
Oracle® TimesTen In-Memory
Database
Replication Guide

Release 22.1
F35393-06
September 2023

Oracle TimesTen In-Memory Database Replication Guide, Release 22.1

F35393-06

Copyright © 2012, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Overview of TimesTen Replication

What is Replication? 1-1

Requirements for Replication Compatibility 1-2

Replication Agents 1-2

Copying Updates Between Databases 1-2

Default Replication 1-3

Return Receipt Replication 1-4

Return Twosafe Replication 1-5

Types of Replication Schemes 1-7

Active Standby Pair With Read-Only Subscribers 1-7

Classic Replication 1-9

Full Database Replication or Selective Replication 1-9

Unidirectional or Bidirectional Replication 1-10

Direct Replication or Propagation 1-12

Configuring a Large Number of Subscribers 1-15

Cache Groups and Replication 1-15

Replicating an AWT Cache Group 1-15

Replicating an AWT Cache Group With a Subscriber Propagating to an Oracle
Database 1-17

Replicating a Read-Only Cache Group 1-17

Sequences and Replication 1-18

Foreign Keys and Replication 1-19

Aging and Replication 1-19

2 Getting Started

Configuring an Active Standby Pair With One Subscriber 2-1

Configuring a Classic Replication Scheme With One Master and One Subscriber 2-5

Starting and Stopping the Replication Agents 2-9

3 Defining an Active Standby Pair Replication Scheme

Overview of Master Database States 3-1

iii

Restrictions on Active Standby Pairs 3-2

Defining the DSNs for the Databases 3-3

Table Requirements for Active Standby Pairs 3-3

Defining an Active Standby Pair Replication Scheme 3-3

Identifying the Databases in the Active Standby Pair 3-4

Using a Return Service for an Active Standby Pair 3-5

Setting STORE Attributes for an Active Standby Pair 3-5

Configuring Network Operations for an Active Standby Pair 3-5

Using Automatic Client Failover for an Active Standby Pair 3-5

Including or Excluding Database Objects From Replication 3-6

Replicating Tables With Foreign Key Relationships in an Active Standby Pair 3-6

Replicating Cache Groups in an Active Standby Pair 3-7

Materialized Views in an Active Standby Pair 3-7

Replicating Sequences in an Active Standby Pair 3-7

Duplicating a Database 3-8

Duplicating Over a Specific Network Interface 3-9

Duplicating With Cache Groups 3-9

4 Defining Attributes and Options for a Replication Scheme

Connection Attributes for Replicated Databases 4-1

Configuring Parallel Replication 4-1

Configuring Automatic Parallel Replication 4-2

Configuring Automatic Parallel Replication With Disabled Commit Dependencies 4-3

Specifying Replication Tracks Within an Automatic Parallel Replication
Environment 4-4

Managing the Transaction Log on a Replicated Database 4-5

About Log Buffer Flushing 4-5

About Transaction Log Growth on a Master Database 4-6

Setting Connection Attributes for Logging 4-7

Using a Return Service 4-8

RETURN RECEIPT 4-8

RETURN RECEIPT BY REQUEST 4-9

RETURN TWOSAFE 4-10

RETURN TWOSAFE BY REQUEST 4-12

NO RETURN 4-13

Specifying a Different Return Service for Each Subscriber in a Classic Replication
Scheme 4-13

Setting the Return Service Timeout Period 4-14

Disabling Return Service Blocking Manually 4-15

Establishing Return Service Failure and Recovery Policies 4-16

RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED 4-16

iv

DISABLE RETURN 4-18

RESUME RETURN 4-20

DURABLE COMMIT 4-21

LOCAL COMMIT ACTION 4-22

Setting STORE Attributes 4-22

Column Definition Options for Replicated Tables 4-23

Setting Table Definition Checking to Relaxed for an Active Standby Pair 4-25

Examples for Classic Replication Scheme With Table Definition Checking Set to
Relaxed 4-25

Compressing Replicated Traffic 4-27

Port Assignments 4-28

Setting Wait Timeout for Response From Remote Replication Agents 4-29

Setting the Transaction Log Failure Threshold 4-29

Suspending or Resuming Classic Replication in Response to Conflicts 4-30

Configuring the Network 4-31

Network Bandwidth Requirements 4-31

Replication in a WAN Environment 4-31

Configuring Network Interfaces With the ROUTE Clause 4-32

Configuring Network Interfaces When Not Using the ROUTE Clause 4-34

Identifying Database Hosts on UNIX or Linux Without Using the ROUTE Clause 4-34

Host Name Resolution on Windows 4-36

User-Specified Addresses for TimesTen Daemons and Subdaemons 4-36

Identifying the Local Host of a Replicated Database 4-37

5 Administering an Active Standby Pair Without Cache Groups

Setting Up an Active Standby Pair With No Cache Groups 5-1

Recovering From a Failure of the Active Database 5-2

Recovering When the Standby Database is Ready 5-2

When Replication is Return Receipt or Asynchronous 5-2

When Replication is Return Twosafe 5-3

Failing Back to the Original Nodes 5-3

Recovering From a Failure of the Standby Database 5-4

Recovering After a Dual Failure of Both Active and Standby Databases 5-5

Recover an Active Database 5-5

Recover a Standby Database 5-5

Recovering From the Failure of a Subscriber Database 5-6

Reversing the Roles of the Active and Standby Databases 5-6

Detection of Dual Active Databases 5-6

v

6 Administering an Active Standby Pair With Cache Groups

Replicating Cache Groups Within Active Standby Pairs 6-1

Setting Up an Active Standby Pair With an AWT Cache Group 6-2

Setting Up an Active Standby Pair With a Read-Only Cache Group 6-2

Creating a Read-Only Cache Group to Include Within a New Active Standby Pair 6-3

Changing User Names or Passwords Used by Replication 6-5

Recovering From a Failure of the Active Database 6-5

Recovering When the Standby Database is Ready 6-6

When Replication Is Return Receipt or Asynchronous 6-6

When Replication Is Return Twosafe 6-7

When There Is Unsynchronized Data in the Cache Groups 6-8

Failing Back to the Original Nodes 6-10

Recovering From a Failure of the Standby Database 6-10

Recovering After a Dual Failure of Both Active and Standby Databases 6-11

Recover the Active Database and Duplicate a New Standby Database 6-11

Recover the Standby Database to Be the New Active Master 6-12

Restore the Active Master From a Backup 6-13

Recovering From the Failure of a Subscriber Database 6-14

Reversing the Roles of the Active and Standby Databases 6-15

Detecting Dual Active Databases 6-15

Using a Disaster Recovery Subscriber in an Active Standby Pair 6-15

Requirements for Using a Disaster Recovery Subscriber With an Active Standby Pair 6-16

Rolling Out a Disaster Recovery Subscriber 6-16

Switching Over to the Disaster Recovery Site 6-18

Creating a New Active Standby Pair After Switching to the Disaster Recovery Site 6-18

Switching Over to a Single Database 6-19

Returning to the Original Configuration at the Primary Site 6-20

7 Altering an Active Standby Pair

Making DDL Changes in an Active Standby Pair 7-1

Controlling Replication of Objects to All Databases in an Active Standby Pair 7-1

DDL Statements That Can Be Automatically Replicated 7-3

Creating a New PL/SQL Object in an Existing Active Standby Pair 7-4

Restrictions on Making DDL Changes in an Active Standby Pair 7-4

Examples Showing How to Making DDL changes in an Active Standby Pair 7-5

Making Other Changes to an Active Standby Pair 7-7

Examples Showing How to Alter an Active Standby Pair 7-8

vi

8 Using Oracle Clusterware to Manage Active Standby Pairs

Overview of How Oracle Clusterware Can Manage TimesTen 8-1

Requirements, Considerations, and Installation for Your Cluster 8-3

Required Privileges 8-3

Hardware and Software Requirements 8-3

Install Oracle Clusterware 8-4

Install TimesTen on Each Host 8-4

Register the TimesTen Cluster Information 8-6

Restricted Commands and SQL Statements 8-6

Creating and Initializing a Cluster 8-6

Start the TimesTen Cluster Agent 8-7

Create and Populate a TimesTen Database on One Host 8-8

Create System DSN Files on Other Hosts 8-8

Create a cluster.oracle.ini File 8-9

Create the Oracle Clusterware Resources to Manage Virtual IP Addresses 8-9

Create an Active Standby Pair Replication Scheme 8-10

Start the Active Standby Pair and the Applications 8-11

Load Cache Groups 8-12

Include More Than One Active Standby Pair in a Cluster 8-12

Configure an Oracle Database as a Disaster Recovery Subscriber 8-13

Configure a Read-Only Subscriber That Is Not Managed by Oracle Clusterware 8-14

Configuring Oracle Clusterware Management With the cluster.oracle.ini File 8-14

Configuring Basic Availability 8-15

Configuring Advanced Availability 8-16

Including Cache Groups in the Active Standby Pair 8-17

Implementing Application Failover 8-18

Configuring for Recovery When Both Master Nodes Permanently Fail 8-20

Using the RepDDL Attribute 8-21

Monitoring Cluster Status 8-22

Obtaining Cluster Status 8-22

Message Log Files 8-24

Shutting Down a Cluster 8-25

Recovering From Failures 8-25

How TimesTen Performs Recovery When Oracle Clusterware is Configured 8-26

When an Active Database or Its Host Fails 8-27

When a Standby Database or Its Host Fails 8-29

When Read-Only Subscribers or Their Hosts Fail 8-30

When Failures Occur on Both Master Nodes 8-30

Automatic Recovery 8-30

Manual Recovery for Advanced Availability 8-31

vii

Manual Recovery for Basic Availability 8-32

Manual Recovery to the Same Master Nodes When Databases Are Corrupt 8-32

Manual Recovery When RETURN TWOSAFE Is Configured 8-33

When More Than Two Master Hosts Fail 8-33

Perform a Forced Switchover After Failure of the Active Database or Host 8-34

Clusterware Management 8-35

Changing User Names or Passwords When Using Oracle Clusterware 8-36

Managing Hosts in the Cluster 8-36

Adding a Host to the Cluster 8-36

Removing a Host From the Cluster 8-37

Managing Active Standby Pairs in a Cluster 8-37

Adding an Active Standby Pair to a Cluster 8-37

Removing an Active Standby Pair From a Cluster 8-38

Managing Read-Only Subscribers in the Active Standby Pair 8-38

Adding a Read-Only Subscriber Managed by Oracle Clusterware 8-38

Removing a Read-Only Subscriber Managed by Oracle Clusterware 8-39

Adding or Dropping a Read-Only Subscriber Not Managed by Oracle Clusterware 8-39

Rebuilding a Read-Only Subscriber Not Managed by Oracle Clusterware 8-40

Reversing the Roles of the Master Databases 8-40

Modifying Connection Attribute Values 8-41

Managing the TimesTen Database RAM Policy 8-43

Changing the Schema 8-44

Facilitating Schema Change for Oracle Clusterware 8-45

Making Schema Changes to Cache Groups 8-46

Add a Cache Group 8-46

Drop a Cache Group 8-46

Change an Existing Cache Group 8-47

Moving a Database to a Different Host 8-47

Performing a Rolling Upgrade of Oracle Clusterware Software 8-47

Upgrading TimesTen When Using Oracle Clusterware 8-48

Performing Host or Network Maintenance 8-48

Perform Maintenance on All Hosts in the Cluster Simultaneously 8-48

Perform Maintenance While Still Accepting Requests 8-50

9 Defining Classic Replication Schemes

Designing a Highly Available System 9-2

Considering Failover and Recovery Scenarios 9-2

Making Decisions About Performance and Recovery Tradeoffs 9-4

Distributing Workloads 9-5

Defining a Classic Replication Scheme 9-6

viii

Owner of the Classic Replication Scheme and Replicated Objects 9-6

Database Names 9-7

Restrictions and Table Requirements for Classic Replication Schemes 9-7

Establishing the Databases 9-8

Duplicating a Master Database to a Subscriber 9-8

Restrictions for Classic Replication Schemes Involving Multiple Masters 9-10

Defining Replication Elements 9-11

Defining the DATASTORE Element 9-12

Defining Table Elements 9-13

Replicating Tables With Foreign Key Relationships in a Classic Replication Scheme 9-13

Replicating Sequences 9-14

Views and Materialized Views in a Replicated Database 9-15

Checking for Replication Conflicts on Table Elements 9-15

Setting Transmit Durability on DATASTORE Element 9-15

Using a Return Service in a Classic Replication Scheme 9-16

Setting STORE Attributes in a Classic Replication Scheme 9-16

Configuring Network Operations for a Classic Replication Scheme 9-17

Classic Replication Scheme Syntax Examples 9-17

Single Classic Subscriber Schemes 9-17

Multiple Subscriber Classic Replication Schemes 9-18

Replicating Tables to Different Subscribers 9-19

Propagation Scheme 9-19

Bidirectional Split Workload Schemes 9-19

Bidirectional Distributed Workload Scheme 9-20

Applying a Classic Replication Scheme to a Database 9-21

Creating Classic Replication Schemes With Scripts 9-21

10

Altering a Classic Replication Scheme

Altering a Classic Replication Scheme 10-1

Adding a Table or Sequence to an Existing Classic Replication Scheme 10-3

Adding a PL/SQL Object to an Existing Classic Replication Scheme 10-3

Adding a DATASTORE Element to an Existing Classic Replication Scheme 10-3

Including Tables or Sequences When You Add a DATASTORE Element 10-4

Excluding a Table or Sequence When You Add a DATASTORE Element 10-4

Dropping a Table or Sequence From a Classic Replication Scheme 10-4

Dropping a Table or Sequence That Is Replicated as Part of a DATASTORE
Element 10-5

Dropping a Table or Sequence That is Replicated as a TABLE or SEQUENCE
Element 10-5

Creating and Adding a Subscriber Database to a Classic Replication Scheme 10-5

Dropping a Subscriber Database From a Classic Replication Scheme 10-6

ix

Changing a TABLE or SEQUENCE Element Name in a Classic Replication Scheme 10-6

Replacing a Master Database in a Classic Replication Scheme 10-6

Eliminating Conflict Detection in a Classic Replication Scheme 10-7

Eliminating the Return Receipt Service in a Classic Replication Scheme 10-7

Changing the Port Number for a Classic Replication Scheme 10-7

Changing the Replication Route 10-7

Changing the Log Failure Threshold 10-7

Altering a Replicated Table in a Classic Replication Scheme 10-8

Truncating a Replicated Table in a Classic Replication Scheme 10-8

Dropping a Classic Replication Scheme 10-9

11

Managing Replication

Show State of Replication Agents 11-1

Using ttStatus to Obtain Replication Agent Status 11-2

Using ttAdmin -query to Confirm Policy Settings 11-2

Using ttDataStoreStatus to Obtain Replication Agent Status 11-2

Replication of Statistics 11-3

Set the Replication State of Subscribers 11-3

Show Master Database Information 11-5

Using ttRepAdmin to Display Information About the Master Database 11-5

Querying Replication Tables to Obtain Information About a Master Database 11-5

Show Subscriber Database Information 11-6

Display Subscriber Status With the ttRepAdmin Utility 11-6

Display Subscriber Status With the ttReplicationStatus Built-In Procedure 11-7

Display Information About Subscribers Through Querying Replication Tables 11-7

Subscriber Information 11-8

Show the Configuration of Replicated Databases 11-8

Display Configuration Information With the ttIsql repschemes Command 11-9

Display Configuration Information With the ttRepAdmin Utility 11-9

Display Configuration Information Through Querying Replication Tables 11-10

Show Replicated Log Records 11-11

Monitor Replication With the TTREP.REPPEERS Table 11-12

Monitor Replication From the Replication Log Holds 11-12

Monitor Replication With the ttRepAdmin Utility 11-13

Monitor Replication With the ttBookMark Built-In Procedure 11-14

Use ttRepAdmin to Show Replication Status 11-14

MAIN Thread Status Fields 11-18

Replication Peer Status Fields 11-19

TRANSMITTER Thread Status Fields 11-19

RECEIVER Thread Status Fields 11-21

x

Check the Status of Return Service Transactions 11-22

Determine If Return Service Is Disabled 11-22

Check Last Returned Status for a Return Service 11-23

Analyze Outstanding Transactions in the Replication Log 11-24

12

Resolving Replication Conflicts

How Replication Conflicts Occur 12-1

Update and Insert Conflicts 12-2

Delete/Update Conflicts 12-3

Using a Timestamp to Resolve Conflicts 12-4

Timestamp Comparisons for Local Updates 12-5

Configuring Timestamp Comparison 12-6

Including a Timestamp Column in Replicated Tables 12-6

Configuring the CHECK CONFLICTS Clause 12-6

Enabling System Timestamp Column Maintenance 12-7

Enabling User Timestamp Column Maintenance 12-8

Reporting Conflicts 12-8

Reporting Conflicts to a Text File 12-8

Reporting Conflicts to an XML File 12-9

Reporting Uniqueness Conflicts 12-10

Reporting Update Conflicts 12-11

Reporting Delete/Update Conflicts 12-12

Suspending and Resuming the Reporting of Conflicts 12-14

The Conflict Report XML Document Type Definition 12-14

The Main Body of the Document 12-16

The Uniqueness Conflict Element 12-16

The Update Conflict Element 12-17

The Delete/Update Conflict Element 12-19

13

Improving Replication Performance

Adjust Transaction Log Buffer Size and CPU 13-2

Performance Considerations When Altering Tables That Are Replicated 13-2

Increase Replication Throughput for Active Standby Pairs 13-3

Limit Replication Transmitters, Receivers, and XLA Readers 13-3

14

Managing Database Failover and Recovery

Overview of Database Failover and Recovery 14-1

General Failover and Recovery Procedures 14-1

Subscriber Failures 14-2

xi

Master Failures 14-3

Automatic Catch-Up of a Failed Master Database 14-4

When Master Catch-Up Is Required for an Active Standby Pair 14-4

Failures in Bidirectional Distributed Workload Schemes 14-5

Network Failures 14-6

Failures Involving Sequences 14-6

Recovering a Failed Database 14-6

Recovering a Failed Database From the Command Line 14-7

Recovering a Failed Database From a C Program 14-7

Recovering Nondurable Databases 14-8

Writing a Failure Recovery Script 14-9

A TimesTen Configuration Attributes for Oracle Clusterware

List of Attributes A-1

Required Attributes A-4

MasterHosts A-4

Conditionally Required Attributes A-4

AppCheckCmd A-5

AppFailureInterval A-5

AppName A-6

AppRestartAttempts A-6

AppStartCmd A-6

AppStopCmd A-7

AppType A-7

AppUptimeThreshold A-8

CacheConnect A-8

MasterVIP A-8

RemoteSubscriberHosts A-9

RepBackupDir A-9

SubscriberHosts A-9

SubscriberVIP A-10

VIPInterface A-11

VIPNetMask A-11

Optional Attributes A-11

AppFailoverDelay A-11

AppFailureThreshold A-12

AppScriptTimeout A-12

AutoRecover A-12

DatabaseFailoverDelay A-13

FailureThreshold A-13

xii

MasterStoreAttribute A-14

RepBackupPeriod A-14

RepDDL A-15

RepFullBackupCycle A-16

ReturnServiceAttribute A-16

SubscriberStoreAttribute A-16

TimesTenScriptTimeout A-17

xiii

About This Content

This guide provides background information to help you understand how TimesTen
works, as well as step-by-step instructions that show how to perform the most
commonly-needed tasks..

Audience

To work with this guide, you should understand how database systems work and have
some knowledge of Structured Query Language (SQL).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

14

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of TimesTen Replication

TimesTen replication features are available with Oracle TimesTen In-Memory Database in
classic mode (TimesTen Classic).

• What is Replication?

• Requirements for Replication Compatibility

• Replication Agents

• Copying Updates Between Databases

• Types of Replication Schemes

• Configuring a Large Number of Subscribers

• Cache Groups and Replication

• Sequences and Replication

• Foreign Keys and Replication

• Aging and Replication

What is Replication?
Replication is the process of maintaining copies of data in multiple databases. The purpose of
replication is to make data highly available to applications with minimal performance impact.

In addition to providing recovery from failures, replication schemes can also distribute
application workloads across multiple databases for maximum performance and facilitate
online upgrades and maintenance.

Replication is the process of copying data from a master database to a subscriber database.
Replication is controlled by replication agents for each database. The replication agent on the
master database reads the records from the transaction log for the master database. It
forwards changes to replicated elements to the replication agent on the subscriber database.
The replication agent on the subscriber database then applies the updates to its database. If
the subscriber replication agent is not running when the updates are forwarded by the master,
the master retains the updates in its transaction log until they can be applied at the subscriber
database.

An entity that is replicated with all of its contents between databases is called a replication
element. TimesTen Classic supports databases, cache groups, tables and sequences as
replication elements. TimesTen Classic also supports replicating XLA bookmarks.

The active standby pair configuration provides the highest availability. In an active standby
pair replication scheme, the data is copied from the active database to the standby database
before potentially being copied to read-only subscribers.

• An active standby pair is the only supported replication scheme for databases with cache
groups.

• Certain DDL statements in an active standby pair are replicated against the other nodes
in the replication scheme. See Making DDL Changes in an Active Standby Pair.

1-1

Requirements for Replication Compatibility
TimesTen Classic replication is supported only between identical platforms and bit-
levels. Although you can replicate between databases that reside on the same host,
replication is generally used for copying updates into a database that resides on
another host. This helps prevent data loss from host failure.

The databases must have DSNs with identical value in the DatabaseCharacterSet
database connection attribute.

See Connection Attributes for Replicated Databases.

Replication Agents
Replication between databases is controlled by a replication agent.

Each database is identified by:

• A database name derived from the file system's path name for the database

• A host name

The replication agent on a master database reads the records from the transaction log
and forwards any detected changes to replicated elements to the replication agent on
a subscriber database. The replication agent on a subscriber database applies the
updates to its database. If the subscriber agent is not running when the updates are
forwarded by the master, then the master retains the updates in the transaction log
until they can be transmitted.

The replication agents communicate through TCP/IP stream sockets. The replication
agents obtain the TCP/IP address, host name, and other configuration information
from the replication tables described in Replication Tables in the Oracle TimesTen In-
Memory Database System Tables and Views Reference.

You can enable secure TCP/IP network connections between replication agents (and
utilities that communicate with the replication agents) by using Transport Layer
Security (TLS), which requires mutual authentication to encrypt communication over
connections. You can also generate certificates. See Transport Layer Security for
TimesTen replication in the Oracle TimesTen In-Memory Database Security Guide.

Copying Updates Between Databases
By default, updates are copied between databases asynchronously.

While asynchronous replication provides the best performance, it does not provide the
application with confirmation that the replicated updates were committed on subscriber
databases. For applications that need higher levels of confidence that the replicated
data is consistent between the master and subscriber databases, you can enable
either return receipt or return twosafe service.

• The return receipt service loosely synchronizes the application with the replication
mechanism by blocking the application until replication confirms that the update
has been received by the subscriber.

Chapter 1
Requirements for Replication Compatibility

1-2

• The return twosafe service provides a fully synchronous option by blocking the
application until replication confirms that the update has been both received and
committed on the subscriber before being committed on the master.

Return receipt replication impacts performance less than return twosafe, but at the expense
of less synchronization. The operational details for asynchronous, return receipt, and return
twosafe replication are discussed in these sections:

• Default Replication

• Return Receipt Replication

• Return Twosafe Replication

Default Replication
When using default TimesTen Classic replication, an application updates a master database
and continues working without waiting for the updates to be received and applied by the
subscribers.

The master and subscriber databases have internal mechanisms to confirm that the updates
have been successfully received and committed by the subscriber. These mechanisms
ensure that updates are applied at a subscriber only once, but they are completely
independent of the application.

Default TimesTen Classic replication provides maximum performance, but the application is
completely decoupled from the receipt process of the replicated elements on the subscriber.

Figure 1-1 Basic Asynchronous Replication Cycle

Application

1. Commit transaction

5. Acknowledge receipt of batch

2. Write update

 records to

 log

4. Send batch of

 update records

 to subscriber

3. Flush batch of update

 records to disk

7. In a separate thread,

 flush batch of

 updated to disk

6. Write each received

 update record to log

Master Subscriber

Transaction

 Log Buffer

Transaction

 Log Buffer

Log Files

DSName1.log2
DSName1.log1

DSName1.log0

Log Files

DSName2.log2
DSName2.log1

DSName2.log0

The default TimesTen Classic replication cycle is:

Chapter 1
Copying Updates Between Databases

1-3

1. The application commits a local transaction to the master database and is free to
continue with other transactions.

2. During the commit, the TimesTen daemon writes the transaction update records to
the transaction log buffer.

3. The replication agent on the master database directs the daemon to flush a batch
of update records for the committed transactions from the log buffer to a
transaction log file. This step ensures that, if the master fails and you need to
recover the database from the checkpoint and transaction log files, the recovered
master contains all the data it replicated to the subscriber.

4. The master replication agent forwards the batch of transaction update records to
the subscriber replication agent, which applies them to the subscriber database.
Update records are flushed to the file system and forwarded to the subscriber in
batches of 256K or less, depending on the master database's transaction load. A
batch is created when there is no more log data in the transaction log buffer or
when the current batch is roughly 256K bytes.

5. The subscriber replication agent sends an acknowledgement back to the master
replication agent that the batch of update records was received. The
acknowledgement includes information on which batch of records the subscriber
last flushed to the file system. The master replication agent is now free to purge
from the transaction log the update records that have been received, applied, and
flushed to the file system by all subscribers and to forward another batch of update
records, while the subscriber replication agent asynchronously continues on to
Step 6.

6. The replication agent at the subscriber updates the database and directs the
daemon to write the transaction update records to the transaction log buffer.

7. The replication agent at the subscriber database uses a separate thread to direct
the daemon to flush the update records to a transaction log file.

Return Receipt Replication
The return receipt service provides a level of synchronization between the master and
a subscriber database by blocking the application after commit on the master until the
updates of the committed transaction have been received by the subscriber.

An application requesting return receipt updates the master database in the same
manner as in the basic asynchronous case. However, when the application commits a
transaction that updates a replicated element, the master database blocks the
application until it receives confirmation that the updates for the completed transaction
have been received by the subscriber.

Return receipt replication trades some performance in order to provide applications
with the ability to ensure higher levels of data integrity and consistency between the
master and subscriber databases. In the event of a master failure, the application has
a high degree of confidence that a transaction committed at the master persists in the
subscribing database.

Chapter 1
Copying Updates Between Databases

1-4

Figure 1-2 Return Receipt Replication

Application

Transaction

 Log Buffer

Log Files

DSName2.log2
DSName2.log1

DSName2.log0

Log Files

DSName2.log2
DSName2.log1

DSName2.log0

Transaction

 Log Buffer

5. Acknowledge receipt of batch

2. Write update

 records to

 log

4. Send batch of

 update records

 to subscriber

3. Flush batch of update

 records to disk

8. In a separate thread,

 flush batch of

 updated to disk

7. Write each received

 update record to log

Master Subscriber

6. Unblock

thread

1. Commit

transaction

 and block

thread

Figure 1-2 shows that the return receipt replication cycle is the same as shown for the basic
asynchronous cycle in Figure 1-1, only the master replication agent blocks the application
thread after it commits a transaction (Step 1) and retains control of the thread until the
subscriber acknowledges receipt of the update batch (Step 5). Upon receiving the return
receipt acknowledgement from the subscriber, the master replication agent returns control of
the thread to the application (Step 6), freeing it to continue processing transactions.

If the subscriber is unable to acknowledge receipt of the transaction within a configurable
timeout period (default is 10 seconds), the master replication agent returns a warning stating
that it did not receive acknowledgement of the update from the subscriber and returns control
of the thread to the application. The application is then free to commit another transaction to
the master, which continues replication to the subscriber as before.

Return receipt transactions may time out for many reasons. The most likely causes for
timeout are the network, a failed replication agent, or the master replication agent may be so
far behind with respect to the transaction load that it cannot replicate the return receipt
transaction before its timeout expires. See Setting the Return Service Timeout Period and
RETURN RECEIPT.

Return Twosafe Replication
The return twosafe service provides fully synchronous replication between the master and
subscriber.

Chapter 1
Copying Updates Between Databases

1-5

Unlike the previously described replication modes, where transactions are transmitted
to the subscriber after being committed on the master, transactions in twosafe mode
are first committed on the subscriber before they are committed on the master.

Figure 1-3 Return Twosafe Replication

Application

Transaction

 Log Buffer

2. Write update

 records to

 log

3. Send batch of

 update records

 to subscriber

Master Subscriber

7. Unblock

thread

1. Block

thread

5. Acknowledge commit of

transaction on the subscriber 4. Commit transaction

 on the subscriber

6. Commit transaction

 on the master

The following describes the replication behavior between a master and subscriber
configured for return twosafe replication:

1. The application commits the transaction on the master database.

2. The master replication agent writes the transaction records to the log and inserts a
special pre-commit log record before the commit record. This pre-commit record
acts as a place holder in the log until the master replication receives an
acknowledgement that indicates the status of the commit on the subscriber.

Note:

Transmission of return twosafe transactions is non-durable, so the
master replication agent does not flush the log records to the file system
before sending them to the subscriber, as it does by default when
replication is configured for asynchronous or return receipt replication.

3. The master replication agent transmits the batch of update records to the
subscriber.

4. The subscriber replication agent commits the transaction on the subscriber
database.

Chapter 1
Copying Updates Between Databases

1-6

5. The subscriber replication agent returns an acknowledgement back to the master
replication agent with notification of whether the transaction was committed on the
subscriber and whether the commit was successful.

6. If the commit on the subscriber was successful, the master replication agent commits the
transaction on the master database.

7. The master replication agent returns control to the application.

If the subscriber is unable to acknowledge commit of the transaction within a configurable
timeout period (default is 10 seconds) or if the acknowledgement from the subscriber
indicates the commit was unsuccessful, the replication agent returns control to the
application without committing the transaction on the master database. The application
can then to decide whether to unconditionally commit or retry the commit. You can
optionally configure your replication scheme to direct the master replication agent to
commit all transactions that time out.

See RETURN TWOSAFE.

Types of Replication Schemes
You create a replication scheme to define a specific configuration of master and subscriber
databases.

This section describes the possible relationships you can define between master and
subscriber databases when creating a replication scheme.

When defining a relationship between a master and subscriber, consider these replication
schemes:

• Active Standby Pair With Read-Only Subscribers

• Classic Replication

Active Standby Pair With Read-Only Subscribers
You can create an active standby pair replication scheme with an active master, a standby
master, and several read-only subscriber databases.

Figure 1-4 shows an active standby pair replication scheme with an active master, a standby
master, and four read-only subscriber databases.

Chapter 1
Types of Replication Schemes

1-7

Figure 1-4 Active Standby Pair

read-only

subscriber

read-only

subscriber

read-only

subscriber

read-only

subscriber

standby master

replication
propagation

application

updates

active master

The active standby pair can replicate a whole database or select elements like tables
and cache groups.

In an active standby pair, two databases are defined as master databases. One is an
active master, and the other is a standby master. The application updates the active
master directly. Applications cannot update the standby master. It receives the updates
from the active master and propagates the changes to as many as 127 read-only
subscriber databases. This arrangement ensures that the standby master is always
ahead of the subscriber databases and enables rapid failover to the standby master if
the active master fails.

Only one of the master databases can function as an active master at a specific time.
You can manage failover and recovery of an active standby pair with Oracle
Clusterware. See Using Oracle Clusterware to Manage Active Standby Pairs. You can
also manage failover and recovery manually. See Administering an Active Standby
Pair Without Cache Groups or Administering an Active Standby Pair With Cache
Groups.

Chapter 1
Types of Replication Schemes

1-8

If the standby master fails, the active master can replicate changes directly to the read-only
subscribers. After the standby database has been recovered, it contacts the active master to
receive any updates that have been sent to the subscribers while the standby master was
down or was recovering. When the active master and the standby master have been
synchronized, then the standby master resumes propagating changes to the subscribers.

For details about setting up an active standby pair, see Defining an Active Standby Pair
Replication Scheme, Setting Up an Active Standby Pair With No Cache Groups, Setting Up
an Active Standby Pair With a Read-Only Cache Group, or Setting Up an Active Standby Pair
With an AWT Cache Group.

Classic Replication
Classic replication schemes enable you to design relationships between masters and
subscribers.

The following sections describe classic replication schemes:

• Full Database Replication or Selective Replication

• Unidirectional or Bidirectional Replication

• Direct Replication or Propagation

Full Database Replication or Selective Replication
You can replicate a full master database or selectively replicate some elements in the master
database to a subscriber database.

Figure 1-5 illustrates a full replication scheme in which the entire master database is
replicated to the subscriber.

Figure 1-5 Replicating the Entire Master Database

Chapter 1
Types of Replication Schemes

1-9

You can also configure your master and subscriber databases to selectively replicate
some elements in a master database to subscribers. Figure 1-6 shows examples of
selective replication. The left side of the figure shows a master database that
replicates the same selected elements to multiple subscribers, while the right side
shows a master that replicates different elements to each subscriber.

Figure 1-6 Replicating Selected Elements to Multiple Subscribers

Application Application

Subscriber

Subscriber Subscriber

Subscriber

Master

Replicating same elements

to each subscriber

Replicating different elements

to each subscriber

Master

Unidirectional or Bidirectional Replication
Unidirectional replication consists of a master database that sends updates to one or
more subscriber databases. Bidirectional replication consists of two databases that
operate bidirectionally, where each database is both a master and a subscriber to each
other.

These are basic ways to use bidirectional replication:

• Split workload configuration: In a split workload configuration, each database
serves as a master for some elements and a subscriber for others.

Consider the example shown in Figure 1-7, where the accounts for Chicago are
processed on database A while the accounts for New York are processed on
database B.

Chapter 1
Types of Replication Schemes

1-10

Figure 1-7 Split Workload Bidirectional Replication

Applications

for New York

Applications

for Chicago

Update

Database A Database B

• Distributed workload: In a distributed workload replication scheme, user access is
distributed across duplicate application/database combinations that replicate any update
on any element to each other. In the event of a failure, the affected users can be quickly
shifted to any application/database combination.The distributed workload configuration is
shown in Figure 1-8. Users access duplicate applications on each database, which
serves as both master and subscriber for the other database.

Figure 1-8 Distributed Workload Configuration

Applications Applications

Update

Database A Database B

When databases are replicated in a distributed workload configuration, it is possible for
separate users to concurrently update the same rows and replicate the updates to one
another. Your application should ensure that such conflicts cannot occur, that they be
acceptable if they do occur, or that they can be successfully resolved using the conflict
resolution mechanism described in Resolving Replication Conflicts.

Note:

Do not use a distributed workload configuration with the return twosafe return
service.

Chapter 1
Types of Replication Schemes

1-11

Direct Replication or Propagation
You can define a subscriber to serve as a propagator that receives replicated updates
from a master and passes them on to subscribers of its own.

Propagators are useful for optimizing replication performance over lower-bandwidth
network connections, such as those between servers in an intranet. For example,
consider the direct replication configuration illustrated in Figure 1-9, where a master
directly replicates to four subscribers over an intranet connection. Replicating to each
subscriber over a network connection in this manner is an inefficient use of network
bandwidth.

Figure 1-9 Master Replicating Directly to Multiple Subscribers Over a Network

Application

 Master

Subscriber

Subscriber

Subscriber

Subscriber

Communicate

over the Intranet

Chapter 1
Types of Replication Schemes

1-12

For optimum performance, consider the configuration shown in Figure 1-10, where the
master replicates to a single propagator over the network connection. The propagator in turn
forwards the updates to each subscriber on its local area network.

Figure 1-10 Master Replicating to a Single Propagator Over a Network

Application

 Master

Subscriber

Subscriber

Subscriber

Subscriber

 Propagator

Intranet

Propagators are also useful for distributing replication loads in configurations that involve a
master database that must replicate to a large number of subscribers. For example, it is more
efficient for the master to replicate to three propagators, rather than directly to the 12
subscribers as shown in Figure 1-11.

Chapter 1
Types of Replication Schemes

1-13

Figure 1-11 Using Propagators to Replicate to Many Subscribers

Application

 Master

 Propagator Propagator Propagator

SubscriberSubscriberSubscriber

Note:

Each propagator is one-hop, which means that you can forward an update
only once. You cannot have a hierarchy of propagators where propagators
forward updates to other propagators.

Chapter 1
Types of Replication Schemes

1-14

Configuring a Large Number of Subscribers
By default, a replication scheme can include up to 128 subscribers. A replication scheme with
propagator databases can have up to 128 propagators, and each propagator can have up to
128 subscribers. An active standby pair replication scheme can include up to 127 read-only
subscribers.

If you are planning a replication scheme that includes a large number of subscribers, then
ensure the following:

• The log buffer size should result in the value of LOG_FS_READS in the SYS.MONITOR table
being 0 or close to 0. This ensures that the replication agent does not have to read any
log records from the file system. If the value of LOG_FS_READS is increasing, then increase
the log buffer size.

• CPU resources are adequate. The replication agent on the master database spawns a
thread for every subscriber database. Each thread reads and processes the log
independently and needs adequate CPU resources to transmit to the subscriber
database.

Cache Groups and Replication
A cache group is a group of tables stored in a central Oracle database that are cached in
local cache tables on TimesTen. Cache groups can be replicated between TimesTen
databases. You can achieve high availability by using an active standby pair to replicate AWT
or read-only cache groups.

This section describes the following ways to replicate cache groups:

• Replicating an AWT Cache Group

• Replicating an AWT Cache Group With a Subscriber Propagating to an Oracle Database

• Replicating a Read-Only Cache Group

See Administering an Active Standby Pair With Cache Groups.

Replicating an AWT Cache Group
An asynchronous writethrough (AWT) cache group can be configured as part of an active
standby pair with optional read-only subscribers to ensure high availability and to distribute
the application workload.

Figure 1-12 shows this configuration.

Chapter 1
Configuring a Large Number of Subscribers

1-15

Figure 1-12 AWT Cache Group Replicated by an Active Standby Pair

read-only

subscriber

cache tablescache tables

cache tables cache tables

replicated

updates

replicated

updates

AWT

updates

Oracle

database

active master standby master

application

updates

read-only

subscriber

cache tablescache tables

Application updates are made to the active database, the updates are replicated to the
standby database, and then the updates are asynchronously written to the Oracle
database by the standby. At the same time, the updates are also replicated from the
standby to the read-only subscribers, which may be used to distribute the load from
reading applications. The tables on the read-only subscribers are not in cache groups.

When there is no standby database, the active database both accepts application
updates and writes the updates asynchronously to the Oracle database and the read-
only subscribers. This situation can occur when the standby has not yet been created,
or when the active fails and the standby becomes the new active. TimesTen Classic
reconfigures the AWT cache group when the standby becomes the new active.

If a failure occurs on the node where the active database resides, the standby master
becomes the new active master. TimesTen Classic automatically reconfigures the AWT
cache group so that it can be updated directly by the application and continue to
propagate the updates to the Oracle database asynchronously.

See Setting Up an Active Standby Pair With an AWT Cache Group.

Chapter 1
Cache Groups and Replication

1-16

Replicating an AWT Cache Group With a Subscriber Propagating to an
Oracle Database

You can recover from a complete failure of a site by creating a special disaster recovery read-
only subscriber on a remote site as part of the active standby pair replication configuration.

Figure 1-13 shows this configuration.

Figure 1-13 Disaster Recovery Configuration With Active Standby Pair

cache tables

read-only

subscriber

cache tablescache tablescache tables

replicated

updates
replicated

updates

Primary Site Disaster Recovery Site

Oracle

database

Oracle

database

active master standby master

application

updates

AWT

updates

AWT

updates

The standby database sends updates to cache group tables on the read-only subscriber. This
special subscriber is located at a remote disaster recovery site and can propagate updates to
a second Oracle database, also located at the disaster recovery site. You can set up more
than one disaster recovery site with read-only subscribers and Oracle databases. See Using
a Disaster Recovery Subscriber in an Active Standby Pair.

Replicating a Read-Only Cache Group
A read-only cache group enforces caching behavior in which committed updates on the
Oracle database tables are automatically refreshed to the corresponding cache tables on
TimesTen.

Chapter 1
Cache Groups and Replication

1-17

Figure 1-14 shows a read-only cache group replicated by an active standby pair.

Figure 1-14 Read-Only Cache Group Replicated by an Active Standby Pair

cache tables

read-only

subscriber

cache tablescache tables

cache tables

read-only

subscriber

cache tablescache tables

replicated

updates

replicated

updates

Oracle

database

active master standby master

autorefresh

updates

application

updates

When the read-only cache group is replicated by an active standby pair, the cache
group on the active database is autorefreshed from the Oracle database and
replicates the updates to the standby, where AUTOREFRESH is also configured on the
cache group but is in the PAUSED state. In the event of a failure of the active, TimesTen
Classic automatically reconfigures the standby to be autorefreshed when it takes over
for the failed master database by setting the AUTOREFRESH STATE to ON. TimesTen
Classic also tracks whether updates that have been autorefreshed from the Oracle
database to the active database have been replicated to the standby. This ensures
that the autorefresh process picks up from the correct point after the active fails, and
no autorefreshed updates are lost.This configuration may also include read-only
subscriber databases. This enables the read workload to be distributed across many
databases. The cache groups on the standby database replicate to regular (non-
cache) tables on the subscribers. See Setting Up an Active Standby Pair With a Read-
Only Cache Group.

Sequences and Replication
In some replication configurations, you may need to keep sequences synchronized
between two or more databases.

Chapter 1
Sequences and Replication

1-18

For example, you may have a master database containing a replicated table that uses a
sequence to fill in the primary key value for each row. The subscriber database is used as a
hot backup for the master database. If updates to the sequence's current value are not
replicated, insertions of new rows on the subscriber after the master has failed could conflict
with rows that were originally inserted on the master.

TimesTen Classic replication allows the incremented sequence value to be replicated to
subscriber databases, ensuring that rows in this configuration inserted on either database
does not conflict. See Replicating Sequences.

Foreign Keys and Replication
You may choose to replicate all or a subset of tables that have foreign key relationships with
one another. However, the method for how to replicate the tables involved in the relationship
differ according to the type of replication scheme.

See the following for details:

• Replicating Tables With Foreign Key Relationships in an Active Standby Pair

• Replicating Tables With Foreign Key Relationships in a Classic Replication Scheme

Aging and Replication
There are rules that apply to the interaction with replication when a table or cache group is
configured with least recently used (LRU) or time-based aging.

• The aging configuration on replicated tables and cache groups must be identical on every
peer database.

• If the replication scheme is an active standby pair, then aging is performed only on the
active database. Deletes that result from aging are then replicated to the standby
database. The aging configuration must be set to ON on both the active and standby
databases. TimesTen automatically determines which database is actually performing the
aging based on its current role as active or standby.

• In a replication scheme that is not an active standby pair, aging is performed individually
in each database. Deletes performed by aging are not replicated to other databases.

• When an asynchronous writethrough cache group is in a database that is replicated by
an active standby pair, delete operations that result from aging are not propagated to the
Oracle database.

Chapter 1
Foreign Keys and Replication

1-19

2
Getting Started

These examples demonstrate how to configure and start up sample replication schemes.

• Configuring an Active Standby Pair With One Subscriber

• Configuring a Classic Replication Scheme With One Master and One Subscriber

• Starting and Stopping the Replication Agents

Note:

You must have the ADMIN privilege to complete the procedures in this chapter.

Configuring an Active Standby Pair With One Subscriber
You can create an active standby pair with a single subscriber.

This section describes how to create an active standby pair with one subscriber. The active
database is master1. The standby database is master2. The subscriber database is
subscriber1. To keep the example simple, all databases reside on the same computer,
server1.

Figure 2-1 shows this configuration.

Figure 2-1 Active Standby Pair With One Subscriber

Standby

master

Active

master
Read-only

subscriber

master1 master2 subscriber1

Applications

1. Create the DSNs for the master and the subscriber databases.

Create DSNs named master1, master2 and subscriber1 as described in Managing
TimesTen Databases in Oracle TimesTen In-Memory Database Operations Guide.

2-1

On UNIX or Linux systems, use a text editor to create the following odbc.ini file:

[master1]
DataStore=/tmp/master1
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

[master2]
DataStore=/tmp/master2
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

[subscriber1]
DataStore=/tmp/subscriber1
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

On Windows, use the ODBC Administrator to set the same connection attributes.
Use defaults for all other settings.

2. Optional: Enable TLS to encrypt communication between replication agents.

You can enable secure TCP/IP network connections between replication agents
(and utilities that communicate with the replication agents) by using Transport
Layer Security (TLS), which requires mutual authentication to encrypt
communication over connections. You can also generate certificates. See
Transport Layer Security for TimesTen Replication in the Oracle TimesTen In-
Memory Database Security Guide.

3. Create a table in one of the master databases.

a. Use the ttIsql utility to connect to the master1 database:

% ttIsql master1

Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=master1";
Connection successful: DSN=master1;UID=timesten;DataStore=/tmp/master1;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
(Default setting AutoCommit=1)
Command>

b. Create the employees table;

Command> CREATE TABLE employees
 (employee_id NUMBER(6) PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25) NOT NULL,
 email VARCHAR2(25) NOT NULL UNIQUE,
 phone_number VARCHAR2(20),
 hire_date DATE NOT NULL,
 job_id VARCHAR2(10) NOT NULL,
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4)
) ;

4. Define the active standby pair.

The following defines the active standby pair on master1:

Chapter 2
Configuring an Active Standby Pair With One Subscriber

2-2

Command> CREATE ACTIVE STANDBY PAIR master1, master2
 SUBSCRIBER subscriber1;

See Defining an Active Standby Pair Replication Scheme.

5. Start the replication agent on a master database.

The following starts the replication agent on master1:

Command> CALL ttRepStart;

See Starting and Stopping the Replication Agents.

6. Set the state of a master database to ACTIVE.

The state of a new database in an active standby pair is IDLE until the active database
has been set.

Use the ttRepStateSet built-in procedure to designate master1 as the active database:

CALL ttRepStateSet('ACTIVE');

Verify the state of master1:

Command> CALL ttRepStateGet;
< ACTIVE >
1 row found.

7. Create a user on the active database.

Create a user ttuser with a password of ttuser and grant ttuser the ADMIN privilege.
Creating a user with the ADMIN privilege is required by Access Control for the next step.

