LOB Buiffering Subsystem: %/
EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
/* Release resources held by the Locator: %
EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
flushBufferingLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Flush Buffer Using Visual Basic (O040)

Note: A Visual Basic (O040) example will be made available in a
subsequent release.

Internal Persistent LOBs 3-245

Disable LOB Buffering

Disable LOB Buffering

Figure 3—40 Use Case Diagram: Disable LOB Buffering

OPEN
alLOB

CLOSE
alLOB

SELECT
alOoB <

Internal persistent LOBs

write data
to the LOB

read data
from the LOB

enable
buffering

disable
buffering

x

User/
Program

3-246 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering

Scenario

To refer to the table of all basic operations having to do with Inter-

nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

This scenario is part of the management of a buffering example related to Sound

that is developed in this and related methods.

You enable buffering in order to perform a small read or write of the data. Once you
have completed these tasks, you must disable buffering before you can continue
with any other LOBoperations. Note that you must flush the buffer in order to make

your modifications persistent.

Please note that you would not enable buffering to perform the stream read and

write involved in checkin and checkout.

« "Example: Disable LOB Buffering Using C (OCI)" on page 3-247
« "Example: Disable LOB Buffering Using COBOL (Pro*COBOL)" on page 3-249

« "Example: Disable LOB Buffering Using C++ (Pro*C/C++)" on page 3-251
« "Example: Disable LOB Buffering Using Visual Basic (OO40)" on page 3-252

« "Three Ways to Update a LOB" on page 3-254

Example: Disable LOB Buffering Using C (OCl)

/* Select the locator into a locator variable: %/

sb4 select lock_sound_locator(Lob loc, erhp, svchp, stmthp)
OClLobLocator *Lob_loc;
OCIEnor *enhp;
OCISvcCix *svchp;
OCIStmt *stmthp;
{
text *sglstmt=
(text %"'SELECT Sound FROM Mulimedia_tab WHERE Clip_ID=1 FOR UPDATE";
OCIDefine *defnp1;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sgistmt,
(ub4)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX; (ub4) OCI_DEFAULT));

Internal Persistent LOBs 3-247

Disable LOB Buffering

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid *)&Lob_loc, (sh4)0,
(ub2) SQLT_BLOB,(dvoid *) O,
(Ub2%) 0, (ub2*) 0, (ub4) OCI_DEFAULT));

/* Executte the select and fetch one row: %/

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OClSnapshot*) O,
(ub4) OCI_DEFAULT));

retumO;
}

void lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *enhp;
OCISvcCix *svchp;
OCIStmt *stmthp;
{
OCILobLocator *Laob_loc;
ub4 amt;
ub4 offset;
sword retval;

ubl bufp[MAXBUFLEN];
ub4 buflen;

/*Allocate the locator destiptor: %/
(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
(Ub4)OCI_DTYPE_LOB, (size t) 0, (dvoid **) 0);

/*Select the BLOB: %/
printf (" select a sound Lob\n");
select_lock_sound _locator(Lob_loc, enhp, svchp, stmthp);

/*Openthe BLOB: %/
checkerr (errhp, (OCILobOpen(svchp, erhp, Lob_loc, OCI_LOB_READWRITE)));

/*Enable LOB Buffering: %/
printf (" enable LOB buffering\n®);
checkerr (errhp, OCILobEnableBuffering(svchp, errhp, Lob_loc));

printf (" write data to LOB\n'Y);

3-248 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering

/*Wiite data into the LOB: %/
amt = sizeof(bufp);

buflen = sizeof(bufp);
offset=1,

checkerr (errhp, OCILobWihite (svchp, erhp, Lob_loc, &amt,
offset, bufp, buflen,
OCI_ONE_PIECE, (dvoid %0,
(sb4 (*)(avoid*,dvoid*,ub4*,ubl *)0,
0, SQLCS_IMPLICIT));

/* Flush the buffer: %/

printf(" flush the LOB buffers\n’);

checkerr (errhp, OCILobFlushBuffer(svchp, errhp, Lob _loc,
(ub4)OCI_LOB_BUFFER_FREE));

/* Disable Buftering: %/
printf (" disable LOB buffering\n);
checkerr (errhp, OCILobDisableBuffering(svchp, errhp, Lob_loc));

/* Subsequent LOB WRITESs will not use the LOB Buffering Subsysterm; %/

/*Closing the BLOB is mandatory if you have opened it %/
checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

/* Free resources held by the locators: %/
(void) OClDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

retum;

Example: Disable LOB Buffering Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. LOB-BUFFERING.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERT/USERT".
01 BLOB1 SQL-BLOB.

01 BUFFER PIC X(10).

01 AMT PIC S9(9) COMP.

Internal Persistent LOBs 3-249

Disable LOB Buffering

EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
LOB-BUFFERING.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initalize the BLOB locator:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL

SELECT SOUND INTO :BLOB1

FROM MULTIMEDIA TAB

WHERE CLIP_ID =1 FOR UPDATE
END-EXEC.

*Open the BLOB and enable buiffering:
EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
EXEC SQL
LOB ENABLE BUFFERING :BLOB1
END-EXEC.

*Wiite some data to the BLOB:
MOVE "242424" TO BUFFER.
MOVE 3TO AMT.
EXEC SQL
LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
END-EXEC.

MOVE "212121" TO BUFFER.
MOVE 3 TO AMT.
EXEC SQL

LOB WRITE :AMT FROM :BUFFER INTO :BLOBL
END-EXEC.

* Now flush the buffered writes:
EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.

EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

3-250 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.

EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Disable LOB Buffering Using C++ (Pro*C/C++)

#include <oci.h>

#include <stdio.h>
#include <string.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglerm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 256

void disableBufferingLOB_proc()

{
OCIBlobLocator *Lob_loc;

int Amount = BufferLength;
int multiple, Position = 1;

Internal Persistent LOBs 3-251

Disable LOB Buffering

/* Datatype equivalencing is mandatory for this datatype: %/
char Buffer[BufferLength];
EXEC SQL VAR Buiffer is RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Allocate and Initalize the LOB: %/
EXEC SQL ALLOCATE :Lab_loc;
EXEC SQL SELECT Sound INTO :Lob_loc
FROM Multimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/*Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Lob _loc;
memset((void *)Buffer, 0, BufferLength);
for (muttiple = 0; multiple < 7; multiple++)

P Wiite data to the LOB: %/
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Lob_loc AT :Pasition;
Position +=BufferLength;
}
/*Flush the contents of the buffers and Free their resources: ¥/
EXEC SQL LOB FLUSH BUFFER :Lob _loc FREE;
/* Tum off use of the LOB Buiffering Subsystem: %/
EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
/*Wiite APPEND can only be done when Buffering is Disabled: %
EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Lob loc;
/* Release resources held by the Locator: %
EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
disableBufferingLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Disable LOB Buffering Using Visual Basic (0040)

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraSound1 As OraBlob, OraSoundClone As OraBlob

Set MySession = CreateObject("OraclelnProcSenver.XOraSession')

3-252 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering

Set OraDb = MySession.OpenDatabase(‘'exampledb”, “samp/samp”, 0&)
Set OraDyn = OraDb.CreateDynaset(
"SELECT * FROM Multimedia_tab ORDER BY clip_id", ORADYN_DEFAULT)

Set OraSound1 = OraDyn.Fields('Sound").Value
Disable buffering:
OraSound1.DisableBuffering

Internal Persistent LOBs 3-253

Three Ways to Update a LOB

Three Ways to Update a LOB

Figure 3—41 Use Case Diagram: Three Ways to Update a LOB

Internal persistent LOBs

X

User/
Program

UPDATE
the row/entire
LOB data

To refer to the table of all basic operations having to do with Inter-

nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

a. "UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()" on page 3-256

b. "UPDATE as SELECT" on page 3-257

c. "UPDATE by Initializing a LOB Locator Bind Variable" on page 3-259

3-254 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

Figure 3—-42 Use Case Diagram: UPDATE using EMPTY_CLOB() or EMPTY_BLOB()

Internal Persistent LOBs

x

User/
Program

L

UPDATE r |)
the row / entire)= - e UPDATE using Empty_CLOB() or Empty BLOB()
LOB data

NN N NN NN NN NN A AR RN NN A AR EEEE NN AR R RNy

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Internal Persistent LOBs 3-255

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

Scenario

This example shows a series of updates via the EMPTY_CLOBperation to different
data types of the first clip.

Example; UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() Using SQL

UPDATE Mutimedia_tab SET Story =EMPTY_CLOB() WHERE Clip ID=1;
UPDATE Mutimedia_tab SET FLSub=EMPTY_CLOB() WHERE Clip ID=1;
UPDATE mutimedia_tab SET Sound = EMPTY_BLOB() WHERE Clip_ID=1;

3-256 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE as SELECT

UPDATE as SELECT

Figure 3—-43 Use Case Diagram: UPDATE as SELECT

Internal Persistent LOBs

SELECT
alLOB

v

X

User/
Program

L

UPDATE
the row / entire
LOB data

- |é| @ upPDATE as SELECT

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

This example updates voice-over data from archival storage (VoiceoverLib tab) by
means of a reference.

Example: Update as Select Using SQL DML

UPDATE Voiceover_tab SET (Originator, Script, Actor, Take, Recording) =
(SELECT * FROM Voiceoverlib_tab T2 WHERE T2.Take = 101);
UPDATE Mulimedia__tab Mtab
SET Voiced ref=
(SELECT REF(Vref) FROM Voiceover _tab Viref
WHERE Vref Actor ="James Earl Jones’ AND Vref. Take = 1)
WHERE Mtab.Clip ID=1;

Internal Persistent LOBs 3-257

UPDATE by Initializing a LOB Locator Bind Variable

UPDATE by Initializing a LOB Locator Bind Variable

Scenario

Figure 3—44 Use Case Diagram: UPDATE by Initializing a LOB Locator Bind Variable

7

User/
Program

L

Internal Persistent LOBs

SELECT
alLOB

v

UPDATE
the row / entire
LOB data

-~ (@ UPDATEDy initializing LOB
locator bind variable

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

This example updates Sound data by means of a locator bind variable.

"Example: Update by Initializing a LOB Locator Bind Variable Using SQL DML"
on page 3-259

"Example: Update by Initializing a LOB Locator Bind Variable Using C (OCI)"
on page 3-259

"Example: Update by Initializing a LOB Locator Bind Variable Using COBOL
(Pro*COBOL)" on page 3-261

"Example: Update by Initializing a LOB Locator Bind Variable Using C++
(Pro*C/C++)" on page 3-262

"Example: Update by Initializing a LOB Locator Bind Variable Using C++
(Pro*C/C++)" on page 3-262

3-258 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable

« "Example: Update by Initializing a LOB Locator Bind Variable Using Java
(JDBC)" on page 3-264

Example: Update by Initializing a LOB Locator Bind Variable Using SQL DML

/* Note that the example procedure updateUseBindVariable_proc is not part of the
DBMS_LOB package: ¥/

CREATE OR REPLACE PROCEDURE updateUseBindVariable_proc (Lob_loc BLOB) IS

BEGIN
UPDATE Muttimedia_tab SET Sound =lob_loc WHERE Clip_ID=2;

END;

DECLARE
Lob loc BLOB;
BEGIN
/*Selectthe LOB: %/
SELECT Sound INTO Lob_loc
FROM Multimedia._tab
WHERE Clip_ID=1;
updateUseBindVariable_proc (Lob_loc);
COMMIT;
END;

Example: Update by Initializing a LOB Locator Bind Variable Using C (OClI)
/*Select the locator into a locator varniable: %/

sh4 select_sound_locator(Lob_loc, erhp, svchp, stmthp)
OClLobLocator*Lob_loc;
OCIEmor *enhp;
OCISvcCtx *svchp;
OCISmt *stmthp;
{
text *sqlstmt=
(text*)"'SELECT Sound FROM Multimedia_tab WHERE Clip_ID=2",
OCIDefine *defnpl;

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sglstmt,
(ubd)strien((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr (errhp, OCIDefineByPos(stmthp, &defnpl, errhp, (ub4) 1,
(dvoid ®)&Lab_loc, (sb4)0,

Internal Persistent LOBs 3-259

UPDATE by Initializing a LOB Locator Bind Variable

(Ub2) SQLT_BLOB(dvoid %) 0,
Ub2*)0, Ub2*) 0, (Ub4) OCI_DEFAULT));

/* Executte the select and fetch one row: %/

checkenr(errhp, OCIStmtExecute(svchp, stmthp, erthp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retum O;

}

/*Update the LOB in the selected row in the table: %/
void updateLobUsingBind (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIEmnor *erhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{
text *updstmt =
(text *) "UPDATE Mulimedia_tab SET Sound =:1 WHERE Clip_ID=1",
OCILobLocator *Lob_loc;
OCIBind *bndhpl;

/*Allocate locator resources: ¥/
(void) OClIDescriptorAlloc((dvoid *)envhp, (dvoid *)&Laob loc,
(Ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

/* Select the locator: %/
printf(" select a sound locatorn');
(void)select_sound_locator(Lob_loc, erhp, svchp, stmthp);

/* Prepare the SQL statement: %/

checkerr (erhp, OCIStmtPrepare(stmthp, errhp, updstmt, (ub4)
strien((char *) updstmt),
(ub4) OCI_NTV_SYNTAX, (Ub4)OCI_DEFAULT));

/*Binds the bind positions: %/

printf(" bind locator to bind position\n');

checkerr (errhp, OCIBindByPos(stmthp, &bndhpl, errhp, (Ub4) 1,
(dvoid*) &Lob_loc, (sb4)0, SQLT_BLOB,
(dvoid %) 0, (b2 *)0, (ub2*)0,
(ub4) O, (Ub4*) 0, (ub4) OCI_DEFAULT));

/* Execute the SQL statement: ¥

3-260 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable

printf ("update LOB column in another row using this locator\n®);
checkerr (errhp, OCIStmtExecute(svchp, stmthp, erhp, (ub4) 1, (ub4) O,

(CONST OClSnapshot*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

retum;

Example: Update by Initializing a LOB Locator Bind Variable Using COBOL

(Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATE-BLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 BLOBL SQL-BLOB.
01 NEW-LEN PIC S9(9) COMP.
OLAMT PIC S9(9) COMP.

01 OFFSET PIC S9(9) COMP.

*Define the source and destination position and location:

01 SRC-POS PIC S9(9) COMP.

01 DEST-POS PIC S9(9) COMP.

01 SRCLOC PIC S9(9) COMP.

01 DEST-LOC PIC S9(9) COMP.

01 USERID PIC X(11) VALUES "USERJUSERL".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
UPDATE-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL
SELECT SOUND INTO :BLOB1

Internal Persistent LOBs 3-261

UPDATE by Initializing a LOB Locator Bind Variable

FROM MULTIMEDIA_TAB
WHERECLIP_ID=1
END-EXEC.

EXEC SQL
UPDATE MULTIMEDIA TAB
SET SOUND = :BLOB1 WHERE CLIP_ID=2
END-EXEC.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED:",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Update by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

3-262 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable

void updateUseBindVariable_proc(Lob_loc)

OClBlobLocator*Lob _loc;
{

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

EXEC SQL UPDATE Muttimedia._tab SET Sound =:Lob_loc WHERE Clip_ID =2,
}

void updateLOB_proc()
{
OCIBlobLocator *Lob_loc;

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL SELECT Sound INTO :Lob loc
FROM Multimedia_tab WHERE Clip_ID=1;

updateUseBindVariable_proc(Lob_loc);

EXEC SQL FREE :Lob _loc;

EXEC SQL COMMIT WORK;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

updateL OB_procy();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Update by Initializing a LOB Locator Bind Variable Using Visual Basic
(0040)

Dim OraDatabase as OraDatabase,OraDyn as OraDynaset, OraSound as OraBLOB,

‘Selecta columnwith clip_id =1:

Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Multimedia_tab WHERE
clip_id=1", ORADYN_DEFAULT)

Get the OraBlob object from the field:
Set OraSound = OraDyn.Fields("Sound").Value

‘Create a parameter for OraBlob object:
OraDatabase.Parameters.Add "SOUND",NULL,ORAPARM_INPUT,ORATYPE_BLOB

Set the value of SOUND parameter to OraSound:

Internal Persistent LOBs 3-263

UPDATE by Initializing a LOB Locator Bind Variable

OraDatabase.Parameters("SOUND").Value = OraSound

Update the Mulimedia._tab with OraSound for clip._id = 2-

OraDatabase.ExecuteSQL("Update Multimedia_tab SET Sound =:SOUND

WHERE Clip_id =2")

Example: Update by Initializing a LOB Locator Bind Variable Using Java (JDBC)

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql.Statement,

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.;
import oracle.jdbc.driver.;

public class Ex2_163
{

public static void main (String args [])
throws Exception

// Load the Oracle JDBC driver:
Class.forName (‘oracle.jdbc.driver.OracleDriver”);

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Staterment stmt = conn.createStatement ();

try

{
ResultSet rset = stmt.executeQuery (

"SELECT sound FROM mulimedia._tab WHERE clip_id = 1");
if (rsetnext())

3-264 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable

{
/ retrieve the LOB locator from the ResultSet:

BLOB sound_hlob = ((OracleResultSet)rset).getBLOB (1);

OraclePreparedStatement ops =
(OraclePreparedStatement) conn.prepareStatement(
"UPDATE mulimedia_tab SET SOUND =? WHERE clip_id =2");

ops.setBlob(1, sound_blob);
ops.execute();
conn.commit();
conn.close();
}
}
catch (SQLException €)
{
e.printStackTrace();
}

Internal Persistent LOBs 3-265

DELETE the Row of a Table Containing a LOB

DELETE the Row of a Table Containing a LOB

Figure 3—45 Use Case Diagram: DELETE the row of a table containing a LOB

Internal persistent LOBs
User/
Program

DELETE
the row

To refer to the table of all basic operations having to do with Inter-

nal Persistent LOBs see:

« "Use Case Model: Internal Persistent LOBs" on page 3-2

Scenario

You delete a row that contains an internal LOBcolumn / attribute by using
« the explicit SQL DML command DELETE or

« aSQL DDL command that effectively deletes it, such as DROP TABLE
TRUNCATE TABLEr DROP TABLESPACE

In either case you delete the LOBlocator and the LOBvalue as well.

3-266 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a LOB

But note that due to the consistent read mechanism, the old LOBvalue remains
accessible with the value that it had at the time of execution of the statement (such
as SELECT) that returned the LOBIlocator.

Note: This is an advanced topic that is discussed in more detail
with regard to "Read-Consistent Locators" on page 2-2.

Of course, two distinct rows of a table with a LOBcolumn have their own distinct
LOBIlocators and distinct copies of the LOBvalues irrespective of whether the LOB
values are the same or different. This means that deleting one row has no effect on
the data or LOBlocator in another row even if one LOBwas originally copied from
another row.

In this case we delete all the data associated with Clip 10.

Example: Delete a LOB Using SQL DML

DELETE FROM Mutimedia. tab
WHERE Clip_ID=10;

DROP TABLE Mulimedia_tab;

TRUNCATE TABLE Muttimedia._tab;

Internal Persistent LOBs 3-267

DELETE the Row of a Table Containing a LOB

3-268 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

A

Temporary LOBs

In this chapter we describe how to work with Temporary LOBs in terms of use cases.
That is, we discuss each operation on a LOB(such as "See If a Temporary LOBis
Open") in terms of a use case by that name. The table listing all the use cases is
provided at the head of the chapter (see "Use Case Model: Internal Temporary
LOBs" on page 4-2). A summary figure, "Use Case Model Diagram: Temporary
LOBs", locates all the use cases in single drawing. If you are using the HTML
version of this document, you can use this figure to navigate to the use case in
which you are interested by clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

« A figure that depicts the use case (see "Preface" for a description of how to
interpret these diagrams).

« A scenario that portrays one implementation of the use case in terms of the
hypothetical multimedia application described above (see "An Example
Application” on page 1-39 in Chapter 1, "Introduction to Working With LOBs").

« Code examples in each of the programmatic environments which can be
utilized to implement the use case (see "Programmatic Environments for
Operating on LOBs" on page 1-9 in Chapter 1, "Introduction to Working With
LOBs").

Temporary LOBs 4-1

Use Case Model: Internal Temporary LOBs

Use Case Model: Internal Temporary LOBs

Table 4-1 Use Case Model Overview: Internal Temporary LOBs

Use Case and Page

Create a Temporary LOB on page 4-11

See If a LOB is Temporary on page 4-18

Free a Temporary LOB on page 4-23

Load a Temporary LOB with Data from a BFILE on page 4-28

See If a Temporary LOB Is Open on page 4-36

Display the Temporary LOB Data on page 4-42

Read Data from a Temporary LOB on page 4-52

Read a Portion of the Temporary LOB (substr) on page 4-61
Compare All or Part of Two (Temporary) LOBs on page 4-67

See If a Pattern Exists in a Temporary LOB (instr) on page 4-74

Get the Length of a Temporary LOB on page 4-80

Copy All or Part of One (Temporary) LOB to Another on page 4-88
Copy a LOB Locator for a Temporary LOB on page 4-98

See If One LOB Locator for a Temporary LOB Is Equal to Another on page 4-107
See If a LOB Locator for a Temporary LOB Is Initialized on page 4-111
Get Character Set ID of a Temporary LOB on page 4-114

Get Character Set Form of a Temporary LOB on page 4-116
Append One (Temporary) LOB to Another on page 4-118

Write Append to a Temporary LOB on page 4-127

Write Data to a Temporary LOB on page 4-134

Trim the Temporary LOB Data on page 4-144

Erase Part of a Temporary LOB on page 4-152

Enable LOB Buffering for a Temporary LOB on page 4-160

Flush Buffer for a Temporary LOB on page 4-166

Disable LOB Buffering for a Temporary LOB on page 4-172

4-2 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Use Case Model: Internal Temporary LOBs

Figure 4-1 Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2)

Internal temporary LOBs (part 1 of 2)
get character

set ID
OPEN
alLOB
get character
Y set form
see if locator
%LLOOSBE is initialized

compare all
or parts of
21L0OBs

see if locators
are equal

o

create
a temporary
LOB

>

see where/if
a pattern exists
inthe LOB

User/
Program

User/
Program

enable

"""""""""""""" buffering 2T\ from the table
LA free (substr)
a temporary 4
LOB

display the
LOB data

get the
length of
the LOB

disable
buffering

write data
to the LOB

read data

from the LOB

Temporary LOBs 4-3

Use Case Model: Internal Temporary LOBs

Figure 4-2 Use Case Model Diagram: Internal temporary LOBS (part 2 of 2)

Internal temporary LOBs (part 2 of 2)

load a LOB

F S
OPEN :
alLOB H
x
: T
: I 7 open
>\ aBFILE
CLOSE :
alLOB H
i

with data

INITIALIZE

a BFILE
locator

specify
BFILE name

D P N . from a BFILE
create & .
— a temporary 4';'_'_'_]"
LOB i
User/ <.ﬂ" append one
Program LOB to
another

copy all or
part of a LOB to
another LOB

free
""" a temporary

see
if LOB is open

User/
Program

LOB

erase part
ofaLOB

see if LOB
is temporary

trim the

LOB data

copy
LOB locator

close
a BFILE

write
append

4-4 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Use Case Model: Internal Temporary LOBs

Programmatic Environments

Note: No Visual Basic or Java support for temporary LOBs is
planned for the 8.1 time-frame.

Oracle8i supports the definition, creation, deletion, access, and update of temporary
LOBs in PL/SQL (using the DBMS_LOBRpackage), C/C++ (using PRO*Q, and C
(using the OCI) .

These interfaces operate on temporary LOBs through locators in the same way that
they do for permanent LOBs. Since temporary lobs are never part of any table, you
cannot use SQL DML to operate on them. They must be manipulated using the
DBMS_LOBackage, the OCI, or the other programmatic interfaces.

SQL support for temporary LOBs is available in that temporary LOBlocators can be
used as IN values, with values accessed through a locator. Specifically, they can be
used

« asavalue in a WHERElause for INSERT, UPDATEDELETE or SELECTsuch as
SELECT pattern FROM composite_image WHERE temp_lob_pattem_id =
somepattem_match_function(lobvalue);

and

» asavariable ina SELECT INTQ.. statement such as
SELECT PermanentLob INTO TemporaryLob_loc FROM Demo_tab WHERE Columnl :=1;

Note that selecting a permanent LOB into a temporary LOBlocator will cause the

temporary LOBIlocator to point to a permanent LORB It does not cause a copy of the
permanent LOBto be put in the temporary LOB

Examining the use case model diagrams for temporary LOBs, and comparing it to
the "Use Case Model Diagram: Internal Persistent LOBs (part 1 of 2)", and "Use Case
Model Diagram: Internal Persistent LOBs (part 2 of 2)", you can see that you can
utilize many of the same functions that apply to persistent LOBs for operating on
temporary LOBs:

« DBMS_LORackage PL/SQL procedures (Compare, Instr , Substr)

« DBMS_LORackage PL/SQL procedures and corresponding OCI functions
(Append, Copy, Erase , Getlength , Loadfromfile , Read, Trim , Write,
WriteAppend).

Temporary LOBs 4-5

Use Case Model: Internal Temporary LOBs

« OCI functions (OCILobAssign , OCILobLocatorlsInit , etc.).

In addition, you can use the ISTEMPORARYunction to determine if a LOB is
temporary based on its locator.

The Location of Temporary LOBs

Temporary LOBs are not stored permanently in the database like other data. The
data is stored in temporary tablespaces, but is not stored in any tables. This means
you can CREATEan internal temporary LOB(BLOBCLOB NCLOB on the server
independent of any table, but you cannot store that LOB. Since temporary LOBs are
not associated with a table schema, there are no meanings to the terms "inline" and
"out-of-line" for temporary LOBs. However, note that all temporary LOBs reside in
the server; there is no support for client-side temporary LOBs.

The Lifetime and Duration of Temporary LOBs
The default lifetime of a temporary LOBIs a session.

The interface for creating temporary LOBs includes a parameter that lets you specify
the default scope of the life of the temporary LOB By default, all temporary LOBs
are deleted at the end of the session in which they were created. If a process dies
unexpectedly or the database crashes, all temporary LOBs are deleted.

OCI users can group temporary LOBs together into a logical bucket. The
OClDuration will represent a store for temporary LOBs. There will be a default
duration for every session into which temporary LOBs will be placed if the user
doesn’t specify a specific duration. The default duration will end when the user’s
session ends. Also, the user will be able to perform an OCIDuration operation
which will cause all contents in the OCIDuration to be freed.

Memory Handling

Temporary LOBs are especially useful when you want to perform some
transformational operation on a LOB — such as morphing an image, or changing a
LOBfrom one format to another — and then return it to the database. In doing this
you can utilize LOBBuffering support for temporary LOBs, you can specify
CACHEZNOCACHTIor each temporary LOB and you can FREEan individual
temporary internal LOBwhen you have no further need of it.

Your temporary tablespace is used to store the temporary LOBdata. Data storage
resources will be controlled by the DBA through control of a user’s access to
temporary tablespaces, and by the creation of different temporary tablespaces.

4-6 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs

Memory usage will increase incrementally as the number of temporary LOBs grows.
You can reuse temporary LOBspace in your session by freeing temporary LOBs
explicitly. Freeing one or more temporary LOBs does not result in all of the space
being returned to the temporary tablespace for general re-consumption. Instead, it
remains available for reuse in the session. If a process dies unexpectedly or the
database crashes, the space for temporary LOBs is freed along with the deletion of
the temporary LOBs. In all cases, when a user’s session ends, space is returned to
the temporary tablespace for general reuse.

We previously noted that if you perform a
SELECT permanent_lob INTO temporary_lob_locator FROMy_blah WHERE x_blah

the temporary_lob_locator will get overwritten with the permanent_lob s
locator. This will result in creating a copy of the LOB pointed at by permanent_
lob , and temporary_lob_locator will represent this newly created

temporary LOB Note that unless you had saved the temporary lob 'slocatorin
another variable, you will lose track of the LOBthat temporary_lob_locator
originally pointed at before the SELECT INTOoperation.

In this case the temporary LOBwill not get implicitly freed. If you do not wish to
waste space, you will explicitly free a temporary LOBbefore overwriting it with a
permanent LOBlocator.

Since CR and rollbacks will not be supported for temporary LOBs, you will have to
free the temporary LOBand start over again if you run into an error.

Locators and Semantics

Creation of a temporary LOBinstance by a user causes the engine to create, and
return a locator to the LOBdata. Temporary LOBs do not support any operations
that are not supported for persistent LOBlocators, but temporary LOBlocators have
certain specific features. For instance, when you perform the following query

SELECT permanent_lob INTO temporary_lob_locator FROMYy_blah
WHERE x_blah :=a_number;

temporary_lob_locator is overwritten with the permanent_lob ’s locator.
This means that unless you have a copy of temporary_lob ’slocator that points
to the temporary LOBthat was overwritten, you no longer have a locator with
which to access the temporary LOB

Temporary LOBs adhere to value semantics in order to be consistent with
permanent LOBs and to conform to the ANSI standard for LOBs. Since CR, undo,

Temporary LOBs 4-7

Use Case Model: Internal Temporary LOBs

and versions are not generated for temporary LOBs, there may be an impact on
performance if you assign multiple locators to the same temporary LOBbecause
semantically each locator will have its own copy of the temporary LOB Each time a
user does an OCILobAssign , or the equivalent assignment in PL/SQL, the
database will make a copy of the temporary LOB (although it may be done lazily
for performance reasons) . Each locator will point to its own LOBvalue. If one
locator is used to create a temporary LOB and another LOBIlocator is assigned to
that temporary LOBusing OCILobAssign , the database will copy the original
temporary LOBand cause the second locator to point to the copy, not the original
temporary LOB

In order for multiple users to modify the same LOB they must go through the same
locator. Although temporary LOBs use value semantics, you can apply
pseudo-reference semantics by using pointers to locators in OCI, and having
multiple pointers to locators point to the same temporary LOB locator if necessary.
In PL/SQL, you can have the same effect by passing the temporary LOB locator "by
reference” between modules. This will help avoid using more than one locator per
temporary LOB and prevent these modules from making local copies of the
temporary LOB

Here are two examples of situations where a user will incur a copy, or at least an
extra roundtrip to the server:

« Assigning one temporary LOB to another.

DECLARE
Va BLOB;

Vb BLOB;

BEGIN
DBMS_LOB.CREATETEMPORARY(Vb,TRUE,DBMS_LOB.SESSION);
DBMS_LOB.CREATETEMPORARY(Va,TRUE,DBMS_LOB.SESSION);
Va :=Vb;

END;

This will cause Oracle to create a copy of Vb and point the locator Va to it. We
will also free the temporary LOB that Va used to point to.

« Assigning one collection to another collection.

If a temporary LOBis an element in a collection and you assign one collection to
another, you will incur copy overhead and free overhead for the temporary LOB
locators that get updated. This is also true for the case where you assign an
object type containing a temporary LOB as an attribute to another such object
type, and they have temporary LOBlocators that get assigned to each other

4-8 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs

because the object types have LOBattributes that are pointing to temporary LOB
locators.

For information about with collections, see:
« Oracle8i Concepts

« Oracle8i Application Developer’s Guide - Fundamentals

If your application involves several such assignments and copy operations of
collections or complex objects, and you seek to avoid the above overheads, then
persistent internal LOBs may be more suitable for such applications. More
precisely: you should not use temporary LOBs inside collections or complex objects
when you are doing assignments or copies of those collections or complex objects.
Also, you should not select LOBvalues into temporary LOBlocators.

You will incur overhead if you have a temporary LOBin a duration, you call
OClIDurationEnd on that duration, and then subsequently reassign the locator for
that temporary LOBto another LOB Irrespective of whether there was a previous
OClIDurationEnd call, Oracle will attempt to free the temporary LOBto which the
locator pointed. Or if the user tries to access the temporary LOB with that locator
they will incur an error. Once a user issues OCIDurationEnd, all temporary LOBs
in that duration will be freed regardless of the fact that locators may still exist which
used to refer to the now freed LOB:s.

In PL/SQL, user-defined durations are not exposed. However, users may specify
either session scope or call scopes using the predefined duration parameters dbms_
lob.session , or doms_lob.call

User-defined OClDurations can be created using the OCIDurationBegin call
when the database is using the object option. The user can end the OCIDuration
with a call to OCIDurationEnd . Any temporary LOBs that existed in the duration
will be freed.

Security Issues with Temporary LOBs

Security is provided through the LOBIlocator. Only the user who created the
temporary LOBcan access it. Locators are not designed to be passed from one user’s
session to another. If you did manage to pass a locator from one session to another,
you would no longer be able to access the temporary LOBs in the new session from
the original session. By the same token, you would not be able to access a
temporary LOB in the original session from the new (current) session to which the
locator was migrated.

Temporary LOBs 4-9

Use Case Model: Internal Temporary LOBs

Temporary LOBlookup will be localized to each user’s own session. Someone using
a locator from another session would only be able to access LOBs within his own
session that had the same lobid . Users of your application should not try to do
this, but if they do, they will still not be able to affect anyone else’s data.

Managing Temporary LOBs

Oracle keeps track of temporary LOBs per session, and provides a v$ view called
v$temporary_lobs . From the session the application can determine which user
owns the temporary LOBs. This table can be used by DBAs to monitor and guide
any emergency cleanup of temporary space used by temporary LOBs.

4-10 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Create a Temporary LOB

Create a Temporary LOB

Scenario

Figure 4-3 Use Case Diagram: Create a temporary LOB

%

Internal temporary LOBs

create
a temporary
LOB

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

A temporary LOBwill be empty when it is created.

Temporary LOBs do not support the empty_blob () or empty_clob () functions
that are supported for permanent LOBs. The empty_blob () function specifies the
fact that the LOBiIs initialized, but not populated with any data.

This example reads in a single video Frame from the Multimedia_tab table. Then
it creates a temporary LOBso that we can use the temporary LOBto convert the
video image from MPEG to JPEG format. The Temporary LOBwhich is created will
be read through the CACHEand it will be automatically cleaned up at the end of the
user’s session, if it is not explicitly freed sooner.

Temporary LOBs 4-11

Create a Temporary LOB

« "Example: Create a Temporary LOB Using PL/SQL (DBMS_LOB Package)" on
page 4-12

« "Example: Create a Temporary LOB Using C (OCI)" on page 4-12
« "Example: Create a Temporary LOB Using COBOL (Pro*COBOL)" on page 4-14
« "Example: Create a Temporary LOB Using C++ (Pro*C/C++)" on page 4-14

Example: Create a Temporary LOB Using PL/SQL (DBMS_LOB Package)

Note: You may need to set up the following data structures for
certain examples to work:

CREATE TABLE long_raw_tab (id number, long_raw_col long raw);
INSERT INTO long_raw_tab VALUES (1,HEXTORAW('7D"));
INSERT INTO multimedia_tab (clip_id,frame) SELECT

id, TO_LOB(long_raw_col) FROM long_raw_tab;

DECLARE
Dest loc BLOB;
Src loc BLOB;
Amount INTEGER :=4000;

BEGIN
SELECT Frame INTO Src_loc FROM Mulimedia_tab WHERE Clip_ID =1;
/*Create atemporary LOB: %
DBMS_LOB.CREATETEMPORARY(Dest _loc, TRUE, DBMS_LOB.SESSION);
/*Copy the entire frame from the Sic_loc to the Temporary Lob: %
DBMS_LOB.COPY(Dest _loc,Src_loc,DBMS _LOB.GETLENGTH(Src loc),1,1);
DBMS_LOB.FREETEMPORARY(Dest_loc);

END;

Example: Create a Temporary LOB Using C (OClI)

/* This function reads in a single video Frame from the Muliimedia_tab table.
Then it creates a temporary LOB so that we can use the temporary LOB to
convert the video image from MPEG to JPEG format.. The Temporary LOB which is
created will be read through the CACHE, and it will be automatically cleaned
Up at the end of the user’s session, if it is not expilicitly freed sooner.
This function retums O if it completes successiully, and -1 ifit fails: %
sh4 select and_createtemp (OCILobLocator *ob_loc,
OCIEmor *enhp,
OCISveCix *svchp,

4-12 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Create a Temporary LOB

OCISmt *stmthp,
OCIEnv *envhp)

OClIDefine *defnpl;
OCIBind *bndhp;
text *sglstmt;

int rowind =1;

ub4 loblen=0;
OCILobLocator *thlob;

printf ('in select_and_createtemp \n');

if{OCIDescriptorAlloc((dvoid*)envhp, (dvoid *)&tblob,
(ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
{
printf(failed in OCIDescriptor Alloc in select_and_createtemp \n");
retum-1;

}

/*Abitrarily select where Clip_ID =1: %
salstmt = (text *)
"SELECT Frame FROM Multimedia__tab WHERE Clip_ID =1 FOR UPDATE",

if (OCIStmtPrepare(stmthp, errhp, sglstmt,
(ub4) strien((char *)sglstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
{
(void) printf('FAILED: OCIStmtPrepare() sgistmtin®);
retum-1;
}

/*Define for BLOB: %
if (OCIDefineByPos(stmthp,
&defnpl, errhp, (Ub4) 1, (dvoid *) &lob _loc, (sb4)0,
(ub2) SQLT_BLOB, (dvoid *) 0, (ub2*) 0,
(ub2*) O, (Ub4) OCI_DEFAULT))
{
(void) printf{("FAILED: Select locator: OCIDefineByPas(\n");
retum-1;

}

/* Execute the select and fetch one row ¥/

if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT))

Temporary LOBs 4-13

Create a Temporary LOB

{
(void) printf{("FAILED: OCIStmtExecute() sgistmtn';
retum-1;

}

if(OCILobCreateTemporary(svchp,
erhp, tiob, (Ub2)0, SQLCS IMPLICIT,
OC|_TEMP_BLOB, OCl ATTR NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n');
retum-1;

}

if (OCILobGetLength(svchp, erthp, lob_loc, &loblen) 1=0)
{
printf("OCILobGetlength FAILED\n'");
retum-1;
}
if (OCILobCopy(svchp, errhp, thlob,lob_loc,(ub4)loblen, (ub4) 1, (ub4) 1))
{
printf{ "OCILobCopy FAILED \n"Y);
}
if(OCILobFreeTemporary(svchp,errhp,thlob))
{
printf ("FAILED: OCILobFreeTemporary call\n");
retum-1;

}

retumO;
}

Example: Create a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATE-TEMPORARY.
ENVIRONMENT DIVISION.
DATADIVISION.

WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERL/USERT".

01 BLOB1 SQL-BLOB.
01 TEMP-BLOB SQL-BLOB.

4-14 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Create a Temporary LOB

0LLEN PICS9(9)COMP.
0L DLEN PIC9().
01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
CREATE-TEMPORARY.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the CLOB locators:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.

EXEC SQL
LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
EXEC SQL
SELECT FRAME INTO :BLOB1
FROM MULTIMEDIA TAB
WHERE CLIP_ID=1
END-EXEC.

*Get the length of the persistent BLOB:
EXEC SQL
LOB DESCRIBE :BLOB1
GET LENGTHINTO .LEN
END-EXEC.

*Copy the entire length from persistent to termporary:
EXEC SQL
LOB COPY :.LEN FROM :BLOB1 TO :TEMP-BLOB
END-EXEC.

* Free the temporary LOB:
EXEC SQL

Temporary LOBs 4-15

Create a Temporary LOB

LOB FREE TEMPORARY - TEMP-BLOB
END-EXEC.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.
EXEC SQL FREE :TEMP-BLOB END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",

DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, "".

DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Create a Temporary LOB Using C++ (Pro*C/C++)

4-16

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void createTempLOB_proc()

{
OCIBlobLocator *Lob_loc, *Temp_loc;
int Amount;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
/*Allocate the LOB Locators: ¥/

Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Create a Temporary LOB

EXEC SQL ALLOCATE :Lob loc;

EXEC SQL ALLOCATE :Temp_loc;

/* Create the Temporary LOB: ¥

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

EXEC SQL SELECT Frame INTO :Lob_loc FROM Mulimedia_tab WHERE Clip_ID=1;
/* Copy the full length of the source LOB into the Temporary LOB: %/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amourt;
EXEC SQL LOB COPY :Amount FROM :Lob_loc TO :Temp _loc;
/*Free the Temporary LOB: %

EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %/

EXEC SQL FREE :Lob loc;

EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
createTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Temporary LOBs 4-17

See If a LOB is Temporary

See If a LOB is Temporary

Figure 4-4 Use Case Diagram: See If a LOB is Temporary

Internal temporary LOBs

see if LOB
is temporary

X

User/
Program

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

This is a generic example that queries whether the locator is associated with a

temporary LOBor not.

« "Example: See If a LOB is Temporary Using PL/SQL (DBMS_LOB Package)" on

page 4-19
« "Example: See If a LOB is Temporary Using C (OCI)" on page 4-19

« "Example: See If a LOB is Temporary Using COBOL (Pro*COBOL)" on
page 4-20

« "Example: See If a LOB is Temporary Using C++ (Pro*C/C++)" on page 4-21

4-18 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

See If a LOB is Temporary

Example: See If a LOB is Temporary Using PL/SQL (DBMS_LOB Package)

/* This is also an example of freeing a temporary LOB. First we test to make
sure that the LOB locator points to a temporary LOB, then we free it
Othemwise, we issue an eror: %/

CREATE or REPLACE PROCEDURE freeTempLob_proc(Lob _loc INOUT BLOB) IS

BEGIN
/* Free the temporary LOB locator passed in.

/* First check to make sure that the locator is pointing to a temporary
LOB¥
IF DBMS_LOB.ISTEMPORARY(Lob loc)=1THEN
/* Free the temporary LOB locator: %/
DBMS_LOB.FREETEMPORARY(Lob_loc);
DBMS_OUTPUT.PUT_LINE(temporary LOB was freed);
ELSE
/*Printan error: %/
DBMS_OUTPUT.PUT_LINE(
"Locator passed in was not a temporary LOB locator);
END IF,
END;

Example: See If a LOB is Temporary Using C (OCI)

/* This function also frees a temporary LOB. It takes a locator as an argument,
checksto see ifitis atemporary LOB, and ifit is the function will free
the temporary LOB. Otherwise, it will print out a message saying the locator
wasn'ta temporary LOB locator. This function retums O ifit
completes successtully, and -1 otherwise: %

sb4 check _and free_temp(OCILobLocator *thlob,
OCIEmor *erhp,
OCISveCix *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)
{
booleanis_temp;
is_temp =FALSE;

if (OCILoblsTemporary(envhp, enhp, thlob, &is_tempy))
{
printf ("FAILED: OCILoblsTemporary cal\n®);
retum -1;
}
ifis_temp)
{

Temporary LOBs 4-19

See If a LOB is Temporary

if(OCILobFreeTemporary(svchp, errhp, thlob))

{
printf ('FAILED: OCILobFreeTemporary cal\n®);
retum-1;

Jelse

{
printf(Temporary LOB freed\n');

Jelse
{
printf{"locator is not a temporary LOB locatorn');

}
retum O;

}

Example: See If a LOB is Temporary Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-D. TEMP-LOB-ISTEMP.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERT/JUSERT".
01 TEMPBLOB SQL-BLOB.

01 ISTEMP PIC S9(9) COMP.

01 ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
CREATE-TEMPORARY.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

EXEC SQL
CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.

EXEC SQL

4-20 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

See If a LOB is Temporary

LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

*Check ifthe LOB is temporary:
EXEC SQL
LOB DESCRIBE :TEMP-BLOB
GET ISTEMPORARY INTO IS-TEMP
END-EXEC.

IFISTEMP=1
* Logic for a temporary LOB goes here
DISPLAY "LOB is temporary."
ELSE
* Logic for a persistent LOB goes here.
DISPLAY "LOB is persistent.”
END-IF.

EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB

END-EXEC.

EXEC SQL FREE :TEMP-BLOB END-EXEC.

STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: See If a LOB is Temporary Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

Temporary LOBs 4-21

See If a LOB is Temporary

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

printf('%.*s\n", sglca.sglenm.sglenm, sgica.sglermm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void loblsTemp_proc()

{
OCIBlobLocator *Temp_loc;
intisTemporary =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/*Allocate and Create the Temporary LOB: ¥/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Determine ifthe Locator is a Temporary LOB Locator: %

EXEC SQL LOB DESCRIBE :Temp_loc GET ISTEMPORARY INTO :isTemporary;

if (STemporary)

printf("Locator is a Temporary LOB locatorn\n”);
else

printf{("Locator is not a Temporary LOB locator \n';
/*Note that in this example, isTemporary should be 1 (TRUE) %
/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locator: %
EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp = "samp/samp’;
EXEC SQL CONNECT :samp;
loblsTemp_procy);
EXEC SQL ROLLBACK WORK RELEASE;

}

4-22 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Free a Temporary LOB

Free a Temporary LOB

X

User/
Program

Scenario

Figure 4-5 Use Case Diagram: Free a Temporary LOB

Internal temporary LOBs

create
a temporary
LOB

v

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

A temporary LOBinstance can only be destroyed by using OCI or the DBMS_LOB
package by using the appropriate FREETEMPORARY OCIDurationEnd or
OCILOBFreeTemporary statements.

To make a temporary LOBpermanent, the user must explicitly use the OCI or
DBMS_LOB copy) command and copy the temporary LOBinto a permanent one.

« "Example: Free a Temporary LOB Using PL/SQL (DBMS_LOB Package)" on
page 4-24

« "Example: Free a Temporary LOB Using C (OCI)" on page 4-24
« "Example: Free a Temporary LOB Using COBOL (Pro*COBOL)" on page 4-25

Temporary LOBs 4-23

Free a Temporary LOB

« "Example: Free a Temporary LOB Using C++ (Pro*C/C++)" on page 4-26

Example: Free a Temporary LOB Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure freeTempLob_proc s not part of the
DBMS_LOB package: ¥/
CREATE or REPLACE PROCEDURE freeTempLob_proc(Lob _loc INOUT BLOB) IS

BEGIN

DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
/*Use the temporary LOB locator here, then free it ¥/
/* Free the temporary LOB locator: %/
DBMS_LOB.FREETEMPORARY(Lob_loc);
DBMS_OUTPUT.PUT_LINE(Temporary LOB was freed);

END;

Example: Free a Temporary LOB Using C (OCI)

/* This function creates a temporary LOB and then frees it
This function retums O if it completes successtully, and -1 othenwise: %/

sbh4 freeTempLob(OCIEmor *errhp,
OCISveCix *svchp,
OCISmt *stmthp,
OCIEnv *envhp)

{
OCILobLocator *thlob;

checkerr (errhp,OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
(Ub4)OCI_DTYPE_LOB, (size _{)0,
(dvoid=)0));

if(OCILobCreateTemporary(svchp,erhp,tblob,(ub2)0,SQLCS_IMPLICIT,
OC|_TEMP_BLOB, OCI_ATTR_NOCACHE,
OC|_DURATION_SESSION))
{
(void) printf("FAILED:Create Temporary():check_and_free_temp2\n");
retum-1;

}

if(OCILobFreeTemporary(svchp,errhp,thlob))

{
printf ("FAILED: OCILobFreeTemporary callin check_and_free_temp2\n”);
retum -1;

4-24 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Free a Temporary LOB

Jelse

{

printf(Temporary LOB freed in check_and_free_temp2\n’);
}

reumO;

}

Example: Free a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-D. FREE-TEMPORARY.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERLUSERT".

01 TEMPBLOB SQL-BLOB.
01 ISTEMP PIC S9(9) COMP.
01 ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
FREE-TEMPORARY.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE .TEMP-BLOB END-EXEC.

EXEC SQL
LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.
* Do something with the temporary LOB here:

* Free the temporary LOB:
EXEC SQL

Temporary LOBs 4-25

Free a Temporary LOB

LOB FREE TEMPORARY - TEMP-BLOB
END-EXEC.
EXEC SQL FREE :TEMP-BLOB END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Free a Temporary LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void freeTempLob_proc()

{
OCIBlobLocator *Temp_loc;

EXEC SQL WHENEVER SQLERROR DO Sample_Eor();
EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/* Do something with the Temporary LOB: %

EXEC SQL LOB FREE TEMPORARY :Temp loc;

EXEC SQL FREE :Temp_loc;

4-26 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Free a Temporary LOB

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
freeTempLob_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-27

Load a Temporary LOB with Data from a BFILE

Load a Temporary LOB with Data from a BFILE

Figure 4-6 Use Case Diagram: Load a LOB with data from a BFILE

Internal temporary LOBs

OPEN
alLOB

CLOSE
alLOB

load a LOB
with data
from a BFILE

create
a temporary
LOB

X

User/
Program

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

In using the OCI, or any of the programmatic environments that access OCI
functionality, character set conversions are implicitly performed when translating

4-28 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Load a Temporary LOB with Data from a BFILE

from one character set to another. However, no implicit translation is ever
performed from binary data to a character set. When you use the loadfromfile
operation to populate a CLOBor NCLOByou are populating the LOBwith binary
data from the BFILE . In that case, you will need to perform character set
conversions on the BFILE data before executing loadfromfile

The example procedure assumes that there is an operating system source directory
(AUDIO_DIR) that contains the LOBdata to be loaded into the target LOB

« "Example: Load a Temporary LOB with Data from a BFILE Using PL/SQL
(DBMS_LOB Package)" on page 4-29

« "Example: Load a Temporary LOB with Data from a BFILE Using C (OCI)" on
page 4-30

« "Example: Load a Temporary LOB with Data from a BFILE Using COBOL
(Pro*COBOL)" on page 4-32

« "Example: Load a Temporary LOB with Data from a BFILE Using C++
(Pro*C/C++)" on page 4-33

Example: Load a Temporary LOB with Data from a BFILE Using PL/SQL (DBMS_LOB
Package)

DECLARE
Dest loc BLOB;
Src loc BFILE := BFILENAMECAUDIO_DIR’, 'Washington_audio);
Amount INTEGER :=4000;

BEGIN
DBMS_LOB.CREATETEMPORARY(Dest _loc, TRUE, DBMS_LOB.SESSION);
/*Opening the BFILE is mandatory: %
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN(Dest _loc,DBMS_LOB.LOB_READWRITE);
DBMS_LOB.LOADFROMFILE(Dest loc, Src_loc, Amount);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE(Src loc);
DBMS_LOB.CLOSE(Dest _loc);
/* Free the temporary LOB: %/
DBMS_LOB.FREETEMPORARY(Dest loc);

END;

Temporary LOBs 4-29

Load a Temporary LOB with Data from a BFILE

Example: Load a Temporary LOB with Data from a BFILE Using C (OCl)

/* Here is a section of code which shows how to create a temporary LOB, and load
the contents of a BFILE into the temporary LOB: %/

sb4 load_temp(OCIEmor *entip,
OCISvcCix *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)

OClILobLocator *ofile;
intamount =100;
OClLobLocator *thlob;

printf(in load_temp\n®);
if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid *)&tblob,
(ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
{
printf("OCIDescriptorAlloc failed in load_temp\n');
retum-1;
}
if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid *)&bfile,
(ub4)OCI_DTYPE_FILE, (size_t)0, (dvoid**)0))
{
printf("OCIDescriptorAlloc failed in load_temp\n');
retum-1;

}

/*Create atemporary LOB: %/
if(OCILobCreateTemporary(svchp, erthp, thiob, (ub2)0,
SQLCS_IMPLICIT, OCl_TEMP_BLOB,
OCI_ATTR_NOCACHE, OCl_DURATION_SESSION))
{
(void) printf("FAILED: Create Temporary() \n');
retum-1;

}

if(OCILobFileSetName(envhp, emhp, &bfile, (text *)"AUDIO_DIR",
(ub2)strlen("AUDIO_DIR"), (text *)"Washington_audio”,
(ub2)strlen("Washington_audio")))
{
printf("OCILobFileSetName FAILED inload_temp\n’Y);
retum-1;

}

4-30 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Load a Temporary LOB with Data from a BFILE

/*Opening the BFILE is mandatory: %
if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCl_LOB_READONLY))
{
printf{ "OCILobFileOpen FAILED for the bfile load_temp \n');
retum-1;

}

/*Opening the LOB is optional: %/

if (OCILobOpen(svchp, enhp, (OCILobLocator *) thlob, OCl_ LOB_READWRITE))
{

printf("OCILobOpen FAILED for temp LOB \n");

retum-1;

}

if(OCILobLoadFromFile(svchp,
enhp,
thlob,
(OClLobLocator®)bfile,
(ubd)amount,
(Ub4)1,(ub4)1))

printf("OCILobLoadFromFile FAILED\n");
retum-1;

}

/*Close the lobs: %/
if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))

{
printf("OCILobClose FAILED for bfile \n');

retum -1,

}

checkenr(errhp,(OCILobClose(svchp, emhp, (OCILobLocator ¥) thloh)));

/* Free the temporary LOB now that we are done using it ¥/

if(OCILobFreeTemporary(svchp, errhp, thlob))
printf("OCILobFreeTemporary FAILED \n");

reum-1;

}

Temporary LOBs 4-31

Load a Temporary LOB with Data from a BFILE

Example: Load a Temporary LOB with Data from a BFILE Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. LOAD-TEMPORARY.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERT/USER1".
01 TEMP-BLOB SQL-BLOB.

01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 DIRIND PIC S9(4) COMP.

01 FNAME-IND PIC S9(4) COMP.

01 AMT PIC S9(9) COMP VALUE 10.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
LOAD-TEMPORARY.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE and BLOB locators:
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR"TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = DIR-ALIAS,

4-32 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Load a Temporary LOB with Data from a BFILE

FILENAME = :FNAME
END-EXEC.

*Open source BFILE and destination temporary BLOB:
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
END-EXEC.

*Close the LOBs:
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

* Free the temporary LOB:
EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB
END-EXEC.

* And free the LOB locators:
EXEC SQL FREE .:TEMP-BLOB END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Load a Temporary LOB with Data from a BFILE Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

Temporary LOBs 4-33

Load a Temporary LOB with Data from a BFILE

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglemm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void loadTempLobFromBFILE._proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator *Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount = 4096;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/* Allocate and Initalize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob _loc;
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/*Opening the BFILE is mandatory; %/
/*Opening the LOB is optional: %/
EXEC SQL LOBOPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;
/*Load the data from the BFILE into the Temporary LOB: %
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
/*Closing the LOBSs is Mandatory if they have been Opened: %
EXEC SQL LOB CLOSE :Temp _loc;
EXEC SQL LOB CLOSE :Lab _loc;
/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locators: %/
EXEC SQL FREE :Temp_loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
loadTempLobFromBFILE_procy();
EXEC SQL ROLLBACK WORK RELEASE;

4-34 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Load a Temporary LOB with Data from a BFILE

Temporary LOBs 4-35

See If a Temporary LOB Is Open

See If a Temporary LOB Is Open

Figure 4-7 Use Case Diagram: See If a Temporary LOB Is Open... 206

Internal temporary LOBs

create
a temporary
LOB

P

X

User/
Program

see

if LOB is open

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

"Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

This is a generic example takes a locator as input, creates a temporary LOB opens it
and tests if the LOB is open.