Command> CREATE USER ttuser IDENTIFIED BY ttuser;
User created.
Command> GRANT ADMIN TO ttuser;

8. Duplicate the active database to the standby database.

Exit ttIsql and use the ttRepAdmin utility as the ttuser (the user created with the ADMIN
privilege) with the -duplicate option to duplicate the active database to the standby
database. If you are using two different hosts, enter the ttRepAdmin command from the
target host.

% ttRepAdmin -duplicate -from master1 -host server1 -uid ttuser -pwd ttuser
master2

9. Start the replication agent on the standby database.

Use ttIsql to connect to the master2 database and start the replication agent:

% ttIsql master2
Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=master2";
Connection successful: DSN=master2;UID=timesten;DataStore=/tmp/master2;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
(Default setting AutoCommit=1)

Command> CALL ttRepStart;

Starting the replication agent for the standby database automatically sets its state to
'STANDBY'. Verify the state of master2:

Chapter 2
Configuring an Active Standby Pair With One Subscriber

2-3

Command> CALL ttRepStateGet;
< STANDBY >
1 row found.

10. Duplicate the standby database to the subscriber.

Exit ttIsql and use the ttRepAdmin utility as the ttuser (the user created with the
ADMIN privilege) to duplicate the standby database to the subscriber database:

% ttRepAdmin -duplicate -from master2 -host server1 -uid ttuser -pwd ttuser
subscriber1

11. Start the replication agent on the subscriber.

Use ttIsql to connect to subscriber1 and start the replication agent. Verify the
state of subscriber1. Starting the replication agent for the subscriber database
automatically sets its state to 'IDLE'. All subscriber databases have their state set
to 'IDLE'.

% ttIsql subscriber1

Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=subscriber1";
Connection successful: DSN=subscriber1;UID=timesten;DataStore=/stmp/
subscriber1;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
(Default setting AutoCommit=1)

Command> CALL ttRepStart;

Command> call ttRepStateGet;
< IDLE >
1 row found.

12. Insert data into the table on the active database.

a. Use the ttIsql utility to connect to the master1 database:

% ttIsql master1

Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=master1";
Connection successful: DSN=master1;UID=timesten;DataStore=/tmp/master1;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
(Default setting AutoCommit=1)
Command>

b. Insert a row into the employees table on master1.

Command> INSERT INTO employees VALUES
 (202,
 'Pat',
 'Fay',
 'PFAY',
 '603-123-7777',
 TO_DATE('17-AUG-1997', 'dd-MON-yyyy'),
 'MK_REP',
 6000,
 NULL,
 201,

Chapter 2
Configuring an Active Standby Pair With One Subscriber

2-4

 20
);
1 row inserted.
Command> SELECT * FROM employees;
< 202, Pat, Fay, PFAY, 603-123-7777, 1997-08-17 00:00:00, MK_REP,
 6000, <NULL>, 201, 20 >
1 row found.

c. Verify that the insert is replicated to master2 and subscriber1. Use ttIsql to
connect to master2:

% ttIsql master2
Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=master2";
Connection successful: DSN=master2;UID=timesten;DataStore=/tmp/master2;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
(Default setting AutoCommit=1)

d. Verify that the data is replicated to master2:

Command> SELECT * FROM employees;
< 202, Pat, Fay, PFAY, 603-123-7777, 1997-08-17 00:00:00, MK_REP,
6000, <NULL>, 201, 20 >
1 row found.

e. Perform the same step on subscriber1 to verify the data is replicated to the
subscriber.

13. Drop the active standby pair and the table.

a. Connect to each database using ttIsql and stop the replication agents on each
database:

Command> CALL ttRepStop;
b. Drop the active standby pair on each database. You can then drop the employees

table on any database in which you have dropped the active standby pair.

Command> DROP ACTIVE STANDBY PAIR;
Command> DROP TABLE employees;

Configuring a Classic Replication Scheme With One Master and
One Subscriber

You can configure a classic replication scheme that replicates the contents of a single table in
a master database to a table in a subscriber database.

This section describes how to configure a classic replication scheme that replicates the
contents of a single table in a master database (masterds) to a table in a subscriber database
(subscriberds). To keep the example simple, both databases reside on the same computer.

Chapter 2
Configuring a Classic Replication Scheme With One Master and One Subscriber

2-5

Figure 2-2 Simple Classic Replication Scheme

Application

Master Subscriber

table table
masterds subscriberds

1. Create the DSNs for the master and the subscriber.

Create DSNs named masterds and subscriberds as described in Managing
TimesTen Databases in Oracle TimesTen In-Memory Database Operations Guide.

• On UNIX or Linux systems, use a text editor to create the following odbc.ini
file on each database:

[masterds]
DataStore=/tmp/masterds
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

[subscriberds]
DataStore=/tmp/subscriberds
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

• On Windows, use the ODBC Administrator to set the same connection
attributes. Use defaults for all other settings.

2. Create a table and classic replication scheme on the master database.

a. Connect to masterds with the ttIsql utility:

% ttIsql masterds
Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=masterds";
Connection successful: DSN=masterds;UID=timesten;
DataStore=/tmp/masterds;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;
(Default setting AutoCommit=1)
Command>

Chapter 2
Configuring a Classic Replication Scheme With One Master and One Subscriber

2-6

b. Create the employees table:

Command> CREATE TABLE employees
 (employee_id NUMBER(6) PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25) NOT NULL,
 email VARCHAR2(25) NOT NULL UNIQUE,
 phone_number VARCHAR2(20),
 hire_date DATE NOT NULL,
 job_id VARCHAR2(10) NOT NULL,
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4)
) ;

c. Create a classic replication scheme called repscheme to replicate the employees table
from masterds to subscriberds.

Command> CREATE REPLICATION repscheme
 ELEMENT e TABLE employees
 MASTER masterds
 SUBSCRIBER subscriberds;

3. Create a table and replication scheme on the subscriber database.

Connect to subscriberds and create the same table and replication scheme, using the
same procedure described in Step 2.

4. Start the replication agent on each database.

Start the replication agents on masterds and subscriberds:

Command> call ttRepStart;

Exit ttIsql. Use the ttStatus utility to verify that the replication agents are running for
both databases:

% ttStatus
TimesTen status report as of Thu Aug 11 17:05:23 2011

Daemon pid 18373 port 4134 instance ttuser
TimesTen server pid 18381 started on port 4136
--
Data store /tmp/masterds
There are 16 connections to the data store
Shared Memory KEY 0x0201ab43 ID 5242889
PL/SQL Memory KEY 0x0301ab43 ID 5275658 Address 0x10000000
Type PID Context Connection Name ConnID
Process 20564 0x081338c0 masterds 1
Replication 20676 0x08996738 LOGFORCE 5
Replication 20676 0x089b69a0 REPHOLD 2
Replication 20676 0x08a11a58 FAILOVER 3
Replication 20676 0x08a7cd70 REPLISTENER 4
Replication 20676 0x08ad7e28 TRANSMITTER 6
Subdaemon 18379 0x080a11f0 Manager 2032
Subdaemon 18379 0x080fe258 Rollback 2033
Subdaemon 18379 0x081cb818 Checkpoint 2036
Subdaemon 18379 0x081e6940 Log Marker 2035
Subdaemon 18379 0x08261e70 Deadlock Detector 2038
Subdaemon 18379 0xae100470 AsyncMV 2040
Subdaemon 18379 0xae11b508 HistGC 2041
Subdaemon 18379 0xae300470 Aging 2039

Chapter 2
Configuring a Classic Replication Scheme With One Master and One Subscriber

2-7

Subdaemon 18379 0xae500470 Flusher 2034
Subdaemon 18379 0xae55b738 Monitor 2037
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Manual
PL/SQL enabled.
--
Data store /tmp/subscriberds
There are 16 connections to the data store
Shared Memory KEY 0x0201ab41 ID 5177351
PL/SQL Memory KEY 0x0301ab41 ID 5210120 Address 0x10000000
Type PID Context Connection Name ConnID
Process 20594 0x081338f8 subscriberds 1
Replication 20691 0x0893c550 LOGFORCE 5
Replication 20691 0x089b6978 REPHOLD 2
Replication 20691 0x08a11a30 FAILOVER 3
Replication 20691 0x08a6cae8 REPLISTENER 4
Replication 20691 0x08ad7ba8 RECEIVER 6
Subdaemon 18376 0x080b1450 Manager 2032
Subdaemon 18376 0x0810e4a8 Rollback 2033
Subdaemon 18376 0x081cb8b0 Flusher 2034
Subdaemon 18376 0x08246de0 Monitor 2035
Subdaemon 18376 0x082a20a8 Deadlock Detector 2036
Subdaemon 18376 0x082fd370 Checkpoint 2037
Subdaemon 18376 0x08358638 Aging 2038
Subdaemon 18376 0x083b3900 Log Marker 2040
Subdaemon 18376 0x083ce998 AsyncMV 2039
Subdaemon 18376 0x08469e90 HistGC 2041
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Manual
PL/SQL enabled.

See Starting and Stopping the Replication Agents.

5. Insert data into the table on the master database.

a. Use ttIsql to connect to the master database and insert some rows into the
employees table:

% ttIsql masterds
Command> INSERT INTO employees VALUES
 (202,
 'Pat',
 'Fay',
 'PFAY',
 '603-123-7777',
 TO_DATE('17-AUG-1997', 'dd-MON-yyyy'),
 'MK_REP',
 6000,
 NULL,
 201,
 20
);
1 row inserted.

b. Open a second command prompt window for the subscriber. Connect to the
subscriber database and check the contents of the employees table:

% ttIsql subscriberds
Command> SELECT * FROM employees;
< 202, Pat, Fay, PFAY, 603-123-7777, 1997-08-17 00:00:00, MK_REP,

Chapter 2
Configuring a Classic Replication Scheme With One Master and One Subscriber

2-8

6000, <NULL>, 201, 20 >
1 row found.

Figure 2-3 shows that the rows that are inserted into masterds are replicated to
subscriberds.

Figure 2-3 Replicating Changes to the Subscriber Database

Master Subscriber

masterds subscriberds

insert into

employees

values

(202, ‘Pat’,...);

202 ‘Pat’ 202 ‘Pat’

employees employees

replication

agent

replication

agent

6. Drop the classic replication scheme and table.

a. After you have completed your replication tests, stop the replication agents on both
masterds and subscriberds:

Command> CALL ttRepStop;
b. To remove the employees table and repscheme classic replication scheme from the

master and subscriber databases, enter these statements on each database:

Command> DROP REPLICATION repscheme;
Command> DROP TABLE employees;

Starting and Stopping the Replication Agents
After you have defined a replication scheme, you can start the replication agents for each
database involved in the replication scheme. You must have the ADMIN privilege to start or
stop a replication agent.

You can start and stop a replication agent by using the ttAdmin utility with the -repStart or -
repStop option. You can also use the ttRepStart and ttRepStop built-in procedures to start
and stop a replication agent from the ttIsql command line.

To start the replication agents for the DSNs named masterDSN and subscriberDSN, with
ttAdmin, enter:

ttAdmin -repStart masterDSN
ttAdmin -repStart subscriberDSN

Chapter 2
Starting and Stopping the Replication Agents

2-9

To stop the replication agents, enter:

ttAdmin -repStop masterDSN
ttAdmin -repStop subscriberDSN

To start and stop the replication agent for the DSN named masterDSN from ttIsql,
enter:

> ttIsql masterDSN
Command> call ttRepStart;
Command> call ttRepStop;

You can also use the ttAdmin utility to set the replication restart policy. By default the
policy is manual, which enables you to start and stop the replication agents as
described above. Alternatively, you can set the replication restart policy for a database
to always or norestart.

Restart Policy Start Replication Agent When
the TimesTen Daemon Starts

Restart Replication Agent on
Errors or Invalidation

always Yes Yes

manual No Yes

norestart No No

Note:

The TimesTen daemon manages the replication agents. It must be running to
start or stop the replication agents.

When the restart policy is always, the replication agent is automatically started when
the database is loaded into memory. See Specifying a RAM Policy in Oracle TimesTen
In-Memory Database Operations Guide to determine when a database is loaded into
memory.

To use ttAdmin to set the replication restart policy to always, enter:

ttAdmin -repPolicy always DSN

To reset the policy back to manual, enter:

ttAdmin -repPolicy manual DSN

Following a database invalidation, both manual and always policies cause the
replication agent to be automatically restarted. When the agent restarts automatically,
it is often the first connection to the database. This happens after a fatal error that, for
example, requires all applications to disconnect. The first connection to a database
usually has to load the most recent checkpoint file and often needs to do recovery. For
a very large database, this process may take several minutes. During this period, all
activity on the database is blocked so that new connections cannot take place and any
old connections cannot finish disconnecting. This may also result in two copies of the
database existing at the same time because the old one stays around until all
applications have disconnected. For very large databases for which the first-connect
time may be significant, you may want to wait for the old database to become inactive
first before starting up the new one. You can do this by setting the restart policy to

Chapter 2
Starting and Stopping the Replication Agents

2-10

norestart to specify that the replication agent is not to be automatically restarted. For more
information on setting policies that would prevent the database from being reloaded, see
Specifying a RAM Policy in Oracle TimesTen In-Memory Database Operations Guide.

Chapter 2
Starting and Stopping the Replication Agents

2-11

3
Defining an Active Standby Pair Replication
Scheme

You can design a highly available system and define replication schemes.

• Overview of Master Database States

• Restrictions on Active Standby Pairs

• Defining the DSNs for the Databases

• Table Requirements for Active Standby Pairs

• Defining an Active Standby Pair Replication Scheme

• Identifying the Databases in the Active Standby Pair

• Using a Return Service for an Active Standby Pair

• Setting STORE Attributes for an Active Standby Pair

• Configuring Network Operations for an Active Standby Pair

• Using Automatic Client Failover for an Active Standby Pair

• Including or Excluding Database Objects From Replication

• Replicating Tables With Foreign Key Relationships in an Active Standby Pair

• Replicating Cache Groups in an Active Standby Pair

• Materialized Views in an Active Standby Pair

• Replicating Sequences in an Active Standby Pair

• Duplicating a Database

To reduce the amount of bandwidth required for replication, see Compressing Replicated
Traffic.

Overview of Master Database States
Overview of the possible states of a master database.

These states are referenced in the tasks described in the rest of the chapter.

The master databases can be in one of the following states:

• ACTIVE - A database in this state is the active database. Applications can update its
replicated tables.

• STANDBY - A database in this state is the standby database. Applications can update only
nonreplicated tables in the standby database. Nonreplicated tables are tables that have
been excluded from the replication scheme by using the EXCLUDE TABLE or EXCLUDE
CACHE GROUP clauses of the CREATE ACTIVE STANDBY PAIR statement.

• FAILED - A database in this state is a failed master database. No updates can be
replicated to it.

3-1

• IDLE - A database in this state has not yet had its role in the active standby pair
assigned. It cannot be updated. Every database comes up in the IDLE state.

• RECOVERING - When a previously failed master database is synchronizing updates
with the active database, it is in the RECOVERING state.

You can use the ttRepStateGet built-in procedure to discover the state of a master
database.

Restrictions on Active Standby Pairs
Keep in mind the restrictions when you are planning an active standby pair replication
scheme.

• To ensure high availability, each active and standby master databases as well as
all subscriber databases should be on different machines.

• The Linux or UNIX platforms for each host on which the master databases reside
should have the same operating system kernel settings for shared memory and
semaphores.

• For best replication performance a fast, stable network is best. The following can
stall or impede replication progress.

– Slow network: A slow network directly affects transaction rate of replication.
Enabling compression could help. See Store Data Efficiently With Column-
Based Compression of Tables in the Oracle TimesTen In-Memory Database
Operations Guide.

– Network outage: In the event of a network outage, replication operations stop
and only resume when a connection is active between sender and receiver.

• The active and standby masters must have their clocks synchronized through NTP
or other means. The clock skew between the active master and the standby
master cannot exceed 250 milliseconds. When adjusting the system clocks on any
nodes to be synchronized with each other, do not set any clock backward in time.

• For the initial setup, you create the standby database by duplicating the active
database with the ttRepAdmin -duplicate utility or the ttRepDuplicateEx C
function.

• ALTER ACTIVE STANDBY PAIR statements can run only on the active database. If
ALTER ACTIVE STANDBY PAIR is run on the active database, then the standby
database must be regenerated by duplicating the active database. All subscribers
must also be regenerated from the standby database. See Duplicating a
Database.

• Read-only subscribers can be created only by duplicating the standby database. If
the standby database is unavailable, then the read-only subscribers can be
created by duplicating the active database. See Duplicating a Database.

• You can specify at most 127 subscriber databases.

• Replication from the standby database to the read-only subscribers occurs
asynchronously.

• Write operations on replicated tables are not allowed on the standby database or
the subscriber databases. However, operations on sequences and XLA
bookmarks are allowed on the standby database and the subscriber databases.
Read operations are also allowed.

Chapter 3
Restrictions on Active Standby Pairs

3-2

• After failover, the new standby database can only be recovered from the active database
by duplicating the active database unless return twosafe replication is used between the
active and the standby databases. If return twosafe replication is used, the automated
master catch-up feature may be used instead. See Automatic Catch-Up of a Failed
Master Database.

• You cannot replicate a temporary database.

• You cannot replicate tables with compressed columns.

Defining the DSNs for the Databases
Before you define the active standby pair, define the DSNs for the active, standby, and read-
only subscriber databases. On UNIX or Linux, create an odbc.ini file. On Windows, use the
ODBC Administrator to name the databases and set connection attributes.

See Configuring an Active Standby Pair With One Subscriber for an example.

Each database "name" specified in a replication scheme must match the prefix of the
database file name (without the path) given for the DataStore data store attribute in the DSN
definition for the database. To avoid confusion, use the same name for both the DataStore
and Data Source Name data store attributes in each DSN definition. Values for DataStore are
case-sensitive. For example, if the database path is directory/subdirectory/foo.ds0, then
foo is the database name that you should use.

Table Requirements for Active Standby Pairs
Before you can create an active standby pair, you must create an object to be replicated.

Tables that are replicated in an active standby pair must have one of the following:

• A primary key

• A unique index over non-nullable columns

Replication uses the primary key or unique index to identify each row in the replicated table.
Replication always selects the first usable index that turns up in a sequential check of the
table's index array. If there is no primary key, replication selects the first unique index without
NULL columns it encounters. The selected index on the replicated table in the active database
must also exist on its counterpart table in the standby database.

Note:

The keys on replicated tables are transmitted in each update record to the
subscribers. Smaller keys are transmitted more efficiently.

Replicated tables have these restrictions:

• A primary key column cannot have a LOB data type.

• You cannot replicate tables with compressed columns.

Defining an Active Standby Pair Replication Scheme

Chapter 3
Defining the DSNs for the Databases

3-3

Use the CREATE ACTIVE STANDBY PAIR SQL statement to create an active standby pair
replication scheme. You must have the ADMIN privilege to use the CREATE ACTIVE
STANDBY PAIR statement and to perform other replication operations. Only the instance
administrator can duplicate databases.

Note:

See Configuring an Active Standby Pair With One Subscriber for an
example. See CREATE ACTIVE STANDBY PAIR for the complete syntax in
the Oracle TimesTen In-Memory Database SQL Reference.

Table 3-1 shows the components of the CREATE ACTIVE STANDBY PAIR statement that
are used to create the active standby pair replication scheme. Each component is
described with the identified topics in this chapter.

Table 3-1 Components of an Active Standby Pair Replication Scheme

Component See...

CREATE ACTIVE STANDBY PAIR FullDatabaseName,
FullDatabaseName

Identifying the Databases in the
Active Standby Pair

[ReturnServiceAttribute] Using a Return Service

[SUBSCRIBER FullDatabaseName [,...]] Identifying the Databases in the
Active Standby Pair

[STORE FullDatabaseName [StoreAttribute
[...]]]

Setting STORE Attributes

[NetworkOperation [...]] Configuring Network Interfaces
With the ROUTE Clause

[{INCLUDE|EXCLUDE}
{TABLE [[Owner.]TableName[,...]]|
CACHE GROUP [[Owner.]CacheGroupName[,...]|
SEQUENCE [[Owner.]SequenceName[,...]]}
[,...]]

Including or Excluding Database
Objects From Replication

Replicating Cache Groups Within
Active Standby Pairs

Identifying the Databases in the Active Standby Pair
The first component identifies the active master database, standby master database,
and any subscriber databases. The first database name designates the active master
database. The second database name designates the standby master database.
Read-only subscriber databases are indicated by the SUBSCRIBER clause.

Use the full database name described in Defining the DSNs for the Databases.

CREATE ACTIVE STANDBY PAIR master1, master2
 SUBSCRIBER subscriber1;

The active master database and the standby master database should be on separate
hosts to achieve a highly available system. Read-only subscribers can be either local
or remote. A remote subscriber provides protection from site-specific disasters.

Chapter 3
Identifying the Databases in the Active Standby Pair

3-4

You can also specify the hosts where the databases reside by using an IP address or a literal
host name surrounded by double quotes. Provide a host ID as part of FullDatabaseName:

DatabaseName [ON Host]

Host can be either an IP address or a literal host name. Use the value returned by the
hostname operating system command. It is good practice to surround a host name with
double quotes. For example:

CREATE ACTIVE STANDBY PAIR
 repdb1 ON "host1",
 repdb2 ON "host2";

Using a Return Service for an Active Standby Pair
You can configure your replication scheme with a return service to ensure a higher level of
confidence that your replicated data is consistent on the active and standby databases.

See Using a Return Service.

Setting STORE Attributes for an Active Standby Pair
The STORE attributes clause in either the CREATE ACTIVE STANDBY PAIR or ALTER ACTIVE
STANDBY PAIR statements are used to set optional behavior for return services, compression,
timeouts, durable commit behavior, and table definition checking.

See CREATE ACTIVE STANDBY PAIR in the Oracle TimesTen In-Memory Database SQL
Reference for a full description of STORE attributes.

Note:

If you are using ALTER ACTIVE STANDBY PAIR to change any of the STORE attributes,
you must follow the steps described in Making Other Changes to an Active Standby
Pair.

See Setting STORE Attributes for more details on how to use and configure the STORE
attributes for an active standby pair.

Configuring Network Operations for an Active Standby Pair
If a replication host has more than one network interface, you may want to configure
replication to use an interface other than the default interface.

See Configuring Network Interfaces With the ROUTE Clause.

Using Automatic Client Failover for an Active Standby Pair
Automatic client failover is for high availability scenarios with a TimesTen Classic active
standby pair replication configuration. If failure of the active master results in the original
standby master becoming the new active master, then automatic client failover feature
automatically transfers the application connection to the new active master.

Chapter 3
Using a Return Service for an Active Standby Pair

3-5

See Using Automatic Client Failover in the Oracle TimesTen In-Memory Database
Operations Guide.

Note:

Automatic client failover is complementary to Oracle Clusterware in
situations where Oracle Clusterware is used, but the two features are not
dependent on each other. See Using Oracle Clusterware to Manage Active
Standby Pairs.

Including or Excluding Database Objects From Replication
An active standby pair replicates an entire database by default. Use the INCLUDE
clause to replicate only the tables, cache groups and sequences that are listed in the
INCLUDE clause. No other database objects are replicated in an active standby pair that
is defined with an INCLUDE clause.

For example, this INCLUDE clause specifies three tables to be replicated by the active
standby pair:

INCLUDE TABLE employees, departments, jobs

You can choose to exclude specific tables, cache groups or sequences from
replication by using the EXCLUDE clause of the CREATE ACTIVE STANDBY PAIR
statement. Use one EXCLUDE clause for each object type. For example:

EXCLUDE TABLE ttuser.tab1, ttuser.tab2
EXCLUDE CACHE GROUP ttuser.cg1, ttuser.cg2
EXCLUDE SEQUENCE ttuser.seq1, ttuser.seq2

Note:

Sequences with the CYCLE attribute cannot be replicated.

Replicating Tables With Foreign Key Relationships in an
Active Standby Pair

With the active standby pair replication scheme, you may choose to replicate all or a
subset of tables that have foreign key relationships with one another.

You can create the tables and the foreign key relationship on the active master either
before or after the active standby pair replication scheme is created.

• Before creation of active standby pair: You can create the tables and the foreign
key relationship on the active master before the active standby pair replication
scheme is created. Then, create the active standby pair replication scheme.

• After creation of active standby pair: You can create the tables and the foreign key
relationship on the active master after the active standby pair replication scheme is

Chapter 3
Including or Excluding Database Objects From Replication

3-6

created. In order for the tables to be automatically replicated to the standby master and
added to the replication scheme, you must be using the default mode where
DDLReplicationLevel is set to 2 or larger and DDLReplicationAction='INCLUDE'. See
Controlling Replication of Objects to All Databases in an Active Standby Pair.

If a child table with a foreign key defines ON DELETE CASCADE, then you must replicate any
other table with a foreign key relationship to the child table. This requirement prevents foreign
key conflicts from occurring on the standby master tables when a cascade deletion occurs on
the active master database.

TimesTen Classic replicates a cascade deletion as a single operation, rather than replicating
to the subscriber each individual row deletion which occurs on the child table when a row is
deleted on the parent. As a result, any row on the child table on the subscriber database,
which contains the foreign key value that was deleted on the parent table, is also deleted,
even if that row did not exist on the child table on the master database.

Replicating Cache Groups in an Active Standby Pair
With the active standby pair replication scheme, you must replicate all AWT cache groups,
but you can choose to replicate any read-only cache groups.

You can create the cache groups on the active master either before or after the active
standby pair replication scheme is created. See Replicating Cache Groups Within Active
Standby Pairs.

Materialized Views in an Active Standby Pair
When you replicate a database containing a materialized or non-materialized view, only the
detail tables associated with the view are replicated. The view itself is not replicated.

A matching view can be defined on the standby database, but it is not required. If detail
tables are replicated, TimesTen Classic automatically updates the corresponding view.
However, TimesTen Classic replication verifies only that the replicated detail tables have the
same structure on both databases. It does not enforce that the materialized views are the
same on each database.

Replicating Sequences in an Active Standby Pair
Sequences are replicated unless you exclude them from the active standby pair or unless
they have the CYCLE attribute.

See Including or Excluding Database Objects From Replication.

Replication of sequences is optimized by reserving a range of sequence numbers on the
standby database each time a sequence is updated on the active database. Reserving a
range of sequence numbers reduces the number of updates to the transaction log. The range
of sequence numbers is called a cache. Sequence updates on the active database are
replicated only when they are followed by or used in replicated transactions.

Consider a sequence named my.sequence with a MINVALUE of 1, an INCREMENT of 1 and the
default Cache of 20. The very first time that you reference my.sequence.NEXTVAL, the current
value of the sequence on the active database is changed to 2, and a new current value of 21
(20+1) is replicated to the standby database. The next 19 references to my.seq.NEXTVAL on
the active database result in no new current value being replicated, because the current
value of 21 on the standby database is still ahead of the current value on the active database.

Chapter 3
Replicating Cache Groups in an Active Standby Pair

3-7

On the twenty-first reference to my.seq.NEXTVAL, a new current value of 41 (21+20) is
transmitted to the standby database because the previous current value of 21 on the
standby database is now behind the value of 22 on the active database.

Operations on sequences such as SELECT my.seq.NEXTVAL FROM sys.dual, while
incrementing the sequence value, are not replicated until they are followed by
transactions on replicated tables. A side effect of this behavior is that these sequence
updates are not purged from the log until followed by transactions on replicated tables.
This causes ttRepSubscriberWait and ttRepAdmin -wait to fail when only these
sequence updates are present at the end of the log.

Duplicating a Database
When you set up a replication scheme or administer a recovery, a common task is to
duplicate a database. Use the -duplicate option of the ttRepAdmin utility or the
ttRepDuplicateEx C function to duplicate a database.

To duplicate a database, these conditions must be fulfilled:

• The instance administrator performs the duplicate operation.

• The instance administrator user name must be the same on both instances
involved in the duplication.

• You must provide the user name and password for a user with the ADMIN privilege
on the source database.

• You must use the -keepCG option when duplicating an active master database that
has cache groups and provide the cache administration username and password.

• The target DSN cannot include client/server attributes.

Note:

Enable the Preallocate attribute to ensure that there is sufficient space for
the new database. If enabled, then TimesTen preallocates space on the file
system for the database checkpoint files for the new database during the
duplicate. See Preallocate in the Oracle TimesTen In-Memory Database
Reference.

On the source database, create a user and grant the ADMIN privilege to the user:

Command> CREATE USER ttuser IDENTIFIED BY ttuser;
User created.

Command> GRANT ADMIN TO ttuser;

Assume the user name of the instance administrator is timesten. Logged in as
timesten on the target host, duplicate the dsn1 database on host1 to dsn2:

ttRepAdmin -duplicate -from dsn1 -host host1 dsn2

Enter internal UID at the remote datastore with ADMIN privileges: ttuser
Enter password of the internal Uid at the remote datastore:

Chapter 3
Duplicating a Database

3-8

Enter ttuser when prompted for the password of the internal user at the remote database.

See ttRepAdmin in Oracle TimesTen In-Memory Database Referenceand ttRepDuplicateEx
in Oracle TimesTen In-Memory Database C Developer's Guide.

The following sections describe options when duplicating:

• Duplicating Over a Specific Network Interface

• Duplicating With Cache Groups

Duplicating Over a Specific Network Interface
If you want to use a specific local or remote network interface over which the database
duplication occurs, you can optionally specify either by providing an alias or the IP address of
the network interface.

You can specify the local and remote network interfaces for the source and target hosts by
using the -localIP and -remoteIP options of ttRepAdmin -duplicate. If you do not specify
one or both network interfaces, TimesTen Classic chooses them.

Duplicating With Cache Groups
If you are duplicating an active database that has defined cache groups, use the -keepCG
option.

You must also specify the cache administration user name and password with the -cacheUid
and -cachePwd options. If you do not provide the cache administration user password,
ttRepAdmin prompts for a password. If the cache administration user name is orauser and
the password is orapwd, duplicate database dsn1 on host1:

ttRepAdmin -duplicate -from dsn1 -host host1 -keepCG
 -connStr "DSN=dsn2;UID=;PWD="

Enter internal UID at the remote datastore with ADMIN privileges: ttuser
Enter password of the internal Uid at the remote datastore:

Enter ttuser when prompted for the password. The ttRepAdmin utility then prompts for the
cache administration user and password:

Enter cache administrator UID: orauser
Enter cache administrator password:

Enter orapwd when prompted for the cache administration password.

The UID and PWD for dsn2 are specified as null values in the connection string so that the
connection is made as the current OS user, which is the instance administrator. Only the
instance administrator can run ttRepAdmin -duplicate. If dsn2 is configured with PWDCrypt
instead of PWD, then the connection string should be "DSN=dsn2;UID=;PWDCrypt=".

When you duplicate a standby database with cache groups to a read-only subscriber, use the
-nokeepCG option. In this example, dsn2 is the standby database and sub1 is the read-only
subscriber:

ttRepAdmin -duplicate -from dsn2 -host host2 -nokeepCG -connStr "DSN=sub1;UID=;PWD="

The ttRepAdmin utility prompts for values for -uid and -pwd.

Chapter 3
Duplicating a Database

3-9

If you cannot access the Oracle database (either the Oracle database is down or you
cannot connect to it) while performing a duplicate for a replication scheme with AWT
cache groups or cache groups with incremental autorefresh, then the ttRepAdmin -
duplicate command cannot update the metadata on the Oracle database (that cache
uses to manage AWT cache groups and cache groups with autorefresh) after AWT
cache groups or cache groups with incremental autorefresh are duplicated. In this
case, use one of the following options to perform the duplicate:

• If you are using ttRepAdmin -duplicate to recover either a failed active or
standby master where all AWT cache groups or cache groups with incremental
autorefresh are included in the active standby pair replication scheme, then use
the -keepCG -recoveringNode options. When this option is used, changes that
occur during the duplicate operation are tracked and so may not need to initiate a
full autorefresh.

• Otherwise, use the -keepCG -deferCacheUpdate options. This option may initiate
a full autorefresh.

After completion of the duplicate operation with either -keepCG -recoveringNode
options or -keepCG -deferCacheUpdate options, warning messages are posted
informing you that while the duplicate operation was successful, updates to the Oracle
database metadata are deferred until the cache and replication agents are started.
Thus, once the duplicate operation is complete, start both the cache and replication
agents on the new node. If there are cascading TimesTen node failures and
intermittent connectivity problems with the Oracle database, then starting the cache
and replication agents may initiate a full autorefresh.

Note:

See Replicating Cache Groups Within Active Standby Pairs.

Chapter 3
Duplicating a Database

3-10

4
Defining Attributes and Options for a
Replication Scheme

There are return service options, STORE attributes, and network operations that can be
configured for both active standby pairs and classic replication (involving master and
subscribers).

Any differences for one replication scheme over the other are detailed within each section.

• Connection Attributes for Replicated Databases

• Configuring Parallel Replication

• Managing the Transaction Log on a Replicated Database

• Using a Return Service

• Setting STORE Attributes

• Configuring the Network

Connection Attributes for Replicated Databases
Databases that replicate to each other must have the same DatabaseCharacterSet data
store attribute. TimesTen Classic does not perform any character set conversion between
replicated databases.

You must make sure that the underlying data type for each replicated column is the same on
each node when you replicate between databases.

See Managing the Transaction Log on a Replicated Database for recommendations for
managing the replication log files.

If you want to configure parallel replication, see Configuring Parallel Replication for
information about setting the ReplicationParallelism and ReplicationApplyOrdering data
store attributes.

Databases must be hosted on systems that have two or more CPUs to take advantage of
setting this attribute to 2.

Configuring Parallel Replication
By default, replication is performed with a single thread where the nodes in a replication
scheme have one log reader, or transmitter thread, on the source database, and one applying
thread, or receiving thread, on the target database.

You can increase your performance by configuring parallel replication, which configures
multiple threads for sending updates from the source database to the target database and for
applying the updates on the target database.

4-1

These threads act in parallel to replicate and apply transactional changes to nodes in a
replication scheme. By default, parallel replication enforces transactional
dependencies and applies changes in commit order; however, you can disable
enforcement of the commit order.

Note:

If you enable parallel replication, you cannot run both DDL and DML
statements in the same transaction.

Parallel replication options:

• Automatic parallel replication: Parallel replication over multiple threads that
automatically enforces transactional dependencies and all changes applied in
commit order. This is the default.

• Automatic parallel replication with disabled commit dependencies: Parallel
replication over multiple threads that automatically enforces transactional
dependencies, but does not enforce transactions to be committed in the same
order on the subscriber database as on the master database.

These options are configured with the ReplicationApplyOrdering and
ReplicationParallelism data store creation attributes, which must be set when the
database is created.

Note:

All databases within the replication scheme that use parallel replication must
be configured identically with the same type of parallel replication and the
same number of threads or tracks.

The only time you can have different values for parallel replication attributes
is during an upgrade.

See Upgrades When Using Parallel Replication in the Oracle TimesTen In-
Memory Database Installation, Migration, and Upgrade Guide.

The following sections describe the options for parallel replication:

• Configuring Automatic Parallel Replication

• Configuring Automatic Parallel Replication With Disabled Commit Dependencies

Configuring Automatic Parallel Replication
Automatic parallel replication enables you to configure multiple threads that act in
parallel to replicate and apply transactional changes to nodes in either a classic or an
active standby pair replication scheme.

Automatic parallel replication enforces transactional dependencies and applies
changes in commit order.

Chapter 4
Configuring Parallel Replication

4-2

Enable automatic parallel replication by setting these data store attributes at database
creation time:

• Set ReplicationApplyOrdering=0, which is also the default.

• Set ReplicationParallelism to a number from 2 to 32. This number indicates the
number of transmitter threads on the source database and the number of receiver
threads on the target database. However, if you are using single-threaded replication, set
ReplicationParallelism to 1, which is the default.

The LogBufParallelism and ReplicationParallelism connection attributes are related.
LogBufParallelism specifies the number of strands that are mapped to the threads that
are specified by ReplicationParallelism. For example, if LogBufParallelism = 4 and
ReplicationParallelism = 4, then one strand is mapped to one thread. If
LogBufParallelism = 8 and ReplicationParallelism = 4, then two strands are mapped
to one thread.

Thus, if ReplicationParallelism is greater than 1, the LogBufParallelism connection
attribute must be equal to or greater than the value of ReplicationParallelism. The
ReplicationParallelism connection attribute cannot exceed the value of
LogBufParallelism. In order for the number of strands to be equally distributed across
the number of threads, you may want to make LogBufParallelism a multiple of the
number of threads specified in ReplicationParallelism.

If the replication scheme is an active standby pair that replicates AWT cache groups, the
settings for ReplicationApplyOrdering, ReplicationParallelism, and the
CacheAWTParallelism data store attributes determine how many threads are used to apply
changes in the TimesTen cache tables to the corresponding Oracle database tables. See
Improving AWT Throughput With Parallel Propagation to the Oracle Database in Oracle
TimesTen In-Memory Database Cache Guide.

See ReplicationParallelism, ReplicationApplyOrdering, and LogBufParallelism in the Oracle
TimesTen In-Memory Database Reference.

Configuring Automatic Parallel Replication With Disabled Commit
Dependencies

In order to enforce transactional dependencies and ensure that changes are applied in
commit order, automatic parallel replication normally tracks begin and commit dependencies.

• Begin dependencies: Operations that force one transaction to run before another, such
as an insert of a row followed by a delete of that same row.

• Commit dependencies: Order in which transactions are committed so that they are
committed on a subscriber in the same order as on the master database.

While parallel replication improves performance by utilizing multiple threads, you can further
increase throughput performance when using automatic parallel replication if the transactions
do not require enforcement of commit dependencies. That is, if your application has
predictable transactional dependencies and does not require the commit order on the target
database be the same as the order on the source database, you can relax the enforcement of
the commit dependencies and still maintain transactional correctness. For example, if
separate transactions are working on separate tables, you do not need to enforce commit
dependencies.

By relaxing the requirement for tracking commit dependencies, you can improve the
performance for automatic parallel replication. When you do not enforce commit

Chapter 4
Configuring Parallel Replication

4-3

dependencies, all non-DDL transactions may commit on the subscribers in a different
order than how they were originally run on the master. Begin dependencies are always
enforced to prevent apply order anomalies.

You can only disable commit dependencies for automatic parallel replication for an
active standby pair that uses asynchronous replication and does not contain cache
groups. You can set the following data store attributes at database creation time:

• Set the ReplicationApplyOrdering=2 before you create the TimesTen database.

• Set ReplicationParallelism to a number from 2 to 32. This number indicates the
number of transmitter threads on the source database and the number of receiver
threads on the target database. However, if you are using single-threaded
replication, set ReplicationParallelism to 1, which is the default.

The LogBufParallelism and ReplicationParallelism connection attributes are
related. LogBufParallelism specifies the number of strands that are mapped to
the threads that are specified by ReplicationParallelism. For example, if
LogBufParallelism = 4 and ReplicationParallelism = 4, then one strand is
mapped to one thread. If LogBufParallelism = 8 and ReplicationParallelism =
4, then two strands are mapped to one thread.

Thus, if ReplicationParallelism is greater than 1, the LogBufParallelism
connection attribute must be equal to or greater than the value of
ReplicationParallelism. The ReplicationParallelism connection attribute
cannot exceed the value of LogBufParallelism. In order for the number of strands
to be equally distributed across the number of threads, you may want to make
LogBufParallelism a multiple of the number of threads specified in
ReplicationParallelism.

However, while your performance improves, this option requires the use of additional
space in the temporary region of 16 MB plus an additional 16 MB for each configured
replication track (ReplicationParallelism connection attribute setting). For example,
if the ReplicationParallism connection attribute is set to 10, then this feature
requires 16 MB + 160 MB = 176 MB of additional temporary region space.

When you use automatic parallel replication and disable commit dependencies, some
of the tracks may move ahead of the others. This is known as a drift between the
parallel replication tracks. You can limit the amount of drift between the replication
tracks by setting the ParReplMaxDrift configuration parameter within the ttDbConfig
built-in procedure.

Call ttDbConfig("ParReplMaxDrift", "30");

The example sets the allowed drift to 30 seconds between the replication tracks, after
which TimesTen Classic causes all replication tracks to catch up to each other. See
ttDBConfig in the Oracle TimesTen In-Memory Database Reference.

Specifying Replication Tracks Within an Automatic Parallel Replication
Environment

In general, automatic parallel replication decides over which thread (track) to replicate
each transaction from the master to the subscriber. Thus, you do not have to manually
decide how to divide work across different tracks.

However, with dependent transactions, you may achieve better performance by
manually assigning transactions to the same track.

Chapter 4
Configuring Parallel Replication

4-4

Thus, the application has the option to specify which track a transaction belongs to when the
transaction starts on the source database with either the ReplicationTrack connection
attribute or the ALTER SESSION SET REPLICATION_TRACK statement. After which, all
transactions for this connection use this track. The transactions for this track are applied in
the order in which they are received on the target database, but commit order is not
maintained for transactions across the different tracks. If you decide to specify the track for a
transaction, then make sure that you distribute the workload evenly across the tracks.

Updates that should be applied in order on the receiving side should use the same track. You
can spread operations on a table across separate tracks based on key values. For example,
if you have a telecommunications billing application, you can use hash of the account number
to set the track and send all transactions for each account on a separate track.

TimesTen Classic still computes and enforces dependencies to make sure that dependent
transactions are applied in the correct order on the receiving side.

The application assigns transactions to tracks by one of these methods:

• Set the ReplicationTrack general connection attribute to a nonzero number. All
transactions issued by the connection are assigned to this track. The value can be any
number. TimesTen maps the ReplicationTrack number for this connection to one of the
available parallel replication threads. Thus, the application can use any number to group
transactions that should be applied in order. See ReplicationTrack in Oracle TimesTen In-
Memory Database Reference.

• Use the ALTER SESSION SQL statement to set the replication track number for the current
connection. See ALTER SESSION in Oracle TimesTen In-Memory Database SQL
Reference.

• Use the TT_REPLICATION_TRACK ODBC connection option for the SQLSetConnectOption
ODBC function. See Features for Use With Replication in Oracle TimesTen In-Memory
Database C Developer's Guide

• Use the setReplicationTrack() method of the TimesTenConnection JDBC class. See
Features for Use With Replication in Oracle TimesTen In-Memory Database Java
Developer's Guide

Use the ttConfiguration built-in procedure to return the replication track number for the
current connection. Select from the SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS system views or
call the ttLogHolds built-in procedure to verify that multiple tracks are being used.

Managing the Transaction Log on a Replicated Database
You can manage the transaction log on replicated databases.

This section includes these topics:

• About Log Buffer Flushing

• About Transaction Log Growth on a Master Database

• Setting Connection Attributes for Logging

About Log Buffer Flushing
A dedicated subdaemon thread writes the contents of the log buffer to the file system
periodically. These write operations may be synchronous or buffered.

Chapter 4
Managing the Transaction Log on a Replicated Database

4-5

The subdaemon thread ensures that the system I/O buffer never fills up with more
transaction log data than the value of the LogFileSize first connection attribute without
being synchronized to the log buffer.

If the database is configured with LogFlushMethod=2, then all write operations to the
file system are synchronous write operations and the data is durably written to the file
system before the write call returns. If the database is configured with
LogFlushMethod=1, then the write operations are buffered unless there is a specific
request from an application for synchronous write operations.

In addition to the periodic write operations, an application can also trigger the
subdaemon thread to write the buffer contents to the file system. The following are
cases where the application triggers a synchronous write operation to the file system:

• When a transaction that requested a durable commit is committed. A transaction
can request a durable commit by calling the ttDurableCommit built-in procedure or
by having the DurableCommits connection attribute set to 1.

• When the replication agent sends a batch of transactions to a subscriber and the
master has been configured for replication with the TRANSMIT DURABLE attribute
(the default).

• When the replication agent periodically runs a durable commit, whether the master
database is configured with TRANSMIT DURABLE or not.

Transactions are also written to the file system durably when durable commits are
configured as part of the return service failure policies and a failure has occurred.

The size of the log buffer has no influence on the ability of TimesTen to write data to
the file system under any of the circumstances listed above.

About Transaction Log Growth on a Master Database
In databases that do not use replication, Transaction Log API (XLA), cache groups or
incremental backup, unneeded records in the log buffer and unneeded transaction log
files are purged each time a checkpoint is initiated.

The unneeded transaction log files are purged either by the automatic background
checkpointing thread or by an application's call to the ttCkpt or ttCkptBlocking built-
in procedures.

In a replicated database, transactions remain in the log buffer and transaction log files
until the master replication agent confirms they have been fully processed by the
subscriber. Only then can the master consider purging them from the log buffer and
transaction log files.

A master database transaction log can grow much larger than it would on an
unreplicated database if there are changes to its subscriber state. When the
subscriber is in the start state, the master can purge logged data after it receives
confirmation that the information has been received by the subscriber. However, if a
subscriber becomes unavailable or is in the pause state, the log on the master
database cannot be flushed and the space used for logging can be exhausted. When
the log space is exhausted, subsequent updates on the master database are aborted.
Select from the SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS system views or call the
ttLogHolds built-in procedure to get information about replication log holds.

Chapter 4
Managing the Transaction Log on a Replicated Database

4-6

Note:

See Monitoring Accumulation of Transaction Log Files in Oracle TimesTen In-
Memory Database Operations Guide.

See Monitor Replication From the Replication Log Holds in this book,
SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS in the Oracle TimesTen In-Memory
Database System Tables and Views Reference or ttLogHolds in the Oracle
TimesTen In-Memory Database Reference

Setting Connection Attributes for Logging
LogBufMB specifies the maximum size of the in-memory log buffer in megabytes. This buffer is
flushed to a transaction log file when it becomes full.

The minimum size for LogBufMB is 8 times the value of LogBufParallelism.

You need to establish enough space for the transaction log files. There are two settings that
control the amount of space used by the log:

• The LogFileSize setting in the DSN specifies the maximum size of a transaction log file.
If logging requirements exceed this value, additional transaction log files with the same
maximum size are created. For best performance, set LogBufMB and LogFileSize to their
maximum values.

• The log failure threshold setting specifies the maximum number of transaction log files
allowed to accumulate before the master assumes a subscriber has failed. The threshold
value is the number of transaction log files between the most recently written to
transaction log file and the earliest transaction log file being held for the subscriber. For
example, if the last record successfully received by all subscribers was in Log File 1 and
the last log record written to the file system is at the beginning of Log File 4, then
replication is at least 2 transaction log files behind (the contents of Log Files 2 and 3). If
the threshold value is 2, then the master sets the subscriber to the failed state after
detecting the threshold value had been exceeded. This may take up to 10 seconds. See
Setting the Transaction Log Failure Threshold.

Because transactions are logged to the file system, you can use bookmarks to detect the log
record identifiers of the update records that have been replicated to subscribers and those
that have been written to the file system. To view the location of the bookmarks for the
subscribers associated with masterDSN, use the ttBookmark built-in procedure, as described
in Show Replicated Log Records.

If a subscriber goes down and then comes back up before the threshold is reached, then
replication automatically "catches up" as the committed transactions in the transaction log
files following the bookmark are automatically transmitted. However, if the threshold is
exceeded, the master sets the subscriber to the failed state. A failed subscriber must use
ttRepAdmin -duplicate to copy the master database and start over, as described in
Managing Database Failover and Recovery.

See Connection Attributes in the Oracle TimesTen In-Memory Database Reference.

Chapter 4
Managing the Transaction Log on a Replicated Database

4-7

Using a Return Service
You can configure your replication scheme with a return service to ensure a higher
level of confidence that your replicated data is consistent on the databases in your
replication scheme.

Note:

This section assumes you understand return services. For an overview on
return services, see Copying Updates Between Databases.

This section describes how to configure and manage the return receipt and return
twosafe services. You can specify a return service for table elements and database
elements for any standby or subscriber defined in replication scheme with the CREATE
ACTIVE STANDBY PAIR, ALTER ACTIVE STANDBY PAIR, CREATE REPLICATION, or ALTER
REPLICATION statements. The default is the NO RETURN service, which is asynchronous
replication and the best performance option.

Note:

You can use the ttRepXactStatus procedure to check on the status of a
return receipt or return twosafe transaction. See Check the Status of Return
Service Transactions.

The following sections describe the return services that can be used for your
replication scheme:

• RETURN RECEIPT

• RETURN RECEIPT BY REQUEST

• RETURN TWOSAFE

• RETURN TWOSAFE BY REQUEST

• NO RETURN

• Specifying a Different Return Service for Each Subscriber in a Classic Replication
Scheme

• Setting the Return Service Timeout Period

• Disabling Return Service Blocking Manually

• Establishing Return Service Failure and Recovery Policies

RETURN RECEIPT
TimesTen Classic provides an optional return receipt service to loosely couple or
synchronize your application with the replication mechanism.

Chapter 4
Using a Return Service

4-8

• In an active standby pair, you can specify the RETURN RECEIPT clause to enable the return
receipt service for the standby database. With return receipt enabled, when your
application commits a transaction for an element on the active database, the application
remains blocked until the standby acknowledges receipt of the transaction update.

• In a classic replication scheme, you can specify the RETURN RECEIPT clause to enable the
return receipt service for the subscriber database. With return receipt enabled, when your
application commits a transaction for an element on the master database, the application
remains blocked until the subscriber acknowledges receipt of the transaction update. If
the master is replicating the element to multiple subscribers, the application remains
blocked until all of the subscribers have acknowledged receipt of the transaction update.

Note:

You can also configure the replication agent to disable the return receipt service
after a specific number of timeouts. See Setting the Return Service Timeout Period.

If the standby or subscriber is unable to acknowledge receipt of the transaction within a
configurable timeout period, your application receives a tt_ErrRepReturnFailed (8170)
warning on its commit request.

The following example defines return receipt for an active standby pair. This example creates
an active standby pair where master1 is the active database, master2 is the standby
database. The standby database is enabled with the return receipt service.

Command> CREATE ACTIVE STANDBY PAIR
 master1,
 master2
 RETURN RECEIPT;

The following example defines return receipt for a classic replication scheme. To confirm that
all transactions committed on the tab table in the master database (masterds) are received
by the subscriber (subscriberds), the element description (e) might look like the following:

Note:

For more examples of classic replication schemes that use return receipt services,
see Multiple Subscriber Classic Replication Schemes.

ELEMENT e TABLE tab
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT

RETURN RECEIPT BY REQUEST
RETURN RECEIPT enables notification of receipt for all transactions.

You can use the RETURN RECEIPT BY REQUEST clause to enable an acknowledgement receipt
notification only for specific transactions identified by your application.

Chapter 4
Using a Return Service

4-9

If you specify RETURN RECEIPT BY REQUEST, you must use the ttRepSyncSet built-in
procedure on the active or master database to enable the return receipt service for a
transaction. The call to enable the return receipt service must be part of the
transaction (autocommit must be off).

If the standby or subscriber database is unable to acknowledge receipt of the
transaction update within a configurable timeout period, the application receives a
tt_ErrRepReturnFailed (8170) warning on its commit request. See Setting the Return
Service Timeout Period.

The following example defines return receipt by request for an active standby pair.
This example creates an active standby pair where master1 is the active database and
master2 is the standby database. The standby database is enabled with the return
receipt service.

Command> CREATE ACTIVE STANDBY PAIR
 master1,
 master2
 RETURN RECEIPT BY REQUEST;

This example defines return receipt by request for a classic replication scheme. To
enable confirmation that specific transactions committed on the tab table in the master
database (masterds) are received by the subscriber (subscriberds), the element
description (e) might look like:

ELEMENT e TABLE tab
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT BY REQUEST

You can use ttRepSyncSet to request return services. Before committing a transaction
that requires an acknowledgement return receipt, call ttRepSyncSet. The following
example sets the request for a return receipt with the first column set to 0x01 with a
timeout value of 45 seconds in column two.

Command> autocommit off;
Command> CALL ttRepSyncSet(0x01, 45, 1);

You can use ttRepSyncGet to check if a return service is enabled and obtain the
timeout value. The following demonstrates that the values that were previously set with
the ttRepSyncSet built-in procedure.

Command> CALL ttRepSyncGet;
< 01, 45, 1 >
1 row found.

See ttRepSyncSet and ttRepSyncGet in the Oracle TimesTen In-Memory Database
Reference.

RETURN TWOSAFE
TimesTen Classic provides a return twosafe service to fully synchronize your
application with the replication mechanism.

The return twosafe service ensures that each replicated transaction is committed on
the standby database before it is committed on the active database. If replication is
unable to verify the transaction has been committed on the standby or subscriber, it

Chapter 4
Using a Return Service

4-10

returns notification of the error. Upon receiving an error, the application can either take a
unique action or fall back on preconfigured actions, depending on the type of failure.

Note:

When replication is configured with RETURN TWOSAFE, you must disable autocommit
mode.

To enable the return twosafe service for the subscriber, specify the RETURN TWOSAFE attribute
in the CREATE ACTIVE STANDBY PAIR, ALTER ACTIVE STANDBY PAIR, CREATE REPLICATION, or
ALTER REPLICATION statements.

• When using an active standby pair, a transaction that contains operations that are
replicated with RETURN TWOSAFE cannot have a PassThrough setting greater than 0. If
PassThrough is greater than 0, an error is returned and the transaction must be rolled
back.

• When using a classic replication scheme, the return twosafe service is intended to be
used in replication schemes where two databases must stay synchronized. One
database has an active role, while the other database has a standby role but must be
ready to assume an active role at any moment. Use return twosafe with a bidirectional
replication scheme with exactly two databases.

When the application commits a transaction on the master database, the application
remains blocked until the subscriber acknowledges it has successfully committed the
transaction. Initiating identical updates or deletes on both databases can lead to
deadlocks in commits that can be resolved only by stopping the processes.

If the standby or subscriber is unable to acknowledge commit of the transaction update within
a configurable timeout period, the application receives a tt_ErrRepReturnFailed (8170)
warning on its commit request. See Setting the Return Service Timeout Period.

The following example defines return twosafe service for an active standby pair. This
example creates an active standby pair where master1 is the active database, master2 is the
standby database. The standby database is enabled with the return twosafe service.

Command> CREATE ACTIVE STANDBY PAIR
 master1,
 master2
 RETURN TWOSAFE;

The following example defines return twosafe service for a classic replication scheme. To
confirm all transactions committed on the master database (databaseA) are also committed
by the subscriber (databaseB), the element description (a) might look like the following:

ELEMENT a DATASTORE
 MASTER databaseA ON "system1"
 SUBSCRIBER databaseB ON "system2"
 RETURN TWOSAFE

The entire CREATE REPLICATION statement that specifies both databaseA and databaseB in a
bidirectional configuration with RETURN TWOSAFE might look like the following:

CREATE REPLICATION bidirect
ELEMENT a DATASTORE
 MASTER databaseA ON "system1"

Chapter 4
Using a Return Service

4-11

 SUBSCRIBER databaseB ON "system2"
 RETURN TWOSAFE
ELEMENT b DATASTORE
 MASTER databaseB ON "system2"
 SUBSCRIBER databaseA ON "system1"
 RETURN TWOSAFE;

RETURN TWOSAFE BY REQUEST
RETURN TWOSAFE enables notification of commit on the standby database for all
transactions.

You can use the RETURN TWOSAFE BY REQUEST clause to enable notification of a commit
on the standby only for specific transactions identified by your application.

If you specify RETURN TWOSAFE BY REQUEST for a standby or subscriber database, you
must use the ttRepSyncSet built-in procedure on the active or master database to
enable the return twosafe service for a transaction. The call to enable the return
twosafe service must be part of the transaction (autocommit must be off).

When you use the ALTER TABLE statement to alter a replicated table that is part of a
RETURN TWOSAFE BY REQUEST transaction, it ends up not running as a part of the
TWOSAFE BY REQUEST transaction. Instead, the ALTER TABLE operation succeeds
because a commit is performed before the ALTER TABLE operation, resulting in the
ALTER TABLE operation running in a new transaction which is not part of the RETURN
TWOSAFE BY REQUEST transaction.

Note:

See Setting the Return Service Timeout Period.

If the standby or subscriber is unable to acknowledge commit of the transaction within
the timeout period, the application receives a tt_ErrRepReturnFailed (8170) warning
on its commit request. The application can then chose how to handle the timeout. See
Setting the Return Service Timeout Period.

When using an active standby pair, a transaction that contains operations that are
replicated with RETURN TWOSAFE cannot have a PassThrough setting greater than 0. If
PassThrough is greater than 0, an error is returned and the transaction must be rolled
back.

The following example defines return twosafe by request service for an active standby
pair. This example creates an active standby pair where master1 is the active
database, master2 is the standby database. The standby database is enabled with the
return twosafe by request service.

Command> CREATE ACTIVE STANDBY PAIR
 master1,
 master2
 RETURN TWOSAFE BY REQUEST;

Before calling commit for a transaction that requires confirmation of commit on the
subscriber, call the ttRepSyncSet built-in procedure to request the return service, set

Chapter 4
Using a Return Service

4-12

the timeout period to 45 seconds, and specify no action (1) in the event of a timeout error:

Command> CALL ttRepSyncSet(0x01, 45, 1);

You can use the ttRepSyncGet built-in procedure to check if a return service is enabled and
obtain the timeout value.

Command> CALL ttRepSyncGet();
< 01, 45, 1>
1 row found.

This example defines return twosafe by request for a classic replication scheme. To enable
confirmation that specific transactions committed on the master database (databaseA) are
also committed by the subscriber (databaseB), the element description (a) might look like:

ELEMENT a DATASTORE
 MASTER databaseA ON "system1"
 SUBSCRIBER databaseB ON "system2"
 RETURN TWOSAFE BY REQUEST;

Before calling commit for a transaction that requires confirmation of commit on the subscriber,
call the ttRepSyncSet built-in procedure to request the return service, set the timeout period
to 45 seconds, and specify no action (1) in the event of a timeout error:

Command> CALL ttRepSyncSet(0x01, 45, 1);

You can use the ttRepSyncGet built-in procedure to check if a return service is enabled and
obtain the timeout value.

Command> CALL ttRepSyncGet();
< 01, 45, 1>
1 row found.

NO RETURN
You can use the NO RETURN clause to explicitly disable either the return receipt or return
twosafe services, depending on which one you have enabled.

NO RETURN is the default condition. This attribute is typically used only when altering a
replication scheme to remove a previously defined return service in the ALTER ACTIVE
STANDBY PAIR or ALTER REPLICATION statements.

Specifying a Different Return Service for Each Subscriber in a Classic
Replication Scheme

In a classic replication scheme, you can specify a different return service for table elements
and database elements for the subscribers listed in each SUBSCRIBER clause in a CREATE
REPLICATION or ALTER REPLICATION statement.

The following example shows separate SUBSCRIBER clauses that can define different return
service attributes for each subscriber: SubDatabase1 and SubDatabase2.

CREATE REPLICATION Owner.SchemeName
 ELEMENT ElementNameElementType
 MASTER DatabaseName ON "HostName"
 SUBSCRIBER SubDatabase1 ON "HostName" ReturnServiceAttribute1
 SUBSCRIBER SubDatabase2 ON "HostName" ReturnServiceAttribute2;

Chapter 4
Using a Return Service

4-13

Alternatively, you can specify the same return service attribute for all of the subscribers
defined in an element. The following example shows the use of a single SUBSCRIBER
clause that defines the same return service attributes for both SubDatabase1 and
SubDatabase2.

CREATE REPLICATION Owner.SchemeName
 ELEMENT ElementNameElementType
 MASTER DatabaseName ON "HostName"
 SUBSCRIBER SubDatabase1 ON "HostName",
 SubDatabase2 ON "HostName"
 ReturnServiceAttribute;

Setting the Return Service Timeout Period
A timeout can occur in a replication scheme configured with one of the return services.

See Using a Return Service.

• In an active standby pair replication scheme, a timeout occurs if the standby
database is unable to send an acknowledgement back to the active database
within the time period specified by RETURN WAIT TIME.

If the standby database is unable to acknowledge the transaction update from the
active database within the timeout period, the application receives an
errRepReturnFailed warning on its commit request.

• In a classic replication scheme, a timeout occurs if any of the subscribers are
unable to send an acknowledgement back to the master within the time period
specified by RETURN WAIT TIME.

The replication state could be set to stop by a user or by the master replication
agent in the event of a subscriber failure. A subscriber may be unable to
acknowledge a transaction that makes use of a return service and may time out
with respect to the master.

If any of the subscribers are unable to acknowledge the transaction update within
the timeout period, the application receives an errRepReturnFailed warning on its
commit request.

A return service may time out because of a replication failure or because replication is
so far behind that the return service transaction times out before it is replicated.
However, unless there is a simultaneous replication failure, failure to obtain a return
service confirmation from the standby or subscriber does not necessarily mean the
transaction has not been or will not be replicated.

The default return service timeout period is 10 seconds. You can specify a different
return service timeout period by either:

• Specifying the RETURN WAIT TIME in the CREATE ACTIVE STANDBY PAIR, ALTER
ACTIVE STANDBY PAIR, CREATE REPLICATION, or ALTER REPLICATION statements.

The RETURN WAIT TIME attribute specifies the number of seconds to wait for a
return service acknowledgement. A value of 0 means that there is no waiting.

The following example alters an active database (master1) of an active standby
pair to set a return service wait time of 25 seconds:

Command> ALTER ACTIVE STANDBY PAIR
 ALTER STORE master1 SET RETURN WAIT TIME 25;

Chapter 4
Using a Return Service

4-14

• Specifying a different return service timeout period programmatically by calling the
ttRepSyncSet built-in procedure on either the active database (in an active standby pair)
or the master database (in a classic replication scheme) with a new timeout value for the
returnWait parameter.

The following example demonstrates how to set the return service wait time to 25
seconds using ttRepSyncSet:

Command> CALL ttRepSyncSet (0x01, 25, 1);
Once the timeout is set, the timeout period applies to all subsequent return service
transactions until you either reset the timeout period or terminate the application session. For
a classic replication scheme, the timeout setting applies to all return services for all
subscribers.

Note:

You can set other STORE attributes to establish policies that automatically disable
return service blocking in the event of excessive timeouts and re-enable return
service blocking when conditions improve. See Establishing Return Service Failure
and Recovery Policies.

This example sets the timeout period for both databases included in a bidirectional classic
replication scheme. To set the timeout period to 30 seconds for both bidirectionally replicated
databases, databaseA and databaseB, in the bidirect replication scheme, the CREATE
REPLICATION statement might look like the following:

CREATE REPLICATION bidirect
ELEMENT a DATASTORE
 MASTER databaseA ON "system1"
 SUBSCRIBER databaseB ON "system2"
 RETURN TWOSAFE
ELEMENT b DATASTORE
 MASTER databaseB ON "system2"
 SUBSCRIBER databaseA ON "system1"
 RETURN TWOSAFE
STORE databaseA RETURN WAIT TIME 30
STORE databaseB RETURN WAIT TIME 30;

This example shows how to reset the timeout period. Use the ttRepSyncSet built-in
procedure to reset the timeout period to 45 seconds. To avoid resetting the requestReturn
and localAction values, specify NULL:

Command> CALL ttRepSyncSet(NULL, 45, NULL);

Disabling Return Service Blocking Manually
You may want to react if replication is stopped or return service timeout failures begin to
adversely impact the performance of your replicated system.

Your "tolerance threshold" for return service timeouts may depend on the historical frequency
of timeouts and the performance/availability equation for your particular application, both of
which should be factored into your response to the problem.

Chapter 4
Using a Return Service

4-15

Note:

One response to a timeout is to disable the return service. You can
determine if the return service is enabled or disabled with either the
ttRepSyncSubscriberStatus built-in procedure. See Determine If Return
Service Is Disabled.

When using the return receipt service, you can manually respond by:

• Using the ALTER ACTIVE STANDBY PAIR or ALTER REPLICATION statements to
disable return receipt blocking. If you decide to disable return receipt blocking,
your decision to re-enable it depends on your confidence level that the return
receipt transaction is no longer likely to time out.

The following example uses the ALTER ACTIVE STANDBY PAIR statement to disable
return receipt after 10 failures:

Command> ALTER ACTIVE STANDBY PAIR
 ALTER STORE master1 SET DISABLE RETURN ALL 10;

• Calling the ttDurableCommit built-in procedure to durably commit transactions on
the active or master database that you can no longer verify as being received by
the standby or subscriber database.

Establishing Return Service Failure and Recovery Policies
An alternative to manually responding to return service timeout failures is to establish
return service failure and recovery policies in the replication scheme.

These policies direct the replication agents to detect changes to the replication state
and to keep track of return service timeouts and then automatically respond in a
predefined manner.

The following attributes in the CREATE ACTIVE STANDBY PAIR, ALTER ACTIVE STANDBY
PAIR, CREATE REPLICATION, or ALTER REPLICATION statements set the failure and
recovery policies when using a RETURN RECEIPT or RETURN TWOSAFE service:

• RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED

• DISABLE RETURN

• RESUME RETURN

• DURABLE COMMIT

• LOCAL COMMIT ACTION

The policies set by these attributes are applicable until changed. Except for DURABLE
COMMIT, the replication agent must be running to enforce these policies.

RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED
The RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED attribute
determines whether a return receipt or return two safe service continues to be enabled
or is disabled when replication is paused or stopped.

• For an active standby pair, replication is considered stopped when either:

Chapter 4
Using a Return Service

4-16

– The active replication agent has failed or is explicitly stopped (for example, by
ttAdmin -repStop active).

– A failed standby master that has exceeded the specified FAILTHRESHOLD value stops
replication. Note that even though replication is stopped when the standby master
fails, TimesTen replicates directly from the active master to any subscribers,
bypassing the standby master. All missing updates are propagated to the standby
master if it recovers.

• In a classic replication scheme, replication is considered stopped when either:

– The master replication agent is explicitly stopped (for example, by ttAdmin -repStop
master).

– The replication state of the subscriber database is set to pause or stop (for example,
by ttRepAdmin -state pause subscriber).

– A failed subscriber that has exceeded the specified FAILTHRESHOLD value stops
replication.

Note:

A standby or subscriber database may become unavailable for a period of time that
exceeds the timeout period specified by RETURN WAIT TIME, yet may still be
considered by the master replication agent to be in the start state. Failure policies
related to timeouts are set by the DISABLE RETURN attribute.

You can enable or disable the return service when replication is stopped with the following
clause:

• RETURN SERVICES OFF WHEN REPLICATION STOPPED disables the return service when
replication is stopped and is the default when using the RETURN RECEIPT service.

• RETURN SERVICES ON WHEN REPLICATION STOPPED enables the return service to continue
to be enabled when replication is stopped and is the default when using the RETURN
TWOSAFE service.

The following example defines return services on when replication stopped for an active
standby pair. This example creates an active standby pair with RETURN TWOSAFE return service
and defines that the return service is to be disabled when replication is stopped (which is
opposite of the default).

Command> CREATE ACTIVE STANDBY PAIR
 master1,
 master2
 RETURN TWOSAFE
 STORE master2 RETURN SERVICES OFF WHEN REPLICATION STOPPED;

This example defines return services on when replication stopped for a classic replication
scheme.

Configure the CREATE REPLICATION statement to replicate updates from the masterds
database to the subscriber1 database. The CREATE REPLICATION statement specifies the
use of RETURN RECEIPT and RETURN SERVICES ON WHEN REPLICATION STOPPED.

CREATE REPLICATION myscheme
 ELEMENT e TABLE tab

Chapter 4
Using a Return Service

4-17

 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1 ON "server2"
 RETURN RECEIPT
 STORE masterds ON "server1"
 RETURN SERVICES ON WHEN REPLICATION STOPPED;

While the application is committing updates to the master, you could use the
ttRepAdmin -state pause to set subscriber1 to the pause state:

ttRepAdmin -receiver -name subscriber1 -state pause masterds

At this point, the application would continue to wait for return receipt
acknowledgements from subscriber1 until the replication state is reset to start and it
receives the acknowledgment:

ttRepAdmin -receiver -name subscriber1 -state start masterds

Note:

See Set the Replication State of Subscribers. You should be cautious about
setting the subscriber state to stop, as this not only stops the replication to
this subscriber, but also discards all of the updates. If you did set the
subscriber to the stop state, you would need to perform a duplicate to
restore the subscriber.

DISABLE RETURN
When a DISABLE RETURN value is set, the database keeps track of the number of
return receipt or return twosafe transactions that have exceeded the timeout period set
by RETURN WAIT TIME.

If the number of timeouts exceeds the maximum value set by DISABLE RETURN, the
application reverts to a default replication cycle in which it no longer waits for the
standby or subscriber to acknowledge the replicated updates.

When return service blocking is disabled, the applications on the active or master
database no longer blocks processing while waiting to receive acknowledgements
from the standby or subscribers that they received or committed the replicated
updates. Transactions are still replicated to the standby or subscriber, whether the
return service is enabled or disabled. When the return service is disabled, the
transactions are sent in asynchronous mode; the active or master database continues
to listen for an acknowledgement of each batch of replicated updates from standby or
subscriber databases.

Configure DISABLE RETURN as follows:

• For an active standby pair, specifying SUBSCRIBER is the same as specifying ALL.
Both settings refer to the standby database.

• For a classic replication scheme, you can set DISABLE RETURN SUBSCRIBER to
establish a failure policy to disable return service blocking for only those
subscribers that have timed out, or DISABLE RETURN ALL to establish a policy to
disable return service blocking for all subscribers.

Chapter 4
Using a Return Service

4-18

Note:

You can use the ttRepSyncSubscriberStatus built-in procedure to determine
whether the standby database or a particular subscriber has been disabled by the
DISABLE RETURN failure policy.

The DISABLE RETURN failure policy is only enabled when the replication agent is running. If
DISABLE RETURN is specified without RESUME RETURN, the return services remain off until the
replication agent for the database has been restarted.

• For an active standby pair, you can cancel this failure policy by stopping the replication
agent and specifying DISABLE RETURN with a zero value for NumFailures.

• For a classic replication scheme, you can cancel this failure policy by stopping the
replication agent and specifying either DISABLE RETURN SUBSCRIBER or DISABLE RETURN
ALL with a zero value for NumFailures.

DISABLE RETURN maintains a cumulative timeout count for each subscriber. If there are
multiple subscribers and you set DISABLE RETURN SUBSCRIBER, the replication agent
disables return service blocking for the first subscriber that reaches the timeout threshold.
If one of the other subscribers later reaches the timeout threshold, the replication agent
disables return service blocking for that subscriber also.

The count of timeouts to trigger the failure policy is reset either when you restart the
replication agent, when you set the DISABLE RETURN value to 0, or when return service
blocking is re-enabled by RESUME RETURN.

This example shows how to set DISABLE RETURN for an active standby pair. Configure the
CREATE ACTIVE STANDBY PAIR statement to replicate updates from the active database
master1 to the standby database master2. The CREATE ACTIVE STANDBY PAIR statement
specifies the use of RETURN RECEIPT and DISABLE RETURN ALL with a NumFailures value of
5. The RETURN WAIT TIME is set to 30 seconds.

CREATE ACTIVE STANDBY PAIR
 master1,
 master2
 RETURN RECEIPT
 STORE master1
 DISABLE RETURN ALL 5
 RETURN WAIT TIME 30;

While the application is committing updates to the active database, the standby database
(master2) experiences problems and fails to acknowledge a replicated transaction update.
The application is blocked for 30 seconds after which it commits its next update to the active
database master1. Over the course of the application session, this commit/timeout cycle
repeats 4 more times until DISABLE RETURN disables return receipt blocking for master2.

The following example sets the DISABLE RETURN SUBSCRIBER for a classic replication scheme.
Configure the CREATE REPLICATION statement to replicate updates from the masterds master
database to the subscriber databases: subscriber1 and subscriber2. The CREATE
REPLICATION statement specifies the use of RETURN RECEIPT and DISABLE RETURN
SUBSCRIBER with a NumFailures value of 5. The RETURN WAIT TIME is set to 30 seconds.

CREATE REPLICATION myscheme
 ELEMENT e TABLE tab

Chapter 4
Using a Return Service

4-19

 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1 ON "server2",
 subscriber2 ON "server3"
 RETURN RECEIPT
 STORE masterds ON "server1"
 DISABLE RETURN SUBSCRIBER 5
 RETURN WAIT TIME 30;

While the application is committing updates to the master, subscriber1 experiences
problems and fails to acknowledge a replicated transaction update. The application is
blocked for 30 seconds after which it commits its next update to the master database
masterds. Over the course of the application session, this commit/timeout cycle
repeats 4 more times until DISABLE RETURN disables return receipt blocking for
subscriber1. The application continues to wait for return-receipt acknowledgements
from subscriber2, but not from subscriber1.

RESUME RETURN
If DISABLE RETURN has disabled return service blocking, the RESUME RETURN attribute
sets the policy for re-enabling the return service. You can establish a return service
recovery policy by setting the RESUME RETURN attribute and specifying a resume latency
value.

If return service blocking has been disabled for the standby or subscriber database
and a latency time has been defined for RESUME RETURN, the following occurs:

• The applications on the active or master database no longer block processing
while waiting to receive acknowledgements from the standby or subscribers.
Transactions continue to be replicated to the standby or subscriber in
asynchronous mode. The active or master databases continue to listen for an
acknowledgement of each batch of replicated updates from standby or subscriber
databases.

• If the return service blocking is disabled, RESUME RETURN evaluates the commit-to-
acknowledge time for the last transaction to see if the latency is less than the
latency limit configured by the RESUME RETURN. If the commit-to-acknowledge time
latency is less than the latency limit set by RESUME RETURN, TimesTen re-enables
the return receipt or return twosafe services.

Note:

The commit-to-acknowledge time latency is the time elapsed between
when the application issues a commit and when the active or master
database receives acknowledgement from the standby or subscriber.

TimesTen evaluates the latency of the last acknowledged transaction
before the current transaction is replicated to the standby or subscriber.
The return service is re-enabled before the sending of the current
transaction after evaluating the latency from the last transaction.

The RESUME RETURN policy is enabled only when the replication agent is running. You
can cancel a return receipt resume policy by stopping the replication agent and then
using ALTER ACTIVE STANDBY PAIR or ALTER REPLICATION statements to set RESUME
RETURN to zero.

Chapter 4
Using a Return Service

4-20

The following example sets RESUME RETURN for an active standby pair. If return receipt
blocking has been disabled for master2 and if RESUME RETURN is set to 8 milliseconds, then
return receipt blocking is re-enabled for master2 the instant the active receives an
acknowledgement of the update from the standby, as long as the acknowledgement is
received within the specified latency 8 milliseconds from when it was committed by the
application on the active database.

Command> CREATE ACTIVE STANDBY PAIR
 master1,
 master2
 RETURN RECEIPT
 STORE master1
 DISABLE RETURN ALL 5
 RESUME RETURN 8;

The following example sets RESUME RETURN for a classic replication scheme. If return receipt
blocking has been disabled for subscriber1 and if RESUME RETURN is set to 8 milliseconds,
then return receipt blocking is re-enabled for subscriber1 the instant the master receives an
acknowledgement of the update from the subscriber, as long as the acknowledgement is
received within the specified latency 8 milliseconds from when it was committed by the
application on the master database.

CREATE REPLICATION myscheme
 ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1 ON "server2",
 subscriber2 ON "server3"
 RETURN RECEIPT
 STORE masterds ON "server1"
 DISABLE RETURN SUBSCRIBER 5
 RESUME RETURN 8;

DURABLE COMMIT
When DURABLE COMMIT is set to ON, it overrides the DurableCommits general connection
attribute on the active or master database and forces durable commits for those transactions
that have had return service blocking disabled.

In addition, when DURABLE COMMIT is set to ON, durable commits are issued when return
service blocking is disabled regardless of whether the replication agent is running or stopped.
They are also issued when the ttRepStateSave built-in procedure has marked the standby or
subscriber database as failed.

For a classic replication scheme, DURABLE COMMIT is useful if you have only one subscriber.
However, if you are replicating the same data to two subscribers and you disable return
service blocking to one subscriber, then you achieve better performance if you rely on the
other subscriber than you would if you enable durable commits.

Set DURABLE COMMIT ON for an active standby pair when establishing a DISABLE RETURN ALL
policy to disable return-receipt blocking for all subscribers. If return-receipt blocking is
disabled, commits are durably committed to the file system to provide redundancy.

Command> CREATE ACTIVE STANDBY PAIR
 master1,
 master2
 RETURN RECEIPT
 STORE master1
 DISABLE RETURN ALL 5

Chapter 4
Using a Return Service

4-21

 DURABLE COMMIT ON
 RESUME RETURN 8;

Set DURABLE COMMIT ON within a classic replication scheme when establishing a
DISABLE RETURN ALL policy to disable return-receipt blocking for all subscribers. If
return-receipt blocking is disabled, commits are durably committed to the file system to
provide redundancy.

CREATE REPLICATION myscheme
 ELEMENT e TABLE tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber ON "server2",
 subscriber2 ON "server3"
 RETURN RECEIPT
STORE masterds ON "server1"
 DISABLE RETURN ALL 5
 DURABLE COMMIT ON
 RESUME RETURN 8;

LOCAL COMMIT ACTION
When you are using the return twosafe service, you can specify how the active or
master replication agent responds to timeouts by setting LOCAL COMMIT ACTION. You
can override this setting for specific transactions with the localAction parameter of
the ttRepSyncSet built-in procedure.

The possible actions upon receiving a timeout during replication of a twosafe
transaction are:

• COMMIT - On timeout, the commit function attempts to perform a commit to end the
transaction locally. No more operations are possible on the same transaction.

• NO ACTION - On timeout, the commit function returns to the application, leaving the
transaction in the same state it was in when it entered the commit call, with the
exception that the application is not able to update any replicated tables. The
application can reissue the commit. This is the default.

If the call returns with an error, you can use the ttRepXactStatus procedure described
in Check the Status of Return Service Transactions to check the status of the
transaction. Depending on the error, your application can choose to:

• Reissue the commit call - This repeats the entire return twosafe replication cycle,
so that the commit call returns when the success or failure of the replicated
commit on the subscriber is known or if the timeout period expires.

• Roll back the transaction - If the call returns with an error related to applying the
transaction on the standby or subscriber, such as primary key lookup failure, you
can roll back the transaction on the active or master database.

Setting STORE Attributes
The STORE attributes clause in the CREATE ACTIVE STANDBY PAIR, ALTER ACTIVE
STANDBY PAIR, CREATE REPLICATION, and ALTER REPLICATION statements are used to
set optional behavior for return services, compression, timeouts, durable commit
behavior, and table definition checking.

For a classic replication scheme, you can also define conflict reporting at the table
level.

Chapter 4
Setting STORE Attributes

4-22

Note:

See Using a Return Service in this book and CREATE ACTIVE STANDBY PAIR
and CREATE REPLICATION in the Oracle TimesTen In-Memory Database SQL
Reference.

When using classic replication schemes, the FAILTHRESHOLD and TIMEOUT attributes can be
unique to a specific classic replication scheme definition. This means that these attribute
settings can vary if you have applied different classic replication scheme definitions to your
replicated databases. This is not true for any of the other attributes, which must be the same
across all classic replication scheme definitions. For example, setting the PORT attribute for
one classic replication scheme sets it for all classic replication schemes. For an example
classic replication scheme that uses a STORE clause to set the FAILTHRESHOLD attribute, see
Using a Return Service in a Classic Replication Scheme.

Note:

If you are using ALTER ACTIVE STANDBY PAIR to change any of the STORE attributes,
you must follow the steps described in Making Other Changes to an Active Standby
Pair.

The following sections describe some of the STORE attributes:

• Column Definition Options for Replicated Tables

• Compressing Replicated Traffic

• Port Assignments

• Setting Wait Timeout for Response From Remote Replication Agents

• Setting the Transaction Log Failure Threshold

• Suspending or Resuming Classic Replication in Response to Conflicts

Column Definition Options for Replicated Tables
The definition for the columns of replicated tables participating in the replication scheme do
not necessarily need to be identical.

• If the TABLE DEFINITION CHECKING value is set to EXACT, the column definitions must be
identical on the active and standby databases. This attribute enables replication of tables
that are identical in their physical structure.

• If the TABLE DEFINITION CHECKING value is set to RELAXED (the default), the column
definitions of the replicated tables do not need to be identical. When using RELAXED, the
replicated tables must have the same key definition, number of columns, column names,
and column data types.

Table definition checking occurs on the standby database. Setting this attribute to
RELAXED for both active and standby databases has the same effect as setting it for only
the standby database.

Chapter 4
Setting STORE Attributes

4-23

Note:

See CREATE ACTIVE STANDBY PAIR or CREATE REPLICATION in the
Oracle TimesTen In-Memory Database SQL Reference.

The TABLE DEFINITION CHECKING RELAXED attribute does not require that the physical
structure of the table be identical on both master databases. For example, if tables
have columns in a different order or have a different number of partitions, the data can
still be replicated when using the RELAXED attribute. Thus, if you are altering your table
by adding or dropping columns, you should use the RELAXED attribute. As noted in
ALTER TABLE in the Oracle TimesTen In-Memory Database SQL Reference, adding
columns when altering a table creates additional partitions. Dropping columns does
not automatically free up the space. We recommend that any DML statement that
alters the table should be run on the master and then replicated to any standby
database and subscribers.

The RELAXED setting can result in slightly slower performance if it is compensating for a
different physical structure. If the tables are identical in physical structure, then there is
no performance impact. You can eliminate any performance issues (caused by a
different physical structure, additional partitions, or extraneous space) by using the
ttMigrate -r -relaxedUpgrade (only valid on databases where the table definition
checking is set to RELAXED) to coalesce all additional partitions of a table into a single
partition and eliminate extraneous space caused by dropped columns. If you perform
this on all databases involved in the replication scheme, the resulting physical
structure is identical resulting in the best performance potential.

Note:

See Check Partition Counts for the Tables in Oracle TimesTen In-Memory
Database Monitoring and Troubleshooting Guide.

For performance considerations of both the EXACT and RELAXED attributes for
TABLE DEFINITION CHECKING, see Performance Considerations When
Altering Tables That Are Replicated.

To ensure that table definition checking is set to RELAXED, stop the replication agent on
the active or master database and then run an ALTER ACTIVE STANDBY PAIR or ALTER
REPLICATION statement to set the table definition checking to RELAXED. Finally, use the
ttRepAdmin -duplicate command to roll out these changes to the standby database
and any subscribers. See ALTER ACTIVE STANDBY PAIR and ALTER REPLICATION
in the Oracle TimesTen In-Memory Database SQL Reference.

The following sections provide examples for setting the table definition checking to
relaxed:

• Setting Table Definition Checking to Relaxed for an Active Standby Pair

• Examples for Classic Replication Scheme With Table Definition Checking Set to
Relaxed

Chapter 4
Setting STORE Attributes

4-24

Setting Table Definition Checking to Relaxed for an Active Standby Pair
This example demonstrates replicating tables that are identical in an active standby pair
replication scheme. This example sets the TABLE DEFINITION CHECKING attribute to EXACT.

1. Create table t1 in master1 database:

CREATE TABLE t1 (a INT PRIMARY KEY, b INT, c INT);
2. Create an active standby pair replication scheme. Set TABLE DEFINITION CHECKING to

EXACT for the master2 standby database.

Command> CREATE ACTIVE STANDBY PAIR master1, master2
 STORE master2 TABLE DEFINITION CHECKING EXACT;

3. Perform the rest of the steps to duplicate the active database to the standby database,
start the replication agents on both databases, and set the state of the active database
(as described in Getting Started.

The following verifies that the table definition checking is enabled to exact.

1. Insert a row into t1 on master1.

Command> INSERT INTO t1 VALUES (4,5,6);
1 row inserted.

2. Verify the results on t1 on master2.

Command> SELECT * FROM t1;
< 4, 5, 6>
1 row found.

You can alter the table definition checking for the active standby pair replication scheme to be
relaxed. First, stop the replication agent on the active database before altering the active
database. The following alters the dsn1 active database so the table definition checking is set
to relaxed:

ALTER ACTIVE STANDBY PAIR
 ALTER STORE master1 SET TABLE DEFINITION CHECKING RELAXED;

After processing completes, use duplicate to roll out the changes to the standby database.
Lastly, use duplicate to roll out the changes to any subscribers.

Examples for Classic Replication Scheme With Table Definition Checking Set to
Relaxed

This provided example demonstrates replicating tables that are identical in a classic
replication scheme. This example sets the TABLE DEFINITION CHECKING attribute to EXACT.

1. Create table t1 in dsn1 database:

CREATE TABLE ttuser.t1 (a INT PRIMARY KEY, b INT, c INT);
2. Create ttuser.t1 table in the dsn2 database exactly the same as in the dsn1 database.

3. Create replication scheme ttuser.rep1. Set TABLE DEFINITION CHECKING to EXACT for
the subscriber, dsn2.

CREATE REPLICATION ttuser.rep1
 ELEMENT e1 TABLE ttuser.t1
 MASTER dsn1

Chapter 4
Setting STORE Attributes

4-25

 SUBSCRIBER dsn2
 STORE dsn2 TABLE DEFINITION CHECKING EXACT;

4. Start the replication agent for both databases. Insert a row into ttuser.t1 on dsn1.

Command> INSERT INTO ttuser.t1 VALUES (4,5,6);
1 row inserted.

5. Verify the results on ttuser.t1 on dsn2.

Command> SELECT * FROM ttuser.t1;
< 4, 5, 6>
1 row found.

The following example replicates tables with columns in different positions in a classic
replication scheme. This example sets the TABLE DEFINITION CHECKING attribute to
RELAXED.

1. Create table t1 in dsn1 database:

CREATE TABLE ttuser.t1 (a INT PRIMARY KEY, b INT, c INT);
2. Create table ttuser.t1 in dsn2 database with the columns in a different order than

the columns in ttuser.t1 in dsn1 database. Note that the column names and data
types are the same in both tables and a is the primary key in both tables.

CREATE TABLE ttuser.t1 (c INT, a INT PRIMARY KEY, b INT);
3. Create replication scheme ttuser.rep1. Set TABLE DEFINITION CHECKING to

RELAXED for the subscriber, dsn2.

CREATE REPLICATION ttuser.rep1
 ELEMENT e1 TABLE ttuser.t1
 MASTER dsn1
 SUBSCRIBER dsn2
 STORE dsn2 TABLE DEFINITION CHECKING RELAXED;

4. Start the replication agent for both databases. Insert a row into ttuser.t1 on dsn1.

Command> INSERT INTO ttuser.t1 VALUES (4,5,6);
1 row inserted.

5. Verify the results on ttuser.t1 on dsn2.

Command> SELECT * FROM ttuser.t1;
< 5, 6, 4 >
1 row found.

The following example replicates tables with a different number of partitions in a
classic replication scheme. When you alter a table to add columns, it increases the
number of partitions in the table, even if you subsequently drop the new columns. You
can use the RELAXED setting for TABLE DEFINITION CHECKING to replicate tables that
have different number of partitions.

1. Create table ttuser.t3 on dsn1 with two columns.

CREATE TABLE ttuser.t3 (a INT PRIMARY KEY, b INT);
2. Create table ttuser.t3 on dsn2 with one column that is the primary key.

CREATE TABLE ttuser.t3 (a INT PRIMARY KEY);
3. Add a column to the table on dsn2. This increases the number of partitions to two,

while the table on dsn1 has one partition.

ALTER TABLE ttuser.t3 ADD COLUMN b INT;

Chapter 4
Setting STORE Attributes

4-26

4. Create the replication scheme on both databases.

CREATE REPLICATION reppart
 ELEMENT e2 TABLE ttuser.t3
 MASTER dsn1
 SUBSCRIBER dsn2
 STORE dsn2 TABLE DEFINITION CHECKING RELAXED;

5. Start the replication agent for both databases. Insert a row into ttuser.t3 on dsn1.

Command> INSERT INTO ttuser.t3 VALUES (1,2);
1 row inserted.

6. Verify the results in ttuser.t3 on dsn2.

Command> SELECT * FROM ttuser.t3;
< 1, 2 >
1 row found.

You can alter the table definition checking for a classic replication scheme to relaxed. First,
stop the replication agent on the master database before altering the replication scheme on it.
The following example alters the dsn1 master database so the table definition checking is set
to relaxed:

ALTER REPLICATION reppart
 ALTER STORE dsn1 SET TABLE DEFINITION CHECKING RELAXED;

After processing completes, use duplicate to roll out the changes to the standby master.
Lastly, use duplicate to roll out the changes to any subscribers.

Compressing Replicated Traffic
If you are replicating over a low-bandwidth network, or if you are replicating massive amounts
of data, you can set the COMPRESS TRAFFIC attribute to reduce the amount of bandwidth
required for replication.

The COMPRESS TRAFFIC attribute compresses the replicated data from the database specified
by the STORE parameter in the CREATE ACTIVE STANDBY PAIR, ALTER ACTIVE STANDBY PAIR,
CREATE REPLICATION or ALTER REPLICATION statements. TimesTen does not compress traffic
from other databases.

Though the compression algorithm is optimized for speed, enabling the COMPRESS TRAFFIC
attribute affects replication throughput and latency.

For example, to compress replicated traffic from active database dsn1 and leave the
replicated traffic from standby database dsn2 uncompressed, the CREATE ACTIVE STANDBY
PAIR statement looks like:

CREATE ACTIVE STANDBY PAIR dsn1 ON "host1", dsn2 ON "host2"
 SUBSCRIBER dsn3 ON "host3"
 STORE dsn1 ON "host1" COMPRESS TRAFFIC ON;

To compress the replicated traffic from both the active database dsn1 and the standby
database dsn2, use:

CREATE ACTIVE STANDBY PAIR dsn1 ON "host1", dsn2 ON "host2"
 SUBSCRIBER dsn3 ON "host3"
 STORE dsn1 ON "host1" COMPRESS TRAFFIC ON
 STORE dsn2 ON "host2" COMPRESS TRAFFIC ON;

Chapter 4
Setting STORE Attributes

4-27

You can compress replicated traffic from just one database dsn1 in a classic replication
scheme while leaving the replicated traffic from other databases (such as dsn2)
uncompressed. Use the CREATE REPLICATION statement as follows:

CREATE REPLICATION repscheme
 ELEMENT d1 DATASTORE
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
 ELEMENT d2 DATASTORE
 MASTER dsn2 ON host2
 SUBSCRIBER dsn1 ON host1
 STORE dsn1 ON host1 COMPRESS TRAFFIC ON;

To compress the replicated traffic between both the dsn1 and dsn2 databases in a
classic replicatoin scheme, use:

CREATE REPLICATION scheme
 ELEMENT d1 DATASTORE
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
 ELEMENT d2 DATASTORE
 MASTER dsn2 ON host2
 SUBSCRIBER dsn1 ON host1
 STORE dsn1 ON host1 COMPRESS TRAFFIC ON
 STORE dsn2 ON host2 COMPRESS TRAFFIC ON;

Port Assignments
The PORT parameter for the STORE attribute of the CREATE ACTIVE STANDBY PAIR and
CREATE REPLICATION statements set the port number used by a database to listen for
updates from another database.

• In an active standby pair, the standby database listens for updates from the active
database. Read-only subscribers listen for updates from the standby database.

• In a classic replication scheme, the subscribers listen for updates from the master
database. Setting the PORT attribute for one classic replication scheme sets it for all
classic replication schemes.

Static port assignments are recommended. If no PORT attribute is specified, the
TimesTen daemon dynamically selects the port. When ports are assigned dynamically
for the replication agents, then the ports of the TimesTen daemons have to match as
well.

Note:

You must assign static ports if you want to do online upgrades.

When statically assigning ports, it is important to specify the full host name, DSN and
port in the STORE attribute.

Example of assigning static ports for an active standby pair

CREATE ACTIVE STANDBY PAIR dsn1 ON "host1", dsn2 ON "host2"
 SUBSCRIBER dsn3 ON "host3"
 STORE dsn1 ON "host1" PORT 16080

Chapter 4
Setting STORE Attributes

4-28

 STORE dsn2 ON "host2" PORT 16083
 STORE dsn3 ON "host3" PORT 16084;

Example of assigning static ports for a classic replication scheme

CREATE REPLICATION repscheme
 ELEMENT el1 TABLE ttuser.tab
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
 ELEMENT el2 TABLE ttuser.tab
 MASTER dsn2 ON host2
 SUBSCRIBER dsn1 ON host1
 STORE dsn1 ON host1 PORT 16080
 STORE dsn2 ON host2 PORT 16083;

Setting Wait Timeout for Response From Remote Replication Agents
The TIMEOUT store attribute sets the maximum number of seconds that the replication agent
waits for a response from any remote replication agents.

We recommend that the default timeout (120 seconds) is used if you have any large
transactions. The replication agent scales the timeout based on the size of the transaction in
order to accommodate any large transactions that could potentially cause a delayed
response from the remote replication agent. Automatic scaling by the replication agent is
disabled if the user sets the TIMEOUT to less than or equal to 60 seconds.

Note:

If you experience repeated timeouts and the error log shows that multiple
transmitter and receiver threads restart, then the transaction may be larger than can
be scaled by the replication agent with the current timeout value. Continue to
increase the timeout value until replication can progress for the transaction.