"Example: See If a Temporary LOB Is Open Using PL/SQL" on page 4-37
"Example: See If a Temporary LOB Is Open Using C (OCI)" on page 4-37

"Example: See If a Temporary LOB Is Open Using COBOL (Pro*COBOL)" on
page 4-38

"Example: See If a Temporary LOB Is Open Using C++ (Pro*C/C++)" on
page 4-40

4-36 Oracle8i Application Developer's Guide - Large Objects (LOBS)

See If a Temporary LOB Is Open

Example: See If a Temporary LOB Is Open Using PL/SQL

/* Note that the example procedure seeTempLOBIsOpen_proc is not part of the
DBMS_LOB package. This procedure takes a locator as inpLit, creates a
temporary LOB, gpens it and tests ifthe LOB is open. %/
CREATE OR REPLACE PROCEDURE seeTempLOBIsOpen_proc(Lob_loc IN OUT BLOB,
Retval OUT INTEGER) IS
BEGIN
/* Create the temporary LOB: %
DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
/*See Ifthe LOB is open: %/
Retval = DBMS_LOB.ISOPEN(Lob_loc);
P The value of Retval will be 1 if the LOB is open.*/
/* Free the temporary LOB: %/
DBMS_LOB.FREETEMPORARY(Lob_loc);
END;

Example: See If a Temporary LOB Is Open Using C (OCl)

/* This function takes a locator and retums O if the function
completes successtully. The function prints out "Temporary LOB is gpen” or
"Temporary LOB s closed". It does not check whether or not the locator is
actually pointing to a temporary LOB or not, but the open or close test will
work either way. The function retums O if it completes
successtully, and -1 ifit fails. %/

sb4 seeTempLOBIsOpen (OCILobLocator *ob_loc,
OCIEmor *enhp,
OCISvcCtx *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)
{
booleanis_open=FALSE;
OClILabLocator *thlob;

printf("in seeTempLOBIsOpen \n';

if(OCILobCreate Temporary(svchp,
enhp,
lob_loc,
(ub2)0,
SQLCS_IMPLICIT,
OC|_TEMP_BLOB,

Temporary LOBs 4-37

See If a Temporary LOB Is Open

OCI ATTR_NOCACHE,
OCI_ DURATION_SESSION))

{
(void) printf("FAILED: Create Temporary() \n");
retum-1;

}

if(OCILobIsOpen(svchp, enhp, lob_loc, &is_open))
{
printf("OCILoblsOpen FAILED\N");
retum-1;
}
ii(is_open)
{
printf(Temporary LOB is open\n’Y);

Jelse
{
printf(Temporary LOB is closed\n’);

}

if(OCILobFreeTemporary(svchp,erhp,tblob))

{
printf("OCILobFree Temporary FAILED \n'Y);

retum-1;

}

retumQ;
}

Example: See If a Temporary LOB Is Open Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. TEMP-LOB-ISOPEN.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USER1/USER1".
01 TEMPBLOB SQL-BLOB.

01 SRCBFILE SQL-BFILE.
01 DIR-ALIAS PIC X(30) VARYING.

4-38 Oracle8i Application Developer's Guide - Large Objects (LOBS)

See If a Temporary LOB Is Open

0L FNAME PICX(20) VARYING.
01 DIRIND PIC S9(4) COMP.

01 FNAMEAND PIC S9(4) COMP.
0L AMT PIC S9(9) COMP.

01 ISOPEN PIC S9(9) COMP.
01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
TEMP-LOB-ISOPEN.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
EXEC SQL
LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

*Open temporary LOB:
EXEC SQL LOB OPEN :TEMP-BLOB READ ONLY END-EXEC.

EXEC SQL
LOB DESCRIBE :TEMP-BLOB GET ISOPEN INTO :IS-OPEN
END-EXEC.

IFISOPEN=1
* Logic for an open temporary LOB goes here:
DISPLAY "Temporary LOB is OPEN."
ELSE
* Logic for a closed temporary LOB goes here:
DISPLAY "Temporary LOB is CLOSED."
ENDAF.

*Close the temporary LOB:
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

* Free the temporary LOB:
EXEC SQL

Temporary LOBs 4-39

See If a Temporary LOB Is Open

LOB FREE TEMPORARY - TEMP-BLOB
END-EXEC.

* And free the LOB locators:
EXEC SQL FREE :TEMP-BLOB END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™"
DISPLAY ™",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: See If a Temporary LOB Is Open Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void tempLoblsOpen_proc()
{
OCIBlobLocator *Temp_loc;
intisOpen =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
/*Allocate and Create the Temporary LOB

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

4-40 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

See If a Temporary LOB Is Open

/*Openthe Temporary LOB %
EXEC SQL LOB OPEN :Temp_loc READ ONLY;
/*Determine ifthe LOB is Open ¥

EXEC SQL LOB DESCRIBE :Temp_loc GET ISOPEN INTO :isOpen;

if (sOpen)
printf‘ Temporary LOB is open\n’);
else
printf(Temporary LOB is not open\n’);
/*Note that in this example, the LOB is Open so isOpen =1 (TRUE) %/
/Closethe LOB%
EXEC SQL LOB CLOSE :Temp _loc;
/* Free the Temporary LOB %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locator %/
EXEC SQL FREE :Temp_loc;
}

void main()
{
char *samp ="samp/samp’;
EXEC SQL CONNECT :samp;
tempLoblsOpen_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-41

Display the Temporary LOB Data

Display the Temporary LOB Data

Figure 4-8 Use Case Diagram: Display the Temporary LOB data

Internal temporary LOBs

OPEN
alLOB

create
a temporary
LOB

free
a temporary
LOB

display the
LOB data

read data
from the LOB

4-42 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

x

User/
Program

Display the Temporary LOB Data

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

As an instance of displaying a LOB our example stream-reads the image Drawing
from the column object Map_obj onto the client-side in order to view the data.

« "Example: Display the Temporary LOB Data Using C (OCI)" on page 4-44

« "Example: Display the Temporary LOB Data Using COBOL (Pro*COBOL)" on
page 4-47

« "Example: Display the Temporary LOB Data Using C++ (Pro*C/C++)" on
page 4-49

Example: Display the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)

/* The following function acceses the Washington_audio file, creates a temporary
LOB, loads some data from the file, and then reads it back and
displays it %

DECLARE
Dest loc BLOB;

Src loc BFILE :=BFILENAME(CAUDIO_DIR’, Washington_audio’);
Amount INTEGER :=128;
Bbuf RAW(128);
Posiion INTEGER =1;

BEGIN
DBMS_LOB.CREATETEMPORARY(Dest_loc, TRUE, DBMS_LOB.SESSION);
/*Opening the FILE is mandatory: %/
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
/*Opening the LOB is optional:
DBMS_LOB.OPEN(Dest _loc,DBMS_LOB.LOB_READWRITE);
DBMS_LOB.LOADFROMFILE(Dest loc,Src_loc,Amount);

LOOP
DBMS_LOB.READ (Dest_loc, Amount, Position, Bbuf);
/*Display the buffer contents: %
DBMS_OUTPUT.PUT_LINE(Result || utl_raw.cast to_varchar2(Bbuf));
Position := Position + Amount;
END LOOP;
EXCEPTION

Temporary LOBs 4-43

Display the Temporary LOB Data

WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE(ENd of data loaded into temp LOB);

DBMS_LOB.CLOSE(Dest _loc);
DBMS_LOB.FREETEMPORARY (Dest _loc);
/*Closing the file is mandatory unless you close the files later: %/
DBMS_LOB.CLOSE(Src_loc);

END;

Example: Display the Temporary LOB Data Using C (OCI)

/* The following function acceses the Washington_audio file, creates a temporary
LOB, loads some data from the file, and then reads it back and
displays it The reading is done in a streaming fashion. This function assumes
that the file specified is kept in the directory known by the directory alias
"AUDIO DIR". It also assumes that the file is at least 14000 bytes long, which
is the amount specified to be read and loaded. These amounts are arbitrary for
this example. This function uses forintf{) to display the contents of the
fle. This works well for text data, but you may wish to change the method for
binary data. For audio data, you could, for instance, call an audio function.
The function retums O if it completes successfully, and -1 ifit fails. %/

#define MAXBUFLEN 32767

sb4 display file_to_lob(OCIEmor *erhp,
OCISvcCix *svchp,
OCISmt *stmthp,
OCIEnv *envhp)

int rowind;

char *binfile;
OCILobLocator *thlob;
OClLobLocator *bfile;

ub4 amount = 14000;
ub4 offset=0;

ub4 loblen=0;
ubdamtp =0;
sword retval;

ub4 piece =1,

ub4 remainder=0;

ubl bufp[MAXBUFLEN];
sb4 retum_code =0;

4-44 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Display the Temporary LOB Data

(void)) printf(\n=—==> Testing loading files into lobs and displaying
them\n\n');

ifOCIDescriptorAlloc((dvoid *)envhp, (dvoid *¥) &tblob,
(ub4) OCI_DTYPE_LOB,
(size_1) 0, (dvoid **) 0))
{
printf("OCIDescriptor Alloc FAILED in print_length\n®);
retum-1;

}

if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid *¥) &bfile,
(ub4) OCI_DTYPE_FILE,
(size_t) O, (dvoid **) 0))
{
printf(*OCIDescriptor Alloc FAILED in print_length\n');
retum -1,

}

/*Create atemporary LOB: %/
if(OCILobCreateTemporary(svchp, erhp, thlob,(ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCl_ATTR_NOCACHE,
OC|_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n');
retum -1;

}

if(OCILobFileSetName(envhp, erthp, &bifile, (text*)’AUDIO_DIR",
(ub2)strien("AUDIO_DIR"),(text*)"Washington_audio”,
(ub2)strlen("Wasthington_audio")))
{
printf('OCILobFileSetName FAILED\n");
retum_code =-1;
}

/*Openthe BFILE: ¥/
iOCILobFileOpen(svehp, erthp, (OCILobLocator *) bfie, OCI_FILE_READONLY))
{
printf("OCILobFieOpen FAILED \n');
retum_code =-1;
}

Temporary LOBs

4-45

Display the Temporary LOB Data

if(OCILobLoadFromFile(svchp,errhp,thlob,(OCILobLocator*)bfile, (ub4)amount,
(Ub4)1,(Ub4)1))

printf{ "OCILobLoadFromFile FAILED\n");
retum_code=-1;
}

offset=1;
memset(bufp, \0', MAXBUFLEN);

retval = OCILobRead(svchp, emhp, thlob, &amtp, offset,
(dvoid * bufp, (@mount < MAXBUFLEN ? amount : MAXBUFLEN),
(dvoid %0, (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
(ub2) 0, (Ub1) SQLCS_IMPLICIT);

printf{“1st piece read from file is %s\n",bufp);

switch (retval)
{
case OCI_SUCCESS: /*Only one piece %/
(void) printf{'stream read piece # %d \n'", ++piece);
(void)printf("piece read was %es\n' bufp);
break;
case OC|_FAILURE:
F report_error(); function not shown here */
break;
case OCI_NEED DATA: /* There are 2 or more pieces %/
remainder = amount;
printf(remainder is %6d \n" remainder);
do
{
memset(bufp, \0', MAXBUFLEN);
amp=0;
remainder -= MAXBUFLEN,;
printf{'remainder is %d \n",remainder);
retval = OClLobRead(svchp, erhp, thlob, &amtp, offset,
(dvoid *) bufp, (ub4) MAXBUFLEN, (dvoid %)0,
(sb4 (¥)(dvoid *, dvoid *, ub4, ub)) O,
(ub2) 0, (ubl) SQLCS_IMPLICIT);

/* The amounit read retumed is undefined for FIRST, NEXT pieces: %
(void)fprintf(stderr,"stream read %od th piece, amtp = %d\n’,
++piece, amip);
(void)fprintf(stderr,"piece of length read was %d\n",
strien((const char*)bufp));

4-46 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Display the Temporary LOB Data

(void)fprintf{stderr,"piece read was %s\n" bufp);
}while (retval == OCI_NEED_DATA);
break;
default:
(void) printf("Unexpected ERROR: OCILobRead() LOB\n");
break;
}

/*Close the audio file: %/
if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
{
printf("OCILobFieClose FAILED\n");
retum_code = -1;
}
* clean up the temp LOB now that we are done with it */

ificheck_and_free_temp(tblob, errhp, svchp,stmthp, envhp))
{
printf(’check and free failed in load test\n®);
retum_code =-1;
}
retum retum_code;

}

Example: Display the Temporary LOB Data Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. ONE-READ-BLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(9) VALUES "SAMP/SAMP".
01 TEMP-BLOB SQL-BLOB.

01 SRC-BFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 BUFFER2 PIC X(32767) VARYING.

0L AMT PIC S9(9) COMP.

01 OFFSET PIC S9(9) COMP VALUE 1.

01 ORASLNRD PIC 9(4).

01 ISTEMP PIC S9(9) COMP.

EXEC SQL INCLUDE SQLCA END-EXEC.

Temporary LOBs 4-47

Display the Temporary LOB Data

EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

PROCEDURE DIVISION.
ONE-READ-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initalize the BLOB locator:
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR"TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "Washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = DIR-ALIAS,
FILENAME = :FNAME

END-EXEC.

EXEC SQL
LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
END-EXEC.

*Open source BFILE and destination temporary BLOB:
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
END-EXEC.

* Perform a single read:

4-48 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Display the Temporary LOB Data

EXEC SQL
LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
END-EXEC.

DISPLAY "Read ", BUFFER?2, " from TEMP-BLOB".

END-OF-BLOB.
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
EXEC SQL FREE :TEMP-BLOB END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Display the Temporary LOB Data Using C++ (Pro*C/C++)

#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void displayTempLOB_proc()

Temporary LOBs 4-49

Display the Temporary LOB Data

{
OCIBlobLocator *Temp_loc;

OCIBFieLocator *Lob loc;
char*Dir="PHOTO_DIR", *Name ="Lincoln_photo";
int Amount;
struct{
unsigned short Length;
char Data[BufferLength];
} Buffer;
int Position = 1;
F Datatype Equivalencing is Mandatory for this Datatype */
EXEC SQL VAR Buffer IS VARRAW/(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
* Allocate and Initialize the LOB Locators */
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
FOpening the LOBs is Optional */
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 Load a specified amount from the BFILE into the Temporary LOB */
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount;
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc;
 Setting Amount = O will initiate the polling method */
Amount=0;
* Set the maximum size of the Buffer */
Buffer.Length = BufferLength;
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
*Read a piece of the BLOB into the Buffer */
EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
printf(' Display %d bytes\n", Buffer.Length);

}
printf('Display %od bytes\n”, Amount);
 Closing the LOBs is mandatory if you have opened them */
EXEC SQL LOB CLOSE :Lob _loc;
EXEC SQL LOB CLOSE :Temp_loc;
F Free the Temporary LOB */
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
F Release resources held by the Locator */
EXEC SQL FREE :Temp_loc;

4-50 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Display the Temporary LOB Data

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
displayTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-51

Read Data from a Temporary LOB

Read Data from a Temporary LOB

Figure 4-9 Use Case Diagram: Read Data from a Temporary LOB

Internal temporary LOBs

OPEN
alLOB

A

CLOSE
alLOB

create
a temporary
LOB

enable
buffering

free
a temporary
LOB

T

disable
buffering

read data

x

User/
Program

from the LOB

4-52 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read Data from a Temporary LOB

Stream Read

Scenario

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

The most efficient way to read large amounts of LOB data is to use OCILobRead ()
with the streaming mechanism enabled via polling or a callback.

When reading the LOBvalue, it is not an error to try to read beyond the end of the
LOB This means that you can always specify an input amount of 4 gigabytes
regardless of the starting offset and the amount of data in the LOB. You do not need
to incur a round-trip to the server to call OCILobGetLength () to find out the
length of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read
the entire LOB value starting at offset 1,000. Also assume that you do not know the
current length of the LOB value. Here's the OCI read call, excluding the
initialization of the parameters:

#define MAX_LOB_SIZE 4294967295

ub4 amount= MAX LOB SIZE;

ub4 offset=1000;

OCILobRead(svchp, emrhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

When using polling mode, be sure to look at the value of the ‘amount ' parameter
after each OCILobRead () call to see how many bytes were read into the buffer since
the buffer may not be entirely full.

When using callbacks, the 'len ' parameter, which is input to the callback, will
indicate how many bytes are filled in the buffer. Be sure to check the 'len *
parameter during your callback processing since the entire buffer may not be filled
with data (see theOracle Call Interface Programmer’s Guide.).

Our example reads the data from a single video Frame.

« "Example: Read Data from a Temporary LOB Using PL/SQL (DBMS_LOB
Package)" on page 4-54

« "Example: Read Data from a Temporary LOB Using C (OCI)" on page 4-54

Temporary LOBs 4-53

Read Data from a Temporary LOB

« "Example: Read Data from a Temporary LOB Using COBOL (Pro*COBOL)" on
page 4-57

« "Example: Read Data from a Temporary LOB Using C++ (Pro*C/C++)" on
page 4-59

Example: Read Data from a Temporary LOB Using PL/SQL (DBMS_LOB Package)

/* Note that PL/SQL does not support streaming reads. The OCI example will
illustrate streaming reads: ¥/
DECLARE
Dest loc BLOB;
Src_loc BFILE :=BFILENAME(CAUDIO_DIR’,'Washington_audio’);
Amount INTEGER :=4000;
Bbuf RAW(32767);
Posiion INTEGER =1,
BEGIN
DBMS_LOB.CREATETEMPORARY(Dest_loc, TRUE, DBMS_LOB.SESSION);
/*Opening the FILE is mandatory: %/
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
/*Opening the LOB is optional: %/
DBMS_LOB.LOADFROMFILE(Dest loc, Src_loc, Amount);
DBMS_LOB.READ (Dest_loc, Amount, Position, Bbuf);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE(Src_loc);

Example: Read Data from a Temporary LOB Using C (OCl)

/* This is the same example as was shown for reading and displaying data from a
temporary LOB. This function takes the Washinton_audio file, opens that file
as aBFILE as input, loads that file data into a temporary LOB and then reads
the data from the temporary LOB 5000 or less bytes at a time.
5000 bytes was an arbitrary maximum buffer length chosen for this example.
The function retums O if it completes successtully, and -1 if it fails. %/

#define MAXBUFLEN 32767

sbhatest file_to_lob (OCILobLocator *ob_loc,
OCIEmor *enhp,
OCISvcCtx *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)

int rowind;

4-54 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read Data from a Temporary LOB

OClLobLocator *thlob;
OClLobLocator *bfile;

ub4 amount = 14000;
ub4 offset =0;

ub4 loblen=0;

ub4d amtp=0;

sword retval;

ub4 piece=1;

ub4 remainder=0;

ubl bufp[MAXBUFLEN];

(void) printf(
"\n=—=> Testing loading files into lobs and displaying them\n\n");

/*Create atemporary LOB: %
if(OCILobCreate Temporary(svchp, errhp, thlob, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n"Y);
retum-1;
}
if{OCILobFileSetName(envhp, erthp, &bfile,(text*)"AUDIO_DIR",
(ub2)strien("fAUDIO_DIR"),
(text*)"Washington_audio”,
(Ub2)strlen("Washington_audio")))
{
printf('OCILobFileSetName FAILED\n");
retum-1;

}
if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCl_FILE_READONLY))
{

printf{("OCILobFieOpen FAILED \n');

retum-1;
}
if(OCILobLoadFromFile(svchp,errhp,thlob,(OCILobLocator)bfile, (ub4)amount,

(Ub4)1,(ub4)1))

{

printf{ "OCILobLoadFromFile FAILED\n");

retum-1;

}

offset=1;
memset(bufp, \0', MAXBUFLEN);

Temporary LOBs 4-55

Read Data from a Temporary LOB

retval = OCILobRead(svchp, erthp, thlob, &amtp, offset, (dvoid *) bufp,
(amount < MAXBUFLEN ? amount : MAXBUFLEN), (dvoid %0,
(sb4 (*)(dvoid *, dvoid *, ub4, ubl)) O,
(Ub2) 0, (Ub1) SQLCS_IMPLICIT);

fprintf(stderr,"1st piece read from file is %s\n",bufp);

switch (retval)
{
case OCI_SUCCESS: /*Only one piece ¥/
(void) printf('stream read piece # %d \n", ++piece);
(void)printf("piece read was %es\n',bufp);
break;
case OCI_FAILURE:
/* report_error(); function not shown here %/
break;
case OCI_NEED DATA: /* There are 2 or more pieces %
remainder =amount;
fprintf(stderr,"remainder is %d \n",remainder);
do
{
memset(bufp, \0', MAXBUFLEN);
amtp=0;
remainder -= MAXBUFLEN,;
fprintf(stderr, remainder is %od \n'remainder);

retval = OCILobRead(svchp, erthp, thlob, &amitp, offset,
(dvoid *) bufp,(ub4) MAXBUFLEN, (dvoid *)0,
(sb4 (*)(dvoid *, dvoid *, ub4, ub1)) O,
(Ub2) 0, (Ub1) SQLCS_IMPLICIT);

/* The amount read retumed is undefined for FIRST, NEXT pieces: %/

(void)fprintf{stder,"stream read %d th piece, amtp = %d\n",
++piece, amtp);
(void)fprintf(stderr,
"piece of length read was %d\n",strlen((const char *)bufp));

(void)fprintf(stderr, ‘piece read was %6s\n",bufp);

}while (retval = OCI_NEED DATA);

break;

default:
(void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
break;
}

/*Close the audlo file: %/

4-56 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read Data from a Temporary LOB

if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))

printf("OCILobFieClose FAILED\n");
retum-1;

}

/* Clean up the temp LOB now that we are done with it: %/
ificheck_and_free_temp(lob_loc, erhp, svchp,stmthp, envhp))
{

printf('check and free failed in load test\n");

retum-1;
}

retumO;

}

Example: Read Data from a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. ONE-READ-BLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(9) VALUES "SAMP/SAMP",
01 TEMP-BLOB SQL-BLOB.

01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 BUFFER2 PIC X(32767) VARYING.

0L AMT PIC S9(9) COMP.

01 OFFSET PIC S9(9) COMP VALUE 1.

01 ORASLNRD PIC 9(4).

01 ISTEMP PIC S9(9) COMP.

EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

EXEC SQL INCLUDE ORACA END-EXEC.

EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

PROCEDURE DIVISION.
ONE-READ-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

Temporary LOBs 4-57

Read Data from a Temporary LOB

EXEC SQL
CONNECT :USERID
END-EXEC.

* Allocate and iniialize the BLOB locator:
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR"TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "Washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = DIR-ALIAS,
FILENAME = :FNAME

END-EXEC.

EXEC SQL
LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
END-EXEC.

*Open source BFILE and destination termporary BLOB:
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
END-EXEC.
* Perform a single read:
EXEC SQL
LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
END-EXEC.
DISPLAY "Read ", BUFFER2, " from TEMP-BLOB".
END-OF-BLOB.

EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.

4-58 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read Data from a Temporary LOB

EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
EXEC SQL FREE :TEMP-BLOB END-EXEC.

EXEC SQL FREE :SRC-BFILE END-EXEC.

STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Read Data from a Temporary LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

#define BufferLength 1024

void readTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator*Lob_loc;
char*Dir ="AUDIO_DIR", *Name = "Washington_audio";
int Length, Amount,
struct{
unsigned short Length;
char Data[BufferLength];

Temporary LOBs 4-59

Read Data from a Temporary LOB

}Buffer;
+ Datatype Equivalencing is Mandatory for this Datatype */
EXEC SQL VAR Buffer IS VARRAW/(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 Allocate and Initialize the BFILE Locator */
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
F Determine the Length of the BFILE */
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 Allocate and Create the Temporary LOB*/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
*Open the BFILE for Reading */
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
F Load the BFILE into the Temporary LOB */
Amount =Length;
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 Close the BFILE */
EXEC SQL LOB CLOSE :Lab _loc;
Buffer.Length = BufferLength;
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
F*Read a piece of the Temporary LOB into the Buffer */
EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
printf('Read %od bytes\n”, Buffer.Length);
}
printf('Read %d bytes\n”, Amount);
F Free the Temporary LOB */
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
F* Release resources held by the Locators */
EXEC SQL FREE :Temp_loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
readTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

4-60 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read a Portion of the Temporary LOB (substr)

Read a Portion of the Temporary LOB (substr)

Figure 4-10 Use Case Diagram: Read a portion of the Temporary LOB from the Table

(substr)

Internal temporary LOBs

OPEN
alLOB

CLOSE
alLOB

create
a temporary
LOB

P T TTTTIT I L L

x

User/
Program

|

free
a temporary
LOB

from the table
(substr)

To refer to the table of all basic operations having to do with Inter-

nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Temporary LOBs 4-61

Read a Portion of the Temporary LOB (substr)

Scenario

This example shows the operation in terms of reading a portion from sound-effect
Sound.

« "Example: Read a Portion of the Temporary LOB (substr) Using PL/SQL
(DBMS_LOB Package)" on page 4-62

« "Example: Read a Portion of the Temporary LOB (substr) Using COBOL
(Pro*COBOL)" on page 4-62

« "Example: Read a Portion of the Temporary LOB (substr) Using C++
(Pro*C/C++)" on page 4-65

Example: Read a Portion of the Temporary LOB (substr) Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure substingTempLOB _proc s not part of the
DBMS _LOB package. */

/* This example assumes the user has a Washington_audio’file in a
directory which has a AUDIO_DIR alias %/

CREATE or REPLACE PROCEDURE substringTempLOB_proc IS
Dest loc BLOB;
Src loc BFILE := BFILENAMECAUDIO DIR', 'Washington_audio);
Amount INTEGER := 32767,
Bbuf RAW(32767);
Posiion INTEGER :=128;

BEGIN
DBMS_LOB.CREATETEMPORARY(Dest_loc, TRUE, DBMS_LOB.SESSION);
/*Opening the FILE is mandatory: %/
DBMS_LOB.OPEN(Src_loc, DBMS LOB.LOB_READONLY);
/*Opening the LOB Is optional %
DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
DBMS_LOB.LOADFROMFILE(Dest loc, Src_loc, Amount);
Bbuf .= DBMS_LOB.SUBSTR(Dest_loc, Amount, Position);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE(Src_loc);
DBMS_LOB.CLOSE(Dest loc);

END;

Example: Read a Portion of the Temporary LOB (substr) Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. ONE-READ-BLOB.

4-62 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read a Portion of the Temporary LOB (substr)

ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(9) VALUES "SAMP/SAMP",
01 TEMP-BLOB SQL-BLOB.

01 SRC-BFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 BUFFER2 PIC X(32767) VARYING.

0L AMT PIC S9(9) COMP.

01 OFFSET PIC S9(9) COMP VALUE 1.

01 ORASLNRD PIC 9(4).

01 ISTEMP PIC S9(9) COMP.

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

PROCEDURE DIVISION.
ONE-READ-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locator
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

*Set up the directory and file information
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "Washington_audio" TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL

LOB FILE SET :SRC-BFILE DIRECTORY =:DIR-ALIAS,
FILENAME = :FNAME

Temporary LOBs 4-63

Read a Portion of the Temporary LOB (substr)

END-EXEC.

EXEC SQL
LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
END-EXEC.

*Open source BFILE and destination temporary BLOB.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
END-EXEC.

* Perform a single read

EXEC SQL
LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
END-EXEC.

DISPLAY "Read ", BUFFER?2, " from TEMP-BLOB".

END-OF-BLOB.
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
EXEC SQL FREE :TEMP-BLOB END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE *, ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOPRUN.

4-64 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read a Portion of the Temporary LOB (substr)

Example: Read a Portion of the Temporary LOB (substr) Using C++ (Pro*C/C++)

/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS _LOB.SUBSTR()
function. However, Pro*C/C++ can interoperate with PL/SQL using
anonymous PL/SQL blocks embedded in a Pro*C/C++ program as this example
shows. ¥/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salemrmc);
EXEC SQL ROLLBACK WORK RELEASE;
ext(1);

}

#define BufferLength 4096
void substringTempLOB_proc()

OCIBlobLocator *Temp_loc;
OCIBFileLocator *Lob loc;
char*Dir ="AUDIO_DIR", *Name = "Washington_audio";
int Position = 1024;
unsigned int Length;
int Amount = BufferLength;
struct{
unsigned short Length;
char Data[Bufferength];
}Buffer;
/* Datatype Equivalencing is Mandatory for this Datatype: ¥/
EXEC SQL VAR Buffer IS VARRAW/(BufferLengthy;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

/* Allocate and Create the Temporary LOB: %/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/*Allocate and Initialize the BFILE Locator: ¥

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
/*Openthe LOBs: ¥

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

Temporary LOBs 4-65

Read a Portion of the Temporary LOB (substr)

EXEC SQL LOB OPEN :Temp_loc READ WRITE;
/* Determine the length of the BFILE and load it into the Temporary LOB: %/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
EXEC SQL LOB LOAD :Length FROM FILE :Lob _loc INTO :Temp_loc;
/*Invoke SUBSTR() on the Temporary LOB inside a PL/SQL block: %/
EXEC SQL EXECUTE
BEGIN
‘Buffer :=DBMS_LOB.SUBSTR(:Temp_loc, :Amount, :Position);
END;
END-EXEC;
/*Process the Data in the Buiffer. %/
/*Closing the LOBSs is Mandatory if they have been Opened: %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL LOB CLOSE :Temp _loc;
/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources used by the locators: %
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
substringTempLOB_procy();
EXEC SQL ROLLBACK WORK RELEASE;
}

4-66 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Compare All or Part of Two (Temporary) LOBs

Compare All or Part of Two (Temporary) LOBs

Figure 4-11 Use Case Diagram: Compare All or Part of Two Temporary LOBs

Internal temporary LOBs

OPEN
alLOB

CLOSE
alLOB

compare all
or parts of
2 LOBs

create
a temporary
LOB

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Temporary LOBs 4-67

Compare All or Part of Two (Temporary) LOBs

Scenario

The following example compares two frames from the archival table
VideoframesLib_tab to see whether they are different and, depending on the
result of comparison, inserts the Frame into the Multimedia_tab

« "Example: Compare All or Part of Two (Temporary) LOBs Using PL/SQL
(DBMS_LOB Package)" on page 4-68

« "Example: Compare All or Part of Two (Temporary) LOBs Using COBOL
(Pro*COBOL)" on page 4-69

« "Example: Compare All or Part of Two (Temporary) LOBs Using C++
(Pro*C/C++)" on page 4-71

Example: Compare All or Part of Two (Temporary) LOBs Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure compareTwoTemporPersistLOBs_proc is not part
ofthe DBMS_LOB package. %/
CREATE OR REPLACE PROCEDURE compareTwoTemporPersistLOBs_proc IS
Lob_loc1 BLOB;
Lob loc2 BLOB;
Temp_loc BLOB;
Amount INTEGER = 32767,
Retval INTEGER;
BEGIN
/*Selectthe LOB: %/
SELECT Frame INTO Lob_loc1 FROM Muttimedia_tab
WHERE Clip_ID=1;
SELECT Frame INTO Lob_loc2 FROM Multimedia._tab
WHERE Clip_ ID=2;
/*Copy a frame into a temp LOB and convert it to a different format %/
/* before comparing the frames : %/
DBMS_LOB.CREATETEMPORARY(Temp_loc, TRUE, DBMS_LOB.SESSION);
DBMS_LOB.OPEN(Temp_loc, DBMS_LOB.LOB_READWRITE);
DBMS_LOB.OPEN(Lob locl, DBMS_LOB.LOB_READONLY);
DBMS_LOB.OPEN(Lob _loc2, DBMS_LOB.LOB_READONLY);
/*Copy the persistent LOB into the temp LOB: %/
DBMS_LOB.COPY/(Temp_loc,Lob loc2 DBMS_LOB.GETLENGTH(Lob loc2),1,1);
/* Perform some conversion function on the temp LOB before comparing it"/
/*...some_conversion_format_function(Temp_loc); ¥
retval :=DBMS_LOB.COMPARE(Lob_locl, Temp_loc, Amount, 1, 1);
IFretval=0 THEN
DBMS_OUTPUT.PUT_LINE(Processing for equal frames’);

4-68 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Compare All or Part of Two (Temporary) LOBs

ELSE

DBMS_OUTPUT.PUT_LINE(Processing for non-equal frames);
ENDIF;
DBMS_LOB.CLOSE(Temp_loc);
DBMS_LOB.CLOSE(Lob_locl);
DBMS_LOB.CLOSE(Lob_loc2);
/* Free the temporary LOB now that we are done using it %/
DBMS_LOB.FREETEMPORARY(Temp_loc);
END;

Example: Compare All or Part of Two (Temporary) LOBs Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BLOB-COMPARE.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USER1/USER1".

01 BLOBL SQL-BLOB.
01 BLOB2 SQL-BLOB.

01 TEMPBLOB SQL-BLOB.

0L RET PICS9(9) COMP.

01 AMT PIC S9(9) COMP VALUE5.
0LORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BLOB-COMPARE.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :BLOB1 END-EXEC.
EXEC SQL ALLOCATE :BLOB2 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

Temporary LOBs 4-69

Compare All or Part of Two (Temporary) LOBs

EXEC SQL
SELECT FRAME INTO :BLOB1
FROM MULTIMEDIA TABMWHERE M.CLIP_ID=1
END-EXEC.

EXEC SQL
SELECT FRAME INTO :BLOB2
FROM MULTIMEDIA TABMWHERE M.CLIP_ID=2
END-EXEC.

* Allocate and create a temporary LOB:
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
EXEC SQL
LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

*QOpen the BLOBs for READ ONLY, Open temp LOB READWRITE:
EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.
EXEC SQL LOB OPEN :BLOB2 READ ONLY END-EXEC.
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

*Copy data from BLOBZ to the temporary BLOB:
EXEC SQL
LOB COPY :AMT FROM :BLOB2 TO :TEMP-BLOB
END-EXEC.

* Execute PL/SQL to use its COMPARE functionality:
MOVE 5 TO AMT.
EXEC SQL EXECUTE
BEGIN
‘RET :=DBMS_LOB.COMPARE(:BLOB1,.:TEMP-BLOB,/AMT,1,1);
END,;
END-EXEC.

IFRET=0
* Logic for equal BLOBs goes here
DISPLAY "BLOBs are equal’
ELSE
* Logic for unequal BLOBs goes here
DISPLAY "BLOBs are not equal”
END-F.

EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

EXEC SQL LOB CLOSE :BLOB2 END-EXEC.
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

4-70 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Compare All or Part of Two (Temporary) LOBs

EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
EXEC SQL FREE :TEMP-BLOB END-EXEC.

END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.
EXEC SQL FREE :BLOB2 END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE *, ORASLNRD, ™",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Compare All or Part of Two (Temporary) LOBs Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenmm.sglenm, sgica.sglenmm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void compareTwoTempOrPersistLOBs_proc()

{
OCIBlobLocator *Lob loc1,*Lob _loc2, *Temp _loc;
int Amount = 128;
int Retval;

Temporary LOBs 4-71

Compare All or Part of Two (Temporary) LOBs

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Allocate the LOB locators: %/
EXEC SQL ALLOCATE :Lob_locl,;
EXEC SQL ALLOCATE :Lob_loc2;
/* Selectthe LOBs: %/
EXEC SQL SELECT Frame INTO :Lob_locl
FROM Mulimedia_tab WHERE Clip_ID =1,
EXEC SQL SELECT Frame INTO :Lob loc2
FROM Mulimedia_tab WHERE Clip_ID=2;

/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Opening the LOBs is Optional: */
EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
EXEC SQL LOB OPEN :Lob_loc2 READ ONLY,;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;
/*Copy the Persistent LOB into the Temporary LOB: %
EXEC SQL LOB COPY :Amount FROM :Lob_loc2 TO :Temp_loc;
/* Compare the wo Frames using DBMS _LOB.COMPARE() from within PL/SQL: %
EXEC SQL EXECUTE

BEGIN

‘Retval :=DBMS_LOB.COMPARE(.Lob_loc1, :-Temp_loc, :Amount, 1, 1);

END;
END-EXEC;
if (0 = Retval)

printf("Frames are equaln’;
else

printf("Frames are not equal\n);
/*Closing the LOBs is mandatory if you have opened them: %/
EXEC SQL LOB CLOSE :Lob locl;
EXEC SQL LOB CLOSE :Lab loc2;
EXEC SQL LOB CLOSE :Temp _loc;
/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the locators: %
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Lob loc2;
EXEC SQL FREE :Temp_loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
compareTwoTempOrPersist OBs_proc();

4-72 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Compare All or Part of Two (Temporary) LOBs

EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-73

See If a Pattern Exists in a Temporary LOB (instr)

See If a Pattern Exists in a Temporary LOB (instr)

Figure 4-12 Use Case Diagram: See If a Pattern Exists in a Temporary LOB (instr)

Internal temporary LOBs

OPEN
alLOB

CLOSE
alLOB

create
a temporary
LOB

see wherefif
a pattern exists

free
a temporary
LOB

inthe LOB
(instr)

To refer to the table of all basic operations having to do with Inter-

nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs"

4-74 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

See If a Pattern Exists in a Temporary LOB (instr)

Scenario

The following example examines the storyboard text to see if the string "children” is
present.

« "Example: See If a Pattern Exists in a Temporary LOB (instr) Using PL/SQL
(DBMS_LOB Package)" on page 4-75

« "Example: See If a Pattern Exists in a Temporary LOB (instr) Using COBOL
(Pro*COBOL)" on page 4-76

« "Example: See If a Pattern Exists in a Temporary LOB (instr) Using C++
(Pro*C/C++)" on page 4-78

Example: See If a Pattern Exists in a Temporary LOB (instr) Using PL/SQL (DBMS _
LOB Package)

/* Note that the example procedure instingTempLOB_proc is not part of the
DBMS _LOB package. */
CREATE OR REPLACE PROCEDURE instringTempLOB_proc IS
Lob loc CLOB;
Temp_clob CLOB;
Pattem VARCHAR2(30) :='chidren’; Posiion INTEGER :=0;
Offset INTEGER:=1;
Occurrence INTEGER =1,
BEGIN
/*Create the temp LOB and copy a CLOB into it: %/
DBMS_LOB.CREATETEMPORARY(Temp_clob,TRUE, DBMS_LOB.SESSION);
SELECT Story INTO Lob_loc
FROM Mulimedia_tab
WHERE Clip_ ID=1;

DBMS_LOB.OPEN(Temp_clob,DBMS_LOB.LOB_READWRITE);
DBMS_LOB.OPEN(Lob_loc,DBMS_LOB.LOB_READONLY);
/*Copy the CLOB into the termp CLOB: %/
DBMS_LOB.COPY(Temp_clob,Lob_loc,DBMS_LOB.GETLENGTH(Lob_loc),1,1);
/* Seek the pattem in the temp CLOB: %
Position := DBMS_LOB.INSTR(Temp_clob, Pattem, Offset, Occurrence);
IF Position=0THEN

DBMS_OUTPUT.PUT_LINE(Pattem not found);
ELSE

DBMS_OUTPUT.PUT_LINE(The pattem occurs at || position);
ENDIF;
DBMS_LOB.CLOSE(Lob_loc);
DBMS_LOB.CLOSE(Temp_clob);

Temporary LOBs 4-75

See If a Pattern Exists in a Temporary LOB (instr)

/* Free the temporary LOB: %/
DBMS_LOB.FREETEMPORARY(Temp_clob);
END;

Example: See If a Pattern Exists in a Temporary LOB (instr) Using COBOL

(Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAMH-D. CLOB-INSTR.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERI1/USER1".

01 CLOB1 SQL-CLOB.

01 TEMP-CLOB SQL-CLOB.

01 PATTERN PIC X(8) VALUE "chidren’.

01 BUFFER2 PIC X(32767) VARYING.

01 OFFSET PIC S9(9) COMP VALUE 1.

01 OCCURRENCE PIC S9(9) COMP VALUE 1.
0LLEN PICS9(9)COMP.

0L POS PIC S99) COMP.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

PROCEDURE DIVISION.
CLOB-INSTR.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the CLOB locator:
EXEC SQL ALLOCATE :CLOB1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.

4-76 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

See If a Pattern Exists in a Temporary LOB (instr)

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
EXEC SQL
SELECT STORY INTO :CLOB1
FROM MULTIMEDIA TABWHERE CLIP_ID=1
END-EXEC.
EXEC SQL ALLOCATE TEMP-CLOB END-EXEC.
EXEC SQL
LOB CREATE TEMPORARY :TEMP-CLOB
END-EXEC.

*QOpenthe CLOB for READ ONLY:
EXEC SQL LOB OPEN :CLOB1 READ ONLY END-EXEC.

*Use LOB describe to get the length of CLOBL1:
EXEC SQL
LOB DESCRIBE :CLOB1 GET LENGTHINTO :.LEN
END-EXEC.
EXEC SQL
LOB COPY :LEN FROM :CLOB1 TO :TEMP-CLOB
END-EXEC.

* Execuite PL/SQL to get INSTR functionaliy:
EXEC SQL EXECUTE
BEGIN
‘POS := DBMS_LOBINSTR(TEMP-CLOB,PATTERN,
‘OFFSET, :0OCCURRENCE);
END;
END-EXEC.

IFPOS=0
* Logic for pattern not found here
DISPLAY "Pattem was not found”
ELSE
* Pos contains position where pattem is found
DISPLAY "Pattem was found"
END-IF.

*Close and fiee the LOBs:
EXEC SQL LOB CLOSE :CLOB1 END-EXEC.
EXEC SQL FREE :TEMP-CLOB END-EXEC.
EXEC SQL
LOB FREE TEMPORARY :TEMP-CLOB
END-EXEC.

Temporary LOBs 4-77

See If a Pattern Exists in a Temporary LOB (instr)

EXEC SQL FREE :TEMP-CLOB END-EXEC.

END-OF-CLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :CLOB1 END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, "
DISPLAY "*.
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: See If a Pattern Exists in a Temporary LOB (instr) Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void instring TempLOB_proc()
{
OCIClobLocator *Lob_loc, *Temp_loc;
char *Pattem ="The End",
unsigned int Length;
int Position =0;
intOffset=1;
int Occurrence =1;

4-78 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

See If a Pattern Exists in a Temporary LOB (instr)

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Allocate and Initalize the Persistent LOB: %/
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Story INTO :Lob loc

FROM Mulimedia_tab WHERE Clip_ID =1,
/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;
/* Determine the Length of the Persistent LOB: %/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH into :Length;
/*Copy the Persistent LOB into the Temporary LOB: %/
EXEC SQL LOB COPY :Length FROM :Lob loc TO :Temp _loc;
/* Seek the Patterm using DBMS_LOB.INSTR() in a PL/SQL block: %/
EXEC SQL EXECUTE

BEGIN

‘Position =
DBMS_LOB.INSTR(:Temp_loc, :Pattem, :Offset, :Occurrence);

END;
END-EXEC;
if (0 = Position)

printf(Pattern not found\n");
else

printf(The pattem occurs at %d\n”, Pasition);
/*Closing the LOBSs is mandatory if you have opened them: %/
EXEC SQL LOB CLOSE :Lab_loc;
EXEC SQL LOB CLOSE :Temp _loc;
/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locators: %
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
instringTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-79

Get the Length of a Temporary LOB

Get the Length of a Temporary LOB

Figure 4-13 Use Case Diagram: Get the length of a Temporary LOB

Internal temporary LOBs

OPEN
alLOB

CLOSE
alLOB

create

a temporary
LOB

X

User/
Program

free
a temporary
LOB

length of

the LOB

4-80 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Get the Length of a Temporary LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

The following example gets the length of interview to see if it will run over the 4
gigabyte limit.

« "Example: Get the Length of a Temporary LOB Using PL/SQL (DBMS_LOB
Package)" on page 4-81

« "Example: Get the Length of a Temporary LOB Using C (OCI)" on page 4-82

« "Example: Get the Length of a Temporary LOB Using COBOL (Pro*COBOL)" on
page 4-84

« "Example: Get the Length of a Temporary LOB Using C++ (Pro*C/C++)" on
page 4-86

Example: Get the Length of a Temporary LOB Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure getLengthTempCLOB_proc is not part of the
DBMS_LOB package. ¥/
CREATE OR REPLACE PROCEDURE getl engthTempCLOB_proc IS
Length INTEGER;
ob CLOB;
buic VARCHAR2(8);
Amount NUMBER;

pos NUMBER;
Src_loc BFILE := BFILENAMECAUDIO_DIR’, 'Washington_audio);
BEGIN

DBMS_LOB.CREATETEMPORARY (tob,TRUE,DBMS_LOB.SESSION);
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN(flob,DBMS_LOB.LOB_READWRITE);
/*Opening the file is mandatory: %
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
Amount := 32767,
DBMS_LOB.LOADFROMFILE(flob, Src_loc, Amount);
/#*Getthe length of the LOB: %/
length := DBMS_LOB.GETLENGTH(tlob);
IF length =0 THEN

DBMS_OUTPUT.PUT_LINE(LOB is empty.);

Temporary LOBs 4-81

Get the Length of a Temporary LOB

ELSE
DBMS_OUTPUT.PUT_LINE(The lengthis’ || length);

ENDIF;
/*Must close any lobs that were gpened: %/
DBMS_LOB.CLOSE(tlob);
DBMS_LOB.CLOSE(Src_loc);
/* Free the temporary LOB now that we are done with it: %/
DBMS_LOB.FREETEMPORARY(tiob);

END;

Example: Get the Length of a Temporary LOB Using C (OCI)

/* This function takes a temporary LOB locator as an amount as argument and
Jrints out the length of the comresponding LOB. The function retums
Oifit completes successtully, and -1 if it fails.”/
sb4 print_length(OCIEmor *erhp,
OCISveCix *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)

ub4 length=0;

ub4 amount=4;
ub4pos=1;
OClLobLocator *Hfile;
OClLobLocator *thlob;
sb4 retum_code =0;

printf('in print_length\n®);
if{OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
(ub4) OCI_DTYPE_LOB,
(size_1) 0, (dvoid **) 0))
{
printf("OCIDescriptor Alloc FAILED in print_length\n');
retum-1;

}

if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid *¥) &bfile,
(ub4) OCI_DTYPE_FILE,
(size_t) O, (dvoid **) 0))
{
printf("OCIDescriptor Alloc FAILED in print_length\n');
retum -1,

}

4-82 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Get the Length of a Temporary LOB

if(OCILobFileSetName(envhp, errhp, &bifile, (text *)"AUDIO_DIR",
(ub2)strien("AUDIO_DIR"),
(text *)"Washington_audio”,
(ub2)strlen("Washington_audio")))
{
printf("OCILobFileSetName FAILED\n");
retum_code =-1;
}

checkerr(errhp,(OCILobFileOpen(svchp, enhp,
(OClLobLocator *) bfile,
OCI_LOB_READONLY)));

/*Create a temporary BLOB: %/
if(OCILobCreateTemporary(svchp, erhp, thlob, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCl_ ATTR_NOCACHE,
OC|_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n');
retum _code=-1;
}

ifOCILobOpen(svchp, erthp, (OCILobLocator *) thlob, OCI_LOB_READWRITE))
{

(void) printf("FAILED: Open Temporary \n'),

retum_code =-1;
}

ifOCILobLoadFromFile(svchp, errhp, thlob,(OCILobLocator*)ufile,
(ubd)amount, (ub4)1,(ub4)1))
{
(void) printf("FAILED: Open Temporary \n");
retum_code=-1;
}

if (OCILobGetlLength(svchp, errhp, thlob,&length))

{
printf ("FAILED: OCILobGetlengthin print_length\n');
retum_code=-1;

}

/* Close the bifile and the temp LOB %/
checkerr(errhp,OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile));

Temporary LOBs 4-83

Get the Length of a Temporary LOB

checkerr(errhp,OCILobClose(svchp, erhp, (OCILobLocator *) thlob));

/* Free the temporary LOB now that we are done using it ¥/
if(OCILobFreeTemporary(svchp, errhp, thlob))
{
printf('OCILobFreeTemporary FAILED \n'Y);
retum_code =-1;
}
fprintf{stderr,"Length of LOB is %d\n” length);
retum retum_code;
}

Example: Get the Length of a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. TEMP-LOB-LENGTH.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USER1USERL".
01 TEMPBLOB SQL-BLOB.

01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

0L FNAME PICX(20) VARYING.

01 DIRIND PIC S9(4) COMP.

01 FNAMEAND PIC S9(4) COMP.

0L AMT PIC S99) COMP VALUE 10.
0LLEN PICS9(9)COMP.
0LLEND PIC9().

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
TEMP-LOB-LENGTH.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

4-84 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Get the Length of a Temporary LOB

* Allocate and initialize the BFILE and BLOB locators:
EXEC SQL ALLOCATE ‘TEMP-BLOB END-EXEC.
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = DIR-ALIAS,
FILENAVE = :FNAME

END-EXEC.

*Open source BFILE and destination temporary BLOB:
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
END-EXEC.

*Get the length of the temporary LOB:
EXEC SQL
LOB DESCRIBE :TEMP-BLOB GET LENGTH INTO :.LEN
END-EXEC.
MOVE LEN TO LEN-D.
DISPLAY "Length of TEMPORARY LOB is", LEN-D.
*Close the LOBs:
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

* Free the temporary LOB:
EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB
END-EXEC.

*And free the LOB locators:
EXEC SQL FREE :TEMP-BLOB END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

Temporary LOBs 4-85

Get the Length of a Temporary LOB

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOPRUN.

Example: Get the Length of a Temporary LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenml, sglca.sglermm.salenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void getlengthTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator*Lob _loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Length, Amount,

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();

/* Allocate and Create the Temporary LOB ¥/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/* Allocate and Initalize the BFILE Locator: %/

EXEC SQL ALLOCATE :Lob _loc;

EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
/*Opening the LOBs is Optional: %/

4-86 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Get the Length of a Temporary LOB

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 Load a specified amount from the BFILE into the Temporary LOB */
Amount =4096;

EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
/*Getthe length of the Temporary LOB: %/

EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
/* Note that in this example, Length — Amournt == 4096: %/
printf("Length is %d bytes\n', Length);

/*Closing the LOBSs is Mandatory if they have been Opened: %

EXEC SQL LOB CLOSE :Lob loc;

EXEC SQL LOB CLOSE :Temp _loc;

/* Free the Temporary LOB: %/

EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %

EXEC SQL FREE :Lob _loc;

EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
getlLengthTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-87

Copy All or Part of One (Temporary) LOB to Another

Copy All or Part of One (Temporary) LOB to Another

Figure 4-14 Use Case Diagram: Copy All or Part of One (Temporary) LOB to Another

Internal temporary LOBs

OPEN
alLOB

CLOSE
alLOB

create
a temporary
LOB

v

X

User/
Program

copy all or
part of a LOB to
another LOB

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario
Assume the following table:

CREATE TABLE VoiceoverLib_tab of VOICED_TYP,

4-88 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy All or Part of One (Temporary) LOB to Another

Note that this VoiceoverLib_tab is of the same type as the Voiceover_tab
which is referenced by the Voiced _ref column of the multimedia table.

INSERT INTO Voiceover_tab
(SELECT * FROM VoiceoverLib_tab Vtabl
WHERE T2 Take = 101);

creates a new LOB locator in the table Voiceover_tab , and copies the LOB data
from Vtabl to the location pointed to by a new LOB locator which is inserted into
table Voiceover_tab.

« "Example: Copy All or Part of One (Temporary) LOB to Another Using PL/SQL
(DBMS_LOB Package)" on page 4-89

« "Example: Copy All or Part of One (Temporary) LOB to Another Using C (OCI)"
on page 4-90

« "Example: Copy All or Part of One (Temporary) LOB to Another Using COBOL
(Pro*COBOL)" on page 4-93

« "Example: Copy All or Part of One (Temporary) LOB to Another Using C++
(Pro*C/C++)" on page 4-95

Example: Copy All or Part of One (Temporary) LOB to Another Using PL/SQL (DBMS _
LOB Package)

/* Note that the example procedure copyTempLOB_proc is not part of the
DBMS_LOB package.*/

CREATE OR REPLACE PROCEDURE copyTempLOB_proc IS
Dest pos NUMBER,;

Src pos NUMBER;

Dest loc BLOB;

Dest loc2 BLOB;

Src_loc BFILE := BFILENAME(AUDIO_DIR’, 'Washington_audio));
Amount INTEGER :=32767,

BEGIN
DBMS_LOB.CREATETEMPORARY(Dest _loc2, TRUE,DBMS_LOB.SESSION);
DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE, DBMS_LOB.SESSION);
/*QOpening the FILE is mandatory: %/

DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB READONLY);
/*Opening the temporary LOBSs is optional: %/
DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
DBMS_LOB.OPEN(Dest_loc2 DBMS LOB.LOB_READWRITE);

Temporary LOBs 4-89

Copy All or Part of One (Temporary) LOB to Another

DBMS_LOB.LOADFROMFILE(Dest loc, Src_loc, Amount);
/*Set Dest _pos to the position at which we should start writing in the
targettemp LOB %/
/* Copies the LOB from the source position to the destination
position:*/
/*Setamount to the amount you warit copied %/
Amount :=328;
Dest_pos :=1000;
Src_pos :=1000;
/*Set Src_pos to the position from which we should start copying data
from tclob_src: ¥/
DBMS_LOB.COPY (Dest_loc2,Dest_loc, Amount, Dest_pos, Src_pos);
COMMIT;
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(Operation failed);
DBMS_LOB.CLOSE(Dest loc);
DBMS_LOB.CLOSE(Dest loc2);
DBMS_LOB.CLOSE(Src _loc);
DBMS_LOB.FREETEMPORARY(Dest_loc);
DBMS_LOB.FREETEMPORARY (Dest_loc2);
END;

Example: Copy All or Part of One (Temporary) LOB to Another Using C (OCI)

/* This function takes two temporary LOB locators as arguments and copies 4000
bytes from one temporary LOB to another. It readss the source LOB starting at
offset 1, and writes to the destination at offset 2. The function retums
Oifit completes successtully, and -1 otherwise. %/

sb4 copy_temp_lobs (OCILobLocator *lob _loc,

OCIEmor *enhp,
OCISveCitx *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)

OCIDefine *defnpl;
OClLobLocator *thlob;
OCILobLocator *thlob2;
OCILobLocator *bfile;
int rowind =1;

ub4 amount=4000;
ub4 src_offset=1;

ub4 dest_offset=2;

sb4 retum_code =0;

4-90 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy All or Part of One (Temporary) LOB to Another

printf('in copy_temp_lobs \n");

if{OCIDescriptorAlloc((dvoid®)envhp, (dvoid *)&tblob,
(ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
{
printf("OCIDescriptorAlloc failed in copy_temp_lobs\n');
retum -1;

}

ifOCIDescriptorAlloc((dvoid*)envhp, (dvoid *)&bfile,
(Ub4)OCI_DTYPE_FILE, (size_t)0, (dvoid**)0))
{
printf("OCIDescriptorAlloc failed in copy_temp_lobs\n');
retum-1;

}

if(OCILobCreateTemporary(svchp, erhp, thlob, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCl_ ATTR_NOCACHE,
OC|_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n"Y);
retum-1;

}

ifOCIDescriptorAlloc((dvoid*)envhp, (dvoid *)&tblob2,
(Ub4)OCI_DTYPE_LOB, (size_f)0, (dvoid™)0))
{
printf("OCIDescriptorAlloc failed in copy_temp_lobs\n®);
retum_code = -1;
}

if(OCILobCreate Temporary(svchp, emrhp, thlob2, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n"Y);
retum_code =-1;
}

if(OCILobFileSetName(envhp, enhp, &bfile, (text *)"AUDIO_DIR",
(ub2)strien(’AUDIO_DIR"),
(text *)"Washington_audio”,
(ub2)strlen("Washington_audio")))
{
printf("OCILobFileSetName FAILED\n");

Temporary LOBs 4-91

Copy All or Part of One (Temporary) LOB to Another

retum_code =-1;
}

if(OCILobFileOpen(svchp, erhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
{

printf("OCILobFileOpen FAILED for the bfile\n’);

retum_code =-1;
}

if (OCILohOpen(svchp, erthp, (OCILobLocator *) thlob, OCl_LOB_READWRITE))
{

printf("OCILobOpen FAILED for temp LOB \n');

retum_code = -1;

}
if (OCILobOpen(svchp, erhp, (OCILobLocator ¥) thlob2, OCI_LOB_READWRITE))

printf("OCILobOpen FAILED for temp LOB \n");
retum_code = -1;
}

if(OCILobLoadFromFile(svchp, emhp, thlob, (OCILobLocator*)bfile,
(ubd)amount, (Ub4)1,(ub4)1))
{
printf("OCILobLoadFromFile FAILED\n"Y);
retum_code =-1;
}

if (OCILobCopy(svchp, erhp, thlob2, thlob, amount, dest_offset,
src_offset))
{
printf ("FAILED: OCILobCopy in copy_temp_lobs\n®);
retum-1;
}
F Close LOBs here */

if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
{
printf("OCILobFileClose FAILED for bfile \n');
retum_code = -1;

}
if (OCILobClose(svchp, errhp, (OCILobLocator *) thlob))

{
printf("OCILobClose FAILED for temporary LOB \n'Y);
retum_code = -1;

}

4-92 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy All or Part of One (Temporary) LOB to Another

if (OCILobClose(svchp, erhp, (OCILobLocator *) thlob2))

printf("OCILobClose FAILED for temporary LOB \n'Y);
retum_code = -1;

}

[free the temporary lobs now that we are done using them */

if(OCILobFreeTemporary(svchp, errhp, thiob))

{
printf("OCILobFreeTemporary FAILED \n");
retum_code =-1;

}

if(OCILobFreeTemporary(svchp, errhp, thiob2))

{
printf("OCILobFreeTemporary FAILED \n");
retum_code =-1;

}

retum retum_code;

}

Example: Copy All or Part of One (Temporary) LOB to Another Using COBOL
(Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. TEMP-BLOB-COPY.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERL/JUSERT".