The following example creates an active standby pair whose master databases are rep1 and
rep2. There is one subscriber, rep3. The type of replication is RETURN RECEIPT. The
statement also sets PORT and TIMEOUT attributes for the master databases. The TIMEOUT
attribute is set to 80 seconds for both the active and standby masters.

CREATE ACTIVE STANDBY PAIR rep1, rep2 RETURN RECEIPT
 SUBSCRIBER rep3
 STORE rep1 PORT 21000 TIMEOUT 80
 STORE rep2 PORT 22000 TIMEOUT 80;

Setting the Transaction Log Failure Threshold
You can establish a threshold value that, when exceeded, sets an unavailable database to
the failed state before the available transaction log space is exhausted.

• In an active standby pair, if the transaction log threshold is exceeded, sets an unavailable
standby database or a read-only subscriber to the failed state before the available
transaction log space is exhausted. Set the transaction log threshold by specifying the
STORE clause with a FAILTHRESHOLD value in the CREATE ACTIVE STANDBY PAIR or ALTER
ACTIVE STANDBY PAIR statements.

Chapter 4
Setting STORE Attributes

4-29

If an active database sets the standby or read-only subscriber database to the
failed state, it drops all of the data for the failed database from its transaction log
and transmits a message to the failed database. If the active replication agent can
communicate with the replication agent of the failed database, then the message
is transmitted immediately. Otherwise, the message is transmitted when the
connection is reestablished.

• In a classic replication scheme, if the transaction log threshold is exceeded, sets
an unavailable subscriber to the failed state before the available transaction log
space is exhausted. Set the transaction log threshold by specifying the STORE
clause with a FAILTHRESHOLD value in the CREATE REPLICATION or ALTER
REPLICATION statements. For an example, see Using a Return Service in a Classic
Replication Scheme.

If a master database sets the subscriber database to the failed state, it drops all
of the data for the failed subscriber from its transaction log and transmits a
message to the failed subscriber database. If the master replication agent can
communicate with the subscriber replication agent, then the message is
transmitted immediately. Otherwise, the message is transmitted when the
connection is reestablished.

However, after receiving the message from the master, if the subscriber is
configured for bidirectional replication or to propagate updates to other
subscribers, it does not transmit any further updates, because its replication state
has been compromised.

The default threshold value is 0, which means "no limit." See Setting Connection
Attributes for Logging for details about transaction log failure threshold values.

Any application that connects to the failed database receives a
tt_ErrReplicationInvalid (8025) warning indicating that the database has been
marked failed by a replication peer. Once the database has been informed of its
failed status, its state on the active or master database is changed from failed to
stop.

Note:

For more information about database states, see Table 11-1.

An application can use the ODBC SQLGetInfo function to check if the database the
application is connected to has been set to the failed state, as described in
Subscriber Failures.

Suspending or Resuming Classic Replication in Response to Conflicts
With classic replication, you can specify the number of replication conflicts per second
at the table level at which conflict reporting is suspended and the number of conflicts
per second at which conflict reporting resumes with the CONFLICT REPORTING SUSPEND
and CONFLICT REPORTING RESUME attributes.

See Resolving Replication Conflicts.

Chapter 4
Setting STORE Attributes

4-30

Configuring the Network
You should consider certain issues when replicating TimesTen data over a network.

• Network Bandwidth Requirements

• Replication in a WAN Environment

• Configuring Network Interfaces With the ROUTE Clause

• Configuring Network Interfaces When Not Using the ROUTE Clause

• Identifying the Local Host of a Replicated Database

Network Bandwidth Requirements
The network bandwidth required for TimesTen Classic replication depends on the bulk and
frequency of the data being replicated.

This discussion explores the types of transactions that characterize the high and low ends of
the data range and the network bandwidth required to replicate the data between TimesTen
databases.

Table 4-1 provides guidelines for calculating the size of replicated records.

Table 4-1 Replicated Record Sizes

Record Type Size

Begin transaction 48 bytes

Update 116 bytes

+ 18 bytes per column updated

+ size of old column values

+ size of new column values

+ size of the primary key or unique key

Delete 104 bytes

+ size of the primary key or unique key

Insert 104 bytes

+ size of the primary key or unique key

+ size of inserted row

Transactions are sent between replicated databases in batches. A batch is created whenever
there is no more data in the transaction log buffer in the master database, or when the current
batch is roughly 256 KB. See Copying Updates Between Databases.

Replication in a WAN Environment
TimesTen Classic replication uses the TCP/IP protocol, which is not optimized for a WAN
environment. You can improve replication performance over a WAN by installing a third-party
"TCP stack" product.

If replacing the TCP stack is not a feasible solution, you can reduce the amount of network
traffic that the TCP/IP protocol has to deal with by setting the COMPRESS TRAFFIC attribute in

Chapter 4
Configuring the Network

4-31

the CREATE ACTIVE STANDBY PAIR or CREATE REPLICATION statement. See
Compressing Replicated Traffic.

See AIX Prerequisites or Linux Prerequisites in the Oracle TimesTen In-Memory
Database Installation, Migration, and Upgrade Guide for information about changing
TCP/IP kernel parameters for better performance.

Configuring Network Interfaces With the ROUTE Clause
In a replication scheme, you need to identify the name of the host on which your
database resides. The operating system translates this host name to one or more IP
addresses.

When specifying the host for a database in a replication element, you should always
use the name returned by the hostname command, as replication uses the same host
name to verify that the current host is involved in the replication scheme. Replication
schemes may not be created that do not include the current host.

While you must specify the host name returned by the operating system's hostname
command when you specify the database name, you can configure replication to send
or receive traffic over a different interface (other than the default) using the ROUTE
clause.

If a host contains multiple network interfaces (with different IP addresses), you should
specify which interfaces are to be used by replication using the ROUTE clause, unless
you want replication to use the default interface. You must specify a priority for each
interface. Replication tries to first connect using the address with the highest priority,
and if a connection cannot be established, it tries the remaining addresses in order of
priority until a connection is established. If a connection to a host fails while using one
IP address, replication attempts to re-connect (or fall back) to another IP address, if
more than one address has been specified in the ROUTE clause.

The syntax of the ROUTE clause is:

ROUTE MASTER FullDatabaseName SUBSCRIBER FullDatabaseName
 {{MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost}
 PRIORITY Priority} [...]

Note:

Addresses for the ROUTE clause may be specified as either host names or IP
addresses. However, if your host has more than one IP address configured
for a given host name, you should only configure the ROUTE clause using the
IP addresses, in order to ensure that replication uses only the IP addresses
that you intend.

• When using the ROUTE clause in an active standby pair, each master database is a
subscriber of the other master database and each read-only subscriber is a
subscriber of both master databases. This means that the CREATE ACTIVE
STANDBY PAIR statement should include ROUTE clauses in multiples of two to
specify a route in both directions.

• When using the ROUTE clause in a classic replication scheme that defines dual
masters, each master database is a subscriber of the other master database. This

Chapter 4
Configuring the Network

4-32

means that the CREATE REPLICATION statement should include ROUTE clauses in multiples
of two to specify a route in both directions.

The following example shows how to configure multiple network interfaces for an active
standby pair.

If host1 host is configured with a second interface accessible by the host1fast host name,
and host2 is configured with a second interface at IP address 192.168.1.100, you may
specify that the secondary interfaces are used with the replication scheme.

CREATE ACTIVE STANDBY PAIR dsn1, dsn2
 ROUTE MASTER dsn1 ON "host1" SUBSCRIBER dsn2 ON "host2"
 MASTERIP "host1fast" PRIORITY 1
 SUBSCRIBERIP "192.168.1.100" PRIORITY 1
 ROUTE MASTER dsn2 ON "host2" SUBSCRIBER dsn1 ON "host1"
 MASTERIP "192.168.1.100" PRIORITY 1
 SUBSCRIBERIP "host1fast" PRIORITY 1;

The following example shows how to configure multiple network interfaces for a classic
replication scheme.

If host1 host is configured with a second interface accessible by the host1fast host name,
and host2 is configured with a second interface at IP address 192.168.1.100, you may
specify that the secondary interfaces are used with the replication scheme.

CREATE REPLICATION repscheme
 ELEMENT e1 TABLE ttuser.tab
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
 ELEMENT e2 TABLE ttuser.tab
 MASTER dsn2 ON host2
 SUBSCRIBER dsn1 ON host1
 ROUTE MASTER dsn1 ON host1 SUBSCRIBER dsn2 ON host2
 MASTERIP host1fast PRIORITY 1
 SUBSCRIBERIP "192.168.1.100" PRIORITY 1
 ROUTE MASTER dsn2 ON host2 SUBSCRIBER dsn1 ON host1
 MASTERIP "192.168.1.100" PRIORITY 1
 SUBSCRIBERIP host1fast PRIORITY 1;

Alternately, on a replication host with more than one interface, you may want to configure
replication to use one or more interfaces as backups, in case the primary interface fails or the
connection from it to the receiving host is broken. You can use the ROUTE clause to specify
two or more interfaces for each master or subscriber that are used by replication in order of
priority.

If replication on the master host is unable to bind to the MASTERIP with the highest priority, it
tries to connect using subsequent MASTERIP addresses in order of priority immediately.
However, if the connection to the subscriber fails for any other reason, replication tries to
connect using each of the SUBSCRIBERIP addresses in order of priority before it tries the
MASTERIP address with the next highest priority.

The following example shows how to configure network priority on an active standby pair.

If the host1 host is configured with two network interfaces at IP addresses 192.168.1.100
and 192.168.1.101, and the host2 host is configured with two interfaces at IP addresses
192.168.1.200 and 192.168.1.201, you may specify that replication use IP addresses
192.168.1.100 and 192.168.200 to transmit and receive traffic first, and to try IP addresses
192.168.1.101 or 192.168.1.201 if the first connection fails.

Chapter 4
Configuring the Network

4-33

CREATE ACTIVE STANDBY PAIR dsn1, dsn2
 ROUTE MASTER dsn1 ON "host1" SUBSCRIBER dsn2 ON "host2"
 MASTERIP "192.168.1.100" PRIORITY 1
 MASTERIP "192.168.1.101" PRIORITY 2
 SUBSCRIBERIP "192.168.1.200" PRIORITY 1
 SUBSCRIBERIP "192.168.1.201" PRIORITY 2;

The following example shows how to configure network priority for a classic replication
scheme.

If the host1 host is configured with two network interfaces at IP addresses
192.168.1.100 and 192.168.1.101, and the host2 host is configured with two
interfaces at IP addresses 192.168.1.200 and 192.168.1.201, you may specify that
replication use IP addresses 192.168.1.100 and 192.168.200 to transmit and receive
traffic first, and to try IP addresses 192.168.1.101 or 192.168.1.201 if the first
connection fails.

CREATE REPLICATION repscheme
 ELEMENT e TABLE ttuser.tab
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
 ROUTE MASTER dsn1 ON host1 SUBSCRIBER dsn2 ON host2
 MASTERIP "192.168.1.100" PRIORITY 1
 MASTERIP "192.168.1.101" PRIORITY 2
 SUBSCRIBERIP "192.168.1.200" PRIORITY 1
 SUBSCRIBERIP "192.168.1.201" PRIORITY 2;

Configuring Network Interfaces When Not Using the ROUTE Clause
You can configure replication so that it uses the correct host names and IP addresses
for each host when not using the ROUTE clause.

• Identifying Database Hosts on UNIX or Linux Without Using the ROUTE Clause

• Host Name Resolution on Windows

• User-Specified Addresses for TimesTen Daemons and Subdaemons

Identifying Database Hosts on UNIX or Linux Without Using the ROUTE Clause
When possible, you should use the ROUTE clause of a replication scheme to identify
database hosts and the network interfaces to use for replication.

However, if you have a replication scheme configuration that does not use the ROUTE
clause, you can configure the operating system and DNS files for a replication host
with multiple network interfaces.

If a host contains multiple network interfaces (with different IP addresses) and
replication is not configured with a ROUTE clause, TimesTen Classic replication tries to
connect to the IP addresses in the same order as returned by the gethostbyname call.
It tries to connect using the first address; if a connection cannot be established, it tries
the remaining addresses in order until a connection is established. TimesTen Classic
replication uses this same sequence each time it establishes a new connection to a
host. If a connection to a host fails on one IP address, TimesTen Classic replication
attempts to re-connect (or fall back) to another IP address for the host in the same
manner described above.

Chapter 4
Configuring the Network

4-34

There are two basic ways you can configure a host to use multiple IP addresses on UNIX or
Linux platforms: DNS or the /etc/hosts file.

Note:

If you have multiple network interface cards (NICs), be sure that "multi on" is
specified in the /etc/host.conf file. Otherwise, gethostbyname cannot return
multiple addresses.

For example, if your machine has two NICs, use the following syntax for your /etc/hosts file:

127.0.0.1 localhost
IP_address_for_NIC_1 official_hostname optional_alias
IP_address_for_NIC_2 official_hostname optional_alias

The host name official_hostname is the name returned by the hostname command.

When editing the /etc/hosts file, keep in mind that:

• You must log in as root to change the /etc/hosts file.

• There should only be one line per IP address.

• There can be multiple alias names on each line.

• When there are multiple IP addresses for the same host name, they must be on
consecutive lines.

• The host name can be up to 30 characters long.

For example, the following entry in the /etc/hosts file on a UNIX or Linux platform describes
a server named Host1 with two IP addresses:

127.0.0.1 localhost
10.10.98.102 Host1
192.168.1.102 Host1

To specify the same configuration for DNS, your entry in the domain zone file would look like:

Host1 IN A 10.10.98.102
 IN A 192.168.1.102

In either case, you only need to specify Host1 as the host name in your replication scheme
and replication uses the first available IP address when establishing a connection.

In an environment in which multiple IP addresses are used, you can also assign multiple host
names to a single IP address in order to restrict a replication connection to a specific IP
address. For example, you might have an entry in your /etc/hosts file that looks like:

127.0.0.1 localhost
10.10.98.102 Host1
192.168.1.102 Host1 RepHost1

or a DNS zone file that looks like:

Host1 IN A 10.10.98.102
 IN A 192.168.1.102
RepHost1 IN A 192.168.1.102

Chapter 4
Configuring the Network

4-35

If you want to restrict replication connections to IP address 192.168.1.102 for this
host, you can specify RepHost1 as the host name in your replication scheme. Another
option is to simply specify the IP address as the host name in either the CREATE
ACTIVE STANDBY PAIR or CREATE REPLICATION statements used to configure your
replication scheme.

Host Name Resolution on Windows
If a replication configuration is specified using host names rather than IP addresses,
replication must be able to translate host names of peers into IP addresses.

For this to happen efficiently on Windows, make sure each Windows machine is set up
to query either a valid WINS server or a valid DNS server that has correct information
about the hosts on the network. In the absence of such servers, static host-to-IP
entries can be entered in either:

%windir%\system32\drivers\etc\hosts

or

%windir%\system32\drivers\etc\lmhosts

Without any of these options, a Windows machine resorts to broadcasting to detect
peer nodes, which is extremely slow.

You may also encounter extremely slow host name resolution if the Windows machine
cannot communicate with the defined WINS servers or DNS servers, or if the host
name resolution set up is incorrect on those servers. Use the ping command to test
whether a host can be efficiently located. The ping command responds immediately if
host name resolution is set up properly.

Note:

You must be consistent in identifying a database host in a replication
scheme. Do not identify a host using its IP address for one database and
then use its host name for the same or another database.

User-Specified Addresses for TimesTen Daemons and Subdaemons
By default, the TimesTen main daemon, all subdaemons, and all agents use any
available address to listen on a socket for requests.

You can modify the timesten.conf file to specify an address for communication
among the agents and daemons by including a listen_addr option.

See Managing TimesTen Daemon Attributes in Oracle TimesTen In-Memory Database
Operations Guide.

Suppose that your machine has two NICs whose addresses are 10.10.10.100 and
10.10.11.200. The loopback address is 127.0.0.1. Then keep in mind the following
as it applies to the replication agent:

• If you do not set the listen_addr option in the timesten.conf file, then any
process can talk to the daemons and agents.

Chapter 4
Configuring the Network

4-36

• If you set listen_addr to 10.10.10.100, then any process on the local host or the
10.10.10 net can talk to daemons and agents on 10.10.10.100. No processes on the
10.10.11 net can talk to the daemons and agents on 10.10.10.100.

• If you set listen_addr to 127.0.0.1, then only processes on the local host can talk to the
daemons and agents. No processes on other hosts can talk the daemons and agents.

Identifying the Local Host of a Replicated Database
Ordinarily, TimesTen Classic replication is able to identify the hosts involved in a replication
configuration using normal operating system host name resolution methods.

However, in some rare instances, if the host has an unusual host name configuration,
TimesTen is unable to determine that the local host matches the host name as specified in
the replication scheme. When this occurs, you receive error 8191, "This store is not involved
in a replication scheme," when attempting to start replication using ttRepStart or ttAdmin -
repStart.

The ttHostNameSet built-in procedure may be used in this instance to explicitly indicate to
TimesTen that the current database is in fact the database specified in the replication
scheme. See ttHostNameSet in Oracle TimesTen In-Memory Database Reference.

Chapter 4
Configuring the Network

4-37

5
Administering an Active Standby Pair Without
Cache Groups

You can set up, administer, and recover an active standby pair.

• Setting Up an Active Standby Pair With No Cache Groups

• Recovering From a Failure of the Active Database

• Recovering From a Failure of the Standby Database

• Recovering After a Dual Failure of Both Active and Standby Databases

• Recovering From the Failure of a Subscriber Database

• Reversing the Roles of the Active and Standby Databases

• Detection of Dual Active Databases

For information about administering active standby pairs that replicate cache groups, see
Administering an Active Standby Pair With Cache Groups.

For information about managing failover and recovery automatically, see Using Oracle
Clusterware to Manage Active Standby Pairs.

Setting Up an Active Standby Pair With No Cache Groups
There are certain procedures you can run to set up an active standby pair.

See Configuring an Active Standby Pair With One Subscriber for an example.

Note:

If you intend to replicate read-only cache groups or asynchronous writethrough
(AWT) cache groups, see Administering an Active Standby Pair With Cache
Groups.

Before you create a database, see the information in these sections:

• Configuring the Network

• Connection Attributes for Replicated Databases

• Managing the Transaction Log on a Replicated Database

1. Create a database. See Managing TimesTen Databases in Oracle TimesTen In-Memory
Database Operations Guide.

2. Create the replication scheme using the CREATE ACTIVE STANDBY PAIR statement. See
Defining an Active Standby Pair Replication Scheme.

3. Call ttRepStateSet('ACTIVE') on the active database.

5-1

4. Start the replication agent. See Starting and Stopping the Replication Agents.

5. Create a user on the active database and grant the ADMIN privilege to the user.

6. Duplicate the active database to the standby database. See Duplicating a
Database.

7. Start the replication agent on the standby database. See Starting and Stopping the
Replication Agents.

8. Wait for the standby database to enter the STANDBY state. Use the ttRepStateGet
built-in procedure to check the state of the standby database.

9. Duplicate all of the subscribers from the standby database. See Duplicating a
Master Database to a Subscriber.

10. Set up the replication agent policy and start the replication agent on each of the
subscriber databases. See Starting and Stopping the Replication Agents.

Recovering From a Failure of the Active Database
There are certain procedures you can run to recover from a failure of an active
database.

This section includes the following topics:

• Recovering When the Standby Database is Ready

• Failing Back to the Original Nodes

Recovering When the Standby Database is Ready
There are procedures you can perform to recover the active database when the
standby database is available and synchronized with the active database.

• When Replication is Return Receipt or Asynchronous

• When Replication is Return Twosafe

When Replication is Return Receipt or Asynchronous
There are certain tasks you can run to recover after an active database fails when
replication uses return receipt or asynchronous replication.

Complete the following tasks:

1. Stop the replication agent on the failed database if it has not already been
stopped.

2. On the standby database, call ttRepStateSet('ACTIVE'). This changes the role
of the database from STANDBY to ACTIVE.

3. On the new active database, call ttRepStateSave('FAILED',
'failed_database','host_name'), where failed_database is the former active
database that failed. This step is necessary for the new active database to
replicate directly to the subscriber databases. During normal operation, only the
standby database replicates to the subscribers.

4. Destroy the failed database.

5. Duplicate the new active database to the new standby database.

Chapter 5
Recovering From a Failure of the Active Database

5-2

6. Set up the replication agent policy and start the replication agent on the new standby
database. See Starting and Stopping the Replication Agents.

The standby database contacts the active database. The active database stops sending
updates to the subscribers. When the standby database is fully synchronized with the active
database, then the standby database enters the STANDBY state and starts sending updates to
the subscribers.

Note:

You can verify that the standby database has entered the STANDBY state by using
the ttRepStateGet built-in procedure.

When Replication is Return Twosafe
There are certain procedures to run when recovering an active database when replication
uses return twosafe.

Complete the following tasks:

1. On the standby database, call ttRepStateSet('ACTIVE'). This changes the role of the
database from STANDBY to ACTIVE.

2. On the new active database, call ttRepStateSave('FAILED',
'failed_database','host_name'), where failed_database is the former active
database that failed. This step is necessary for the new active database to replicate
directly to the subscriber databases. During normal operation, only the standby database
replicates to the subscribers.

3. Connect to the failed database. This triggers recovery from the local transaction logs. If
database recovery fails, you must continue from Step 5 of the procedure for recovering
when replication is return receipt or asynchronous. See When Replication is Return
Receipt or Asynchronous.

4. Verify that the replication agent for the failed database has restarted. If it has not
restarted, then start the replication agent. See Starting and Stopping the Replication
Agents.

When the active database determines that it is fully synchronized with the standby database,
then the standby database enters the STANDBY state and starts sending updates to the
subscribers.

Note:

You can verify that the standby database has entered the STANDBY state by using
the ttRepStateSet built-in procedure.

Failing Back to the Original Nodes
After a successful failover, you may want to fail back so that the active database and the
standby database are on their original nodes.

Chapter 5
Recovering From a Failure of the Active Database

5-3

See Reversing the Roles of the Active and Standby Databases.

Recovering From a Failure of the Standby Database
There are certain tasks you can perform to recover a standby database.

To recover from a failure of the standby database, complete the following tasks:

1. Detect the standby database failure.

2. If return twosafe service is enabled, the failure of the standby database may
prevent a transaction in progress from being committed on the active database,
resulting in error 8170, "Receipt or commit acknowledgement not returned in the
specified timeout interval". If so, then call the ttRepSyncSet built-in procedure with
a localAction parameter of 2 (COMMIT) and commit the transaction again. For
example:

call ttRepSyncSet(null, null, 2);
commit;

3. Call ttRepStateSave('FAILED','standby_database','host_name') on the active
database. Afterwards, as long as the standby database is unavailable, updates to
the active database are replicated directly to the subscriber databases. Subscriber
databases may also be duplicated directly from the active.

4. If the replication agent for the standby database has automatically restarted, stop
the replication agent. See Starting and Stopping the Replication Agents.

5. Recover the standby database in one of the following ways:

• Connect to the standby database. This triggers recovery from the local
transaction logs.

• Duplicate the standby database from the active database.

The amount of time that the standby database has been down and the amount of
transaction logs that need to be applied from the active database determine the
method of recovery that you should use.

6. Set up the replication agent policy and start the replication agent on the new
standby database. See Starting and Stopping the Replication Agents.

The standby database enters the STANDBY state and starts sending updates to the
subscribers after the active database determines that the two master databases have
been synchronized and stops sending updates to the subscribers.

Note:

You can verify that the standby database has entered the STANDBY state by
using the ttRepStateGet built-in procedure.

Chapter 5
Recovering From a Failure of the Standby Database

5-4

Recovering After a Dual Failure of Both Active and Standby
Databases

If both the active and standby databases fail, you can choose how to recover both databases.

Consider the following scenarios:

• The standby database fails. Then, the active database fails before the standby comes
back up or before the standby has been synchronized with the active database.

• The active database fails. The standby database becomes ACTIVE, and the rest of the
recovery process begins. (See Recovering From a Failure of the Active Database.) The
new active database fails before the new standby database is fully synchronized with it.

In both scenarios, the subscribers may have had more changes applied than the standby
database.

When the active database fails and the standby database has not applied all of the changes
that were last sent from the active database, there are two choices for recovery:

• Recover the active database from the local transaction logs.

• Recover the standby database from the local transaction logs.

The choice depends on which database is available and which is more up to date.

Recover an Active Database
Perform a few tasks to recover an active database.

1. Connect to the failed active database. This triggers recovery from the local transaction
logs.

2. Verify that the replication agent for the failed active database has restarted. If it has not
restarted, then start the replication agent. See Starting and Stopping the Replication
Agents.

3. Call ttRepStateSet('ACTIVE') on the newly recovered database.

4. Continue with Step 6 in Setting Up an Active Standby Pair With No Cache Groups.

Recover a Standby Database
Perform a few tasks to recover a standby database.

1. Connect to the failed standby database. This triggers recovery from the local transaction
logs.

2. If the replication agent for the standby database has automatically restarted, you must
stop the replication agent. See Starting and Stopping the Replication Agents.

3. Drop the replication configuration using the DROP ACTIVE STANDBY PAIR statement.

4. Re-create the replication configuration using the CREATE ACTIVE STANDBY PAIR
statement.

5. Call ttRepStateSet('ACTIVE') on the master database, giving it the ACTIVE role.

Chapter 5
Recovering After a Dual Failure of Both Active and Standby Databases

5-5

6. Set up the replication agent policy and start the replication agent on the new
standby database. See Starting and Stopping the Replication Agents.

7. Continue from Step 6 in Setting Up an Active Standby Pair With No Cache
Groups.

Recovering From the Failure of a Subscriber Database
You can recover a subscriber database if it fails.

To recover, either:

• Connect to the failed subscriber. This triggers recovery from the local transaction
logs. Start the replication agent and let the subscriber catch up.

• Duplicate the subscriber from the standby database.

If the standby database is down or in recovery, then duplicate the subscriber from the
active database.

After the subscriber database has been recovered, then set up the replication agent
policy and start the replication agent. See Starting and Stopping the Replication
Agents.

Reversing the Roles of the Active and Standby Databases
You can change the role of the active database to standby and vice versa.

1. Pause any applications that are generating updates on the current active
database.

2. Call ttRepSubscriberWait on the active database, with the DSN and host of the
current standby database as input parameters. It must return success (<00>). This
ensures that all updates have been transmitted to the current standby database.

3. Stop the replication agent on the current active database. See Starting and
Stopping the Replication Agents.

4. Call ttRepDeactivate on the current active database. This puts the database in
the IDLE state.

5. Call ttRepStateSet('ACTIVE') on the current standby database. This database
now acts as the active database in the active standby pair.

6. Set up the replication agent policy and start the replication agent on the old active
database.

7. Use the ttRepStateGet built-in procedure to determine when the database's state
has changed from IDLE to STANDBY. The database now acts as the standby
database in the active standby pair.

8. Resume any applications that were paused in Step 1.

Detection of Dual Active Databases
Ordinarily, the designation of the active and standby databases in an active standby
pair is explicitly controlled by the user. However, in some circumstances the user may

Chapter 5
Recovering From the Failure of a Subscriber Database

5-6

not have the ability to modify both the active and standby databases when changing the role
of the standby database to active.

For example, if network communication to the site of an active database is interrupted, the
user may need the standby database at a different site to take over the role of the active, but
cannot stop replication on the current active or change its role manually. Changing the
standby database to active without first stopping replication on the active leads to a situation
where both masters are in the ACTIVE state and accepting transactions. In such a scenario,
TimesTen can automatically negotiate the active/standby role of the master databases when
network communication between the databases is restored.

If, during the initial handshake between the databases, TimesTen determines that the master
databases in an active standby pair replication scheme are both in the ACTIVE state,
TimesTen performs the following operations automatically:

• The database which was set to the ACTIVE state most recently is left in the ACTIVE state
and may continue to be connected to and updated by applications.

• The database which was set to the ACTIVE state least recently is invalidated. All
applications are disconnected.

• When the invalidated database comes back up, TimesTen determines whether any
transactions have occurred on the database that have not yet been replicated to the other
master database. If such transactions have occurred, they are now trapped, and the
database is left in the IDLE state. The database needs to be duplicated from the active in
order to become a standby. If there are no trapped transactions, the database is safe to
use as a standby database and is automatically set to the STANDBY state.

Chapter 5
Detection of Dual Active Databases

5-7

6
Administering an Active Standby Pair With
Cache Groups

You can replicate tables within either a read-only cache group or an asynchronous
writethrough (AWT) cache group as long as they are configured within an active standby pair.

Note:

For information about managing failover and recovery automatically, see Using
Oracle Clusterware to Manage Active Standby Pairs.

The following sections describe how to administer an active standby pair that replicates
cache groups:

• Replicating Cache Groups Within Active Standby Pairs

• Changing User Names or Passwords Used by Replication

• Recovering From a Failure of the Active Database

• Recovering From a Failure of the Standby Database

• Recovering After a Dual Failure of Both Active and Standby Databases

• Recovering From the Failure of a Subscriber Database

• Reversing the Roles of the Active and Standby Databases

• Detecting Dual Active Databases

• Using a Disaster Recovery Subscriber in an Active Standby Pair

Replicating Cache Groups Within Active Standby Pairs
An active standby pair that replicates a read-only cache group or an asynchronous
writethrough (AWT) cache group can change the role of the cache group automatically as
part of failover and recovery. This helps ensure high availability of cache instances with
minimal data loss.

See Replicating an AWT Cache Group and Replicating a Read-Only Cache Group to
understand the benefits of using cache groups within an active standby pair.

Note:

TimesTen does not support replication of a user managed cache group or a
synchronous writethrough (SWT) cache group in an active standby pair.

6-1

The following sections describe how to set up an active standby pair with cache
groups:

• Setting Up an Active Standby Pair With an AWT Cache Group

• Setting Up an Active Standby Pair With a Read-Only Cache Group

You can also create a special disaster recovery read-only subscriber when you set up
active standby replication of an AWT cache group. This special subscriber, located at a
remote disaster recovery site, can propagate updates to a second Oracle database,
also located at the disaster recovery site. See Using a Disaster Recovery Subscriber
in an Active Standby Pair.

Setting Up an Active Standby Pair With an AWT Cache Group
With the active standby pair replication scheme, you must replicate all AWT cache
groups. You can create the cache groups on the active master either before or after
the active standby pair replication scheme is created.

• Before the creation of active standby pair: You can create cache groups on the
active master before the active standby pair replication scheme is created. Then,
create the active standby pair replication scheme and perform a distribution to
include the cache groups. For detailed instructions on creating AWT cache group
and then including it within a new active standby pair , see Replicating Cache
Tables in Oracle TimesTen In-Memory Database Cache Guide.

• After creation of active standby pair: You can create cache groups on the active
master after the active standby pair replication scheme is created. Then, perform a
distribution to include the cache groups. See Making Other Changes to an Active
Standby Pair.

Either way, cache groups are added to the active standby pair replication scheme after
you perform a distribution to include these cache groups.

Setting Up an Active Standby Pair With a Read-Only Cache Group
With the active standby pair replication scheme, you can choose to replicate any read-
only cache groups. You can create the cache groups on the active master either
before or after the active standby pair replication scheme is created.

• Before the creation of active standby pair: You can create cache groups on the
active master before the active standby pair replication scheme is created. Then,
create the active standby pair replication scheme and perform a distribution to
include the cache groups. See Creating a Read-Only Cache Group to Include
Within a New Active Standby Pair.

• After creation of active standby pair: You can create cache groups on the active
master after the active standby pair replication scheme is created. See Making
Other Changes to an Active Standby Pair.

Either way, cache groups are added to the active standby pair replication scheme after
you perform a distribution to include these cache groups.

Chapter 6
Replicating Cache Groups Within Active Standby Pairs

6-2

Creating a Read-Only Cache Group to Include Within a New Active Standby Pair
You can set up an active standby pair that replicates cache tables in a read-only cache group.

Before you create a database, see the information in these sections:

• Configuring the Network

• Connection Attributes for Replicated Databases

• Managing the Transaction Log on a Replicated Database

To set up an active standby pair that replicates a local read-only cache group, complete the
following tasks:

1. Create a cache administration user in the Oracle database. See Create Users in the
Oracle Database in Oracle TimesTen In-Memory Database Cache Guide.

2. Create a database. See Create a DSN for the TimesTen Database in Oracle TimesTen
In-Memory Database Cache Guide.

3. Set the cache administration user ID and password by calling the ttCacheUidPwdSet
built-in procedure. See Set the Cache Administration User Name and Password in the
TimesTen Database in Oracle TimesTen In-Memory Database Cache Guide. For
example:

call ttCacheUidPwdSet('cacheadmin','orapwd');
4. Start the cache agent on the database. Use the ttCacheStart built-in procedure or the

ttAdmin -cachestart utility.

call ttCacheStart;
5. Use the CREATE CACHE GROUP statement to create the read-only cache group. For

example:

CREATE READONLY CACHE GROUP customer_orders
 AUTOREFRESH INTERVAL 5 SECONDS
 FROM sales.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
 sales.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES sales.customer(cust_num));

6. Ensure that the autorefresh state is set to PAUSED. The autorefresh state is PAUSED by
default after cache group creation. You can verify the autorefresh state by running the
ttIsql cachegroups command:

cachegroups;
7. Create the replication scheme using the CREATE ACTIVE STANDBY PAIR statement.

For example, suppose master1 and master2 are defined as the master databases. sub1
and sub2 are defined as the subscriber databases. The databases reside on node1,

Chapter 6
Replicating Cache Groups Within Active Standby Pairs

6-3

node2, node3, and node4. The return service is RETURN RECEIPT. The replication
scheme can be specified as follows:

CREATE ACTIVE STANDBY PAIR master1 ON "node1", master2 ON "node2"
 RETURN RECEIPT
 SUBSCRIBER sub1 ON "node3", sub2 ON "node4"
 STORE master1 ON "node1" PORT 21000 TIMEOUT 30
 STORE master2 ON "node2" PORT 20000 TIMEOUT 30;

8. Set the replication state to ACTIVE by calling the ttRepStateSet built-in procedure
on the active database (master1). For example:

call ttRepStateSet('ACTIVE');
9. Set up the replication agent policy for master1 and start the replication agent. See

Starting and Stopping the Replication Agents.

10. Load the cache group by using the LOAD CACHE GROUP statement. This starts the
autorefresh process. For example:

LOAD CACHE GROUP customer_orders COMMIT EVERY 256 ROWS;
11. As the instance administrator, duplicate the active database (master1) to the

standby database (master2). Use the ttRepAdmin -duplicate utility with the -
keepCG option to preserve the cache group. Alternatively, you can use the
ttRepDuplicateEx C function to duplicate the database. See Duplicating a
Database. ttRepAdmin prompts for the values of -uid, -pwd, -cacheuid and -
cachepwd.

ttRepAdmin -duplicate -from master1 -host node1 -keepCG
 -connStr "DSN=master2;UID=;PWD="

12. Set up the replication agent policy on master2 and start the replication agent. See
Starting and Stopping the Replication Agents.

13. The standby database enters the STANDBY state automatically. Wait for master2 to
enter the STANDBY state. Call the ttRepStateGet built-in procedure to check the
state of master2. For example:

call ttRepStateGet;
14. Start the cache agent for master2 using the ttCacheStart built-in procedure or the

ttAdmin -cacheStart utility. For example:

call ttCacheStart;
15. As the instance administrator, duplicate the subscribers (sub1 and sub2) from the

standby database (master2). Use the -noKeepCG command line option with
ttRepAdmin -duplicate to convert the cache tables to normal TimesTen tables on
the subscribers. ttRepAdmin prompts for the values of -uid and -pwd. See
Duplicating a Database. For example:

ttRepAdmin -duplicate -from master2 -host node2 -nokeepCG
 -connStr "DSN=sub1;UID=;PWD="

16. Set up the replication agent policy on the subscribers and start the replication
agent on each of the subscriber databases. See Starting and Stopping the
Replication Agents.

Chapter 6
Replicating Cache Groups Within Active Standby Pairs

6-4

Changing User Names or Passwords Used by Replication
In the active standby pair, you can modify either the TimesTen user name or password or (if
there are cache groups in the active standby pair) the user names and passwords for the
TimesTen cache administration user or its companion Oracle cache administration user.

When the DDLReplicationLevel connection attribute is 2 or larger, changes to the user
names or passwords executed on the active master are automatically replicated to the
standby master and any subscribers. When the DDLReplicationLevel connection attribute is
1, changes to the user names or passwords executed on the active master are not
automatically replicated to the standby master and any subscribers. In this case, you must
manually run each SQL statement on the active master, standby master, and any
subscribers.

Note:

See Making DDL Changes in an Active Standby Pair.

Perform the following to change any of the user names or passwords for the TimesTen user
or, if there are cache groups in the active standby pair, for the TimesTen cache administration
user or the Oracle cache administration user:

1. If you want to modify a password of a TimesTen user, use the ALTER USER statement on
the active master database. If you want to change the TimesTen user name, you must
first drop all objects that the TimesTen user owns before dropping the user name and
creating a new user.

To modify the password of the sales schema owner:

Note:

See Creating or Identifying a Database User in Oracle TimesTen In-Memory
Database Operations Guide.

ALTER USER sales IDENTIFIED BY newpwd;
2. If you want to modify any of the user names or passwords used for cache operations

(such as the cache administration user), perform the instructions provided in Changing
Cache User Names and Passwords in the Oracle TimesTen In-Memory Database Cache
Guide.

Recovering From a Failure of the Active Database
If the active master has failed and the standby database did not fail or has recovered after a
failure, then you can recover the active standby pair by making the standby master the new
active master.

In addition, you can then swap the active and standby masters again so that they exist on the
original nodes.

Chapter 6
Changing User Names or Passwords Used by Replication

6-5

• Recovering When the Standby Database is Ready

• Failing Back to the Original Nodes

Note:

If both the active and standby masters fail, see Recovering After a Dual
Failure of Both Active and Standby Databases.

Recovering When the Standby Database is Ready
The first two sections describe how to recover the active database when the standby
database is available and synchronized with the active database. The last section
describes what to do if following the instructions from either of the first two sections
fails; the standby database is available, but the data is not fully synchronized.

• When Replication Is Return Receipt or Asynchronous

• When Replication Is Return Twosafe

• When There Is Unsynchronized Data in the Cache Groups

When Replication Is Return Receipt or Asynchronous
You can failover to a standby database when the active fails.

Complete the following tasks:

1. On the standby database, stop the replication agent if it has not already been
stopped.

2. On the standby database, call ttRepStateSet('ACTIVE'). This changes the role
of the database from STANDBY to ACTIVE. If you are replicating a read-only cache
group, this action automatically causes the autorefresh state to change from
PAUSED to ON for this database.

3. On the new active database, call ttRepStateSave('FAILED',
'failed_database','host_name'), where failed_database is the former active
database that failed. This step is necessary for the new active database to
replicate directly to the subscriber databases. During normal operation, only the
standby database replicates to the subscribers.

4. On the new active database, start the replication agent and the cache agent.

5. Destroy the failed database (the old active) with the ttDestroy utility.

6. Duplicate the new active database to the new standby database. You can use
either the ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to
duplicate a database. Use the -keepCG -recoveringNode options with ttRepAdmin
to recover and to preserve the cache group after the active master failure. See
Duplicating a Database.

7. Set up the replication agent policy on the new standby database and start the
replication agent. See Starting and Stopping the Replication Agents.

8. Start the cache agent on the new standby database.

Chapter 6
Recovering From a Failure of the Active Database

6-6

Note:

If any of these steps failed, follow the directions in When There Is Unsynchronized
Data in the Cache Groups.

The standby database contacts the active database. The active database stops sending
updates to the subscribers. When the standby database is fully synchronized with the active
database, then the standby database enters the STANDBY state and starts sending updates to
the subscribers.The new standby database takes over processing of the cache group
automatically when it enters the STANDBY state. If you are replicating an AWT cache group,
the new standby database takes over processing of the cache group automatically when it
enters the STANDBY state.

Note:

You can verify that the standby database has entered the STANDBY state by using
the ttRepStateGet built-in procedure.

When Replication Is Return Twosafe
You can failover to a standby database when the active fails.

Complete the following tasks:

1. Stop the replication agent on the standby database if it has not already been stopped.

2. On the standby database, call ttRepStateSet('ACTIVE'). This changes the role of the
database from STANDBY to ACTIVE. If you are replicating a read-only cache group, this
action automatically causes the autorefresh state to change from PAUSED to ON for this
database.

3. On the new active database, call ttRepStateSave('FAILED',
'failed_database','host_name'), where failed_database is the former active
database that failed. This step is necessary for the new active database to replicate
directly to the subscriber databases. During normal operation, only the standby database
replicates to the subscribers.

4. On the new active database, start the replication agent and the cache agent.

5. Connect to the failed database. This triggers recovery from the local transaction logs. If
database recovery fails, you must continue from Step 5 of the procedure for recovering
when replication is return receipt or asynchronous. See When Replication Is Return
Receipt or Asynchronous. If you are replicating a read-only cache group, the autorefresh
state is automatically set to PAUSED.

6. Verify that the replication agent for the failed database has restarted. If it has not
restarted, then start the replication agent. See Starting and Stopping the Replication
Agents.

7. Verify that the cache agent for the failed database has restarted. If it has not restarted,
then start the cache agent.

Chapter 6
Recovering From a Failure of the Active Database

6-7

Note:

If any of these steps failed, follow the directions in When There Is
Unsynchronized Data in the Cache Groups.

When the active database determines that it is fully synchronized with the standby
database, then the standby database enters the STANDBY state and starts sending
updates to the subscribers. The new standby database takes over processing of the
cache group automatically when it enters the STANDBY state. If you are replicating an
AWT cache group, the new standby database takes over processing of the cache
group automatically when it enters the STANDBY state.

Note:

You can verify that the standby database has entered the STANDBY state by
using the ttRepStateSet built-in procedure.

When There Is Unsynchronized Data in the Cache Groups
You can failover to a standby database when the active fails, even if there is
unsynchronized data in the cache groups.

If the steps in either When Replication Is Return Receipt or Asynchronous or When
Replication Is Return Twosafe fail, then there could be unsynchronized data in the
AWT cache groups that has not been propagated to the Oracle database. In addition,
there could be unsynchronized data on the Oracle database that has not been
uploaded to any read-only cache groups that are included in the active standby pair
replication scheme.

If there is data in any AWT cache groups on the standby master that has not been
propagated when the active database failed, then simply recovering the standby
database as the new active database is not an option. In this case, perform the
following:

1. On the standby database, stop the replication agent and drop the replication
configuration using the DROP ACTIVE STANDBY PAIR statement.

2. Stop the cache agent to ensure that no more updates are applied to the AWT
cache groups while performing this recovery operation and to ensure that you
control when any read-only cache groups that were included in the replication
scheme are refreshed.

3. For any read-only cache groups that are included in the replication scheme, set
the autorefresh state to pause with the ALTER CACHE GROUP ... SET AUTOREFRESH
STATE PAUSED statement.

4. On the standby database, flush any unpropagated committed inserts or updates
on TimesTen cache tables for any AWT cache groups to the cached Oracle
Database tables, as follows:

a. Set autocommit to off.

Chapter 6
Recovering From a Failure of the Active Database

6-8

b. Call the ttCacheAllowFlushAwtSet built-in procedure with the parameter set to 1.
This built-in procedure enables you to run a FLUSH CACHE GROUP statement against
an AWT cache group and should only be used in this recovery scenario.

call ttCacheAllowFlushAwtSet(1);
c. Run the FLUSH CACHE GROUP SQL statement against each AWT cache group to

ensure that all data is propagated to the Oracle database.

Note:

Running the FLUSH CACHE GROUP statement under these conditions on the
AWT cache group only flushes the contents of the tables in the AWT cache
group; that is, the data that was either inserted or updated. It does not take
into account any delete operations. So, you may have rows that exist on the
Oracle database that were deleted from the AWT cache group. It is up to
the user to recover any delete operations.

d. Call the ttCacheAllowFlushAwtSet built-in procedure with the parameter set to 0 to
disallow any future running of the FLUSH CACHE GROUP statement on an AWT cache
group.

call ttCacheAllowFlushAwtSet(0);
e. Commit after calling the ttCacheAllowFlushAwtSet built-in procedure with the

parameter set to 0. You can also choose to reset autocommit to on, as it only needed
to be off for the ttCacheAllowFlushAwtSet built-in procedure.

5. Drop and re-create all AWT cache groups using the DROP CACHE GROUP and CREATE
CACHE GROUP statements.

6. Start the replication agent and the cache agent, since the cache agent needs to be active
to refresh any read-only cache groups and both must be active in order to load the AWT
cache groups.

7. Refresh all read-only cache groups using the REFRESH CACHE GROUP statement to upload
most current committed data from the cached Oracle database tables. Use the REFRESH
CACHE GROUP ... PARALLEL n clause to concurrently load these cache groups over
multiple threads.

8. Load all AWT cache groups using the LOAD CACHE GROUP statement to begin the
autorefresh process. Use the LOAD CACHE GROUP ... PARALLEL n clause to concurrently
load these cache groups over multiple threads.

9. Stop both the replication agent and the cache agent in preparation to re-create the active
standby pair.

10. Re-create the replication configuration on the standby database using the CREATE ACTIVE
STANDBY PAIR statement.

11. Set the old standby database as the new active database, destroy the failed old active
database, perform a duplicate of the active to create a new standby database, and start
the cache and replication agents on the standby as described in the steps listed in When
Replication Is Return Receipt or Asynchronous.

Chapter 6
Recovering From a Failure of the Active Database

6-9

Failing Back to the Original Nodes
After a successful failover, you may want to fail back so that the active database and
the standby database are on their original nodes.

See Reversing the Roles of the Active and Standby Databases.

Recovering From a Failure of the Standby Database
To recover from a failure of the standby database, complete the following tasks:

1. If return twosafe service is enabled, the failure of the standby database may
prevent a transaction in progress from being committed on the active database,
resulting in error 8170, "Receipt or commit acknowledgement not returned in the
specified timeout interval". If so, then call the ttRepSyncSet built-in procedure with
a localAction parameter of 2 (COMMIT) and commit the transaction again. For
example:

Command> call ttRepSyncSet(null, null, 2);
Command> commit;

2. Call ttRepStateSave('FAILED','standby_database','host_name') on the active
database. Then, as long as the standby database is unavailable, updates to the
active database are replicated directly to the subscriber databases. Additional
subscriber databases may also be duplicated directly from the active.

3. Recover the standby database in one of the following ways:

a. Connect to the standby database. This triggers recovery from the local
transaction logs. If the standby database recovers, go to Step 4; otherwise,
continue to Step 3b.

b. Destroy the current version of the standby database with the ttDestroy utility.

c. Duplicate a new standby database from the active database. You can use
either the ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function
to duplicate a database. Use the -keepCG -recoveringNode options with
ttRepAdmin to recover and to preserve the cache group after the standby
master failure. See Duplicating a Database.

4. Set up the replication agent policy and start the replication agent on the standby
database. See Starting and Stopping the Replication Agents.

5. Start the cache agent on the standby database.

The standby database enters the STANDBY state and starts sending updates to the
subscribers after the active database determines that the two master databases have
been synchronized and stops sending updates to the subscribers.

Note:

You can verify that the standby database has entered the STANDBY state by
using the ttRepStateGet built-in procedure.

Chapter 6
Recovering From a Failure of the Standby Database

6-10

Recovering After a Dual Failure of Both Active and Standby
Databases

If both the active and standby databases fail at around the same time and if you can
reconnect to both of them almost immediately, then restart the replication agents (and cache
agents if applicable) and continue.

1. Connect to the failed active database. This triggers recovery from the local transaction
logs. If you are replicating a read-only cache group, the autorefresh state is automatically
set to PAUSED.

2. Verify that the replication agent for the failed active database has restarted. If it has not
restarted, then start the replication agent. See Starting and Stopping the Replication
Agents.

3. Call ttRepStateSet('ACTIVE') on the newly recovered database. If you are replicating a
read-only cache group, this action automatically causes the autorefresh state to change
from PAUSED to ON for this database.

4. Verify that the cache agent for the failed database has restarted. If it has not restarted,
then start the cache agent.

5. Connect to the failed standby master database. This triggers recovery from the local
transaction logs. If you are replicating a read-only cache group, the autorefresh state is
automatically set to PAUSED.

6. Verify that the replication agent for the failed standby database has restarted. If it has not
restarted, then start the replication agent. See Starting and Stopping the Replication
Agents.

7. Verify that the cache agent for the failed standby database has restarted. If it has not
restarted, then start the cache agent.

Alternatively, consider the following scenarios where both the active and standby master
databases fail:

• The standby database fails. The active database fails before the standby comes back up
or before the standby has been synchronized with the active database.

• The active database fails. The standby database becomes ACTIVE, and the rest of the
recovery process begins. (See Recovering From a Failure of the Active Database.) The
new active database fails before the new standby database is fully synchronized with it.

In these scenarios, the subscribers may have had more changes applied than the standby
database.

In this case, you could potentially perform one of the following options:

• Recover the Active Database and Duplicate a New Standby Database

• Recover the Standby Database to Be the New Active Master

• Restore the Active Master From a Backup

Recover the Active Database and Duplicate a New Standby Database
You can recover an active database and then duplicate it to a new standby database.

Chapter 6
Recovering After a Dual Failure of Both Active and Standby Databases

6-11

1. Connect to the failed active database. This triggers recovery from the local
transaction logs. If you are replicating a read-only cache group, the autorefresh
state is automatically set to PAUSED.

Note:

If this fails, perform the steps listed in Restore the Active Master From a
Backup..

2. Verify that the replication agent for the failed active database has restarted. If it
has not restarted, then start the replication agent. See Starting and Stopping the
Replication Agents.

3. Call ttRepStateSet('ACTIVE') on the newly recovered database. If you are
replicating a read-only cache group, this action automatically causes the
autorefresh state to change from PAUSED to ON for this database.

4. Verify that the cache agent for the failed database has restarted. If it has not
restarted, then start the cache agent.

5. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to duplicate a
database. Use the -keepCG command line option with ttRepAdmin to preserve the
cache group. See Duplicating a Database.

6. Set up the replication agent policy on the standby database and start the
replication agent. See Starting and Stopping the Replication Agents.

7. Wait for the standby database to enter the STANDBY state. Use the ttRepStateGet
built-in procedure to check the state.

8. Start the cache agent for on the standby database using the ttCacheStart built-in
procedure or the ttAdmin -cacheStart utility.

9. Duplicate all of the subscribers from the standby database. See Duplicating a
Master Database to a Subscriber. Use the -noKeepCG command line option with
ttRepAdmin in order to convert the cache group to regular TimesTen tables on the
subscribers.

10. Set up the replication agent policy on the subscribers and start the agent on each
of the subscriber databases. See Starting and Stopping the Replication Agents.

Recover the Standby Database to Be the New Active Master
1. Connect to the failed standby master database. This triggers recovery from the

local transaction logs. If you are replicating a read-only cache group, the
autorefresh state is automatically set to PAUSED.

Note:

If this fails, perform the steps listed in Restore the Active Master From a
Backup.

Chapter 6
Recovering After a Dual Failure of Both Active and Standby Databases

6-12

2. If the replication agent for the failed standby master has automatically restarted, stop the
replication agent. See Starting and Stopping the Replication Agents.

3. If the cache agent has automatically restarted, stop the cache agent.

4. Drop the replication configuration using the DROP ACTIVE STANDBY PAIR statement.

5. Drop and re-create all cache groups using the DROP CACHE GROUP and CREATE CACHE
GROUP statements.

6. Re-create the replication configuration using the CREATE ACTIVE STANDBY PAIR
statement.

7. Call ttRepStateSet('ACTIVE') on the master database, giving it the ACTIVE role. If you
are replicating a read-only cache group, this action automatically causes the autorefresh
state to change from PAUSED to ON for this database.

8. Set up the replication agent policy and start the replication agent on the new active
database. See Starting and Stopping the Replication Agents.

9. Start the cache agent on the new active database.

10. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to duplicate a
database. Use the -keepCG command line option with ttRepAdmin to preserve the cache
group. See Duplicating a Database.

11. Set up the replication agent policy on the standby database and start the replication
agent on the new standby database. See Starting and Stopping the Replication Agents.

12. Wait for the standby database to enter the STANDBY state. Use the ttRepStateGet built-in
procedure to check the state.

13. Start the cache agent for the standby database using the ttCacheStart built-in
procedure or the ttAdmin -cacheStart utility.

14. Duplicate all of the subscribers from the standby database. See Duplicating a Master
Database to a Subscriber. Use the -noKeepCG command line option with ttRepAdmin in
order to convert the cache group to regular TimesTen tables on the subscribers.

15. Set up the replication agent policy on the subscribers and start the agent on each of the
subscriber databases. See Starting and Stopping the Replication Agents.

Restore the Active Master From a Backup
If both the active and standby masters fail and neither comes up, you can restore the active
master if you have a backup.

1. Restore the active master from a backup, as described in Backing Up and Restoring a
TimesTen Classic Database With Cache Groups in the Oracle TimesTen In-Memory
Database Cache Guide.

2. Drop the replication configuration using the DROP ACTIVE STANDBY PAIR statement.

3. Drop and re-create all AWT cache groups using the DROP CACHE GROUP and CREATE
CACHE GROUP statements.

4. Start the replication agent and the cache agent, since the cache agent needs to be active
to refresh any read-only cache groups and both must be active in order to load the AWT
cache groups.

Chapter 6
Recovering After a Dual Failure of Both Active and Standby Databases

6-13

5. Refresh all read-only cache groups using the REFRESH CACHE GROUP statement to
upload most current committed data from the cached Oracle database tables. Use
the REFRESH CACHE GROUP ... PARALLEL n clause to concurrently load these
cache groups over multiple threads.

6. Load all AWT cache groups using the LOAD CACHE GROUP statement to begin the
autorefresh process. Use the LOAD CACHE GROUP ... PARALLEL n clause to
concurrently load these cache groups over multiple threads.

7. Stop both the replication agent and the cache agent in preparation to re-create the
active standby pair.

8. Re-create the replication configuration using the CREATE ACTIVE STANDBY PAIR
statement.

9. Call ttRepStateSet('ACTIVE') on the active master database, giving it the ACTIVE
role. If you are replicating a read-only cache group, this action automatically
causes the autorefresh state to change from PAUSED to ON for this database.

10. Set up the replication agent policy and start the replication agent on the active
database. See Starting and Stopping the Replication Agents.

11. Start the cache agent on the active database.

12. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to duplicate a
database. Use the -keepCG command line option with ttRepAdmin to preserve the
cache group. See Duplicating a Database.

13. Set up the replication agent policy on the standby database and start the
replication agent on the new standby database. See Starting and Stopping the
Replication Agents.

14. Wait for the standby database to enter the STANDBY state. Use the ttRepStateGet
built-in procedure to check the state.

15. Start the cache agent for the standby database using the ttCacheStart built-in
procedure or the ttAdmin -cacheStart utility.

16. Duplicate all of the subscribers from the standby database. See Duplicating a
Master Database to a Subscriber. Use the -noKeepCG command line option with
ttRepAdmin in order to convert the cache group to regular TimesTen tables on the
subscribers.

17. Set up the replication agent policy on the subscribers and start the agent on each
of the subscriber databases. See Starting and Stopping the Replication Agents.

Recovering From the Failure of a Subscriber Database
There are a couple of methods you can use to recover from the failure of a subscriber
database.

• Connect to the failed subscriber. This triggers recovery from the local transaction
logs. Start the replication agent and let the subscriber catch up.

• Duplicate the subscriber from the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to duplicate a
database. Use the -noKeepCG command line option with ttRepAdmin in order to
convert the cache group to normal TimesTen tables on the subscriber.

Chapter 6
Recovering From the Failure of a Subscriber Database

6-14

If the standby database is down or in recovery, then duplicate the subscriber from the active
database.

After the subscriber database has been recovered, then set up the replication agent policy
and start the replication agent. See Starting and Stopping the Replication Agents.

Reversing the Roles of the Active and Standby Databases
To change the role of the active database to standby and vice versa:

1. Pause any applications that are generating updates on the current active database.

2. Call ttRepSubscriberWait on the active database, with the DSN and host of the current
standby database as input parameters. It must return success (<00>). This ensures that
all updates have been transmitted to the current standby database.

3. Stop the replication agent on the current active database. See Starting and Stopping the
Replication Agents.

4. On the active database, for all read-only cache groups with autorefresh state set to ON,
set the autorefresh state to PAUSED.

5. Call ttRepDeactivate on the current active database. This puts the database in the IDLE
state. If you are replicating a read-only cache group, this action automatically causes the
autorefresh state to change from ON to PAUSED for this database.

6. Call ttRepStateSet('ACTIVE') on the current standby database. This database now acts
as the active database in the active standby pair. If you are replicating a read-only cache
group, this automatically causes the autorefresh state to change from PAUSED to ON for
this database.

7. Start the replication agent on the former master database.

8. Configure the replication agent policy as needed and start the replication agent on the
former active database. Use the ttRepStateGet built-in procedure to determine when the
database's state has changed from IDLE to STANDBY. The database now acts as the
standby database in the active standby pair.

9. Start the cache agent on the former active database if it is not already running.

10. Resume any applications that were paused in Step 1.

Detecting Dual Active Databases
There is no difference for active standby pairs that replicate cache groups.

See Detection of Dual Active Databases.

Using a Disaster Recovery Subscriber in an Active Standby Pair
TimesTen active standby pair replication provides high availability by allowing for fast
switching between databases within a data center.

This includes the ability to automatically change which database propagates changes to an
Oracle database using AWT cache groups. However, for additional high availability across
data centers, you may require the ability to recover from a failure of an entire site, which can
include a failure of both TimesTen master databases in the active standby pair as well as the
Oracle database used for the cache groups.

Chapter 6
Reversing the Roles of the Active and Standby Databases

6-15

You can recover from a complete site failure by creating a special disaster recovery
read-only subscriber as part of the active standby pair replication scheme. The
standby database sends updates to cache group tables on the read-only subscriber.
This special subscriber is located at a remote disaster recovery site and can propagate
updates to a second Oracle database, also located at the disaster recovery site. The
disaster recovery subscriber can take over as the active in a new active standby pair
at the disaster recovery site if the primary site suffers a complete failure. Any
applications may then connect to the disaster recovery site and continue operating,
with minimal interruption of service.

• Requirements for Using a Disaster Recovery Subscriber With an Active Standby
Pair

• Rolling Out a Disaster Recovery Subscriber

• Switching Over to the Disaster Recovery Site

• Returning to the Original Configuration at the Primary Site

Requirements for Using a Disaster Recovery Subscriber With an
Active Standby Pair

To use a disaster recovery subscriber, you must:

• Use an active standby pair configuration with AWT cache groups at the primary
site. The active standby pair can also include read-only cache groups in the
replication scheme. The read-only cache groups are converted to regular tables on
the disaster recovery subscriber. The AWT cache group tables remain AWT cache
group tables on the disaster recovery subscriber.

• Have a continuous WAN connection from the primary site to the disaster recovery
site. This connection should have at least enough bandwidth to guarantee that the
normal volume of transactions can be replicated to the disaster recovery
subscriber at a reasonable pace.

• Configure an Oracle database at the disaster recovery site to include tables with
the same schema as the database at the primary site. Note that this database is
intended only for capturing the replicated updates from the primary site, and if any
data exists in tables written to by the cache groups when the disaster recovery
subscriber is created, that data is deleted.

• Have the same cache group administrator user ID and password at both the
primary and the disaster recovery site.

Though it is not absolutely required, you should have a second TimesTen database
configured at the disaster recovery site. This database can take on the role of a
standby database, in the event that the disaster recovery subscriber is promoted to an
active database after the primary site fails.

Rolling Out a Disaster Recovery Subscriber
To create a disaster recovery subscriber, follow these steps:

1. Create an active standby pair with AWT cache groups at the primary site. The
active standby pair can also include read-only cache groups. The read-only cache
groups are converted to regular tables when the disaster recovery subscriber is
rolled out.

Chapter 6
Using a Disaster Recovery Subscriber in an Active Standby Pair

6-16

2. Create the disaster recovery subscriber at the disaster recovery site using the
ttRepAdmin utility with the -duplicate and -initCacheDR options. You must also specify
the cache group administrator and password for the Oracle database at the disaster
recovery site using the -cacheUid and -cachePwd options.

If your database includes multiple cache groups, you may improve the efficiency of the
duplicate operation by using the -nThreads option to specify the number of threads that
are spawned to flush the cache groups in parallel. Each thread flushes an entire cache
group to the Oracle database and then moves on to the next cache group, if any remain
to be flushed. If a value is not specified for -nThreads, only one flushing thread is
spawned.

For example, duplicate the standby database mast2, on the system with the host name
primary and the cache user ID system and password manager, to the disaster recovery
subscriber drsub, and using two cache group flushing threads. ttRepAdmin prompts for
the values of -uid, -pwd, -cacheUid and -cachePwd.

ttRepAdmin -duplicate -from mast2 -host primary -initCacheDR -nThreads 2
 -connStr "DSN=drsub;UID=;PWD=;"

If you use the ttRepDuplicateEx function in C, you must set the TT_REPDUP_INITCACHEDR
flag in ttRepDuplicateExArg.flags and may optionally specify a value for
ttRepDuplicateExArg.nThreads4InitDR:

int rc;
ttUtilHandle utilHandle;
ttRepDuplicateExArg arg;
memset(&arg, 0, sizeof(arg));
arg.size = sizeof(ttRepDuplicateExArg);
arg.flags = TT_REPDUP_INITCACHEDR;
arg.nThreads4InitDR = 2;
arg.uid="ttuser"
arg.pwd="ttuser"
arg.cacheuid = "system";
arg.cachepwd = "manager";
arg.localHost = "disaster";
rc = ttRepDuplicateEx(utilHandle, "DSN=drsub",
 "mast2", "primary", &arg);

After the subscriber is duplicated, TimesTen automatically configures the replication
scheme that propagates updates from the AWT cache groups to the Oracle database,
truncates the tables in the Oracle database that correspond to the cache groups in
TimesTen, and then flushes all of the data in the cache groups to the Oracle database.

3. If you want to set the failure threshold for the disaster recovery subscriber, call the
ttCacheAWTThresholdSet built-in procedure and specify the number of transaction log
files that can accumulate before the disaster recovery subscriber is considered either
dead or too far behind to catch up.

If one or both master databases had a failure threshold configured before the disaster
recovery subscriber was created, then the disaster recovery subscriber inherits the failure
threshold value when it is created with the ttRepAdmin -duplicate -initCacheDR
command. If the master databases have different failure thresholds, then the higher value
is used for the disaster recovery subscriber.

See Setting the Transaction Log Failure Threshold.

4. Start the replication agent for the disaster recovery subscriber using the ttRepStart built-
in procedure or the ttAdmin utility with the -repstart option. For example:

Chapter 6
Using a Disaster Recovery Subscriber in an Active Standby Pair

6-17

ttAdmin -repstart drsub

Updates are now replicated from the standby database to the disaster recovery
subscriber, which then propagates the updates to the Oracle database at the
disaster recovery site.

See Starting and Stopping the Replication Agents.

Switching Over to the Disaster Recovery Site
When the primary site has failed, you can switch over to the disaster recovery site.

There are one of two ways to switch over to the disaster recovery site.

• Creating a New Active Standby Pair After Switching to the Disaster Recovery Site:
If your goal is to minimize risk of data loss at the disaster recovery site, you may
roll out a new active standby pair using the disaster recovery subscriber as the
active database.

• Switching Over to a Single Database: If the goal is to absolutely minimize the
downtime of your applications, at the risk of data loss if the disaster recovery
database later fails, you may instead choose to drop the replication scheme from
the disaster recovery subscriber and use it as a single non-replicating database.
You may deploy an active standby pair at the disaster recovery site later.

Creating a New Active Standby Pair After Switching to the Disaster Recovery
Site

1. Any read-only applications may be redirected to the disaster recovery subscriber
immediately. Redirecting applications that make updates to the database must
wait until Step 7.

2. Ensure that all of the recent updates to the cache groups have been propagated to
the Oracle database using the ttRepSubscriberWait built-in procedure or the
ttRepAdmin command with the -wait option.

Command> call ttRepSubscriberWait(null, null, '_ORACLE', null, 600);

It must return success (<00>). If ttRepSubscriberWait returns 0x01, indicating a
timeout, investigate to determine why the cache groups are not finished
propagating before continuing to Step 3.

3. Stop the replication agent on the disaster recovery subscriber using the ttRepStop
built-in procedure or the ttAdmin command with the -repstop option. For
example, to stop the replication agent for the subscriber drsub, use:

call ttRepStop;
4. Drop the active standby pair replication scheme on the subscriber using the DROP

ACTIVE STANDBY PAIR statement. For example:

DROP ACTIVE STANDBY PAIR;
5. If there are tables on the disaster recovery subscriber that were converted from

read-only cache group tables on the active database, drop the tables on the
disaster recovery subscriber.

6. Create the read-only cache groups on the disaster recovery subscriber. Ensure
that the autorefresh state is set to PAUSED.

Chapter 6
Using a Disaster Recovery Subscriber in an Active Standby Pair

6-18

7. Create a new active standby pair replication scheme using the CREATE ACTIVE STANDBY
PAIR statement, specifying the disaster recovery subscriber as the active database. For
example, to create a new active standby pair with the former subscriber drsub as the
active and the new database drstandby as the standby, and using the return twosafe
return service, use:

CREATE ACTIVE STANDBY PAIR drsub, drstandby RETURN TWOSAFE;
8. Set the new active standby database to the ACTIVE state using the ttRepStateSet built-in

procedure. For example, on the database drsub in this example, call:

call ttRepStateSet('ACTIVE');
9. Any applications which must write to the TimesTen database may now be redirected to

the new active database.

10. If you are replicating a read-only cache group, load the cache group using the LOAD
CACHE GROUP statement to begin the autorefresh process. You may also load the cache
group if you are replicating an AWT cache group, although it is not required.

11. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to duplicate a
database. Use the -keepCG command line option with ttRepAdmin to preserve the cache
group. See Duplicating a Database.

12. Set up the replication agent policy on the standby database and start the replication
agent. See Starting and Stopping the Replication Agents.

13. Wait for the standby database to enter the STANDBY state. Use the ttRepStateGet built-in
procedure to check the state.

14. Start the cache agent for the standby database using the ttCacheStart built-in
procedure or the ttAdmin -cacheStart utility.

15. Duplicate all of the subscribers from the standby database. See Duplicating a Master
Database to a Subscriber. Use the -noKeepCG command line option with ttRepAdmin in
order to convert the cache group to regular TimesTen tables on the subscribers.

16. Set up the replication agent policy on the subscribers and start the agent on each of the
subscriber databases. See Starting and Stopping the Replication Agents.

Switching Over to a Single Database
1. Any read-only applications may be redirected to the disaster recovery subscriber

immediately. Redirecting applications that make updates to the database must wait until
Step 5.

2. Stop the replication agent on the disaster recovery subscriber using the ttRepStop built-
in procedure or the ttAdmin command with the -repstop option. For example, to stop
the replication agent for the subscriber drsub, use:

call ttRepStop;
3. Drop the active standby pair replication scheme on the subscriber using the DROP ACTIVE

STANDBY PAIR statement. For example:

DROP ACTIVE STANDBY PAIR;
4. If there are tables on the disaster recovery subscriber that were converted from read-only

cache group tables on the active database, drop the tables on the disaster recovery
subscriber.

Chapter 6
Using a Disaster Recovery Subscriber in an Active Standby Pair

6-19

5. Create the read-only cache groups on the disaster recovery subscriber.

6. Although there is no longer an active standby pair configured, AWT cache groups
require the replication agent to be started. Start the replication agent on the
database using the ttRepStart built-in procedure or the ttAdmin command with
the -repstart option. For example, to start the replication agent for the database
drsub, use:

call ttRepStart;

See Starting and Stopping the Replication Agents.

7. Any applications which must write to a TimesTen database may now be redirected
to the this database.

Note:

You may choose to roll out an active standby pair at the disaster
recovery site at a later time. You may do this by following the steps in
Creating a New Active Standby Pair After Switching to the Disaster
Recovery Site, starting at Step 2 and skipping Step 4.

Returning to the Original Configuration at the Primary Site
When the primary site is usable again, you may want to move the working active
standby pair from the disaster recovery site back to the primary site.

You can do this with a minimal interruption of service by reversing the process that
was used to create and switch over to the original disaster recovery site. Follow these
steps:

1. Destroy original active database at the primary site, if necessary, using the
ttDestroy utility. For example, to destroy a database called mast1, use:

ttDestroy mast1
2. Create a disaster recovery subscriber at the primary site, following the steps

detailed in Rolling Out a Disaster Recovery Subscriber. Use the original active
database for the new disaster recovery subscriber.

3. Switch over to the new disaster recovery subscriber at primary site, as detailed in
Switching Over to the Disaster Recovery Site. Roll out the standby database as
well.

4. Roll out a new disaster recovery subscriber at the disaster recovery site, as
detailed in Rolling Out a Disaster Recovery Subscriber.

Chapter 6
Using a Disaster Recovery Subscriber in an Active Standby Pair

6-20

7
Altering an Active Standby Pair

There are certain procedures you can perform to alter an active standby pair.

• Making DDL Changes in an Active Standby Pair

• Making Other Changes to an Active Standby Pair

Making DDL Changes in an Active Standby Pair
You can configure automatic replication of certain DDL statements. When you run a
supported DDL statement on the active master, it is automatically replicated to all databases
in the active standby pair replication scheme.

• Controlling Replication of Objects to All Databases in an Active Standby Pair

• DDL Statements That Can Be Automatically Replicated

• Creating a New PL/SQL Object in an Existing Active Standby Pair

• Restrictions on Making DDL Changes in an Active Standby Pair

• Examples Showing How to Making DDL changes in an Active Standby Pair

Controlling Replication of Objects to All Databases in an Active Standby
Pair

Use the DDLReplicationLevel and DDLReplicationAction connection attributes to control
what objects that are created or dropped by DDL statements are replicated to the databases
involved in an active standby pair replication scheme. For more information on connection
attributes, see Specifying Data Source Names to Identify TimesTen Databases in the Oracle
TimesTen In-Memory Database Operations Guide

The DDLReplicationLevel connection attribute controls what DDL statements are replicated.

• DDLReplicationLevel=1. CREATE or DROP statements for tables, indexes, or synonyms are
not replicated to the standby database. However, you can add or drop columns to or from
a replicated table, and those actions are replicated to the standby database.

• DDLReplicationLevel=2 (the default) enables replication of creating and dropping of
tables, indexes, and synonyms.

To include tables in the replication scheme, the DDLReplicationAction connection
attribute must be set to 'INCLUDE' (the default) before creating the table. If
DDLReplicationAction='EXCLUDE', then the table is not included in the replication
scheme. If the table is excluded from the replication scheme, then the DDL statements
for creating and dropping tables are replicated to the standby master; however, any DML
statements run on the table are not replicated.

7-1

Note:

You may want to exclude a table from a replication scheme if:

– You want to create a table in the replication scheme without either a
primary key or a unique index on non-nullable columns.

– You want to create a temporary table where the data is only used
locally and you do not want to replicate updates for this table.

To add an existing table to an active standby pair, use the ALTER ACTIVE STANDBY
PAIR INCLUDE TABLE statement. The table must be empty.

However, you cannot alter a table to add a NOT NULL column to a table that is part
of a replication scheme with the ALTER TABLE ... ADD COLUMN NOT NULL DEFAULT
statement. You must remove the table from the replication scheme first before you
can add a NOT NULL column to it.

• DDLReplicationLevel=3 enables the following:

– Replication to all databases in the replication scheme of the same objects that
are replicated when DDLReplicationLevel=2.

– Replication of creating and dropping of views to all databases in the replication
scheme.

– Replication of creating and dropping of sequences to all databases in the
replication scheme, as long as DDLReplicationAction='INCLUDE' (the
default) before creation. If DDLReplicationAction='EXCLUDE', then the
sequence is not included in the replication scheme. If the sequence is
excluded from the replication scheme, then the DDL statements for creating
and dropping sequences are replicated to the standby master; however, each
sequence on the active master and standby master are separate objects.

– Replication of the results to the standby master when you set the cache
administration user name and password on the active master with the
ttCacheUidPwdSet built-in procedure. You do not need to stop and restart the
cache agent or replication agent in order to run the ttCacheUidPwdSet built-in
procedure on the active master. See Changing User Names or Passwords
Used by Replication.

– With this level, you can alter a table to add a NOT NULL column to a table that
is part of a replication scheme with the ALTER TABLE ... ADD COLUMN NOT
NULL DEFAULT statement.

You can set the DDLReplicationLevel attribute as part of the connection string or after
the connection starts with the ALTER SESSION statement:

ALTER SESSION SET DDL_REPLICATION_LEVEL=3;

You can set the DDLReplicationAction attribute as part of the connection string or
after the connection starts with the ALTER SESSION statement:

ALTER SESSION SET ddl_replication_action='EXCLUDE';

See ALTER SESSION and ALTER ACTIVE STANDBY PAIR in the Oracle TimesTen
In-Memory Database SQL Reference.

Chapter 7
Making DDL Changes in an Active Standby Pair

7-2

Note:

DDL operations are automatically committed. When RETURN TWOSAFE has been
specified, errors and timeouts may occur as described in RETURN TWOSAFE. If a
RETURN TWOSAFE timeout occurs, the DDL transaction is committed locally
regardless of the LOCAL COMMIT ACTION that has been specified.

DDL Statements That Can Be Automatically Replicated
You can run the following DDL statements in an active standby pair without stopping the
replication agent. In addition, these statements are replicated to all databases in the
replication scheme.

The following statements are automatically replicated when DDLReplicationLevel is 2 or 3
(the default is 2):

• Create, alter, or drop a user with the CREATE USER, ALTER USER, or DROP USER statements.

• Grant or revoke privileges from a user with the GRANT or REVOKE statements.

• Alter a table to add or drop a column with the ALTER TABLE ... ADD COLUMN or ALTER
TABLE ... DROP COLUMN statements.

These are the only ALTER TABLE clauses that are replicated. However, when
DDLReplicationLevel=2, you cannot alter a table to add a NOT NULL column to a table
that is part of a replication scheme with the ALTER TABLE ... ADD COLUMN NOT NULL
DEFAULT statement. You can run this statement if DDLReplicationLevel=3.

• Create or drop a table with the CREATE TABLE or DROP TABLE statements. The new table is
included in the active standby pair.

• Create or drop a synonym with the CREATE SYNONYM or DROP SYNONYM statements.

• Create or drop an index with the CREATE INDEX or DROP INDEX statements.

You can perform the following tasks in an active standby pair without stopping the replication
agent. In addition, these statements are replicated to all databases in the replication scheme.
The following statements are automatically replicated when DDLReplicationLevel is set to 3:

• Create or drop a view with the CREATE VIEW or DROP VIEW statements.

• Create or drop a sequence with the CREATE SEQUENCE or DROP SEQUENCE statements.
These statements are automatically replicated to all databases in the replication scheme
and included in the active standby pair when the DDLReplicationAction connection
attribute is set to INCLUDE (the default) before creating the sequence; the sequence is not
included in the replication scheme if the DDLReplicationAction connection attribute is
set to EXCLUDE.

You do not have to stop the cache agent or replication agent when you set the user name
and password for the cache administration user on the active master with the
ttCacheUidPwdSet built-in procedure. When DDLReplicationLevel=3, then this information is
automatically replicated to the standby master. See Changing User Names or Passwords
Used by Replication.

You can perform the following tasks in an active standby pair only after stopping the
replication agents. These statements are not replicated to the standby master, so you must

Chapter 7
Making DDL Changes in an Active Standby Pair

7-3

ensure that the changes are propagated to the standby master and any subscribers by
either performing a duplicate or running these statements on all nodes in the
replication scheme after the replication agents are stopped. After processing
completes, restart the replication agents on all nodes.

• The DDL statements for creating, dropping, or altering a materialized view.

• Changing the autorefresh mode or interval using the ALTER CACHE GROUP ... SET
AUTOREFRESH MODE or ALTER CACHE GROUP ... SET AUTOREFRESH INTERVAL
statements.

You can perform the following tasks in an active standby pair without stopping the
replication agent. However, these statements are not replicated to the standby master,
so you must ensure that the changes are propagated to the standby master and any
subscribers by either performing a duplicate or running these statements on all nodes
in the replication scheme.

• Changing the autorefresh state of a cache group using the ALTER CACHE GROUP ...
SET AUTOREFRESH STATE statement. However, you cannot set a cache group
autorefresh state to OFF on the active master.

• Create or drop a PL/SQL function, PL/SQL procedure, PL/SQL package, or
PL/SQL package body. You do not need to stop the replication agents for these
objects. See Creating a New PL/SQL Object in an Existing Active Standby Pair.

• Any other DDL statements that are not replicated (except for materialized views).

Creating a New PL/SQL Object in an Existing Active Standby Pair
There are certain tasks to perform to add a new PL/SQL procedure, package, package
body or function to an existing active standby pair.

1. Create the PL/SQL object on the active database. The CREATE statement is not
replicated to the standby database.

2. Create the PL/SQL object on the standby database and any subscribers.

3. Grant privileges to the new PL/SQL object on the active database. The GRANT
statement is replicated to the standby database and any subscribers.

Restrictions on Making DDL Changes in an Active Standby Pair
There are certain restrictions when making DDL changes in an active standby pair.

When DDLReplicationLevel=2 or 3:

• CREATE TABLE ... AS SELECT, ALTER TABLE ... ADD CONSTRAINT, ALTER
TABLE ... ADD UNIQUE and ALTER TABLE ... MODIFY statements are not
replicated.

• The CREATE INDEX statement is replicated only when the index is created on an
empty table. To create a new index on populated tables, set DDLReplicationLevel
to a value less than 2 and create the index manually on both the active and
standby.

• These statements cannot run on the standby database when
DDLReplicationLevel=2 or 3:

– CREATE USER, ALTER USER, DROP USER

Chapter 7
Making DDL Changes in an Active Standby Pair

7-4

– CREATE TABLE, DROP TABLE
– CREATE INDEX, DROP INDEX
– GRANT, REVOKE
– CREATE SYNONYM, DROP SYNONYM

When DDLReplicationLevel=3:

• CREATE SEQUENCE ... CYCLE statements are not replicated.

• These statements cannot run on the standby database when DDLReplicationLevel=3:

– CREATE INDEX, DROP INDEX
– CREATE SEQUENCE, DROP SEQUENCE when DDLReplicationAction='INCLUDE'.

Note:

However, you can create or drop a sequence on the standby master when
DDLReplicationLevel=3 if DDLReplicationAction='EXCLUDE'.

Examples Showing How to Making DDL changes in an Active Standby Pair
These examples demonstrate how to make DDL changes in an active standby pair.

The following example demonstrates DDL changes when you create a table and include it in
the active standby pair.

On the active database, set DDLReplicationLevel to 2 and DDLReplicationAction to
'INCLUDE'.

Command > ALTER SESSION SET ddl_replication_level=2;
Session altered.
Command > ALTER SESSION SET ddl_replication_action='INCLUDE';
Session altered.

Create a table. The table must have a primary key or index.

Command > CREATE TABLE tabinclude (col1 NUMBER NOT NULL PRIMARY KEY);
Table created.

Insert a row into tabinclude.

Command > INSERT INTO tabinclude VALUES (55);
1 row inserted.

On the standby database, verify that the INSERT statement has been replicated. This
indicates that the tabinclude table has been included in the active standby pair.

Command > SELECT * FROM tabinclude;
< 55 >
1 row found.

Alternatively, use the ttIsql repschemes command to see what tables are included in the
active standby pair.

Chapter 7
Making DDL Changes in an Active Standby Pair

7-5

The following example demonstrates DDL changes when you create a table and add it
to the active standby pair later.

On the active database, set DDLReplicationLevel to 2 and DDLReplicationAction to
'EXCLUDE'.

Command> ALTER SESSION SET ddl_replication_level=2;
Session altered.
Command> ALTER SESSION SET ddl_replication_action='exclude';
Session altered.

Create a table that does not have a primary key or index. Try to include it in the active
standby pair.

Command> CREATE TABLE newtab (a NUMBER NOT NULL);
Command> ALTER ACTIVE STANDBY PAIR INCLUDE TABLE newtab;
 8000: No primary or unique index on non-nullable column found for replicated
 table TERRY.NEWTAB
The command failed.

Create an index on the table. Include the table in the active standby pair.

Command> CREATE UNIQUE INDEX ixnewtab ON newtab(a);
Command> ALTER ACTIVE STANDBY PAIR INCLUDE TABLE newtab;

Insert a row into the table.

Command> INSERT INTO newtab VALUES (5);
1 row inserted.

On the standby database, verify that the row was inserted.

Command> SELECT * FROM newtab;
< 5 >
1 row found.

This example illustrates that a table does not need a primary key to be part of an
active standby pair.

The following example demonstrates DDL changes when CREATE INDEX is replicated.

On the active database, set DDLReplicationLevel=2 and
DDLReplicationAction='INCLUDE'.

Command> ALTER SESSION SET ddl_replication_level=2;
Session altered.
Command> ALTER SESSION SET ddl_replication_action='include';
Session altered.

Create a table with a primary key. The table is automatically included in the active
standby pair.

Command> CREATE TABLE tab2 (a NUMBER NOT NULL, b NUMBER NOT NULL,
 PRIMARY KEY (a));

Create an index on the table.

Command> CREATE UNIQUE INDEX ixtab2 ON tab2 (b);

On the standby database, verify that the CREATE INDEX statement has been replicated.

Chapter 7
Making DDL Changes in an Active Standby Pair

7-6

Command> indexes;

Indexes on table TERRY.TAB2:
 IXTAB2: unique range index on columns:
 B
 TAB2: unique range index on columns:
 A
 2 indexes found.

Indexes on table TERRY.NEWTAB:
 NEWTAB: unique range index on columns:
 A
 1 index found.

Indexes on table TERRY.TABINCLUDE:
 TABINCLUDE: unique range index on columns:
 A
 1 index found.
4 indexes found on 3 tables.

The following example demonstrates DDL changes when CREATE SYNONYM is replicated.

The DDLReplicationLevel is already set to 2, since it is the default. Create a synonym for
tabinclude.

Command> CREATE SYNONYM syntabinclude FOR tabinclude;
Synonym created.

On the standby database, use the ttIsql synonyms command to verify that the CREATE
SYNONYM statement has been replicated.

Command> synonyms;
TERRY.SYNTABINCLUDE
1 synonym found.

Making Other Changes to an Active Standby Pair
You must stop the replication agent before making certain changes to an active standby pair.

You must stop the replication agent to make these changes to an active standby pair:

• Include or exclude a cache group after the active standby pair has already been created.

Note: See Replicating Cache Groups Within Active Standby Pairs for details on how to
add a cache group that already exists before you create the active standby pair.

• Add or drop a subscriber.

• Change values in the STORE clause.

• Change network operations (ADD ROUTE or DROP ROUTE clause).

To alter an active standby pair according to the preceding list, complete the following tasks:

1. Stop the replication agent on the active database. See Starting and Stopping the
Replication Agents.

2. If the active standby pair includes cache groups, stop the cache agent on the active
database.

3. Use the ALTER ACTIVE STANDBY PAIR statement to make changes to the replication
scheme. See Examples Showing How to Alter an Active Standby Pair.

Chapter 7
Making Other Changes to an Active Standby Pair

7-7

4. Start the replication agent on the active database. See Starting and Stopping the
Replication Agents.

5. If the active standby pair includes cache groups, start the cache agent on the
active database.

6. Destroy the standby database and the subscribers.

7. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to duplicate a
database. If the active standby pair includes cache groups, use the -keepCG
command line option with ttRepAdmin to preserve the cache group. See
Duplicating a Database.

8. Set up the replication agent policy on the standby database and start the
replication agent. See Starting and Stopping the Replication Agents.

9. Wait for the standby database to enter the STANDBY state. Use the ttRepStateGet
built-in procedure to check the state.

10. If the active standby pair includes cache groups, start the cache agent for the
standby database using the ttCacheStart built-in procedure or the ttAdmin -
cacheStart utility.

11. Duplicate all of the subscribers from the standby database. See Duplicating a
Master Database to a Subscriber. If the active standby pair includes cache groups,
use the -noKeepCG command line option with ttRepAdmin in order to convert the
cache group to regular TimesTen tables on the subscribers. See Duplicating a
Database.

12. Set up the replication agent policy on the subscribers and start the agent on each
of the subscriber databases. See Starting and Stopping the Replication Agents.

Examples Showing How to Alter an Active Standby Pair
These examples demonstrate adding, dropping and changing an active standby pair.

The following example demonstrates adding a subscriber to an active standby pair

ALTER ACTIVE STANDBY PAIR
 ADD SUBSCRIBER sub1;

The following example demonstrates dropping subscribers from an active standby pair.

ALTER ACTIVE STANDBY PAIR
 DROP SUBSCRIBER sub1
 DROP SUBSCRIBER sub2;

The following example demonstrates changing the PORT and TIMEOUT settings for
subscribers.

Alter the PORT and TIMEOUT settings for subscribers sub1 and sub2.

ALTER ACTIVE STANDBY PAIR
 ALTER STORE sub1 SET PORT 23000 TIMEOUT 180
 ALTER STORE sub2 SET PORT 23000 TIMEOUT 180;

The following example demonstrates adding a cache group to an active standby pair.

ALTER ACTIVE STANDBY PAIR
 INCLUDE CACHE GROUP cg0;

Chapter 7
Making Other Changes to an Active Standby Pair

7-8

8
Using Oracle Clusterware to Manage Active
Standby Pairs

Oracle Clusterware monitors and controls applications to provide high availability. Oracle
Clusterware is a general purpose cluster manager that manages and monitors the availability
of software components that participate in a cluster.

There are procedures on how to use Oracle Clusterware to manage availability for the
databases in an active standby pair replication scheme in TimesTen.

Note:

See the Oracle Clusterware Administration and Deployment Guide in the Oracle
Database documentation.

• Overview of How Oracle Clusterware Can Manage TimesTen

• Requirements, Considerations, and Installation for Your Cluster

• Restricted Commands and SQL Statements

• Creating and Initializing a Cluster

• Configuring Oracle Clusterware Management With the cluster.oracle.ini File

• Monitoring Cluster Status

• Shutting Down a Cluster

• Recovering From Failures

• Clusterware Management

Overview of How Oracle Clusterware Can Manage TimesTen
Use Oracle Clusterware to manage only the following configurations for active standby pair
replication schemes.

• Active standby pair with or without read-only subscribers

• Active standby pair (with or without read-only subscribers) with AWT cache groups and
read-only cache groups

Figure 8-1 shows an active standby pair with one read-only subscriber in the same local
network. The active master, the standby master and the read-only subscriber are on different
nodes. There are two nodes that are not part of the active standby pair that are also running
TimesTen. An application updates the active database. An application reads from the standby
and the subscriber. All of the nodes are connected to shared storage.

8-1

Figure 8-1 Active Standby Pair With One Subscriber

Application

updates

Extra

node 1

Application

reads

Read-only

subscriber

Standby

master

Active

master

Shared storage

Application

reads

Extra

node 2

You can use Oracle Clusterware to start, monitor, and automatically fail over TimesTen
databases and applications in response to node failures and other events. See
Clusterware Management and Recovering From Failures.

Oracle Clusterware can be implemented at two levels of availability for TimesTen.

• The basic level of availability manages two master nodes configured as an active
standby pair and up to 127 read-only subscriber nodes in the cluster. The active
standby pair is defined with local host names or IP addresses. If both master
nodes fail, user intervention is necessary to migrate the active standby scheme to
new hosts. When both master nodes fail, Oracle Clusterware notifies the user.

• The advanced level of availability uses virtual IP addresses for the active, standby,
and read-only subscriber databases. Extra nodes can be included in the cluster
that are not part of the initial active standby pair. If a failure occurs, the use of
virtual IP addresses enables one of the extra nodes to take on the role of a failed
node automatically.

Note:

If your applications connect to TimesTen in a client/server configuration,
automatic client failover enables the client to reconnect automatically to the
active database after a failure. See Using Automatic Client Failover for an
Active Standby Pair and TTC_FailoverPortRange in the Oracle TimesTen In-
Memory Database Reference.

Chapter 8
Overview of How Oracle Clusterware Can Manage TimesTen

8-2

The ttCWAdmin utility is used to administer TimesTen active standby pairs in a cluster that is
managed by Oracle Clusterware. The configuration for each active standby pair is manually
created in an initialization file called cluster.oracle.ini. The information in this file is used
to create Oracle Clusterware resources. Resources are used to manage the TimesTen
daemon, TimesTen databases, TimesTen processes, user applications, and virtual IP
addresses. You can run the ttCWAdmin utility from any host in the cluster, as long as the
cluster.oracle.ini file is reachable and readable from this host. For more information
about the ttCWAdmin utility, see ttCWAdmin in Oracle TimesTen In-Memory Database
Reference. For more information about the cluster.oracle.ini file, see Configuring Oracle
Clusterware Management With the cluster.oracle.ini File.

Requirements, Considerations, and Installation for Your Cluster
There are requirements and installation steps when creating your cluster.

• Required Privileges

• Hardware and Software Requirements

• Install Oracle Clusterware

• Install TimesTen on Each Host

• Register the TimesTen Cluster Information

Required Privileges
There are privileges required to run ttCWAdmin commands.

See ttCWAdmin in Oracle TimesTen In-Memory Database Reference.

Hardware and Software Requirements
TimesTen supports Clusterware on Linux platforms; TimesTen does not support Clusterware
on Windows platforms.

TimesTen supports Oracle Clusterware with TimesTen active standby pair replication. See
Oracle Clusterware Administration and Deployment Guide in the Oracle Database
documentation for network and storage requirements and information about Oracle
Clusterware configuration files.

Oracle Clusterware and TimesTen should be installed in the same location on all nodes. The
TimesTen instance administrator must belong to the same UNIX or Linux primary group as
the Oracle Clusterware installation owner.

Note:

The /tmp directory contains essential TimesTen Oracle Clusterware directories.
Their names have the prefix crsTT. Do not delete them.

All hosts should use Network Time Protocol (NTP) or a similar system so that clocks on the
hosts remain within 250 milliseconds of each other. When adjusting the system clocks on any
nodes to be synchronized with each other, do not set any clock backward in time.

Chapter 8
Requirements, Considerations, and Installation for Your Cluster

8-3

Install Oracle Clusterware
By default, when you install Oracle Clusterware, the installation occurs on all hosts
concurrently. See Oracle Clusterware installation documentation for your platform.

For example, see the Grid Infrastructure Installation Guide for Linux.

Oracle Clusterware starts automatically after successful installation.

Note:

You can verify whether Oracle Clusterware is running on all hosts in the
cluster by running the following:

crsctl check crs -all

Install TimesTen on Each Host
Use the ttInstanceCreate command to install TimesTen in the same location on each
host in the cluster, including extra hosts.

See Create an Instance Interactively for Oracle Clusterware in the Oracle TimesTen
In-Memory Database Installation, Migration, and Upgrade Guide.

When responding to the various prompts, note that:

• The instance name must be the same on each host.

• The user name of the instance administrator must be the same on all hosts.

• The TimesTen instance administrator must belong to the same UNIX or Linux
primary group as the Oracle Clusterware installation owner.

In addition, when you respond yes to the following question:

Would you like to use TimesTen Replication with Oracle Clusterware?

Then, the ttInstanceCreate command prompts you for values used for Oracle
Clusterware, each of which is stored in the ttcrsagent.options file:

• The TCP/IP port number associated with the TimesTen cluster agent
(ttCRSAgent). The port number must be the same on all nodes of the cluster. If
you do not provide a port number, then TimesTen adds six to the default TimesTen
daemon port number to be the TCP/IP port number associated with the TimesTen
cluster agent. Thus, the default daemon port number associated with the
TimesTen cluster agent is 3574 for 64-bit systems.

• The Oracle Clusterware location. The location must be the same on each host.

• The hosts included in the cluster, including spare hosts, with host names
separated by commas. This list must be the same on each host.

See Installing Oracle Clusterware for Use With TimesTen and Create an Instance
Interactively for Oracle Clusterware in the Oracle TimesTen In-Memory Database
Installation, Migration, and Upgrade Guide.

Chapter 8
Requirements, Considerations, and Installation for Your Cluster

8-4

The ttCWAdmin –init and ttCWAdmin –shutdown commands use the ttcrsagent.options
file to initiate and shut down the TimesTen cluster. The ttcrsagent.options file is located in
the TimesTen daemon home directory.