01 TEMP-DEST SQL-BLOB.
01 TEMP-SRC SQL-BLOB.

01 SRC-BFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.
01 FNAME PIC X(30) VARYING.
0L AMT PIC S9(9) COMP.

* Define the source and destination position and location:
01 SRCPOS PICS9(9) COMP VALUE 1.

01 DEST-POS PIC S9(9) COMP VALUE 1.
01ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.

Temporary LOBs 4-93

Copy All or Part of One (Temporary) LOB to Another

EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
TEMP-BLOB-COPY.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:

EXEC SQL ALLOCATE :TEMP-DEST END-EXEC.
EXEC SQL ALLOCATE :TEMP-SRC END-EXEC.
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY - TEMP-DEST
END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-SRC
END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR"TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE 'washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY =:DIR-ALIAS,
FILENAME = :FNAME

END-EXEC.

*Open source BFILE and destination temporary BLOB:
EXEC SQL LOB OPEN :TEMP-SRC READ WRITE END-EXEC.
EXEC SQL LOB OPEN :TEMP-DEST READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

*MOVE the desired amourit to copy to AMT:
MOVE 5 TO AMT.
EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-SRC
END-EXEC.

*Copy data from BFILE to temporary LOB:

4-94 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy All or Part of One (Temporary) LOB to Another

EXEC SQL
LOB COPY :AMT FROM :TEMP-SRC AT :SRC-POS
TO :TEMP-DEST AT :DEST-POS

END-EXEC.

EXEC SQL LOB CLOSE :TEMP-SRC END-EXEC.
EXEC SQL LOB CLOSE :TEMP-DEST END-EXEC.
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL

LOB FREE TEMPORARY :TEMP-SRC
END-EXEC.
EXEC SQL

LOB FREE TEMPORARY :TEMP-DEST
END-EXEC.
EXEC SQL FREE :TEMP-SRC END-EXEC.
EXEC SQL FREE :TEMP-DEST END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ",
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Copy All or Part of One (Temporary) LOB to Another Using C++ (Pro*C/C++)
#include <oci.h>

#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 4-95

Copy All or Part of One (Temporary) LOB to Another

exit(1);
}

void copyTempLOB_proc()

{
OCIBlobLocator *Temp_locl, *Temp_loc2;
OCIBFileLocator *Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Allocate and Create the Temporary LOBs: %/
EXEC SQL ALLOCATE :Temp_locl;
EXEC SQL ALLOCATE :Temp_loc2;
EXEC SQL LOB CREATE TEMPORARY :Temp_locl;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
/* Allocate and Initalize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_locl READ WRITE;
EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;
/*Load a specified amount from the BFILE into one of the
Temporary LOBs: %/
Amount =4096;
EXEC SQL LOB LOAD :Amount FROM FILE :Lob loc INTO :Temp_locl;
/*Copy a specified amount from one Temporary LOB to another: %/
EXEC SQL LOB COPY :Amount FROM :Temp_loc1 TO :Temp_loc2;
/*Closing the LOBSs is Mandatory if they have been Opened: %
EXEC SQL LOB CLOSE :Temp_locl;
EXEC SQL LOB CLOSE :Temp_loc2;
EXEC SQL LOB CLOSE :Lob _loc;
/*Free the Temporary LOBs: %/
EXEC SQL LOB FREE TEMPORARY :Temp_locl;
EXEC SQL LOB FREE TEMPORARY :Temp_loc2;
/* Release resources held by the Locators:
EXEC SQL FREE :Temp_loc1;
EXEC SQL FREE :Temp_loc2;
EXEC SQL FREE :Lob loc;

}

void main()
{

char *samp ="samp/samp”;

4-96 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy All or Part of One (Temporary) LOB to Another

EXEC SQL CONNECT :samp;

copyTempLOB_proc();

EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-97

Copy a LOB Locator for a Temporary LOB

Copy a LOB Locator for a Temporary LOB

Figure 4-15 Use Case Diagram: Copy a LOB Locator for a Temporary LOB...208

Internal temporary LOBs

create

a temporary
LOB

X

User/
Program

free

a temporary
LOB

copy
LOB locator

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario
This generic operation copies one temporary LOB locator to another.

« "Example: Copy a LOB Locator (Temporary LOBs) Using PL/SQL" on page 4-99

« "Example: Copy a LOB Locator for a Temporary LOB Using C (OCI)" on
page 4-100

4-98 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy a LOB Locator for a Temporary LOB

« "Example: Copy a LOB Locator for a Temporary LOB Using COBOL
(Pro*COBOL)" on page 4-102

« "Example: Copy a LOB Locator for a Temporary LOB Using C++ (Pro*C/C++)"
on page 4-104

Example: Copy a LOB Locator (Temporary LOBs) Using PL/SQL

Note: Assigning one LOB to another using PL/SQL entails using
the "="sign. This is an advanced topic that is discussed in more
detail above with regard to "Read-Consistent Locators" on page 2-2.

/* Note that the example procedure copyTempLOBLocator_proc is not part of the
DBMS_LOB package. ¥/

CREATE OR REPLACE PROCEDURE copyTempLOBLocator_proc(
Lob_loc1 INOUT CLOB, Lob_loc2 IN OUT CLOB) IS

bufp VARCHAR2(4);
Amount NUMBER :=32767;
Src_loc BFILE := BFILENAME(CAUDIO_DIR', Washington_audio’);

BEGIN
DBMS_LOB.CREATETEMPORARY(Lob_loc1, TRUE,DBMS_LOB.SESSION);
DBMS_LOB.CREATETEMPORARY(Lob_loc2, TRUE,DBMS_LOB.SESSION);
/* Populate the first temporary LOB with some data. %/
/*Opening file is mandatory: ¥/
DBMS_LOB.OPEN(Src_loc,DBMS_LOB.LOB_READONLY);
/*Opening LOB is optional: %/
DBMS_LOB.OPEN(Lob_loc1,DBMS _LOB.LOB_READWRITE);
DBMS_LOB.OPEN(Lob_loc2,DBMS_LOB.LOB_READWRITE);
DBMS_LOB.LOADFROMFILE(Lob_loc1,Src_loc,Amount);

/*Assign Lob_loc1 to Lob_loc2 thereby creating a copy of the value of
the temporary LOB referenced by Lob _loc1 at this point in time: %/
Lob_loc2:=Lob locl,;

/*When you write some data to the LOB through Lob _loc1, Lob loc2
will not see the newly wiitten data whereas Lob_loc1 will see
the new data: %/
/*Closing LOBs is mandatory ifthey were opened: %/
DBMS_LOB.CLOSE (Src_loc);
DBMS_LOB.CLOSE (Lob_locl);

Temporary LOBs 4-99

Copy a LOB Locator for a Temporary LOB

DBMS_LOB.CLOSE (Lob_loc2);
DBMS_LOB.FREETEMPORARY(Lob_locl);
DBMS_LOB.FREETEMPORARY(Lob_loc2);

END;

Example: Copy a LOB Locator for a Temporary LOB Using C (OCl)

/* This function creates two temporary lobs. It populates one and
then copies the locator of that one to the other temporary
LOB locator: ¥

sb4 copy_locators(OCIEmor *erhp,
OCISvcCix *svchp,
OCIEnv *envhp)
{
sb4 retum_code =0;
OCILobLocator *thlob;
OCILobLocator *thlob2;
OClLobLocator *Hfile;
ub4 amount = 4000;

checkerr(errhp, OClDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
(ub4) OCI_DTYPE_LOB,
(size_t) O, (dvoid **) 0));

checkenr(errhp, OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &thlob2,
(ub4) OCI_DTYPE_LOB,
(size_t) O, (dvoid *¥) O));

checkerr(errhp, OCIDescriptorAlloc((dvoid *)envhp, (dvoid) &bfile,
(ub4) OCI_DTYPE_FILE,
(size_t) O, (dvoid *¥) O));

if(OCILobFileSetName(envhp, erthp, &bfile, (text *"AUDIO_DIR",
(ub2)strien("AUDIO_DIR"),
(text *)"Washington_audio",
(ub2)strlen("Washington_audio")))
{
printf("OCILobFileSetName FAILED inload_temp\n®);
retum-1;

}

if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCl_FILE_READONLY))
{

4-100 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy a LOB Locator for a Temporary LOB

printf("OCILobFileOpen FAILED for the bfile load_temp \n');
retum-1;

}

if(OCILobCreate Temporary(svchp,errhp, thlob,(ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: Create Temporary() \n');
retum-1;

}

if(OCILobCreate Temporary(svchp,emrhp, thlob2,(ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))

{
(void) printf("FAILED: Create Temporary() \n');
retum -1;

}

if (OCILohOpen(svchp, erthp, (OCILobLocator *) thlob, OCI_LOB_READWRITE))

{
printf("OCILobOpen FAILED for temp LOB \n");
retum -1;

}
if (OCILobOpen(svchp, erthp, (OCILobLocator *) thloh2, OCl_LOB_READWRITE))

printf("OCILobOpen FAILED for temp LOB \n");
retum -1;

}

if(OCILobLoadFromFile(svchp, enhp, thlob, (OCILobLocator*)bfile,
(ubd)amount, (ub4)1,(ub4)1))
{
printf("OCILobLoadFromFile failed \n');
retum_code =-1;
}

if(OCILobLocatorAssign(svchp,emhp, (CONST OCILobLocator *)thlob,&thlob2))
{

printf("OCILobLocatorAssign failed \n'Y);
retum_code =-1;

Temporary LOBs 4-101

Copy a LOB Locator for a Temporary LOB

}

/*Close the lobs %/
if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
{

printf("OCILobClose FAILED for bfile \n");

retum -1;

}

checkenr(errhp,(OCILobClose(svchp, emhp, (OCILobLocator *) thloh)));
checkenr(errhp,(OCILobClose(svchp, erhp, (OCILobLocator *) thlob2)));

/* Free the temporary lobs now that we are done using it %/
if(OCILobFreeTemporary(svchp, errhp, thlob))
{

printf('OCILobFreeTemporary FAILED \n'Y);

retum-1;

}

if(OCILobFreeTemporary(svchp, errhp, thlob2))
{
printf('OCILobFreeTemporary FAILED \n'Y);
retum-1;
}
}

Example: Copy a LOB Locator for a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.

PROGRAM-ID. TEMP-BLOB-COPY-LOCATOR.
ENVIRONMENT DIVISION.

DATADIVISION.

WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERI/USER1".

01 TEMP-DEST SQL-BLOB.
01 TEMP-SRC SQL-BLOB.

01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.
01 FNAME PIC X(30) VARYING.
0L AMT PIC S9(9) COMP.

4-102 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy a LOB Locator for a Temporary LOB

01ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
TEMP-BLOB-COPY-LOCATOR.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Alocate and initialize the BLOB locators:

EXEC SQL ALLOCATE :-TEMP-DEST END-EXEC.
EXEC SQL ALLOCATE :TEMP-SRC END-EXEC.
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-DEST
END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-SRC
END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = DIR-ALIAS,
FILENAVE = :FNAME

END-EXEC.

*Open source BFILE and destination temporary BLOB:
EXEC SQL LOB OPEN :TEMP-SRC READ WRITE END-EXEC.
EXEC SQL LOB OPEN :TEMP-DEST READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

*MOVE the desired amounit to copy to AMT:
MOVE 5 TO AMT.
EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-SRC

Temporary LOBs 4-103

Copy a LOB Locator for a Temporary LOB

END-EXEC.

* Assign source BLOB locator to destination BLOB locator:
EXEC SQL
LOB ASSIGN :TEMP-SRC TO :TEMP-DEST
END-EXEC.

EXEC SQL LOB CLOSE :TEMP-SRC END-EXEC.
EXEC SQL LOB CLOSE :TEMP-DEST END-EXEC.
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL

LOB FREE TEMPORARY :TEMP-SRC
END-EXEC.
EXEC SQL

LOB FREE TEMPORARY -TEMP-DEST
END-EXEC.
EXEC SQL FREE :TEMP-SRC END-EXEC.
EXEC SQL FREE :TEMP-DEST END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Copy a LOB Locator for a Temporary LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

4-104 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy a LOB Locator for a Temporary LOB

printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void copyTempLobLocator_proc()

{
OCIBlobLocator *Temp_locl, *Temp_loc2;
OCIBFieLocator *Lob loc;
char *Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount = 4096;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();

/*Allocate and Create the Temporary LOBs: %/

EXEC SQL ALLOCATE :Temp_locl;

EXEC SQL ALLOCATE :Temp_loc2;

EXEC SQL LOB CREATE TEMPORARY :Temp_locl;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;

/*Allocate and Initialize the BFILE Locator: %

EXEC SQL ALLOCATE :Lob loc;

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;

/*Opening the LOBs is Optional: %/

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

EXEC SQL LOB OPEN :Temp_locl READ WRITE;

EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

/*Load a specified amount from the BFILE into the Temporary LOB: %/

EXEC SQL LOB LOAD :Amount FROM FILE :Lob loc INTO :Temp_locl;

/*Assign Temp_loc1 to Temp_loc2 thereby creating a copy of the value of
the Temporary LOB referenced by Temp_locl at this point in time: %/

EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;

/*Closing the LOBSs is Mandatory if they have been Opened: %/

EXEC SQL LOB CLOSE :Lab _loc;

EXEC SQL LOB CLOSE :Temp_locl;

EXEC SQL LOB CLOSE :Temp_loc2;

/* Free the Temporary LOBs: %/

EXEC SQL LOB FREE TEMPORARY :Temp _locl;

EXEC SQL LOB FREE TEMPORARY :Temp_loc2;

/* Release resources held by the Locators: %

EXEC SQL FREE :Lob loc;

EXEC SQL FREE :Temp_loc1;

EXEC SQL FREE :Temp_loc2;

}

void main()

{

Temporary LOBs 4-105

Copy a LOB Locator for a Temporary LOB

char *samp ="samp/samp";

EXEC SQL CONNECT :samp;
copyTempLobLocator_proc();

EXEC SQL ROLLBACK WORK RELEASE;

4-106 Oracle8i Application Developer's Guide - Large Objects (LOBS)

See If One LOB Locator for a Temporary LOB Is Equal to Another

See If One LOB Locator for a Temporary LOB Is Equal to Another

Figure 4-16 Use Case Diagram: See If One (Temporary) LOB Locator Is Equal to
Another

Internal temporary LOBs

see if locators
are equal

create
a temporary
LOB

User/
Program

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

"Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario
If two locators are equal, this means that they refer to the same version of the LOB

data (see "Read-Consistent Locators" on page 2-2)

"Example: See If One LOB Locator for a Temporary LOB Is Equal to Another
Using C (OCI)" on page 4-108

"Example: See If One LOB Locator for a Temporary LOB Is Equal to Another
Using C++ (Pro*C/C++)" on page 4-109

Temporary LOBs 4-107

See If One LOB Locator for a Temporary LOB Is Equal to Another

Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C
(OCI)

sb4 ck_isequal (OClLobLocator *lob_loc,
OCIEmor *enhp,
OCISveCix *svchp,
OCISmt *stmthp,
OCIEnv *envhp)

OClLobLocator *oc1;f
OClLobLocator *oc2;
booleanis_equal;
is_equal= FALSE;
if(OCILobCreate Temporary(svchp, emrhp, locl, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf('FAILED: CreateTemporary() \n"Y);
retum -1,
}
if(OCILobCreate Temporary(svchp, errhp, loc2, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n'Y);
retum -1;

}

if (OCILoblsEqual(envhp,locl,loc2, &is_equal))
{
printf ("FAILED: OCILobLocatorlsEqual cal\n');
retum -1;
}
ifis_equal)

fprintf (stderr,"LOB loators are equal \n'Y);
retum-1;

Jelse
{
fprintf(stderr,"LOB locators are not equal \n'Y);

}
if(OCILobFreeTemporary(svchp,errhp,loc))

{
printf("FAILED: OCILobFreeTemporary for temp LOB #1\n");

4-108 Oracle8i Application Developer's Guide - Large Objects (LOBS)

See If One LOB Locator for a Temporary LOB Is Equal to Another

retum-1;

}

if(OCILobFreeTemporary(svchp,errhp,loc2))

{
printf("FAILED: OCILobFreeTemporary for temp LOB #2\n");
retum-1;

}

retum O,

}

Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using
C++ (Pro*C/C++)

#include <sgl2oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf{'sglcode = %ld\n", sqlca.sgicode);
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void seeTempLobLocatorsAreEqual_proc()

{
OCIBlobLocator *Temp_locl, *Temp_loc2;
OCIBFileLocator*Lob _loc;
char*Dir="AUDIO_DIR", *Name = "Washington_audio";
int Amount = 4096;
OCIEnv *oeh;
intisEqual =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/*Allocate and Create the Temporary LOBs: %/

EXEC SQL ALLOCATE :Temp_locl;

EXEC SQL ALLOCATE :Temp_loc2;

EXEC SQL LOB CREATE TEMPORARY :Temp_locl,;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;

/* Allocate and Initialize the BFILE Locator: %

Temporary LOBs 4-109

See If One LOB Locator for a Temporary LOB Is Equal to Another

EXEC SQL ALLOCATE :Lab_loc;

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;

/*Opening the LOBs is Optional: %/

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

EXEC SQL LOB OPEN :Temp_locl READ WRITE;

EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

/*Load a specified amount from the BFILE into one of the Temporary LOBs: %/

EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;

/* Retrieve the OCI Ervironment Handle: %/

(void) SQLEnVGet(SQL_SINGLE_RCTX, &oeh);

/*Now assign Temp_loc1 to Temp_loc2 using Embedded SQL: %

EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;

/*Determine ifthe Temporary LOBs are Equal: %/

(void) OCILoblIsEqual(ceh, Temp_locl, Temp_loc2, &isEqual);

/*This time, isEqual should be O (FALSE): %/

printf{("Locators %s equal\n”, isEqual ? "are" : "are not'’);

/*Assign Temp_loc1 to Temp_loc2 using C pointer assignment:

Temp_loc2 =Temp_loc;

/* Determine ifthe Temporary LOBs are Equal again: ¥/

(void) OCILoblIsEqual(oeh, Temp_locl, Temp_loc2, &isEqual);

/* The value of isEqual should be 1 (TRUE) in this case: %/

printf{("Locators %s equal\n”, isEqual ? "are" : "are not'’);

/*Closing the LOBSs is Mandatory if they have been Opened: %

EXEC SQL LOB CLOSE :Lob_loc;

/* Note that because Temp_loc1 and Temp_loc2 are now equal, closing
and freeing one will implicitely do the same to the other: %/

EXEC SQL LOB CLOSE :Temp_locl;

EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %/

EXEC SQL FREE :Lob loc;

EXEC SQL FREE :Temp_locl;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
seeTempLoblocatorsAreEqual_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

4-110 Oracle8i Application Developer's Guide - Large Objects (LOBS)

See If a LOB Locator for a Temporary LOB s Initialized

See If a LOB Locator for a Temporary LOB Is Initialized

Figure 4-17 Use Case Diagram: See If a LOB Locator for a Temporary LOB Is
Initialized

Internal temporary LOBs

see if locator

is initialized

X

User/
Program

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

initialized, then it prints out a message saying "LOBis initialized". Otherwise, it
reports "LOBIs not initialized".

« "Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C
(OCI)" on page 4-112

« "Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C++
(Pro*C/C++)" on page 4-112

Temporary LOBs 4-111

See If a LOB Locator for a Temporary LOB Is Initialized

Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C (OCI)
/* This function takes a LOB locator and checks ifitis initialized. If it is
initalized, then it prints out a message saying "LOB is initalized".
Otherwise, it says "LOB is not initialized"”. This function retums
Oifit completes successfully, and -1 if it doesnt. %/

sb4 ck_isinit (OCILobLocator *ob_loc,
OCIEmor *enhp,
OCISvcCitx *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)

{
boolean is_init;

is_init=FFALSE;
if (OCILobLocatorIsInitlenvhp,errhp, lob_loc, &is _init))
{
printf ("FAILED: OCILobLocatorlsInit cal\n®);
retum -1;
}
if(is_init)
{
printf ('LOB is initialized\n");
Jelse
{
printf('LOB is not initialized\n";
}

retum O
}

Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C++
(Pro*C/C++)

#include <sglRocih>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglermc);

4-112 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

See If a LOB Locator for a Temporary LOB s Initialized

EXEC SQL ROLLBACK WORK RELEASE;
exit(L);
}
void tempLobLocatorIsInit_proc()
{
OCIBlobLocator *Temp_loc;
OCIEnv *oeh;
OCIEror *err,
boolean isinitialized = O;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Get the OCI Environment Handle using a SQLLIB Routine: %
(void) SQLEnVGet(SQL_SINGLE_RCTX, &oeh);
/* Allocate the OCI Error Handle: %/
(void) OCIHandleAlloc((dvoid *)oeh, (dvoid *)&err,
(ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
F Use the OCl to determine if the locator is Initialized */
(void) OCILobLocatorlsInit(oeh, err, Temp_loc, &isinitialized);
if (islnitialized)
printf("Locator is initialized\n';
else
printf("Locator is not initialized\n");
/* Note that in this example, the locator is initialized. %
/* Deallocate the OCI Eiror Handle: %/
(void) OCIHandleFree(err, OCI_HTYPE_ERROR);
F Free the Temporary LOB */
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the locator: %
EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
tempLobLocatorlsInit_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Temporary LOBs 4-113

Get Character Set ID of a Temporary LOB

Get Character Set ID of a Temporary LOB

Figure 4-18 Use Case Diagram: Get Character Set ID for a Temporary LOB

Internal temporary LOBs

get character

set ID

create
a temporary
LOB

X

User/
Program

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

4-114 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Get Character Set ID of a Temporary LOB

Scenario
This function takes a LOBlocator and prints the character set id of the LOB

« "Example: Get Character Set ID of a Temporary LOB Using C (OCI)" on
page 4-115

Example: Get Character Set ID of a Temporary LOB Using C (OCl)

/* This function takes a LOB locator and prints the character set id of the LOB.
This function retums O if it completes successtully, and -1
ifitdoesnt %

sb4 get _charsetid (OCILobLocator *ob_loc,
OCIEmor *enhp,
OCISvcCix *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)
{
ub2 charsetid=199;
if(OCILobCreateTemporary(svchp, erhp, lob_loc, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n");
retum-1;

}

if (OCILobCharSetid(envhp, enhp, lob_loc, &charsetid))
{

printf ("FAILED: OClLobCharSetid cal\n');

retum-1;
}
fiprintf (stderr,"LOB charsetid is %d\n",charsetid);
if(OCILobFreeTemporary(svchp,errhp,lob_loc))

{
printf("FAILED: OCILobFreeTemporary \n');
retum-1;

}

retum O;

Temporary LOBs 4-115

Get Character Set Form of a Temporary LOB

Get Character Set Form of a Temporary LOB

Figure 4-19 Use Case Diagram: Get Character Set Form of a Temporary LOB

Internal temporary LOBs

get character

set form

create
--p-| atemporary
LOB

A

User/
Progran

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

4-116 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Get Character Set Form of a Temporary LOB

Scenario
This function takes a LOBlocator and prints the character set form for the LOB

« "Example: Get Character Set Form of a Temporary LOB Using C (OCI)" on
page 4-117

Example: Get Character Set Form of a Temporary LOB Using C (OCl)

/* This function takes a LOB locator and prints out the character set form for
the LOB. It retums O if it completes successtiully, and it retums -1 if it
doesnt ¥

sb4 get_charsetform (OCILobLocator *ob_loc,
OCIEmor *erhp,
OCISveCix *svehp,
oCIStmt *stmthp,
OCIEnv *envhp)
{
ubl charsetform =0;
if(OCILobCreate Temporary(svchp,erhp,lob_loc,(ub2)0,
SQLCS IMPLICIT, OCI TEMP_CLOB, OCI_ ATTR_NOCACHE,
OCl_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n"Y);
retum-1;

}

if (OCILobCharSetForm(envhp,enhp, lob_loc, &charsetform))

{
printf ("FAILED: OCILobCharSetForm cal\n”);
retum-1;

}
fiprintf (stderr,"LOB charsetform is %d\n”,charsetform);

if(OCILobFreeTemporary(svchp,errhp,lob_loc))

{
printf("FAILED: OCILobFreeTemporary \n');
retum-1;

}

retun ;

}

Temporary LOBs 4-117

Append One (Temporary) LOB to Another

Append One (Temporary) LOB to Another

Figure 4-20 Use Case Diagram: Append one (Temporary) LOB to another

Internal temporary LOBs

OPEN
alLOB

CLOSE
alLOB

create
a temporary
LOB

v

append one
LOB to
another

x

User/
Program

free
a temporary
LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

4-118 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Append One (Temporary) LOB to Another

Scenario

This example deals with the task of appending one segment of sound to another. We
assume that you use sound-specific editing tools to match the wave-forms.

« "Example: Append One (Temporary) LOB to Another Using PL/SQL (DBMS_
LOB Package)" on page 4-119

« "Example: Append One (Temporary) LOB to Another Using C (OCI)" on
page 4-120

« "Example: Append One (Temporary) LOB to Another Using COBOL
(Pro*COBOL)"

« "Example: Append One (Temporary) LOB to Another Using C++ (Pro*C/C++)"

Example: Append One (Temporary) LOB to Another Using PL/SQL (DBMS_LOB
Package)

/* Note that the example procedure appendTempLOB _proc is not part of the
DBMS _LOB package. */

CREATE OR REPLACE PROCEDURE appendTempLOB_proc IS
Dest_loc2 CLOB;

Dest loc CLOB;
Amount NUMBER;
Src_loc BFILE = BFILENAMECAUDIO_DIR’, Washington_audio);

BEGIN
DBMS_LOB.CREATETEMPORARY (Dest_loc, TRUE,DBMS_LOB.SESSION);
DBMS_LOB.CREATETEMPORARY (Dest _loc2, TRUE,DBMS_LOB.SESSION);
DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
DBMS_LOB.OPEN(Dest loc2,DBMS_LOBLOB _READWRITE);
DBMS_LOB.OPEN(Src_loc,DBMS_LOB.LOB_READWRITE);
Amount := 32767,
DBMS_LOB.LOADFROMFILE(Dest loc, Src_loc, Amount);
DBMS_LOB.LOADFROMFILE(Dest_loc2, Src_loc, Amount);
DBMS_LOB.APPEND(Dest _loc, Dest_loc2);
/*Close the temporary lobs and then free them: ¥/
DBMS_LOB.CLOSE(Dest _loc);
DBMS_LOB.CLOSE(Dest loc2);
DBMS_LOB.CLOSE(Src_loc);
DBMS_LOB.FREETEMPORARY (Dest _loc);
DBMS_LOB.FREETEMPORARY(Dest_loc2);

END;

Temporary LOBs 4-119

Append One (Temporary) LOB to Another

Example: Append One (Temporary) LOB to Another Using C (OClI)

/* This function takes two temporary LOB locators and appends the second LOB to
the first one. It retums O if it completes successtully, and
-1, otherwise.”/

sb4 append_temp_lobs (OCIEmor *enthp,
OCISveCtx *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)

OCILobLocator *thlob;
OCILobLocator *thlob2;
OClLobLocator *Hfile;
ub4 amt =4000;

sb4 retum_code =0;

printf('in append \n");
if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
(ub4) OCI_DTYPE_LOB,
(size_1) O, (dvoid *) 0))
{
printf("OCIDescriptor Alloc FAILED in print_length\n®);
retum-1;
}
if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob2,
(ub4) OCI_DTYPE_LOB,
(size_1) O, (dvoid *) 0))
{
printf("OCIDescriptor Alloc FAILED in print_length\n®);
retum -1,

}

if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
(ub4) OCI_DTYPE_FILE,
(size_1) O, (dvoid *) 0))
{
printf("OCIDescriptor Alloc FAILED in print_length\n®);
retum -1;

}

/* Set the BFILE to point to the Washington_audio file %
if(OCILobFileSetName(envhp, enhp, &bfile, (text *)"AUDIO_DIR",
(ub2)strlen(’AUDIO_DIR"),
(text *)"Washington_audio”,

4-120 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Append One (Temporary) LOB to Another

(ub2)strien("Washington_audio")))

printf("OCILobFileSetName FAILED\n");
retum-1;

}

if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCl_LOB_READONLY))
{

printf("OCILobFileOpen FAILED for the bfile\n”);

retum_code =-1;
}

if(OCILobCreateTemporary(svchp,emhp,tblob,(ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_CLOB, OCl_ ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n"Y);
retum_code =-1;
}

if(OCILobCreate Temporary(svchp,emhp,tblob2,(ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n");
retum_code =-1;
}

/*Openthe lobs: %/
if (OCILobOpen(svchp, erthp, (OCILobLocator *) thlob, OCl_LOB_READWRITE))
{
printf("OCILobOpen FAILED for temp LOB thlob \n");
retum_code = -1,
}

if (OCILobOpen(svchp, erthp, (OCILobLocator *) thlob2, OCI_LOB_READWRITE))

{
printf("OCILobOpen FAILED for temp LOB, thlob2 \n");

retum_code = -1;
}
/* Populate the source temporary LOB with some data:

If(OClLobLoadFromFile(svchp, enhp, thlob,(OCILobLocator*)bfile,
(ubd)amt, (ub4)1,(ub4)1))

Temporary LOBs 4-121

Append One (Temporary) LOB to Another

{
printf("OCILobLoadFromFile FAILED\n");

retum_code =-
}

/*Append the source LOB to the dest temp LOB: %/
if (OCILobAppend(svchp, errhp,thlob2,thlob))
{

printf ('FAILED: OCILobAppend in append_temp_lobs\n');
retum_code =-

Jelse

{
printf(*Append succeeded\n”);

}

if(OCILobFreeTemporary(svchp,errhp,thlob))
{
printf("FAILED: OCILobFreeTemporary \n');
retum_code =-1;
}
if(OCILobFreeTemporary(svchp,erhp,tblob2))
{
printf("FAILED: OCllobFreeTemporanin®);
retum_code =-1,
}
retum retum_code;

}

Example: Append One (Temporary) LOB to Another Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. APPEND-TEMP-BLOB.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

* Define the usemame and password:
01 USERID PIC X(11) VALUES "USERT/USERY".

* Define the temporary LOBs and the source BFILE:
01 TEMP-BLOB1 SQL-BLOB.

01 TEMP-BLOB2 SQL-BLOB.

01 SRCBFILE SQL-BFILE.

01 AMT PIC S9(9) COMP.

4-122 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Append One (Temporary) LOB to Another

01 DIR-ALIAS PIC X(30) VARYING.
01 FNAME PIC X(30) VARYING.

* Define the source position in BFILE:
01 SRCPOS PICS9(9) COMP.

* Define the line number in case of error:
01 ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
APPEND-TEMP-BLOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:

EXEC SQL ALLOCATE :TEMP-BLOB1 END-EXEC.
EXEC SQL ALLOCATE :TEMP-BLOB2 END-EXEC.
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-BLOB1
END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :-TEMP-BLOB2
END-EXEC.

*Set up the directory and fle information:
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.

MOVE "Washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = DIR-ALIAS,
FILENAME = :FNAME

END-EXEC.

*Open source BFILE and destination temporary BLOB:
EXEC SQL LOB OPEN :TEMP-BLOB2 READ WRITE END-EXEC.

Temporary LOBs 4-123

Append One (Temporary) LOB to Another

EXEC SQL LOB OPEN :TEMP-BLOB1 READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
DISPLAY "LOBs opened.”.

*Move the desired amount to copy to AMT:
MOVE 5 TO AMT.
MOVE 1 TO SRC-POS.
EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE
AT :SRC-POS INTO :TEMP-BLOB1
END-EXEC.

ADD 1 TO AMT GIVING SRC-POS.
EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE
AT :SRC-POS INTO :TEMP-BLOB2
END-EXEC.
DISPLAY "Temporary LOBs loaded".

EXEC SQL
LOB APPEND :TEMP-BLOB2 TO :TEMP-BLOB1

END-EXEC.

DISPLAY "LOB APPEND complete.”.

EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB1
END-EXEC.
EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB2
END-EXEC.
EXEC SQL FREE :TEMP-BLOB1 END-EXEC.
EXEC SQL FREE :TEMP-BLOB2 END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL

4-124 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Append One (Temporary) LOB to Another

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Append One (Temporary) LOB to Another Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
ext(1);

}

void appendTempLOB_proc()

{
OCIBlobLocator *Temp_locl, *Temp_loc2;

OCIBFieLocator *Lob loc;

char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount = 2048;

int Position=1;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

/* Allocate and Create the Temporary LOBs: %/

EXEC SQL ALLOCATE :Temp_locl;

EXEC SQL ALLOCATE :Temp_loc2;

EXEC SQL LOB CREATE TEMPORARY :Temp_locl;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;

/*Allocate and Initialize the BFILE Locator: ¥

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/*Opening the LOBs is Optional: */

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

EXEC SQL LOB OPEN :Temp_locl READ WRITE;

EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

/*Load a specified amount from the BFILE into the first Temporary LOB: %/
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_locl;
/* Setthe Position for the next load from the same BFILE: %/

Position = Amount + 1;

/*Load a second amount from the BFILE into the second Temporary LOB: %/

Temporary LOBs 4-125

Append One (Temporary) LOB to Another

EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc2;
/* Append the second Temporary LOB to the end of the first one: %/
EXEC SQL LOB APPEND :Temp_loc2 TO :Temp_loc];
/*Closing the LOBSs is Mandatory if they have been Opened: %
EXEC SQL LOB CLOSE :Lob_loc;
EXEC SQL LOB CLOSE :Temp_locl;
EXEC SQL LOB CLOSE :Temp_loc2;
/* Free the Temporary LOBs: %/
EXEC SQL LOB FREE TEMPORARY :Temp_locl;
EXEC SQL LOB FREE TEMPORARY :Temp_loc2;
/* Release resources held by the Locators: %/
EXEC SQL FREE :Lob _loc;
EXEC SQL FREE :Temp_loc1;
EXEC SQL FREE :Temp_loc2;
}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

appendTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

4-126 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Write Append to a Temporary LOB

Write Append to a Temporary LOB

Figure 4-21 Use Case Diagram: Write Append to a Temporary LOB

Internal temporary LOBs

OPEN
alLOB

create

a temporary
LOB

x

User/
Program

free
a temporary
LOB

Temporary LOBs 4-127

Write Append to a Temporary LOB

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

This example procedure will read in 32767 bytes of data from the Washington_
audio file starting at offset 128 and append it to a temporary LOB.

« "Example: Write Append to a Temporary LOB Using PL/SQL" on page 4-128
« "Example: Write Append to a Temporary LOB Using C (OCI)" on page 4-129

« "Example: Write Append to a Temporary LOB Using COBOL (Pro*COBOL)" on
page 4-130

« "Example: Write Append to a Temporary LOB Using C++ (Pro*C/C++)" on
page 4-132

Example: Write Append to a Temporary LOB Using PL/SQL

/* Note that the example procedure wiiteAppendTempLOB_proc is not part of the
DBMS_LOB package. This example procedure will read in 32767 bytes of data
from the Washington_audio file starting at offset 128 and append it to a
temporary LOB. %/

CREATE OR REPLACE PROCEDURE writeAppendTempLOB_proc IS
Lob loc BLOB;
Buffer RAW(32767);
Src_loc BFILE := BFILENAME(AUDIO_DIR’,'Washington_audio));
Amount Binary_integer := 32767,
Position Binary_integer .= 128;

BEGIN
DBMS_LOB.CREATETEMPORARY(Lob_loc, TRUE,DBMS_LOB.SESSION);
/*Opening the temporary LOB is optional: %/
DBMS_LOB.OPEN(Lob loc,DBMS_LOB.LOB READWRITE);
/*Opening the FILE is mandatory: %/
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB READONLY);
/* Fill the buffer with data: %/
DBMS_LOB.LOADFROMFILE (Lob_loc,Src_loc, Amount);

/*Append the data from the buffer to the end of the LOB: %/

DBMS_LOBWRITEAPPEND(Lob _loc, Amount, Buffer);
DBMS_LOB.CLOSE(Src_loc);

4-128 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Write Append to a Temporary LOB

DBMS_LOB.CLOSE(Lob_loc);
DBMS_LOB.FREETEMPORARY/(Lob_loc);
END;

Example: Write Append to a Temporary LOB Using C (OCI)

sb4write_append_temp_lobs (OCIEror *errhp,
OCISvcCix *svchp,
OCISmt *stmthp,
OCIEnv *envhp)

OCIClobLocator *tclob;
unsigned int Total = 40000;
unsigned intamtp;
unsigned int nbytes;

ubl bufp[MAXBUFLEN];

/*Allocate the locators desriptors: %
(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tclob
(Ub4)OCI_DTYPE_LOB, (size 1) 0, (dvoid **) 0);

if(OCILobCreateTemporary(svchp, emhp, tclob, (ub2)0, SQLCS_IMPLICIT,
OC|_TEMP_CLOB, OCl_ATTR_NOCACHE, OC|_DURATION_SESSION))

{
(void) printf("FAILED: CreateTemporary() \n"Y);
retum-1;

}

/*Openthe CLOBY
printf(‘‘calling open \n");
checkerr (errhp, (OCILobOpen(svchp, erhp, tclob, OCl_LOB_READWRITE)));

nbytes = MAXBUFLEN,; /*We will use Streaming via Standard Polling %/

/* Fill the Buffer with nbytes worth of Data ¥/
memset(bufp,a,32767);

amip = sizeof(bufp);
/* Setting Amounit to O streams the data until use specifies OCl_LAST PIECE %/

printf{‘calling write append \n';

checkerr (errhp, OCILobWriteAppend (svchp, erhp, tclob, &amtp,
bufp, nbytes, OCI_ONE._PIECE, (dvoid *)0,
(sb4 (*)(dvoid*,dvoid*,ub4*,ubl *)0,

Temporary LOBs 4-129

Write Append to a Temporary LOB

0,SQLCS_IMPLICIT));

printf(‘calling close \n");
/*Closing the LOB is mandatory if you have opened it %/
checkerr (errhp, OCILobClose(svchp, erhp, tclob));

/* Free the temporary LOB: %/
printf(‘calling free\n”);
checken(errhp,OCILobFreeTemporary(svchp,erhp,tclob));

/* Free resources held by the locators: %/
(void) OClIDescriptorFree((dvoid *) tclob, (ub4) OCI_DTYPE_LOB);

Example: Write Append to a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-D. WRITE-APPEND-TEMP.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERLUSERY".
01 TEMP-BLOB SQL-BLOB.
01 SRCBFILE SQL-BFILE.
01 BUFFER PICX(2048).
01 DIR-ALIAS PIC X(30) VARYING.
01 FNAME PIC X(20) VARYING.
01 DIRIND PIC S9(4) COMP.
01 FNAMEIND PIC S9(4) COMP.
0L AMT PIC S9(9) COMP VALUE 10.
EXEC SQL VAR BUFFER IS RAW(2048) END-EXEC.
01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
WRITE-APPEND-TEMP.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

EXEC SQL
CONNECT :USERID

4-130 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Write Append to a Temporary LOB

END-EXEC.

* Allocate and initialize the BFILE and BLOB locators:
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

*Set up the directory and fle information:
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.

MOVE "Washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
FILENAME = :FNAME

END-EXEC.

*Open source BFILE and destination temporary BLOB:
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
END-EXEC.

MOVE "262626" TO BUFFER.
MOVE 3TO AMT.
* Append the data in BUFFER to TEMP-BLOB:
EXEC SQL
LOB WRITE APPEND :AMT FROM :BUFFER INTO :TEMP-BLOB
END-EXEC.

*Close the LOBs:
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

* Free the temporary LOB:
EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB
END-EXEC.

* And free the LOB locators:

Temporary LOBs 4-131

Write Append to a Temporary LOB

EXEC SQL FREE :TEMP-BLOB END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Write Append to a Temporary LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 256

void writeAppendTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator*Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount;
struct{
unsigned short Length;

char Data[BufferLength];
}Buffer;

4-132 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Write Append to a Temporary LOB

EXEC SQL VAR Buffer IS VARRAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();

/*Allocate and Create the Temporary LOB: ¥/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/* Allocate and Initialize the BFILE Locator: %

EXEC SQL ALLOCATE :Lob loc;

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/*Opening the LOBs is Optional: %/

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

EXEC SQL LOB OPEN :Temp_loc READ WRITE;

/*Load a specified amount from the BFILE into the Temporary LOB: %/
Amount =2048;

EXEC SQL LOB LOAD :Amount FROM FILE :Lob loc INTO :Temp_loc;
strepy((char *)Buffer.Data, “afafafafafaf”);

Buffer.Length =6;

/*White the conttentts of the Buffer to the end of the Temporary LOB: %
Amount = Buffer.Length;

EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Temp_loc;
/*Closing the LOBSs is Mandatory if they have been Opened: %/

EXEC SQL LOB CLOSE :Lab_loc;

EXEC SQL LOB CLOSE :Temp_loc;

/* Free the Temporary LOB %Y

EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %

EXEC SQL FREE :Lob loc;

EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
writeAppendTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-133

Write Data to a Temporary LOB

Write Data to a Temporary LOB

Figure 4-22 Use Case Diagram: Write data to a Temporary LOB

OPEN
alLOB

A

CLOSE
alLOB

create

- a temporary
> LOB

free
a temporary
LOB

Internal temporary LOBs

enable
buffering

disable
buffering

write data

to the LOB

User/
Program

4-134 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Write Data to a Temporary LOB

Stream Write

Scenario

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

The most efficient way to write large amounts of LOB data is to use

OClLobWrite () with the streaming mechanism enabled via polling or a callback. If
you know how much data will be written to the LOBspecify that amount when
calling OCILobWrite (). This will allow for the contiguity of the LOBdata on disk.
Apart from being spatially efficient, contiguous structure of the LOBdata will make

for faster reads and writes in subsequent operations.

This example procedure allows the STORYdata (the storyboard for the clip) to be

updated by writing data to the LOB

« "Example: Write Data to a Temporary LOB Using the DBMS_LOB Package" on

page 4-135
« "Example: Write Data to a Temporary LOB Using C (OCI)" on page 4-136

« "Example: Write Data to a Temporary LOB Using COBOL (Pro*COBOL)" on

page 4-139

« "Example: Write Data to a Temporary LOB Using C++ (Pro*C/C++)" on
page 4-140

Example: Write Data to a Temporary LOB Using the DBMS_LOB Package

/* Note that the example procedure writeDataToTempLOB_proc s not part of the
DBMS_LOB package. ¥/
CREATE or REPLACE PROCEDURE writeDataToTempLOB_proc IS
Lob loc CLOB;
Buffer ~ VARCHAR2(26);
Amount BINARY_INTEGER = 26;
Posiion INTEGER =1;
i INTEGER,;
BEGIN
DBMS_LOB.CREATETEMPORARY(Lob_loc, TRUE,DBMS_LOB.SESSION);
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);

Temporary LOBs 4-135

Write Data to a Temporary LOB

/*Fill the buffer with data to write to the LOB: %/
Buffer := "abcdefghikimnoparstuvwxyz';

FORIiIN1.3LOOP
DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
* Fill the buffer with more data to write to the LOB: */
Position ;= Pasition + Amount;

END LOOP,

F Closing the LOB is mandatory if you have opened it: */

DBMS_LOB.CLOSE (Lob _loc);

DBMS_LOB.FREETEMPORARY(Lob_loc);

END;

Example: Write Data to a Temporary LOB Using C (OClI)

/* This example illustrates streaming writes with polling %/
sb4 write_temp_lobs (OCIEmor *errhp,

OCISveCix *svchp,

OCIsmt *stmthp,

OCIEnv *envhp)

OCIClobLocator *clob;
unsigned int Total = 40000
unsigned intamtp;

unsigned int offset;

unsigned int remainder, nbytes;
boolean last;

ubl bufpMAXBUFLEN];

sh4 em;

/*Allocate the locators desriptors: %
(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &tclob ,
(Ub4)OCI_DTYPE_LOB, (size t) 0, (dvoid **) 0);

if(OCILobCreateTemporary(svchp,
enhp,
tclob,
(ub2)0,
SQLCS IMPLICIT,
OCI_TEMP_CLOB,
OC|_ATTR_NOCACHE,
OCI_DURATION_SESSION))

{
(void) printf('FAILED: CreateTemporary() \n"Y);

4-136 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Write Data to a Temporary LOB

retum -1;

}

/*Openthe CLOB: ¥
checkerr (errhp, (OCILobOpen(svchp, erhp, tclob, OClLOB_READWRITE)));

if (Total > MAXBUFLEN)

nbytes = MAXBUFLEN,; /*We will use Streaming via Standard Polling %
else

nbytes =Total; /*Only a single WRITE is required %/

/* Fill the Buffer with nbytes worth of Data: %/
memset(bufp,a,32767);

remainder = Total - nbytes;

amtp=0;

offset=1;

/* Setting Amourit to 0 streams the data until use specifies OCl_LAST _PIECE: %/

if (O == remainder)

{
amtp = nbytes;
/*Here, (Total <= MAXBUFLEN) so we can WRITE in ONE piece: %/
checkerr (errhp, OCILobWhite (svchp, errhp, tclob, &amtp,

offset, bufp, nbytes,
OCI_ONE_PIECE, (dvoid *)0,
(sb4 (*)(dvoid* dvoid*,ub4*,ubl %))0,
0, SQLCS_IMPLICIT));

}

else

{

/*Here (Total > MAXBUFLEN) so we use Streaming via Standard Poling: %/
FHWRITE the FIRST piece. Specifying FIRST initiates Poling: %
e = OClLobWite (svchp, errhp, tclob, &amtp,

offset, bufp, nbytes,

OCI_FIRST_PIECE, (dvoid *)0,

(sb4 (*)(dvoid* dvoid*,ub4*,ub1)0,

0, SQLCS_IMPLICIT);

if e '=OCl_ NEED_DATA)
checker (emhp, er);

last = FALSE;

AWRITE the NEXT (interim) and LAST pieces: %/
do

Temporary LOBs 4-137

Write Data to a Temporary LOB

{
if (remainder > MAXBUFLEN)
nbytes = MAXBUFLEN,; /* Still have more pieces to go %/
else
{
nbytes = remainder; /*Here, (remainder <= MAXBUFLEN) %
last=TRUE; /*This is going to be the Final piece ¥/
}

/*Fill the Buffer with nbytes worth of Data %/

}f (last)

* Specifying LAST terminates Polling */

err = OCILobWite (svchp, ethp, tclob, &amtp,
offset, bufp, nbytes,
OCI_LAST_PIECE, (dvoid ®0,
(sb4 (*)(dvoid*,dvoid*,ub4*,ubl %)0,
0, SQLCS_IMPLICIT);

if e '=0)
checkerr (errhp, en);

}else

{
err = OCILobWrite (svchp, errhp, tclob, &amtp,
offset, bufp, nbytes,
OCI_NEXT_PIECE, (dvoid)0,
(sb4 (*)(dvoid*,dvoid*,ub4*,ubl %))0,
0,SQLCS_IMPLICIT);

if e '=OCl_ NEED DATA)
checkerr (errhp, en);

}
/* Determine how much is left to WRITE: %/

remainder = remainder - nbytes,
}while (llast);
}
/*Atthis poirtt, (remainder = 0) ¥/

/*Closing the LOB is mandatory if you have opened it: %/
checkerr (errhp, OCILobClose(svchp, enhp, tclob));

4-138 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Write Data to a Temporary LOB

/* Free the temporary LOB: %/
checkerr(errhp,OCILobFreeTemporary(svchp,ermhp,tclob));

/* Free resources held by the locators: %/
(void) OClIDescriptorFree((dvoid *) tclob, (ub4) OCI_DTYPE_LOB);

Example: Write Data to a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. WRITE-TEMP.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERLUSERY".
01 TEMP-CLOB SQL-CLOB.

01 BUFFER PIC X(20) VARYING.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 DIRIND PIC S9(4) COMP.

01 FNAME-IND PIC S9(4) COMP.

0L AMT PIC S9(9) COMP VALUE 10.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
WRITE-TEMP.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE and BLOB locators:
EXEC SQL ALLOCATE TEMP-CLOB END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-CLOB
END-EXEC.

EXEC SQL LOB OPEN :TEMP-CLOB READ WRITE END-EXEC.

Temporary LOBs 4-139

Write Data to a Temporary LOB

MOVE "ABCDE12345ABCDE12345" TO BUFFER-ARR.
MOVE 20 TO BUFFER-LEN.
MOVE 20 TO AMT.
* Append the diata in BUFFER to TEMP-CLOB:
EXEC SQL
LOB WRITE :AMT FROM :BUFFER INTO :TEMP-CLOB
END-EXEC.

*Close the LOBs:
EXEC SQL LOB CLOSE :TEMP-CLOB END-EXEC.

* Free the temporary LOB:
EXEC SQL
LOB FREE TEMPORARY :TEMP-CLOB
END-EXEC.

* And free the LOB locators:
EXEC SQL FREE .TEMP-CLOB END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Write Data to a Temporary LOB Using C++ (Pro*C/C++)

#include <ocih>

#include <stdio.h>
#include <string.h>
#include <sglca.h>

void Sample_Error()
{

4-140 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Write Data to a Temporary LOB

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglerm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void writeDataToTempLOB_proc(multiple) int muttiple;
{

OClIClobLocator *Temp_loc;

varchar Buffer[BufferLength;

unsigned int Total;

unsigned int Amount;

unsigned int remainder, nbytes;

boolean last;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Allocate and Initialize the Temporary LOB: %

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Openthe Temporary LOB: %

EXEC SQL LOB OPEN :Temp_loc READ WRITE;

Total = Amount = (multiple * BufferLength);

if (Total > BufferLength)

nbytes = BufferLength; /*We will use Streaming via Standard Polling %
else

nbytes =Total; /*Only a single WRITE is required

/* Fill the Buffer with nbytes worth of Data: %/
memset((void *)Buffer.arr, 32, nbytes);
Bufferlen=nbytes; /* Setthe Length*/
remainder = Total - nbytes;
if (0 ==remainder)
{
/*Here, (Total <= Buffer_ength) so we can WRITE in ONE piece: ¥/
EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Temp_loc;
printf(Write ONE Total of %d characters\n”, Amount);
}

else
{
/*Here (Total > BufferLength) so use Streaming via Standard Polling %
AWRITE the FIRST piece. Specifying FIRST initiates Poling: %
EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Temp_loc;
printf(Write FIRST %d characters\n”, Buffer.len);
last=FALSE;

Temporary LOBs 4-141

Write Data to a Temporary LOB

AWRITE the NEXT (interim) and LAST pieces: %/

do
if (remainder > BufferL_ength)
nbytes = BufferLength; /* Still have more pieces to go %/
else
{
nbytes = remainder; /*Here, (remainder <= BufferLength) ¥/
last=TRUE; /This is going to be the Final piece */

}
/* Fill the Buffer with nbytes worth of Data: %/

memset((void *)Buffer.arr, 32, nbytes);
Buffer.len = nbytes; /*Setthe Length %
if{(last)
EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Specifying LAST terminates Polling: %
EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Temp_loc;
printf("Write LAST Total of %d characters\n”, Amount);
}

else
{
EXEC SQL WHENEVER SQLERROR DO break;
EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Temp_loc;
printf(Write NEXT %d characters\n”, Buffer.len);
}
/*Determine how much is left to WRITE: %
remainder = remainder - nbytes;
}while (llast);
}
EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Atthis point, (Amount = Total), the total amount that was written. %/
/*Close the Temporary LOB: %
EXEC SQL LOB CLOSE :Temp _loc;
/* Free the Temporary LOB: %
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Free resources held by the Locator: %/
EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
writeDataToTempLOB_proc(1); /*Wiite One Piece ¥/

4-142 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Write Data to a Temporary LOB

writeDataToTempLOB_proc(4); /*Wiite Multiple Pieces using Polling %/
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-143

Trim the Temporary LOB Data

Trim the Temporary LOB Data

Figure 4-23 Use Case Diagram: Trim the Temporary LOB data

Internal temporary LOBs

OPEN
alLOB

create

a temporary
LOB

X

User/
Program

free

a temporary
LOB

trim the

LOB data

4-144 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Trim the Temporary LOB Data

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

Our example accesses text (CLOBdata) that is referenced in the Script column of
the table Voiceover_tab , and trims it.