You should not manually alter the ttcrsagent.options file. Instead, use the
ttInstanceModify -crs command to create or modify the information in this file after the
TimesTen cluster has been initiated. You can also use the -record and -batch options for
setup.sh to perform identical installations on additional hosts.

Note:

See Change the Oracle Clusterware Configuration for an Instance in the Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

The current home location of Oracle Clusterware is set in the CRS_HOME environment variable.
In addition, the ttInstanceModify -crs command shows the current location of the Oracle
Clusterware home as part of the prompts.

Note:

See Start the TimesTen Cluster Agent for more information on the
ttcrsagent.options file. For more information about ttInstanceCreate and
ttInstanceModify, see ttInstanceCreate and ttInstanceModify respectively in
Oracle TimesTen In-Memory Database Reference.

The following example shows how the ttInstanceModify -crs prompts for you to modify
each item in the ttcrsagent.options file:

% ttInstanceModify -crs

Cannot find instance_info file : /etc/TimesTen/instance_info

Would you like to modify the existing TimesTen Replication with Oracle
Clusterware configuration? [no] yes

This TimesTen instance is configured to use an Oracle Clusterware installation
located in : /mydir/oracle/crs/app/11.2.0
Would you like to change this value? [no] no

The TimesTen Clusterware agent is configured to use port 54504
Would you like to change this value? [no] no

The TimesTen Clusterware agent is currently configured with these nodes :

node1
node2
node3
node4

Would you like to change these values? [no]

Overwrite the existing TimesTen Clusterware options file? [no] no

Chapter 8
Requirements, Considerations, and Installation for Your Cluster

8-5

Register the TimesTen Cluster Information
TimesTen cluster information is stored in the Oracle Cluster Registry (OCR).

As the root user, enter this command:

ttCWAdmin -ocrConfig

As long as Oracle Clusterware and TimesTen are installed on the hosts, this step
never needs to be repeated.

Restricted Commands and SQL Statements
When you use Oracle Clusterware with TimesTen, the active standby pair replication
scheme is created on the active database with the ttCWAdmin -create command and
dropped with the ttCWAdmin -drop command.

In between the ttCWAdmin -create and ttCWAdmin -drop commands, you cannot run
certain commands or SQL statements.

However, you can perform these commands or SQL statements when you use the
ttCWAdmin -beginAlterSchema and the ttCWAdmin -endAlterSchema commands, as
described in Changing the Schema.

You cannot run the following commands or SQL statements:

• Creating, altering, or dropping the active standby pair with the CREATE ACTIVE
STANDBY PAIR, ALTER ACTIVE STANDBY PAIR, and DROP ACTIVE STANDBY PAIR
SQL statements.

• Starting or stopping the replication agent with either the -repStart and -repStop
options of the ttAdmin utility or the ttRepStart or ttRepStop built-in procedures.
For more information, see Starting and Stopping the Replication Agents.

• Starting or stopping the cache agent after the active standby pair has been
created with either the -cacheStart and -cacheStop options of the ttAdmin utility
or the ttCacheStart and ttCacheStop built-in procedures.

• Duplicating the database with the -duplicate option of the ttRepAdmin utility.

In addition, do not call ttDaemonAdmin -stop before calling ttCWAdmin -shutdown.

The TimesTen integration with Oracle Clusterware accomplishes these operations with
the ttCWAdmin utility and the attributes specified in the cluster.oracle.ini file.

Creating and Initializing a Cluster
There are procedures to create and initialize a cluster.

• Start the TimesTen Cluster Agent

• Create and Populate a TimesTen Database on One Host

• Create System DSN Files on Other Hosts

• Create a cluster.oracle.ini File

• Create the Oracle Clusterware Resources to Manage Virtual IP Addresses

Chapter 8
Restricted Commands and SQL Statements

8-6

• Create an Active Standby Pair Replication Scheme

• Start the Active Standby Pair and the Applications

• Load Cache Groups

• Include More Than One Active Standby Pair in a Cluster

• Configure an Oracle Database as a Disaster Recovery Subscriber

• Configure a Read-Only Subscriber That Is Not Managed by Oracle Clusterware

If you plan to have more than one active standby pair in the cluster, see Include More Than
One Active Standby Pair in a Cluster.

If you want to configure an Oracle database as a remote disaster recovery subscriber, see
Configure an Oracle Database as a Disaster Recovery Subscriber.

If you want to set up a read-only subscriber that is not managed by Oracle Clusterware, see
Configure a Read-Only Subscriber That Is Not Managed by Oracle Clusterware.

Start the TimesTen Cluster Agent
Start a TimesTen cluster agent (ttCRSAgent) and TimesTen cluster daemon monitor
(ttCRSDaemon) on all hosts in the cluster by running the ttCWAdmin -init command.

You can run this command on any host in the cluster that is defined in the
ttcrsagent.options file.

For example:

ttCWAdmin -init

The ttCWAdmin -init command performs the following:

• Reads the ttcrsagent.options file and launches the TimesTen main daemon on each of
the hosts defined in this file.

• Starts and registers the TimesTen cluster agent (ttCRSAgent) and the TimesTen cluster
daemon monitor (ttCRSDaemon) on the all hosts in the cluster. There is one TimesTen
cluster agent and one TimesTen cluster daemon monitor for the TimesTen installation on
each host. When the TimesTen cluster agent has started, Oracle Clusterware begins
monitoring the TimesTen daemon on each host and restarts a TimesTen daemon if it fails.

To start and register the TimesTen cluster agent and the TimesTen cluster daemon monitor on
specific hosts in the cluster, use the -hosts command to specify the desired hosts in the
cluster to start.

ttCWAdmin -init -hosts "host1, host2"

Note:

You must stop the TimesTen cluster agent on the local host with the ttCWAdmin -
shutdown before you run a ttDaemonAdmin -stop command; otherwise the cluster
agent restarts the TimesTen daemon.

Chapter 8
Creating and Initializing a Cluster

8-7

Create and Populate a TimesTen Database on One Host
Create a database on the host where you intend the active database to reside. The
DSN must be the same as the database file name.

Create schema objects (such as tables, AWT cache groups, and read-only cache
groups) and populate with data as appropriate. However, before you create cache
groups, you must first decide when to load the cache groups.

• For best performance, load the cache group tables from the Oracle database
tables before the ttCWAdmin -create command. There is less performance
overhead when cache groups are loaded with initial data before the duplicate is
performed on the active database to create the standby database (and any
subscriber databases).

For this option, perform the following:

1. Start the cache agent as follows:

call ttCacheStart;

Note:

Since this is before the ttCWAdmin -start command, you can start
the cache agent at this time. The ttCWAdmin -start command notes
that the cache agent is already started and continues.

2. Use the LOAD CACHE GROUP statement to load the cache group tables from the
Oracle database tables.

3. If using cache groups with autorefresh, set the autorefresh state to pause with
the ALTER CACHE GROUP SET AUTOREFRESH STATE PAUSED statement. The
autorefresh state will be set to ON as part of the ttCWAdmin -start command.

The following example demonstrates how to create a read-only cache group with
autorefresh, load the data, and then set the autorefresh state to pause:

Command> call ttCacheStart;
Command> CREATE READONLY CACHE GROUP my_cg
 AUTOREFRESH MODE INCREMENTAL INTERVAL 60 SECONDS
 FROM t1 (c1 NUMBER(22) NOT NULL PRIMARY KEY, c2 DATE, c3 VARCHAR(30));

Command> LOAD CACHE GROUP my_cg COMMIT EVERY 100 ROWS PARALLEL 4;
Command> ALTER CACHE GROUP my_cg SET AUTOREFRESH STATE PAUSED;

• Alternatively, wait to load the cache group tables after the ttCWAdmin -start as
described in Load Cache Groups. The data will be replicated to the standby
database and any subscriber databases.

Create System DSN Files on Other Hosts
On all hosts that are to be included in the cluster, create the system DSN
(sys.odbc.ini) files.

Chapter 8
Creating and Initializing a Cluster

8-8

The DataStore attribute and the Data Source Name must be the same as the entry name for
the cluster.oracle.ini file. See Configuring Oracle Clusterware Management With the
cluster.oracle.ini File.

Create a cluster.oracle.ini File
Create a cluster.oracle.ini file as a text file.

See Configuring Oracle Clusterware Management With the cluster.oracle.ini File for details
about its contents and acceptable locations for the file.

Create the Oracle Clusterware Resources to Manage Virtual IP Addresses
Advanced availability involves configuring spare master or subscriber hosts that are idle until
needed to replace master or subscriber hosts (used in the active standby pair replication
scheme) that either shut down unexpectedly or experience an unrecoverable error.

This is an optional step that is only necessary if you decide to configure advanced availability.

If you are planning on providing additional master or subscriber hosts for advanced
availability, then you need to configure virtual IP addresses (one for each master host and
subscriber actively used in the active standby pair). See Configuring Advanced Availability for
more details on how many virtual IP addresses should be created.

In this case, perform the following:

1. Designate (or create) new virtual IP addresses on the network that are to be used solely
for managing multiple hosts in a TimesTen replication environment managed by Oracle
Clusterware.

2. Configure these VIP addresses for use to manage multiple hosts for advanced availability
in the cluster.oracle.ini file, as described in Configuring Advanced Availability.

3. Create the Oracle Clusterware resources that manage these VIP addresses by running
the ttCWAdmin -createVIPs command as the root user on any host in the cluster.

For example:

ttCWAdmin -createVIPs -dsn myDSN

The VIP address names created by this command start with network_ followed by the
TimesTen instance name, TimesTen instance administrator, and the DSN. Whereas, the
VIP addresses created for use by Oracle Clusterware are prefixed with ora.

Chapter 8
Creating and Initializing a Cluster

8-9

Note:

You must run the ttCWAdmin -createVIPs command before the
ttCWAdmin -create command. If you decide that you want to use VIP
addresses for advanced availability after you run the ttCWAdmin -create
command, you must perform the following:

a. Run ttCWadmin -drop to drop the active standby pair replication
scheme.

b. Add VIP addresses into cluster.oracle.ini file.

c. Run ttCWadmin -createVIPs to create the resources to manage the
VIP addresses.

d. Run ttCWAdmin -create to create the active standby pair replication
scheme managed by Oracle Clusterware.

Once created, the only way to drop the Oracle Clusterware resources that manage the
VIP addresses is to run the ttCWAdmin -dropVIPs command. Before you can drop the
virtual IP addresses, you must first run the ttCWAdmin -drop command.

The following is an example of how to drop the virtual IP addresses:

ttCWAdmin -dropVIPs -dsn myDSN

For an example of when to use the ttCWAdmin -dropVIPs command, see Removing
an Active Standby Pair From a Cluster.

Create an Active Standby Pair Replication Scheme
Create an active standby pair replication scheme by running the ttCWAdmin -create
command on any host in the cluster.

Note:

The cluster.oracle.ini file contains the configuration needed to perform
the ttCWAdmin -create command and so must reachable by the ttCWAdmin
executable. See Configuring Oracle Clusterware Management With the
cluster.oracle.ini File.

For example:

ttCWAdmin -create -dsn myDSN

The ttCWAdmin -create command prompts for the following:

• Prompts for the name of a TimesTen user with ADMIN privileges. If cache groups
are being managed by Oracle Clusterware, enter the TimesTen cache
administration user name.

• Prompts for the TimesTen password for the previously entered user name.

Chapter 8
Creating and Initializing a Cluster

8-10

• If cache groups are being used, prompts for the password for the Oracle cache
administration user. This password is provided in the OraclePWD connection attribute
when the cache administration user connects.

• Prompts for a random string used to encrypt the above information.

If you want to specify the path and name of a file to be used as the cluster.oracle.ini file,
use the -ttclusterini option of the ttCWAdmin -create command.

ttCWAdmin -create -dsn myDSN -ttclusterini path/to/cluster/mycluster.ini

To drop the active standby pair, use the ttCWAdmin -drop command, as follows:

ttCWAdmin -drop -dsn myDSN

Note:

If your application connects to the TimesTen database using the virtual IP address,
then this connection drops with the ttCWAdmin -drop command, since the virtual IP
address is managed by Oracle Clusterware. However, if your application connects
to the TimesTen database using the host name, the connection is not dropped.

For examples showing the sequence in which to use the ttCWAdmin -create and ttCWAdmin
-drop commands, see Managing Active Standby Pairs in a Cluster and Managing Read-Only
Subscribers in the Active Standby Pair.

Start the Active Standby Pair and the Applications
Start the cluster with the active standby pair replication scheme by running the ttCWAdmin -
start command on any host.

This starts the cache agent (if not already started) and replication agent on the active
database, performs the duplicate to create the standby database (and any subscriber
databases), and starts the cache agent and replication agent on the standby (and any
subscribers).

If you do not specify -noApp option, the applications are also started. If you do specify -noApp
option, then you can start and stop the applications with the -startApps and -stopApps
options respectively.

For example:

ttCWAdmin -start -dsn myDSN

This command starts the following processes for the active standby pair:

• TimesTen daemon monitorttCRSMaster
• Active service ttCRSActiveService
• Standby service ttCRSsubservice
• Monitor for application AppName

The following example starts the cache and replication agents, but does not start the
applications because of the inclusion of the -noapp option:

Chapter 8
Creating and Initializing a Cluster

8-11

ttCWAdmin -start -noapp -dsn myDSN

To start and stop applications, use the ttCWAdmin -startApps and -stopApps
commands as shown below:

ttCWAdmin -startapps -dsn myDSN

ttCWAdmin -stopapps -dsn myDSN

To stop the TimesTen database monitor (ttCRSMaster), cache agent and replication
agent and disconnect the application from both databases, run the ttCWAdmin -stop
command.

ttCWAdmin -stop -dsn myDSN

Note:

If your application connects to the TimesTen database using a virtual IP
address, then this connection drops with the ttCWAdmin -stop command,
since the virtual IP address is managed by Oracle Clusterware. However, if
your application connects to the TimesTen database using the host name,
the connection is not dropped; however, replication to the standby does not
occur.

See Managing Active Standby Pairs in a Cluster and Managing Read-Only
Subscribers in the Active Standby Pair for examples showing the sequence in which to
use the ttCWAdmin -start and -stop commands.

Load Cache Groups
If the active standby pair includes cache groups and you have not already loaded the
cache group use the LOAD CACHE GROUP statement to load the cache group tables from
the Oracle database tables.

See Create and Populate a TimesTen Database on One Host.

For more information on when to load cache groups, see Create and Populate a
TimesTen Database on One Host.

Include More Than One Active Standby Pair in a Cluster
If you want to use Oracle Clusterware to manage more than one active standby pair in
a cluster, include additional configuration in the cluster.oracle.ini file.

Oracle Clusterware can only manage more than one active standby pair in a cluster if
all TimesTen databases are a part of the same TimesTen instance on a single host.

For example, the following cluster.oracle.ini file contains configuration information
for two active standby pair replication schemes on the same host:

Chapter 8
Creating and Initializing a Cluster

8-12

Note:

See TimesTen Configuration Attributes for Oracle Clusterware.

[advancedSubscriberDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0

[advSub2DSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
MasterVIP=192.168.1.4, 192.168.1.5
SubscriberVIP=192.168.1.6
VIPInterface=eth0
VIPNetMask=255.255.255.0

Perform these tasks for additional replication schemes:

1. Create and populate the databases.

2. Create the virtual IP addresses. Use the ttCWAdmin -createVIPs command.

3. Create the active standby pair replication scheme. Use the ttCWAdmin -create
command.

4. Start the active standby pair. Use the ttCWAdmin -start command.

Configure an Oracle Database as a Disaster Recovery Subscriber
You can create an active standby pair on the primary site with an Oracle database as a
remote disaster recovery subscriber.

See Using a Disaster Recovery Subscriber in an Active Standby Pair.

Oracle Clusterware manages the active standby pair, but does not manage the disaster
recovery subscriber. The user must explicitly switch to use the remote site if the primary site
fails.

To use Oracle Clusterware to manage an active standby pair that has a remote disaster
recovery subscriber, perform these tasks:

1. Use the RepDDL or RemoteSubscriberHosts Clusterware attribute to provide information
about the remote disaster recovery subscriber. For example:

[advancedDRsubDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
RemoteSubscriberHosts=host6
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0
CacheConnect=y

Chapter 8
Creating and Initializing a Cluster

8-13

2. Use ttCWAdmin -create to create the active standby pair replication scheme on
the primary site. This does not create the disaster recovery subscriber.

3. Use ttCWAdmin -start to start the active standby pair replication scheme.

4. Load the cache groups that are replicated by the active standby pair.

5. Set up the disaster recovery subscriber using the procedure in Rolling Out a
Disaster Recovery Subscriber.

Configure a Read-Only Subscriber That Is Not Managed by Oracle
Clusterware

You can include a read-only TimesTen subscriber database that is not managed by
Oracle Clusterware.

Perform these tasks:

1. Include the RemoteSubscriberHosts Clusterware attribute in the cluster.oracle.ini
file. For example:

[advancedROsubDSN]
MasterHosts=host1,host2,host3
RemoteSubscriberHosts=host6
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0

2. Use ttCWAdmin -create to create the active standby pair replication scheme on
the primary site.

3. Use ttCWAdmin -start to start the active standby pair replication scheme. This
does not create the read-only subscriber.

4. Use the ttRepStateGet built-in procedure to verify that the state of the standby
database is STANDBY.

5. On the subscriber host, use ttRepAdmin -duplicate option to duplicate the
standby database to the read-only subscriber. See Duplicating a Database.

6. Start the replication agent on the subscriber host.

See Adding or Dropping a Read-Only Subscriber Not Managed by Oracle Clusterware
and Rebuilding a Read-Only Subscriber Not Managed by Oracle Clusterware.

Configuring Oracle Clusterware Management With the
cluster.oracle.ini File

The information in the cluster.oracle.ini file is used to create Oracle Clusterware
resources that manage TimesTen databases, TimesTen processes, user applications,
and virtual IP addresses. Create an initialization file called cluster.oracle.ini as a
text file.

Chapter 8
Configuring Oracle Clusterware Management With the cluster.oracle.ini File

8-14

Note:

See TimesTen Configuration Attributes for Oracle Clusterware for details on all of
the attributes that can be used in the cluster.oracle.ini file.

The ttCWAdmin -create command reads this file for configuration information, so the location
of the text file must be reachable and readable by ttCWAdmin. The ttCWAdmin utility is used to
administer TimesTen active standby pairs in a cluster that is managed by Oracle Clusterware.

It is recommended that you place this file in the TimesTen daemon home directory on the
host for the active database. However, you can place this file in any directory or shared drive
on the same host as where you run the ttCWAdmin -create command.

The default location for this file is in the timesten_home/conf directory. If you place this file in
another location, identify the path of the location with the -ttclusterini option.

The entry name in the cluster.oracle.ini file must be the same as an existing system DSN
in the sys.odbc.ini file. For example, [basicDSN] is the entry name in the
cluster.oracle.ini file described in Configuring Basic Availability. [basicDSN] must also be
the DataStore and Data Source Name data store attributes in the sys.odbc.ini files on each
host. For example, the sys.odbc.ini file for the basicDSN DSN on host1 might be:

[basicDSN]
DataStore=/path1/basicDSN
LogDir=/path1/log
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

The sys.odbc.ini file for basicDSN on host2 can have a different path, but all other attributes
should be the same:

[basicDSN]
DataStore=/path2/basicDSN
LogDir=/path2/log
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

The following sections demonstrate sample configurations of the cluster.oracle.ini file:

• Configuring Basic Availability

• Configuring Advanced Availability

• Including Cache Groups in the Active Standby Pair

• Implementing Application Failover

• Configuring for Recovery When Both Master Nodes Permanently Fail

• Using the RepDDL Attribute

Configuring Basic Availability
This example shows an active standby pair with no subscribers.

Chapter 8
Configuring Oracle Clusterware Management With the cluster.oracle.ini File

8-15

The host for the active database is the first MasterHost defined (host1) and the
standby database is the second MasterHost in the list (host2). Each host in the list is
delimited by commas. You can include spaces for readability, if desired.

[basicDSN]
MasterHosts=host1,host2

The following is an example of a cluster.oracle.ini file for an active standby pair
with one subscriber on host3:

[basicSubscriberDSN]
MasterHosts=host1,host2
SubscriberHosts=host3

Configuring Advanced Availability
Advanced availability involves configuring spare master or subscriber hosts that are
idle until needed to replace master or subscriber hosts (used in the active standby pair
replication scheme) that either shut down unexpectedly or experience an
unrecoverable error.

As mentioned in Configuring Basic Availability, the MasterHosts attribute in the
cluster.oracle.ini file configures the hosts that are used as the master nodes. For
an active standby pair replication scheme, you only need two master hosts (one to
become the active and one to become the standby). In the event of a failure, the host
that did not fail becomes the active (if not already the active) and the failed host is
recovered and becomes the standby. However, if the failed host cannot be recovered
and if you specified more than two hosts as master hosts in the cluster.oracle.ini
file, then the next master host in the list can be instantiated to take the place of an
unrecoverable master host.

For example, the following shows a configuration of several master hosts. The first two
master hosts (host1 and host2) become the active and the standby; the latter two
master hosts (host3 and host4) can be used to take the place of either host1 or host2
if either encounter an unrecoverable failure.

MasterHosts=host1,host2,host3,host4

When you configure more than two multiple hosts, you should also configure two
virtual IP (VIP) addresses used only by Oracle Clusterware resources that manage
TimesTen resources. With these VIP addresses, TimesTen internal processes (those
that manage replication) are isolated from any master host changes that may occur
because of an unrecoverable host error.

Note:

As described in Create the Oracle Clusterware Resources to Manage Virtual
IP Addresses, the Oracle Clusterware resource that manage these VIP
addresses (used in advanced availability) are created with the ttCWAdmin -
createVIPs command.

These VIP addresses must be different from any other VIP addresses defined for
Oracle Clusterware use or any VIP addresses that are to be used by user applications.
Furthermore, if an application does use these VIP addresses, then the application may

Chapter 8
Configuring Oracle Clusterware Management With the cluster.oracle.ini File

8-16

encounter errors when a master host fails (either recoverable or unrecoverable). These VIP
addresses cannot be used by a user application as a method for client failover or as a
method to isolate themselves if an active database and standby database switch.

Specify two VIP addresses in the MasterVIP parameter, one for each master host in the active
standby pair replication scheme. The VIP addresses specified for the TimesTen cluster must
be different from any VIP addresses already defined and used by Oracle Clusterware. In
particular, the VIP addresses that are created during the Oracle Clusterware install cannot be
used with TimesTen.

MasterVIP=192.168.1.1, 192.168.1.2

The following parameters are also associated with advanced availability in the
cluster.oracle.ini file:

• SubscriberHosts, similar to MasterHosts lists the host names that can contain subscriber
databases.

• SubscriberVIP, similar to MasterVIP, provides VIP addresses that can be used by TimesTen
internally to manage a subscriber node.

• VIPInterface is the name of the public network adaptor.

• VIPNetMask defines the netmask of the virtual IP addresses.

In the following example, the hosts for the active database and the standby database are
host1 and host2. The hosts available for instantiation in case of an unrecoverable error are
host3 and host4. There are no subscriber nodes. VIPInterface is the name of the public
network adaptor. VIPNetMask defines the netmask of the virtual IP addresses.

[advancedDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0

The following example configures a single subscriber on host4. There is one extra host
defined in SubscriberHosts that can be used for failover of the master databases and one
extra node that can be used for failover of the subscriber database. MasterVIP and
SubscriberVIP specify the virtual IP addresses defined for the master and subscriber hosts.

[advancedSubscriberDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4,host5
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0

Ensure that the extra master nodes:

• Have TimesTen installed

• Have the direct mode application installed if this is part of the configuration. See
Implementing Application Failover.

Including Cache Groups in the Active Standby Pair
If the active standby pair replicates one or more AWT or read-only cache groups, set the
CacheConnect attribute to y.

Chapter 8
Configuring Oracle Clusterware Management With the cluster.oracle.ini File

8-17

This example sets the CacheConnect attribute to y. The example specifies an active
standby pair with one subscriber in an advanced availability configuration. The active
standby pair replicates one or more cache groups.

[advancedCacheDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0
CacheConnect=y

Implementing Application Failover
TimesTen integration with Oracle Clusterware can facilitate the failover of a TimesTen
application that is linked to any of the databases in the active standby pair.

TimesTen can manage both direct and client/server mode applications that are on the
same host as Oracle Clusterware and TimesTen.

The required attributes in the cluster.oracle.ini file for failing over a TimesTen
application are as follows:

• AppName - Name of the application to be managed by Oracle Clusterware

• AppStartCmd - Command line for starting the application

• AppStopCmd - Command line for stopping the application

• AppCheckCmd - Command line for running an application that checks the status of
the application specified by AppName

• AppType - Determines the database to which the application is linked. The possible
values are Active, Standby, DualMaster, Subscriber (all) and
Subscriber[index].

There are also several optional attributes that you can configure, such as
AppFailureThreshold, DatabaseFailoverDelay, and AppScriptTimeout. Table A-3 lists and
describes all optional attributes and their default values.

The TimesTen application monitor process uses the user-supplied script or program
specified by AppCheckCmd to monitor the application. The script that checks the status
of the application must be written to return 0 for success and a nonzero number for
failure. When Oracle Clusterware detects a nonzero value, it takes action to recover
the failed application.

This example shows advanced availability configured for an active standby pair with
no subscribers. The reader application is an application that queries the data in the
standby database. AppStartCmd, AppStopCmd and AppCheckCmd can include arguments
such as start, stop and check commands.

Note:

Do not use quotes in the values for AppStartCmd, AppStopCmd and
AppCheckCmd.

Chapter 8
Configuring Oracle Clusterware Management With the cluster.oracle.ini File

8-18

[appDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
AppName=reader
AppType=Standby
AppStartCmd=/mycluster/reader/app_start.sh start
AppStopCmd=/mycluster/reader/app_stop.sh stop
AppCheckCmd=/mycluster/reader/app_check.sh check

You can configure failover for more than one application. Use AppName to name the
application and provide values for AppType, AppStartCmd, AppStopCmd and AppCheckCmd
immediately following the AppName attribute. You can include blank lines for readability. For
example:

[app2DSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0

AppName=reader
AppType=Standby
AppStartCmd=/mycluster/reader/app_start.sh
AppStopCmd=/mycluster/reader/app_stop.sh
AppCheckCmd=/mycluster/reader/app_check.sh

AppName=update
AppType=Active
AppStartCmd=/mycluster/update/app2_start.sh
AppStopCmd=/mycluster/update/app2_stop.sh
AppCheckCmd=/mycluster/update/app2_check.sh

If you set AppType to DualMaster, the application starts on both the active and the standby
hosts. The failure of the application on the active host causes the active database and all
other applications on the host to fail over to the standby host. You can configure the failure
interval, the number of restart attempts, and the uptime threshold by setting the
AppFailureInterval, AppRestartAttempts and AppUptimeThreshold attributes. These attributes have
default values. For example:

[appDualDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
AppName=update
AppType=DualMaster
AppStartCmd=/mycluster/update/app2_start.sh
AppStopCmd=/mycluster/update/app2_stop.sh
AppCheckCmd=/mycluster/update/app2_check.sh
AppRestartAttempts=5
AppUptimeThreshold=300
AppFailureInterval=30

Chapter 8
Configuring Oracle Clusterware Management With the cluster.oracle.ini File

8-19

Note:

See TimesTen Configuration Attributes for Oracle Clusterware.

Configuring for Recovery When Both Master Nodes Permanently Fail
If both master nodes fail and then come back up, Oracle Clusterware can
automatically recover the master databases.

Automatic recovery of a temporary dual failure requires the following:

• RETURN TWOSAFE is not specified for the active standby pair.

• AutoRecover is set to y.

• RepBackupDir specifies a directory on shared storage.

• RepBackupPeriod is set to a value greater than 0.

If both master nodes fail permanently, Oracle Clusterware can automatically recover
the master databases to two new nodes if the following is true:

• Advanced availability is configured (virtual IP addresses and at least four hosts).

• The active standby pair does not replicate cache groups.

• RETURN TWOSAFE is not specified.

• AutoRecover is set to y.

• RepBackupDir specifies a directory on shared storage.

• RepBackupPeriod must be set to a value greater than 0.

TimesTen first performs a full backup of the active database and then performs
incremental backups. You can specify the optional attribute RepFullBackupCycle to
manage when TimesTen performs subsequent full backup. By default, TimesTen
performs a full backup after every five incremental backups.

If RepBackupDir and RepBackupPeriod are configured for backups, TimesTen performs
backups for any master database that becomes active. It does not delete backups that
were performed for a database that used to be the active and has become the standby
unless the database becomes the active again. Ensure that the shared storage has
enough space for two complete database backups. The ttCWAdmin -restore
command automatically chooses the correct backup files.

Incremental backups increase the amount of log records in the transaction log files.
Ensure that the values of RepBackupPeriod and RepFullBackupCycle are small
enough to prevent a large amount of log records in the transaction log file.

This example shows attribute settings for automatic recovery.

[autorecoveryDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
AutoRecover=y

Chapter 8
Configuring Oracle Clusterware Management With the cluster.oracle.ini File

8-20

RepBackupDir=/shared_drive/dsbackup
RepBackupPeriod=3600

If you have cache groups in the active standby pair or prefer to recover manually from failure
of both master hosts, ensure that AutoRecover is set to n (the default). Manual recovery
requires the following:

• RepBackupDir specifies a directory on shared storage

• RepBackupPeriod must be set to a value greater than 0
This example shows attribute settings for manual recovery. The default value for AutoRecover
is n, so it is not included in the file.

[manrecoveryDSN]
MasterHosts=host1,host2,host3
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
RepBackupDir=/shared_drive/dsbackup
RepBackupPeriod=3600

Using the RepDDL Attribute
The RepDDL attribute represents the SQL statement that creates the active standby pair.

The RepDDL attribute is optional. You can use it to exclude tables, cache groups and
sequences from the active standby pair.

If you include RepDDL in the cluster.oracle.ini file, do not specify
ReturnServiceAttribute, MasterStoreAttribute or SubscriberStoreAttribute in the
cluster.oracle.ini file. Include those replication settings in the RepDDL attribute.

When you specify a value for RepDDL, use the <DSN> macro for the database file name prefix.
Use the <MASTERHOST[1]> and <MASTERHOST[2]> macros to specify the master host names.
TimesTen substitutes the correct values from the MasterHosts or MasterVIP attributes,
depending on whether your configuration uses virtual IP addresses. Similarly, use the
<SUBSCRIBERHOST[n]> macro to specify subscriber host names, where n is a number from 1
to the total number of SubscriberHosts attribute values or 1 to the total number of
SubscriberVIP attribute values if virtual IP addresses are used.

Use the RepDDL attribute to exclude tables, cache groups, and sequences from the active
standby pair:

[excludeDSN]
MasterHosts=host1,host2,host3,host4
SubscriberHosts=host5,host6
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0
RepDDL=CREATE ACTIVE STANDBY PAIR \
<DSN> ON <MASTERHOST[1]>, <DSN> ON <MASTERHOST[2]>
SUBSCRIBER <DSN> ON <SUBSCRIBERHOST[1]>\
EXCLUDE TABLE pat.salaries, \
EXCLUDE CACHE GROUP terry.salupdate, \
EXCLUDE SEQUENCE ttuser.empcount

The replication agent transmitter obtains route information as follows, in order of priority:

Chapter 8
Configuring Oracle Clusterware Management With the cluster.oracle.ini File

8-21

1. From the ROUTE clause in the RepDDL setting, if a ROUTE clause is specified. Do not
specify a ROUTE clause if you are configuring advanced availability.

2. From Oracle Clusterware, which provides the private host names and public host
names of the local and remote hosts as well as the remote daemon port number.
The private host name is preferred over the public host name. If the replication
agent transmitter cannot connect to the IPC socket, it attempts to connect to the
remote daemon using information that Oracle Clusterware maintains about the
replication scheme.

3. From the active and standby hosts. If they fail, then the replication agent chooses
the connection method based on host name.

This is an example of specifying the ROUTE clause in RepDDL:

[routeDSN]
MasterHosts=host1,host2,host3,host4
RepDDL=CREATE ACTIVE STANDBY PAIR \
<DSN> ON <MASTERHOST[1]>, <DSN> ON <MASTERHOST[2]>\
ROUTE MASTER <DSN> ON <MASTERHOST[1]> SUBSCRIBER <DSN> ON <MASTERHOST[2]>\
MASTERIP "192.168.1.2" PRIORITY 1\
SUBSCRIBERIP "192.168.1.3" PRIORITY 1\
MASTERIP "10.0.0.1" PRIORITY 2\
SUBSCRIBERIP "10.0.0.2" PRIORITY 2\
MASTERIP "140.87.11.203" PRIORITY 3\
SUBSCRIBERIP "140.87.11.204" PRIORITY 3\
ROUTE MASTER <DSN> ON <MASTERHOST[2]> SUBSCRIBER <DSN> ON <MASTERHOST[1]>\
MASTERIP "192.168.1.3" PRIORITY 1\
SUBSCRIBERIP "192.168.1.2" PRIORITY 1\
MASTERIP "10.0.0.2" PRIORITY 2\
SUBSCRIBERIP "10.0.0.1" PRIORITY 2\
MASTERIP "140.87.11.204" PRIORITY 3\
SUBSCRIBERIP "140.87.11.203" PRIORITY 3\

Monitoring Cluster Status
You can retrieve cluster status and message log files.

The following sections describe how to retrieve the status of the cluster:

• Obtaining Cluster Status

• Message Log Files

Obtaining Cluster Status
The ttCWAdmin -status command reports information about all of the active standby
pairs in a TimesTen instance that are managed by the same instance administrator.

If you specify the DSN, the utility reports information for the active standby pair with
that DSN.

When you run the ttCWAdmin -status command after you have created an active
standby pair replication scheme but have not yet started replication, the status
appears as follows:

% ttCWAdmin -status
TimesTen Cluster status report as of Thu Nov 11 13:54:35 2010

==

Chapter 8
Monitoring Cluster Status

8-22

TimesTen daemon monitors:
Host:HOST1 Status: online
Host:HOST2 Status: online

==
==
TimesTen Cluster agents
Host:HOST1 Status: online
Host:HOST2 Status: online

==

Status of Cluster related to DSN MYDSN:
==
1. Status of Cluster monitoring components:
Monitor Process for Active datastore:NOT RUNNING
Monitor Process for Standby datastore:NOT RUNNING
Monitor Process for Master Datastore 1 on Host host1: NOT RUNNING
Monitor Process for Master Datastore 2 on Host host2: NOT RUNNING

2.Status of Datastores comprising the cluster
Master Datastore 1:
Host:host1
Status:AVAILABLE
State:ACTIVE
Master Datastore 2:
Host:host2
Status:UNAVAILABLE
State:UNKNOWN
==
The cluster containing the replicated DSN is offline

After you have started the replication scheme and the active database is running but the
standby database is not yet running, ttCWAdmin -status returns:

% ttCWAdmin -status
TimesTen Cluster status report as of Thu Nov 11 13:58:25 2010

==
TimesTen daemon monitors:
Host:HOST1 Status: online
Host:HOST2 Status: online

==
==
TimesTen Cluster agents
Host:HOST1 Status: online
Host:HOST2 Status: online

==

Status of Cluster related to DSN MYDSN:
==
1. Status of Cluster monitoring components:
Monitor Process for Active datastore:RUNNING on Host host1
Monitor Process for Standby datastore:RUNNING on Host host1
Monitor Process for Master Datastore 1 on Host host1: RUNNING
Monitor Process for Master Datastore 2 on Host host2: RUNNING

2.Status of Datastores comprising the cluster
Master Datastore 1:

Chapter 8
Monitoring Cluster Status

8-23

Host:host1
Status:AVAILABLE
State:ACTIVE
Master Datastore 2:
Host:host2
Status:AVAILABLE
State:IDLE
==
The cluster containing the replicated DSN is online

After you have started the replication scheme and the active database and the standby
database are both running, ttCWAdmin -status returns:

% ttCWAdmin -status
TimesTen Cluster status report as of Thu Nov 11 13:59:20 2010

==
TimesTen daemon monitors:
Host:HOST1 Status: online
Host:HOST2 Status: online

==
==
TimesTen Cluster agents
Host:HOST1 Status: online
Host:HOST2 Status: online

==

Status of Cluster related to DSN MYDSN:
==
1. Status of Cluster monitoring components:
Monitor Process for Active datastore:RUNNING on Host host1
Monitor Process for Standby datastore:RUNNING on Host host2
Monitor Process for Master Datastore 1 on Host host1: RUNNING
Monitor Process for Master Datastore 2 on Host host2: RUNNING

2.Status of Datastores comprising the cluster
Master Datastore 1:
Host:host1
Status:AVAILABLE
State:ACTIVE
Master Datastore 2:
Host:host2
Status:AVAILABLE
State:STANDBY
==
The cluster containing the replicated DSN is online

Message Log Files
The monitor processes report events and errors to the ttcwerrors.log and
ttcwmsg.log files.

The files are located in the daemon_home/info directory. The default size of these files
is the same as the default maximum size of the user log. The maximum number of log
files is the same as the default number of files for the user log. When the maximum
number of files has been written, additional errors and messages overwrite the files,
beginning with the oldest file.

Chapter 8
Monitoring Cluster Status

8-24

For the default values for number of log files and log file size, see Error, Warning, and
Informational Messages in Oracle TimesTen In-Memory Database Operations Guide.

Shutting Down a Cluster
Perform the following to gracefully shut down a cluster:

1. Stop the TimesTen daemon monitor (ttCRSmaster), cache agent and replication agent
and unload the database (if not in use) with the ttCWAdmin -stop command:

ttCWAdmin -stop -dsn myDSN
2. Drop the active standby pair with the ttCWAdmin -drop command. This command also

deregisters the TimesTen daemon monitor (ttCRSmaster) resource from Clusterware.

ttCWAdmin -drop -dsn myDSN
3. Stop the TimesTen cluster agent (ttCRSAgent) and TimesTen cluster daemon monitor

(ttCRSDaemon) on all hosts with the ttCWAdmin -shutdown command:

ttCWAdmin -shutdown

Note:

By default, the ttCWAdmin -shutdown command shuts down the set of hosts
defined within the ttcrsagent.options file. However, you can specifically
identify the hosts you want shut down with the optional -hosts argument.

The default behavior is to deregister from Clusterware all TimesTen processes
that are registered as Clusterware resources for cluster agents (ttCRSAgent)
and TimesTen daemon monitors (ttCRSdaemon). If the optional -noderegister
argument is included, TimesTen Clusterware resources will not be deregistered.

4. Prevent the automatic startup of Oracle Clusterware when the server boots by running
the Oracle Clusterware crsctl disable crs command as root or OS administrator:

crsctl disable crs
5. Optionally, you can gracefully shutdown each TimesTen database on the active, standby

and subscriber hosts by disconnecting all applications and then running the following
command on each host:

ttDaemonAdmin -stop

Recovering From Failures
Oracle Clusterware can recover automatically from many kinds of failures.

The following sections describe several failure scenarios and how Oracle Clusterware
manages the failures.

• How TimesTen Performs Recovery When Oracle Clusterware is Configured

• When an Active Database or Its Host Fails

• When a Standby Database or Its Host Fails

Chapter 8
Shutting Down a Cluster

8-25

• When Read-Only Subscribers or Their Hosts Fail

• When Failures Occur on Both Master Nodes

• When More Than Two Master Hosts Fail

• Perform a Forced Switchover After Failure of the Active Database or Host

How TimesTen Performs Recovery When Oracle Clusterware is
Configured

The TimesTen database monitor (the ttCRSmaster process) performs recovery.

It attempts to connect to the failed database without using the forceconnect option. If
the connection fails with error 994 ("Data store connection terminated"), the
database monitor tries to reconnect 10 times. If the connection fails with error 707
("Attempt to connect to a data store that has been manually unloaded from
RAM"), the database monitor changes the RAM policy and tries to connect again. If the
database monitor cannot connect, it returns a connection failure.

If the database monitor can connect to the database, then it performs these tasks:

• It queries the CHECKSUM column in the TTREP.REPLICATIONS replication table.

• If the value in the CHECKSUM column matches the checksum stored in the Oracle
Cluster Registry, then the database monitor verifies the role of the database. If the
role is ACTIVE, then recovery is complete.

If the role is not ACTIVE, then the database monitor queries the replication Commit
Ticket Number (CTN) in the local database and the CTN in the active database to
find out whether there are transactions that have not been replicated. If all
transactions have been replicated, then recovery is complete.

• If the checksum does not match or if some transactions have not been replicated,
then the database monitor performs a duplicate operation from the remote
database to re-create the local database.

If the database monitor fails to connect with the database because of error 8110 or
8111 (master catchup required or in progress), then it uses the forceconnect=1 option
to connect and starts master catchup. Recovery is complete when master catchup has
been completed. If master catchup fails with error 8112 ("Operation not permitted"),
then the database monitor performs a duplicate operation from the remote database.
See Automatic Catch-Up of a Failed Master Database.

If the connection fails because of other errors, then the database monitor tries to
perform a duplicate operation from the remote database.

The duplicate operation verifies that:

• The remote database is available.

• The replication agent is running.

• The remote database has the correct role. The role must be ACTIVE when the
duplicate operation is attempted for creation of a standby database. The role must
be STANDBY or ACTIVE when the duplicate operation is attempted for creation of a
read-only subscriber.

When the conditions for the duplicate operation are satisfied, the existing failed
database is destroyed and the duplicate operation starts.

Chapter 8
Recovering From Failures

8-26

When an Active Database or Its Host Fails
If there is a failure on the node where the active database resides, Oracle Clusterware
automatically changes the state of the standby database to ACTIVE. If application failover is
configured, then the application begins updating the new active database.

Figure 8-2 shows that the state of the old standby database has changed to ACTIVE and that
the application is updating the new active database.

Figure 8-2 Standby Database Becomes Active

Extra

node 1

Application

reads

Read-only

subscriber

Active

Standby

master

Shared storage

Extra

node 2

Active

master

Application

updates

Oracle Clusterware tries to restart the database or host where the failure occurred. If it is
successful, then that database becomes the standby database.

Figure 8-3 shows a cluster where the former active master becomes the standby master.

Chapter 8
Recovering From Failures

8-27

Figure 8-3 Standby Database Starts on Former Active Host

Application

updates

Extra

node 1

Application

reads

Read-only

subscriber

Active

Standby

master

Shared storage

Extra

node 2

Standby

Active

master

If the failure of the former active master is permanent and advanced availability is
configured, Oracle Clusterware starts a standby master on one of the extra nodes.

Figure 8-4 shows a cluster in which the standby master is started on one of the extra
nodes.

Chapter 8
Recovering From Failures

8-28

Figure 8-4 Standby Database Starts on Extra Host

Extra

node 1

Application

reads

Read-only

subscriber

Active

Standby

master

Shared storage

Active

master

Application

updates

Standby

master

See Perform a Forced Switchover After Failure of the Active Database or Host if you do not
want to wait for these automatic actions to occur.

When a Standby Database or Its Host Fails
If there is a failure on the standby master, Oracle Clusterware first tries to restart the
database or host. If it cannot restart the standby master on the same host and advanced
availability is configured, Oracle Clusterware starts the standby master on an extra node.

Figure 8-5 shows a cluster in which the standby master is started on one of the extra nodes.

Chapter 8
Recovering From Failures

8-29

Figure 8-5 Standby Database on New Host

Application

updates

Extra

node 1

Application

reads

Read-only

subscriber

Standby

master

Active

master

Standby

master

Shared storage

When Read-Only Subscribers or Their Hosts Fail
If there is a failure on a subscriber node, Oracle Clusterware first tries to restart the
database or host. If it cannot restart the database on the same host and advanced
availability is configured, Oracle Clusterware starts the subscriber database on an
extra node.

When Failures Occur on Both Master Nodes
There are both automatic and manual methods for recovery when failures occur on
both master nodes.

This section includes these topics:

• Automatic Recovery

• Manual Recovery for Advanced Availability

• Manual Recovery for Basic Availability

• Manual Recovery to the Same Master Nodes When Databases Are Corrupt

• Manual Recovery When RETURN TWOSAFE Is Configured

Automatic Recovery
Oracle Clusterware can achieve automatic recovery from temporary failure on both
master nodes after the nodes come back up.

Automatic recovery can occur if:

Chapter 8
Recovering From Failures

8-30

• RETURN TWOSAFE is not specified for the active standby pair.

• AutoRecover is set to y.

• RepBackupDir specifies a directory on shared storage.

• RepBackupPeriod is set to a value greater than 0.

Oracle Clusterware can achieve automatic recovery from permanent failure on both master
nodes if:

• Advanced availability is configured (virtual IP addresses and at least four hosts).

• The active standby pair does not replicate cache groups.

• RETURN TWOSAFE is not specified for the active standby pair.

• AutoRecover is set to y.

• RepBackupDir specifies a directory on shared storage.

• RepBackupPeriod is set to a value greater than 0.

See Configuring for Recovery When Both Master Nodes Permanently Fail for examples of
cluster.oracle.ini files.

Manual Recovery for Advanced Availability
This section assumes that the failed master nodes are recovered to new hosts on which
TimesTen and Oracle Clusterware are installed.

These steps use the manrecoveryDSN database and cluster.oracle.ini file for examples.

To perform manual recovery in an advanced availability configuration, perform these tasks:

1. Ensure that the TimesTen cluster agent (ttCRSAgent) is running on the local host.

ttCWAdmin -init -hosts localhost
2. Restore the backup database. Ensure that there is not already a database on the host

with the same DSN as the database you want to restore.

ttCWAdmin -restore -dsn manrecoveryDSN
3. If there are cache groups in the database, drop and re-create the cache groups.

4. If the new hosts are not already specified by MasterHosts and SubscriberHosts in the
cluster.oracle.ini file, then modify the file to include the new hosts.

These steps use manrecoveryDSN. This step is not necessary for manrecoveryDSN
because extra hosts are already specified in the cluster.oracle.ini file.

5. Re-create the active standby pair replication scheme.

ttCWAdmin -create -dsn manrecoveryDSN
6. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn manrecoveryDSN

Chapter 8
Recovering From Failures

8-31

Manual Recovery for Basic Availability
This section assumes that the failed master nodes are recovered to new hosts on
which TimesTen and Oracle Clusterware are installed.

These steps use the basicDSN database and cluster.oracle.ini file for examples.