« "Example: Trim the Temporary LOB Data Using PL/SQL (DBMS_LOB
Package)" on page 4-145

« "Example: Trim the Temporary LOB Data Using C (OCI)" on page 4-146

« "Example: Trim the Temporary LOB Data Using COBOL (Pro*COBOL)" on
page 4-148

« "Example: Trim the Temporary LOB Data Using C++ (Pro*C/C++)" on
page 4-150

Example: Trim the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure timTempLOB_proc is not part of the
DBMS_LOB package. ¥

CREATE OR REPLACE PROCEDURE timTempLOB_proc IS
Lob loc CLOB;
Amount number;
Src_loc BFILE :=BFILENAME(AUDIO_DIR’, Washington_audio);
TrimAmount number :=100;

BEGIN
/*Create atemporary LOB: %/
DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
/*Opening the file is mandatory: %
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB _READONLY);
/* Populate the temporary LOB with some data; %/
Amount :=32767;
DBMS_LOB.LOADFROMFILE(Lob_loc, Src_loc, Amount);
DBMS_LOB.TRIM(Lob_loc, TimAmount);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob_loc);
DBMS_LOB.CLOSE(Src _loc);

Temporary LOBs 4-145

Trim the Temporary LOB Data

DBMS_LOB.FREETEMPORARY/(Lob_loc);
COMMIT;
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT _LINE(Operation failed);
END;

Example: Trim the Temporary LOB Data Using C (OCI)

sb4 tim_temp _lobs (OCIEmor *errhp,
OCISveCix *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)

OClLobLocator *thlob;
OClLobLocator *ofile;
ub4 amt =4000;

ub4 tim_size =2,

sb4 retum_code =0;

printf('in trim\n®);
if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
(ub4) OCI_DTYPE_LOB,
(size_1) O, (dvoid *) 0))
{
printf("OCIDescriptor Alloc FAILED in tim\n'");
retum -1;

}

if{OCIDescriptorAlloc((dvoid *)envhp, (dvoid *) &bfile,
(ub4) OCI DTYPE_FILE,
(size_1) 0, (dvoid **) 0))
{
printf("OCIDescriptor Alloc FAILED in tim\n");
retum-1;

}

/* Setthe BFILE to poirtt to the Washington_avdo file: %/
if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"AUDIO_DIR",
(ub2)strien(’AUDIO_DIR"),
(text *)"Washington_audio”,
(ub2)strlen("Washington_audio")))
{
printf("OCILobFileSetName FAILED\n");

4-146 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Trim the Temporary LOB Data

retum -1;

}

if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCl_LOB_READONLY))
{

printf("OCILobFileOpen FAILED for the bfile\n’);

retum_code =-1;
}

if(OCILobCreateTemporary(svchp,emhp,thlob,(ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCl_ATTR_NOCACHE,
OC|_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n"Y);
retum-1;

}

if (OCILobOpen(svchp, erthp, (OCILobLocator *) thlob, OCl_LOB_READWRITE))
{

printf("OCILobOpen FAILED for temp LOB \n");

retum_code = -1;
}

* populate the temp LOB with 4000 bytes of data */
if(OCILobLoadFromFile(svchp, errhp, thlob, (OCILobLocator*)bfile,
(ubdjamt,(Ub4)1,(ub4)1)
{
printf("OCILobLoadFromFile FAILED\n'");
retum_code =-1;
}

if (OCILobTrim(svchp, errhp, (OCILobLocator *) thlob, trim_size))
{
printf("OCILobTrim FAILED for temp LOB \n");
retum_code=-1;
}else
{
printf("OCILobTrim succeeded for temp LOB \n'Y);

}

if (OCILobClose(svchp, erhp, (OCILobLocator *) bfile))
{
printf("OCILobClose FAILED for bfile \n");
retum_code = -1;
}

Temporary LOBs

4-147

Trim the Temporary LOB Data

if (OCILobClose(svchp, erhp, (OCILobLocator *) thlob))

printf("OCILobClose FAILED for temporary LOB \n'Y);
retum_code = -1;
}
/* Free the temporary LOB now that we are done using it: ¥/
if(OCILobFreeTemporary(svchp, errhp, thlob))
{
printf("OCILobFreeTemporary FAILED \n'Y);
retum_code =-1;
}
retum retum_code;

}

Example: Trim the Temporary LOB Data Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-D. TEMP-LOB-TRIM.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERL/USERY".
01 TEMP-BLOB SQL-BLOB.

01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 DIRIND PIC S9(4) COMP.

01 FNAMEIND PIC S9(4) COMP.

0L AMT PIC S9(9) COMP VALUE 10.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
TEMP-LOB-TRIM.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

EXEC SQL
CONNECT :USERID
END-EXEC.

4-148 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Trim the Temporary LOB Data

* Allocate and initialize the BFILE and BLOB locators:
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.

MOVE "Washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = DIR-ALIAS,
FILENAME = :FNAME

END-EXEC.

*Open source BFILE and destination temporary BLOB:
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
END-EXEC.

*Trim the kast half of the diata:
MOVE 5 TO AMT.
EXEC SQL
LOB TRIM :TEMP-BLOB TO :AMT
END-EXEC.

*Close the LOBs:
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

* Free the temporary LOB:
EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB
END-EXEC.

* And free the LOB locators:

EXEC SQL FREE :TEMP-BLOB END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.

Temporary LOBs 4-149

Trim the Temporary LOB Data

STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Trim the Temporary LOB Data Using C++ (Pro*C/C++)

void timTempLOB_proc()
#include <ocih>

#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void timTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator *Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount = 4096;
int timLength;

/*Allocate and Create the Temporary LOB: ¥/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp loc;
/* Allocate and Initalize the BFILE Locator: %/

EXEC SQL ALLOCATE :Lab_loc;

4-150 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Trim the Temporary LOB Data

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/*Opening the LOBs is Optional: %/

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

EXEC SQL LOB OPEN :Temp_loc READ WRITE;

/*Load the specified amount from the BFILE into the Temporary LOB: %/
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
/*Set the new length of the Temporary LOB: %/

timLength = (int) (Amount/ 2);

/* Trim the Temporary LOB to its new length: %/

EXEC SQL LOB TRIM :Temp_loc TO :trimLength;

/*Closing the LOBSs is Mandatory if they have been Opened: %

EXEC SQL LOB CLOSE :Lob_loc;

EXEC SQL LOB CLOSE :Temp _loc;

/* Free the Temporary LOB: ¥/

EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %/

EXEC SQL FREE :Lob loc;

EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
timTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-151

Erase Part of a Temporary LOB

Erase Part of a Temporary LOB

Figure 4-24 Use Case Diagram: Erase part of a Temporary LOB

Internal temporary LOBs

OPEN
alLOB

CLOSE
alLOB

create
-p(atemporary
LOB

free
a temporary
LOB

erase part
of a LOB

X

User/
Program

To refer to the table of all basic operations having to do with Inter-

nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

4-152 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Erase Part of a Temporary LOB

Scenario

« "Example: Erase Part of a Temporary LOB Using PL/SQL (DBMS_LOB
Package)" on page 4-153

« "Example: Erase Part of a Temporary LOB Using C (OCI)" on page 4-154

« "Example: Erase Part of a Temporary LOB Using COBOL (Pro*COBOL)" on
page 4-156

« "Example: Erase Part of a Temporary LOB Using C++ (Pro*C/C++)" on
page 4-158

Example: Erase Part of a Temporary LOB Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure eraseTempLOB_proc is not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE timTempLOB_proc IS
Lob loc CLOB;
amt number,
Src_loc BFILE := BFILENAMECAUDIO_DIR’, 'Washington_audio’);
Amount INTEGER :=32767;
BEGIN
/*Create atemporary LOB: %/
DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE,DBMS_LOB.SESSION);
/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
/* Populate the temporary LOB with some data: %/
Amount :=32767;
DBMS_LOB.LOADFROMFILE(Lob_loc, Src_loc, Amount);
/*Erase the LOB data: ¥/
amt := 3000;
DBMS_LOB.ERASE(Lob_loc, amt, 2);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE (Lob_loc);
DBMS_LOB.CLOSE(Src _loc);
DBMS_LOB.FREETEMPORARY(Lob_loc);
COMMIT;
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(Operation failed);
END;

Temporary LOBs 4-153

Erase Part of a Temporary LOB

Example: Erase Part of a Temporary LOB Using C (OCl)
/*Erase 2 bytes at offset 100 in a temporary LOB: %/

sb4 erase_temp_lobs (OCIEmor *errhp,
OCISveCix *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)

OClLobLocator *tblob;
OCILobLocator *bfile;
ub4 amt =4000;

ub4 erase_size=2;
ub4 erase_offset=100;
sb4 retum_code =0;

printf('in erase\n”);
iflOCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
(ub4) OCI_DTYPE_LOB,
(size_1) 0, (dvoid **) 0))
{
printf("OCIDescriptor Alloc FAILED \n");
retum-1;

}

if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid *¥) &bfile,
(ub4) OCI_DTYPE_FILE,
(size_t) O, (dvoid **) 0))
{
printf("OCIDescriptor Alloc FAILED \n");
retum -1,

}

/*Set the BFILE to pointt to the Washington_audio file: %
if(OCILobFileSetName(envhp, erthp, &bifile,
(text*)'AUDIO_DIR",
(ub2)strien(’AUDIO_DIR"),
(text *)"Washington_audio”,
(ub2)strlen("Washington_audio")))
{
printf("OCILobFileSetName FAILED\n");
retum -1,

}

4-154 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Erase Part of a Temporary LOB

if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCl_LOB_READONLY))

printf("OCILobFileOpen FAILED for the bfile\n”);
retum_code =-1;
}

if(OCILobCreate Temporary(svchp,emhp,tblob,(ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB, OCI_ATTR_NOCACHE, OCl_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n'");
retum-1;

}

if (OCILobOpen(svchp, erhp, (OCILobLocator *) thlob, OCI_LOB_READWRITE))

printf{("OCILobOpen FAILED for temp LOB \n");
retum_code = -1;
}

/* Populate the temp LOB with 4000 bytes of data: %/
if(OCILobLoadFromFile(svchp,
enhp,
thlob,
(OClLobLocator*)bfile,
(ubd)amt,
(Ub4)1,(ub4)1))
{
printf("OCILobLoadFromFile FAILED\n");
retum_code =-1;

}

if (OCILobErase(svchp, erhp, (OCILobLocator *) thlob, &erase_size,
erase_offset))
{
printf("OCILobErase FAILED for temp LOB \n');
retum_code =-1;
}else
{
printf("OCILobErase succeeded for temp LOB \n");

}
if (OCILobClose(svchp, erhp, (OCILobLocator *) bfile))

{
printf("OCILobClose FAILED for bfile \n");

Temporary LOBs 4-155

Erase Part of a Temporary LOB

retum_code = -1;
}

if (OCILobClose(svchp, erthp, (OCILobLocator *) thlob))
{
printf("OCILobClose FAILED for temporary LOB \n'Y);
retum_code = -1;
}
[+ free the temporary LOB now that we are done using it */
if(OCILobFreeTemporary(svchp, erhp, thiob))
{
printf('OCILobFreeTemporary FAILED \n'Y);
retum_code =-1;
}
retum retum_code;

}

Example: Erase Part of a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. TEMP-BLOB-ERASE.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USER1/USER1".

01 TEMP-BLOB SQL-BLOB.
01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.
01 FNAME PIC X(20) VARYING.

01 DIRIND PIC S9(4) COMP.

01 FNAME-IND PIC S9(4) COMP.

0L AMT PIC S9(9) COMP VALUE 10.
0L POS PICS99) COMP VALUE 1.
01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
TEMP-BLOB-ERASE.

4-156 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Erase Part of a Temporary LOB

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locator:
EXEC SQL ALLOCATE TEMP-BLOB END-EXEC.
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY = DIR-ALIAS,
FILENAVE = :FNAME

END-EXEC.

*Open source BFILE and destination termporary BLOB:
EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

EXEC SQL
LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
END-EXEC.

* Erase some of the LOB data:
EXEC SQL
LOB ERASE :AMT FROM :TEMP-BLOB AT :POS
END-EXEC.

*Close the LOBs
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

* Free the temporary LOB:
EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB
END-EXEC.

Temporary LOBs 4-157

Erase Part of a Temporary LOB

*And free the LOB locators:
EXEC SQL FREE :TEMP-BLOB END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",

DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, "".

DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Erase Part of a Temporary LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void eraseTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator *Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount;
int Position = 1024;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* Allocate and Create the Temporary LOB: %/

4-158 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Erase Part of a Temporary LOB

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/* Allocate and Initalize the BFILE Locator: %/

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;

/*Opening the LOBs is Optional: %/

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

EXEC SQL LOB OPEN :Temp_loc READ WRITE;

/*Load a specified amount from the BFILE into the Temporary LOB: ¥/
Amount =4096;

EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
/* Erase a specified amount from the Temporary LOB at a given position: */
Amount =2048;

EXEC SQL LOB ERASE :Amount FROM :Temp_loc AT :Position;
/*Closing the LOBs is Mandatory if they have been Opened: %/

EXEC SQL LOB CLOSE :Lab_loc;

EXEC SQL LOB CLOSE :Temp _loc;

/* Free the Temporary LOB: %/

EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %

EXEC SQL FREE :Lob loc;

EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
eraseTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Temporary LOBs 4-159

Enable LOB Buffering for a Temporary LOB

Enable LOB Buffering for a Temporary LOB

Figure 4-25 Use Case Diagram: Enable LOB Buffering for a Temporary LOB

Internal temporary LOBs %

User/
Program

enable
buffering

disable
buffering

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

You enable buffering in order to perform a small series of reads or writes. Once you
have completed these tasks, you must disable buffering before you can continue
with any other LOBoperations.

Please note that you would not enable buffering to perform the stream read and
write involved in checkin and checkout.

« "Example: Enable LOB Buffering for a Temporary LOB Using C (OCI)" on
page 4-161

4-160 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Enable LOB Buffering for a Temporary LOB

« "Example: Enable LOB Buffering for a Temporary LOB Using COBOL
(Pro*COBOL)" on page 4-163

« "Example: Enable LOB Buffering for a Temporary LOB Using C++
(Pro*C/C++)" on page 4-163

Example: Enable LOB Buffering for a Temporary LOB Using C (OClI)

sb4 lobBuffering (envhp, enhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCIStmt *stmthp;
{
OClLobLocator *thlob;
ub4 amt;
ub4 offset;
sword retval;

ubl bufp[MAXBUFLEN];
ub4 buflen;

/* Allocate the descriptor for the lob locator: %
(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid *¥) &tblob,
(Ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

/*Select the BLOB: %/
printf (" create a temporary Lob\n');
/*Create atemporary LOB: ¥/
if(OCILobCreateTemporary(svchp, erhp, thlob, (ub2)0, SQLCS_IMPLICIT,
OC|_TEMP_BLOB,
OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n');
retum-1;

}

/*Openthe BLOB: %/
if (OCILobOpen(svchp, erhp, (OCILobLocator *) thlob, OCl_LOB_READWRITE))

printf("OCILobOpen FAILED for temp LOB \n");

retum-1;

}

/*Enable LOB Buffering: %/

Temporary LOBs 4-161

Enable LOB Buffering for a Temporary LOB

printf (" enable LOB buffering\n®);
checkerr (errhp, OCILobEnableBuffering(svchp, erhp, tblob));

printf (" wite data to LOB\R');

/*Wiite data into the LOB: %/
amt =sizeof(bufp);
buflen = sizeof(bufp);
offset=1;
checkerr (errhp, OCILobWihite (svchp, enhp, thlob, &amt,
offset, bufp, buflen,
OCI_ONE_PIECE, (dvoid %)0,
(sb4 (*)(dvoid* dvoid*,ub4*,ubl %))0,
0, SQLCS_IMPLICIT));

/*Flush the buffer: %/

printf(" flush the LOB buffers\n’Y);

checkerr (errhp, OCILobFlushBuffer(svchp, errhp, thlob,
(ub4)OCI_LOB_BUFFER_FREE));

/* Disable Buftering: %/
printf (" disable LOB buffering\n);
checkerr (errhp, OCILobDisableBuffering(svchp, errhp, thiob));

/*Subsequent LOB WRITESs will not use the LOB Buffering Subsystem *

/*Closing the BLOB is mandatory if you have opened it %/
checkerr (errhp, OCILobClose(svchp, erthp, thlob));

/* Free the temporary LOB now that we are done using it: %/
if(OCILobFreeTemporary(svchp, errhp, thlob))

{
printf("OCILobFreeTemporary FAILED \n");

retum-1;

}

/* Free resources held by the locators: %/
(void) OClDescriptorFree((dvoid *) thlob, (ub4) OCI_DTYPE_LOB);

retum;

4-162 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Enable LOB Buffering for a Temporary LOB

Example: Enable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. TEMP-LOB-BUFFERING.
ENVIRONMENT DIVISION.
DATADIVISION.

WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USER1USERL".
01 TEMPBLOB SQL-BLOB.

01 BUFFER PIC X(80).

01 AMT PIC S9(9) COMP VALUE 10.

01 ORASLNRD PIC 9(4).

EXEC SQL VAR BUFFER IS RAW(80) END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
TEMP-LOB-BUFFERING.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the CLOB locators:
EXEC SQL ALLOCATE TEMP-BLOB END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY ‘TEMP-BLOB
END-EXEC.

* Enable buffering for the temporary LOB:
EXEC SQL
LOB ENABLE BUFFERING :TEMP-BLOB
END-EXEC.

*

*White some data to the temporary LOB here:
*
MOVE '252525262626252525 TO BUFFER.
EXEC SQL
LOB WRITE ONE :AMT FROM :BUFFER
INTO :TEMP-BLOB
END-EXEC

Temporary LOBs 4-163

Enable LOB Buffering for a Temporary LOB

*Flush the buffered writes:
EXEC SQL
LOB FLUSH BUFFER :TEMP-BLOB FREE
END-EXEC.

* Disable buffering for the temporary LOB:
EXEC SQL
LOB DISABLE BUFFERING :TEMP-BLOB
END-EXEC.

EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB
END-EXEC.

EXEC SQL FREE :TEMP-BLOB END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Enable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>

#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglemm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

4-164 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Enable LOB Buffering for a Temporary LOB

}

#define BufferLength 1024

void enableBufferingTempLOB_proc()
{

OCIClobLocator *Temp_loc;

varchar Buffer[BufferLength];

int Amount = BufferLength;

int multiple, Length =0, Position =1

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Temp _loc;
memset((void *)Buffer.arr, 42, BufferLength);
Bulffer.len = BufferLength;
for (multtiple = 0; multiple < 8; multiple++)
{
/*Wiite Data to the Temporary LOB: %
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Temp_loc AT :Position;
Position += BufferLength;
}
/*Flush the contents of the buffers and Free their resources: ¥/
EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;
/* Tum off use of the LOB Buffering Subsystem: %/
EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
printf(Wrote %d characters using the Buffering Subsystemi\n®, Length);
/*Free the Temporary LOB: %
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locator: %
EXEC SQL FREE :Temp_loc;
}
void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
enableBufferingTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 4-165

Flush Buffer for a Temporary LOB

Flush Buffer for a Temporary LOB

Figure 4-26 Use Case Diagram: Flush Buffer for a Temporary LOB

Internal temporary LOBs %

User/
Program

enable
buffering

disable
buffering

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario
« "Example: Flush Buffer for a Temporary LOB Using C (OCI)" on page 4-167

« "Example: Flush Buffer for a Temporary LOB Using COBOL (Pro*COBOL)" on
page 4-168

« "Example: Flush Buffer for a Temporary LOB Using C++ (Pro*C/C++)" on
page 4-170

4-166 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Flush Buffer for a Temporary LOB

Example: Flush Buffer for a Temporary LOB Using C (OCI)

sb4 lobBuffering (envhp, enhp, svchp, stmthp)
OCIEnv *envhp;
OCIEmnor *erhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{
OClLobLocator *thlob;
ub4 amt;
ub4 offset;
sword retval;

ub1 bufp[MAXBUFLEN;
ub4 buflen;

*Allocate the descriptor for the lob locator: ¥/
(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid *) &tbiob,
(Ub4)OCI_ DTYPE_LOB, (size 1)0, (dvoid **) O);

/* Selectthe BLOB: %
printf (" create a temporary Lob\n');
/*Create atemporary lob %/
if(OCILobCreateTemporary(svchp, erthp, thlob, (ub2)0,
SQLCS_IMPLICIT, OC|_TEMP_BLOB,
OC|_ATTR_NOCACHE, OC|_DURATION_SESSION))
{
(void) printf("FAILED: Create Temporary() \n');
retum -1;

}

/*Openthe BLOB: %/
if (OCILobOpen(svchp, ethp, (OCILobLocator *) thiob, OCI_LOB_READWRITE))

{
printf("OCILobOpen FAILED for temp lob \n");

retum-1;

}

/*Enable LOB Bufiering: %/

printf (" enable LOB buffering\n®);

checkerr (errhp, OCILobEnableBuffering(svchp, errhp, thlob));
printf (" write data to LOB\n");

/*Wiite data into the LOB: %/
amt =sizeof(bufp);

Temporary LOBs 4-167

Flush Buffer for a Temporary LOB

buflen = sizeof(bufp);
offset=1;
checkerr (errhp, OCILobWiite (svchp, errhp, thlob, &amt,
offset, bufp, bufien,
OCI_ONE_PIECE, (dvoid ®0,
(Sb4 (*)(avoid*,dvoid*,ub4*,ubl *))0,
0, SQLCS_IMPLICIT));

/*Flush the buffer: %/

printf(" flush the LOB buffers\n’);

checkerr (errhp, OCILobFlushBuffer(svchp, errhp, thlob,
(Ub4)OCI_LOB BUFFER_FREE));

/*Disable Buftering: %/
printf (" disable LOB buffering\n);
checkerr (errhp, OCILobDisableBuffering(svchp, errhp, thiob));

/* Subsequent LOB WRITESs will not use the LOB Buffering Subsystem *

/* Closing the BLOB is mandatory if you have opened it %/
checkerr (errhp, OCILobClose(svchp, erthp, thlob));

/* Free the temporary lob now that we are done using it %/
if(OCILobFreeTemporary(svchp, errhp, thlob))
{

printf("OCILobFreeTemporary FAILED \n");

retum-1;

}

/* Free resources held by the locators: %/
(void) OClDescriptorFree((dvoid *) thlob, (ub4) OCI_DTYPE_LOB);

retum;

Example: Flush Buffer for a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. FREE-TEMPORARY.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

4-168 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Flush Buffer for a Temporary LOB

01 USERID PIC X(11) VALUES "USER1/USER1".

01 TEMP-BLOB SQL-BLOB.
01 ISTEMP PIC S99) COMP.
01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
FREE-TEMPORARY.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.

EXEC SQL
LOB CREATE TEMPORARY :TEMP-BLOB
END-EXEC.

* Do something with the temporary LOB here:

* Free the temporary LOB:
EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB
END-EXEC.
EXEC SQL FREE :TEMP-BLOB END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE

Temporary LOBs 4-169

Flush Buffer for a Temporary LOB

END-EXEC.
STOP RUN.

Example: Flush Buffer for a Temporary LOB Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenml, sglca.sglermm.salenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

#define BufferLength 1024

void flushBufferingTempLOB_proc()
{
OCIClobLocator *Temp_loc;
varchar Buffer[BufferL_ength;
int Amount = BufferLength;
int multiple, Length =0, Position =1,

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Allocate and Create the Temporary LOB: ¥/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp loc;
/*Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
memset((void *)Buffer.arr, 42, BufferLength);
Bulffer.len = BufferLength;
for (multtiple = 0; multiple < 8; multiple++)
{
/*White Data to the Temporary LOB: %
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Temp_loc AT :Position;
Position += BufferLength;
}
/* Flush the contents of the buffers and Free their resources: ¥/
EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;
/*Tum off use of the LOB Bulffering Subsystem: %/

4-170 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Flush Buffer for a Temporary LOB

EXEC SQL LOB DISABLE BUFFERING :Temp_loc;

EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
printf("Wrote %d characters using the Buffering Subsystemin”, Length);
/* Free the Temporary LOB %

EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locator: %

EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
flushBufferingTempLOB_procy();
EXEC SQL ROLLBACK WORK RELEASE;

}

Temporary LOBs 4-171

Disable LOB Buffering for a Temporary LOB

Disable LOB Buffering for a Temporary LOB

Figure 4-27 Use Case Diagram: Disable LOB Buffering

Internal temporary LOBs

x

User/
Program

enable
buffering

disable
buffering

To refer to the table of all basic operations having to do with Inter-
nal Temporary LOBs see:

« "Use Case Model: Internal Temporary LOBs" on page 4-2

Scenario

You enable buffering in order to perform a small series of reads or writes. Once you
have completed these tasks, you must disable buffering before you can continue
with any other LOBoperations.

Please note that you would not enable buffering to perform the stream read and
write involved in checkin and checkout.

« "Example: Disable LOB Buffering Using C (OCI)" on page 4-173

4-172 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Disable LOB Buffering for a Temporary LOB

« "Example:; Disable LOB Buffering for a Temporary LOB Using COBOL
(Pro*COBOL)" on page 4-175

« "Example: Disable LOB Buffering for a Temporary LOB Using C++
(Pro*C/C++)" on page 4-176

Example: Disable LOB Buffering Using C (OClI)

sb4 lobBuffering (envhp, enhp, svchp, stmthp)
OCIEnv *envhp;
OCIEnor *erhp;
OCISvcCix *svchp;
OCIStmt *stmthp;
{
OClLobLocator *thlob;
ub4 amt;
ub4 offset;
sword retval;

ubl bufp[MAXBUFLEN];
ub4 buflen;

/*Allocate the descriptor for the lob locator: %/
(void) OClDescriptorAlloc((dvoid *) envhp, (dvoid *¥) &tblob,
(Ub4)OCI_DTYPE_LOB, (size _t) 0, (dvoid **) 0);

/*Selectthe BLOB: ¥/
printf (" create a temporary Lob\n");
/*Create atemporary LOB: %/
if(OCILobCreateTemporary(svchp,errhp, thlob, (ub2)0, SQLCS_IMPLICIT,
OCI_TEMP_BLOB,
OCI_ATTR_NOCACHE,
OC|_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n');
retum-1;

}

#Openthe BLOB: ¥
if (OCILobOpen(svchp, errhp, (OCILobLocator *) thlob, OCI_LOB_READWRITE))

{
printf("OCILobOpen FAILED for temp LOB \n");

retum-1;

}

Temporary LOBs 4-173

Disable LOB Buffering for a Temporary LOB

/* Enable LOB Buiffering: %/
printf (* enable LOB buffering\n®);
checkerr (erhp, OCILobEnableBuffering(svchp, errhp, thlob));

printf (" write data to LOB\n');

/*Wiite data into the LOB: %/

amt = sizeof(bufp);

buflen = sizeof(bufp);

offset=1,

checkerr (errhp, OCILobWihite (svchp, enhp, thlob, &amt,
offset, bufp, buflen,
OCI_ONE_PIECE, (dvoid *0,
(sb4 (*)(dvoid* dvoid*,ub4*ubl %))0,
0, SQLCS_IMPLICIT));

/*Flush the buffer: %/

printf(" flush the LOB buffers\n’);

checkerr (errhp, OCILobFlushBuffer(svchp, errhp, thlob,
(ub4)OCI_LOB_BUFFER_FREE));

/* Disable Buffering: %/
printf (" disable LOB buffering\n);
checkerr (errhp, OCILobDisableBuffering(svchp, errhp, thlob));

/* Subsequent LOB WRITEs will not use the LOB Buiffering Subsystern %/

/*Closing the BLOB is mandatory if you have opened it
checkerr (errhp, OCILobClose(svchp, errhp, thlob));

/* Free the temporary LOB now that we are done using it: %/
if(OCILobFreeTemporary(svchp, errhp, thlob))

{
printf('OCILobFreeTemporary FAILED \n'Y);

retum-1;

}

/* Free resources held by the locators: ¥/
(void) OClDescriptorFree((dvoid *) thlob, (ub4) OCI_DTYPE_LOB);

retum;

4-174 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Disable LOB Buffering for a Temporary LOB

Example: Disable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. TEMP-LOB-BUFFERING.
ENVIRONMENT DIVISION.
DATADIVISION.

WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USER1USERL".
01 TEMPBLOB SQL-BLOB.

01 BUFFER PIC X(80).

01 AMT PIC S9(9) COMP VALUE 10.

01 ORASLNRD PIC 9(4).

EXEC SQL VAR BUFFER IS RAW(80) END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
TEMP-LOB-BUFFERING.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the CLOB locators:
EXEC SQL ALLOCATE TEMP-BLOB END-EXEC.
EXEC SQL

LOB CREATE TEMPORARY ‘TEMP-BLOB
END-EXEC.

* Enable buffering for the temporary LOB:
EXEC SQL
LOB ENABLE BUFFERING :TEMP-BLOB
END-EXEC.

*White some data to the temporary LOB here:

MOVE '252525262626252525 TO BUFFER.
EXEC SQL
LOB WRITE ONE :AMT FROM :BUFFER
INTO :TEMP-BLOB
END-EXEC

Temporary LOBs 4-175

Disable LOB Buffering for a Temporary LOB

*Flush the buffered writes:
EXEC SQL
LOB FLUSH BUFFER :TEMP-BLOB FREE
END-EXEC.

* Disable buffering for the temporary LOB:
EXEC SQL
LOB DISABLE BUFFERING :TEMP-BLOB
END-EXEC.

EXEC SQL
LOB FREE TEMPORARY :TEMP-BLOB
END-EXEC.

EXEC SQL FREE :TEMP-BLOB END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Disable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++)
#include <oci.h>

#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglemm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

4-176 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Disable LOB Buffering for a Temporary LOB

}

#define BufferLength 1024

void disableBufferingTempLOB_proc()
{

OCIClobLocator *Temp_loc;

varchar Buffer[BufferLength];

int Amount = BufferLength;

int multiple, Length =0, Position =1

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Temp _loc;
memset((void *)Buffer.arr, 42, BufferLength);
Bulffer.len = BufferLength;
for (multtiple = 0; multiple < 7; multiple++)
{
/*Wiite Data to the Temporary LOB: %
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Temp_loc AT :Position;
Position += BufferLength;
}

/*Flush the contents of the buffers and Free their resources: ¥/
EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;
/* Tum off use of the LOB Buffering Subsystem: %
EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
/*Wiite APPEND can only be done when Buffering is Disabled: %/
EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Temp_loc;
EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
printf("Wrote a total of %d characters\n”, Length);
/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locator: %
EXEC SQL FREE :Temp_loc;

}

void main()

{
char *samp = "samp/samp;
EXEC SQL CONNECT :samp;
disableBufferingTempLOB_proc();

Temporary LOBs 4-177

Disable LOB Buffering for a Temporary LOB

EXEC SQL ROLLBACK WORK RELEASE;
}

4-178 Oracle8i Application Developer's Guide - Large Objects (LOBS)

D

External LOBs (BFILES)

In this chapter we describe how to work with External LOBs (BFILE s) in terms of
use cases. That is, we discuss each operation on a LOB(such as "See If a Temporary
LOBis Open") in terms of a use case by that name. The table listing all the use cases
is provided at the head of the chapter (see "Use Case Model: External LOBs" on
page 5-2). A summary figure, "Use Case Model Diagram: External LOBs", locates all
the use cases in single drawing. If you are using the HTML version of this
document, you can use this figure to navigate to the use case in which you are
interested by clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

« A figure that depicts the use case (see "Preface" for a description of how to
interpret these diagrams).

« A scenario that portrays one implementation of the use case in terms of the
hypothetical multimedia application described above (see "An Example
Application” on page 1-39 in Chapter 1, "Introduction to Working With LOBs").

« Code examples in each of the programmatic environments which can be
utilized to implement the use case (see "Programmatic Environments for
Operating on LOBs" on page 1-9 in Chapter 1, "Introduction to Working With
LOBs").

External LOBs (BFILEs) 5-1

Use Case Model: External LOBs

Use Case Model: External LOBs

Table 5—-1 Use Case Model: External LOBs

Use Case and Page

"Three Ways to Create a Table Containing a BFILE" on page 5-12

CREATE a Table Containing a BFILE on page 5-13

CREATE a Table of an Object Type with a BFILE Attribute on page 5-16
CREATE a Table with a Nested Table Containing a BFILE on page 5-19 on page 5-19
Three Ways to Insert a Row Containing a BFILE on page 5-21

INSERT a Row by means of BFILENAME() on page 5-22

INSERT a Row Containing a BFILE as SELECT on page 5-29

INSERT a Row Containing a BFILE by Initializing a BFILE Locator on page 5-30
Load External LOB (BFILE) Data into a Table on page 5-38

Load a LOB with Data from a BFILE on page 5-41

Two Ways to Open a BFILE on page 5-51

Open a BFILE with FILEOPEN on page 5-53

Open a BFILE with OPEN on page 5-59

Two Ways to See If a BFILE is Open on page 5-67

See If the BFILE is Open with FILEISOPEN on page 5-69

See If the BFILE is Open Using ISOPEN on page 5-74

Display the BFILE Data on page 5-82

Read the Data from a BFILE on page 5-93

Read a Portion of the BFILE Data (substr) on page 5-103

Compare All or Parts of Two BFILES on page 5-110

See If a Pattern Exists (instr) in the BFILE on page 5-119

See If the BFILE Exists on page 5-127

Get the Length of a BFILE on page 5-136

Copy a LOB Locator for a BFILE on page 5-145

See If a LOB Locator for a BFILE Is Initialized on page 5-153

See If One LOB Locator for a BFILE Is Equal to Another on page 5-156

5-2 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Use Case Model: External LOBs

Use Case and Page

Get Directory Alias and Filename on page 5-161

Three Ways to Update a Row Containing a BFILE on page 5-169
UPDATE a BFILE Using BFILENAME() on page 5-170
UPDATE a BFILE as SELECT on page 5-173

UPDATE a BFILE by Initializing a BFILE Locator on page 5-174
Two Ways to Close a BFILE on page 5-182

Close a BFILE with FILECLOSE on page 5-184

Close a BFILE with CLOSE on page 5-189

Close All Open BFILEs on page 5-197

DELETE the Row of a Table Containing a BFILE on page 5-205

External LOBs (BFILES) 5-3

Use Case Model: External LOBs

User/
Program

Figure 5-1 Use Case Model Diagram: External LOBs

External LOBs

CREATE
a table
(BFILE)

UPDATE
a BFILE with a
diff. OS file

Specify
“»{ BFILE name

Load
initial data into

LOB

LR R R R T E R R RS

portion of the
BFILE data

-

load a LOB
with data from
a BFILE

read data
from the BFILE

get the length
of the BFILE

compare all
or parts of 2
BFILE

see if the
BFILE exists

_

User/

see wherel/if
a pattern exists
in the BFILE
(instr)

see if the
BFILE is open

Program

L

display the

BFILE data

get directory
alias and
filename

close

close all
opened files

copy
LOB

locator

see
if locator
is initialized

see
if locators

are equal

5-4 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Use Case Model: External LOBs

Accessing External LOBs (SQL DML)

Directory Object

The DIRECTORYobject enables administering the access and usage of BFILE s in an
Oracle Server (see the CREATE DIRECTORdmMmand in the Oracle8i SQL Reference).
A DIRECTORYspecifies a logical alias name for a physical directory on the server’s
filesystem under which the file to be accessed is located. You can access a file in the
server’s filesystem only if granted the required access privilege on the DIRECTORY
object.

The DIRECTORYobject also provides the flexibility to manage the locations of the
files, instead of forcing you to hardcode the absolute pathnames of the physical files
in your applications. A DIRECTORYalias is used in conjunction with the
BFILENAME) function (in SQL and PL/SQL), or the OCILobFileSetName () (in
OCI) for initializing a BFILE locator.

Note: Oracle does not verify that the directory and pathname you
specify actually exist. You should take care to specify a valid
directory in your operating system. If your operating system uses
case-sensitive pathnames, be sure you specify the directory in the
correct format. There is no need to specify a terminating slash (e.g.,
/tmp/ is not necessary, simply use /tmp).

Initializing BFILES using BFILENAME()

In order to associate an operating system file to a BFILE , it is necessary to first
create a DIRECTORYobject which is an alias for the full pathname to the operating
system file.

You use Oracle SQL DML to associate existing operating system files with the
relevant database records of a particular table. You can use the SQL INSERT
statement to initialize a BFILE column to point to an existing file in the server’s
filesystem, and you can use a SQL UPDATEstatement to change the reference target
of the BFILE . You can also initialize a BFILE to NULLand then update it later to
refer to an operating system file via the BFILENAME) function. OCI users can also
use OCILobFlleSetName () to initialize a BFILE locator variable that is then used
in the VALUESclause of an INSERT statement.

For example, the following statements associate the files Imagel.gif and image2.gif
with records having key value of 21 and 22 respectively. 'IMG’ is a DIRECTORY

External LOBs (BFILES) 5-5

Use Case Model: External LOBs

object that represents the physical directory under which Imagel.dif and image2.dif
are stored.

Note: You may need to set up data structures similar to the
following for certain examples to work:

CREATE TABLE Lob table (
Key._value NUMBER NOT NULL,
F_lob BFILE)

INSERT INTO Lob_table VALUES
(21, BFILENAME(IMG', lmage1.gif));
INSERT INTO Lob_table VALUES
(22, BFILENAME(IMG, image2.if));

The UPDATEstatement below changes the target file to image3.qgif for the row with
key value 22.

UPDATE Lob_table SETf lob = BFILENAME(IMG', image3.gif)
WHERE Key value =22;

BFILENAME) is a built-in function that is used to initialize the BFILE column to
point to the external file.

Once physical files are associated with records using SQL DML, subsequent read
operations on the BFILE can be performed using PL/SQL DBMS_LORackage and
OCI. However, these files are read-only when accessed through BFILES, and so
they cannot be updated or deleted through BFILES.

As a consequence of the reference-based semantics for BFILEs , it is possible to have
multiple BFILE columns in the same record or different records referring to the
same file. For example, the UPDATEstatements below set the BFILE column of the
row with key value 21inlob_table to pointto the same file as the row with
key_value 22.

UPDATE lob_table
SETf lob=(SELECTf_lob FROM lob_table WHERE key_value = 22)
WHERE key value =21;

You should think of BFILENAME() in terms of initialization — it can initialize the
value for both a BFILE column and that of a BFILE (automatic) variable declared
inside a PL/SQL module. This has the unique advantage that if your need for a
particular BFILE is temporary, and scoped just within the module on which you are
working, you can utilize the BFILE related APIs on the variable without ever

5-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Use Case Model: External LOBs

having to associate this with a column in the database. There is a further advantage
as well. Since you are not forced to create a BFILE column in a server side table,
initialize this column value, and then retrieve this column value via a SELECT you
save a roundtrip to the server.

For more information, refer to the example given for DBMS_LOBROADFROMFILE
(see "Load a LOB with Data from a BFILE" on page 5-41). The OCI counterpart for
BFILENAME) is OCILobFileSetName (), which can be used in a similar fashion.

DIRECTORY Name Specification

The naming convention for DIRECTORYobjects is the same as that done for tables
and indexes. That is, normal identifiers are interpreted in uppercase, but delimited
identifiers are interpreted as is. For example, the following statement

CREATE DIRECTORY scott_dir AS ‘/usthome/scott;
creates a directory object whose name is 'SCOTT_DIR (in uppercase). But if a

delimited identifier is used for the DIRECTORYhame, as shown in the following
statement

CREATE DIRECTORY "Mary_Dir" AS ‘/usrhome/mary’;
the directory object’s name is 'Mary_Dir ’. Use 'SCOTT_DIR and 'Mary_Dir ’
when calling BFILENAME). For example:

BFILENAME(SCOTT _DIR, afile’)
BFILENAME(Mary_Dir’ afie)

BFILE Security

This section introduces the BFILE security model and the associated SQL DDL and
DML. The main features for BFILE security are:

« SQL DDL to CREATEand REPLACHZALTERa DIRECTORYobject.

« SQL DML to GRANTand REVOKEhe READsystem and object privileges on
DIRECTORYobjects.

Ownership and Privileges

The DIRECTORYis a system owned object. For more information on system owned
objects, see Oracle8i SQL Reference. Oracle8i supports two new system privileges,
which are granted only to the DBA account:

External LOBs (BFILES) 5-7

Use Case Model: External LOBs

« CREATE ANY DIRECTORY¥ for creating or altering the directory object creation
« DROP ANY DIRECTORY for deleting the directory object

The READprivilege on the DIRECTORYobject allows you to read files located under
that directory. The creator of the DIRECTORYobject automatically earns the READ
privilege. If you have been granted the READprivilege with GRANToption, you may
in turn grant this privilege to other users/roles and add them to your privilege
domains.

It is important to note that the READprivilege is defined only on the DIRECTORY
object. The physical directory that it represents may or may not have the
corresponding operating system privileges (read in this case) for the Oracle Server
process. It is the DBA’s responsibility to ensure that the physical directory exists,
and read permission for the Oracle Server process is enabled on the file, the
directory, and the path leading to it. It is also the DBA'’s responsibility to make sure
that the directory remains available, and the read permission remains enabled, for
the entire duration of file access by database users.

The privilege just implies that as far as the Oracle Server is concerned, you may
read from files in the directory. These privileges are checked and enforced by the
PL/SQL DBMS_LOBRackage and OCI APIs at the time of the actual file operations.

WARNING: Because the CREATE ANY DIRECTORNd DROP ANY
DIRECTORYprivileges potentially expose the server filesystem to
all database users, the DBA should be prudent in granting these
privileges to normal database users to prevent any accidental or
malicious security breach.

SQL DDL for BFILE security

Refer to the Oracle8i SQL Reference for information about the following SQL DDL
commands that create, replace, and drop directory objects:

« CREATE DIRECTORY
« DROP DIRECTORY

SQL DML for BFILE security

Refer to the Oracle8i SQL Reference for information about the following SQL DML
commands that provide security for BFILE s:

« GRANT(system privilege)

5-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Use Case Model: External LOBs

GRANT{object privilege)
REVOKHsystem privilege)
REVOKHKobject privilege)
AUDIT (new statements)
AUDIT (schema objects)

Catalog Views on Directories

Catalog views are provided for directory objects to enable users to view object
names and their corresponding paths and privileges. The supported views are:

ALL DIRECTORIES(OWNERDIRECTORY_NAMBIRECTORY_PATH
This view describes all the directories accessible to the user.
DBA DIRECTORIESOWNERIRECTORY_NAMBIRECTORY_PATH

This view describes all the directories specified for the entire database.

Guidelines for DIRECTORY Usage

The main goal of the DIRECTORYfeature is to enable a simple, flexible,
non-intrusive, yet secure mechanism for the DBA to manage access to large files in
the server filesystem. But to realize this goal, it is very important that the DBA
follow these guidelines when using directory objects:

A DIRECTORYshould not be mapped to physical directories which contain
Oracle data files, control files, log files, and other system files. Tampering with
these files (accidental or otherwise) could potentially corrupt the database or
the server operating system.

The system privileges such as CREATE ANY DIRECTORYranted to the DBA
initially) should be used carefully and not granted to other users
indiscriminately. In most cases, only the database administrator should have
these privileges.

Privileges on directory objects should be granted to different users carefully.
The same holds for the use of the WITH GRANT OPTIOBlause when granting
privileges to users.

DIRECTORYobjects should not be arbitrarily dropped or replaced when the
database is in operation. If this were to happen, DBMS_LOBr OCI operations
from all sessions on all files associated with this directory object will fail. Further,

External LOBs (BFILES) 5-9

Use Case Model: External LOBs

if a DROPor REPLACEcommand is executed before these files could be
successfully closed, the references to these files will be lost in the programs, and
system resources associated with these files will not be released until the
session(s) is shutdown.

The only recourse left to PL/SQL users, for example, will be to either execute a
program block that calls DBMS_LOB-ILECLOSEALL() and restart their file
operations, or exit their sessions altogether. Hence, it is imperative that you use
these commands with prudence, and preferably during maintenance
downtimes.

« Similarly, revoking an user’s privilege on a directory using the REVOKE
statement causes all subsequent operations on dependent files from the user’s
session to fail. Either you must re-acquire the privileges to close the file, or
execute a FILECLOSEALL() in the session and restart the file operations.

In general, using DIRECTORYobjects for managing file access is an extension of
system administration work at the operating system level. With some planning, files
can be logically organized into suitable directories that have read privileges for the
Oracle process, DIRECTORYobjects can be created with READprivileges that map to
these physical directories, and specific database users granted access to these
directories.

BFILES in Multi-Threaded Server (MTS) Mode

Oracle8i does not support session migration for BFILE s in MTS mode. This implies
that operations on open BFILE s can persist beyond the end of a call to an MTS
server. Sessions involving BFILE operations need to be bound to one shared server,
they cannot migrate from one server to another.

External LOB Locators (BFILE Locators)

For BFILE s, the value is stored in a server-side operating system file; i.e., external to
the database. The BFILE locator that refers to that file is stored in the row. If a
BFILE locator variable that is used in a DBMS_LOB-ILEOPEN() (for example L1) is
assigned to another locator variable, (for example L2), both L1 and L2 point to the
same file. This means that two rows in a table with a BFILE column can refer to the
same file or to two distinct files — a fact that the canny developer might turn to
advantage, but which could well be a pitfall for the unwary.

A BFILE locator variable in a PL/SQL or OCI program behaves like any other

automatic variable. With respect to file operations, it behaves like a file descriptor
available as part of the standard 1/0 library of most conventional programming
languages. This implies that once you define and initialize a BFILE locator, and

5-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: External LOBs

open the file pointed to by this locator, all subsequent operations until the closure of
this file must be done from within the same program block using this locator or
local copies of this locator.

The BFILE locator variable can be used, just as any scalar, as a parameter to other
procedures, member methods, or external function callouts. However, it is
recommended that you open and close a file from the same program block at the
same nesting level, in PL/SQL and OCI programs.

If the object contains a BFILE , you must set the BFILE value before flushing the
object to the database, thereby inserting a new row. In other words, you must call
OCILobFileSetName () after OCIObjectNew () and before OCIObjectFlush (). It
is an error to INSERT/UPDATEa BFILE without indicating a directory alias and
filename.

This rule also applies to users using an OCI bind variable for a BFILE in an
insert/update statement. The OCI bind variable must be initialized with a directory
alias and filename before issuing the insert or update statement. Note that
OCISetAttr () does not allow the user to set a BFILE locator to NULL

General rule: Before using SQL to insert or update a row with a BFILE , the user
must either initialize the BFILE

« to NULL(not possible if using an OCI bind variable) or

« toadirectory alias and filename

External LOBs (BFILEs) 5-11

Three Ways to Create a Table Containing a BFILE

Three Ways to Create a Table Containing a BFILE

Figure 5-2 Use Case Diagram: Three Ways to Create a Table Containing a BFILE

External LOBs

CREATE
a table
(BFILE)

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

It is possible to incorporate BFILE s into tables in three ways.

a. BFILEs may be columns in a table — see "CREATE a Table of an Object
Type with a BFILE Attribute” on page 5-13

b. BFILEs may be attributes of an object type — see "CREATE a Table of an
Object Type with a BFILE Attribute” on page 5-16

c. BFILEs may be contained within a nested table — see "CREATE a Table
with a Nested Table Containing a BFILE" on page 5-19

In all cases SQL DDL is used — to define BFILE columns in a table and BFILE
attributes in an object type.

5-12 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

CREATE a Table Containing a BFILE

CREATE a Table Containing a BFILE

Figure 5-3 Use Case Diagram: CREATE a table containing a BFILE

External LOBs

a teci:tﬁeE(ABTFFTLE - _fl e CREATE table with one or more BFILEs

columns)

User/
Program

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

The heart of our hypothetical application is the table Multimedia_tab . The varied
types which make up the columns of this table make it possible to collect together
the many different kinds multimedia elements used in the composition of clips.

External LOBs (BFILEsS) 5-13

CREATE a Table Containing a BFILE

Example: Create a Table Containing a BFILE Using SQL DDL

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager,
DROP USER samp CASCADE;
DROP DIRECTORY AUDIO_DIR;
DROP DIRECTORY FRAME _DIR;
DROP DIRECTORY PHOTO _DIR;

CREATE USER samp identified by samp;

GRANT CONNECT, RESOURCE to samp;

CREATE DIRECTORY AUDIO_DIR AS 'fmp/;
CREATE DIRECTORY FRAME_DIR AS 'fmp/;
CREATE DIRECTORY PHOTO_DIR AS 'fmp/;
GRANT READ ON DIRECTORY AUDIO_DIR to samp;
GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;

CREATE TABLE VoiceoverLib_tab of Voiced_typ (
Script DEFAULT EMPTY_CLORB(),
CONSTRAINT TakeLib CHECK (Take IS NOT NULL),
Recording DEFAULT NULL
)
CONNECT samp/samp
CREATE TABLE a_table (blob_col BLOB);
CREATE TYPE Voiced_typ AS OBJECT (
Originator VARCHAR2(30),
Scipt CLOB,
Actor VARCHAR2(30),
Take NUMBER,
Recording BFILE);

5-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing a BFILE

Note (continued):

CREATE TYPE InSeg_typ AS OBJECT (
Segment NUMBER,

Interview Date DATE,

Interviewer VARCHAR2(30),
Interviewee VARCHAR2(30),
Recording BFILE,

Transcript CLOB);

CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;

CREATE TYPE Map_typ AS OBJECT (
Region VARCHAR2(30),
NW NUMBER,
NE NUMBER,
SW NUMBER,
SE NUMBER,
Drawing BLOB,
Aerial BFILE);
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced typ (
Script DEFAULT EMPTY_CLORB(),
CONSTRAINT Take CHECK (Take IS NOT NULL),
Recording DEFAULT NULL);

Because you can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS_LOBRackage.

CREATE TABLE Mulimedia_tab (
Clip ID NUMBER NOT NULL,
Story CLOB default EMPTY_CLOB),
FLSub NCLOB default EMPTY_CLOB(),
Photo BFILE default NULL,
Frame BLOB default EMPTY_BLOBY(),
Sound BLOB default EMPTY_BLOB(),
Voiced ref REF Voiced typ,
InNSeg_ntab InSeg_tab,
Music BFILE default NULL,
Map_obj Map_typ

)NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

External LOBs (BFILEsS) 5-15

CREATE a Table of an Object Type with a BFILE Attribute

CREATE a Table of an Object Type with a BFILE Attribute

Scenario

Figure 5-4 Use Case Diagram: CREATE a table containing a BFILE

User/
Program

External LOBs

CREATE
atable
(Object Type)

- @ CREATE table with an object
type containing a BFILE

CREATE
> Object Type

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model:; External LOBs" on page 5-2

As shown in the diagram, you must create the object type that contains the BFILE
attributes before you can proceed to create a table that makes use of that object type.

Our example application contains examples of two different ways in which object
types can contain BFILEs :

Multimedia_tab contains a column Voiced_ref that references row objects
in the table VoiceOver_tab which is based on the type Voiced_typ . This
type contains two kinds of LOBs— a CLOBto store the script that’s read by the
actor, and a BFILE to hold the audio recording.

5-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table of an Object Type with a BFILE Attribute

« The table Multimedia_tab contains a column Map_obj that contains column
objects of the type Map_typ. This type utilizes the BFILE datatype for storing
aerial pictures of the region.

Example: Create a Table of an Object Type with a BFILE Attribute Using SQL DDL

/*Create type Voiced typ as a basis for tables that can contain recordings of
voice-over readings using SQL DDL: %/

CREATE TYPE Voiced_typ AS OBJECT

(

Originator VARCHAR2(30),

Scipt CLOB,

Actor VARCHAR2(30),

Take NUMBER,

Recording BFILE

)

/* Create table Vioiceover_tab Using SQL DDL: %

CREATE TABLE Voiceover_tab OF Voiced_typ

(
Script DEFAULT EMPTY_CLOB(),
CONSTRAINT Take CHECK (Take IS NOT NULL),
Recording DEFAULT NULL

)

/*Create Type Map_typ using SQL DDL as a basis for the table that will contain
the column object: %
CREATE TYPE Map_typ AS OBJECT (
Region VARCHAR2(30),
NW NUMBER,
NE NUMBER,
SW NUMBER,
SE NUMBER,
Drawing BLOB,
Aerial BFILE
)

/*Create support table MapLib_tab as an archive of maps using SQL DDL: %/
CREATE TABLE Map_tab of MapLib_typ;

External LOBs (BFILES) 5-17

CREATE a Table of an Object Type with a BFILE Attribute

For more information see:

— Oracle8i SQL Reference for a complete specification of the syntax
for using LOBs in the DDL commands CREATE TYPEnd ALTER
TYPEwith BLOB CLOB and BFILE attributes (noting that NCLOB
cannot be attributes of an object type).

5-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table with a Nested Table Containing a BFILE

CREATE a Table with a Nested Table Containing a BFILE

Figure 5-5 Use Case Diagram: CREATE a Table with a Nested Table Containing a
BFILE

External LOBs

CREATE
atable
(Nested Table

- e CREATE table with a nested
table containing one or
more BFILEs

CREATE
> Object Type

User/
Program

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

As shown in the diagram, you must create the object type that contains the BFILE
attributes before you can proceed to create a nested table based on that object type.

In our example, Multimedia_tab contains a nested table Inseg_ntab that is
based on the type InSeg_typ . This type makes use of two LOB datatypes — a
BFILE for audio recordings of the interviews, and a CLOBshould the user wish to
make transcripts of the recordings.

We have already described how to create a table with BFILE columns (see "CREATE
a Table Containing a BFILE" on page 5-13), so here we only describe the SQL DDL
syntax the creating the underlying type:

External LOBs (BFILEsS) 5-19

CREATE a Table with a Nested Table Containing a BFILE

Example: Create a Table with a Nested Table Containing a BFILE Using SQL DDL

Because you use SQL DDL directly to create a table, the DBMS_LOBackage is not
relevant.

CREATE TYPE InSeg_typ AS OBJECT

(
Segment NUMBER,

Interview_Date DATE,
Interviewer VARCHAR2(30),
Intenviewee VARCHAR2(30),
Recording BFILE,
Transcript CLOB

)

The actual embedding of the nested table is accomplished when the structure of the
containing table is defined. In our example, this is effected by means of the
following statement at the time that Multimedia_tab is created.

NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

5-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways to Insert a Row Containing a BFILE

Three Ways to Insert a Row Containing a BFILE

Figure 5-6 Use Case Diagram: Three Ways to Insert a Row Containing a BFILE

External LOBs

User/
Program

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Note that before you insert, you must initialize the BFILE either to NULLor to a
directory alias and filename.

a. "INSERT a Row by means of BFILENAME()" on page 5-22
b. "INSERT a Row Containing a BFILE as SELECT" on page 5-30

c. "INSERT a Row Containing a BFILE by Initializing a BFILE Locator" on
page 5-30

External LOBs (BFILEsS) 5-21

INSERT a Row by means of BFILENAME()

INSERT a Row by means of BFILENAME()

Figure 5—7 Use Case Diagram: INSERT a Row by means of BILENAME()

External LOBs

- _|4I @ INSERT using BFILENAME()

5-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by means of BFILENAME()

Scenario

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

The BFILENAME) function should be called as part of a SQL INSERT to initialize a
BFILE column or attribute for a particular row by associating it with a physical file
in the server’s filesystem.

The DIRECTORYobject represented by the directory_alias parameter to this
function need not already be defined using SQL DDL before the BFILENAME()
function is called in SQL DML or a PL/SQL program. However, the directory object
and operating system file must exist by the time you actually use the BFILE locator
(for example, as having been used as a parameter to an operation such as
OCILobFileOpen() , DBMS_LOBILEOPENY() , OCILobOpen() , or DBMS_
LOBOPEN()) .

Note that BFILENAME) does not validate privileges on this DIRECTORYobject, or
check if the physical directory that the DIRECTORYobject represents actually exists.
These checks are performed only during file access using the BFILE locator that
was initialized by the BFILENAME) function.

You can use BFILENAME) as part of a SQL INSERT and UPDATEstatement to
initialize a BFILE column. You can also use it to initialize a BFILE locator variable
in a PL/SQL program, and use that locator for file operations. However, if the
corresponding directory alias and/or filename does not exist, then PL/SQL DBMS_
LOBroutines that use this variable will generate errors.

The directory_alias parameter in the BFILENAME) function must be specified
taking case-sensitivity of the directory name into consideration.