To perform manual recovery in a basic availability configuration, perform these steps:

1. Acquire new hosts for the databases in the active standby pair.

2. Ensure that the TimesTen cluster agent (ttCRSAgent) is running on the local host.

ttCWAdmin -init -hosts localhost
3. Restore the backup database. Ensure that there is not already a database on the

host with the same DSN as the database you want to restore.

ttCWAdmin -restore -dsn basicDSN
4. If there are cache groups in the database, drop and re-create the cache groups.

5. Update the MasterHosts and SubscriberHosts entries in the cluster.oracle.ini
file. This example uses the basicDSN database. The MasterHosts entry changes
from host1 to host10. The SubscriberHosts entry changes from host2 to host20.

[basicDSN]
MasterHosts=host10,host20

6. Re-create the active standby pair replication scheme.

ttCWAdmin -create -dsn basicDSN
7. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn basicDSN

Manual Recovery to the Same Master Nodes When Databases Are Corrupt
Failures can occur on both master nodes so that the databases are corrupt. You can
recover to the same master nodes.

To recover to the same master nodes, perform the following steps:

1. Ensure that the TimesTen daemon monitor (ttCRSmaster), replication agent and
the cache agent are stopped and that applications are disconnected from both
databases. This example uses the basicDSN database.

ttCWAdmin -stop -dsn basicDSN
2. On the node where you want the new active database to reside, destroy the

databases by using the ttDestroy utility.

ttDestroy basicDSN
3. Restore the backup database.

ttCWAdmin -restore -dsn basicDSN
4. If there are cache groups in the database, drop and re-create the cache groups.

5. Re-create the active standby pair replication scheme.

ttCWAdmin -create -dsn basicDSN

Chapter 8
Recovering From Failures

8-32

6. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn basicDSN

Manual Recovery When RETURN TWOSAFE Is Configured
You can configure an active standby pair to have a return service of RETURN TWOSAFE.

You configure RETURN TWOSAFE by using the ReturnServiceAttribute Clusterware attribute in the
cluster.oracle.ini file.

This cluster.oracle.ini example includes backup configuration in case the database logs
are not available:

[basicTwosafeDSN]
MasterHosts=host1,host2
ReturnServiceAttribute=RETURN TWOSAFE
RepBackupDir=/shared_drive/dsbackup
RepBackupPeriod=3600

Perform these recovery tasks:

1. Ensure that the TimesTen daemon monitor (ttCRSmaster), replication agent and cache
agent are stopped and that applications are disconnected from both databases.

ttCWAdmin -stop -dsn basicTwosafeDSN
2. Drop the active standby pair.

ttCWAdmin -drop -dsn basicTwosafeDSN
3. Decide whether the former active or standby database is more up to date and re-create

the active standby pair using the chosen database. The command prompts you to choose
the host on which the active database resides.

ttCWAdmin -create -dsn basicTwosafeDSN

If neither database is usable, restore the database from backups.

ttCWAdmin -restore -dsn basicTwosafeDSN
4. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn basicTwosafeDSN

When More Than Two Master Hosts Fail
Approach a failure of more than two master hosts as a more extreme case of dual host
failure.

Use these guidelines:

• Address the root cause of the failure if it is something like a power outage or network
failure.

• Identify or obtain at least two healthy hosts for the active and standby databases.

• Update the MasterHosts and SubscriberHosts entries in the cluster.oracle.ini file.

• See Manual Recovery for Advanced Availability and Manual Recovery for Basic
Availability for guidelines on subsequent actions to take.

Chapter 8
Recovering From Failures

8-33

Perform a Forced Switchover After Failure of the Active Database or
Host

If you want to force a switchover to the standby database without waiting for automatic
recovery to be performed by TimesTen and Oracle Clusterware, you can write an
application that uses Oracle Clusterware commands.

Perform the following:

1. Use the crsctl stop resource command to stop the TimesTen daemon monitor
(ttCRSmaster) resource on the active database. This causes the role of the
standby database to change to active.

2. Use the crsctl start resource command to restart the ttCRSmaster resource
on the former active database. This causes the database to recover and become
the standby database.

The following example demonstrates a forced switchover from the active database on
host1 to the standby database on host2.

1. Find all TimesTen resources using the crsctl status resource command.

% crsctl status resource | grep TT
 NAME=TT_Activeservice_tt181_ttadmin_REP1
 NAME=TT_Agent_tt181_ttadmin_HOST1
 NAME=TT_Agent_tt181_ttadmin_HOST2
 NAME=TT_App_tt181_ttadmin_REP1_updateemp
 NAME=TT_Daemon_tt181_ttadmin_HOST1
 NAME=TT_Daemon_tt181_ttadmin_HOST2
 NAME=TT_Master_tt181_ttadmin_REP1_0
 NAME=TT_Master_tt181_ttadmin_REP1_1
 NAME=TT_Subservice_tt181_ttadmin_REP1

2. Find the host where the active database resides by retrieving the status of the
ttCRSActiveService resource.

% crsctl status resource TT_Activeservice_tt181_ttadmin_REP1
 NAME=TT_Activeservice_tt181_ttadmin_REP1
 TYPE=application
 TARGET=ONLINE
 STATE=ONLINE on host1

3. There are two ttCRSmaster resources listed in the initial status report. Discover
which ttCRSmaster resource is on the same host as the active database.

% crsctl status resource TT_Master_tt181_ttadmin_REP1_0
 NAME=TT_Master_tt181_ttadmin_REP1_0
 TYPE=application
 TARGET=ONLINE
 STATE=ONLINE on host1

% crsctl status resource TT_Master_tt181_ttadmin_REP1_1
 NAME=TT_Master_tt181_ttadmin_REP1_1
 TYPE=application
 TARGET=ONLINE
 STATE=ONLINE on host2

4. Stop the ttCRSmaster resource on the host where the active database resides.

Chapter 8
Recovering From Failures

8-34

% crsctl stop resource TT_Master_tt181_ttadmin_REP1_0
 CRS-2673: Attempting to stop 'TT_Master_tt181_ttadmin_REP1_0'
 on 'host1'
 CRS-2677: Stop of 'TT_Master_tt181_ttadmin_REP1_0' on
 'host1' succeeded

5. Restart the ttCRSmaster resource on the former active database.

% crsctl start resource TT_Master_tt181_ttadmin_REP1_0
 CRS-2672: Attempting to start 'TT_Master_tt181_ttadmin_REP1_0'
 on 'host1'
 CRS-2676: Start of 'TT_Master_tt181_ttadmin_REP1_0' on
 'host1' succeeded

6. Confirm that the forced switchover succeeds by checking where the active service
ttCRSActiveService and standby service ttCRSsubservice resources are located.

% crsctl status resource TT_Activeservice_tt181_ttadmin_REP1
 NAME=TT_Activeservice_tt181_ttadmin_REP1
 TYPE=application
 TARGET=ONLINE
 STATE=ONLINE on host2

% crsctl status resource TT_Subservice_tt181_ttadmin_REP1
 NAME=TT_Subservice_tt181_ttadmin_REP1
 TYPE=application
 TARGET=ONLINE
 STATE=ONLINE on host1

See the Oracle Clusterware Administration and Deployment Guide in the Oracle Database
documentation for more information about the crsctl start resource and crsctl stop
resource commands.

Clusterware Management
There are certain procedures for managing clusterware when used in conjunction with
TimesTen.

This section includes the following topics:

• Changing User Names or Passwords When Using Oracle Clusterware

• Managing Hosts in the Cluster

• Managing Active Standby Pairs in a Cluster

• Managing Read-Only Subscribers in the Active Standby Pair

• Reversing the Roles of the Master Databases

• Modifying Connection Attribute Values

• Managing the TimesTen Database RAM Policy

• Changing the Schema

• Making Schema Changes to Cache Groups

• Moving a Database to a Different Host

• Performing a Rolling Upgrade of Oracle Clusterware Software

• Upgrading TimesTen When Using Oracle Clusterware

• Performing Host or Network Maintenance

Chapter 8
Clusterware Management

8-35

Changing User Names or Passwords When Using Oracle Clusterware
When you create the active standby pair replication scheme with the ttCWAdmin -
create command, Oracle Clusterware prompts for the required user names and
passwords in order to manage the TimesTen environment.

Oracle Clusterware stores these user names and passwords. After modifying any user
name or password, you must run the ttCWAdmin -reauthenticate command to
enable Oracle Clusterware to store these new user names and passwords.

1. Ensure that the DDLReplicationLevel connection attribute is set to 3. This value
replicates changes to the user names or passwords on the active database to the
standby database.

2. Modify any of the user names or passwords in the same manner (and with the
same restrictions) as described in Changing User Names or Passwords Used by
Replication.

3. Ensure that all password changes are replicated to the standby database by
calling the ttRepSubscriberWait built-in procedure (or the ttRepAdmin -wait
command) on the active database using the DSN and host of the standby
database. For example, to ensure that all transactions are replicated to the
master2 standby database on the host2 host:

CALL ttRepSubscriberWait(NULL, NULL, 'master2', 'host2', -1);
4. Store the new passwords in Oracle Clusterware by running the ttCWAdmin -

reauthenticate command.

ttCWAdmin -reauthenticate -dsn myDSN

This command prompts for the same information as requested for the ttCWAdmin
-create command, which is discussed in Create an Active Standby Pair
Replication Scheme.

Managing Hosts in the Cluster
The following sections describe how to add or remove hosts when using a cluster.

• Adding a Host to the Cluster

• Removing a Host From the Cluster

Adding a Host to the Cluster
Adding a host requires that the cluster be configured for advanced availability.

The examples in this section use the advancedSubscriberDSN.

To add two spare master hosts to a cluster, enter a command similar to the following:

ttCWAdmin -addMasterHosts -hosts "host8,host9" -dsn advancedSubscriberDSN

To add a spare subscriber host to a cluster, enter a command similar to the following:

ttCWAdmin -addSubscriberHosts -hosts "subhost1" -dsn advancedSubscriberDSN

Chapter 8
Clusterware Management

8-36

Removing a Host From the Cluster
Removing a host from the cluster requires that the cluster be configured for advanced
availability.

MasterHosts must list more than two hosts if one of the master hosts is to be removed.
SubscriberHosts must list at least one more host than the number of subscriber databases if
one of the subscriber hosts is to be removed.

The examples in this section use the advancedSubscriberDSN.

To remove two spare master host from the cluster, enter a command similar to the following:

ttCWAdmin -delMasterHosts "host8,host9" -dsn advancedSubscriberDSN

To remove a spare subscriber hosts from the cluster, enter a command similar to the
following:

ttCWAdmin -delSubscriberHosts "subhost1" -dsn advancedSubscriberDSN

Managing Active Standby Pairs in a Cluster
The following sections describe how to add or remove an active standby pair to a cluster.

• Adding an Active Standby Pair to a Cluster

• Removing an Active Standby Pair From a Cluster

Adding an Active Standby Pair to a Cluster
You can add an active standby pair (with or without subscribers) to a cluster that is already
managing an active standby pair.

1. Create and populate a database on the host where you intend the active database to
reside initially. See Create and Populate a TimesTen Database on One Host.

2. Modify the cluster.oracle.ini file. This example adds advSub2DSN to the
cluster.oracle.ini file that already contains the configuration for
advancedSubscriberDSN. The new active standby pair is on different hosts from the
original active standby pair.

[advancedSubscriberDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0

[advSub2DSN]
MasterHosts=host6,host7,host8
SubscriberHosts=host9, host10
MasterVIP=192.168.1.4, 192.168.1.5
SubscriberVIP=192.168.1.6
VIPInterface=eth0
VIPNetMask=255.255.255.0

3. Create new virtual IP addresses as the root user.

Chapter 8
Clusterware Management

8-37

ttCWAdmin -createVIPs -dsn advSub2DSN
4. Create the new active standby pair replication scheme.

ttCWAdmin -create -dsn advSub2DSN
5. Start the new active standby pair replication scheme.

ttCWAdmin -start -dsn advSub2DSN

Removing an Active Standby Pair From a Cluster
You can remove an active standby pair (with or without subscribers) from a cluster.

1. Stop the replication agents on all databases in the active standby pair. This
example uses advSub2DSN, which was added in Adding an Active Standby Pair to
a Cluster.

ttCWAdmin -stop -dsn advSub2DSN
2. Drop the active standby replication scheme.

ttCWAdmin -drop -dsn advSub2DSN
3. Drop the virtual IP addresses for the active standby pair.

ttCWAdmin -dropVIPs -dsn advSub2DSN
4. Modify the cluster.oracle.ini file (optional). Remove the entries for advSub2DSN.

5. If you want to destroy the databases, log onto each host that was included in the
configuration for this active standby pair and use the ttDestroy utility.

ttDestroy advSub2DSN

See ttDestroy in Oracle TimesTen In-Memory Database Reference.

Managing Read-Only Subscribers in the Active Standby Pair
The following sections describe how to manage read-only subscribers in the active
standby pair that is managed by Oracle Clusterware.

• Adding a Read-Only Subscriber Managed by Oracle Clusterware

• Removing a Read-Only Subscriber Managed by Oracle Clusterware

• Adding or Dropping a Read-Only Subscriber Not Managed by Oracle Clusterware

• Rebuilding a Read-Only Subscriber Not Managed by Oracle Clusterware

Adding a Read-Only Subscriber Managed by Oracle Clusterware
To add a read-only subscriber that is to be managed by Oracle Clusterware to an
active standby pair replication scheme, perform these steps:

1. Stop the replication agents on all databases. This example uses the
advancedSubscriberDSN, which already has a subscriber and is configured for
advanced availability.

ttCWAdmin -stop -dsn advancedSubscriberDSN
2. Drop the active standby pair.

ttCWAdmin -drop -dsn advancedSubscriberDSN

Chapter 8
Clusterware Management

8-38

3. Modify the cluster.oracle.ini file.

• Add the subscriber to the SubscriberHosts attribute.

• If the cluster is configured for advanced availability, add a virtual IP address to the
SubscriberVIP attribute.

See Configuring Advanced Availability for an example using these attributes.

4. Create the active standby pair replication scheme.

ttCWAdmin -create -dsn advancedSubscriberDSN
5. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn advancedSubscriberDSN

Removing a Read-Only Subscriber Managed by Oracle Clusterware
To remove a read-only subscriber that is managed by Oracle Clusterware from an active
standby pair, perform these steps:

1. Stop the replication agents on all databases. This example uses the
advancedSubscriberDSN, which has a subscriber and is configured for advanced
availability.

ttCWAdmin -stop -dsn advancedSubscriberDSN
2. Drop the active standby pair.

ttCWAdmin -drop -dsn advancedSubscriberDSN
3. Modify the cluster.oracle.ini file.

• Remove the subscriber from the SubscriberHosts attribute or remove the attribute
altogether if there are no subscribers left in the active standby pair.

• Remove a virtual IP from the SubscriberVIP attribute or remove the attribute
altogether if there are no subscribers left in the active standby pair.

4. Create the active standby pair replication scheme.

ttCWAdmin -create -dsn advancedSubscriberDSN
5. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn advancedSubscriberDSN

Adding or Dropping a Read-Only Subscriber Not Managed by Oracle Clusterware
You can add or drop a read-only subscriber that is not managed by Oracle Clusterware to or
from an existing active standby pair replication scheme that is managed by Oracle
Clusterware.

Using the ttCWAdmin -beginAlterSchema command enables you to add a subscriber without
dropping and re-creating the replication scheme. Oracle Clusterware does not manage the
subscriber, because it is not part of the configuration that was set up for Oracle Clusterware
management.

Perform these steps:

1. Run the ttCWAdmin -beginAlterSchema command to stop the replication agent on the
active and standby databases.

Chapter 8
Clusterware Management

8-39

2. Using ttIsql to connect to the active database, you can add or drop the
subscriber to or from the replication scheme by using an ALTER ACTIVE STANDBY
PAIR statement. For example, to add a subscriber:

ALTER ACTIVE STANDBY PAIR ADD SUBSCRIBER ROsubDSN ON host6;

To drop a subscriber:

ALTER ACTIVE STANDBY PAIR DROP SUBSCRIBER ROsubDSN ON host6;
3. Run the ttCWAdmin -endAlterSchema command that registers the altered

replication scheme and starts replication. If you are adding a subscriber, this also
initiates a duplicate to the standby database.

4. Run the ttIsql repschemes command to verify that the read-only subscriber has
been added to or dropped from the replication scheme.

5. Use the ttRepStateGet built-in procedure to verify that the state of the standby
database is STANDBY.

6. If you added a subscriber, then run ttRepAdmin -duplicate on the subscriber
host to duplicate the standby database to the read-only subscriber. See
Duplicating a Database.

7. If you added a subscriber, start the replication agent on the subscriber host.

If you added a subscriber, ensure that the read-only subscriber is included if the
cluster is dropped and re-created by adding the RemoteSubscriberHosts Oracle
Clusterware attribute for the read-only subscriber in the cluster.oracle.ini file as
described in Step 1 in Configure a Read-Only Subscriber That Is Not Managed by
Oracle Clusterware. Alternatively, if you dropped a subscriber, remove the
RemoteSubscriberHosts Oracle Clusterware attribute for the dropped subscriber in the
cluster.oracle.ini file (if it is configured).

Rebuilding a Read-Only Subscriber Not Managed by Oracle Clusterware
Perform the following tasks to destroy and rebuild a read-only subscriber that is not
managed by Oracle Clusterware:

1. Stop the replication agent on the subscriber host.

2. Use the ttDestroy utility to destroy the subscriber database.

3. On the subscriber host, use ttRepAdmin -duplicate to duplicate the standby
database to the read-only subscriber. See Duplicating a Database.

Reversing the Roles of the Master Databases
After a failover, the active and standby databases are on different hosts than they were
before the failover. You can use the -switch option of the ttCWAdmin utility to restore
the original configuration.

Optionally, you can also use the -timeout option with the -switch option to set a
timeout for the number of seconds to wait for the active and standby database switch
to complete.

For example:

ttCWAdmin -switch -dsn basicDSN

Chapter 8
Clusterware Management

8-40

Ensure that there are no open transactions before using the -switch option. If there are open
transactions, the command fails.

Note:

See ttCWAdmin in the Oracle TimesTen In-Memory Database Reference.

Figure 8-6 shows the hosts for an active standby pair. The active database resides on host A,
and the standby database resides on host B.

Figure 8-6 Hosts for an Active Standby Pair

Host A Host B

Master

database

Standby

service

Active

service

Master

database

Database

monitor

Database

monitor

Cluster

agent

Cluster

agent

The ttCWAdmin -switch command performs these tasks:

• Deactivates the TimesTen cluster agent (ttCRSAgent) on host A (the active master).

• Disables the TimesTen database monitor (ttCRSmaster) on host A.

• Calls the ttRepSubscriberWait, ttRepStop and ttRepDeactivate built-in procedures on
host A.

• Stops the active service (ttCRSActiveService) on host A and reports a failure event to
the Oracle Clusterware CRSD process.

• Enables monitoring on host A and moves the active service to host B.

• Starts the replication agent on host A, stops the standby service (ttCRSsubservice) on
host B and reports a failure event to the Oracle Clusterware CRSD process on host B.

• Starts the standby service (ttCRSsubservice) on host A.

Modifying Connection Attribute Values
When you modify connection attributes across an active standby pair with subscribers, the
connection attributes must be modified on all hosts within this configuration.

Chapter 8
Clusterware Management

8-41

Note:

You cannot modify any DATASTORE connection attributes since they are only
allowed to be set at data store creation time. For example, this procedure
can be used to change the PermSize value.

Use the ttCWAdmin -beginAlterSchema and -endAlterSchema commands to facilitate
the change of any connection attribute values on the active and standby databases
and any subscribers.

• The ttCWAdmin -beginAlterSchema command suspends the Oracle Clusterware
management and stops the replication agents on the active and standby
databases and any subscriber databases in preparation for any changes.

• After you complete all changes, the ttCWAdmin -endAlterSchema command
resumes Oracle Clusterware management and restarts all replication agents on
the active and standby databases and any subscriber databases.

Perform the following tasks when altering any connection attributes for the active
standby pair when using Oracle Clusterware:

1. Suspend Oracle Clusterware and stop all replication agents for the active and
standby databases with the ttCWAdmin -beginAlterSchema command.

The active database continues to accept requests and updates, but any changes
are not propagated to the standby database and any subscribers until the
replication agents are restarted.

The ttCWAdmin -beginAlterSchema command also changes the RAM policy
temporarily for the standby database and all subscriber databases to InUse with
RamGrace where the grace period is set for 60 seconds to enable these
databases to be unloaded by TimesTen. Once the standby and subscriber
databases are unloaded from memory, the connection attributes for these
databases can be modified.

ttCWAdmin -beginAlterSchema -dsn advancedDSN
2. Disconnect any application connections and wait for the standby and subscriber

databases to unload from memory (based on the RAM policy).

Once the standby and subscriber databases are unloaded from memory, alter any
connection attributes, such as PermSize, on the hosts for the standby and all
subscriber databases in their respective sys.odbc.ini files.

3. Resume Oracle Clusterware and restart all replication agents for the active and
standby databases with the ttCWAdmin -endAlterSchema command. The
configured RAM policy for each TimesTen database is set back to always. The
active database propagates any transactions that occurred while the standby
database and subscribers were down.

ttCWAdmin -endAlterSchema -dsn advancedDSN

Chapter 8
Clusterware Management

8-42

Note:

Wait an appropriate amount of time for all changes to propagate from the active
database to the standby database and all subscribers before performing the
next step.

The only host that has not had the connection attribute change is the active
database. You will switch the active database with the standby database so that
you can modify the connection attributes on this host.

4. Suspend all application workload and disconnect all applications on the active database.

5. Switch the active and standby databases with the ttCWAdmin -switch command.

ttCWAdmin -switch -dsn advancedDSN

Note:

See Reversing the Roles of the Master Databases.

6. Suspend Oracle Clusterware and stop all replication agents for all databases with the
ttCWAdmin -beginAlterSchema command.

The new active database may still accept requests and updates, but any changes are not
propagated to the new standby database and any subscribers.

The RAM policy changes for the new standby database (and all subscriber databases) to
inUse with RamGrace where the grace period is set for 60 seconds to enable these
databases to be unloaded by TimesTen.

ttCWAdmin -beginAlterSchema -dsn advancedDSN
7. Wait for the new standby database to unload from memory. Once unloaded, alter the

same connection attributes, such as PermSize, on the new standby database in its
sys.odbc.ini file. The connection attributes are now modified on all hosts.

8. Run the ttCWAdmin -endAlterSchema command to resume Oracle Clusterware
management and restart the replication agents on the active and standby databases. The
configured RAM policy resumes to always.

ttCWAdmin -endAlterSchema -dsn advancedDSN
9. Suspend all application workload and disconnect all applications on the active database.

10. If desired, you can switch the active and standby databases with the ttCWAdmin -switch
command to restore the active standby pair to the original configuration.

ttCWAdmin -switch -dsn advancedDSN

Managing the TimesTen Database RAM Policy
By default, the TimesTen database RAM policy is set to always when Oracle Clusterware
manages the TimesTen database. However, if you stop Oracle Clusterware management, the
TimesTen database RAM policy is set to inUse.

Chapter 8
Clusterware Management

8-43

If you no longer use Oracle Clusterware to manage TimesTen, you should set the
TimesTen RAM policy to what is appropriate for your environment. Typically, the
recommended setting is manual.

See Specifying a RAM Policy in the Oracle TimesTen In-Memory Database Operations
Guide.

Changing the Schema
When using Oracle Clusterware to manage an active standby pair, you can modify the
schema by running DDL statements as in a normal replication environment, except
that Oracle Clusterware must start and stop all replication agents, when it is necessary
to do so.

Thus, when you change the schema, note the following:

• For those DDL statements on objects that are automatically replicated, you do not
need to stop the replication agents. In this case, no further action is required, since
these DDL statements are automatically propagated and applied to the standby
database and any subscribers. The DDLReplicationLevel connection attribute
controls what DDL statements are replicated.

• For those objects that are a part of the replication scheme, but any DDL
statements processed on these objects are not replicated (these objects are listed
in Making Other Changes to an Active Standby Pair), run the Oracle Clusterware
ttCWAdmin -beginAlterSchema command on the active database, which
suspends any Oracle Clusterware management and stops the replication agents
on each node in the replication scheme. Then, run the DDL statement on the
active database in the replication scheme. Finally, run the Oracle Clusterware
ttCWAdmin -endAlterSchema command on the active database to restart all
replication agents.

Because these objects are a part of the replication scheme, but the DDL
statements are not replicated, a duplicate occurs after the ttCWAdmin -
endAlterSchema command to propagate these schema changes to the standby
database and any subscribers. This is the only scenario when a duplicate is used
to propagate the schema changes.

Follow the instructions described in Facilitating Schema Change for Oracle
Clusterware.

• For those DDL statements on objects that are not automatically replicated and are
not part of the replication scheme, run the Oracle Clusterware ttCWAdmin -
beginAlterSchema command on the active database, which suspends any Oracle
Clusterware management and stops and the replication agents on all nodes. Then,
you can synchronize all nodes by manually running these DDL statements as
indicated in Making DDL Changes in an Active Standby Pair. Finally, run the
Oracle Clusterware ttCWAdmin -endAlterSchema command on the active
database to restart all replication agents.

Follow the instructions described in Facilitating Schema Change for Oracle
Clusterware.

Chapter 8
Clusterware Management

8-44

Note:

The Making DDL Changes in an Active Standby Pair and Making Other Changes to
an Active Standby Pair sections describe which DDL statements are and are not
automatically replicated for an active standby pair. These sections also describe
what objects are a part of the replication scheme.

Facilitating Schema Change for Oracle Clusterware
Use the ttCWAdmin -beginAlterSchema and -endAlterSchema commands to facilitate a
schema change on the active and standby databases.

• The ttCWAdmin -beginAlterSchema command suspends the Oracle Clusterware
management and stops replication agents on both the active and standby databases in
preparation for any schema changes.

• After you complete all schema changes, run the ttCWAdmin -endAlterSchema command.
For those objects that are a part of the replication scheme, but any DDL statements
processed on these objects are not automatically replicated, a duplicate occurs after the
ttCWAdmin -endAlterSchema command to propagate only these schema changes to the
standby database and any subscribers. This command registers the altered replication
scheme, restarts the replication agents on the active and standby databases, and
reinstates Oracle Clusterware control.

Perform the following tasks when altering the schema of the active standby pair when using
Oracle Clusterware:

1. Suspend Oracle Clusterware and stop the replication agents on both the active and
standby databases.

ttCWAdmin -beginAlterSchema -dsn advancedDSN
2. Make any desired schema changes.

If you create, alter, or drop any objects where the DDL for these objects are not
replicated, you should also manually create, alter, or drop the same objects on the
standby database and subscribers while the replication agents are inactive to ensure that
the same objects exist on all databases in the replication scheme. For example, if you
create a materialized view on the active database, create the materialized view on the
standby and subscriber databases at this time.

3. If the object is not automatically replicated but is a part of the replication scheme, (such
as a sequence) and you want to include it in the active standby pair replication scheme,
alter the active standby pair.

ALTER ACTIVE STANDBY PAIR INCLUDE samplesequence;
4. If the object is a cache group, see Making Schema Changes to Cache Groups for

instructions to create, alter, or drop a cache group.

5. Run the ttCWAdmin -endAlterSchema command to resume Oracle Clusterware and
restart the replication agents on the active and standby databases. If you modified
objects that are a part of the replication scheme, but any DDL statements processed on
these objects are not automatically replicated, a duplicate occurs after the ttCWAdmin -
endAlterSchema command to propagate only these schema changes to the standby
database and any subscribers.

Chapter 8
Clusterware Management

8-45

ttCWAdmin -endAlterSchema -dsn advancedDSN

Making Schema Changes to Cache Groups
Use the ttCWAdmin -beginAlterSchema and -endAlterSchema commands to facilitate
the schema changes on cache groups within Oracle Clusterware.

• Add a Cache Group

• Drop a Cache Group

• Change an Existing Cache Group

Add a Cache Group
You can add a cache group on the active database of the active standby pair.

Perform these steps on the active database of the active standby pair.

1. Suspend Oracle Clusterware management and stop the replication agents with the
ttCWAdmin -beginAlterSchema command.

ttCWAdmin -beginAlterSchema -dsn advancedDSN
2. Create the cache group.

3. If the cache group is a read-only cache group, alter the active standby pair to
include the cache group.

ALTER ACTIVE STANDBY PAIR INCLUDE CACHE GROUP samplecachegroup;
4. Resume Oracle Clusterware and start the replication agents by running the

ttCWAdmin -endAlterSchema command. Since you added a cache group object, a
duplicate occurs to propagate these schema changes to the standby database.

ttCWAdmin -endAlterSchema -dsn advancedDSN
You can load the cache group at any time after you create the cache group.

Drop a Cache Group
Dropping a cache group within a Clusterware environment requires several steps.

Perform these steps to drop a cache group.

1. Unload the cache group.

UNLOAD CACHE GROUP samplecachegroup;
2. On the active database of an active standby pair, enable dropping the cache

group.

ttCWAdmin -beginAlterSchema -dsn advancedDSN
3. If the cache group is a read-only cache group, alter the active standby pair to

exclude the cache group.

ALTER ACTIVE STANDBY PAIR EXCLUDE CACHE GROUP samplecachegroup;
4. If the cache group is a read-only cache group, set the autorefresh state to PAUSED.

ALTER CACHE GROUP samplecachegroup SET AUTOREFRESH STATE PAUSED;
5. Drop the cache group.

Chapter 8
Clusterware Management

8-46

DROP CACHE GROUP samplecachegroup;
6. If the cache group was a read-only cache group, run the timesten_home/install/

oraclescripts/cacheCleanUp.sql SQL*Plus script as the cache administration user on
the Oracle database to drop the Oracle database objects used to implement autorefresh
operations.

7. Resume Oracle Clusterware and restart the replication agents by running the ttCWAdmin
-endAlterSchema command. Since you dropped a cache group object, a duplicate occurs
to propagate these schema changes to the standby database.

ttCWAdmin -endAlterSchema -dsn advancedDSN

Change an Existing Cache Group
Changing an existing cache group involves dropping and adding the cache group.

To change an existing cache group, first drop the existing cache group as described in Drop a
Cache Group. Then add the cache group with the desired changes as described in Add a
Cache Group.

Moving a Database to a Different Host
When a cluster is configured for advanced availability, you can use the ttCWAdmin -relocate
command to move a database from the local host to the next available spare host specified in
the MasterHosts attribute in the cluster.oracle.ini file.

If the database on the local host has the active role, the -relocate option first reverses the
roles. Thus, the newly migrated active database becomes the standby database and the old
standby database becomes the new active database.

The ttCWAdmin -relocate command is useful for relocating a database if you decide to take
the host offline. Ensure that there are no open transactions before you use the command.

If the ttCWAdmin -relocate command requires a role switch, then you can optionally use the
-timeout option with the -relocate option to set a timeout for the number of seconds to wait
for the role switch.

For example:

ttCWAdmin -relocate -dsn advancedDSN

Note:

See ttCWAdmin in the Oracle TimesTen In-Memory Database Reference.

Performing a Rolling Upgrade of Oracle Clusterware Software
There are methods you can run to perform a rolling upgrade of the Oracle Clusterware
software.

See Oracle Clusterware Administration and Deployment Guide in the Oracle Database
documentation.

Chapter 8
Clusterware Management

8-47

Upgrading TimesTen When Using Oracle Clusterware
There are methods to upgrade TimesTen on all hosts when using Oracle Clusterware:

• Performing an Offline TimesTen Upgrade When Using Oracle Clusterware in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

• Performing an Online TimesTen Upgrade When Using Oracle Clusterware in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Performing Host or Network Maintenance
When you need to perform host or network maintenance, you need to stop the Oracle
Clusterware resources and take down one or more of the TimesTen databases in the
cluster.

In order to maintain data consistency for the database, you need to ensure that the
TimesTen databases included in the active standby pair are brought down properly so
that no transactions are lost.

One of the decisions you will make during performing maintenance is whether you
should leave Oracle Clusterware enabled or disabled. If you leave Oracle Clusterware
enabled, then all Oracle Clusterware and TimesTen processes restart automatically
after a system reboot. If you disable Oracle Clusterware, none of these processes
restart automatically.

• Perform Maintenance on All Hosts in the Cluster Simultaneously

• Perform Maintenance While Still Accepting Requests

Perform Maintenance on All Hosts in the Cluster Simultaneously
You can perform tasks to facilitate minimal down time while performing maintenance
on all hosts in the cluster.

Note:

If you have an active, standby and one or more subscriber databases, you
need to run some of these tasks on each host that contains the designated
database.

1. Stop Oracle Clusterware and the replication agents by running the Oracle
Clusterware crsctl stop crs command as root or OS administrator on each of
the hosts that contain the active, standby, and subscriber databases.

Since the active database is down, all requests are refused until the replication
agents are restarted.

crsctl stop crs

The crsctl stop crs command changes the RAM policy temporarily for the
active, standby, and all subscriber databases to inUse with RamGrace where the
grace period is set for 60 seconds to enable these databases to be unloaded by
TimesTen.

Chapter 8
Clusterware Management

8-48

2. Optionally, you can prevent the automatic startup of Oracle Clusterware and TimesTen
when the server boots by running the Oracle Clusterware crsctl disable crs command
as root or OS administrator on all hosts in the cluster:

crsctl disable crs
3. Disconnect any application connections and wait for the active, standby, and subscriber

databases to unload from memory.

4. To gracefully shutdown each TimesTen database in the active standby pair, run the
following command on each of the hosts that contain the active, standby, and subscriber
databases:

ttDaemonAdmin -stop

Note:

The TimesTen main daemon process manages all databases under the same
TimesTen installation, be sure to disconnect from all databases before running
the above command.

See Shutting Down a TimesTen Application in Oracle TimesTen In-Memory
Database Operations Guide.

5. Perform maintenance on the hosts that contain the active, standby, and subscriber
databases.

6. After the maintenance is complete, either:

• Reboot all hosts, then wait until the Oracle Clusterware and TimesTen processes are
running (which can take several minutes) if you did not disable the automatic startup
of Oracle Clusterware and TimesTen.

• Perform the following tasks on each host in the cluster if you disabled the automatic
startup of Oracle Clusterware and TimesTen after a reboot or if you are not rebooting
the hosts after maintenance when automatic startup is enabled:

a. Start the TimesTen database by running the following command:

ttDaemonAdmin -start
b. Enable the automatic startup of Oracle Clusterware when the server boots by

running crsctl enable crs as root or OS administrator:

crsctl enable crs
c. Start Oracle Clusterware on the local server by running crsctl start crs as

root or OS administrator. Wait until all of the Oracle Clusterware resources come
up before continuing to the next step.

crsctl start crs
Once everything is up, you can reconnect with your applications and the active starts to
replicate all updates to the standby and subscriber databases. The configured RAM
policy resumes to always.

Chapter 8
Clusterware Management

8-49

Perform Maintenance While Still Accepting Requests
There are methods to provide minimal down time while performing maintenance on all
hosts in the cluster.

Note:

If you have an active, standby and one or more subscriber databases, you
need to run some of these tasks on each host that contains the designated
database.

1. Stop Oracle Clusterware and the replication agents by running the Oracle
Clusterware crsctl stop crs command as root or OS administrator on each of
the hosts that contain the standby and subscriber databases.

The active database continues to accept requests and updates, but any changes
are not propagated to the standby database and any subscribers until the
replication agents are restarted.

crsctl stop crs

The crsctl stop crs command also changes the RAM policy temporarily for the
standby and all subscriber databases to inUse with RamGrace where the grace
period is set for 60 seconds to enable these databases to be unloaded by
TimesTen.

2. Optionally, you can prevent the automatic startup of Oracle Clusterware and
TimesTen when the server boots by running the Oracle Clusterware crsctl
disable crs command as root or OS administrator on each of the hosts that
contain the standby and subscriber databases.

crsctl disable crs
3. Disconnect any application connections and wait for the standby and subscriber

databases to unload from memory.

4. To gracefully shutdown a TimesTen database, run the following command on each
of the hosts that contain the standby and subscriber databases:

ttDaemonAdmin -stop

Note:

The TimesTen main daemon process manages all databases under the
same TimesTen installation, be sure to disconnect from all databases
before running the above command.

See Shutting Down a TimesTen Application in Oracle TimesTen In-
Memory Database Operations Guide.

5. Perform maintenance on the hosts that contain the standby and subscriber
databases.

6. After the maintenance is complete, either:

Chapter 8
Clusterware Management

8-50

• Reboot all hosts, then wait until the Oracle Clusterware and TimesTen processes are
running (which can take several minutes) if you did not disable the automatic startup
of Oracle Clusterware and TimesTen.

• Perform the following tasks on each host in the cluster if you disabled the automatic
startup of Oracle Clusterware and TimesTen after a reboot or if you are not rebooting
the hosts after maintenance when automatic startup is enabled:

a. Start the TimesTen database by running the following command:

ttDaemonAdmin -start
b. Enable the automatic startup of Oracle Clusterware when the server boots by

running crsctl enable crs as root or OS administrator:

crsctl enable crs
c. Start Oracle Clusterware on the local server by running crsctl start crs as

root or OS administrator. Wait until all of the Oracle Clusterware resources come
up before continuing to the next step.

crsctl start crs
Once everything is up, the active replicates all updates to the standby and subscriber
databases.

7. Switch the active and standby databases with the ttCWAdmin -switch command so you
can perform the same maintenance on the host with the active database.

ttCWAdmin -switch -dsn advancedDSN

Note:

See Reversing the Roles of the Master Databases for more details on the
ttCWAdmin -switch command.

8. Stop Oracle Clusterware and the replication agents by running the Oracle Clusterware
crsctl stop crs command as root or OS administrator on the host with the new
standby database.

The new active database continues to accept requests and updates, but any changes are
not propagated to the new standby database and any subscribers until the replication
agents are restarted.

crsctl stop crs
9. Disconnect any application connections and wait for the standby and subscriber

databases to unload from memory.

10. To gracefully shutdown the TimesTen database, run the following command on the host
that contains the new standby database:

ttDaemonAdmin -stop
11. Perform maintenance on the host that contains the new standby database. Now the

maintenance has been performed on all hosts in the cluster.

12. After the maintenance is complete, either:

• Reboot all hosts, then wait until the Oracle Clusterware and TimesTen processes are
running (which can take several minutes) if you did not disable the automatic startup
of Oracle Clusterware and TimesTen.

Chapter 8
Clusterware Management

8-51

• Perform the following tasks on each host in the cluster if you disabled the
automatic startup of Oracle Clusterware and TimesTen after a reboot or if you
are not rebooting the hosts after maintenance when automatic startup is
enabled:

a. Start the TimesTen database by running the following command:

ttDaemonAdmin -start
b. Enable the automatic startup of Oracle Clusterware when the server boots

by running crsctl enable crs as root or OS administrator:

crsctl enable crs
c. Start Oracle Clusterware on the local server by running crsctl start crs

as root or OS administrator. Wait until all of the Oracle Clusterware
resources come up before continuing to the next step.

crsctl start crs
Once everything is up, the active replicates all updates to the standby and
subscriber databases. The RAM policy resumes to always.

13. Switch back to the original configuration for the active and standby roles for the
active standby pair with the ttCWAdmin -switch command.

ttCWAdmin -switch -dsn advancedDSN

Note:

See the Oracle Clusterware Administration and Deployment Guide in the
Oracle Database documentation.

Chapter 8
Clusterware Management

8-52

9
Defining Classic Replication Schemes

This chapter describes how to define classic replication schemes.

Note:

For information about defining active standby pair replication schemes, see Defining
an Active Standby Pair Replication Scheme. If you want to replicate a database that
has cache groups, see Administering an Active Standby Pair With Cache Groups.

This chapter includes these topics:

• Designing a Highly Available System

• Defining a Classic Replication Scheme

• Restrictions and Table Requirements for Classic Replication Schemes

• Establishing the Databases

• Duplicating a Master Database to a Subscriber

• Restrictions for Classic Replication Schemes Involving Multiple Masters

• Defining Replication Elements

• Checking for Replication Conflicts on Table Elements

• Setting Transmit Durability on DATASTORE Element

• Using a Return Service in a Classic Replication Scheme

• Setting STORE Attributes in a Classic Replication Scheme

• Configuring Network Operations for a Classic Replication Scheme

• Classic Replication Scheme Syntax Examples

• Applying a Classic Replication Scheme to a Database

• Creating Classic Replication Schemes With Scripts

Note:

To reduce the amount of bandwidth required for replication, see Compressing
Replicated Traffic.

To replicate tables with columns in a different order or with a different number of
partitions, see Column Definition Options for Replicated Tables.

9-1

Designing a Highly Available System
There are several primary objectives of any replication scheme.

• Provide one or more backup databases to ensure that the data is always available
to applications

• Provide a means to recover failed databases from their backup databases

• Distribute workloads efficiently to provide applications with the quickest possible
access to the data

• Enable software upgrades and maintenance without disrupting service to users

In a highly available system, a subscriber database must be able to survive failures
that may affect the master. At a minimum, the master and subscriber need to be on
separate hosts. For some applications, you may want to place the subscriber in an
environment that has a separate power supply. In certain cases, you may need to
place a subscriber at an entirely separate site.

You can configure the following classic replication schemes (as described in Types of
Replication Schemes):

• Unidirectional

• Bidirectional split workload

• Bidirectional distributed workload

• Propagation

In addition, consider whether you want to replicate a whole database or selected
elements of the database. Also, consider the number of subscribers in the replication
scheme. Unidirectional and propagation replication schemes enable you to choose the
number of subscribers.

The rest of this section includes these topics:

• Considering Failover and Recovery Scenarios

• Making Decisions About Performance and Recovery Tradeoffs

• Distributing Workloads

See Performing an Online Upgrade With Classic Replication in the Oracle TimesTen
In-Memory Database Installation, Migration, and Upgrade Guide.

Considering Failover and Recovery Scenarios
As you plan a classic replication scheme, consider every failover and recovery
scenario.

For example, subscriber failures generally have no impact on the applications
connected to the master databases. Their recovery does not disrupt user service. If a
failure occurs on a master database, you should have a means to redirect the
application load to a subscriber and continue service with no or minimal interruption.
This process is typically handled by a cluster manager or custom software designed to
detect failures, redirect users or applications from the failed database to one of its
subscribers, and manage recovery of the failed database. See Managing Database
Failover and Recovery.

Chapter 9
Designing a Highly Available System

9-2

When planning failover strategies, consider which subscribers are to take on the role of the
master and for which users or applications. Also, consider recovery factors. For example, a
failed master must be able to recover its database from its most up-to-date subscriber, and
any subscriber must be able to recover from its master. A bidirectional scheme that replicates
the entire database can take advantage of automatic restoration of a failed master. See
Automatic Catch-Up of a Failed Master Database.

Consider the failure scenario for the unidirectionally replicated database shown in Figure 9-1.
In the case of a master failure, the application cannot access the database until it is
recovered from the subscriber. You cannot switch the application connection or user load to
the subscriber unless you use an ALTER REPLICATION statement to redefine the subscriber
database as the master. See Replacing a Master Database in a Classic Replication Scheme.

Figure 9-1 Recovering a Master in a Unidirectional Scheme

Database B

Failure of Master

 Database A

Normal Operation

Master Subscriber

 Database A

Master Subscriber

Database B

Recovered Master

 Database A

Master Subscriber

Database B

FAILED

Application

Users

Application

Users

Application

Users

Figure 9-2 shows a bidirectional distributed workload scheme in which the entire database is
replicated. Failover in this type of classic replication scheme involves shifting the users of the
application on the failed database to the application on the surviving database. Upon
recovery, the workload can be redistributed to the application on the recovered database.

Figure 9-2 Recovering a Master in a Distributed Workload Scheme

Database B

Failure of Master

 Database A

Normal Operation

Master

 Database A

Master

Application

Database B

Recovered Master

 Database A

Master

Database B

FAILED

ApplicationApplication Application

Users

Application Application

UsersUsers

Master Master Master

Chapter 9
Designing a Highly Available System

9-3

Similarly, the users in a split workload scheme must be shifted from the failed
database to the surviving database. Because replication in a split workload scheme is
not at the database level, you must use an ALTER REPLICATION statement to set a new
master database. See Replacing a Master Database in a Classic Replication Scheme.
Upon recovery, the users can be moved back to the recovered master database.

Propagation classic replication schemes also require the use of the ALTER
REPLICATION statement to set a new master or a new propagator if the master or
propagator fails. Higher availability is achieved if two propagators are defined in the
replication scheme. See Figure 1-11 for an example of a propagation replication
scheme with two propagators.

Making Decisions About Performance and Recovery Tradeoffs
When you design a classic replication scheme, weigh operational efficiencies against
the complexities of failover and recovery. Factors that may complicate failover and
recovery include the network topology that connects a master with its subscribers and
the complexity of the replication scheme.

For example, it is easier to recover a master that has been fully replicated to a single
subscriber than recover a master that has selected elements replicated to different
subscribers.

You can configure classic replication to work asynchronously (the default), "semi-
synchronously" with return receipt service, or fully synchronously with return twosafe
service. Selecting a return service provides greater confidence that your data is
consistent on the master and subscriber databases. Your decision to use default
asynchronous replication or to configure return receipt or return twosafe mode
depends on the degree of confidence you require and the performance tradeoff you
are willing to make in exchange.

Table 9-1 summarizes the performance and recover tradeoffs of asynchronous
replication, return receipt service and return twosafe service.

Table 9-1 Performance and Recovery Tradeoffs

Type of Behavior Asynchronous
Replication (Default)

Return Receipt Return Twosafe

Commit sequence Each transaction is
committed first on the
master database.

Each transaction is
committed first on the
master database

Each transaction is
committed first on the
subscriber database.

Performance on master Shortest response time and
best throughput because
there is no log wait
between transactions or
before the commit on the
master.

Longer response time and
less throughput than
asynchronous.

The application is blocked
for the duration of the
network round-trip after
commit. Replicated
transactions are more
serialized than with
asynchronous replication,
which results in less
throughput.

Longest response time and
least throughput.

The application is blocked
for the duration of the
network round-trip and
remote commit on the
subscriber before the
commit on the master.
Transactions are fully
serialized, which results in
the least throughput.

Chapter 9
Designing a Highly Available System

9-4

Table 9-1 (Cont.) Performance and Recovery Tradeoffs

Type of Behavior Asynchronous
Replication (Default)

Return Receipt Return Twosafe

Effect of a runtime error Because the transaction is
first committed on the
master database, errors
that occur when committing
on a subscriber require the
subscriber to be either
manually corrected or
destroyed and then
recovered from the master
database.