See Also: "DIRECTORY Name Specification”. on page 5-7

Example: Insert a Row by means of BFILENAME() Using SQL

/* Note that this Is the same insert statement as applied to intemal persisterit
LOBs but with the BFILENAME() function added to initalize the BFILE columns:
¥4

INSERT INTO Mulimedia_tab VALUES (1, EMPTY_CLOB(), EMPTY_CLOBY),

External LOBs (BFILES) 5-23

INSERT a Row by means of BFILENAME()

BFILENAME(PHOTO_DIR’,'LINCOLN_PHOTO)),
EMPTY_BLOB(), EMPTY_BLOB(),
VOICED_TYP(Abraham Lincoln’, EMPTY_CLOBY(),
‘James Earl Jones', 1, NULL),
NULL, BFILENAME(AUDIO DIR,,
'LINCOLN_AUDIO)),
MAP_TYP(Gettysbury, 23, 34, 45, 56,
EMPTY_BLOB(), NULL));

Example: Insert a Row by means of BFILENAME() Using C (OClI)

/*Insert a row using BFILENAME: %/

void insertUsingBfilename(svchp, stmthp, errhp)

OCISvcCix *svchp;

OClStatement *stmthp;

OCIEnor *errhp;

{

text *insstmt =
(text*) "INSERT INTO Muttimedia_tab VALUES (3, EMPTY_CLOB(),
EMPTY_CLOB(), BFILENAME(PHOTO_DIR', 'Lincoln_photo’),
EMPTY_BLOB(), EMPTY_BLOB(),
VOICED_TYP(Abraham Lincoln’, EMPTY_CLOBY(),
‘James Earl Jones’, 1, NULL),

NULL, BFILENAME(AUDIO_DIR', 'Lincoln_audio),
MAP_TYP(Gettysburg’, 23, 34, 45, 56, EMPTY_BLOB(), NULL))";

 Prepare the SQL statement */

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
strien((char *) insstmt),
(ubd) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

F* Execute the SQL statement */

checkerr (errhp, OCIStmtExecute(svchp, stmthp, erhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT));

Example: Insert a Row by means of BFILENAME() Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAMHD. BFILE-INSERT.
ENVIRONMENT DIVISION.
DATADIVISION.

5-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by means of BFILENAME()

WORKING-STORAGE SECTION.

01 USERD PIC X(11) VALUES "USER1USERL".
01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILE-INSERT.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

EXEC SQL
INSERT INTO MULTIMEDIA TAB (CLIP_ID, PHOTO)
VALUES (1, BFILENAME(PHOTO_DIR, LINCOLN_PHOTO))
END-EXEC.

EXEC SQL
COMMIT WORK RELEASE

END-EXEC.

STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Insert a Row by means of BFILENAME() Using C++ (Pro*C/C++)

#include <oci.h>

External LOBs (BFILES) 5-25

INSERT a Row by means of BFILENAME()

#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void BFILENAMEInsert_proc()
{
EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL WHENEVER NOT FOUND CONTINUE;
/* Delete any existing row:
EXEC SQL DELETE FROM Mulimedia_tab WHERE Clip_ID=1;
/Insert a new row using the BFILENAME() function for BFILES: %
EXEC SQL INSERT INTO Mulimedia_tab
VALUES (1, EMPTY_CLOB(), EMPTY_CLOBY(),
BFILENAME(PHOTO_DIR, 'Lincoln_photo),
EMPTY_BLOB(), EMPTY_BLOB(), NULL,
InSeg_tab(InSeg_typ(1, NULL, Ted Koppell, ‘Abraham Lincoln),
BFILENAME(AUDIO_DIR', 'Lincoln_audio),
EMPTY_CLOB())),
BFILENAMECAUDIO_DIR', 'Lincoln_audio)),
Map_typ(Moon Mountain', 23, 34, 45, 56, EMPTY_BLOBY(),
BFILENAME(PHOTO_DIR|, 'Lincoln_photo)));
printf{Inserted %d romn", sglca.sglend[2));
}
void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;

BFILENAMEInsert_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Insert a Row by means of BFILENAME() Using Visual Basic (0040)
Dim OraDyn as OraDynaset, OraPhoto as OraBFile, OraMusic as OraBFile

Set OraDyn = OraDb.CreateDynaset('select * from Mulimedia_tab", ORADYN_DEFAULT)

5-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by means of BFILENAME()

Set OraMusic = OraDyn.Fields("Music') Value
Set OraPhoto = OraDyn.Fields("Photo") Value
OraDyn.AddNew

OraDyn.Fields("Clip_ID").value =1
OraDyn.Fields("Story).value = Empty This is equivalent to EMPTY_BLOB() in SQL
OraDyn.Fields("FLSub").value = Empty

" Initialize BFile Data:

OraPhoto.Directory ="PHOTO_DIR"
OraPhoto.FleName ="LINCOLN_PHOTO"
OraDyn.Fields("Frame").Value = Empty
OraDyn.Felds("Sound").Value = Empty

" Initialize BFile Data:

OraMusic.Directory Name = "AUDIO_DIR"
OraMusic.FileName ="LINCOLN_AUDIO"
OraDyn.Edit

OraDyn.Update

‘Add the row o the table

Example: Insert a Row by means of BFILENAME() Using Java (JDBC)

/Java IO classes:
import java.io.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sgl.*;
import oracle.jdbc.driver.;

public class BEx4_21
{

public static void main (String args [)
throws Exception

// Load the Oracle JDBC dhnver:

External LOBs (BFILES) 5-27

INSERT a Row by means of BFILENAME()

Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp');

conn.setAutoCommit (false);

// Create a Statermment:
Statement stmt = conn.createStatement ();

fry
{

stmtexecute('INSERT INTO mulimedia_tab
VALUES (99, EMPTY_CLOB(), EMPTY_CLOBY(),
BFILENAME (PHOTO_DIR',Lincoln_photo),
EMPTY_BLOB(), EMPTY_BLOB(),
(SELECT REF(Vref) FROM Voiceover_tab Vref
WHERE Actor ='James Earl Jones), NULL,
BFILENAME(AUDIO_DIR,, 'Lincoln_audio),
MAP_TYP(Gettysburg), 23, 34,45, 56, EMPTY_BLOB(), NULL))";

Commit the transaction:
conn.commit();

f:atch (SQLException €)
é.primStackTraoe();

}}

5-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by means of BFILENAME()

INSERT a Row Containing a BFILE as SELECT

Figure 5-8 Use Case Diagram: INSERT a Row Containing a BFILE as SELECT

External LOBs

- _|éI @ NSERT as SELECT

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model; External LOBs" on page 5-2

Scenario

With regard to LOBSs, one of the advantages of utilizing an object-relational
approach is that you can define a type as a common template for related tables. For
instance, it makes sense that both the tables that store archival material and the
working tables that use those libraries share a common structure. The following
code fragment is based on the fact that a library table VoiceoverLib_tab is of the
same type (Voiced_typ) as Voiceover tab referenced by the Voiced_ref
column of the Multimedia_tab table. It inserts values from the library table into
Multimedia_tab by means of a SELECToperation.

Example: Insert a Row Containing a BFILE as Select Using SQL

INSERT INTO Voiceover_tab
(SELECT *from VoiceoverLib_tab
WHERE Take = 12345);

External LOBs (BFILES) 5-29

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

Figure 5-9 UseCase Diagram: INSERT a Row by Initializing a BFILE Locator

External LOBs

- |é| O INSERT by Initializing BFILE locator

.
X

User/
Program

v

iy Initialize

4

BFILENAME
-%»(OCI LOB File
Set Name

5-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

Note that you must initialize the BFILE locator bind variable to a directory alias
and filename before issuing the insert statement. In this case we insert a Photo
from an operating system source file (PHOTO_DIR.

« "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator
Using PL/SQL" on page 5-31

« "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator
Using C (OCI)" on page 5-31

« "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator
Using C (OCI)" on page 5-31

« "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator
Using C++ (Pro*C/C++)" on page 5-34

« "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator
Using Visual Basic (O0O40)" on page 5-35

« "Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator
Using Java (JDBC)" on page 5-35

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using
PL/SQL

DECLARE
/* Initalize the BFILE locator: %/
Lob loc BFILE := BFILENAME(PHOTO_DIR’, 'Washington_photo);
BEGIN
INSERT INTO Multimedia_tab (Clip_ID, Photo) VALUES (3, Lob_loc);
COMMIT;
END;

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C

External LOBs (BFILEs) 5-31

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

(oCl)

/Insert a row using BFILE Locator: %/
void insertUsingBfileLocator(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCix *svehp;
OCIStmt *stmthp;
OCIEnor *errhp;
{

text *insstmt =

(text®) "INSERT INTO Multimedia._tab (Clip_ID, Photo)
VALUES (3, Lob_loc)",

OCIBind *bndhp;

OCILobLocator *Lob_loc;

OraText *Dir = (OraText*)'PHOTO_DIR", *Name = (OraText *)"Washington_photo";

/* Prepare the SQL statement: ¥/

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
strien((char *) insstmt),
(ub4) OCI_NTV_SYNTAX, (Ub4)OCI_DEFAULT));

* Allocate Locator resources: ¥/
(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob loc,
(Ub4)OCI_DTYPE_FILE, (size_1) O, (dvoid *¥) 0))

checkerr (errhp, OCILobFileSetName(envhp, erthp, &Lob _loc,
Dir, (ub2)strlen((char *)Dir),
Name,(ub2)strien((char *)Name)));

checkerr (errhp, OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
(dvoid *) &Lob_Loc, (sb4)0, SQLT_BFILE,
(dvoid) O, (Ub2*)0, (ub2*)0,
(ub4) 0, (ub4*) O, (Ub4) OCI_DEFAULT));

/* Execute the SQL statement: %

checkerr (errhp, OCIStmtExecute(svchp, stmthp, erhp, (ub4) 1, (ub4) O,
(CONST OClISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT));

/*Free LOB resources: ¥/

OClIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_FILE),
}

5-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using
COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAMH-D. BFILEAINSERT-INIT.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USER1/USERL".
01 TEMP-BLOB SQL-BLOB.

01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

0L FNAME PICX(20) VARYING.

01 DIRIND PIC S9(4) COMP.

01 FNAMEAND PIC S9(4) COMP.

0L AMT PIC S9(9) COMP.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILE-INSERT-INIT.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

*Set up the directory and file information:
MOVE "PHOTO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.

MOVE "Washington_photo” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

* Set the diirectory alias and filename in locator:
EXEC SQL
LOB FILE SET :SRC-BFILE DIRECTORY =:DIR-ALIAS,
FHLENAME = :FNAME
END-EXEC.

External LOBs (BFILEsS) 5-33

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

EXEC SQL
INSERT INTO MULTIMEDIA TAB (CLIP_ID, PHOTO)
VALUES (6, :SRC-BFILE)

END-EXEC.

EXEC SQL COMMIT WORK END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C++
(Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglemm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void insertBFILELocator_proc()

{
OCIBFileLocator *Lob loc;

char *Dir="PHOTO_DIR", *Name ="Washington_photo";

5-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

/*Allocate the input Locator: %/

EXEC SQL ALLOCATE :Lob_loc;

/* Set the Directory and Filename in the Allocated (Initialized) Locator: %/

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
EXEC SQL INSERT INTO Mulimedia_tab (Clip_ID, Photo) VALUES (4, :Lob_loc);
/* Release resources held by the Locator: %

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp’;
EXEC SQL CONNECT :samp;
insertBFILELocator_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using
Visual Basic (0040)

Dim OraDyn as OraDynaset, OraPhoto as OraBFile, OraMusic as OraBFile

Set OraDyn = OraDb.CreateDynaset("select * from Mulimedia_tab’, ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value
Set OraPhoto = OraDyn.Fields("Photo").Value

Edit the first row and initiiaze the "Photo” column:
OraDyn.Edit

OraPhoto.DirectoryName ="PHOTO_DIR"
OraPhoto.Filename ="Washington_photo"

OraDynaset Update

Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Java

(JDBC)

/Java IO classes:
import java.io.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

External LOBs (BFILES) 5-35

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:
import oracle.sgl.*;
import oracle.jdbc.driver.;

public class Ex4._26
{
public static void main (String args [)
throws Exception
{
// Load the Oracle JDBC driver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE src_lob=null;

ResultSet rset = null;
OracleCallableStaterment cstmt = null;

rset = stmt.executeQuery (

"SELECT BFILENAME(PHOTO_DIR!,'Washington_photo’) FROM DUAL");
if (rsetnext())
{

src_lob = ((OracleResultSet)rset).getBFILE (1);

}

// Prepare a CallableStaternent to OPEN the LOB for READWRITE:
cstmt = (OracleCallableStaternent) conn.prepareCall (

"INSERT INTO muttimedia._tab (clip_id, photo) VALUES (3, ?)");
cstmt.setBFILE(L, src_lob);

5-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Containing a BFILE by Initializing a BFILE Locator

cstmt.execute);

//Close the statements and commit the transaction:
stmt.close();
cstmt.close();
conn.commit();
conn.close();
}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

External LOBs (BFILES) 5-37

Load External LOB (BFILE) Data into a Table

Load External LOB (BFILE) Data into a Table

Figure 5-10 Use Case Diagram: Load the Initial Data into the External LOB

External LOBs

X

User/
Program

load
initial data into
the LOB

To refer to the table of all basic operations having to do with Inter-
nal Persistent LOBs see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

The BFILE datatype stores unstructured binary data in operating-system files
outside of the database. A BFILE column or attribute stores a file locator that points
to a server-side external file containing the data

5-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load External LOB (BFILE) Data into a Table

Note: A particular file which is to be loaded as a BFILE does not
have to actually exist at the time of loading.

The SQL Loader assumes that the necessary directory objects (a logical alias name
for a physical directory on the server's filesystem) have already been created.

For more information on BFILES: See the Oracle8i Application
Developer’s Guide - Fundamentals

A control file field corresponding to a BFILE column consists of column name
followed by the BFILE directive. The BFILE directive takes as arguments a
DIRECTORY OBJECThame followed by a BFILE name. Both of these can be
provided as string constants, or they can be dynamically sourced through some
other field.

The following two examples illustrate the loading of BFILES. In the first example
only the file name is specified dynamically. In the second example, the BFILE and
the DIRECTORY OBJECire specified dynamically.

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager

GRANT CREATE ANY DIRECTORY to samp;

CONNECT samp/samp

CREATE OR REPLACE DIRECTORY detective_photo as tmp;
CREATE OR REPLACE DIRECTORY photo_dir as fmp;

Control File:

LOAD DATA

INFILE sample9.dat

INTO TABLE Multimedia._tab

FIELDS TERMINATED BY*,

(Clip_ID INTEGER EXTERNAL(5),

FileName FILLER CHAR(30),

Photo BFILE(CONSTANT "DETECTIVE_PHOTO", FleName))

Data file (sample9.dat):
007,fimp/JamesBond jpeg,

External LOBs (BFILES) 5-39

Load External LOB (BFILE) Data into a Table

008,timp/SherlockHolmes jpeg,
009,fmp/MissMarple.joeg,

Note:

Clip_ID defaults to (255) if a size is not specified; it is mapped to the file names in
the datafile. Detectivel_dir is the directory where all the files are stored
(Detectivel_dir is a directory object created previously).

Control File:

LOAD DATA

INFILE sample10.dat

INTO TABLE Muliimedia_tab

replace

FIELDS TERMINATED BY '/

(

Clip_ID INTEGER EXTERNAL(5),
Photo BFILE (DifName, FleName),
FileName FILLER CHAR(30),
DilName FILLER CHAR(30)

)

Data file (sample10.dat):

007,JamesBond jpeg, DETECTIVE_PHOTO,
008,SherlockHolmes,jpeg,DETECTIVE_PHOTO,
009,MissMarple jpeg,PHOTO_DIR,

Note:

DirName FILLER CHAR (30) is mapped to the datafile field containing the
directory name corresponding to the file being loaded.

5-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

Load a LOB with Data from a BFILE

Figure 5-11 Use Case Diagram: Load a LOB with data from a BFILE

User/
Program

w
=
LL
m
«

load a LOB
with data from

LR T T
EEEssssEEEsssEEEsssEEE

External LOBs

SELECT
alLOB

©
N
©
=
£

close all
opened files

OR

Specify
FILE name

l-> B

External LOBs (BFILES) 5-41

Load a LOB with Data from a BFILE

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

In using the OCI, or any of the programmatic environments that access OCI
functionality, character set conversions are implicitly performed when translating
from one character set to another. However, no implicit translation is ever
performed from binary data to a character set. When you use the loadfromfile
operation to populate a CLOBor NCLOByou are populating the LOBwith binary
data from the BFILE . In that case, you will need to perform character set
conversions on the BFILE data before executing loadfromfile

The example procedure assumes that there is an operating system source file
(AUDIO_DIR) that contains the LOBdata to be loaded into the target LOB(Music).

« "Example: Load a LOB with Data from a BFILE Using PL/SQL (DBMS_LOB
Package)" on page 5-42

« "Example: Load a LOB with Data from a BFILE Using C (OCI)" on page 5-43
« "Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)"

on page 5-44

« "Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)" on
page 5-46

« "Example: Load a LOB with Data from a BFILE Using Visual Basic (O040)" on
page 5-47

« "Example: Load a LOB with Data from a BFILE Using Java (JDBC)" on page 5-48

Example: Load a LOB with Data from a BFILE Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure loadLOBFromBFILE_proc is not part of the
DBMS_LOB package: ¥
CREATE OR REPLACE PROCEDURE loadL OBFromBFILE_proc IS
Dest loc BLOB;
Src_loc BFILE :=BFILENAME(AUDIO_DIR', 'Washington_audio);
Amount INTEGER :=4000;
BEGIN
SELECT Music INTO Dest_loc FROM Multimedia._tab
WHERE Clip_ID=3

5-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

FOR UPDATE;
/*Opening the LOB Is manadatory: */
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
/*Opening the LOB is optional: */
DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
DBMS_LOB.LOADFROMFILE(Dest loc, Src_loc, Amount);
/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE(Dest loc);
DBMS_LOB.CLOSE(Src _loc);
COMMIT;
END;

Example: Load a LOB with Data from a BFILE Using C (OClI)

/* Select the lob/bfile from the Mulimedia table %/
void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISvcCix *svchp;
OClStatement *stmthp;
OCIEnor *erthp;
OCIDefine *dfnhp;
OClLobLocator*Lob _loc;
text *selstmt;
{
/* Prepare the SQL select staterment ¥/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Define the colurmn being selected %/

checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, erhp, 1,
(dvoid»&Lob_loc,0, SQLT_BFILE,
(dvoid %0, (Ub2%)0, (ub2*)0,
OCI_DEFAULT));

/* Execute the SQL select statement ¥/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, erthp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OClSnapshot*) O,
(ub4) OCl_DEFAULT));
}

/* Select the lob/bile from the Mulimedia table %

void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISveCix *svehp;

OClStatement *stmthp;

External LOBs (BFILES) 5-43

Load a LOB with Data

from a BFILE

OCIEnor *errhp;
OCIDefine *dfnhp;
OClLobLocator *Lob_loc;
text *selstmt;

{

}

/* Prepare the SQL select staterment ¥/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Define the column being selected %/

checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, erhp, 1,
(dvoid®)&Lob_loc, 0, SQLT_BFILE,
(dvoid %0, (Ub2%)0, (ub2*)0,
OC|_DEFAULT));

/* Execute the SQL select statement ¥/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, erthp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot¥) 0,
(ub4) OCl_DEFAULT));
/* Free the locator descriptors %/
OClDescriptorFree((dvoid *)dest_loc, (ub4)OCI_DTYPE_BLOB);
OClIDescriptorFree((dvoid *dest_loc, (Ub4)OCI_DTYPE_FILE);

void loadLobFromBiile(svchp, erhp, dest_loc, src_loc)

OCISvcCix *svchp;

OCIEnor *erthp;

OClILobLocator *dest_loc; /* These locators have been alreadly allocated %
OClLobLocator *src_loc; /* This is the BFILE locator. %/

{

}

checkerr(errhp, OCILobFileOpen(svchp, erhp, src_loc,
(ubL)OCI_FILE_READONLY));
checkenr(errhp, OCILobOpen(svchp, erhp, dest _loc, (ub1)OCI_FILE_ READWRITE));
checkerr (errhp, OCILobLoadFromFile(svchp, erhp, dest _loc, src_loc,
(Ub4)4000, (Ub4)0, (Ub4)0));
checkerr(errhp, OCILobClose(svchp, erhp, dest_loc));
checkerr(errhp, OCILobFileClose(svchp, errhp, src_loc));

Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)

5-44 Oracle8i Appl

IDENTIFICATION DIVISION.
PROGRAM-ID. LOAD-BFILE.

ication Developer’'s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERD PIC X(11) VALUES "USER1USERL".
01 DEST-BLOB SQL-BLOB.

01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 DIRIND PIC S9(4) COMP.

01 FNAMEIND PIC S9(4) COMP.

0L AMT PIC S9(9) COMP.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
LOAD-BFILE.

* Allocate and initalize the LOB locators:
EXEC SQL ALLOCATE :DEST-BLOB END-EXEC.
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

* Popuiate the BFILE:
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
EXEC SQL

SELECT PHOTO INTO :SRC-BFILE
FROM MULTIMEDIA_TABWHERE CLIP_ID=3
END-EXEC.

*QOpen the source BFILE READ ONLY.

*QOpen the destination BLOB READMWRITE:
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
EXEC SQL LOB OPEN :DEST-BLOB READ WRITE END-EXEC.

*L oad BFILE data inio the BLOB:
EXEC SQL

External LOBs (BFILES)

5-45

Load a LOB with Data from a BFILE

LOB LOAD :AMT FROM FILE :SRC-BFILE
INTO :DEST-BLOB
END-EXEC.

*Close the LOBs:
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
EXEC SQL LOB CLOSE :DEST-BLOB END-EXEC.

* And free the LOB locators:
END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :DEST-BLOB END-EXEC.
EXEC SQL FREE :SRC-BFILE END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglemm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

5-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

}

void loadLOBFromBFILE._proc()
{
OCIBlobLocator *Dest_loc;
OCIBFileLocator *Src_loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount =4096;

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
/¥ Initialize the BFILE Locator: %/
EXEC SQL ALLOCATE :Src_loc;
EXEC SQL LOB FILE SET :Src_loc DIRECTORY = :Dir, FILENAME = :Name;
/* Initalize the BLOB Locator: %/
EXEC SQL ALLOCATE :Dest loc;
EXEC SQL SELECT Sound INTO :Dest_loc FROM Multimedia._tab
WHERE Clip_ID =3 FOR UPDATE;
/*Opening the BFILE is Mandatory: ¥/
EXEC SQL LOB OPEN :Src_loc READ ONLY;
/*Opening the BLOB is Optional: %/
EXEC SQL LOB OPEN :Dest_loc READ WRITE;
EXEC SQL LOB LOAD :Amount FROM FILE :Src_loc INTO :Dest loc;
/*Closing LOBs and BFILES is Mandatory if they have been OPENed: %/
EXEC SQL LOB CLOSE :Dest loc;
EXEC SQL LOB CLOSE :Src_loc;
/* Release resources held by the Locators: %
EXEC SQL FREE Dest_loc;
EXEC SQL FREE :Src_loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
loadLOBFromBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Load a LOB with Data from a BFILE Using Visual Basic (0040)

Note that this code fragment assumes a ORABFILE object as the result of a
‘dynaset gperation. This object could have been an OUT parameter of a PL/SQL
Iprocedure. For more information please refer to chapter 1.

External LOBs (BFILES) 5-47

Load a LOB with Data from a BFILE

Dim OraDyn as OraDynaset, OraDyn2 as OraDynaset, OraPhoto as OraBFile
Dim Oralmage as Oral.ob

chunksize = 32768
Set OraDyn = OraDb.CreateDynaset('select * from Mulimedia_tab", ORADYN_DEFAULT)
Set OraDyn2 = OraDb.CreateDynaset('select * from Images”, ORADYN_DEFAULT)

Set OraPhoto = OraDyn.Fields("Photo").value
Set Oralmage = OraDyn2.Fields("Image").value

OraDyn2.Edit
Load LOB with data from BFILE:
Oralmage.CopyFromBFile (OraPhoto)

OraDyn2.Update

Example: Load a LOB with Data from a BFILE Using Java (JDBC)

//Java IO classes:
import javaLio.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver*;

public class Ex2_45
{

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC dhver:

Class.forName ("oracle jdbc.driver.OracleDriver”);

// Connect to the database:
Connection conn=

5-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp’);
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE src_lob=null;

BLOB dest_lob=nul;

InputStream in = null;

OutputStream out = null;

byte buf]] = new byte[1000];
ResultSet rset = nul;
OracleCallableStatement cstmt = nul;

// Prepare a CallableStatement to OPEN the LOB for READWRITE:
cstmt = (OracleCallableStaternent) conn.prepareCall (
"BEGIN DBMS_LOB.OPEN(? DBMS_LOB.LOB_READWRITE), END;");

rset = stmt.executeQuery (
"SELECT BFILENAME(AUDIO_DIR', Washington_audio’) FROM DUAL");
if (rsetnext())

src_lob = ((OracleResultSet)rset).getBFILE (1);
src_lob.openFile();
in=src_lob.getBinaryStream();

}

rset = stmt.executeQuery (
"SELECT sound FROM multimedia_tab WHERE clip_id =2 FOR UPDATE");

if (rsetnext())

{
dest_lob = ((OracleResultSet)rset).getBLOB (1);

/Bindthe dest_lob to the prepared statement and execulte it
cstmt.setBLOB(1, dest_lob);
cstmt.execute();
// Fetch the output stream for dest_lob:
out=dest_lob.getBinaryOutputStream();

}

intlength=0;

External LOBs (BFILES) 5-49

Load a LOB with Data from a BFILE

intpos=0;
while ((in '= null) && (out = null) && ((length = in.read(buf)) I=-1))

System.out.printin('Pos =" + Integer.toString(pos) +
". Length =" + Integer.toString(ength));
pos +=length;
outwrite(buf, pos, length);
}

// Close all streams and file handlles:
in.close();

outflush();

out.close();

src_lob.closeFile();

/Al OPENed LOBS must be CLOSEd:

cstmt = (OracleCallableStatement) conn.prepareCall (
"BEGIN DBMS_LOB.CLOSE(?); END;");

cstmt.setBLOB(1, dest_lob);

cstmt.execute();

// Commit the transaction:
conn.commit();

}

catch (SQLException €)

{
e.printStackTrace();

}

}
}

5-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Two Ways to Open a BFILE

Two Ways to Open a BFILE

Figure 5-12 Use Case Diagram: Two Ways to Open a BFILE

External LOBs

open
a BFILE

v

X

User/
Program

Initialize
OR\ a BFILE locator) 4=="

Specify
-»{ BFILE name

External LOBs (BFILEsS) 5-51

Two Ways to Open a BFILE

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

As you can see by comparing the code, these alternative methods are very similar.
However, while you can continue to use the older FILEOPEN form, we strongly
recommend that you switch to using OPENbecause this facilitates future extensibility.

a. "Open aBFILE with FILEOPEN" on page 5-53
b. "Open aBFILE with OPEN" on page 5-59

Maximum Number of Open BFILES

A limited number of BFILE s can be open simultaneously per session. The
maximum number is specified by using the initialization parameter SESSION_
MAX_OPEN_FILES

SESSION_MAX_OPEN_FILESlefines an upper limit on the number of
simultaneously open files in a session. The default value for this parameter is 10.
That is, a maximum of 10 files can be opened simultaneously per session if the
default value is utilized. The database administrator can change the value of this
parameter in the init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILE&alue then
you will not be able to open any more files in the session. To close all open files, use
the FILECLOSEALL call.

5-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with FILEOPEN

Open a BFILE with FILEOPEN

Figure 5-13 Use Case Diagram: Open a BFILE with FILEOPEN

External LOBs

open
aBFILE - @ openasriLE
with FILEOPEN

v

X

User/
Program

Initialize
OR\ a BFILE locator) 4==="

Specify

BFILE name

External LOBs (BFILEsS) 5-53

Open a BFILE with FILEOPEN

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

While you can continue to use the older FILEOPEN form, we strongly recommend
that you switch to using OPENbecause this facilitates future extensibility. This
example opens a Lincon photo in operating system file PHOTO DIR

« "Example: Open a BFILE with FILEOPEN Using PL/SQL" on page 5-54
« "Example: Open a BFILE with FILEOPEN Using C (OCI)" on page 5-54

« "Example: Open a BFILE with FILEOPEN Using Visual Basic (O0O40)" on
page 5-56

« "Example: Open a BFILE with FILEOPEN Using Java (JDBC)" on page 5-56

Example: Open a BFILE with FILEOPEN Using PL/SQL

/* Note that the example procedure openBFILE _procOne is not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURSBpenBFILE procOne IS
Lob loc BFILE := BFILENAME(PHOTO_DIR', Lincoln_photo);
BEGIN
#QOpenthe BFILE: %
DBMS_LOB.FILEOPEN (Lob_loc, DBMS_LOB.FILE_READONLY)
/*... Do some processing. ¥
DBMS_LOB.FILECLOSE(Lob loc);
END;

Example: Open a BFILE with FILEOPEN Using C (OCI)

/* Select the lob/biile from the Mulimedia table %

void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISvcCix *svchp;

OClIStatement *stmthp;

OCIEnor *erthp;

OCIDefine *dfnhp;

OClLobLocator*Lob_loc;

text *selstmt;

5-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with FILEOPEN

/* Prepare the SQL select staterment %/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Define the column being selected %/

checkerr (errhp, OCIDefineByPos(stmhp, &dinhp, errhp, 1,
(dvoid*)&Lob_loc, 0,
SQLT_BFILE, (dvoid *)0, (ub2 *)0,
(Ub2*)0, OCI_DEFAULT));

/* Execute the SQL select statement %/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshat*) 0, (OCISnapshat®) O,
(ub4) OCI_DEFAULT));

}

void BfileOpen(envhp, svchp, stmthp, errhp, dinhp)
OCIEnv *envhp;

OCISvcCix *svchp;

OClStatement *stmthp;

OCIEnor *erthp;

OClIDefine *dfnhp;

/*Assume all handles passed as inptit to this routine have been
allocated and initalized.
v

OCILobLocator *hfile_loc;

/*Allocate the locator descriptor %/

(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid) &bifile_loc,
(Ub4) OCI_DTYPE_FILE,
(size_1)0, (dvoid *) 0)

/* Set the bfile locator information %/
checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
(CraText*)'PHOTO_DIR",
(ub2)strlen('PHOTO_DIR"),
(OraText*)'"Lincoln_photo”,
(ub2)strien("Lincoln_photo'))));
checkenr(errhp, OCILobFileOpen(svchp, erthp, bfile_loc,
(UbL)OCI_FILE_READONLY));
/*... Do some processing. ¥/
checkerr(emrhp, OCILobFileClose(svchp, erhp, bfile_loc));

External LOBs (BFILES)

5-55

Open a BFILE with FILEOPEN

/* Free the locator descriptor ¥/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

void BfleOpen(envhp, erhp, svchp, stmthp, bfile_loc)
OCIEnv *envhp;
OCIEnor *errhp;
OCISvcCix *svehp;
OCIStmt *stmthp;
OCILobLocator *bfile_loc; /¥ This is the BFILE locator that is alreadly
allocated and initalized. ¥/
{
checkerr(errhp, OCILobFileOpen(svchp, erhp, biile_loc,
(ubL)OCI_FILE_READONLY));
/*... Do some processing. %/
checkenr(errhp, OCILobFileClose(svchp, erhp, bfile_loc));
}

Example: Open a BFILE with FILEOPEN Using Visual Basic (0040)

Note: At the present time, OO40 only offers BFILE opening with
OPENsee "Example: Open a BFILE with OPEN Using Visual Basic
(O040)" on page 5-64).

Example: Open a BFILE with FILEOPEN Using Java (JDBC)

#Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql.Statement;,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:

import oracle.sgl*;
import oracle.jdbc.driver.;

5-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with FILEOPEN

public class Ex4_38

{

public static void main (String args [])
throws Exception
{
// Load the Oracle JDBC dhver:
Class.forName ("oracle jdbc.driver.OracleDriver”);

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp’);

conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE src_lob=null;

ResultSet rset = null;

rset = stmt.executeQuery (
"SELECT BFILENAME(PHOTO_DIR, 'Lincoln_photo) FROM DUAL");
if (rsetnext())

src_lob = ((OracleResultSet)rset).getBFILE (1);

/A plsql_fleOpen() wraps a callto dbms_lob.fileopen():
src_lob.pisql_fileOpen();

System.out printin(The file is now open');
}

// Close the BFILE, statement and connection:
src_lob.pisql_fileClose();
stmt.close();
conn.commit();
conn.close();
}
catch (SQLException €)

{
e.printStackTrace();

External LOBs (BFILES) 5-57

Open a BFILE with FILEOPEN

5-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN

Open a BFILE with OPEN

Figure 5-14 Use Case Diagram: Open a BFILE with OPEN

External LOBs

open
aBFILE - @ openasriLE
with OPEN

v

X

User/
Program

Initialize
OR\ a BFILE locator) 4==*

Specify
“»{ BFILE name

External LOBs (BFILES) 5-59

Open a BFILE with OPEN

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario
This example opens a Lincon photo in operating system file PHOTO DIR
« "Example: Open a BFILE with OPEN Using PL/SQL" on page 5-60
« "Example: Open a BFILE with OPEN Using C (OCI)" on page 5-60

« "Example: Open a BFILE with OPEN Using COBOL (Pro*COBOL)" on
page 5-62

« "Example: Open a BFILE with OPEN Using C++ (Pro*C/C++)" on page 5-63
« "Example: Open a BFILE with OPEN Using Visual Basic (OO40)" on page 5-64
« "Example: Open a BFILE with OPEN Using Java (JDBC)" on page 5-64

Example: Open a BFILE with OPEN Using PL/SQL

/* Note that the example procedure openBFILE _procTwo is not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURSBpenBFILE procTwo IS
Lob loc BFILE := BFILENAME(PHOTO_DIR', Lincaln_photo);
BEGIN
#QOpenthe BFILE: %
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY)
/*... Do some processing: ¥
DBMS_LOB.CLOSE(Lob loc);
END;

Example: Open a BFILE with OPEN Using C (OCl)

/* Select the lob/biile from the Mulimedia table %

void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISveCix *svchp;

OClIStatement *stmthp;

OCIEmor *enhp;

OCIDefine *dfnhp;

OClLobLocator*Lob_loc;

5-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN

text *selstmt;
{
/* Prepare the SQL select statement %/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/*Call define for the bfile column */

checkerr (errhp, OCIDefineByPos(stmhp, &dinhp, errhp, 1,
(dvoid®&Lob loc, 0, SQLT_BFILE,
(dvoid %0, (b2 %)0, (ub2*)0,
OCI_DEFAULT));

/* Execute the SQL select staterment %/
checkerr (erhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
(CONST OClSnapshoat*) 0, (OClISnapshat®) O,
(ub4) OCI_DEFAULT));
}
void BfileFileOpen(envhp, svchp, stmthp, errhp, dinhp)
OCIEnv *envhp;
OCISveCix *svchp;
OClStatement *stmthp;
OCIEnor *enhp;
OClIDefine *dfnhp;
{
/*Assume all handlles passed as inptit to this routine have been
allocated and initialized.
Y

OCILobLocator *bfile_loc;

*Allocate the locator descriptor ¥/

(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid) &bifile_loc,
(Ub4) OC|_ DTYPE_FILE,
(size_1)0, (dvoid) 0)

/* Set the Biile Locator Information %

checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
(CraText*)'PHOTO_DIR", (ub2)strlen('PHOTO_DIR"),
(OraText*)'"Lincoln_photo”,
(ub2)strien("Lincoln_photo'))));

checkerr(errhp, OCILobOpen(svchp, errhp, bfile_loc,

(UbL)OCI_FILE_READONLY));
/... Do some processing. %/
checkerr(errhp, OCILobClose(svchp, erthp, biile_loc));

External LOBs (BFILES) 5-61

Open a BFILE with OPEN

/* Free the locator descriptor ¥/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

Example: Open a BFILE with OPEN Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. OPEN-BFILE.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERD PIC X(11) VALUES "USER1USERL".
01 SRCBFILE SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
OPEN-BFILE.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.
MOVE "washington_audio” TO FNAME-ARR.
MOVE 16 TO FNAME-LEN.

* Assign directory alias and file name to BFILE:
EXEC SQL
LOB FILE SET :SRC-BFILE
DIRECTORY = :DIR-ALIAS, FILENAME = :FNAME
END-EXEC.

5-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN

*Open the BFILE read only:
EXEC SQL
LOB OPEN :SRC-BFILE READ ONLY
END-EXEC.

*Close the LOB:
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.

*And free the LOB locator:
EXEC SQL FREE :SRC-BFILE END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Open a BFILE with OPEN Using C++ (Pro*C/C++)

/*In Pro*C/C++ there is only one form of OPEN that is used for OPENIing
BFILEs. There is no FILE OPEN, only a simple OPEN staterment: %/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;

External LOBs (BFILES) 5-63

Open a BFILE with OPEN

exit(1);
}

void openBFILE_proc()

OCIBFileLocator *Lob loc;
char*Dir="PHOTO_DIR", *Name ="Lincoln_photo";

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Initalize the Locator: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/Openthe BFILE: %/
EXEC SQL LOB OPEN :Lob loc READ ONLY;
/... Do some processing: ¥/
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL FREE :Lob loc;
}

void main()
{
char*samp ="samp/samp";
EXEC SQL CONNECT :samp;
openBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Open a BFILE with OPEN Using Visual Basic (0040)

Dim OraDyn as OraDynaset, OraPhoto as OraBFile, OraMusic as OraBFile
Set OraDyn = OraDb.CreateDynaset('select * from Multimedia_tab",ORADYN_DEFAULT)

Set OraMusic = OraDyn.Fields("Music') Value

Set OraPhoto = OraDyn.Fields("Photo") Value

‘Go to the last rowand open Bifile for reading:
OraDyn.Movelast
OraPhoto.Open 'Open Bfile for reading

‘Do some processing:
OraPhoto.Close

Example: Open a BFILE with OPEN Using Java (JDBC)

//Java IO classes:

5-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN

import javaLio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex4_41

{
public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC diver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp’);

conn.setAutoCommit (false);

// Create a Statement:
Staterment stmt = conn.createStatement ();

try

{
BFILE src_lob=null;

ResultSet rset = null;

rset = stmt.executeQuery (
"SELECT BFILENAME(PHOTO_DIR, 'Lincoln_photo’) FROM DUAL");
if (rsetnext())
{
src_lob = ((OracleResultSet)rset).getBFILE (1);

// openfFile() delegates to oracle jdbc.dbaccess.DBAccess.fleOpen():
src_lob.openFile();

External LOBs (BFILES) 5-65

Open a BFILE with OPEN

System.out.printin (the file is now open’);
}

// Close the BFILE, staterment and connection:
src_lob.closeFile();
stmt.close();
conn.commit();
conn.close();

}

catch (SQLException €)

{
e.printStackTrace();

}

}
}

5-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Two Ways to See If a BFILE is Open

Two Ways to See If a BFILE is Open

Figure 5-15 Use Case Diagram: Two Ways to See If a BFILE is Open

External LOBs

X

User/
Program

|

see if the
BFILE is open

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

As you can see by comparing the code, these alternative methods are very similar.
However, while you can continue to use the older FILEISOPEN form, we strongly

recommend that you switch to using ISOPEN because this facilitates future
extensibility.

a. "See If the BFILE is Open with FILEISOPEN" on page 5-69
b. "See If the BFILE is Open Using ISOPEN" on page 5-74

Maximum Number of Open BFILES

A limited number of BFILE s can be open simultaneously per session. The

maximum number is specified by using the SESSION_MAX_OPEN_FILES
initialization parameter.

SESSION_MAX_OPEN_FILESlefines an upper limit on the number of
simultaneously open files in a session. The default value for this parameter is 10.
That is, a maximum of 10 files can be opened simultaneously per session if the
default value is utilized. The database administrator can change the value of this
parameter in the init .ora file. For example:

External LOBs (BFILES) 5-67

Two Ways to See If a BFILE is Open

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILE&alue then
you will not be able to open any more files in the session. To close all open files, use
the FILECLOSEALL call.

5-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open with FILEISOPEN

See If the BFILE is Open with FILEISOPEN

Figure 5-16 Use Case Diagram: See If the BFILE is Open Using FILEISOPEN

External LOBs

X

User/
Program

]

see if the

© sceifthe BFILEis OPEN | _
with FILEISOPEN BFILE is open

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

While you can continue to use the older FILEISOPEN form, we strongly recommend
that you switch to using ISOPEN because this facilitates future extensibility. his
example queries whether the a BFILE associated with Music is open that is.

« "Example: See If the BFILE is Open with FILEISOPEN Using PL/SQL (DBMS _
LOB Package)" on page 5-70

« "Example: See If the BFILE is Open with FILEISOPEN Using C (OCI)" on
page 5-70

« "Example: See If the BFILE is Open with FILEISOPEN Using Visual Basic
(O040)" on page 5-72

« "Example: See If the BFILE is Open with FILEISOPEN Using Java (JDBC)" on
page 5-72

External LOBs (BFILES) 5-69

See If the BFILE is Open with FILEISOPEN

Example: See If the BFILE is Open with FILEISOPEN Using PL/SQL (DBMS_LOB
Package)

/*Note that the example procedure seelfOpenBFILE_procOne is not part of the
DBMS _LOB package: %/

CREATE OR REPLACE PROCEDURE seelfOpenBFILE_procOne IS

Lob loc BFILE;
RetVal INTEGER;
BEGIN

/* Select the LOB, initializing the BFILE locator: %/
SELECT Music INTO Lob_loc FROM Multimedia_tab
WHERE Clip ID=3;
RetVal := DBMS_LOB.FILEISOPEN(Lob _loc);
IF (RetVal=1)
THEN
DBMS_OUTPUT.PUT_LINE(File is open);
ELSE
DBMS_OUTPUT.PUT_LINE(File is not open);
ENDIF;
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(Operation failed);
END;

Example: See If the BFILE is Open with FILEISOPEN Using C (OCl)

/* Select the lob/biile from the Mulimedia table %/
void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)

OCISveCix *svchp;
OClStatement *stmthp;
OCIEmor *enhp;
OCIDefine *dfnhp;
OClLobLocator*Lob _loc;
text *selstmt;
{
/* Prepare the SQL select staterment ¥/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/*Call define for the bfile colurmn %/

checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, erhp, 1,
(dvoid»&Lob loc,0, SQLT_BFILE,

5-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open with FILEISOPEN

}

(dvoid %)0, (b2 *)0, (ub2 *)0,
OCI_DEFAULT));

/* Execute the SQL select staterment ¥/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, erthp, (ub4) 1, (ub4) O,
(CONST OClSnapshat*) 0, (OClSnapshot*) O,
(ub4) OCI_DEFAULT));

boolean BfilelsOpen(envhp, svchp, stmthp, erthp, dinhp)
OCIEnv *envhp;

OCISveCix *svehp;

OClStatement *stmthp;

OCIEnor *errhp;

OCIDefine *dfnhp;

{

}

/*Assume all handlles passed as inptit to this routine have been
allocated and initalized.
Y

OClLobLocator *bfile_loc;
boolean flag;

/*Allocate the locator descriptor %/

(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid) &bifile_loc,
(Ub4) OC|_ DTYPE_FILE,
(size_1)0, (dvoid) 0)

/*Select the bfile %/
selectlob(svchp, stmthp, errhp, dfnhp, bfile_loc,
"SELECT Music FROM Mulimedia_tab WHERE Clip_ID=3");
boolean flag;
checkerr(errhp, OCILobFilelsOpen(svchp, errhp, bfile_loc,
&flag));
/* Free the locator descriptor %/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCl_DTYPE_FILE);
return(flag);

External LOBs (BFILEsS) 5-71

See If the BFILE is Open with FILEISOPEN

Example: See If the BFILE is Open with FILEISOPEN Using Visual Basic (0040)

Note: At the present time, OO40 only offers ISOPEN to test
whether or not a BFILE is open (see "Example: See If the BFILE is
Open with FILEISOPEN Using Visual Basic (OO40)" on page 5-72).

Example: See If the BFILE is Open with FILEISOPEN Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sql.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResuitSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex4_45
{

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC diver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =

DriverManager.getConnection ('jdbc:oracle:oci8:@", "samp", "samp’);
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

5-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open with FILEISOPEN

BFILE src_lob =null;
ResultSet rset = nul;
Boolean result = null;

rset = stmt.executeQuery (

"SELECT BFILENAME(PHOTO _DIR,, 'Lincoln_photo) FROM DUAL");
if (rsetnext()
{

src_lob = ((OracleResultSet)rset).getBFILE (1);

}

resutt = new Boolean(src_lob.plsql_filelsOpen());
System.out.printin
"result of filelsOpen() before opening file : " + result.toString());

src_lob.pisql_fileOpen();

resutt = new Boolean(src_lob.plsql_filelsOpen());
System.out.printin
"result of filelsOpen() after opening file : " + result.toString());

// Close the BFILE, statement and connection:
src_lob.pisql_fileClose();
stmt.close);
conn.commit();
conn.close();

}

catch (SQLException €)

{
e.printStackTrace();

}

}
}

External LOBs (BFILES) 5-73

See If the BFILE is Open Using ISOPEN

See If the BFILE is Open Using ISOPEN

Figure 5-17 Use Case Diagram: See If the BFILE is Open Using FILEISOPEN

External LOBs

S

User/
Program

]

/

See if the BFILE is OPEN
with ISOPEN

see if the
BFILE is open

Scenario

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

This example queries whether the a BFILE is open that is associated with Music .

"Example: See If the BFILE is Open with ISOPEN Using PL/SQL (DBMS_LOB
Package)" on page 5-75

"Example: See If the BFILE is Open with ISOPEN Using C (OCI)" on page 5-75

"Example: See If the BFILE is Open with ISOPEN Using COBOL (Pro*COBOL)"
on page 5-76

"Example: See If the BFILE is Open with ISOPEN Using C++ (Pro*C/C++)" on
page 5-78

"Example: See If the BFILE is Open with ISOPEN Using Visual Basic (O040)"
on page 5-79

"Example: See If the BFILE is Open with ISOPEN Using Java (JDBC)" on
page 5-80

5-74 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open Using ISOPEN

Example: See If the BFILE is Open with ISOPEN Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure seelfOpenBFILE_procTwo s not part of the
DBMS_LOB package: %/
CREATE OR REPLACE PROCEDURE seelfOpenBFILE_procTwo IS

Lob loc BFILE;
Retval INTEGER;
BEGIN

/*Select the LOB, initializing the BFILE locator: %/
SELECT Music INTO Lob_loc FROM Multimedia_tab
WHERE Clip_ID=35;
RetVal:=DBMS_LOB.ISOPEN(Lab_loc);
IF (Retval = 1)
THEN
DBMS_OUTPUT.PUT_LINE(File is open’);
ELSE
DBMS_OUTPUT.PUT_LINE(File is not open);
ENDIF;
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(Operation failed);
END;

Example: See If the BFILE is Open with ISOPEN Using C (OCI)

/* Select the lob/bile from the Mulimedia table %
void selectlob(svchp, stmthp, errhp, dfinhp, Lob_loc, selstmt)
OCISveCix *svechp;
OClStatement *stmthp;
OCIEmor *errhp;
OCIDefine *dfnhp;
OClLobLocator *Lob_loc;
text *selstmt;
{
/* Prepare the SQL select staterment %/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Call define for the biile column ¥/

checkerr (errhp, OCIDefineByPos(stmhp, &dinhp, erhp, 1,
(dvoid*)&Lob_loc, 0, SQLT_BFILE,
(dvoid %0, (b2 %0, (ub2 *)0,
OCI|_DEFAULT));

External LOBs (BFILES) 5-75

See If the BFILE is Open Using ISOPEN

/* Execute the SQL select staterment %/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OCISnapshat®) O,
(ub4) OCI_DEFAULT));
}
boolean BfilelsOpen(envhp, svchp, stmthp, erhp, dinhp)
OCIEnv *envhp;
OCISvcCix *svchp;
OClStatement *stmthp;
OCIEnor *erthp;
OClIDefine *dfnhp;
{
/*Assume all handlles passed as inptit to this routine have been
allocated and initalized.
Y

OCILobLocator *bfile_loc;
boolean flag;

/*Allocate the locator descriptor

(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid *¥) &bfile_loc,
(ub4) OCI_DTYPE_FILE,
(size_t) O, (dvoid **) 0)

/* Select the bfile %/
selectlob(svchp, stmthp, enthp, dinhp, biile_loc,
"SELECT Music FROM Multimedia._tab WHERE Clip_ID=3";

boolean flag;

checkerr(errhp, OCILobFilelsOpen(svchp, errhp, bfile_loc,
&flag));

/* Free the locator descriptor %/

OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCl_DTYPE_FILE);

retum(fiag);

Example: See If the BFILE is Open with ISOPEN Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BFILEHS-OPEN.
ENVIRONMENT DIVISION.
DATADIVISION.

5-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open Using ISOPEN

WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERLJUSER1".
01 BFILE1 ~ SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 ISOPEN PIC S9(9) COMP.

01 ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILEIS-OPEN.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

*Allocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
EXEC SQL

SELECT PHOTO INTO :BFILE1

FROM MULTIMEDIA TABWHERE CLIP_ID=3
END-EXEC.

*Use the LOB DESCRIBE to see iflob is open:
EXEC SQL
LOB DESCRIBE :BFILE1 GET ISOPEN INTO :IS-OPEN
END-EXEC.
IFISOPEN=1
* Logic for an open BFILE goes here
DISPLAY "BFILE is open.”
ELSE
* Logic for a closed BFILE goes here
DISPLAY "BFILE is closed.”"
END-IF.

* And free the LOB locator:

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

External LOBs (BFILES) 5-77

See If the BFILE is Open Using ISOPEN

EXEC SQL FREE :BFILE1 END-EXEC.
EXEC SQL

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: See If the BFILE is Open with ISOPEN Using C++ (Pro*C/C++)

/*In Pro*C/C++, there is only one form of ISOPEN used to determine whether
ornotaBFILE is OPEN. Thereis no FILE IS OPEN, only a simple ISOPEN.
This is an attribute used in the DESCRIBE statement: %/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void seelfOpenBFILE_proc()

{
OCIBFileLocator *Lob loc;
intisOpen;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

5-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open Using ISOPEN

EXEC SQL ALLOCATE :Lob_loc;
/* Select the BFILE irtto the locator: %/
EXEC SQL SELECT Music INTO :Lob_loc FROM Mulimedia._tab
WHEREClip ID=3;
/*Determine ifthe BFILE is OPEN or not: %/
EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN into :isOpen;
if (sSOpen)
printf("BFILE is open\n®);
else
printf('BFILE is not open\n®);
/* Note that in this example, the BFILE is not open: */
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
seelfOpenBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: See If the BFILE is Open with ISOPEN Using Visual Basic (0040)

Note that this code fragment assumes a ORABFILE object as the result of a
dynaset operation. This object could have been an OUT parameter of a PL/SQL
Jprocedure. For more information please refer to chapter 1:

Dim OraDyn as OraDynaset, OraMusic as OraBFile, amount_read%, chunksize%, chunk

chunksize = 32768
Set OraDyn = OraDb.CreateDynaset("select * from Mulimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music')

If OraMusic.IsOpen then

Processing given that the file is already open:
Else

Processing given that the file is not gpen, or retum an error:
End If

External LOBs (BFILES) 5-79

See If the BFILE is Open Using ISOPEN

Example: See If the BFILE is Open with ISOPEN Using Java (JDBC)

//Java lO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex4_48
{

public static void main (String args [])
throws Exception
{
// Load the Oracle JDBC driver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp');

conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE src_lob=null;

ResultSet rset = null;
Boolean result = null;

rset = stmt.executeQuery (

"SELECT BFILENAME(PHOTO_DIR, 'Lincoln_photo’) FROM DUAL'");
if (rsetnext())

5-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open Using ISOPEN

{
src_lob = ((OracleResultSet)rset).getBFILE (1);

}

result =new Boolean(src_lob.isFileOpen());

System.out.printin(
"result of filelsOpen() before opening file : " + result. toString());

src_lob.openFile();

result =new Boolean(src_lob.isFileOpen());

System.out.printin(
"result of filelsOpen() after opening file : "' + result.toString());

// Close the BFILE, staterment and connection:
src_lob.closeFile();

stmt.close();

conn.commit();

conn.close();

}

catch (SQLException €)
e.printStackTrace();

}

}
}

External LOBs (BFILEs) 5-81

Display the BFILE Data

Display the BFILE Data

Figure 5-18 Use Case Diagram: Display the BFILE data

User/
Program

© o]
(2]
o8 =2
w £ =z
cd >0 o
| oF o
B ol o » @
. o® o= mnnu
H © QL o
' T o
H
H
1 AA :
L] . . L]
H Ly I :
Pt :
H ' ' @
H e . o
H
H
H

Specify
FILE name

External LOBs

CEY 2 B

5-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario
This example opens and displays a BFILE is open that is associated with Music .

« "Example: Display the BFILE Data Using PL/SQL" on page 5-83

« "Example: Display the BFILE Data Using C (OCI)" on page 5-84

« "Example: Display the BFILE Data Using COBOL (Pro*COBOL)" on page 5-86
« "Example: Display the BFILE Data Using C++ (Pro*C/C++)" on page 5-88

« "Example: Display the BFILE Data Using Visual Basic (OO40)" on page 5-90

« "Example: Display the BFILE Data Using Java (JDBC)" on page 5-90

Example: Display the BFILE Data Using PL/SQL

/* Note that the example procedure displayBFILE _proc is not part of the
DBMS _LOB package: ¥
CREATE OR REPLACE PROCEDURE displayBFILE_proc IS
Lob_loc BFILE;
Buffer RAW(1024);
Amount BINARY_INTEGER :=1024;
Position INTEGER =1;
BEGIN
/*Selectthe LOB: %/
SELECT Music INTO Lob loc
FROM Mulimedia_tab WHERE Clip_ID=1,
/*QOpening the BFILE: %
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLYY);
LOOP
DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
/*Display the buffer contents: %/
DBMS_OUTPUT.PUT_LINE(utl_raw.cast_to_varchar2(Buffer));
Position := Position + Amount,
END LOOP;
/*Closing the BFILE: %/
DBMS_LOB.CLOSE (Lob_loc);
EXCEPTION

External LOBs (BFILEsS) 5-83

Display the BFILE Data

WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE(ENd of data);
END;

Example: Display the BFILE Data Using C (OCI)

/* Select the lob/bile from the Mulimedia table %
void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISvcCix *svchp;
OClStatement *stmthp;
OCIEmor *enhp;
OCIDefine *dfnhp;
OClLobLocator *Lob_loc;
text *selstmt;
{
/* Prepare the SQL select staterment ¥/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Call define for the bfile column %/

checkerr (errhp, OCIDefineByPos(stmhp, &dinhp, erhp, 1,
(dvoid*)&Lob_loc, 0, SQLT_BFILE,
(dvoid *)0, (b2 %)0, (ub2*)0,
OCI_DEFAULT));

/* Execute the SQL select staterment %/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OCISnapshat®) O,
(ub4) OCI_DEFAULT));

}
#define MAXBUFLEN 32767

void BfileDisplay(envhp, svchp, stmthp, errhp, dfnhp)
OCIEnv *envhp;

OCISveCix *svchp;

OClStatement *stmthp;

OCIEnor *erhp;

OCIDefine *dfnhp;

/*Assume all handlles passed as inpuit to this routine have been

allocated and initialized.
¥

5-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data

OCILobLocator *bfile_loc;
ubl bufpMAXBUFLEN];
ub4 buflen, amt, offset;
boolean done;

ub4 retval;

/*Allocate the locator descriptor ¥/

(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
(ub4) OCI_DTYPE_FILE,
(size_1) 0, (dvoid **) 0)

* Select the bfile */
selectlob(svchp, stmthp, errhp, dinhp, bfile_loc,
"SELECT Music FROM Mulimedia_tab WHERE Clip_ID=3");

ubl bufp[MAXBUFLEN];
ub4 buflen, amt, offset;
boolean done;

ub4 retval;

checkerr(errhp, OCILobFileOpen(svchp, erhp, biile_loc,
OCI_FILE_READONLY));
/* This example will READ the entire contents of a BFILE piecewise into a
buffer using a standard polling method, processing each buffer piece
after every READ operation until the entire BFILE has been read. */
/* Setting amt = 0 will read till the end of LOB*/
amt=0;
buflen = sizeof(bufp);
/* Process the data in pieces ¥
offset=1;
memset(bufp, \0', MAXBUFLEN);
done = FALSE;
while (Idone)
{
retval = OClLobRead(svchp, erhp, bfile_loc,
&amt, offset, (dvoid *) bufp,
buflen, (dvoid *)0,
(sb4 (*)(dvoid *, dvoid *, ub4, ub1)) O,
(ub2) 0, (ubl) SQLCS_IMPLICIT);

switch (retval)

{

case0: /*Only one piece or last piece”/
/* process the data in bufp. amt will give the amount of data
Just read in bufp. This is in bytes for BLOBs and in characters
for fixed width CLOBS and in bytes for variable width CLOBs*/

External LOBs (BFILEsS) 5-85

Display the BFILE Data

done=TRUE;
break;
case-1:
/ report_eror(); this function is not shown here
done =TRUE;
break;
case OCI_NEED DATA: /* There are 2 or more pieces
/* process the data in bufp. amt will give the amount of
data just read in bufp. This is in bytes for BFILEs and i
characters for fixed width CLOBS and in bytes for variable
width CLOBs ¥/
break;
default
(void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
done=TRUE;
break;
} /*swiich %/
} Hwhile %

/*Closing the BFILE is mandatory if you have gpened it ¥/
checkerr (errhp, OCILobFileClose(svchp, erhp, bfile_loc));

/* Free the locator descriptor ¥/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE._FILE);

Example: Display the BFILE Data Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. DISPLAY-BFILE.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(9) VALUES "SAMP/SAMP".

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 DEST-BLOB SQL-BLOB.
01 SRCBFILE SQL-BFILE.
01 BUFFER PICX(5) VARYING.
01 OFFSET PIC S9(9) COMP VALUE 1.
0LAMT PIC S9(9) COMP.
01 ORASLNRD PIC 9(4).

5-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data

EXEC SQL END DECLARE SECTION END-EXEC.
01 D-AMTPIC 99,999,99.
EXEC SQL VAR BUFFER IS LONG RAW (100) END-EXEC.

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
DISPLAY-BFILE-DATA.

*Connectto ORACLE
EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator
EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

*Select the BFILE
EXEC SQL SELECT PHOTO INTO :SRC-BFILE
FROM MULTIMEDIA_TABWHERE CLIP_ID=3
END-EXEC.

*Open the BFILE
EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

* Set the amount = 0 will initiate the polling method
MOVE 0 TO AMT;
EXEC SQL
LOB READ :AMT FROM :SRC-BFILE INTO :BUFFER
END-EXEC.

* DISPLAY "BFILE DATA".
* MOVE AMT TO D-AMT.
* DISPLAY "First READ (", D-AMT, "): "BUFFER.

*Do READ-LOOP until the whole BFILE is read!.
EXEC SQL WHENEVER NOT FOUND GO TO END-LOOP END-EXEC.

READ-LOOP.
EXEC SQL

External LOBs (BFILEsS) 5-87

Display the BFILE Data

LOB READ :AMT FROM :SRC-BFILE INTO :BUFFER
END-EXEC.

* MOVE AMT TO D-AMT.
* DISPLAY "Next READ (", D-AMT, *): " BUFFER.

GO TO READ-LOORP.

END-LOOP.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

*Close the LOB
EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.

*And free the LOB locator
EXEC SQL FREE :SRC-BFILE END-EXEC.
EXEC SQL ROLLBACK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",

DISPLAY "ORACLE ERROR DETECTED ON LINE *, ORASLNRD, "".

DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Display the BFILE Data Using C++ (Pro*C/C++)

/* This example will READ the entire contents of a BFILE piecewise into a
buffer using a streaming mechanism via standard polling, displaying each
buffer piece after every READ operation until the entire BFILE has been
read: ¥/

#include <oci.h>

#include <stdio.h>

#include <sglca.h>

void Sample_Error()

5-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void displayBFILE_proc()
{
OCIBFileLocator *Lob loc;
int Amount;
struct{
short Length;
char Data[BufferL_ength];
}Buffer;
/* Datatype Equivalencing is Mandatory for this Datatype: %/
EXEC SQL VAR Buffer is VARRAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob_loc;
/*Select the BFILE: %/
EXEC SQL SELECT Music INTO :Lob _loc
FROM Mulimedia_tab WHERE Clip_ID =3,
/*Openthe BFILE: ¥
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/* Setting Amounit = 0 will initiate the polling method: %
Amount=0;
/* Set the maximum size of the Buffer: %
Buffer.Length = BufferLength;
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
/*Read a piece of the BFILE into the Buffer: %/
EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
printf('Display %od bytes\n”, Buffer.Length);
}
printf(Display %d bytes\n", Amount);
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL FREE :Lob loc;
}

void main()

{

External LOBs (BFILEsS) 5-89

Display the BFILE Data

char *samp ="samp/samp";

EXEC SQL CONNECT :samp;
displayBFILE._proc();

EXEC SQL ROLLBACK WORK RELEASE;

Example: Display the BFILE Data Using Visual Basic (O040)

Note that this code fragment assumes a ORABFILE object as the result of a
‘dynaset gperation. This object could have been an OUT parameter of a PL/SQL
Jprocedure. For more information please refer to chapter 1.

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, amount_read%, chunksize%, chunk
As Variant

Set MySession = CreateObject("OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “scottftiger”, 0&)

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset('select * from Mulimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value

OraMusic.offset =1
OraMusic.PolingAmount = OraMusic.Size 'Read entire BFILE contents

‘Open the Biile for reading:
OraMusic.Open
amount_read = OraMusic.Read(chunk, chunksize)

While OraMusic.Status = ORALOB_NEED DATA
amount_read = OraMusic.Read(chunk, chunksize)
Wend

OraMusic.Close

Example: Display the BFILE Data Using Java (JDBC)

//Java lO classes
import javaio.InputStream;
import java.io.OutputStream;

5-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display the BFILE Data

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sql.PreparedStatement,
import java.sgl.ResuitSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.*;
import oracle.jdbc.driver.;

public class Ex4_53

{

public static void main (String args [])

{

throws Exception

// Load the Oracle JDBC driver:
Class.forName (‘oracle.jdbc.driver.OracleDriver”);

// Connect to the database:
Connection conn=

DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

fry

{
BFILE src_lob=null;

ResultSet rset = null;

Boolean result = null;

InputStream in = null;

byte buff| = new byte[1000];
intlength=0;

boolean alreadyDisplayed =false;

rset = stmt.executeQuery (
"SELECT music FROM mulimedia_tab WHERE clip_id =2";

if (rsetnext())
{

External LOBs (BFILES)

5-91

Display the BFILE Data

src_lob = ((OracleResultSet)rset).getBFILE (1);
}

// Openthe BFILE:
src_lob.openFile();

// Get a handle to stream the data from the BFILE:
in=src_lob.getBinaryStream();

A/ This loap fills the buf iteratively, retrieving data
/ from the InputStream:
while ((in '= null) && ((length =in.read(buf)) I=-1))
{

//the data has alreadly been read into buf

#/ We will onlly display the first CHUNK in this example:

if (! alreadyDisplayed)

{
System.outprintin('Bytes read in: " + Integer toString(length));
System.out printin(new String(buf));
areadyDisplayed = true;

}

}

// Close the stream, BFILE, statement and connection:
in.close();
src_lob.closeFile();
stmt.close();
conn.commit();
conn.close();

}

catch (SQLException €)

{
e.printStackTrace();

}

}
}

5-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE

Read the Data from a BFILE

Figure 5-19 Use Case Diagram: Read the data from a BFILE

User/
Program

© o]
w
o=
+= Ll
= go ©
- &k <2 °
H o = 2
H © ee
.
o
H E
.
1 AA : :
o : :
" 1 "ssssssssssssssssssens -f ll
. Mssssssssssssssssssmnnnn -
:
.
H
.
:
n
m
S 2
— 3
© =
[[
c IS
)
]
<
w A
M eascss

a BFILE

close all
opened files

OR

FILE name

Specify

l-> B

External LOBs (BFILEsS) 5-93

Read the Data from a BFILE

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

When reading the LOBvalue, it is not an error to try to read beyond the end of the
LOB This means that you can always specify an input amount of 4 gigabytes
regardless of the starting offset and the amount of data in the LOB You do not need
to incur a round-trip to the server to call OCILobGetLength () to find out the
length of the LOBvalue in order to determine the amount to read.

For example, assume that the length of a LOBis 5,000 bytes and you want to read
the entire LOBvalue starting at offset 1,000. Also assume that you do not know the
current length of the LOBvalue. Here is the OCI read call, excluding the
initialization of all parameters:

#define MAX_LOB_SIZE 4294967295

ub4 amount= MAX_LOB_SIZE;

ub4 offset=1000;

OCILobRead(svchp, erthp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

Note: The most efficient way to read large amounts of LOB data is
to use OCILobRead () with the streaming mechanism enabled via
polling or a callback.

The following example considers reading a photograph into PHOTGrom a BFILE
'PHOTO_DIR..

« "Example: Read the Data from a BFILE Using PL/SQL (DBMS_LOB Package)"
on page 5-95

« "Example: Read the Data from a BFILE Using C (OCI)" on page 5-95

« "Example: Read the Data from a BFILE Using COBOL (Pro*COBOL)" on
page 5-97

« "Example: Read the Data from a BFILE Using C++ (Pro*C/C++)" on page 5-98

« "Example: Read the Data from a BFILE Using Visual Basic (OO40)" on
page 5-99

5-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE

« "Example: Read the Data from a BFILE Using Java (JDBC)" on page 5-100

Example: Read the Data from a BFILE Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure readBFILE_proc is not part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE readBFILE_proc IS
Lob loc BFILE :=BFILENAME(PHOTO_DIR', Jefferson_photo);
Amount INTEGER :=32767;
Posiion INTEGER =1;
Buffer RAW(32767);
BEGIN
/*Selectthe LOB: ¥/
SELECT Photo INTO Lob_loc FROM Multimedia_tab
WHERE Clip ID=3;
/*Openthe BFILE: %/
DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
/*Read data: ¥/
DBMS_LOB.READ(Lab_loc, Amount, Position, Buffer);
/*Close the BFILE: %
DBMS_LOB.CLOSE(Lob_loc);
END;

Example: Read the Data from a BFILE Using C (OCl)

/* Select the lob/bile from the Mulimedia table %
void selectl_ob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISveCtx *svchp;
OClStatement *stmthp;
OCIEmor *erhp;
OCIDefine *dfnhp;
OClILobLocator *Lob_loc;
text *selstmt
{
/* Prepare the SQL select statement ¥/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Call define for the bfile column %/

checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, errhp, 1,
(dvoid®)&Lob_loc, 0, SQLT_BFILE,
(dvoid %0, (Ub2 %)0, (ub2*)0,

External LOBs (BFILES) 5-95

Read the Data from a BFILE

OC|_DEFAULT));

/* Executte the SQL select staternent ¥/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshat*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));
}
#define MAXBUFLEN 32767
void BfleRead(envhp, svchp, stmthp, errhp, dinhp)
OCIEnv *envhp;
OCISvcCix *svchp;
OClStatement *stmthp;
OCIEnor *errhp;
OCIDefine *dfnhp;

/*Assume all handles passed as inpuit to this routine have been
allocated and initalized.
Y

OClLobLocator *bfile_loc;
ubl bufpMAXBUFLEN];
ub4 bufien, amt, offset;
boolean done;

/*Allocate the locator descriptor %/
(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid) &bifile_loc,
(Ub4) OCI_DTYPE_ FILE,
(size_1)0, (dvoid *) 0)

/* Select the bile %/
selectlob(svchp, stmthp, errhp, dinhp, bfile_loc,
"SELECT Photo FROM Muttimedia_tab WHERE Clip_ID=3");

ubl bufp[MAXBUFLEN];
ub4 buflen, amt, offset;
boolean done;

checken(errhp, OCILobFileOpen(svchp, erhp, biile_loc,
OC|_FILE_READONLY));

amt=MAXBUFLEN;

buflen = sizeof(bufp);

/* Process the data in pieces ¥/

offset=1;

memset(bufp, \0', MAXBUFLEN);

5-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE

done=FALSE;

checkerr(errhp, OCILobRead(svchp, erhp, biile_loc, &amt, offset,
(cdvoid *) bup, bufien, (dvoid *)0,
(sb4 (*)(avoid *, dvoid *, ub4, ub1)) O,
(Ub2) 0, (Ub1) SQLCS_IMPLICIT));

/*Closing the BFILE is mandatory if you have opened it ¥/
checkerr (errhp, OCILobFileClose(svchp, errhp, bfile_loc));

/* Free the locator descriptor %/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCl_DTYPE_FILE);

Example: Read the Data from a BFILE Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. READ-BFILE.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 BFLE1 SQL-BFILE.

01 BUFFER2 PIC X(5) VARYING.

0L AMT PIC S9(9) COMP.

01 OFFSET PIC S9(9) COMP VALUE 1.

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC SQL VAR BUFFER2 IS LONG RAW/(5) END-EXEC.

PROCEDURE DIVISION.
READ-BFILE.

*Allocate and initialize the CLOB locator
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.

EXEC SQL
SELECT MUSIC INTO :BFILE1
FROM MULTIMEDIA TABMWHERE M.CLIP_ID=3
END-EXEC.
*Open the BFILE
EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

External LOBs (BFILES) 5-97

Read the Data from a BFILE

* Initiate polling read
MOVE 0 TO AMT.

EXEC SQL LOB READ :AMT FROM :BFILE1
INTO :BUFFER2 END-EXEC.

*

* Display the data here.
*

* Close and free the locator
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.

Example: Read the Data from a BFILE Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 4096

void readBFILE_proc()
{
OCIBFileLocator *Lob loc;
/* Amount and BufferLength are equal so only one READ is necessary: ¥/
int Amount = BufferLength;
char Buffer[BufferLength];
/* Datatype Equivalencing is Mandatory for this Datatype: ¥/
EXEC SQL VAR Buffer IS RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

5-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read the Data from a BFILE

EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Photo INTO :Lob_loc

FROM Mulimedia_tab WHERE Clip_ID=3;
/Openthe BFILE: %/
EXEC SQL LOB OPEN :Lob _loc READ ONLY;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
/*Read data: ¥/
EXEC SQL LOB READ :Amount FROM :Lob _loc INTO :Buffer;
printf("Read %d bytes\n", Amount);
/*Close the BFILE: %
EXEC SQL LOB CLOSE :Lob_loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
readBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Read the Data from a BFILE Using Visual Basic (0040)

Example: Read the Data from a BFILE Using Visual Basic (OO40)

Note that this code fragment assumes a ORABFILE object as the result of a
‘dynaset gperation. This object could have been an OUT parameter of a PL/SQL
Jprocedure. For more information please refer to chapter 1:

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, amount_read%, chunksize%, chunk
As Variant

Set MySession = CreateObject("OraclelnProcServer. XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “scottftiger”, 0&)

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset('select * from Mulimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields('Music").Value

OraMusic.offset =1
OraMusic.PolingAmount = OraMusic.Size 'Read entire BFILE contents

External LOBs (BFILES) 5-99

Read the Data from a BFILE

‘Open the Bfile for reading:
OraMusic.Open
amount_read = OraMusic.Read(chunk, chunksize)

While OraMusic.Status = ORALOB_NEED_DATA
amount_read = OraMusic.Read(chunk, chunksize)
Wend

OraMusic.Close

Example: Read the Data from a BFILE Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sql.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex4 53
{

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC dhver:
Class.forName (‘oracle.jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =

DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp’);
conn.setAutoCommit (false);

// Create a Statement

5-100 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Read the Data from a BFILE

Staterent stmt = conn.createStatement ();

try

{

BFILE src_lob=null;
ResultSet rset = null;
Boolean result = null;
InputStream in = null;
byte buff] = new byte[1000];
intlength=0;
boolean alreadyDisplayed =false;
rset = stmt.executeQuery (
"SELECT music FROM mutimedia._tab WHERE clip_id=2");
if (rsetnext())

src_lob = ((OracleResultSet)rset).getBFILE (1);
}

// Openthe BFILE:
src_lob.openFile();

// Geta handle to stream the data from the BFILE:
in=src_lob.getBinaryStream();

// This loap fills the buf iteratively, retrieving data
//from the InputStream:

while ((in = null) && ((length = in.read(buf)) '=-1))
{

//the data has alreadly been read into buf

#/ We will only display the first CHUNK in this example:
if (! elreadyDisplayed)
{

System.out.printin("Bytes read in: " + Integer.toString(length));
System.out.printin(new String(buf));
alreadyDisplayed = true;
}
}

// Close the stream, BFILE, statemenit and connection:
in.close();

src_lob.closeFile();

stmt.close();

conn.commit();

conn.close();

External LOBs (BFILEs) 5-101

Read the Data from a BFILE

}
catch (SQLException €)

e.printStackTrace();
}
}
}

5-102 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Read a Portion of the BFILE Data (substr)

Read a Portion of the BFILE Data (substr)

Figure 5-20 Use Case Diagram: Read a portion of the BFILE data (substr)

External LOBs

v

Initialize
OR\ a BFILE locator,

Specify
“»{ BFILE name

open
a BFILE

read a
portion of the
BFILE data
(substr)

OR

close all
opened files

User/
Program

External LOBs (BFILEs) 5-103

Read a Portion of the BFILE Data (substr)

Scenario

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

The following example considers reading an audio recording into RECORDINGrom
a BFILE 'AUDIO_DIR’ .

« "Example: Read a Portion of the BFILE Data (substr) Using PL/SQL (DBMS _
LOB Package)" on page 5-104

« "Example: Read a Portion of the BFILE Data (substr) Using COBOL
(Pro*COBOL)" on page 5-105

« "Example: Read a Portion of the BFILE Data (substr) Using C++ (Pro*C/C++)"
on page 5-106

« "Example: Read a Portion of the BFILE Data (substr) Using Visual Basic
(O040)" on page 5-107

« "Example: Read a Portion of the BFILE Data (substr) Using Java (JDBC)" on
page 5-107

Example: Read a Portion of the BFILE Data (substr) Using PL/SQL (DBMS_LOB

Package)

/*Note that the example procedure substringBFILE._proc is not part of the
DBMS _LOB package: ¥
CREATE OR REPLACE PROCEDURE substringBFILE. proc IS
Lob loc BFILE;
Posiion INTEGER =1;
Buffer ~ RAW(32767);
BEGIN
/*Selectthe LOB: ¥/
SELECT Mtab.Voiced_ref.Recording INTO Lob_loc FROM Mulimedia_tab Mtab
WHERE Mtab.Clip ID=3;
/*Openthe BFILE: %/
DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
Buffer .= DBMS_LOB.SUBSTR(Lob _loc, 255, Position);
/*Close the BFILE: %/
DBMS_LOB.CLOSE(Lob_loc);
END;

5-104 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Read a Portion of the BFILE Data (substr)

Example: Read a Portion of the BFILE Data (substr) Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID.

ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 BFILE1 SQL-BFILE.
01 BUFFER2 PIC X(32767) VARYING.
0L AMT PIC S9(9) COMP.

01 POS PIC S9(9) COMP VALUE 1024,
01 OFFSET PIC S9(9) COMP VALUE 1.

EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.

PROCEDURE DIVISION.
BFILE-SUBSTR.

* Allocate and initialize the CLOB locator:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.

EXEC SQL
SELECT MTAB.VOICED REF RECORDING INTO :BFILEL
FROM MULTIMEDIA TAB MTAB WHERE MTAB.CLIP_ID=3

END-EXEC.

*QOpen the BFILE for READ ONLY:
EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

*Execute PL/SQL to use its SUBSTR functionality:
MOVE 32767 TO AMT.
EXEC SQL EXECUTE
BEGIN
‘BUFFER2 :=DBMS_L OB.SUBSTR(:BFILE1,;AMT,:POS);
END;
END-EXEC.

* Close and free the locators:
EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

External LOBs (BFILEs) 5-105

Read a Portion of the BFILE Data (substr)

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXC SQL FREE :BFILE1 END-EXEC.

Example: Read a Portion of the BFILE Data (substr) Using C++ (Pro*C/C++)

/#* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS _LOB.SUBSTR()
function. However, Pro*C/C++ can interoperate with PL/SQL using anonymous
PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: %/

#include <oci.h>

#include <stdio.h>

#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 256

void substringBFILE._proc()
{
OCIBFileLocator *Lob loc;
int Position=1;
char BufferBufferLengthy;
EXEC SQL VAR Buffer IS RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob loc
FROM Mulimedia._tab Mtab WHERE Mtab.Clip ID=3;
/*Openthe BFILE: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/*Invoke SUBSTRY() from within an anonymous PL/SQL block: %
EXEC SQL EXECUTE
BEGIN
‘Buffer :=DBMS_LOB.SUBSTR(:.Lob _loc, 256, :Pasition);
END;
END-EXEC;
/*Close the BFILE: %
EXEC SQL LOB CLOSE :Lab _loc;

5-106 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Read a Portion of the BFILE Data (substr)

EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
substringBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Read a Portion of the BFILE Data (substr) Using Visual Basic (0040)

Note that this code fragment assumes a ORABFILE object as the result of a
‘dynaset gperation. This object could have been an OUT parameter of a PL/SQL
Jprocedure. For more information please refer to chapter 1:

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, amount_read%, chunksize%, chunk

Set MySession = CreateObject("OraclelnProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase(‘exampledh”, “scotiftiger”, 0&)

chunk_size = 32767
Set OraDyn = OraDh.CreateDynaset('select * from Multimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value
OraMusic.PolingAmount = OraMusic.Size 'Read entire BFILE contents
OraMusic.offset = 255 'Read from the 255th position
‘Open the Biile for reading:
OraMusic.Open
amount_read = OraMusic.Read(chunk, chunk_size) ‘chunk retumed is a variant of
type byte amay
If amount_read <> chunk_size Then
Do error processing
Else
Process the data
End If

Example: Read a Portion of the BFILE Data (substr) Using Java (JDBC)

/Java IO classes:
import java.io.InputStream;

External LOBs (BFILEs) 5-107

Read a Portion of the BFILE Data (substr)

import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.%;
import oracle jdbc.driver*;

public class Ex4._62
{

public static void main (String args [])
throws Exception
{
// Load the Oracle JDBC diver:
Class.forName ("oracle jdbc.driver.OracleDriver”);

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp’);

conn.setAutoCommit (false);

// Create a Statement:
Staternent stmt = conn.createStatement ();

try

{
BFILE src_lob=null;

ResultSet rset = null;
InputStream in = null;
byte buf] = new byte[1000];
intlength=0;
rset = stmt.executeQuery (
"SELECT music FROM mulimedia_tab WHERE clip_id =2";
if (rsetnext())

src_lob = ((OracleResultSet)rset).getBFILE (1);

5-108 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Read a Portion of the BFILE Data (substr)

}

/ Openthe BFILE:
src_lob.openFile();

I Geta handle to stream the data from the BFILE
in=src_lob.getBinaryStream();

if (in '= null)

{
A request 255 bytes into buf, starting from offset 1.
A length = # bytes actually retumed from stream:
length =in.read(buf, 1, 255);

System.out.printin('Bytes read in: " + Integer.toString(length));

/ Process the buf:
System.outprintin(new String(ouf));
}

// Close the stream, BFILE, statement and connection:
in.close();

src_lob.closeFile();

stmt.close();

conn.commit();

conn.close();

}
catch (SQLEXxception €)

e.printStackTrace();
}
}
}

External LOBs (BFILEs) 5-109

Compare All or Parts of Two BFILES

Compare All or Parts of Two

BFILES

Figure 5-21 Use Case Diagram: Compare all or parts of 2 BFILES

External LOBs

v

iy Initialize
_OR\ a BFILE locator) ==+
Specify
*-»| BFILE name

EEEEE 2 open
NS a BFILE

compare all
or parts of 2
BFILE

close

a BFILE

OR

close all
opened files

5-110 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

X

User/
Program

Compare All or Parts of Two BFILES

Scenario

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

The following example deals with the problem of determining whether a
photograph in the file ’PHOTO_DIR’ has already been used as a specific PHOTQy
comparing each data entity bit by bit. Note that LOBMAXSIZEis set at 4 gigabytes so
that you do not have to find out the length of each BFILE before beginning the
comparison.

« "Example: Compare All or Parts of Two BFILES Using PL/SQL (DBMS_LOB
Package)" on page 5-111

« "Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL)"
on page 5-112

« "Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL)"
on page 5-112

« "Example: Compare All or Parts of Two BFILES Using C++ (Pro*C/C++)" on
page 5-114

« "Example: Compare All or Parts of Two BFILES Using Visual Basic (O0O40)" on
page 5-115

« "Example: Compare All or Parts of Two BFILES Using Java (JDBC)" on
page 5-116

Example: Compare All or Parts of Two BFILES Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure compareBFILEs proc is not part of the
DBMS_LOB package: ¥
CREATE OR REPLACE PROCEDURE compareBFILEs_proc IS
/ Initialize the BFILE locator: %/
Lob_locl BFILE := BFILENAME(PHOTO _DIR’,'RooseveltFDR_photo);
Lob loc2 BFILE;
Retval INTEGER,;
BEGIN
P Selectthe LOB: */
SELECT Photo INTO Lob_loc2 FROM Mulimedia._tab
WHERE Clip_ID=3;
/*Openthe BFILES: %/

External LOBs (BFILEs) 5-111

Compare All or Parts of Two BFILES

DBMS_LOB.OPEN(LOb locl, DBMS_LOBLOB READONLYY;
DBMS_LOB.OPEN(LOb _loc2, DBMS_LOBLOB READONLYY);
Retval = DBMS_LOB.COMPARE(Lob loc2, Lob_loc1, DBMS_LOBLOBMAXSIZE, 1, 1);
/*Close the BFILEs:
DBMS_LOB.CLOSE(Lob_locd);
DBMS_LOB.CLOSE(Lob_loc2);

END;

Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAMH-D. BFILE-COMPARE.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERD PICX(11) VALUES "USERIUSERI".
01 BFILE1 SQL-BFILE.

01 BFILE2 SQL-BFILE.

01 RET PIC S9(9) COMP.

01 AMT PIC S9(9) COMP.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PICX(20) VARYING.

01 ORASLNRD PIC9().

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFIE-COMPARE.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BLOB locators:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.
EXEC SQL ALLOCATE :BFILE2 END-EXEC.

*Set up the directory and file information:

MOVE "PHOTO_DIR"TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.

5-112 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES

MOVE "fdroosevelt_photo" TO FNAME-ARR.
MOVE 17 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :BFILE1 DIRECTORY = DIR-ALIAS,
FILENAME = :FNAME

END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
EXEC SQL

SELECT PHOTO INTO :BFILE2

FROM MULTIMEDIA TABWHERE CLIP_ID=3
END-EXEC.

*Open the BLOBS for READ ONLY:
EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.
EXEC SQL LOB OPEN :BFILE2 READ ONLY END-EXEC.

* Execute PL/SQL to get COMPARE functionality:

MOVE 5 TO AMT.
EXEC SQL EXECUTE

BEGIN

‘RET :=DBMS_LOB.COMPARE(BFILE1,BFILE2,
AMT,1,1);

END;

END-EXEC.

IFRET=0
* Logic for equal BFILES goes here
DISPLAY "BFILES are equal"
ELSE
* Logic for unequal BFILES goes here
DISPLAY "BFILEs are not equal"
END-IF.

EXEC SQL LOB CLOSE :BFILE1 END-EXEC.
EXEC SQL LOB CLOSE :BFILE2 END-EXEC.

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.
EXEC SQL FREE :BFILE2 END-EXEC.
STOP RUN.

SQL-ERROR.

External LOBs (BFILEs) 5-113

Compare All or Parts of Two BFILES

EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL

ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Compare All or Parts of Two BFILES Using C++ (Pro*C/C++)

/* Pro*C/C++ lacks an equivalent embedded SQL form for the
DBMS_LOB.COMPARE() function. Like the DBMS_LOB.SUBSTR() function,
however, Pro*C/C++ can invoke DBMS_LOB.COMPARE() in an anonymous PL/SQL
block as is shown here: %

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void compareBFILES_proc()
{
OCIBFileLocator *Lob_loc1,*Lob loc2;
int Retval=1;
char*Dirl ="PHOTO_DIR", *Namel ="RooseveltFDR_photo';

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob locl;
EXEC SQL LOB FILE SET :Lob_loc1 DIRECTORY = :Dirl, FILENAME = Namel;
EXEC SQL ALLOCATE :Lob,_loc2;
EXEC SQL SELECT Photo INTO :Lob_loc2 FROM Mulimedia. tab
WHERE Cip_ID=3;

5-114 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES

#Openthe BFILEs: ¥/
EXEC SQL LOB OPEN :Lob locl READ ONLY;
EXEC SQL LOB OPEN :Lob loc2 READ ONLY;
/Compare the BFILEs in PL/SQL using DBMS_LOB.COMPARE() ¥/
EXEC SQL EXECUTE

BEGIN

‘Retval :=DBMS_LOB.COMPARE(
‘Lob_loc2, :Lob locl, DBMS_LOB.LOBMAXSIZE, 1, 1);

END;
END-EXEC;
/*Close the BFILEs: %/
EXEC SQL LOB CLOSE :Lob loc1;
EXEC SQL LOB CLOSE :Lob loc2;
if 0 = Retval)

printf("BFILEs are the same\n’Y);
else

printf("BFILES are not the same\n”);
/* Release resources used by the locators: %
EXEC SQL FREE :Lob_locl;
EXEC SQL FREE :Lob_loc2;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
compareBFILEs_procy();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Compare All or Parts of Two BFILES Using Visual Basic (0040)

Note that the PL/SQL packages and the tables mentioned here are not part of the
standard OO40 installation:

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, OraMyMusic As OraBfile, OraSal
As OraSqIStmt

Set MySession = CreateObject("OraclelnProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase(‘exampledh”, “scottftiger”, 0&)

OraDb.Connection.BeginTrans

External LOBs (BFILEs) 5-115

Compare All or Parts of Two BFILES

Set OraParameters = OraDb.Parameters
OraParameters.Add "id", 1001, ORAPARM_INPUT

Define out parameter of BFILE type:
OraParameters.Add "MyMusic", Empty, ORAPARM_OUTPUT
OraParameters('MyMusic’).ServerType = ORATYPE_BFILE

Set OraSql =
OraDb.CreateSq|(
"BEGIN SELECT music INTO :MyMusic FROM mulimedia_tab WHERE clip_id = :id;
END;", ORASQL_FAILEXEC)

Set OraMyMusic = OraParameters('MyMusic").Value

‘Create dynaset:
SetOraDyn =
OraDb.CreateDynaset(
"SELECT * FROM Mulimedia._tab WHERE Clip_Id = 1001", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value

‘Open the Biile for reading:
OraMusic.Open

OraMyMusic.Open

If OraMusic.Compare(OraMyMusic) Then
Process the daia

Else
‘Do error processing

End If

OraDb.Connection.CommitTrans

Example: Compare All or Parts of Two BFILES Using Java (JDBC)

//Java lO classes:
import javavio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl. Types;

import java.sgl.Statement,

import java.sgl.PreparedStatement;

5-116 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES

import java.sgl.ResultSet;
import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.;
import oracle jdbc.driver*;

public class Ex4_66

{

static final int MAXBUFSIZE = 32767;

public static void main (String args [])

{

throws Exception

// Load the Oracle JDBC dhiver:
Class.forName (‘oracle.jdbc.driver.OracleDriver");

// Connectto the database:
Connection conn=

DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp’);

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE lob_locl =nul;

BFILE lob_loc2 =nul;
ResultSet rset = nul;

rset = stmt.executeQuery (
"SELECT photo FROM mulimedia_tab WHERE clip_id =2");
if (rsetnext())

lob_locl = ((OracleResultSet)rset).getBFILE (1);
}

rset = stmt.executeQuery (

"SELECT BFILENAME(PHOTO_DIR;, 'music) FROM DUAL");
if (rsetnext())
{

External LOBs (BFILES)

5-117

Compare All or Parts of Two BFILES

lob_loc2 = ((OracleResultSet)rset).getBFILE (1);
}

if (ob_loc1.length() > lob_loc2.length())
System.out printin("Looking for LOB2 inside LOBL. result="+
Long.toString(lob_loc1.position(lob_loc2, Q)));
else
System.out.printin("Looking for LOB1 inside LOB2. result="+
Long.toString(lob_loc2.pasition(iob_locl, 0)));

stmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

5-118 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE

See If a Pattern Exists (instr) in the BFILE

Figure 5-22 Use Case Diagram

. See If a Pattern Exists in the BFILE

External LOBs

>

Specify
=»{ BFILE name

4..;

open

see wherelif
a pattern exists
in the BFILE
(instr)

X

User/
Program

close
a BFILE

OR

close all
opened files

External LOBs (BFILEs) 5-119

See If a Pattern Exists (instr) in the BFILE

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

The following example searches for the occurrence of a pattern of audio data within
an interview Recording . This assumes that an audio signature is represented by
an identifiable bit pattern.

« "Example: See If a Pattern Exists (instr) in the BFILE Using PL/SQL (DBMS _
LOB Package)" on page 5-120

« "Example: See If a Pattern Exists (instr) in the BFILE Using COBOL
(Pro*COBOL)" on page 5-121

« "Example: See If a Pattern Exists (instr) in the BFILE Using C++ (Pro*C/C++)"
on page 5-123

« "Example: See If a Pattern Exists (instr) in the BFILE Using Visual Basic
(O040)" on page 5-124

« "Example: See If a Pattern Exists (instr) in the BFILE Using Java (JDBC)" on
page 5-124

Example: See If a Pattern Exists (instr) in the BFILE Using PL/SQL (DBMS_LOB
Package)

/*Note that the example procedure instringBFILE_proc is not part of the
DBMS _LOB package: %/
CREATE OR REPLACE PROCEDURE instingBFILE._proc IS
Lob loc BFILE;
Pattem RAW(32767);
Posiion INTEGER;
BEGIN
/*Selectthe LOB: %/
SELECT Intab.Recording INTO Lob _loc
FROM THE(SELECT Mtab.InSeg_ntab FROM Mulimedia_tab Mtab
WHERE Clip_ID =3) Intab
WHERE Segment=1,
/#QOpenthe BFILE: %/
DBMS_LOB.OPEN(Lob _loc, DBMS_LOB.LOB_READONLY);
F Initialize the pattem for which to search, find the 2nd occurrence of

5-120 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE

the pattem starting from the beginning of the BFILE: */
Pasition :=DBMS_LOB.INSTR(Lob_loc, Pattem, 1, 2);
/*Close the BFILE: %/
DBMS_LOB.CLOSE(Lob_loc);
END;

Example: See If a Pattern Exists (instr) in the BFILE Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAMH-ID. BFILE-INSTR.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERI1/USER1".
01 BFILE1 ~ SQL-BFILE.

*The length of pattem was chosen arbitrarily:
01 PATTERN PIC X(4) VALUE "2424".
EXEC SQL VAR PATTERN IS RAW(4) END-EXEC.
01 POS PIC S9(9) COMP.
01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILEIINSTR.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
EXEC SQL

SELECT PHOTO INTO :BFILE1

FROM MULTIMEDIA TABWHERE CLIP_ ID=3
END-EXEC.

External LOBs (BFILEs) 5-121

See If a Pattern Exists (instr) in the BFILE

*Openthe CLOB for READ ONLY:
EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

* Execute PL/SQL to get INSTR functionality:
EXEC SQL EXECUTE
BEGIN
‘POS :=DBMS_LOB.INSTR(BFILEL,;PATTERN, 1, 2);
END;
END-EXEC.

IFPOS=0
* Logic for pattem not found here
DISPLAY "Pattem is not found."
ELSE
* Pos coritains position where patterm is found
DISPLAY "Pattemis found."
END-F.

*Close and free the LOB:
EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

5-122 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE

Example: See If a Pattern Exists (instr) in the BFILE Using C++ (Pro*C/C++)

/*Pro*C lacks an equivalent embedded SQL form of the DBMS _LOB.INSTR()
function. However, like SUBSTR() and COMPARE(), Pro*C/C++ can call
DBMS_LOB.INSTR() from within an anonymous PL/SQL block as shown here: %/

#include <sgl2oci.h>

#include <stdio.h>

#include <string.h>

#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define PattemSize 5

void instringBFILE_proc()
{
OCIBFileLocator *Lob loc;
unsigned int Position =0;
intClip_ID =3, Segment=1;
char Pattem[PattemSize];
/* Datatype Equivalencing is Mandatory for this Datatype: %
EXEC SQL VAR Pattem IS RAW(PattemSize);

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
EXEC SQL ALLOCATE :Lob_loc;
/*Use Dynamic SQL to retrieve the BFILE Locator: %
EXEC SQL PREPARE S FROM
'SELECT Intab.Recording \
FROM TABLE(SELECT Mtab.InSeg_ntab FROM Mulimedia._tab Mtab\
WHERE Clip_ID = cid) Intab\
WHERE Intab.Segment = :seg’;

EXEC SQL DECLARE C CURSOR FORSS;
EXEC SQL OPEN C USING Clip_ID, :Segment;
EXEC SQL FETCHCINTO :Laob _loc;
EXEC SQL CLOSE C;
#Openthe BFILE: %
EXEC SQL LOB OPEN :Lob _loc READ ONLY;
memset((void *)Pattem, 0, PattemSize);
/* Find the first occurrance of the pattem starting from the

External LOBs (BFILES) 5-123

See If a Pattern Exists (instr) in the BFILE

beginning of the BFILE using PL/SQL: %/
EXEC SQL EXECUTE
BEGIN
‘Position = DBMS_LOB.INSTR(.Lob_loc, :Pattem, 1, 1);
END;
END-EXEC;
/*Close the BFILE: %/
EXEC SQL LOB CLOSE :Lab _loc;
if (0 == Position)
printf("Pattem not found\n®);
else
printf(The pattem occurs at %od\n', Position);
EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
instringBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: See If a Pattern Exists (instr) in the BFILE Using Visual Basic (0040)

Note: A Visual Basic (O040) example will made available in a
subsequent release.

Example: See If a Pattern Exists (instr) in the BFILE Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql. Types;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResuitSet;

import java.sgl.SQLEXxception;

5-124 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE

// Oracle Specific JDBC classes:
import oracle.sgl.*;
import oracle.jdbc.driver.*;

public class Ex4_70

{

static final int MAXBUFSIZE = 32767;

public static void main (String args [])

{

throws Exception

// Load the Oracle JDBC driver:
Class.forName (‘oracle jdbc.driver.OracleDriver”);

// Connect to the database:
Connection conn=

DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Staterment stmt = conn.createStatement ();

try

{
BFILE lob_loc=null;

// Pattem to look for within the BFILE:
String pattern = new String(“children’);

ResultSet rset = stmt.executeQuery (
"SELECT photo FROM multimedia_tab WHERE clip_id =3");
if (rsetnext())

lob_loc = ((OracleResultSet)rset).getBFILE (1);
}

/ Openthe LOB:
lob_loc.openFile();

// Search for the location of pattem string in the BFILE,
// starting at offset 1:

long result=lob_loc.position(pattem.getBytesy), 1);
System.out.printin(

External LOBs (BFILES)

5-125

See If a Pattern Exists (instr) in the BFILE

"Results of Pattem Comparison : " + Long.toString(result));

// Close the LOB:
lob_loc.closeFile();

stmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)
{
e.printStackTrace();
}
}
}

5-126 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists

See If the BFILE Exists

Figure 5-23 Use Case Diagram: See If the BFILE exists

External LOBs

v

see if the
BFILE exists jaweans, .

User/
Program

Initialize
ORI\ a BFILE locator,

Specify
“»{ BFILE name

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model:; External LOBs" on page 5-2

External LOBs (BFILES) 5-127

See If the BFILE Exists

Scenario
This example queries whether a BFILE that is associated with Recording

« "Example: See If the BFILE Exists Using PL/SQL (DBMS_LOB Package)" on
page 5-128

« "Example: See If the BFILE Exists Using C (OCI)" on page 5-128

« "Example: See If the BFILE Exists Using COBOL (Pro*COBOL)" on page 5-130
« "Example: See If the BFILE Exists Using C++ (Pro*C/C++)" on page 5-131

« "Example: See If the BFILE Exists Using Visual Basic (OO40)" on page 5-132

« "Example: See If the BFILE Exists Using Java (JDBC)" on page 5-133

Example: See If the BFILE Exists Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure seelfExistsBFILE_proc isnot part of the
DBMS_LOB package: ¥/
CREATE OR REPLACE PROCEDURE seelfExistsBFILE proc IS
Lob loc BFILE;
BEGIN
/*Selectthe LOB: %
SELECT Intab.Recording INTO Lob _loc
FROM THE(SELECT Mtab.InSeg_ntab FROM Muttimedia._tab Mtab
WHERE Miab.Clip_ID = 3) Intab
WHERE Intab.Segment=1,
/* See Ifthe BFILE exists: %/
IF (DBMS_LOB.FILEEXISTS(Lob_loc) I=0)
THEN
DBMS_OUTPUT.PUT_LINE(Processing given that the BFILE exists);
ELSE
DBMS_OUTPUT.PUT_LINE(Processing given that the BFILE does not exist);
ENDIF;
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(Operation failed);
END;

Example: See If the BFILE Exists Using C (OCl)

/* Select the lob/bile from the Mulimedia table %
void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISvcCix *svchp;

5-128 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists

OClStatement *stmthp;
OCIEmor *erhp;
OCIDefine *dfnhp;
OClLobLocator *Lob_loc;
text *selstmt,
{
/* Prepare the SQL select staterment ¥/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Call define for the biile column ¥/

checkerr (errhp, OCIDefineByPos(stmhp, &dfinhp, erthp, 1,
(dvoid *)&Lob_loc, 0, SQLT_BFILE,
(dvoid %0, (b2 %0, (ub2 *)0,
OCI|_DEFAULT));

/* Execute the SQL select statement %/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OCISnapshat¥) O,
(ub4) OCI_DEFAULT));
}
boolean BfileExists(envhp, svchp, stmthp, ehp, dinhp)
OCIEnv *envhp;
OCISvcCix *svchp;
OClStatement *stmthp;
OCIEnor *enhp;
OCIDefine *dfnhp;
{
/*Assume all handlles passed as inpit to this routine have been
allocated and initalized.
Y

OCILobLocator *hfile_loc;
booleanis_exists;

/*Allocate the locator descriptor %/

(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid) &bifile_loc,
(Ub4) OCI_DTYPE FILE,
(size_1)0, (dvoid) 0)

/* Select the bfile

selectlob(svehp, stmthp, errhp, dinhp, bfile_loc,
"SELECT Intab.Recording FROM THE(
SELECT Mtab.InSeg_ntab FROM

External LOBs (BFILEs) 5-129

See If the BFILE Exists

Mulimedia._tab Mtab WHERE Mtab.Clip_ID=3) Intab
WHERE Intab.Segment = 1");

booleanis_exists;

checkerr(errhp, OCILobFileExists(svchp, erhp, bfile_loc,
&is_exist));

/* Free the locator descriptor ¥/

OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);

retum(is_exists);

Example: See If the BFILE Exists Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BFILE-EXISTS.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERD PICX(11) VALUES "USER1USERL".
01 BFILE1 SQL-BFILE.

01 FEXISTS PIC S9(9) COMP.

01 ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILE-EXISTS.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
EXEC SQL

SELECT PHOTO INTO :BFILE1

FROM MULTIMEDIA TABWHERE CLIP_ID=3

5-130 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If the BFILE Exists

END-EXEC.

EXEC SQL
LOB DESCRIBE :BFILE1 GET FILEEXISTS INTO :FEXISTS
END-EXEC.

IFFEXISTS=1
* Logic for file exists here
DISPLAY "File exists"
ELSE
* Logic for file does not exist here
DISPLAY "File does not exist'
END-IF.

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.
EXEC SQL
COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: See If the BFILE Exists Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()
{

External LOBs (BFILEs) 5-131

See If the BFILE Exists

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglerm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void seelfBFILEEXists_proc()
{
OCIBFileLocator *Lob loc;
unsigned int Exists =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

EXEC SQL ALLOCATE :Lab_loc;

EXEC SQL SELECT Mtab.Voiced_refRecording INTO :Lob loc
FROM Multimedia._tab Mtab WHERE Mtab.Clip ID=3;

/* Seeifthe BFILE EXists: %/

EXEC SQL LOB DESCRIBE :Lob_loc GET FILEEXISTS INTO :Exists;

printf(' BFILE %s existin", Exists ? "does" : "does not");

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
seelfBFILEEXists_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: See If the BFILE Exists Using Visual Basic (0040)

Note that the PL/SQL packages and the tables mentioned here are not part of the
standard OO40 installation:

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim OraMusic As OraBfile, OraSgl As OraSqlStmt

Set MySession = CreateObject("OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase(‘exampledb”, “scottftiger”, 0&)

OraDb.Connection.BeginTrans

Set OraParameters = OraDb.Parameters

5-132 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists

OraParameters.Add "id", 1001, ORAPARM_INPUT

Define out parameter of BFILE type:
OraParameters.Add "MyMusic", Empty, ORAPARM_OUTPUT
OraParameters("MyMusic").ServerType = ORATYPE_BFILE

Set OraSql =
OraDb.CreateSql(
"BEGIN SELECT music INTO :MyMusic FROM mulimedia tab WHERE clip_id = :id;
END;", ORASQL_FAILEXEC)

Set OraMusic = OraParameters("MyMusic").Value

If OraMusic.Exists Then
Process the data
Else
Do error processing
End If
OraDb.Connection.CommitTrans

Example: See If the BFILE Exists Using Java (JDBC)

//Java IO classes:
import javavio.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql. Types;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver*,

public class Ex4_74
{

static final int MAXBUFSIZE = 32767,

External LOBs (BFILEs) 5-133

See If the BFILE Exists

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC diver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =
DriverManager.getConnection ('jdbc:oracle:oci8:@", "samp”, "samp’);

/ It's faster when autto commit is off:
conn.setAutoCommit (false);

// Create a Statement
Statement stmt = conn.createStatement ();

try

{
BFILE lob_loc = null;

ResultSet rset = stmt.executeQuery (
"SELECT photo FROM multimedia_tab WHERE clip_id =3");
if (rsetnext()
{
lob_loc = ((OracleResultSet)rset).getBFILE (1);
}

// See ifthe BFILE exists:
Boolean exists = new Boolean(lob_loc fileExists());
System.out printin("Result from fileExists(): " + exists.toString());

// Retum the length of the BFILE:
long length =lob_loc.length();
System.outprintin("Length of BFILE: " + Long.toString(length));

// Getthe directory alias for this BFILE:
System.out printin(‘Directory alias: " + lob_loc.getDirAlias());

// Get the file name for this BFILE:
System.out printin("File name: " + lob_loc.getName());

stmt.close();

conn.commit();
conn.close();

5-134 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If the BFILE Exists

}
catch (SQLException €)

{
e.printStackTrace();
}
}
}

External LOBs (BFILES) 5-135

Get the Length of a BFILE

Get the Length of a BFILE

Figure 5-24 Use Case Diagram: Get the length of the BFILE

External LOBs R RRREEELD :

open
a BFILE

vy

get the length

of the BFILE-)

User/
Program

v

close

OR a BFILE

close all

Specify
opened files

“»{ BFILE name

5-136 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Get the Length of a BFILE

Scenario

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

This example gets the length of a BFILE that is associated with Recording

« "Example: Get the Length of a BFILE Using PL/SQL (DBMS_L OB Package)" on

page 5-137
« "Example: Get the Length of a BFILE Using C (OCI)" on page 5-138

« "Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)" on
page 5-139

« "Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)" on
page 5-139

« "Example: Get the Length of a BFILE Using C++ (Pro*C/C++)" on page 5-140
« "Example: Get the Length of a BFILE Using Visual Basic (OO40)" on page 5-141

« "Example: Get the Length of a BFILE Using Java (JDBC)" on page 5-142

Example: Get the Length of a BFILE Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure getLengthBFILE_proc is not part of the
DBMS_LOB package: %/
CREATE OR REPLACE PROCEDURE getlengthBFILE proc IS

Lob loc BFILE;
Length INTEGER,;
BEGIN

/* Initialize the BFILE locator by selecting the LOB: %
SELECT Mtab.Voiced_ref.Recording INTO Lob_loc FROM Multimedia._tab Mtab
WHERE Mtab.Clip_ID=3;
/*QOpenthe BFILE: %/
DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
/*Getthe length of the LOB: ¥/
Length :=DBMS_LOB.GETLENGTH(Lob _loc);
IF Length IS NULL THEN
DBMS_OUTPUT.PUT_LINE(BFILE is null);
ELSE
DBMS_OUTPUT.PUT_LINE(The lengthis’ || length);
ENDIF;

External LOBs (BFILES)

5-137

Get the Length of a BFILE

/*Close the BFILE:
DBMS_LOB.CLOSE(Lob_loc);
END;

Example: Get the Length of a BFILE Using C (OCI)

/* Select the lob/bile from the Mulimedia table %
void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISvcCix *svchp;
OClStatement *stmthp;
OCIEmor *enhp;
OCIDefine *dfnhp;
OClLobLocator *Lob_loc;
text *selstmt;
{
/* Prepare the SQL select staterment ¥/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Call define for the bfile column %/

checkerr (errhp, OCIDefineByPos(stmhp, &dinhp, erhp, 1,
(dvoid*)&Lob_loc, 0, SQLT_BFILE,
(dvoid *)0, (b2 %)0, (ub2*)0,
OCI_DEFAULT));

/* Execute the SQL select staterment %/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OCISnapshat®) O,
(ub4) OCI_DEFAULT));
}
ub4 BfileLength(envhp, svchp, stmthp, erhp, dinhp)
OCIEnv *envhp;
OCISveCix *svchp;
OClStatement *stmthp;
OCIEnor *enhp;
OClIDefine *dfnhp;
{
/*Assume all handlles passed as inptit to this routine have been
*allocated and initialized.
v

OCILobLocator *hfile_loc;
ub4 len;

5-138 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE

/*Allocate the locator descriptor ¥/
(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid) &bifile_loc,
(Ub4) OC|_ DTYPE_FILE,
(size_1)0, (dvoid) 0)

/* Select the bfile

selectlob(svehp, stmthp, errhp, dinhp, bfile_loc,
"SELECT Mtab.Voiced _ref Recording FROM Mulimedia_tab Mtab
WHERE Mtab.Clip_ID=3";

ub4 len;
checkerr(errhp, OCILobFileOpen(svchp, erhp, bfile_loc,
(UbL)OCI_FILE_READONLY));
checkenr(errhp, OCILobGetlength(svchp, errhp, bfile_loc,
&en));
/*... Do some processing. %/
checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));

/* Free the locator descriptor %/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
retum(en);

Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BFILE-LENGTH.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERLUSERL".
01 BFILEL SQL-BFILE.

0LLEN PICS9(9)COMP.

0L DLEN PIC9().

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILE-LENGTH.

External LOBs (BFILEs) 5-139

Get the Length of a BFILE

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Alocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
EXEC SQL
SELECT PHOTO INTO :BFILE1
FROM MULTIMEDIA_TABWHERE CLIP_ID=3
END-EXEC.

*Use LOB DESCRIBE to get length of lob:
EXEC SQL
LOB DESCRIBE :BFILE1 GET LENGTH INTO :.LEN
END-EXEC.

MOVE LEN TO D-LEN.
DISPLAY "Length of BFILE is ", D-LEN.

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Get the Length of a BFILE Using C++ (Pro*C/C++)

#include <oci.h>

5-140 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE

#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void getlengthBFILE_proc()
{
OCIBFileLocator*Lob_loc;
unsigned int Length=0;

EXEC SQL WHENEVER SQLERROR DO Sample_Enor();

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL SELECT Mtab.Voiced_refRecording INTO :Lob loc
FROM Mulimedia_tab Mtab WHERE Mtab.Clip ID=3;

/*Openthe BFILE: ¥

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

/*Getthe Length: %

EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;

/Ifthe BFILE is NULL or unitialized, then Length is Undefined: %/

printf(’Length is %d bytes\n”, Length);

/*Close the BFILE: %/

EXEC SQL LOB CLOSE :Lob loc;

EXEC SQL FREE :Lob _loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

getlengthBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Get the Length of a BFILE Using Visual Basic (0040)

Note that the PL/SQL packages and the tables mentioned here are not part of the
standard OO40 installation:

External LOBs (BFILES) 5-141

Get the Length of a BFILE

Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OraclelnProcSenver. XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “scottftiger”, 0&)

OraDb.Connection.BeginTrans
Set OraParameters = OraDb.Parameters
OraParameters.Add "id", 1001, ORAPARM_INPUT

Define out parameter of BFILE type:
OraParameters.Add "MyMusic", Empty, ORAPARM_OUTPUT
OraParameters("MyMusic").ServerType = ORATYPE_BFILE

SetOraSql =
OraDb.CreateSq(
"BEGIN SELECT music INTO :MyMusic FROM mulimedia_tab WHERE clip_id = :id;
END;", ORASQL_FAILEXEC)

Set OraMusic = OraParameters("MyMusic").Value

If OraMusic.Size =0 Then
MsgBox "BFile size is 0"
Else
MsgBox "BFile size is " & OraMusic.Size
End If
OraDb.Connection.CommitTrans

Example: Get the Length of a BFILE Using Java (JDBC)

//Java lO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl. Types;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

5-142 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE

// Oracle Specific JDBC classes:
import oracle.sgl.*;
import oracle.jdbc.driver.*;

public class Ex4._74

{

static final int MAXBUFSIZE = 32767;

public static void main (String args [])

{

throws Exception

// Load the Oracle JDBC driver:
Class.forName (‘oracle jdbc.driver.OracleDriver”);

// Connect to the database:
Connection conn=

DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Staterment stmt = conn.createStatement ();

try

{
BFILE lob_loc=null;

ResultSet rset = stmt.executeQuery (

"SELECT photo FROM multimedia_tab WHERE clip_id =3");
if (rsetnext())
{

lob_loc = ((OracleResultSet)rset).getBFILE (1);

}

// See ifthe BFILE exists:
Boolean exists = new Boolean(lob_loc fileExists());
System.out printin("Result from fileExists(): " + exists.toString());

// Retum the length of the BFILE:
long length = lob_loc.length();
System.out printin("Length of BFILE: " + Long.toString(length));

// Getthe directory allas for this BFILE:

External LOBs (BFILES)

5-143

Get the Length of a BFILE

System.out printin(‘Directory alias: " + lob_loc.getDirAlias());

// Get the file name for this BFILE:
System.out printin("File name: " + lob_loc.getName());

stmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)

{
e.printStackTrace();
}
}
}

5-144 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE

Copy a LOB Locator for a BFILE

Figure 5-25 Use Case Diagram: Copy a LOB Locator for a BFILE

External LOBs

v

x

User/
Program

Initialize

OR\ a BFILE locator) -~

copy
LOB

locator

Specify

BFILE name

S EEEEEEEEEEEE e

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

External LOBs (BFILES) 5-145

Copy a LOB Locator for a BFILE

Scenario
This example assigns one BFILE locator to another related to Photo .
« "Example: Copy a LOB Locator for a BFILE Using PL/SQL" on page 5-146
« "Example: Copy a LOB Locator for a BFILE Using C (OCI)" on page 5-146
« "Example: Copy a LOB Locator for a BFILE Using COBOL (Pro*COBOL)" on

page 5-148

« "Example: Copy a LOB Locator for a BFILE Using C++ (Pro*C/C++)" on
page 5-149

« "Example: Copy a LOB Locator for a BFILE Using Visual Basic (O0O40)" on
page 5-150

« "Example: Copy a LOB Locator for a BFILE Using Java (JDBC)" on page 5-150

Example: Copy a LOB Locator for a BFILE Using PL/SQL

Note: Assigning one BFILE to another using PL/SQL entails
using the "="sign. This is an advanced topic that is discussed in
more detail above with regard to "Read-Consistent Locators". on

page 2-2

/* Note that the example procedure BFILEAssign_proc is notpart ofthe
DBMS_LOB package: ¥
CREATE OR REPLACE PROCEDURE BFILEAssign proc|S
Lob locl BFILE;
Lob_loc2 BFILE;
BEGIN
SELECT Photo INTO Lob_locl FROM Mulimedia_tab WHERE Clip_ID=3
FOR UPDATE;
/Assign Lob locl to Lob_loc2 so that they both refer to the same gperating
systemfile: ¥
Lob _loc2:=Lob locl,;
/*Now you can read the bfile from either Lob _loc1 or Lob _loc2. %/
END;

Example: Copy a LOB Locator for a BFILE Using C (OClI)
/+ Select the lobibfie fiom the Mutimedia table: */

5-146 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE

void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISvcCix *svchp;
OClStatement *stmthp;
OCIEnor *enhp;
OClIDefine *dfnhp;
OClLobLocator*Lob_loc;
text *selstmt;
{
/* Prepare the SQL select statement: %/
checkerr (erhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/*Call define for the bfile column: %/

checkerr (errhp, OCIDefineByPos(stmhp, &dinhp, errhp, 1,
(dvoid®&Lob loc, 0, SQLT_BFILE,
(dvoid *)0, (b2 %)0, (ub2*)0,
OCI_DEFAULT));

/* Execute the SQL select staterment: %/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshoat*) 0, (OCISnapshat®) O,
(ub4) OCI_DEFAULT));

}

sword BfileAssign(envhp, svchp, stmthp, errhp, dinhp)
OCIEnv *envhp;

OCISvcCix *svchp;

OClStatement *stmthp;

OCIEnor *erthp;

OClIDefine *dfnhp;

/*Assume all handlles passed as inptit to this routine have been
*allocated and initialized:
v

OCILobLocator *src_loc;
OClLobLocator *dest loc;

/*Allocate the locator descriptors: %/

(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &src_loc,
(ub4) OCI_DTYPE_FILE,
(size_t) O, (dvoid **) 0)

(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest loc,
(ub4) OCI_DTYPE_FILE,
(size_t) 0, (dvoid **) 0)

External LOBs (BFILES) 5-147

Copy a LOB Locator for a BFILE

/* Select the bfile: %/
selectlob(svchp, stmthp, errhp, dinhp, src_loc,
"SELECT Photo FROM Mulimedia._tab WHERE Clip_ID=3";

/* Free the locator descriptors: %/
OClDescriptorFree((dvoid *)src_loc, (ub4)OCI_DTYPE_FILE);
OClDescriptorFree((dvoid *)dest_loc, (ub4)OCI_DTYPE_FILE);
retum (OCILobLocatorAssign(svchp, erhp, src_loc, &dst_loc));
/*Note: itis the caller's responsibilit to free the source
and destination locator descriptors once the caller is done using them.
¥

Example: Copy a LOB Locator for a BFILE Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAMHD. BFILE-COPY-LOCATOR.
ENVIRONMENT DIVISION.
DATADIVISION.

WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERLJUSER1".
01 BFILE1 ~ SQL-BFILE.
01 BFILE2 ~ SQL-BFILE.
01 ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BILFE-COPY-LOCATOR.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.
EXEC SQL ALLOCATE :BFILE2 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.

5-148 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE

EXEC SQL

SELECT PHOTO INTO :BFILE1

FROM MULTIMEDIA TABWHERE CLIP_ID=3
END-EXEC.

EXEC SQL
LOB ASSIGN :BFILE1 TO ‘BFILE2
END-EXEC.

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.
EXEC SQL FREE :BFILE2 END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™".
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Copy a LOB Locator for a BFILE Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void BFILEAssign _proc()

External LOBs (BFILES) 5-149

Copy a LOB Locator for a BFILE

OCIBFileLocator*Lob_locl, *Lob loc2;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob_locl;
EXEC SQL ALLOCATE :Lob_loc2;
EXEC SQL SELECT Photo INTO :Lob_locl
FROM Multimedia_tab WHERE Clip_ID=3;
/*Assign Lob_locl to Lob _loc2 so that they both refer to the same
operating system fie: %/
EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob _loc2;
/*Now you can read the BFILE from either Lob_loc1 or Lob_loc2 %/
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
BFILEAssign_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Copy a LOB Locator for a BFILE Using Visual Basic (0040)

Note: A Visual Basic (O040) example will made available in a
subsequent release.

Example: Copy a LOB Locator for a BFILE Using Java (JDBC)

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl. Types;

import java.sql.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:

import oracle.sgl*;
import oracle.jdbc.driver.;

5-150 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE

public class Ex4_81

{

public static void main (String args [])

throws Exception

// Load the Oracle JDBC driver:
Class.forName (‘oracle.jdbc.driver.OracleDriver”);

// Connect to the database:
Connection conn=

DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp’);

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE lob_locl =null;

BFILE lob_loc2 =nul;

ResultSet rset = stmt.executeQuery (
"SELECT photo FROM multimedia__tab WHERE clip_id =3");
if (rsetnext())

lob_locl = ((OracleResultSet)rset).getBFILE (1);
}

#/Assignlob _locl to lob_loc2 so that they both refer

/'to the same gperating system fie.

/ Nowthe BFILE can be read through either of the locators:
lob_loc2 =lob_loci;

stmt.close();
conn.commit();
conn.close();

}
catch (SQLException €)

{
e.printStackTrace();

}

External LOBs (BFILES)

5-151

Copy a LOB Locator for a BFILE

5-152 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If a LOB Locator for a BFILE Is Initialized

See If a LOB Locator for a BFILE Is Initialized

Figure 5-26 Use Case Diagram: See If a LOB Locator Is Initialized

External LOBs

_ see
_if locator
is initialized

X

User/
Program

To refer to the table of all basic operations having to do with
External LOBs (BFILES):

« "Use Case Model: External LOBs" on page 5-2

External LOBs (BFILEs) 5-153

See If a LOB Locator for a BFILE Is Initialized

Scenario

Before you call any of the OCILob* interfaces (such as OCILobWrite), or any of
the programmatic environments that make use of the OCILob* interfaces, you must
first initialize the LOBIlocator, via a SELECT for example. So, if your application
requires for a locator to be passed from one function to another, you may want to
verify that the locator has already been initialized. If it turns out the locator is not
initialized, you could design your application either to return an error or to perform
the SELECTbefore calling the OCILob* interface.

« "Example: See If a LOB Locator for a BFILE Is Initialized Using C (OCI)" on
page 5-154

« "Example: See If a LOB Locator for a BFILE Is Initialized Using C++
(Pro*C/C++)" on page 5-154

Example: See If a LOB Locator for a BFILE Is Initialized Using C (OCI)

boolean BfilelsInit{envhp, svchp, enhp, bfile_loc)

OCIEnv *envhp;

OCISvcCix *svchp;

OCIEnor *erthp;

OCILobLocator *bfile_loc; /*This is the BFILE locator that is alreadly

allocated and initalized. ¥/

{
booleanis_init;
checker(errhp, OCILobLocatorisInitienvhp, errhp, biile_loc, &s_init));
retum(is_init);

}

Example: See If a LOB Locator for a BFILE Is Initialized Using C++ (Pro*C/C++)

/* Pro*C/C++ has no form of embedded SQL statemernit to determine ifa BFILE
locator is initialized. Locators in Pro*C/C++ are initialized when they
are allocated via the EXEC SQL ALLOCATE statement. However, an example
can be witten that uses embedded SQL and the OCl as is shown here: %

#include <sgl2ocih>

#include <stdio.h>

#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglenmc);

5-154 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If a LOB Locator for a BFILE Is Initialized

EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

void BFILELocatorlIsInit_proc()
{
OCIBFileLocator*Lob _loc;
QOCIEnv *oeh;
OCIEror *err,
boolean isinitialized = O;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob loc
FROM Mulimedia_tab Mtab WHERE Mtab.Clip ID=3;
/*Get the OCI Environment Handlle using a SQLLIB Routine: %
(void) SQLENVGet(SQL_SINGLE_RCTX, &oeh);
/*Allocate the OCI Eiror Handle: ¥/
(void) OCIHandleAlloc((dvoid *)oeh, (dvoid *)&err,
(ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid *)0);
/*Use the OCl to determine if the locator is Initialized: %/
(void) OCILobLocatorlsInit(oeh, err, Lob_loc, &islnitialized);
if (islnitialized)
printf("Locator is initialized\n");
else
printf("Locator is not initialized\n”);
/*Note that in this example, the locator is initialized: %/
/* Deallocate the OCI Eiror Handle: %/
(void) OCIHandleFree(err, OCI_HTYPE_ERROR);
/* Release resources held by the locator: %
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
BFILELocatorlsInit_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

External LOBs (BFILES) 5-155

See If One LOB Locator for a BFILE Is Equal to Another

See If One LOB Locator for a BFILE Is Equal to Another

Figure 5-27 Use Case Diagram: See If One LOB Locator for a BFILE Is Equal to

Another

External LOBs

v

Initialize
OR\ 3 BFILE locator) €=+

Specify
=»{ BFILE name

~ see
if locators

x

User/
Program

are equal

5-156 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If One LOB Locator for a BFILE Is Equal to Another

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" on page 2-2).

« "Example: See If One LOB Locator for a BFILE Is Equal to Another Using C
(OCI)" on page 5-157

« "Example: See If One LOB Locator for a BFILE Is Equal to Another Using C++
(Pro*C/C++)" on page 5-157

« "Example: See If One LOB Locator for a BFILE Is Equal to Another Using Java
(JDBC)" on page 5-159

Example: See If One LOB Locator for a BFILE Is Equal to Another Using C (OCI)

boolean BfilelsEqual(envhp, enhp, bfile_loc1, bfile_loc2)
OCIEnv *envhp;
OCIEmor *erthp;
OCILobLocator *bfile_locl; /*BFILE Locator 1 that is alreadly allocated %/
OCILobLocator *bfile_loc2; /A BFILE Locator 2 that is alreadly allocated %/
{
booleanis_equal;
OClLoblsEqual(envhp, biile_locl, bfile_loc2, &is_equal);
retum(is_equal);
}

Example: See If One LOB Locator for a BFILE Is Equal to Another Using C++
(Pro*C/C++)

/* Pro*C/C++ does not provide a mechanism to test the equality of two
locators However, by using the OCI directly, two locators can be
compared to determine whether or not they are equial as this example
demonstiates: ¥/

#include <sgl2oci.h>
#include <stdio.h>

External LOBs (BFILES) 5-157

See If One LOB Locator for a BFILE Is Equal to Another

#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void BFILELocatorisEqual_proc()

{
OCIBFileLocator *Lob_loc1,*Lob loc2;
QOCIEnv *oeh;
boolean isEqual =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob _loci;
EXEC SQL ALLOCATE :Lob loc2;
EXEC SQL SELECT Photo INTO :Lob_locl
FROM Multimedia_tab WHERE Clip_ID =3,

EXEC SQL LOB ASSIGN :Lob _locl1 TO :Lob_loc2;
/*Now you can read the BFILE from either Lob_loc1 or Lob_loc2 %
/* Get the OCI Environment Handle using a SQLLIB Routine: %/
(void) SQLENVGet(SQL_SINGLE_RCTX, &oeh);
/*Call OCl to see ifthe two locators are Equal: %/
(void) OClLoblsEqual(oeh, Lob locl, Lob_loc2, &isEqual);
if (sSEqual)

printf("Locators are equal\n®);
else

printf("Locators are not equaln’);
/* Note that in this example, the LOB locators will be Equal: %/
EXEC SQL FREE :Lob loci;
EXEC SQL FREE :Lob _loc2;

}

void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
BFILELocatorisEqual_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

5-158 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

See If One LOB Locator for a BFILE Is Equal to Another

Example: See If One LOB Locator for a BFILE Is Equal to Another Using Java (JDBC)

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl. Types;

import java.sql.Statement,

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.;
import oracle.jdbc.driver.;

public class Ex4_89

{

public static void main (String args [])

{

throws Exception

//Load the Oracle JDBC diiver:
Class.forName ("oracle jdbc.driver.OracleDriver);

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

/ It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Staterment stmt = conn.createStatement ();

try

{
BFILE lob_loc1 =null;

BFILE lob_loc2 =nul;

ResultSet rset = stmt.executeQuery (

"SELECT photo FROM multimedia_tab WHERE clip_id =3");
if (rsetnext())
{

lob_locl = ((OracleResultSet)rset).getBFILE (1);
}

External LOBs (BFILES)

5-159

See If One LOB Locator for a BFILE Is Equal to Another

// Set both LOBS to reference the same BFILE:
lob _loc2 =lob_loci;

// Note that in this example, the Locators will be equal:
if lob_locl.equals(iob_loc2))

// The Locators are equal:
System.out printin(The BFILES are equal’);

else

{
// The Locators are different:

System.outprintin The BFILES are NOT equal');
}

stmt.close();
conn.commit();
conn.close();

}

catch (SQLException €)
e.printStackTrace();

}

}
}

5-160 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Get Directory Alias and Filename

Get Directory Alias and Filename

Figure 5-28 Use Case Diagram: Get Directory Alias and Filename

External LOBs

v

X

User/
Program

get directory
alias and
filename

Initialize
OR\ a BFILE locator) ®======"=""

Specify

v

BFILE name

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

External LOBs (BFILES) 5-161

Get Directory Alias and Filename

Scenario

This example retrieves the directory alias and filename related to the BFILE ,
Music .

« "Example: Get Directory Alias and Filename Using PL/SQL" on page 5-162
« "Example: Get Directory Alias and Filename Using C (OCI)" on page 5-162

« "Example: Get Directory Alias and Filename Using COBOL (Pro*COBOL)" on
page 5-164

« "Example: Get Directory Alias and Filename Using C++ (Pro*C/C++)" on
page 5-165

« "Example: Get Directory Alias and Filename Using Visual Basic (O040)" on
page 5-166

« "Example: Get Directory Alias and Filename Using Java (JDBC)" on page 5-167

Example: Get Directory Alias and Filename Using PL/SQL

CREATE OR REPLACE PROCEDURE getNameBFILE proc IS
Lob loc BFILE;
DirAlias_name VARCHAR2(30);
File_ name VARCHAR2(40)
BEGIN
SELECT Music INTO Lob_loc FROM Mulimedia._tab WHERE Clip_ID =3;
DBMS_LOB.FILEGETNAME(Lob loc, DirAlias_name, File_name);
/*do some processing based on the directory alias and file names %
END;

Example: Get Directory Alias and Filename Using C (OCI)

/* Select the lob/bfile from the Multimedia table:
void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISveCtx *svchp;
OClStatement *stmthp;
OCIEmor *enhp;
OCIDefine *dfnhp;
OClLobLocator*Lob_loc;
text *selstmt;
{
/* Prepare the SQL select staterment: %/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),

5-162 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Get Directory Alias and Filename

(ub4) OCI_ NTV_SYNTAX, (ub4)OCI_DEFAULT));

/*Call define for the bfile column: %/

checkerr (emrhp, OCIDefineByPos(stmhp, &dfnhp, erhp, 1,
(dvoid»&Lob loc,0, SQLT_BFILE,
(dvoid %0, (b2 %)0, (ub2*)0,
OCI_DEFAULT));

/* Executte the SQL select staterment: %/

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshat*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

}

void BfileGetDirFile(envhp, svchp, stmthp, erhp, dinhp)
OCIEnv *envhp;

OCISveCix *svehp;

OClStatement *stmthp;

OCIEnor *errhp;

OCIDefine *dfnhp;

/*Assume all handles passed as inpuit to this routine have been
allocated and initialized.
Y

OClLobLocator *bfile_loc;
OraTextdir_alias[32] = NULL;
ub2 d length=32;

OraText flename[256] = NULL;
ub2 f length=256;

*Allocate the locator descriptor: ¥/

(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid) &bifile_loc,
(Ub4) OCI_DTYPE_FILE,
(size_1)0, (dvoid *) 0)

/* Select the bfile: %/
selectlob(svchp, stmthp, errhp, dinhp, bfile_loc,
"SELECT Music FROM Mulimedia_tab WHERE Clip_ID=3");

OCILobFileGetName(envhp, enhp, bfile_loc, dir_alias, &d_length,
flename, & length);

/* Free the locator descriptor ¥/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);

External LOBs (BFILES) 5-163

Get Directory Alias and Filename

Example: Get Directory Alias and Filename Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BFILE-DIR-ALIAS.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PICX(11) VALUES "USERL/USER1".
01 BFILE1 ~ SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(30) VARYING.

01 ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILE-DIR-ALIAS.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.

* Popullate the BFILE locator:
EXEC SQL
SELECT PHOTO INTO :BFILE1
FROM MULTIMEDIA TABWHERE CLIP_ID=3
END-EXEC.

*Use the LOB DESCRIBE functionaliy to get
*the directory alias and the flename:
EXEC SQL
LOB DESCRIBE :BFILE1
GET DIRECTORY, FILENAME INTO :DIR-ALIAS, :FNAME
END-EXEC.

5-164 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Get Directory Alias and Filename

DISPLAY "DIRECTORY: ", DIR-ALIAS-ARR, "FNAME: ", FNAME-ARR.

END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Get Directory Alias and Filename Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
ext(1);

}

void getBFILEDirectoryAndFilename_proc()
{
OCIBFileLocator*Lob _loc;
char Directory[31], Flename[255];
/* Datatype Equivalencing is Optional: %/
EXEC SQL VAR Directory IS STRING;
EXEC SQL VAR Filename IS STRING;

External LOBs (BFILES) 5-165

Get Directory Alias and Filename

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob_loc;
/*Select the BFILE: %/
EXEC SQL SELECT Photo INTO :Lob _loc
FROM Mulimedia_tab WHERE Clip_ID =3;
#Openthe BFILE: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/*Get the Directory Alias and Filename: %/
EXEC SQL LOB DESCRIBE :Lob_loc
GET DIRECTORY, FILENAME INTO :Directory, :Flename;
/*Close the BFILE: %
EXEC SQL LOB CLOSE :Lob_loc;
printf('Directory Alias: %6s\n", Directory);
printf(’Filename: %s\n", Filename);
/* Release resources held by the locator: %
EXEC SQL FREE :Lob loc;

}

void main()

{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
getBFILEDirectoryAndFilename_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Get Directory Alias and Filename Using Visual Basic (O040)

Note that the PL/SQL packages and the tables mentioned here are not part of the
‘standard 0040 installation:

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim OraMusicl As OraBiile, OraSql As OraSqlStmt

Set MySession = CreateObject("OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, “scottftiger”, 0&)

OraDb.Connection.BeginTrans
Set OraParameters = OraDh.Parameters

OraParameters.Add 'id", 1001, ORAPARM_INPUT

5-166 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Get Directory Alias and Filename

Define out parameter of BFILE type:
OraParameters.Add "MyMusic", Empty, ORAPARM_OUTPUT
OraParameters("MyMusic").ServerType = ORATYPE_BFILE

SetOraSql=
OraDb.CreateSql(
"BEGIN SELECT music INTO :MyMusic FROM mulimedia_tab WHERE clip_id = :id;
END;", ORASQL_FAILEXEC)

Set OraMusicl = OraParameters("MyMusic").Value

‘Get Directory alias and flename:

MsgBox " Directory dlias is " & OraMusic1.DirectoryName &
" Filename is " & OraMusicl flename

QOraDb.Connection.CommitTrans

Example: Get Directory Alias and Filename Using Java (JDBC)

//Java IO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sql.DriverManager;
import java.sgl.Connection;

import java.sgl. Types;

import java.sgl.Statement;

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver ¥,

public class Ex4_74
{

static final int MAXBUFSIZE = 32767;

public static void main (String args [)
throws Exception

// Load the Oracle JDBC dhnver:

External LOBs (BFILES) 5-167

Get Directory Alias and Filename

Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connectto the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@

,"samp', "samp”);

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();
try

{
BFILE lob_loc=nul;

ResultSet rset = stmt.executeQuery (

"SELECT photo FROM multimedia_tab WHERE clip_id =3");
if (rsetnext()
{

lob_loc = ((OracleResultSet)rset).getBFILE (1);

}

// See ifthe BFILE exists:

Boolean exists = new Boolean(lob_loc fileExists());
System.out printin("Result from fileExists(): " + exists.toString());

// Retum the length of the BFILE:
long length =lob_loc.length();
System.outprintin("Length of BFILE: " + Long.toString(length));

// Getthe directory alias for this BFILE:
System.out printin(‘Directory alias: " + lob_loc.getDirAlias());

// Getthe file name for this BFILE:
System.out printin("File name: " + lob_loc.getName());
stmt.close();
conn.commit();
conn.close();

}

catch (SQLException €)

{
e.printStackTrace();

}

}
}

5-168 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Three Ways to Update a Row Containing a BFILE

Three Ways to Update a Row Containing a BFILE

Figure 5-29 Use Case Diagram: Three Ways to Update a Row Containing a BFILE

X

User/
Program

|

External LOBs

UPDATE
a BFILE with a
diff. OS file

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Note that you must initialize the BFILE either to NULLor to a directory alias and
filename.

a. "UPDATE aBFILE Using BFILENAME()" on page 5-170
b. "UPDATE aBFILE as SELECT" on page 5-173
c. "UPDATE a BFILE by Initializing a BFILE Locator" on page 5-174

External LOBs (BFILES) 5-169

UPDATE a BFILE Using BFILENAME()

UPDATE a BFILE Using BFILENAME()

Figure 5-30 Use Case Diagram: UPDATE a BFILE Using BFILENAME()

External LOBs
User/
Program
UPDATE ,
R aBFILEwitha) - [~ (@) UPDATE using BFILENAME()
: diff. OS file
-

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

BFILENAME() Function

5-170 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE Using BFILENAME()

The BFILENAME) function can be called as part of SQL INSERT or UPDATEoO
initialize a BFILE column or attribute for a particular row by associating it with a
physical file in the server’s filesystem.

The DIRECTORYobject represented by the directory_alias parameter to this
function need not already be defined using SQL DDL before the BFILENAME()
function is called in SQL DML or a PL/SQL program. However, the directory object
and operating system file must exist by the time you actually use the BFILE locator
(for example, as having been used as a parameter to an operation such as
OCILobFileOpen() , DBMS_LOBILEOPENY() , OCILobOpen() , or DBMS_
LOBOPEN()) .

Note that BFILENAME) does not validate privileges on this DIRECTORYobject, or
check if the physical directory that the DIRECTORYobject represents actually exists.
These checks are performed only during file access using the BFILE locator that
was initialized by the BFILENAME) function.

You can use BFILENAME) as part of a SQL INSERT and UPDATEstatement to
initialize a BFILE column. You can also use it to initialize a BFILE locator variable
in a PL/SQL program, and use that locator for file operations. However, if the
corresponding directory alias and/or filename does not exist, then PL/SQL DBMS _
LOBroutines that use this variable will generate errors.

The directory_alias parameter in the BFILENAME) function must be specified
taking case-sensitivity of the directory name into consideration.

See Also: "DIRECTORY Name Specification" on page 5-7

Syntax

FUNCTION BFILENAME(directory_alias IN VARCHARZ,
filename IN VARCHAR?2)
RETURN BFILE;

See Also: "DIRECTORY Name Specification" on page 5-7 for
information about the use of uppercase letters in the directory
name, and OCILobFileSetName () in Oracle Call Interface
Programmer’s Guide for an equivalent OCI based routine.

External LOBs (BFILEs) 5-171

UPDATE a BFILE Using BFILENAME()

Scenario
This example updates Mulimedia_tab by means of the BFILENAMEfunction.

Example: Update a BFILE by means of BFILENAME() Using SQL

UPDATE Mulimedia_tab
SET Photo = BFILENAME(PHOTO_DIR’, 'Nixon_photo) where Clip_ID =3;

5-172 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE as SELECT

UPDATE a BFILE as SELECT

Figure 5-31 Use Case Diagram: UPDATE a BFILE as SELECT

External LOBs

x

User/
Program

L

4

UPDATE
- @ uPDATE as SELECT

a BFILE with a
diff. OS file

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

There is no copy function for BFILE s, so you have to use UPDATEas SELECTIf you
want to copy a BFILE from one location to another. Because BFILE s use reference
semantics instead of copy semantics, only the BFILE locator is copied from one row
to another row. This means that you cannot make a copy of an external LOBvalue
without issuing an operating system command to copy the operating system file.

This example updates the table, Voiceover tab by selecting from the archival storage
table, VoiceoverLib_tab

Example: Update a BFILE as Select Using SQL

UPDATE Voiceover_tab
SET (originator,script,actor,take recording) =
(SELECT * FROM VoiceoverlLib_tab VLtab WHERE VL tab.Take = 101);

External LOBs (BFILEs) 5-173

UPDATE a BFILE by Initializing a BFILE Locator

UPDATE a BFILE by Initializing a BFILE Locator

Figure 5-32 Use Case Diagram: UPDATE a BFILE by Initializing a BFILE Locator

External LOBs

x

-
User/
Program
UPDATE \- — @ UPDATE by initializing a BFILE locator
a BFILE with a

diff. OS file

il Initialize

- OCILOBFileSet

NAME()

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

5-174 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator

Scenario

Note that you must initialize the BFILE locator bind variable to a directory alias
and filename before issuing the update statement.

« "Example: Update a BFILE by Initializing a BFILE Locator Using PL/SQL" on
page 5-175

« "Example: Update a BFILE by Initializing a BFILE Locator Using C (OCI)" on
page 5-175

« "Example: Update a BFILE by Initializing a BFILE Locator Using COBOL
(Pro*COBOL)" on page 5-176

« "Example: Update a BFILE by Initializing a BFILE Locator Using C++
(Pro*C/C++)" on page 5-178

« "Example: Update a BFILE by Initializing a BFILE Locator Using Visual Basic
(O040)" on page 5-179

« "Example: Update a BFILE by Initializing a BFILE Locator Using Java (JDBC)"
on page 5-180

Example: Update a BFILE by Initializing a BFILE Locator Using PL/SQL

/* Note that the example procedure updateUseBindVariable_proc is not part of the
DBMS_LOB package: ¥/

CREATE OR REPLACE PROCEDURE updateUseBindVariable_proc (Lob_loc BFILE) IS

BEGIN
UPDATE Mutimedia_tab SET Photo = Lob_loc WHERE Clip_ID =3,

END;

DECLARE
Lob _loc BFILE;
BEGIN
SELECT Photo INTO Lob_loc
FROM Mulimedia_tab
WHERE Clip_ID=1;
updateUseBindVariable_proc (Lob_loc);
COMMIT;
END;

Example: Update a BFILE by Initializing a BFILE Locator Using C (OCl)

void BfileUpdate(envhp, erhp, svchp, stmthp)

External LOBs (BFILES) 5-175

UPDATE a BFILE by Initializing a BFILE Locator

OCIEnv *envhp;
OCIEnor *errhp;
OCISvcCix *svchp;
OCISmt *stmthp;
{
OCILobLocator *Lob_loc;
OCIBind *bndhp;

text *updstmt =
(text*) "UPDATE Mutimedia_tab SET Photo = :Lob_loc WHERE Clip_ID=1"

OraText *Dir = (OraText*)'PHOTO_DIR", *Name = (OraText *)"Washington_photo";

/* Prepare the SQL statement: %/

checkerr (errhp, OCIStmtPrepare(stmthp, errhp, updstmt, (ub4)
strien((char *) updstmt),
(ub4) OCI_NTV_SYNTAX, (Ub4)OCI_DEFAULT));

/*Allocate Locator resources: %
(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob loc,
(Ub4)OCI_DTYPE _FILE, (size_t) 0, (dvoid **) 0);

checkerr (errhp, OCILobFileSetName(envhp, erhp, &Lob _loc,
Dir, (ub2)strlen((char *)Dir),
Name,(ub2)strien((char *)Name)));

checkerr (emrhp, OCIBindByPos(stmthp, &bdndhp, errhp, (ub4) 1,
(dvoid*) &Lob loc, (sb4) 0, SQLT_BFILE,
(dvoid*) 0, (b2 %0, (ub2*)0,
(ub4) O, (Ub4*) 0, (ub4) OCI_DEFAULT));

/* Execute the SQL statement: %/

checkerr (emrhp, OCIStmtExecute(svchp, simthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OCISnapshot*) O,
(ub4) OCI_DEFAULT));

/*Free LOB resources: ¥/
OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCl_DTYPE_FILE);
}

Example: Update a BFILE by Initializing a BFILE Locator Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BFILE-UPDATE.

5-176 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator

ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERD PIC X(11) VALUES "USER1USERL".
01 BFILE1 SQL-BFILE.

01 BFILEIND PIC S9(4) COMP.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(30) VARYING.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILE-UPDATE.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and initialize the BFILE locator:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

* Popullate the BFILE:
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
EXEC SQL
SELECT PHOTO INTO :BFILEL:BFILE-ND
FROM MULTIMEDIA TABWHERE CLIP_ID=1
END-EXEC.

* Make photo associated with clip_id=3 same as clip_id=1:
EXEC SQL
UPDATE MULTIMEDIA TAB SET PHOTO = :BFILE1:BFILE-IND
WHERECLIP_ID=3
END-EXEC.

* Free the BFILE:
END-OF-BFILE.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BFILE1 END-EXEC.
EXEC SQL

External LOBs (BFILES) 5-177

UPDATE a BFILE by Initializing a BFILE Locator

COMMIT WORK RELEASE
END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY ",
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™",
DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Update a BFILE by Initializing a BFILE Locator Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void updateUseBindVariable_proc(Lob_loc)
OCIBFileLocator*Lob_loc;

{
EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL UPDATE Mulimedia_tab SET Photo=:Lob_loc WHERE Clip_ID=3;

}

void updateBFILE._proc()
{
OCIBFieLocator *Lob loc;

EXEC SQL ALLOCATE :Lob_loc;

5-178 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator

EXEC SQL SELECT Photo INTO :Lob loc
FROM Multimedia_tab WHERE Clip_ID=1;
updateUseBindVariable_proc(Lob_loc);
EXEC SQL FREE :Lob _loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
updateBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Example: Update a BFILE by Initializing a BFILE Locator Using Visual Basic (0040)

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraParameters As OraParameters, OraPhoto As OraBfile

Set MySession = CreateObject("OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase(‘exampledb”, “scottftiger”, 0&)

OraDb.Connection.BeginTrans
Set OraParameters = OraDb.Parameters

Define in out parameter of BFILE type:
OraParameters.Add "MyPhoto", Empty, ORAPARM_BOTH, ORATYPE_BFILE

Define out parameter of BFILE type:
OraDb.ExecuteSQL (
"BEGIN SELECT Photo INTO :MyPhoto FROM Muttimedia._tab WHERE Clip_ID=1;
END;")

‘Update the photo BFile for clip_id=1 to clip_id=1001:
OraDb.ExecuteSQL (

"UPDATE Mutimedia._tab SET Photo = :MyPhoto WHERE Clip_ID =1001")
‘Get Directory alias and flename
"MsgBox " Directory alias is ' & OraMusicl.DirectoryName & " Flename is " &
OraMusicl flename

OraDb.Connection.CommitTrans

External LOBs (BFILES) 5-179

UPDATE a BFILE by Initializing a BFILE Locator

Example: Update a BFILE by Initializing a BFILE Locator Using Java (JDBC)

//Java lO classes:
import javaio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLEXxception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver;

public class Ex4_100
{

public static void main (String args [])
throws Exception
{
// Load the Oracle JDBC driver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn =
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp”, "samp');

conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE src_lob =null;

ResultSet rset = null;
OracleCallableStatement cstmt = nul;

rset = stmt.executeQuery (

"SELECT photo FROM multimedia._tab WHERE clip_id =3');
if (rsetnext())

5-180 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator

{
src_lob = ((OracleResultSet)rset).getBFILE (1);

}

// Prepare a CallableStatement to OPEN the LOB for READWRITE:
cstmt = (OracleCallableStaterment) conn.prepareCall (

"UPDATE mulimedia_tab SET photo =? WHERE clip_id=1");
cstmt.setBFILE(Y, src_lob);
cstmt.execute();

/[Close the statements and commit the transaction:
stmt.close();
cstmt.close();
conn.commit();
conn.close();

}

catch (SQLException €)

{
e.printStackTrace();

}

}
}

External LOBs (BFILEs) 5-181

Two Ways to Close a BFILE

Two Ways to Close a BFILE

Figure 5-33 Use Case Diagram: Two Ways to See If a BFILE is Open

External LOBs

open
gromman >\ aBFILE

v

X

User/
Program

close

Initialize
a BFILE locator

- the BFILE

5-182 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Two Ways to Close a BFILE

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

As you can see by comparing the code, these alternative methods are very similar.
However, while you can continue to use the older FILECLOSE form, we strongly

recommend that you switch to using CLOSE because this facilitates future
extensibility.

a. "Close a BFILE with FILECLOSE" on page 5-184
b. "Close a BFILE with CLOSE" on page 5-189

External LOBs (BFILEs) 5-183

Close a BFILE with FILECLOSE

Close a BFILE with FILECLOSE

Figure 5-34 Use Case Diagram: Close an Open BFILE

External LOBS — greesresssssssrssanesy
: a
. open
: »(aBFILE
: : b
o : :
: User/
: : Program
hean Initialize : baee close -- @ Close aBFILE
.OR\ a BFILE locator) €-==* a BFILE with FILECLOSE
Specify close all
*=%»| BFILE name opened files

5-184 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Close a BFILE with FILECLOSE

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

While you can continue to use the older FILECLOSE form, we strongly recommend
that you switch to using CLOSE because this facilitate future extensibility. This
example can be read in conjunction with the example of opening a BFILE .

« "Example: Close a BFile with FILECLOSE Using PL/SQL (DBMS_LOB
Package)" on page 5-185

« "Example: Close a BFile with FILECLOSE Using C (OCI)" on page 5-185

« "Example: Close a BFile with FILECLOSE Using Visual Basic (O040)" on
page 5-187

« "Example: Close a BFile with FILECLOSE Using Java (JDBC)" on page 5-187

Example: Close a BFile with FILECLOSE Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure closeBFILE_procOne is not part of the
DBMS_LOB package: ¥
CREATE OR REPLACE PROCEDURE closeBFILE_procOne IS
Lob loc BFILE := BFILENAME(PHOTO _DIR', Lincoln_photo’);
BEGIN
DBMS_LOB.FILEOPEN(Lob loc, DBMS_LOB.FILE_READONLY);
/*...Do some processing. ¥/
DBMS_LOB.FILECLOSE(Lob_loc);
END;

Example: Close a BFile with FILECLOSE Using C (OCl)

/* Select the lob/bile from the Mulimedia table %/

void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISvcCtx *svchp;

OClStatement *stmthp;

OCIEmor *enhp;

OCIDefine *dfnhp;

OClLobLocator*Lob_loc;

text *selstmt;

External LOBs (BFILEs) 5-185

Close a BFILE with FILECLOSE

/* Prepare the SQL select staterment %/
checkerr (emrhp, OCISmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/* Call define for the bfile column %/

checkerr (errhp, OCIDefineByPos(stmhp, &dinhp, errhp, 1,
(dvoid*)&Lob_loc, 0, SQLT_BFILE,
(dvoid *)0, (b2 %)0, (ub2*)0,
OCI_DEFAULT));

/* Execute the SQL select statement ¥/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OCISnapshat¥) O,
(ub4) OCI_DEFAULT));
}
void BfileClose(envhp, svchp, stmthp, erhp, dinhp)
OCIEnv *envhp;
OCISveCix *svchp;
OClIStatement *stmthp;
OCIEnor *enhp;
OCIDefine *dfnhp;
{
F Assume all handles passed as input to this routine have been
* allocated and initialized.
*

OCILobLocator *hfile_loc;

I Allocate the locator descriptor ¥/

(void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid) &bifile_loc,
(Ub4) OCI_ DTYPE FILE,
(size_1)0, (dvoid) 0)

/* Set the bfile locator information %/

checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
(OraText*)'PHOTO_DIR", (ub2)strlen('PHOTO_DIR"),
(OraText*)'Lincoln_photo",
(ub2)strlen("Lincoln_phota")));

checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));

/* Free the locator descriptor ¥/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);

5-186 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Close a BFILE with FILECLOSE

Example: Close a BFile with FILECLOSE Using Visual Basic (0040)

Note: At the present time, O040 only offers BFILE closing with
CLOSE (see below).

Example: Close a BFile with FILECLOSE Using Java (JDBC)

//Java lO classes:
import java.io.InputStream;
import javaio.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sql.PreparedStatement,
import java.sgl.ResuitSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sgl.*;
import oracle.jdbc.driver.;

public class Ex4_45

{
public static void main (String args [)
throws Exception
{
// Load the Oracle JDBC dnver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=

DriverManager.getConnection (' jdbc:oracle:oci8:@", "samp", "samp');
conn.setAutoCommit (false);

// Create a Statermment:
Statement stmt = conn.createStatement ();

External LOBs (BFILEs) 5-187

Close a BFILE with FILECLOSE

fry

BFILE src_lob=null;
ResultSet rset = null;
Boolean result = null;

rset = stmt.executeQuery (
"SELECT BFILENAME(PHOTO_DIR, 'Lincoln_photo) FROM DUAL");

if (rsetnext())

src_lob = ((OracleResultSet)rset).getBFILE (1);
}

result = new Boolean(src_lob.pisql_filelsOpen());

System.out printn(
"resutt of filelsOpen() before opening file : "' + result.toString());

src_lob.plsql_fleOpen();

result = new Boolean(src_lob.pisql_filelsOpen());

System.out printn(
"result of filelsOpen() after opening file : " + result toString());

// Close the BFILE, statement and connection:
src_lob.plsql_fileClose();

stmt.close();

conn.commit();

conn.close();

}
catch (SQLException €)

e.printStackTrace();
}
}
}

5-188 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE

Close a BFILE with CLOSE

Figure 5-35 Use Case Diagram: Close an Open BFILE

External LOBs =~ s======mmseseemmeeeees :

open

v

User/
Program

Close a BFILE

il Initialize == close - - !

_OR\ a BFILE locator) «-=* a BFILE with CLOSE
. Specify close all

*=»| BFILE name opened files

External LOBs (BFILEs) 5-189

Close a BFILE with CLOSE

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

This example should be read in conjunction with the example of opening a BFILE
— in this case, closing the BFILE associated with Lincoln_photo

« "Example: Close a BFile with CLOSE Using PL/SQL (DBMS_LOB Package)" on
page 5-190

« "Example: Close a BFile with CLOSE Using C (OCI)" on page 5-190

« "Example: Close a BFile with CLOSE Using COBOL (Pro*COBOL)" on
page 5-192

« "Example: Close a BFile with CLOSE Using C++ (Pro*C/C++)" on page 5-193
« "Example: Close a BFile with CLOSE Using Visual Basic (OO40)" on page 5-194
« "Example: Close a BFile with CLOSE Using Java (JDBC)" on page 5-195

Example: Close a BFile with CLOSE Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure closeBFILE_procTwo is not part of the
DBMS _LOB package: /
CREATE OR REPLACE PROCEDURE closeBFILE_procTwo IS
Lob loc BFILE := BFILENAME(PHOTO_DIR, 'Lincoln_photo’);
BEGIN
DBMS_LOB.OPEN(Lob loc, DBMS_LOB.LOB_READONLY);
/*...Do some processing. ¥/
DBMS_LOB.CLOSE(Lob loc);
END;

Example: Close a BFile with CLOSE Using C (OCI)

/* Select the lob/bile from the Mulimedia table %/

void selectlob(svchp, stmthp, errhp, dinhp, Lob_loc, selstmt)
OCISvcCtx *svchp;

OClStatement *stmthp;

OCIEnmor *errhp;

OCIDefine *dfnhp;

5-190 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE

OClLobLocator*Lob _loc;
text *selstmt;
{
/* Prepare the SQL select statement %/
checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
(ub4) strlen((char *) selstmt),
(ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

/*Call define for the bfile column %/

checkerr (errhp, OCIDefineByPos(stmhp, &dfnhp, erhp, 1,
(dvoid»&Lob loc,0, SQLT_BFILE,
(dvoid %0, (b2 %)0, (ub2*)0,
OCI_DEFAULT));

/* Executte the SQL select staterment ¥/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSsnapshoat*) 0, (OCISnapshot®) O,
(ub4) OCI_DEFAULT));
}
void BfileClose(envhp, svchp, stmthp, erhp, dinhp)
OCIEnv *envhp;
OCISveCix *svchp;
OClStatement *stmthp;
OCIEnor *errhp;
OCIDefine *dfnhp;
{
/*Assume all handles passed as inpuit to this routine have been
allocated and initialized.
Y

OClLobLocator *bfile_loc;

/*Allocate the locator descriptor %/

(void) OClIDescriptorAlloc((dvoid *) envhp, (dvoid *¥) &bfile_loc,
(ub4) OCI_DTYPE_FILE,
(size_t) O, (dvoid **) 0)

/* Set the bfile locator information %/

checkerr(errhp, (OCILobFileSetName(envhp, erhp, &bfile_loc,
(OraText*)'PHOTO_DIR", (ub2)strlen('PHOTO_DIR"),
(OraText*)'"Lincoln_photo”,
(ub2)strien("Lincoln_photo'))));

checkerr(errhp, OCILobClose(svchp, erhp, bfile_loc));

External LOBs (BFILEs) 5-191

Close a BFILE with CLOSE

/* Free the locator descriptor ¥/
OClDescriptorFree((dvoid *)bfile_loc, (ub4)OCl_DTYPE_FILE);
}

Example: Close a BFile with CLOSE Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BFILE-CLOSE.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERL/USERY".
01 BFILE1 SQL-BFILE.

01 DIR-ALIAS PIC X(30) VARYING.

01 FNAME PIC X(20) VARYING.

01 ORASLNRD PIC 9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILE-CLOSE.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

* Allocate and iniialize the BFILE locators:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.

*Set up the directory and file information:
MOVE "PHOTO_DIR" TO DIR-ALIAS-ARR.
MOVE 9 TO DIR-ALIAS-LEN.

MOVE "lincoln_photo" TO FNAME-ARR.
MOVE 13 TO FNAME-LEN.

EXEC SQL
LOB FILE SET :BFILE1
DIRECTORY = DIR-ALIAS, FILENAME = :FNAME
END-EXEC.

5-192 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE

EXEC SQL
LOB OPEN :BFILE1 READ ONLY
END-EXEC.

*Close the LOB:
EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

* And free the LOB locator:
EXEC SQL FREE :BFILE1 END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".
DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ™.
DISPLAY "".
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Close a BFile with CLOSE Using C++ (Pro*C/C++)

/*Pro*C/C++ has only one form of CLOSE for BFILES. Pro*C/C++ has no
FILE CLOSE statement. A simple CLOSE statement is used instead: %/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
ext(1);

}

void closeBFILE_proc()
{

External LOBs (BFILEs) 5-193

Close a BFILE with CLOSE

OCIBFileLocator *Lob loc;
char*Dir="PHOTO_DIR", *Name ="Lincoln_photo";

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
EXEC SQL LOB OPEN :Lob_loc READ ONLY;

/*... Do some processing %/

EXEC SQL LOB CLOSE :Lob _loc;

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
closeBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Close a BFile with CLOSE Using Visual Basic (O040)

Note that this code fragment assumes a ORABFILE object as the result of a
‘dynaset gperation. This object could have been an OUT parameter of a PL/SQL
Iprocedure. For more information please refer to chapter 1:

Dim MySession As OraSession

Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraMusic As OraBfile, amount_read%, chunksize%, chunk

Set MySession = CreateObject("OraclelnProcSenver.XOraSession')
Set OraDb = MySession.OpenDatabase('exampledb”, "scottfiger”, 0&)

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Mulimedia_tab", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("Music").Value

If OraMusic.IsOpen Then
Processing given that the file is already open
OraMusic.Close

End If

5-194 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE

Example: Close a BFile with CLOSE Using Java (JDBC)

//Java lO classes:
import javaio.InputStream;
import java.io.OutputStream;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sgl.Statement;

import java.sql.PreparedStatement,
import java.sgl.ResultSet;

import java.sgl.SQLEXception;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver ¥,

public class Ex4_48
{

public static void main (String args [])
throws Exception

{
//Load the Oracle JDBC dhiver:
Class.forName (‘oracle jdbc.driver.OracleDriver");

// Connect to the database:
Connection conn=
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp');

conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE src_lob=null;

ResultSet rset = null;
Boolean result = null;

rset = stmt.executeQuery (

"SELECT BFILENAME(PHOTO_DIR;, 'Lincoln_photo) FROM DUAL");
if (rsetnext())

External LOBs (BFILES) 5-195

Close a BFILE with CLOSE

{
src_lob = ((OracleResultSet)rset).getBFILE (1);

}

result = new Boolean(src_lob.isFileOpen());

System.out.printin(
"resutt of filelsOpen() before opening file : " + result toString());

src_lob.openFile();

result = new Boolean(src_lob.isFileOpen());

System.out.printin(
"resutt of filelsOpen() after opening file : "' + result toString());

// Close the BFILE, statement and connection:
src_lob.closeFile();
stmt.close();
conn.commit();
conn.close();

}

catch (SQLException €)

{
e.printStackTrace();

}

}
}

5-196 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Close All Open BFILEs

Close All Open BFILEs

Figure 5-36 Use Case Diagram: Close All Open BFILEs

External LOBs

v

X

User/
Program

Initialize
OR\ a BFILE locator) €==="~ .

close all

Specify
opened files

BFILE name [——

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

It is the user’s responsibility to close any opened file(s) after normal or abnormal

External LOBs (BFILES) 5-197

Close All Open BFILEs

termination of a PL/SQL program block or OCI program. So, for instance, for every
DBMS_LOB-ILEOPEN() or DBMS_LOBPEN() call on a BFILE , there must be a
matching DBMS_LOB-ILECLOSE() or DBMS_LOECLOSE() call. You should close
open files before the termination of a PL/SQL block or OCI program, and also in
situations which have raised errors. The exception handler should make provisions
to close any files that were opened before the occurrence of the exception or
abnormal termination.

If this is not done, Oracle will consider these files unclosed.

See Also: "Maximum Number of Open BFILES" on page 5-52

Scenario

« "Example: Close All Open BFiles Using PL/SQL (DBMS_LOB Package)" on
page 5-198

« "Example: Close All Open BFiles Using C (OCI)" on page 5-198

« "Example: Close All Open BFiles Using COBOL (Pro*COBOL)" on page 5-199
« "Example: Close All Open BFiles Using C++ (Pro*C/C++)" on page 5-200

« "Example: Close All Open BFiles Using Visual Basic (OO40)" on page 5-201

« "Example: Close All Open BFiles Using Java (JDBC)" on page 5-202

Example: Close All Open BFiles Using PL/SQL (DBMS_LOB Package)

/* Note that the example procedure closeAllOpenFiesBFILE_proc is not part of
the DBMS_LOB package:

CREATE OR REPLACE PROCEDURE closeAllOpenFiesBFILE_proc IS

BEGIN
/*Close all open BFILEs: %
DBMS _LOB.FILECLOSEALL;

END;

Example: Close All Open BFiles Using C (OCI)

void BfileCloseAll(svchp, emhp)
OCISvcCix *svchp;
OCIEnor *errhp;

/*Close all open files on the service context

5-198 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close All Open BFILEs

checkerr(errhp, OCILobFileCloseAll(svchp, errhp));
}

Example: Close All Open BFiles Using COBOL (Pro*COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. BFILE-CLOSE-ALL.
ENVIRONMENT DIVISION.
DATADIVISION.
WORKING-STORAGE SECTION.

01 USERID PIC X(11) VALUES "USERLUSERY".
01 BFILE1 SQL-BFILE.

01 BFILE2 SQL-BFILE.

01 DIR-ALIAS1 PIC X(30) VARYING.

01 FNAMEL PIC X(20) VARYING.

01 DIR-ALIAS2 PIC X(30) VARYING.

01 FNAME2 PIC X(20) VARYING.

01 ORASLNRD PIC9(4).

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
EXEC SQL INCLUDE ORACA END-EXEC.

PROCEDURE DIVISION.
BFILE-CLOSE-ALL.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL

CONNECT :USERID
END-EXEC.

*Allocate the BFILES:
EXEC SQL ALLOCATE :BFILE1 END-EXEC.
EXEC SQL ALLOCATE :BFILE2 END-EXEC.

*Set up the directory and file information:
MOVE "AUDIO_DIR" TO DIR-ALIAS1-ARR.
MOVE 9 TO DIR-ALIAS1-LEN.
MOVE "washington_audio” TO FNAMEL-ARR.
MOVE 16 TO FNAME1-LEN.

EXEC SQL
LOB FILE SET :BFILE1

External LOBs (BFILEs) 5-199

Close All Open BFILEs

DIRECTORY = :DIR-ALIAS], FILENAME = :FNAME1
END-EXEC.

EXEC SQL
LOB OPEN :BFILE1 READ ONLY
END-EXEC.

*Set up the directory and file information:
MOVE "PHOTO_DIR" TO DIR-ALIAS2-ARR.
MOVE 9 TO DIR-ALIAS2-LEN.
MOVE "lincoln_photo" TO FNAME2-ARR.
MOVE 13 TO FNAME2-LEN.

EXEC SQL
LOB FILE SET :BFILE2
DIRECTORY = DIR-ALIAS2, FILENAME = :FNAME2
END-EXEC.

EXEC SQL
LOB OPEN :BFILE2 READ ONLY
END-EXEC.

*Close both BFILE1 and BFILEZ:
EXEC SQL LOB FILE CLOSE ALL END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE ORASLNR TO ORASLNRD.
DISPLAY "".

DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, "".

DISPLAY ",
DISPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END-EXEC.
STOP RUN.

Example: Close All Open BFiles Using C++ (Pro*C/C++)

#include <oci.h>
#include <stdio.h>

5-200 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close All Open BFILEs

#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void closeAlOpenBFILEs_proc()

{
OCIBFileLocator*Lob_locl, *Lob loc2;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();

EXEC SQL ALLOCATE :Lob_locl;

EXEC SQL ALLOCATE :Lob_loc2;

/* Populate the Locators: %/

EXEC SQL SELECT Music INTO :Lob locl
FROM Multimedia_tab WHERE Clip_ID=3;

EXEC SQL SELECT Mtab.Voiced _refRecording INTO Lob_loc2
FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID=3;

/*Open both BFILESs: %/

EXEC SQL LOB OPEN :Lob _loc1 READ ONLY;

EXEC SQL LOB OPEN :Lob loc2 READ ONLY;

/#Close allapen BFILEs:

EXEC SQLLOB FILE CLOSE ALL;

/* Free resources held by the Locators: %

EXEC SQL FREE Lob_locl;

EXEC SQL FREE :Lob loc2;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
closeAllOpenBFILES proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Example: Close All Open BFiles Using Visual Basic (0040)

Dim OraParameters as OraParameters, OraPhoto as OraBFile
OraConnection.BeginTrans

External LOBs (BFILEs) 5-201

Close All Open BFILEs

Set OraParameters = OraDatabase.Parameters

Define in out parameter of BFILE type:
OraParameters.Add "MyPhoto", Empty,ORAPARAM_BOTH,ORATYPE._BFILE

‘Select the photo BFiie for clip_idl 1:
OraDatabase ExecuteSQL('Begin SELECT Photo INTO :MyPhoto FROM
Mulimedia, tab WHERE Clip_ID=1;END")

‘Get the BFile photo colurmn:
set OraPhoto = OraParameters('MyPhoto").Value

‘Open the OraPhoto:
OraPhoto.Open

‘Do some processing on OraPhoto

‘Close all the BFILESs associated with OraPhoto:
OraPhoto.CloseAll

Example: Close All Open BFiles Using Java (JDBC)

/Java lO classes:
import javaLio.InputStream;
import java.io.OutputStream,;

// Core JDBC classes:

import java.sgl.DriverManager;
import java.sgl.Connection;

import java.sql. Types;

import java.sgl.Statement,

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sgl.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql*;
import oracle jdbc.driver*,

public class Ex4_66
{

static final int MAXBUFSIZE = 32767;

5-202 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Close All Open BFILEs

public static void main (String args [])
throws Exception

{
// Load the Oracle JDBC dhiver:
Class.forName (‘oracle.jdbc.driver.OracleDriver");

// Connectto the database:
Connection conn =
DriverManager.getConnection (jdbc:oracle:oci8:@", "samp", "samp’);

/ Its faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();

try

{
BFILE lob_loc1 =nul;

BFILE lob_loc2 =nul;
ResultSet rset = null;
OracleCallableStatement cstmt = nul;

rset = stmt.executeQuery (

"SELECT photo FROM multimedia__tab WHERE clip_id =3");
if (rsetnext())
{

lob_locl = ((OracleResultSet)rset).getBFILE (1);

}

rset = stmt.executeQuery (
"SELECT BFILENAME(PHOTO_DIR, 'RooseveltFDR_photo) FROM DUAL');

if (rsetnext())
{

lob_loc2 = ((OracleResultSet)rset).getBFILE (1);
}

cstmt = (OracleCallableStaternent) conn.prepareCall (
"BEGIN DBMS_LOB.FILEOPEN(?,DBMS_LOB.LOB_READONLY); END;);
// Openthe first LOB:
cstmtsetBFILE(L, lob_locl);
cstmt.execute();

cstmt = (OracleCallableStaternent) conn.prepareCall (
"BEGIN DBMS_LOB.FILEOPEN(?,DBMS_LOB.LOB_READONLY); END;");

External LOBs (BFILEs) 5-203

Close All Open BFILEs

// Use the same CallableStatement to open the second LOB:
cstmt.setBFILE(L, lob_loc2);
cstmt.execute();

// Compare MAXBUFSIZE bytes starting at the first byte of

/bothlob_loc1 andlob_loc2:

cstmt = (OracleCallableStaternent) conn.prepareCall (
"BEGIN ?:=DBMS_LOB.COMPARE(?, ?,?, 1, 1); END;");

cstmtregisterOutParameter (1, Types.NUMERIC);

cstmt.setBFILE(2, lob_locl);

cstmt.setBFILE(3, lob_loc2);

cstmt.setint(4, MAXBUFSIZE);

cstmt.execute();

int result = cstmt.getint(1);
System.out printin(*Comparison result: " + Integer.toString(resultt));

// Close all BFILEs:
stmtexecute('BEGIN DBMS_LOB.FILECLOSEALL; END;";

stmt.close();
cstmt.close();
conn.commit();
conn.close();

}

catch (SQLException €)

{
e.printStackTrace();

}

}
}

5-204 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a BFILE

DELETE the Row of a Table Containing a BFILE

Figure 5-37 Use Case Diagram: DELETE the Row of a Table Containing a LOB
(BFILE)

X

User/
Program

External LOBs

To refer to the table of all basic operations having to do with
External LOBs (BFILES) see:

« "Use Case Model: External LOBs" on page 5-2

Scenario

Unlike internal persistent LOBs, the LOBvalue in a BFILE does not get deleted by
using SQL DDL or SQL DML commands — only the BFILE locator is deleted.
Deletion of a record containing a BFILE column amounts to de-linking that record
from an existing file, not deleting the physical operating system file itself. An SQL
DELETEstatement on a particular row deletes the BFILE locator for the particular
row, thereby removing the reference to the operating system file.

The following DELETE DROP TABLEFor TRUNCATE TABLEtatements delete the
row, and hence the BFILE locator that refers to Imagel .gif , but leave the
operating system file undeleted in the filesystem.

External LOBs (BFILES) 5-205

DELETE the Row of a Table Containing a BFILE

Example: Delete a Row from a Table Using SQL

DELETE FROM Mutimedia._tab
WHERE Clip_ID=3;

DROP TABLE Multimedia._tab;

TRUNCATE TABLE Muttimedia__tab;

5-206 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

6

LOBs and Partitioned Tables

LOBs and Partitioned Tables 6-1

Using LOBs in Partitions

Using LOBs in Partitions

You can partition tables with LOBs. As a result, LOBs can take advantage of all of the
benefits of partitioning. For example, LOBsegments can be spread between several
tablespaces to balance 1/0 load and to make backup and recovery more
manageable. LOBs in a partitioned table also become easier to maintain. This
section describes some of the ways you can manipulate LOBs in partitioned tables.

As an extension to the example multimedia application described in Chapter 1,
"Introduction to Working With LOBs", let us suppose that makers of a documentary
are producing multiple clips relating to different Presidents of the United States.
The clips consist of photographs of the presidents accompanied by spoken text and
background music. The photographs will come from the PhotoLib_Tab archive.
To make the most efficient use of the presidents’ photographs, they are loaded into
a database according to the schema illustrated in Figure 6-1.

Figure 6-1 Schema Design for Inclusion of PHOTO_REF Reference

Column Name Kind of Data
Table MULTIMEDIA_TAB
FCLIP_ID | STORY | FLSUB | PHOTO_REF FRAME | SOUND | VOICED_REF| INSEG_NTAB | MUSIC | MAP_OBJ
Number | Text Text Photo Video Audio Reference Nested Table | Audio |Object Type§
NUMBER| CLOB NCLOB| PHOTO_TYP| BLOB BLOB VOICED_TYP| INSEG_TYP BFILE |MAP_TYP—H
I"PK |
Key Reference to a row Type
object of a table of
the defined type
|
Table PRESIDENTPHOTO_TAB (of PHOTO_TYP)
PRESNAME PHOTODATE PHOTONAME | PRESPHOTO SCRIPT | ACTOR MUSIC
Text Date Text Photo Text Text Audio
VARCHAR2(30) | DATE VARCHAR2(30) | BLOB CLOB | VARCHAR2(30) | BFILE
PK

6-2

Oracle8i Application Developer's Guide - Large Objects (LOBS)

Using LOBs in Partitions

PRESNAMEA column on the president’s name lets the documentary producers
select data for clips organized around specific presidents. PRESNAMIS also chosen
as a primary key because it holds unique values.

PRESPHOTO his column contains photographs in which a president appears. This
category also contains photographs of paintings and engravings of presidents who
lived before the advent of photography.

PHOTODATH his column contains the date on which the photograph was taken. In
the case of presidents who lived before the advent of photography, PHOTODATE
pertains to the date when the painting or engraving was created. This column is
chosen as the partition key to make it easier to add partitions and to perform
MERGEsnd SPLITs of the data based on some given date such as the end of a
president’s first term. This will be illustrated later in this section.

PHOTONAMEhis column contains the name of the photograph. An example name
might be something as precise as "Bush Addresses UN - June 1990" or as general as
"Franklin Roosevelt - Inauguration”.

SCRIPT: This column contains written text associated with the photograph. This
could be text describing the event portrayed by the photograph or perhaps
segments of a speech by the president.

ACTORThis column contains the name of the actor reading the script.

MUSIC This column contains background music to be played during the viewing of
the photographs.

Creating and Partitioning a Table Containing LOB Data

To isolate the photographs associated with a given president, a partition is created
for each president by the ending dates of their terms of office. For example, a
president who served two terms would have two partitions: the first partition
bounded by the end date of the first term and a second partition bounded by the
end date of the second term.

Note that in the following examples, the extension 1 refers to a president’s first term
and 2 refers to a president’s second term. For example, GeorgeWashingtonl

part refers to the partition created for George Washington’s first term and
RichardNixon2_part refers to the partition created for Richard Nixon’s second
term.

LOBs and Partitioned Tables 6-3

Using LOBs in Partitions

Note: You may need to set up data structures for certain examples
to work; such as:

CONNECT system/manager
GRANT CREATE TABLESPACE, DROP TABLESPACE TO scott;

CONNECT scottftiger

CREATE TABLESPACEEaryPresidents_ths DATAFILE
'disk1l:moredata0l’ SIZE 1M;

CREATE TABLESPACEEaryPresidentsPhotos_tbs DATAFILE
‘diskl:moredata99’ SIZE 1M;

CREATE TABLESPACEEaryPresidentsScripts_ths DATAFILE

'disk1:moredata03’ SIZE 1M;
CREATE TABLESPACERIchardNixonl tbs DATAFILE
'disk1l:moredata04’ SIZE 1M;

CREATE TABLESPACEPost1960PresidentsPhotos _ths DATAFILE
‘diskl:moredata05’ SIZE 1M;
CREATE TABLESPACEPost1960PresidentsScripts_ths DATAFILE

'disk1:moredata06’ SIZE 1M;

CREATE TABLESPACERIchardNixon2_tbs DATAFILE
'disk1l:moredata07’ SIZE 1M;

CREATE TABLESPACEGeraldFordl_tbs DATAFILE
‘diskl:moredata97’ SIZE 1M;

CREATE TABLESPACE RichardNixonPhotos_ths DATAFILE

'disk1:moredata08’ SIZE 2M;
CREATE TABLESPACE RichardNixonBigger2_tbs DATAFILE
'disk1l:moredata48’ SIZE 2M;
CREATE TABLE Mirroriob_tab(

PresName VARCHAR2(30),

PhotoDate DATE,

PhotoName VARCHAR2(30),

PresPhoto BLOB,

Script CLOB,

Actor VARCHAR2(30),

Music BFILE);

CREATE TABLE Presidentphoto_tab(PresName VARCHAR2(30), PhotoDate DATE,
PhotoName VARCHAR2(30), PresPhoto BLOB,
Script CLOB, Actor VARCHAR2(30), Music BFILE)
STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0)
LOB (PresPhoto) STORE AS (CHUNK 4096)
LOB (Script) STORE AS (CHUNK 2048)
PARTITION BY RANGE(PhotoDate)
(PARTITION GeorgeWashingtonl_part

6-4 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Using LOBs in Partitions

/*Use photos to the end of Washington's first term %/
VALUES LESS THAN (TO_DATE(19-mar-1792, ' DD-MON-YYYYY)
TABLESPACE EartyPresidents_ths
LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION GeorgeWashington2_part
/*Use photos to the end of Washington's second term %/
VALUES LESS THAN (TO_DATE(19-mar-1796', ' DD-MON-YYYYY)
TABLESPACE EartyPresidents_ths
LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION JohnAdams1_part
/*Use photos to the end of Adams' only term %/
VALUES LESS THAN (TO_DATE(19-mar-1800, 'DD-MON-YYYYY)
TABLESPACE EartyPresidents_ths
LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
/*...Intervening presidents... %/
PARTITION RichardNixon1_part
/*Use photos to the end of Nixon's first term %
VALUES LESS THAN (TO_DATE(204an-1972, ' DD-MON-YYYY?)
TABLESPACE RichardNixon1._tbs
LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_ths)
)

Creating an Index on a Table Containing LOB Columns

To improve the performance of queries which access records by a President's name
and possibly the names of photographs, a UNIQUElocal index is created:

CREATE UNIQUE INDEX PresPhoto _idx
ON PresidentPhoto_tab (PresName, PhotoName, Photodate) LOCAL;

Exchanging Partitions Containing LOB Data

As a part of upgrading from Oracle8.0 to 8.1, data was exchanged from an existing
non-partitioned table containing photos of Bill Clinton's first term into the
appropriate partition:

ALTER TABLE PresidentPhoto_talb EXCHANGE PARTITION RichardNixonl_part
WITH TABLE Mirroriob_tab INCLUDING INDEXES;

LOBs and Partitioned Tables 6-5

Using LOBs in Partitions

Adding Partitions to Tables Containing LOB Data

To account for Richard Nixon’s second term, a new partition was added to
PresidentPhoto_tab

ALTER TABLE PresidentPhoto_tab ADD PARTITION RichardNixon2_part
VALUES LESS THAN (TO_DATE(204an-1976, DD-MON-YYYY)
TABLESPACE RichardNixon2_tbs
LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_ths);

Moving Partitions Containing LOBs

During his second term, Richard Nixon had so many photo-ops, that the partition
containing information on his second term is no longer adequate. It was decided to
move the data partition and the corresponding LOB partition of
PresidentPhoto_tab into a different tablespace, with the corresponding LOB
partition of Script remaining in the original tablespace:

ALTER TABLE PresidentPhoto_tab MOVE PARTITION RichardNixon2_part
TABLESPACE RichardNixonBigger2_tbs
LOB (PresPhoto) STORE AS (TABLESPACE RichardNixonPhotos_tbs);

Splitting Partitions Containing LOBs

When Richard Nixon was re-elected for his second term, a partition with bounds
equal to the expected end of his term (20-jan-1976) was added to the table (see
above example.) Since Nixon resigned from office on 9 August 1974, that partition
had to be split to reflect the fact that the remainder of the term was served by
Gerald Ford:

ALTER TABLE PresidentPhoto_tab SPLIT PARTITION RichardNixon2_part
AT (TO_DATE(09-aug-1974), DD-MON-YYYY)
INTO (PARTITION RichardNixon2_part),
PARTITION GeraldFord1_part TABLESPACE GeraldFordl_ths
LOB (PresPhoto) STORE AS (TABLESPACE Post1960PresidentsPhotos_ths)
LOB (Script) STORE AS (TABLESPACE Post1960PresidentsScripts_ths)));

Merging Partitions Containing LOBs

Despite the best efforts of the documentary producers in searching for photographs
of paintings or engravings of George Washington, the number of photographs that
were found was inadequate to justify a separate partition for each of his two terms.

6-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Using LOBs in Partitions

Accordingly, it was decided to merge these two partition into one named
GeorgeWashington8Years_part

ALTER TABLE PresidentPhoto_tab
MERGE PARTITIONS GeorgeWashingtonl_part, George\Washington2_part
INTO PARTITION GeorgeWashington8Years_part TABLESPACE EarlyPresidents_ths
LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE EartyPresidentsScripts_ths);

Populating the Script CLOB and Photo BLOB

The documentary producers have found a photograph Bill Clinton during his trip
to Florida on 22 March 1993. They will add it to the PresidentPhoto_tab table,
and then fill the PresPhoto column with the photograph BLOBdata and the
Script column with the text CLOBdata. This section illustrates populating the
Script CLOB and the Photo BLOB.

Assume that the following directory objects for the music audio files and the
presidential photographs were already created,

CREATE DIRECTORY Music_dir as /audio/presidents’;
CREATE DIRECTORY Image_dir as image/presidents’;

and that READpermission has been granted to the user who will use it:

GRANT READ ON DIRECTORY Music_dir TO a_user;
GRANT READ ON DIRECTORY Image_dir TO a_user,

INSERT INTO PresidentPhoto_tab VALUES (
‘RichardNixon’, TO_DATE(22-mar-1973, ' DD-MON-YYYY’), 'NixonFlorida1993,,
EMPTY_BLOB(), EMPTY_CLOBY(), Warren Beatty', BFILENAME(MUSIC_DIR,
TropicalMusic));

Populating the BLOB:

The following code segment uses the LOADFROMFILEommand to populate the
PresPhoto BLOB with data:

CREATE OR REPLACE PROCEDURE loadPart OBFromBFILE_proc IS
Dest loc BLOB;
Src_loc BFILE := BFILENAME(IMAGE_DIR', 'HoridaTrip’);
Amount INTEGER :=4000;

BEGIN

LOBs and Partitioned Tables 6-7

Using LOBs in Partitions

/* Select the LOB from the partitioned table: %/

SELECT PresPhoto INTO Dest_loc FROM PresidentPhoto_tab WHERE
PresName ='RichardNixon’ AND
PhotoName ='NixonFlorida1993'
FOR UPDATE;

/*Opening the LOB is optional: %/

DBMS_LOB.OPEN (Dest_loc, DBMS_LOB.LOB _READWRITE);
/*Qpening the BFILE is mandatory ¥/

DBMS_LOB.OPEN (Src_loc, DBMS_LOB.LOB _READONLY);

DBMS_LOB.LOADFROMFILE(Dest loc, Src_loc, Amount);

/*Closing the LOB is mandatory if you have opened it %/
DBMS_LOB.CLOSE(Dest loc);
DBMS_LOB.CLOSE(Src _loc);

COMMIT;
END;

Populate the CLOB:

The following code segment uses the CHECKINmethod to load data into the
Script CLOB

CREATE OR REPLACE PROCEDURE checkinPart. OB _proc IS
Lob loc CLOB;
Buffer VARCHAR2(32767);
Amount BINARY_INTEGER = 32767;
Posiion INTEGER :=1;
i INTEGER,;
BEGIN
/*Select the LOB from the partitioned table: %/
SELECT script INTO Lob_loc FROM PresidentPhoto_tab where
PresName = 'RichardNixon' AND
PhotoName = 'NixonFlorida1993';

/*Opening the LOB is optional: %/
DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);

/*Fill the buffer with data %
FORIiIN 1.3LOOP

/* Wiite data: ¥/
DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);

6-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Using LOBs in Partitions

/*Fill in more data: ¥/
Position ;= Pasition + Amount;
END LOOP,

/*Closing the LOB is mandatory if you have opened it /
DBMS_LOB.CLOSE(Lob _loc);
COMMIT;

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT _LINE(Operation failed);
END;

Reading the LOB Value:

The following code segment uses the CHECKOUgGommand to READthe LOBvalue:

CREATE OR REPLACE PROCEDURE checkoutPartLOB_procis

Lob loc CLOB;
Buffer VARCHAR2(32767);
Amount BINARY_INTEGER = 32767,
Posiion INTEGER =1;
BEGIN
/*Select the LOB from the partitioned table: %/

SELECT Script INTO Lob_loc FROM PresidentPhoto_tab WHERE

PresName ='RichardNixon’ AND
PhotoName = "NixonFlorida1993';

/*Opening the LOB is optional: %/

DBMS_LOB.OPEN (Lob,_loc, DBMS_LOB.LOB_READONLY);

LOOP
/*Read data: %/
DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
/* Process the data in the buffer. %/
Position ;= Pasition + Amount;
END LOOP,;

/*Closing the LOB is mandatory if you have opened it ¥/
DBMS_LOB.CLOSE(Lob _loc);

EXCEPTION
WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE(ENd of data’);
END;

LOBs and Partitioned Tables 6-9

Using LOBs in Partitions

6-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

B

BFILE datatype, 1-3
BFILENAME(), 5-5
BFILEs, 1-2
initializing, 5-5
maximum number of open, 1-8,5-136
multi-threaded server (MTS), 5-10
BLOB datatype, 1-2
buffers
LOBs, 2-14

C

CACHE / NOCACHE, 3-10
caches
object cache, 2-14
CHUNK, 3-11
CLOB datatype, 1-2
NCLOBs, 1-2
copy semantics for internal LOBs, 3-28
copying LOBs, 2-12

D

DBMS_L OB package
multi-threaded server (MTS), 5-10
deleting internal LOBs, 2-14
deleting LOBs, 2-14
directories
catalog views, 5-9
guidelines for usage, 5-9
ownership and privileges, 5-7
DIRECTORY name specification, 5-7

Index

directory objects, 5-5

E

examples
LOB buffering, 2-21
read consistent locators, 2-3
repercussions of mixing SQL DML with
DBMS_LOB, 2-6
updated LOB locators, 2-8
updating a LOB with a PL/SQL variable,
external callout, 2-20
external LOBs (BFILEs), 1-2

F

2-10

flushing the LOB’s buffer, 2-15
FOR UPDATE clause
LOBs, 1-49,2-2

L

LBS
SeeLOB Buffering Subsystem
LOB Buffering System (LBS)

LOB locators cannot span transactions, 1-49

LOBS
external (BFILEs), 1-2

LOBs
accessing through a locator, 1-49
buffering

caveats, 2-15
pages can be aged out, 2-19
buffering operations, 2-17

Index-1

buffering subsystem, 2-14
deleting, 2-14
flushing, 2-15
in partitioned tables, 6-2
in the object cache, 2-14
inline storage, 1-47
internal LOBs
CACHE /7 NOCACHE, 3-10
CHUNK, 3-11
deleting, 2-14
ENABLE | DISABLE STORAGE IN
ROW, 3-12
initializing, 5-93
locators, 1-47

locking before updating, 3-146, 3-182, 3-192,

3-201, 3-217, 3-227
LOGGING / NOLOGGING, 3-10
PCTVERSION, 3-9
setting to empty, 3-8
tablespace and LOB index, 3-9
tablespace and storage characteristics, 3-8
LOB locators, 2-2
locators, 1-47
object cache, 2-14
performance, best practices, 2-24
performing SELECT on, 1-49
piecewise operations, 2-5
read consistent locators, 2-2
setting to contain a locator, 1-47
setting to NULL, 3-7

tables
adding partitions, 6-6
creating, 6-3

creating indexes, 6-5
exchanging partitions, 6-5
merging partitions, 6-6
moving partitions, 6-6
partitioning, 6-3
splitting partitions, 6-6
typical uses, 1-39
updated LOB locators, 2-5
value, 1-47
varying-width character data, 2-25
locators, 1-47
accessing a LOB through, 1-49

Index-2

cannot span transactions, 1-49

multiple, 2-2

read consistent, 2-2, 2-3, 2-9, 2-12, 2-19, 2-21,

2-22,2-24

read consistent locators, 2-2

selecting, 1-49

setting column / attribute to contain, 1-47

updated, 2-2,2-5,2-10, 2-12, 2-19
LOGGING /7 NOLOGGING, 3-10

M

multi-threaded server (MTS)
BFILEs, 5-10

N

national language support
NCLOBs, 1-2
NCLOB datatype, 1-2

O

object cache, 2-14
LOBs, 2-14

P

PCTVERSION, 3-9

R

read consistency
LOBs, 2-2
read consistent locators, 2-2, 2-3, 2-9, 2-12, 2-19,
2-21, 2-22, 2-24
reference semantics for BFILEs, 5-6
roundtrips to the server, avoiding, 2-15, 2-21

S

SELECT command
FOR UPDATE, 1-49
read consistency, 2-2
semantics
copy-based for internal LOBs, 3-28

reference based for BFILEs, 5-6
SESSION_MAX_OPEN_FILES parameter, 1-8,
5-52, 5-67
setting internal LOBs to empty, 3-8
setting LOBs to NULL, 3-7
SQL DDL
BFILE security, 5-8
SQL DML
BFILE security, 5-8

T

transactions
external LOBs do not participate, 1-3
internal LOBs participate fully, 1-2
LOB locators cannot span, 1-49
migrating from, 2-20

U

updated locators, 2-2, 2-5, 2-10, 2-12, 2-19

Vv

value of LOBs, 1-47

Index-3

Index-4

	PDF Directory
	Contents
	Send Us Your Comments
	Preface
	1 Introduction to Working With LOBs
	The LOB Datatype
	Internal LOBs
	Internal LOB Datatypes

	External LOBs (BFILEs)
	External LOB Datatype

	Varying-Width Character Data
	DBMS_LOB Package
	OCI

	LOBs in Comparison to LONG and LONG RAW Types
	LOB Restrictions
	DBA Actions Required Prior to Working with LOBs
	Set Maximum Number of Open BFILEs

	Using SQL DML for Basic Operations on LOBs
	Programmatic Environments for Operating on LOBs
	Comparison of Six Interfaces
	Using the DBMS_LOB Package for Working With LOBs
	Using the Oracle Call Interface (OCI) with LOBs
	A sample main() and LOB procedure

	Using C++ (Pro*C/C++) to Work with LOBs
	Using COBOL (Pro*COBOL) to Work with LOBs
	Using Visual Basic (OO4O) to Work with LOBs
	Using Java (JDBC) to Work with LOBs

	An Example Application
	The Multimedia Content-Collection System
	Applying an Object-Relational Design to the Application
	The Structure of the Multimedia_tab Table

	The Most Basic Operation: Getting and Using the LOB Locator
	LOB Value and Locators
	Inline storage of the LOB value
	LOB locators
	Internal LOB Locators

	LOB Locator Operations
	Setting the LOB Column/Attribute to contain a locator
	Accessing a LOB through a locator
	SELECTing a LOB

	LOB Locators and Transaction Boundaries
	Case 1:
	Case 2:
	Case 3:
	Case 4:

	Open, Close and IsOpen Interfaces for Internal LOBs
	Open and Close with Extensible Indexes
	Errors
	Example 1
	Example 2:

	Indexing a LOB Column

	2 Advanced Topics
	Read-Consistent Locators
	Updated locators
	LOB Bind Variables
	LOB locators cannot span transactions

	LOBs in the Object Cache
	LOB Buffering Subsystem
	Advantages of LOB Buffering
	Considerations in the Use of LOB Buffering
	LOB Buffering Operations
	The Physical Structure of the LOB Buffer
	Using the LOB Buffering System
	Flushing the LOB Buffer
	Flushing the Updated LOB
	Using Locators Enabled for Buffering
	Saving Locator State so as to Avoid a Reselect

	Example of LOB Buffering

	User Guidelines for Best Performance Practices
	Working with Varying-Width Character Data
	LOBs in Index Organized Tables

	3 Internal Persistent LOBs
	Use Case Model: Internal Persistent LOBs
	Three Ways to Create a Table Containing a LOB
	Issues to Consider in Creating Tables that Will Contain LOBs
	Initializing Internal LOBs to NULL or Empty
	Setting a LOB to NULL
	Setting an Internal LOB to Empty

	Stipulating Tablespace and Storage Characteristics for Internal Lobs
	Tablespace and LOB Index
	PCTVERSION
	CACHE / NOCACHE
	LOGGING / NOLOGGING
	CHUNK
	ENABLE | DISABLE STORAGE IN ROW

	CREATE a Table Containing One or More LOB Columns
	Scenario
	Example: Create a Table Containing One or More LOB Columns using SQL DDL
	Notes

	CREATE a Table Containing an Object Type with a LOB Attribute
	Scenario
	Example: Create a Table Containing an Object Type with a LOB Attribute Using SQL DDL

	CREATE a Table with a Nested Table Containing a LOB
	Scenario
	Example: Create a Table with a Nested Table Containing a LOB Using SQL DDL

	Three Ways Of Inserting One or More LOB Values into a Row
	INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
	Making a LOB Column Non-Null
	Example: Insert a Value by means of EMPTY_CLOB() / EMPTY_BLOB() using SQL

	INSERT a Row Containing a LOB as SELECT
	Scenario
	Example: Insert a Row by Selecting from Another Table Using SQL DML

	INSERT a Row by Initializing a LOB Locator Bind Variable
	Scenario
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using SQL DML
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C (OCI)
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Pro*COBOL
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Visual Basic (OO4O)
	Example: Insert a Row by Initializing a LOB Locator Bind Variable Using Java (JDBC)

	Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
	Scenario
	LOB Data in Predetermined Size Fields
	Control File:
	Data file (sample.dat):
	Note:

	LOB Data in Delimited Fields
	Control File:
	Data file(sample1.dat):
	Note:

	LOB Data in Length-value Pair Fields
	Control File:
	Data file (sample2.dat):
	Note:

	One LOB per file
	Control File:
	Data file (sample3.dat):
	Secondary Data file (FirstStory.txt):
	Secondary Data file (SecondStory.txt):
	Note:

	Predetermined Size LOBs
	Control File:
	Data file (sample4.dat):
	Secondary Data file (FirstStory1.txt):
	Note:

	Delimited LOBs
	Control File:
	Data file (sample5.dat):
	Secondary Data file (FirstStory2.txt):
	Note:

	Length-Value Pair Specified LOBs
	Control File:
	Data file (sample6.dat):
	Secondary Data file (FirstStory3.txt):
	Note:

	Load a LOB with Data from a BFILE
	Character Set Conversion
	Scenario
	Example: Load a LOB with Data from a BFILE Using the DBMS_LOB Package
	Example: Load a LOB with Data from a BFILE Using C (OCI)
	Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)
	Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)
	Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)
	Example: Load a LOB with Data from a BFILE Using Java (JDBC)

	See If a LOB Is Open
	Scenario
	Example: See If a LOB Is Open Using PL/SQL
	Example: See If a LOB Is Open Using C (OCI)
	Example: See If a LOB Is Open Using COBOL (Pro*COBOL)
	Example: See If a LOB Is Open Using C++ (Pro*C/C++)
	Example: See If a LOB Is Open Using Visual Basic (OO4O)
	Example: See If a LOB Is Open Using Java (JDBC)

	Copy LONG to LOB
	Scenario
	Example: Copy Long to LOB Using SQL

	Checkout a LOB
	Streaming Mechanism
	Scenario
	Example: CheckOut a LOB Using PL/SQL (DBMS_LOB Package)
	Example: CheckOut a LOB Using C (OCI)
	Example: CheckOut a LOB Using COBOL (Pro*COBOL)
	Example: CheckOut a LOB Using C++ (Pro*C/C++)
	Example: CheckOut a LOB Using Visual Basic (OO4O)
	Example: CheckOut a LOB Using Java (JDBC)

	Checkin a LOB
	Streaming Mechanism
	Scenario
	Example: Checkin a LOB Using PL/SQL (DBMS_LOB Package)
	Example: Checkin a LOB Using C (OCI)
	Example: Checkin a LOB Using COBOL (Pro*COBOL)
	Example: Checkin a LOB Using C++ (Pro*C/C++)
	Example: Checkin a LOB Using Visual Basic (OO4O)
	Example: Checkin a LOB Using Java (JDBC)

	Display the LOB Data
	Streaming Mechanism
	Scenario
	Example: Display the LOB Data Using PL/SQL
	Example: Display the LOB Data Using C (OCI)
	Example: Display the LOB Data Using COBOL (Pro*COBOL)
	Example: Display the LOB Data Using C++ (Pro*C/C++)
	Example: Display the LOB Data Using Visual Basic (OO4O)
	Example: Display the LOB Data Using Java (JDBC)

	Read Data from the LOB
	Stream Read
	Chunksize
	Scenario
	Example: Read Data from a LOB Using PL/SQL (DBMS_LOB Package)
	Example: Read Data from a LOB Using C (OCI)
	Example: Read Data from a LOB Using COBOL (Pro*COBOL)
	Example: Read Data from a LOB Using C++ (Pro*C/C++)
	Example: Read Data from a LOB Using Visual Basic (OO4O)
	Example: Read Data from a LOB Using Java (JDBC)

	Read a Portion of the LOB (substr)
	Scenario
	Example: Read a Portion of the LOB (substr) Using PL/SQL (DBMS_LOB Package)
	Example: Read a Portion of the LOB (substr) Using COBOL (Pro*COBOL)
	Example: Read a Portion of the LOB (substr) Using C++ (Pro*C/C++)
	Example: Read a Portion of the LOB (substr) Using Visual Basic (OO4O)
	Example: Read a Portion of the LOB (substr) Using Java (JDBC)

	Compare All or Part of Two LOBs
	Scenario
	Example: Compare All or Part of Two LOBs Using PL/SQL (DBMS_LOB Package)
	Example: Compare All or Part of Two LOBs Using COBOL (Pro*COBOL)
	Example: Compare All or Part of Two LOBs Using C++ (Pro*C/C++)
	Example: Compare All or Part of Two LOBs Using Visual Basic (OO4O)
	Example: Compare All or Part of Two LOBs Using Java (JDBC)

	See If a Pattern Exists in the LOB (instr)
	Scenario
	Example: See If a Pattern Exists in the LOB (instr) Using PL/SQL (DBMS_LOB Package)
	Example: See If a Pattern Exists in the LOB (instr) Using COBOL (Pro*COBOL)
	Example: See If a Pattern Exists in the LOB (instr) Using C++ (Pro*C/C++)
	Example: See If a Pattern Exists in the LOB (instr) Using Visual Basic (OO4O)
	Example: See If a Pattern Exists in the LOB (instr) Using Java (JDBC)

	Get the Length of a LOB
	Scenario
	Example: Get the Length of a LOB Using PL/SQL (DBMS_LOB Package)
	Example: Get the Length of a LOB Using C (OCI)
	Example: Get the Length of a LOB Using COBOL (Pro*COBOL)
	Example: Get the Length of a LOB Using C++ (Pro*C/C++)
	Example: Get the Length of a LOB Using Visual Basic (OO4O)
	Example: Get the Length of a LOB Using Java (JDBC)

	Copy All or Part of a LOB to another LOB
	Locking the Row Prior to Updating
	Scenario
	Example: Copy All or Part of a LOB to another LOB Using PL/SQL (DBMS_LOB Package)
	Example: Copy All or Part of a LOB to another LOB Using C (OCI)
	Example: Copy All or Part of a LOB to another LOB Using COBOL (Pro*COBOL)
	Example: Copy All or Part of a LOB to another LOB Using C++ (Pro*C/C++)
	Example: Copy All or Part of a LOB to another LOB Using Visual Basic (OO4O)
	Example: Copy All or Part of a LOB to another LOB Using Java (JDBC)

	Copy a LOB Locator
	Scenario
	Example: Copy a LOB Locator Using PL/SQL
	Example: Copy a LOB Locator Using C (OCI)
	Example: Copy a LOB Locator Using COBOL (Pro*COBOL)
	Example: Copy a LOB Locator Using C++ (Pro*C/C++)
	Example: Copy a LOB Locator Using Visual Basic (OO4O)
	Example: Copy a LOB Locator Using Java (JDBC)

	See If One LOB Locator Is Equal to Another
	Scenario
	Example: See If One LOB Locator Is Equal to Another Using C (OCI)
	Example: See If One LOB Locator Is Equal to Another Using C++ (Pro*C/C++)
	Example: See If One LOB Locator Is Equal to Another Using Java (JDBC)

	See If a LOB Locator Is Initialized
	Scenario
	Example: See If a LOB Locator Is Initialized Using C (OCI)
	Example: See If a LOB Locator Is Initialized Using C++ (Pro*C/C++)

	Get Character Set ID
	Scenario
	Example: Get Character Set ID Using C (OCI)

	Get Character Set Form
	Scenario
	Example: Get Character Set Form Using C (OCI)

	Append One LOB to Another
	Locking the Row Prior to Updating
	Scenario
	Example: Append One LOB to Another Using PL/SQL (DBMS_LOB Package)
	Example: Append One LOB to Another Using C (OCI)
	Example: Append One LOB to Another Using COBOL (Pro*COBOL)
	Example: Append One LOB to Another Using C++ (Pro*C/C++)
	Example: Append One LOB to Another Using Visual Basic (OO4O)
	Example: Append One LOB to Another Using Java (JDBC)

	Write Append to a LOB
	Writing Singly or Piecewise
	Locking the Row Prior to Updating
	Scenario
	Example: Write Append to a LOB Using PL/SQL
	Example: Write Append to a LOB Using C (OCI)
	Example: Write Append to a LOB Using COBOL (Pro*COBOL)
	Example: Write Append to a LOB Using C++ (Pro*C/C++)
	Example: Write Append to a LOB Using Visual Basic (OO4O)
	Example: Write Append to a LOB Using Java (JDBC)

	Write Data to a LOB
	Stream Write
	Chunksize
	Locking the Row Prior to Updating
	Scenario
	Example: Write Data to a LOB Using the DBMS_LOB Package
	Example: Write Data to a LOB Using C (OCI)
	Example: Write Data to a LOB Using COBOL (Pro*COBOL)
	Example: Write Data to a LOB Using C++ (Pro*C/C++)
	Example: Write Data to a LOB Using Visual Basic (OO4O)
	Example: Write Data to a LOB Using Java (JDBC)

	Trim the LOB Data
	Locking the Row Prior to Updating
	Scenario
	Example: Trim the LOB Data Using PL/SQL (DBMS_LOB Package)
	Example: Trim the LOB Data Using C (OCI)
	Example: Trim the LOB Data Using COBOL (Pro*COBOL)
	Example: Trim the LOB Data Using C++ (Pro*C/C++)
	Example: Trim the LOB Data Using Visual Basic (OO4O)
	Example: Trim the LOB Data Using Java (JDBC)

	Erase Part of a LOB
	Locking the Row Prior to Updating
	Scenario
	Example: Erase Part of a LOB Using PL/SQL (DBMS_LOB Package)
	Example: Erase Part of a LOB Using C (OCI)
	Example: Erase Part of a LOB Using COBOL (Pro*COBOL)
	Example: Erase Part of a LOB Using C++ (Pro*C/C++)
	Example: Erase Part of a LOB Using Visual Basic (OO4O)
	Example: Erase Part of a LOB Using Java (JDBC)

	Enable LOB Buffering
	Scenario
	Example: Enable LOB Buffering Using C (OCI)
	Example: Enable LOB Buffering Using COBOL (Pro*COBOL)
	Example: Enable LOB Buffering Using C++ (Pro*C/C++)
	Example: Enable LOB Buffering Using Visual Basic (OO4O)

	Flush Buffer
	Scenario
	Example: Flush Buffer Using C (OCI)
	Example: Flush Buffer Using COBOL (Pro*COBOL)
	Example: Flush Buffer Using C++ (Pro*C/C++)
	Example: Flush Buffer Using Visual Basic (OO4O)

	Disable LOB Buffering
	Scenario
	Example: Disable LOB Buffering Using C (OCI)
	Example: Disable LOB Buffering Using COBOL (Pro*COBOL)
	Example: Disable LOB Buffering Using C++ (Pro*C/C++)
	Example: Disable LOB Buffering Using Visual Basic (OO4O)

	Three Ways to Update a LOB
	UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	Scenario
	Example: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() Using SQL

	UPDATE as SELECT
	Scenario
	Example: Update as Select Using SQL DML

	UPDATE by Initializing a LOB Locator Bind Variable
	Scenario
	Example: Update by Initializing a LOB Locator Bind Variable Using SQL DML
	Example: Update by Initializing a LOB Locator Bind Variable Using C (OCI)
	Example: Update by Initializing a LOB Locator Bind Variable Using COBOL (Pro*COBOL)
	Example: Update by Initializing a LOB Locator Bind Variable Using C++ (Pro*C/C++)
	Example: Update by Initializing a LOB Locator Bind Variable Using Visual Basic (OO4O)
	Example: Update by Initializing a LOB Locator Bind Variable Using Java (JDBC)

	DELETE the Row of a Table Containing a LOB
	Scenario
	Example: Delete a LOB Using SQL DML

	4 Temporary LOBs
	Use Case Model: Internal Temporary LOBs
	Programmatic Environments
	The Location of Temporary LOBs
	The Lifetime and Duration of Temporary LOBs
	Memory Handling
	Locators and Semantics
	Security Issues with Temporary LOBs
	Managing Temporary LOBs

	Create a Temporary LOB
	Scenario
	Example: Create a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Create a Temporary LOB Using C (OCI)
	Example: Create a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Create a Temporary LOB Using C++ (Pro*C/C++)

	See If a LOB is Temporary
	Scenario
	Example: See If a LOB is Temporary Using PL/SQL (DBMS_LOB Package)
	Example: See If a LOB is Temporary Using C (OCI)
	Example: See If a LOB is Temporary Using COBOL (Pro*COBOL)
	Example: See If a LOB is Temporary Using C++ (Pro*C/C++)

	Free a Temporary LOB
	Scenario
	Example: Free a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Free a Temporary LOB Using C (OCI)
	Example: Free a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Free a Temporary LOB Using C++ (Pro*C/C++)

	Load a Temporary LOB with Data from a BFILE
	Scenario
	Example: Load a Temporary LOB with Data from a BFILE Using PL/SQL (DBMS_LOB Package)
	Example: Load a Temporary LOB with Data from a BFILE Using C (OCI)
	Example: Load a Temporary LOB with Data from a BFILE Using COBOL (Pro*COBOL)
	Example: Load a Temporary LOB with Data from a BFILE Using C++ (Pro*C/C++)

	See If a Temporary LOB Is Open
	Scenario
	Example: See If a Temporary LOB Is Open Using PL/SQL
	Example: See If a Temporary LOB Is Open Using C (OCI)
	Example: See If a Temporary LOB Is Open Using COBOL (Pro*COBOL)
	Example: See If a Temporary LOB Is Open Using C++ (Pro*C/C++)

	Display the Temporary LOB Data
	Scenario
	Example: Display the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)
	Example: Display the Temporary LOB Data Using C (OCI)
	Example: Display the Temporary LOB Data Using COBOL (Pro*COBOL)
	Example: Display the Temporary LOB Data Using C++ (Pro*C/C++)

	Read Data from a Temporary LOB
	Stream Read
	Scenario
	Example: Read Data from a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Read Data from a Temporary LOB Using C (OCI)
	Example: Read Data from a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Read Data from a Temporary LOB Using C++ (Pro*C/C++)

	Read a Portion of the Temporary LOB (substr)
	Scenario
	Example: Read a Portion of the Temporary LOB (substr) Using PL/SQL (DBMS_LOB Package)
	Example: Read a Portion of the Temporary LOB (substr) Using COBOL (Pro*COBOL)
	Example: Read a Portion of the Temporary LOB (substr) Using C++ (Pro*C/C++)

	Compare All or Part of Two (Temporary) LOBs
	Scenario
	Example: Compare All or Part of Two (Temporary) LOBs Using PL/SQL (DBMS_LOB Package)
	Example: Compare All or Part of Two (Temporary) LOBs Using COBOL (Pro*COBOL)
	Example: Compare All or Part of Two (Temporary) LOBs Using C++ (Pro*C/C++)

	See If a Pattern Exists in a Temporary LOB (instr)
	Scenario
	Example: See If a Pattern Exists in a Temporary LOB (instr) Using PL/SQL (DBMS_ LOB Package)
	Example: See If a Pattern Exists in a Temporary LOB (instr) Using COBOL (Pro*COBOL)
	Example: See If a Pattern Exists in a Temporary LOB (instr) Using C++ (Pro*C/C++)

	Get the Length of a Temporary LOB
	Scenario
	Example: Get the Length of a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Get the Length of a Temporary LOB Using C (OCI)
	Example: Get the Length of a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Get the Length of a Temporary LOB Using C++ (Pro*C/C++)

	Copy All or Part of One (Temporary) LOB to Another
	Scenario
	Example: Copy All or Part of One (Temporary) LOB to Another Using PL/SQL (DBMS_ LOB Package)
	Example: Copy All or Part of One (Temporary) LOB to Another Using C (OCI)
	Example: Copy All or Part of One (Temporary) LOB to Another Using COBOL (Pro*COBOL)
	Example: Copy All or Part of One (Temporary) LOB to Another Using C++ (Pro*C/C++)

	Copy a LOB Locator for a Temporary LOB
	Scenario
	Example: Copy a LOB Locator (Temporary LOBs) Using PL/SQL
	Example: Copy a LOB Locator for a Temporary LOB Using C (OCI)
	Example: Copy a LOB Locator for a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Copy a LOB Locator for a Temporary LOB Using C++ (Pro*C/C++)

	See If One LOB Locator for a Temporary LOB Is Equal to Another
	Scenario
	Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C (OCI)
	Example: See If One LOB Locator for a Temporary LOB Is Equal to Another Using C++ (Pro*C/C++)

	See If a LOB Locator for a Temporary LOB Is Initialized
	Scenario
	Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C (OCI)
	Example: See If a LOB Locator for a Temporary LOB Is Initialized Using C++ (Pro*C/C++)

	Get Character Set ID of a Temporary LOB
	Scenario
	Example: Get Character Set ID of a Temporary LOB Using C (OCI)

	Get Character Set Form of a Temporary LOB
	Scenario
	Example: Get Character Set Form of a Temporary LOB Using C (OCI)

	Append One (Temporary) LOB to Another
	Scenario
	Example: Append One (Temporary) LOB to Another Using PL/SQL (DBMS_LOB Package)
	Example: Append One (Temporary) LOB to Another Using C (OCI)
	Example: Append One (Temporary) LOB to Another Using COBOL (Pro*COBOL)
	Example: Append One (Temporary) LOB to Another Using C++ (Pro*C/C++)

	Write Append to a Temporary LOB
	Scenario
	Example: Write Append to a Temporary LOB Using PL/SQL
	Example: Write Append to a Temporary LOB Using C (OCI)
	Example: Write Append to a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Write Append to a Temporary LOB Using C++ (Pro*C/C++)

	Write Data to a Temporary LOB
	Stream Write
	Scenario
	Example: Write Data to a Temporary LOB Using the DBMS_LOB Package
	Example: Write Data to a Temporary LOB Using C (OCI)
	Example: Write Data to a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Write Data to a Temporary LOB Using C++ (Pro*C/C++)

	Trim the Temporary LOB Data
	Scenario
	Example: Trim the Temporary LOB Data Using PL/SQL (DBMS_LOB Package)
	Example: Trim the Temporary LOB Data Using C (OCI)
	Example: Trim the Temporary LOB Data Using COBOL (Pro*COBOL)
	Example: Trim the Temporary LOB Data Using C++ (Pro*C/C++)

	Erase Part of a Temporary LOB
	Scenario
	Example: Erase Part of a Temporary LOB Using PL/SQL (DBMS_LOB Package)
	Example: Erase Part of a Temporary LOB Using C (OCI)
	Example: Erase Part of a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Erase Part of a Temporary LOB Using C++ (Pro*C/C++)

	Enable LOB Buffering for a Temporary LOB
	Scenario
	Example: Enable LOB Buffering for a Temporary LOB Using C (OCI)
	Example: Enable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Enable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++)

	Flush Buffer for a Temporary LOB
	Scenario
	Example: Flush Buffer for a Temporary LOB Using C (OCI)
	Example: Flush Buffer for a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Flush Buffer for a Temporary LOB Using C++ (Pro*C/C++)

	Disable LOB Buffering for a Temporary LOB
	Scenario
	Example: Disable LOB Buffering Using C (OCI)
	Example: Disable LOB Buffering for a Temporary LOB Using COBOL (Pro*COBOL)
	Example: Disable LOB Buffering for a Temporary LOB Using C++ (Pro*C/C++)

	5 External LOBs (BFILEs)
	Use Case Model: External LOBs
	Accessing External LOBs (SQL DML)
	Directory Object
	Initializing BFILES using BFILENAME()
	DIRECTORY Name Specification

	BFILE Security
	Ownership and Privileges
	SQL DDL for BFILE security
	SQL DML for BFILE security

	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	BFILEs in Multi-Threaded Server (MTS) Mode
	External LOB Locators (BFILE Locators)

	Three Ways to Create a Table Containing a BFILE
	CREATE a Table Containing a BFILE
	Scenario
	Example: Create a Table Containing a BFILE Using SQL DDL

	CREATE a Table of an Object Type with a BFILE Attribute
	Scenario
	Example: Create a Table of an Object Type with a BFILE Attribute Using SQL DDL

	CREATE a Table with a Nested Table Containing a BFILE
	Scenario
	Example: Create a Table with a Nested Table Containing a BFILE Using SQL DDL

	Three Ways to Insert a Row Containing a BFILE
	INSERT a Row by means of BFILENAME()
	Scenario
	Example: Insert a Row by means of BFILENAME() Using SQL
	Example: Insert a Row by means of BFILENAME() Using C (OCI)
	Example: Insert a Row by means of BFILENAME() Using COBOL (Pro*COBOL)
	Example: Insert a Row by means of BFILENAME() Using C++ (Pro*C/C++)
	Example: Insert a Row by means of BFILENAME() Using Visual Basic (OO4O)
	Example: Insert a Row by means of BFILENAME() Using Java (JDBC)
	INSERT a Row Containing a BFILE as SELECT
	Scenario
	Example: Insert a Row Containing a BFILE as Select Using SQL

	INSERT a Row Containing a BFILE by Initializing a BFILE Locator
	Scenario
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using PL/SQL
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C (OCI)
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using COBOL (Pro*COBOL)
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using C++ (Pro*C/C++)
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Visual Basic (OO4O)
	Example: Insert a Row Containing a BFILE by Initializing a BFILE Locator Using Java (JDBC)

	Load External LOB (BFILE) Data into a Table
	Scenario
	Control File:
	Data file (sample9.dat):
	Note:
	Data file (sample10.dat):
	Note:

	Load a LOB with Data from a BFILE
	Scenario
	Example: Load a LOB with Data from a BFILE Using PL/SQL (DBMS_LOB Package)
	Example: Load a LOB with Data from a BFILE Using C (OCI)
	Example: Load a LOB with Data from a BFILE Using COBOL (Pro*COBOL)
	Example: Load a LOB with Data from a BFILE Using C++ (Pro*C/C++)
	Example: Load a LOB with Data from a BFILE Using Visual Basic (OO4O)
	Example: Load a LOB with Data from a BFILE Using Java (JDBC)

	Two Ways to Open a BFILE
	Maximum Number of Open BFILEs

	Open a BFILE with FILEOPEN
	Scenario
	Example: Open a BFILE with FILEOPEN Using PL/SQL
	Example: Open a BFILE with FILEOPEN Using C (OCI)
	Example: Open a BFILE with FILEOPEN Using Visual Basic (OO4O)
	Example: Open a BFILE with FILEOPEN Using Java (JDBC)

	Open a BFILE with OPEN
	Scenario
	Example: Open a BFILE with OPEN Using PL/SQL
	Example: Open a BFILE with OPEN Using C (OCI)
	Example: Open a BFILE with OPEN Using COBOL (Pro*COBOL)
	Example: Open a BFILE with OPEN Using C++ (Pro*C/C++)
	Example: Open a BFILE with OPEN Using Visual Basic (OO4O)
	Example: Open a BFILE with OPEN Using Java (JDBC)

	Two Ways to See If a BFILE is Open
	Maximum Number of Open BFILEs

	See If the BFILE is Open with FILEISOPEN
	Scenario
	Example: See If the BFILE is Open with FILEISOPEN Using PL/SQL (DBMS_LOB Package)
	Example: See If the BFILE is Open with FILEISOPEN Using C (OCI)
	Example: See If the BFILE is Open with FILEISOPEN Using Visual Basic (OO4O)
	Example: See If the BFILE is Open with FILEISOPEN Using Java (JDBC)

	See If the BFILE is Open Using ISOPEN
	Scenario
	Example: See If the BFILE is Open with ISOPEN Using PL/SQL (DBMS_LOB Package)
	Example: See If the BFILE is Open with ISOPEN Using C (OCI)
	Example: See If the BFILE is Open with ISOPEN Using COBOL (Pro*COBOL)
	Example: See If the BFILE is Open with ISOPEN Using C++ (Pro*C/C++)
	Example: See If the BFILE is Open with ISOPEN Using Visual Basic (OO4O)
	Example: See If the BFILE is Open with ISOPEN Using Java (JDBC)

	Display the BFILE Data
	Scenario
	Example: Display the BFILE Data Using PL/SQL
	Example: Display the BFILE Data Using C (OCI)
	Example: Display the BFILE Data Using COBOL (Pro*COBOL)
	Example: Display the BFILE Data Using C++ (Pro*C/C++)
	Example: Display the BFILE Data Using Visual Basic (OO4O)
	Example: Display the BFILE Data Using Java (JDBC)

	Read the Data from a BFILE
	Scenario
	Example: Read the Data from a BFILE Using PL/SQL (DBMS_LOB Package)
	Example: Read the Data from a BFILE Using C (OCI)
	Example: Read the Data from a BFILE Using COBOL (Pro*COBOL)
	Example: Read the Data from a BFILE Using C++ (Pro*C/C++)
	Example: Read the Data from a BFILE Using Visual Basic (OO4O)
	Example: Read the Data from a BFILE Using Java (JDBC)

	Read a Portion of the BFILE Data (substr)
	Scenario
	Example: Read a Portion of the BFILE Data (substr) Using PL/SQL (DBMS_LOB Package)
	Example: Read a Portion of the BFILE Data (substr) Using COBOL (Pro*COBOL)
	Example: Read a Portion of the BFILE Data (substr) Using C++ (Pro*C/C++)
	Example: Read a Portion of the BFILE Data (substr) Using Visual Basic (OO4O)
	Example: Read a Portion of the BFILE Data (substr) Using Java (JDBC)

	Compare All or Parts of Two BFILES
	Scenario
	Example: Compare All or Parts of Two BFILES Using PL/SQL (DBMS_LOB Package)
	Example: Compare All or Parts of Two BFILES Using COBOL (Pro*COBOL)
	Example: Compare All or Parts of Two BFILES Using C++ (Pro*C/C++)
	Example: Compare All or Parts of Two BFILES Using Visual Basic (OO4O)
	Example: Compare All or Parts of Two BFILES Using Java (JDBC)

	See If a Pattern Exists (instr) in the BFILE
	Scenario
	Example: See If a Pattern Exists (instr) in the BFILE Using PL/SQL (DBMS_LOB Package)
	Example: See If a Pattern Exists (instr) in the BFILE Using COBOL (Pro*COBOL)
	Example: See If a Pattern Exists (instr) in the BFILE Using C++ (Pro*C/C++)
	Example: See If a Pattern Exists (instr) in the BFILE Using Visual Basic (OO4O)
	Example: See If a Pattern Exists (instr) in the BFILE Using Java (JDBC)

	See If the BFILE Exists
	Scenario
	Example: See If the BFILE Exists Using PL/SQL (DBMS_LOB Package)
	Example: See If the BFILE Exists Using C (OCI)
	Example: See If the BFILE Exists Using COBOL (Pro*COBOL)
	Example: See If the BFILE Exists Using C++ (Pro*C/C++)
	Example: See If the BFILE Exists Using Visual Basic (OO4O)
	Example: See If the BFILE Exists Using Java (JDBC)

	Get the Length of a BFILE
	Scenario
	Example: Get the Length of a BFILE Using PL/SQL (DBMS_LOB Package)
	Example: Get the Length of a BFILE Using C (OCI)
	Example: Get the Length of a BFILE Using COBOL (Pro*COBOL)
	Example: Get the Length of a BFILE Using C++ (Pro*C/C++)
	Example: Get the Length of a BFILE Using Visual Basic (OO4O)
	Example: Get the Length of a BFILE Using Java (JDBC)

	Copy a LOB Locator for a BFILE
	Scenario
	Example: Copy a LOB Locator for a BFILE Using PL/SQL
	Example: Copy a LOB Locator for a BFILE Using C (OCI)
	Example: Copy a LOB Locator for a BFILE Using COBOL (Pro*COBOL)
	Example: Copy a LOB Locator for a BFILE Using C++ (Pro*C/C++)
	Example: Copy a LOB Locator for a BFILE Using Visual Basic (OO4O)
	Example: Copy a LOB Locator for a BFILE Using Java (JDBC)

	See If a LOB Locator for a BFILE Is Initialized
	Scenario
	Example: See If a LOB Locator for a BFILE Is Initialized Using C (OCI)
	Example: See If a LOB Locator for a BFILE Is Initialized Using C++ (Pro*C/C++)

	See If One LOB Locator for a BFILE Is Equal to Another
	Scenario
	Example: See If One LOB Locator for a BFILE Is Equal to Another Using C (OCI)
	Example: See If One LOB Locator for a BFILE Is Equal to Another Using C++ (Pro*C/C++)
	Example: See If One LOB Locator for a BFILE Is Equal to Another Using Java (JDBC)

	Get Directory Alias and Filename
	Scenario
	Example: Get Directory Alias and Filename Using PL/SQL
	Example: Get Directory Alias and Filename Using C (OCI)
	Example: Get Directory Alias and Filename Using COBOL (Pro*COBOL)
	Example: Get Directory Alias and Filename Using C++ (Pro*C/C++)
	Example: Get Directory Alias and Filename Using Visual Basic (OO4O)
	Example: Get Directory Alias and Filename Using Java (JDBC)

	Three Ways to Update a Row Containing a BFILE
	UPDATE a BFILE Using BFILENAME()
	BFILENAME() Function
	Scenario
	Example: Update a BFILE by means of BFILENAME() Using SQL

	UPDATE a BFILE as SELECT
	Scenario
	Example: Update a BFILE as Select Using SQL

	UPDATE a BFILE by Initializing a BFILE Locator
	Scenario
	Example: Update a BFILE by Initializing a BFILE Locator Using PL/SQL
	Example: Update a BFILE by Initializing a BFILE Locator Using C (OCI)
	Example: Update a BFILE by Initializing a BFILE Locator Using COBOL (Pro*COBOL)
	Example: Update a BFILE by Initializing a BFILE Locator Using C++ (Pro*C/C++)
	Example: Update a BFILE by Initializing a BFILE Locator Using Visual Basic (OO4O)
	Example: Update a BFILE by Initializing a BFILE Locator Using Java (JDBC)

	Two Ways to Close a BFILE
	Close a BFILE with FILECLOSE
	Scenario
	Example: Close a BFile with FILECLOSE Using PL/SQL (DBMS_LOB Package)
	Example: Close a BFile with FILECLOSE Using C (OCI)
	Example: Close a BFile with FILECLOSE Using Visual Basic (OO4O)
	Example: Close a BFile with FILECLOSE Using Java (JDBC)

	Close a BFILE with CLOSE
	Scenario
	Example: Close a BFile with CLOSE Using PL/SQL (DBMS_LOB Package)
	Example: Close a BFile with CLOSE Using C (OCI)
	Example: Close a BFile with CLOSE Using COBOL (Pro*COBOL)
	Example: Close a BFile with CLOSE Using C++ (Pro*C/C++)
	Example: Close a BFile with CLOSE Using Visual Basic (OO4O)
	Example: Close a BFile with CLOSE Using Java (JDBC)

	Close All Open BFILEs
	Scenario
	Example: Close All Open BFiles Using PL/SQL (DBMS_LOB Package)
	Example: Close All Open BFiles Using C (OCI)
	Example: Close All Open BFiles Using COBOL (Pro*COBOL)
	Example: Close All Open BFiles Using C++ (Pro*C/C++)
	Example: Close All Open BFiles Using Visual Basic (OO4O)
	Example: Close All Open BFiles Using Java (JDBC)

	DELETE the Row of a Table Containing a BFILE
	Scenario
	Example: Delete a Row from a Table Using SQL

	6 LOBs and Partitioned Tables
	Using LOBs in Partitions
	Creating and Partitioning a Table Containing LOB Data
	Creating an Index on a Table Containing LOB Columns
	Exchanging Partitions Containing LOB Data
	Adding Partitions to Tables Containing LOB Data
	Moving Partitions Containing LOBs
	Splitting Partitions Containing LOBs
	Merging Partitions Containing LOBs
	Populating the Script CLOB and Photo BLOB
	Populating the BLOB:
	Populate the CLOB:
	Reading the LOB Value:

	Index