Because the transaction is
first committed on the
master database, errors
that occur when committing
on a subscriber require the
subscriber to be either
manually corrected or
destroyed and then
recovered from the master
database.

Because the transaction is
first committed on the
subscriber database, errors
that occur when committing
on the master require the
master to be either
manually corrected or
destroyed and then
recovered from the
subscriber database.

Failover after failure of
master

If the master fails and the
subscriber takes over, the
subscriber may be behind
the master and must
reprocess data feeds and
be able to remove
duplicates.

If the master fails and the
subscriber takes over, the
subscriber may be behind
the master and must
reprocess data feeds and
be able to remove
duplicates.

If the master fails and the
subscriber takes over, the
subscriber is at least up to
date with the master. It is
also possible for the
subscriber to be ahead of
the master if the master
fails before committing a
transaction it had replicated
to the subscriber.

In addition to the performance and recovery tradeoffs between the two return services, you
should also consider the following:

• Return receipt can be used in more configurations, whereas return twosafe can only be
used in a bidirectional configuration or an active standby pair.

• Return twosafe enables you to specify a "local action" to be taken on the master
database in the event of a timeout or other error encountered when replicating a
transaction to the subscriber database.

A transaction is classified as return receipt or return twosafe when the application updates a
table that is configured for either return receipt or return twosafe. Once a transaction is
classified as either return receipt or return twosafe, it remains so, even if the replication
scheme is altered before the transaction completes.

See Using a Return Service in a Classic Replication Scheme.

Distributing Workloads
Consider configuring the databases to distribute application workloads and make the best
use of a limited number of servers.

For example, it may be efficient and economical to configure the databases in a bidirectional
distributed workload replication scheme so that each serves as both master and subscriber,
rather than as separate master and subscriber databases. However, a distributed workload
scheme works best with applications that primarily read from the databases. Implementing a
distributed workload scheme for applications that frequently write to the same elements in a
database may diminish performance and require that you implement a solution to prevent or
manage update conflicts, as described in Resolving Replication Conflicts.

Chapter 9
Designing a Highly Available System

9-5

Defining a Classic Replication Scheme
After you have designed a classic replication scheme, use the CREATE REPLICATION
SQL statement to apply the scheme to your databases. You must have the ADMIN
privilege to use the CREATE REPLICATION statement.

Table 9-2 shows the components of a replication scheme and identifies the clauses
associated with the topics in this chapter. See CREATE REPLICATION in the Oracle
TimesTen In-Memory Database SQL Reference.

Table 9-2 Components of a Replication Scheme

Component See...

CREATE REPLICATION Owner.SchemeName Owner of the Classic Replication
Scheme and Replicated Objects

ELEMENT ElementName ElementType Defining Replication Elements

[CheckConflicts] Checking for Replication Conflicts
on Table Elements

{MASTER|PROPAGATOR} DatabaseName ON "HostName" Database Names

[TRANSMIT {NONDURABLE|DURABLE}] Setting Transmit Durability on
DATASTORE Element

SUBSCRIBER DatabaseName ON "HostName" Database Names

[ReturnServiceAttribute] Using a Return Service in a Classic
Replication Scheme

INCLUDE|EXCLUDE Defining the DATASTORE Element

STORE DatabaseName DataStoreAttributes Setting STORE Attributes in a
Classic Replication Scheme

[NetworkOperation] Configuring Network Operations for
a Classic Replication Scheme

Note:

Naming errors in your CREATE REPLICATION statement are often hard to
troubleshoot, so take the time to check and double-check the element,
database, and host names for mistakes.

The classic replication scheme used by a database persists across system reboots.
Modify a classic replication scheme by using the ALTER REPLICATION statement. See
Altering a Classic Replication Scheme.

Owner of the Classic Replication Scheme and Replicated Objects
The classic replication scheme and the replicated objects must be owned by the same
user on every database in a replication scheme. To ensure that there is a common
owner across all databases, you should explicitly specify the user and replication
scheme in the CREATE REPLICATION statement.

Chapter 9
Defining a Classic Replication Scheme

9-6

For example, create a replication scheme named repscheme owned by user repl. The first
line of the CREATE REPLICATION statement for repscheme is:

CREATE REPLICATION rep1.repscheme

Database Names
There are three roles of the databases in a classic replication scheme.

• Master: Applications update the master database. The master sends the updates to the
propagator or to the subscribers directly.

• Propagator: The propagator database receives updates from the master database and
sends them to subscriber databases.

• Subscriber: Subscribers receive updates from the propagator or the master.

Before you define the classic replication scheme, you need to define the data source names
(DSNs) for the databases in the replication scheme. On UNIX or Linux platforms, create an
odbc.ini file. On Windows, use the ODBC Administrator to name the databases and set
connection attributes. See Configuring a Classic Replication Scheme With One Master and
One Subscriber for an example.

Each database "name" specified in a classic replication scheme must match the prefix of the
database file name without the path specified for the DataStore data store attribute in the
DSN definition. Use the same name for both the DataStore and Data Source Name data store
attributes in each DSN definition. If the database path is directory/subdirectory/foo.ds0,
then foo is the database name that you should use. For example, this entry in an odbc.ini
file shows a Data Source Name (DSN) of masterds, while the DataStore value shows the
path for masterds:

[masterds]
DataStore=/tmp/masterds
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

Restrictions and Table Requirements for Classic Replication
Schemes

All masters and subscribers must have their clocks synchronized through NTP or other
means. The clock skew between all masters and subscribers cannot exceed 250
milliseconds. When adjusting the system clocks on any nodes to be synchronized with each
other, do not set any clock backward in time.

The name and owner of replicated tables participating in the classic replication scheme must
be identical on the master and subscriber databases. However, the definition for the columns
of replicated tables participating in the replication scheme do not necessarily need to be
identical. For more information on the column definition options, see Column Definition
Options for Replicated Tables.

Replicated tables must have one of the following:

• A primary key

• A unique index over non-nullable columns

Chapter 9
Restrictions and Table Requirements for Classic Replication Schemes

9-7

Replication uses the primary key or unique index to uniquely identify each row in the
replicated table. Replication always selects the first usable index that turns up in a
sequential check of the table's index array. If there is no primary key, replication
selects the first unique index without NULL columns it encounters. The selected index
on the replicated table in the master database must also exist on its counterpart table
in the subscriber.

Note:

The keys on replicated tables are transmitted in each update record to the
subscribers. Smaller keys are transmitted more efficiently.

Replicated tables have these restrictions:

• A primary key column cannot have a LOB data type.

• You cannot replicate tables with compressed columns.

If these requirements and restrictions present difficulties, you may want to consider
using the Transaction Log API (XLA) as a replication mechanism. See Using XLA as a
Replication Mechanism in Oracle TimesTen In-Memory Database C Developer's
Guide.

Establishing the Databases
You can replicate one or more tables on any existing database.

If the database you want to replicate does not yet exist, you must first create one, as
described in Managing TimesTen Databases in Oracle TimesTen In-Memory Database
Operations Guide.

After you have identified or created the master database for the classic replication
scheme, create a DSN definition for the subscriber database on the target host. Set
the connection attributes for the master and subscriber databases as described in
Connection Attributes for Replicated Databases.

After you have defined the DSN for the subscriber, you can populate the subscriber
database with the tables to be replicated from the master in one of two ways:

• Connect to the database and use SQL statements to create new tables in the
subscriber database that match those to be replicated from the master.

• Use the ttRepAdmin -duplicate utility to copy the entire contents of the master
database to the subscriber. See Duplicating a Master Database to a Subscriber.

Duplicating a Master Database to a Subscriber
The simplest method for populating a subscriber database is to duplicate the contents
of the master database.

Duplicating a database in this manner is also essential when recovering a failed
database, as described in Managing Database Failover and Recovery. You can use
the ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to duplicate a
database.

Chapter 9
Establishing the Databases

9-8

To duplicate a database, these conditions must be fulfilled:

• The instance administrator performs the duplicate operation.

• The instance administrator user name must be the same on both instances involved in
the duplication.

• You must provide the user name and password for a user with the ADMIN privilege on the
source database.

• The target DSN cannot include client/server attributes.

Note:

Enable the Preallocate attribute to ensure that there is sufficient space for the new
database. See Preallocate in the Oracle TimesTen In-Memory Database Reference.

To duplicate the contents of a master database to a subscriber database, complete these
tasks:

1. Create or alter a replication scheme to include the new subscriber database and its host.
See Defining a Classic Replication Scheme or Creating and Adding a Subscriber
Database to a Classic Replication Scheme.

2. Apply the replication scheme to the master database. See Applying a Classic Replication
Scheme to a Database.

3. Start the replication agent for the master database. See Starting and Stopping the
Replication Agents.

4. On the source database (the master), create a user and grant the ADMIN privilege to the
user:

CREATE USER ttuser IDENTIFIED BY ttuser;
User created.

GRANT admin TO ttuser;
5. Assume the user name of the instance administrator is timesten. Logged in as timesten

on the target host (the subscriber), duplicate database masterDSN on host1 to
subscriber1DSN:

ttRepAdmin -duplicate -from masterDSN -host host1 subscriber1DSN

Enter internal UID at the remote datastore with ADMIN privileges: ttuser
Enter password of the internal Uid at the remote datastore:

Enter ttuser when prompted for the password of the internal user at the remote
database.

Chapter 9
Duplicating a Master Database to a Subscriber

9-9

Note:

The host entry can be identified with either the name of the remote host
or its TCP/IP address. If you identify hosts using TCP/IP addresses, you
must identify the address of the local host (host1 in this example) by
using the -localhost option.

You can specify the local and remote network interfaces for the source
and target hosts by using the -localIP and -remoteIP options of
ttRepAdmin -duplicate. If you do not specify one or both network
interfaces, TimesTen Classic chooses them.

See ttRepAdmin in Oracle TimesTen In-Memory Database Reference.

6. Start the replication agent on the subscriber database.

Restrictions for Classic Replication Schemes Involving
Multiple Masters

Designing bidirectional replication schemes are a commonly used design for classic
replication. The original design for bidirectional replication was to include only two
masters. However, you are not restricted in limiting your design to only two masters in
your bidirectional replication design.

If you decide to use more than two masters (a multi-master topology) and if you decide
to use ttRepAdmin -duplicate to duplicate another store, you must reset the
replication states for the duplicated stores subscribers with the
ttRepSubscriberStateSet built-in procedure to set all subscribers to the appropriate
state.

Note:

See Set the Replication State of Subscribers.

As shown in Figure 9-3, you have three masters (master1, master2, and master3)
each configured with a bidirectional replication scheme with each other. If you decide
to re-create master2 from master1 by running ttRepAdmin -duplicate on master1,
then you must call the ttRepSubscriberStateSet built-in procedure on master2 to set
the replication states for master3.

Chapter 9
Restrictions for Classic Replication Schemes Involving Multiple Masters

9-10

Figure 9-3 Multiple Masters Involved in Bidirectional Replication Scheme

ttRepAdmin -duplicate

ttRepSubscriberStateSet

bidirectional

bi
di
re
ct
io
na
lbidirectional

Master 1

Master 3

Master 2

Defining Replication Elements
A classic replication scheme consists of one or more ELEMENT descriptions that contain the
name of the element, its type (DATASTORE, TABLE, or SEQUENCE), the master database on which
it is updated, and the subscriber databases to which the updates are replicated.

Note:

If you want to replicate a database with cache groups, see Administering an Active
Standby Pair With Cache Groups.

These are restrictions on elements:

• Do not include a specific object (table, sequence or database) in more than one element
description.

• Do not define the same element in the role of both master and propagator.

• An element must include the database on the current host as either the master,
subscriber or propagator.

• Element names must be unique within a replication scheme.

The correct way to define elements in a multiple subscriber scheme is described in Multiple
Subscriber Classic Replication Schemes. The correct way to propagate elements is
described in Propagation Scheme.

The name of each element in a scheme can be used to identify the element if you decide
later to drop or modify the element by using the ALTER REPLICATION statement.

You can add tables, sequences, and databases to an existing replication scheme. See
Altering a Classic Replication Scheme. You can drop a table or sequence from a database
that is part of a replication scheme after you exclude the table or sequence from the
replication scheme. See Dropping a Table or Sequence From a Classic Replication Scheme.

The rest of this section includes the following topics:

Chapter 9
Defining Replication Elements

9-11

• Defining the DATASTORE Element

• Defining Table Elements

• Replicating Tables With Foreign Key Relationships in a Classic Replication
Scheme

• Replicating Sequences

• Views and Materialized Views in a Replicated Database

Defining the DATASTORE Element
You can replicate the entire contents of a master database to a subscriber by defining
the DATASTORE element.

To replicate the entire contents of the master database (masterds) to the subscriber
database (subscriberds), the ELEMENT description (named ds1) might look like the
following:

ELEMENT ds1 DATASTORE
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"

Identify a database host using the host name returned by the hostname operating
system command. It is good practice to surround a host name with double quotes.

Note:

You cannot replicate a temporary database.

You can choose to exclude certain tables and sequences from the DATASTORE element
by using the EXCLUDE TABLE and EXCLUDE SEQUENCE clauses of the CREATE
REPLICATION statement. When you use the EXCLUDE clauses, the entire database is
replicated to all subscribers in the element except for the objects that are specified in
the EXCLUDE clauses. Use only one EXCLUDE TABLE and one EXCLUDE SEQUENCE clause
in an element description. For example, this element description excludes two tables
and one sequence:

ELEMENT ds1 DATASTORE
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
 EXCLUDE TABLE ttuser.tab1, ttuser.tab2
 EXCLUDE SEQUENCE ttuser.seq1

You can choose to include only certain tables and sequences in the database by using
the INCLUDE TABLE and INCLUDE SEQUENCE clauses of the CREATE REPLICATION
statement. When you use the INCLUDE clauses, only the objects that are specified in
the INCLUDE clauses are replicated to each subscriber in the element. Use only one
INCLUDE TABLE and one INCLUDE SEQUENCE clause in an element description. For
example, this element description includes one table and two sequences:

ELEMENT ds1 DATASTORE
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"

Chapter 9
Defining Replication Elements

9-12

 INCLUDE TABLE ttuser.tab3
 INCLUDE SEQUENCE ttuser.seq2, ttuser.seq3

Defining Table Elements
You can replicate tables from a master database to a subscriber database.

To replicate the ttuser.tab1 and ttuser.tab2 tables from a master database (named
masterds and located on a host named system1) to a subscriber database (named
subscriberds on a host named system2), the ELEMENT descriptions (named a and b) might
look like the following:

ELEMENT a TABLE ttuser.tab1
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
ELEMENT b TABLE ttuser.tab2
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"

For requirements for tables in classic replication schemes, see Restrictions and Table
Requirements for Classic Replication Schemes.

Replicating Tables With Foreign Key Relationships in a Classic Replication
Scheme

In a classic replication scheme, you may choose to replicate all or a subset of tables that
have foreign key relationships with one another.

To do so, create the tables and the foreign key relationship on each master and subscriber.
Then, add the tables to the replication scheme with the ALTER REPLICATION ADD ELEMENT
statement on each master and subscriber.

However, if the foreign key relationships have been configured with ON DELETE CASCADE, then
you must create all of the tables before the replication scheme is created. Then, configure the
replication scheme with the CREATE REPLICATION statment to include all tables with either the
DATASTORE element (that does not exclude any of the tables) or the TABLE element for every
table that is involved in the relationship.

You cannot add a table with a foreign key relationship configured with ON DELETE CASCADE to
the replication scheme after the replication scheme is created with the ALTER REPLICATION
statement. Instead, you must drop the replication scheme, create the new table with the
foreign key relationship with ON DELETE CASCADE, and then create a new replication scheme
that includes all of the related tables.

If a table with a foreign key configured with ON DELETE CASCADE is replicated, then the
matching foreign key on the subscriber must also be configured with ON DELETE CASCADE. In
addition, you must replicate any other table with a foreign key relationship to that table. This
requirement prevents foreign key conflicts from occurring on subscriber tables when a
cascade deletion occurs on the master database.

TimesTen Classic replicates a cascade deletion as a single operation, rather than replicating
to the subscriber each individual row deletion which occurs on the child table when a row is
deleted on the parent. As a result, any row on the child table on the subscriber database,
which contains the foreign key value that was deleted on the parent table, is also deleted,
even if that row did not exist on the child table on the master database.

Chapter 9
Defining Replication Elements

9-13

Replicating Sequences
Sequences are replicated unless you exclude them from the replication scheme or
unless they have the CYCLE attribute.

Replication of sequences is optimized by reserving a range of sequence numbers on
the standby database each time a sequence is updated on the active database.
Reserving a range of sequence numbers reduces the number of updates to the
transaction log. The range of sequence numbers is called a cache. Sequence updates
on the active database are replicated only when they are followed by or used in
replicated transactions.

Consider a sequence my.seq with a MINVALUE of 1, an INCREMENT of 1 and the default
Cache of 20. The very first time that you use my.seq.NEXTVAL, the current value of the
sequence on the master database is changed to 2, and a new current value of 21
(20+1) is replicated to the subscriber. The next 19 references to my.seq.NEXTVAL on
the master database result in no new current value being replicated, because the
current value of 21 on the subscriber database is still ahead of the current value on the
master. On the twenty-first reference to my.seq.NEXTVAL, a new current value of 41
(21+20) is transmitted to the subscriber database because the subscriber's previous
current value of 21 is now behind the value of 22 on the master.

Sequence replication has these restrictions:

• Sequences with the CYCLE attribute cannot be replicated.

• The definition of the replicated sequence on each peer database must be identical.

• No conflict checking is performed on sequences. If you make updates to
sequences in both databases in a bidirectional replication configuration without
using the RETURN TWOSAFE service, it is possible for both sequences to return the
identical NEXTVAL.

If you need to use sequences in a bidirectional replication scheme where updates may
occur on either peer, you may instead use a nonreplicated sequence with different
MINVALUE and MAXVALUE attributes on each database to avoid conflicts. For example,
you may create sequence my.seq on database DS1 with a MINVALUE of 1 and a
MAXVALUE of 100, and the same sequence on DS2 with a MINVALUE of 101 and a
MAXVALUE of 200. Then, if you configure DS1 and DS2 with a bidirectional replication
scheme, you can make updates to either database using the sequence my.seq with
the guarantee that the sequence values never conflict. Be aware that if you are
planning to use ttRepAdmin -duplicate to recover from a failure in this configuration,
you must drop and then re-create the sequence with a new MINVALUE and MAXVALUE
after you have performed the duplicate operation.

Operations on sequences such as SELECT my.seq.NEXTVAL FROM sys.dual, while
incrementing the sequence value, are not replicated until they are followed by
transactions on replicated tables. A side effect of this behavior is that these sequence
updates are not purged from the log until followed by transactions on replicated tables.
This causes ttRepSubscriberWait and ttRepAdmin -wait to fail when only these
sequence updates are present at the end of the log.

To replicate the ttuser.seq sequence from a master database (named masterds and
located on a host named system1) to a subscriber database (named subscriberds on
a host named system2), the element description (named a) might look like the
following:

Chapter 9
Defining Replication Elements

9-14

ELEMENT a SEQUENCE ttuser.seq
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"

Views and Materialized Views in a Replicated Database
A materialized view is a summary of data selected from one or more TimesTen tables, called
detail tables. Although you cannot replicate materialized views directly, you can replicate their
underlying detail tables in the same manner as you would replicate regular TimesTen tables.

The detail tables on the master and subscriber databases can be referenced by materialized
views. However, TimesTen Classic replication verifies only that the replicated detail tables
have the same structure on both the master and subscriber. It does not enforce that the
materialized views are the same on each database.

If you replicate an entire database containing a materialized or non-materialized view as a
DATASTORE element, only the detail tables associated with the view are replicated. The view
itself is not replicated. A matching view can be defined on the subscriber database, but is not
required. If detail tables are replicated, TimesTen Classic automatically updates the
corresponding view.

Materialized views defined on replicated tables may result in replication failures or
inconsistencies if the materialized view is specified so that overflow or underflow conditions
occur when the materialized view is updated.

Checking for Replication Conflicts on Table Elements
When databases are configured for bidirectional replication, there is a potential for replication
conflicts to occur if the same table row in two or more databases is independently updated at
the same time.

Such conflicts can be detected and resolved on a table-by-table basis by including
timestamps in the replicated tables and configuring the replication scheme with the optional
CHECK CONFLICTS clause in each table's element description.

See Resolving Replication Conflicts for a complete discussion on replication conflicts and
how to configure the CHECK CONFLICTS clause in the CREATE REPLICATION statement.

Setting Transmit Durability on DATASTORE Element
A master database configured for asynchronous or return receipt replication is durable by
default. This means that log records are committed to the file system when transactions are
committed. The master database can be set to nondurable by including the TRANSMIT
NONDURABLE clause in the element description.

Transaction records in the master database log buffer are, by default, flushed to the file
system before they are forwarded to subscribers. If the entire master database is replicated
(ELEMENT is of type DATASTORE), you can improve replication performance by eliminating the
master's flush-log-to-disk operation from the replication cycle. This is done by including a
TRANSMIT NONDURABLE clause in the element description. The TRANSMIT setting has no effect
on the subscriber. The transaction records on the subscriber database are always flushed to
the file system.

Chapter 9
Checking for Replication Conflicts on Table Elements

9-15

Master databases configured for return twosafe replication are nondurable by default
and cannot be made durable. Setting TRANSMIT DURABLE on a database that is
configured for return twosafe replication has no effect on return twosafe transactions.

For example, you can replicate the entire contents of the master database (masterds)
to the subscriber database (subscriberds) and eliminate the flush-log-to-disk
operation by using TRANSMIT NONDURABLE. Your element description (named a) might
look like the following:

ELEMENT a DATASTORE
 MASTER masterds ON "system1"
 TRANSMIT NONDURABLE
 SUBSCRIBER subscriberds ON "system2"

In general, if a master database fails, you have to initiate the ttRepAdmin -duplicate
operation described in Recovering a Failed Database to recover the failed master from
the subscriber database. This is always true for a master database configured with
TRANSMIT DURABLE.

A database configured as TRANSMIT NONDURABLE is recovered automatically by the
subscriber replication agent if it is configured in the specific type of bidirectional
scheme described in Automatic Catch-Up of a Failed Master Database. Otherwise,
you must follow the procedures described in Recovering Nondurable Databases to
recover a failed nondurable database.

Using a Return Service in a Classic Replication Scheme
You can configure your replication scheme with a return service to ensure a higher
level of confidence that replicated data is consistent on both the master and subscriber
databases.

This section describes how to configure and manage the return receipt and return
twosafe services.

You can specify a return service for table elements and database elements for any
subscriber defined in a CREATE REPLICATION or ALTER REPLICATION statement.

See Using a Return Service.

Setting STORE Attributes in a Classic Replication Scheme
The STORE attributes clause in either the CREATE REPLICATION and ALTER REPLICATION
statements are used to set optional behavior for return services, compression,
timeouts, durable commit behavior, conflict reporting, and table definition checking.

For full details on how to use and configure the STORE attributes for a classic replication
scheme, see Setting STORE Attributes. See CREATE ACTIVE STANDBY PAIR in the
Oracle TimesTen In-Memory Database SQL Reference for a description of all STORE
attributes.

Chapter 9
Using a Return Service in a Classic Replication Scheme

9-16

Configuring Network Operations for a Classic Replication
Scheme

If your replication host has more than one network interface, you may want to configure
replication to use an interface other than the default interface.

For full details on how to configure more than one network interface for a classic replication
scheme, see Configuring Network Interfaces With the ROUTE Clause.

Classic Replication Scheme Syntax Examples
The examples in this section illustrate how to configure a variety of classic replication
schemes.

• Single Classic Subscriber Schemes

• Multiple Subscriber Classic Replication Schemes

• Replicating Tables to Different Subscribers

• Propagation Scheme

• Bidirectional Split Workload Schemes

• Bidirectional Distributed Workload Scheme

Single Classic Subscriber Schemes
The following example replicates a single table within a classic replication scheme. The
example shows a single master and subscriber unidirectional replication scheme.

The two databases are located on separate hosts, system1 and system2. We use the RETURN
RECEIPT service to confirm that all transactions committed on the ttuser.tab table in the
master database are received by the subscriber.

CREATE REPLICATION repscheme
 ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT;

The following example replicates the entire databse. The scheme shown is a single master
and subscriber unidirectional replication scheme. The two databases are located on separate
hosts, server1 and server2. The master database, named masterds, replicates its entire
contents to the subscriber database, named subscriberds.

CREATE REPLICATION repscheme
 ELEMENT e DATASTORE
 MASTER masterds ON "server1"
 SUBSCRIBER subscriberds ON "server2";

Chapter 9
Configuring Network Operations for a Classic Replication Scheme

9-17

Multiple Subscriber Classic Replication Schemes
You can create a classic replication scheme that includes up to 128 subscriber
databases. If you are configuring propagator databases, you can configure up to 128
propagators. Each propagator can have up to 128 subscriber databases.

See Propagation Scheme for an example of a classic replication scheme with
propagator databases.

This example replicates to two subscribers. This example establishes a master
database, named masterds, that replicates the ttuser.tab table to two subscriber
databases, subscriber1ds and subscriber2ds, located on server2 and server3,
respectively. The name of the classic replication scheme is twosubscribers. The
name of the replication element is e.

CREATE REPLICATION twosubscribers
 ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1ds ON "server2",
 subscriber2ds ON "server3";

This example replicates to two subscribers using the RETURN RECEIPT attribute and
STORE parameters. RETURN RECEIPT enables the return receipt service for both
databases. The STORE parameter sets a FAILTHRESHOLD value of 10 to establish the
maximum number of transaction log files that can accumulate on masterds for a
subscriber before it assumes the subscriber has failed.

CREATE REPLICATION twosubscribers
 ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1ds ON "server2",
 subscriber2ds ON "server3"
 RETURN RECEIPT
 STORE masterds FAILTHRESHOLD 10;

This example enables RETURN RECEIPT for only one subscriber: subscriber2ds. Note
that there is no comma after the subscriber1ds definition.

CREATE REPLICATION twosubscribers
 ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1ds ON "server2"
 SUBSCRIBER subscriber2ds ON "server3" RETURN RECEIPT
 STORE masterds FAILTHRESHOLD 10;

This example shows how to enable different return services for subscribers. This
example applies RETURN RECEIPT BY REQUEST to subscriber1ds and RETURN
RECEIPT to subscriber2ds. In this classic replication scheme, applications accessing
subscriber1ds must use the ttRepSyncSet procedure to enable the return services for
a transaction, while subscriber2ds unconditionally provides return services for all
transactions.

CREATE REPLICATION twosubscribers
 ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriberds1 ON "server2" RETURN RECEIPT BY REQUEST

Chapter 9
Classic Replication Scheme Syntax Examples

9-18

 SUBSCRIBER subscriber2ds ON "server3" RETURN RECEIPT
 STORE masterds FAILTHRESHOLD 10;

Replicating Tables to Different Subscribers
The classic replication scheme establishes a master database, named centralds, which
replicates four tables. ttuser.tab1 and ttuser.tab2 are replicated to the subscriber
backup1ds. ttuser.tab3 and ttuser.tab4 are replicated to backup2ds. The master database
is located on the finance server. Both subscribers are located on the backupsystem server.

CREATE REPLICATION twobackups
 ELEMENT a TABLE ttuser.tab1
 MASTER centralds ON "finance"
 SUBSCRIBER backup1ds ON "backupsystem"
 ELEMENT b TABLE ttuser.tab2
 MASTER centralds ON "finance"
 SUBSCRIBER backup1ds ON "backupsystem"
 ELEMENT d TABLE ttuser.tab3
 MASTER centralds ON "finance"
 SUBSCRIBER backup2ds ON "backupsystem"
 ELEMENT d TABLE ttuser.tab4
 MASTER centralds ON "finance"
 SUBSCRIBER backup2ds ON "backupsystem";

Propagation Scheme
The master database sends updates on a table to a propagator that forwards the changes to
two subscribers.

The master database is centralds on the finance host. The propagator database is propds
on the nethandler host. The subscribers are backup1ds on backupsystem1 and backup2ds on
backupsystem2.

The classic replication scheme has two elements. For element a, the changes to the tab
table on centralds are replicated to the propds propagator database. For element b, the
changes to the tab table received by propds are replicated to the two subscribers, backup1ds
and backup2ds.

CREATE REPLICATION propagator
 ELEMENT a TABLE ttuser.tab
 MASTER centralds ON "finance"
 SUBSCRIBER propds ON "nethandler"
 ELEMENT b TABLE ttuser.tab
 PROPAGATOR propds ON "nethandler"
 SUBSCRIBER backup1ds ON "backupsystem1",
 backup2ds ON "backupsystem2";

Bidirectional Split Workload Schemes
There are two databases, westds on the westcoast host and eastds on the eastcoast host.
Customers are represented in two tables: waccounts contains data for customers in the
Western region and eaccounts has data for customers from the Eastern region. The westds
database updates the waccounts table and replicates it to the eastds database. The
eaccounts table is owned by the eastds database and is replicated to the westds database.
The RETURN RECEIPT attribute enables the return receipt service to guarantee that
transactions on either master table are received by their subscriber.

Chapter 9
Classic Replication Scheme Syntax Examples

9-19

CREATE REPLICATION r1
 ELEMENT elem_waccounts TABLE ttuser.waccounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast" RETURN RECEIPT
 ELEMENT elem_eaccounts TABLE ttuser.eaccounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast" RETURN RECEIPT;

Bidirectional Distributed Workload Scheme
A bidirectional general workload classic replication scheme in which the
ttuser.accounts table can be updated on either the eastds or westds database. Each
database is both a master and a subscriber for the accounts table.

Note:

Do not use a bidirectional distributed workload replication scheme with return
twosafe return service.

CREATE REPLICATION r1
 ELEMENT elem_accounts_1 TABLE ttuser.accounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
 ELEMENT elem_accounts_2 TABLE ttuser.accounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

When elements are replicated in this manner, the applications should write to each
database in a coordinated manner to avoid simultaneous updates on the same data.
To manage update conflicts, include a timestamp column of type BINARY(8) in the
replicated table and enable timestamp comparison by including the CHECK CONFLICTS
clause in the CREATE REPLICATION statement. See Resolving Replication Conflicts.

The following example shows how to manage update conflicts. The tstamp timestamp
column is included in the ttuser.accounts table. The CREATE REPLICATION statement
has been modified to include the CHECK CONFLICTS clause.

CREATE TABLE ttuser.accounts (custname VARCHAR2(30) NOT NULL,
 address VARCHAR2(80),
 curbalance DEC(15,2),
 tstamp BINARY(8),
 PRIMARY KEY (custname));

CREATE REPLICATION r1
 ELEMENT elem_accounts_1 TABLE ttuser.accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
 ELEMENT elem_accounts_2 TABLE ttuser.accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM

Chapter 9
Classic Replication Scheme Syntax Examples

9-20

 ON EXCEPTION ROLLBACK WORK
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

Applying a Classic Replication Scheme to a Database
When you define the classic replication scheme, save the CREATE REPLICATION statement in
a SQL file. After you have described the classic replication scheme in a SQL file, you can run
the SQL on the database using the -f option to the ttIsql utility.

The syntax is:

ttIsql -f schemefile.sql -connstr "dsn=DSN"

If your classic replication scheme is described in a file called repscheme.sql, you can run the
file on a DSN, called masterDSN, by entering:

ttIsql -f repscheme.sql -connstr "dsn=masterDSN"

Under most circumstances, you should apply the same scheme to all of the replicated
databases. You must invoke a separate ttIsql command on each host to apply the classic
replication scheme.

For example, if your classic replication scheme includes the databases masterDSN on host S1,
subscriber1DSN on host S2, and subscriber2DSN on host S3, do the following:

On host S1, enter:

ttIsql -f repscheme.sql -connstr "dsn=masterDSN"

On host S2, enter:

ttIsql -f repscheme.sql -connstr "dsn=subscriber1DSN"

On host S3, enter:

ttIsql -f repscheme.sql -connstr "dsn=subscriber2DSN"

You can also run the SQL file containing your classic replication scheme from the ttIsql
command line after connecting to a database. For example:

run repscheme.sql;

Creating Classic Replication Schemes With Scripts
Creating your classic replication schemes with scripts can save you time and help you avoid
mistakes. This section provides some suggestions for automating the creation of replication
schemes using Perl.

For example, consider a general workload bidirectional scheme. Entering the element
description for the five tables, ttuser.accounts, ttuser.sales, ttuser.orders,
ttuser.inventory, and ttuser.customers, would be tedious and error-prone if done
manually.

CREATE REPLICATION bigscheme
 ELEMENT elem_accounts_1 TABLE ttuser.accounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"

Chapter 9
Applying a Classic Replication Scheme to a Database

9-21

 ELEMENT elem_accounts_2 TABLE ttuser.accounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
 ELEMENT elem_sales_1 TABLE ttuser.sales
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
 ELEMENT elem_sales_2 TABLE ttuser.sales
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
 ELEMENT elem_orders_1 TABLE ttuser.orders
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
 ELEMENT elem_orders_2 TABLE ttuser.orders
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
 ELEMENT elem_inventory_1 TABLE ttuser.inventory
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
 ELEMENT elem_inventory_2 TABLE ttuser.inventory
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
 ELEMENT elem_customers_1 TABLE ttuser.customers
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
 ELEMENT elem_customers_2 TABLE ttuser.customers
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

It is often more convenient to automate the process of writing a classic replication
scheme with scripting. For example, the following perl script can be used to create the
replication scheme shown in the previous example.

@tables = qw(
 ttuser.accounts
 ttuser.sales
 ttuser.orders
 ttuser.inventory
 ttuser.customers
);

print "CREATE REPLICATION bigscheme";

foreach $table (@tables) {
 $element = $table;
 $element =~ s/repl\./elem_/;

 print "\n";
 print " ELEMENT $element_1 TABLE $table\n";
 print " MASTER westds ON \"westcoast\"\n";
 print " SUBSCRIBER eastds ON \"eastcoast\"\n";
 print " ELEMENT $element_2 TABLE $table\n";
 print " MASTER eastds ON \"eastcoast\"\n";
 print " SUBSCRIBER westds ON \"westcoast\"";
 }
print ";\n";

The @tables array can be obtained from some other source, such as a database. For
example, you can use ttIsql and f in a Perl statement to generate a @tables array
for all of the tables in the WestDSN database with the owner name repl:

Chapter 9
Creating Classic Replication Schemes With Scripts

9-22

@tables = 'ttIsql -e "tables; quit" WestDSN
 | grep " REPL\."';

This Perl script example creates a classic replication scheme for all of the repl tables in the
WestDSN database. (Note that some substitution may be necessary to remove extra spaces
and line feeds from the grep output.)

@tables = 'ttIsql -e "tables; quit" WestDSN
 | grep " REPL\."';

print "CREATE REPLICATION bigscheme";

foreach $table (@tables) {
 $table =~ s/^\s*//; # Remove extra spaces
 $table =~ s/\n//; # Remove line feeds
 $element = $table;
 $element =~ s/repl\./elem_/;

 print "\n";
 print " ELEMENT $element_1 TABLE $table\n";
 print " MASTER westds ON \"westcoast\"\n";
 print " SUBSCRIBER eastds ON \"eastcoast\"\n";
 print " ELEMENT $element_2 TABLE $table\n";
 print " MASTER eastds ON \"eastcoast\"\n";
 print " SUBSCRIBER westds ON \"westcoast\"";
 }
print ";\n";

Chapter 9
Creating Classic Replication Schemes With Scripts

9-23

10
Altering a Classic Replication Scheme

This chapter describes how to alter an existing classic replication system.

• Altering a Classic Replication Scheme

• Altering a Replicated Table in a Classic Replication Scheme

• Truncating a Replicated Table in a Classic Replication Scheme

• Dropping a Classic Replication Scheme

Table 10-1 lists the tasks often performed on an existing classic replicated system.

Table 10-1 Tasks Performed on an Existing Classic Replicated System

Task What to Do

Alter or drop a classic replication scheme See Altering a Classic Replication Scheme and Dropping a
Classic Replication Scheme.

Alter a table used in a classic replication
scheme

See Altering a Replicated Table in a Classic Replication
Scheme.

Truncate a table used in a classic
replication scheme

See Truncating a Replicated Table in a Classic Replication
Scheme.

Change the replication state of a
subscriber database

See Set the Replication State of Subscribers.

Resolve update conflicts See Resolving Replication Conflicts.

Recover from failures See Managing Database Failover and Recovery.

Upgrade database Use the ttMigrate and ttRepAdmin utilities.

For more information on the ttMigrate and ttRepAdmin utilities, see Upgrades in TimesTen
Classic in Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Altering a Classic Replication Scheme
You can perform the following tasks without stopping the replication agent:

• Create, alter or drop a user. These statements are replicated.

• Grant or revoke privileges from a user. These statements are replicated.

• Add a subscriber to the replication scheme. See Creating and Adding a Subscriber
Database to a Classic Replication Scheme.

• Add a PL/SQL object to the master database and implement its replication on
subscribers. See Adding a PL/SQL Object to an Existing Classic Replication Scheme.

Use ALTER REPLICATION to alter the classic replication scheme on the master and subscriber
databases. Any alterations on the master database must also be made on its subscribers.

10-1

Note:

You must have the ADMIN privilege to use the ALTER REPLICATION statement.

Most ALTER REPLICATION operations are supported only when the replication agent is
stopped (ttAdmin -repStop). The procedure for ALTER REPLICATION operations that
require the replication agents to be stopped is:

1. Use the ttRepStop built-in procedure or ttAdmin -repStop to stop the replication
agent for the master and subscriber databases. While the replication agents are
stopped, changes to the master database are stored in the log.

2. Issue the same ALTER REPLICATION statement on both master and subscriber
databases.

3. Use the ttRepStart built-in procedure or ttAdmin -repStart to restart the
replication agent for the master and subscriber databases. The changes stored in
the master database log are sent to the subscriber database.

For more information, see Starting and Stopping the Replication Agents.

If you use ALTER REPLICATION to change a classic replication scheme that specifies a
DATASTORE element, then:

• You cannot use SET NAME to change the name of the DATASTORE element.

• You cannot use SET CHECK CONFLICTS to enable conflict resolution.

This section includes the following topics:

• Adding a Table or Sequence to an Existing Classic Replication Scheme

• Adding a PL/SQL Object to an Existing Classic Replication Scheme

• Adding a DATASTORE Element to an Existing Classic Replication Scheme

• Dropping a Table or Sequence From a Classic Replication Scheme

• Creating and Adding a Subscriber Database to a Classic Replication Scheme

• Dropping a Subscriber Database From a Classic Replication Scheme

• Changing a TABLE or SEQUENCE Element Name in a Classic Replication
Scheme

• Replacing a Master Database in a Classic Replication Scheme

• Eliminating Conflict Detection in a Classic Replication Scheme

• Eliminating the Return Receipt Service in a Classic Replication Scheme

• Changing the Port Number for a Classic Replication Scheme

• Changing the Replication Route

• Changing the Log Failure Threshold

Chapter 10
Altering a Classic Replication Scheme

10-2

Adding a Table or Sequence to an Existing Classic Replication Scheme
There are two ways to add a table or sequence to an existing classic replication scheme.

• When the element level of the classic replication scheme is TABLE or SEQUENCE, use the
ALTER REPLICATION statement with the ADD ELEMENT clause to add a table or sequence..

• When the element level of the classic replication scheme is DATASTORE, use the ALTER
REPLICATION statement with the ALTER ELEMENT clause to include a table or sequence. .

This example alters the classic replication scheme r1 to add sequence seq and table
westleads, which are updated on database westds and replicated to database eastds.

ALTER REPLICATION r1
 ADD ELEMENT elem_seq SEQUENCE seq
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
 ADD ELEMENT elem_westleads TABLE westleads
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast";

This example adds the sequence my.seq and the table my.tab1 to the ds1 DATASTORE element
in my.rep1 replication scheme.

ALTER REPLICATION my.rep1
 ALTER ELEMENT ds1
 INCLUDE SEQUENCE my.seq
 ALTER ELEMENT ds1
 INCLUDE TABLE my.tab1;

Adding a PL/SQL Object to an Existing Classic Replication Scheme
You can add a new PL/SQL procedure, package, package body or function to an existing
replication scheme.

1. Create the PL/SQL object on a master database. The CREATE statement is not replicated
to subscribers.

2. Create the PL/SQL object on the subscribers

3. Grant privileges to the new PL/SQL object on the master database. The GRANT statement
is replicated to the subscribers.

Adding a DATASTORE Element to an Existing Classic Replication Scheme
You can add a DATASTORE element to an existing classic replication scheme by using the
ALTER REPLICATION statement with the ADD ELEMENT clause.

All tables except temporary tables, materialized views, and non-materialized views are
included in the replication scheme if you do not use the INCLUDE or EXCLUDE clauses. See
Including Tables or Sequences When You Add a DATASTORE Element and Excluding a
Table or Sequence When You Add a DATASTORE Element.

ALTER REPLICATION my.rep1
 ADD ELEMENT ds1 DATASTORE
 MASTER rep2
 SUBSCRIBER rep1, rep3;

Chapter 10
Altering a Classic Replication Scheme

10-3

Including Tables or Sequences When You Add a DATASTORE Element
You can restrict replication to specific tables or sequences when you add a database
to an existing classic replication scheme.

Use the ALTER REPLICATION statement with the ADD ELEMENT clause and the INCLUDE
TABLE clause or INCLUDE SEQUENCE clause. You can have one INCLUDE clause for each
table or sequence in the same ALTER REPLICATION statement.

The following example adds the ds1 DATASTORE element to my.rep1 replication
scheme. Then, it includes the table my.tab2 and the sequence my.seq in the
DATASTORE element.

ALTER REPLICATION my.rep1
ADD ELEMENT ds1 DATASTORE
MASTER rep2
SUBSCRIBER rep1, rep3
INCLUDE TABLE my.tab2
INCLUDE SEQUENCE my.seq;

Excluding a Table or Sequence When You Add a DATASTORE Element
You can exclude tables or sequences when you add a DATASTORE element to an
existing classic replication scheme.

Use the ALTER REPLICATION statement with the ADD ELEMENT clause and the EXCLUDE
TABLE clause or EXCLUDE SEQUENCE clause. You can have one EXCLUDE clause for each
table or sequence in the same ALTER REPLICATION statement.

The following example adds the ds2 DATASTORE element to a replication scheme, but
excludes the table my.tab1 and the sequence my.seq.

ALTER REPLICATION my.rep1
ADD ELEMENT ds2 DATASTORE
MASTER rep2
SUBSCRIBER rep1
EXCLUDE TABLE my.tab1
EXCLUDE SEQUENCE my.seq;

Dropping a Table or Sequence From a Classic Replication Scheme
You can drop a table or sequence that is replicated as part of a DATASTORE, TABLE or
SEQUENCE element.

This section includes the following topics:

• Dropping a Table or Sequence That Is Replicated as Part of a DATASTORE
Element

• Dropping a Table or Sequence That is Replicated as a TABLE or SEQUENCE
Element

Chapter 10
Altering a Classic Replication Scheme

10-4

Dropping a Table or Sequence That Is Replicated as Part of a DATASTORE Element
You can drop a table or sequence that is part of a classic replication scheme at the
DATASTORE level.

1. Stop the replication agent.

2. Exclude the table or sequence from the DATASTORE element in the classic replication
scheme.

3. Drop the table or sequence.

If you have more than one DATASTORE element that contains the table or sequence, then you
must exclude the table or sequence from each element before you drop it.

This example excludes the table my.tab1 from the ds1 DATASTORE element in the my.rep1
replication scheme. Then drops the table.

ALTER REPLICATION my.rep1
 ALTER ELEMENT ds1
 EXCLUDE TABLE my.tab1;
DROP TABLE my.tab1;

Dropping a Table or Sequence That is Replicated as a TABLE or SEQUENCE
Element

You can drop a table that is part of a classic replication scheme at the TABLE or SEQUENCE
level.

1. Stop the replication agent.

2. Drop the element from the classic replication scheme.

3. Drop the table or sequence.

This example drops the SEQUENCE element elem_seq from the classic replication scheme r1.
Then, it drops the sequence seq.

ALTER REPLICATION r1
 DROP ELEMENT elem_seq;
DROP SEQUENCE seq;

Creating and Adding a Subscriber Database to a Classic Replication
Scheme

You can add a new subscriber database while the replication agents are running.

To add a database to a classic replication scheme, do the following:

1. Make sure the new subscriber database does not exist.

2. Apply the appropriate statements to all participating databases:

ALTER REPLICATION ...
 ALTER ELEMENT ...
 ADD SUBSCRIBER ...

3. On the source database (the master), create a user and grant the ADMIN privilege to the
user:

Chapter 10
Altering a Classic Replication Scheme

10-5

CREATE USER ttuser IDENTIFIED BY ttuser;
User created.

GRANT admin TO ttuser;
4. Logged in as the instance administrator, run the ttRepAdmin -duplicate

command to copy the contents of the master database to the newly created
subscriber. By default, any updates made to the master after the duplicate
operation has started are also copied to the subscriber. Use the -
noSetMasterRepStart option if you do not want to copy updates to the subscriber.

5. Start the replication agent on the newly created database (ttAdmin -repStart).

This example alters the r1 replication scheme to add a subscriber (backup3) to the
westleads table (step 2 above):

ALTER REPLICATION r1
 ALTER ELEMENT elem_westleads
 ADD SUBSCRIBER backup3 ON "backupserver";

Dropping a Subscriber Database From a Classic Replication Scheme
Stop the replication agent before you drop a subscriber database.

This example alters the r1 replication scheme to drop the backup3 subscriber for the
westleads table:

ALTER REPLICATION r1
 ALTER ELEMENT elem_westleads
 DROP SUBSCRIBER backup3 ON "backupserver";

Changing a TABLE or SEQUENCE Element Name in a Classic
Replication Scheme

Stop the replication agent before you change a TABLE or SEQUENCE element name in a
classic replication scheme.

Change the element name of the westleads table from elem_westleads to newelname:

ALTER REPLICATION r1
 ALTER ELEMENT Eelem_westleads
 SET NAME newelname;

Note:

You cannot use the SET NAME clause to change the name of a DATASTORE
element.

Replacing a Master Database in a Classic Replication Scheme
Stop the replication agent before you replace a master database in a classic
replication scheme.

Chapter 10
Altering a Classic Replication Scheme

10-6

In this example, newwestds is made the new master for all elements currently configured for
the master, westds:

ALTER REPLICATION r1
 ALTER ELEMENT * IN westds
 SET MASTER newwestds;

Eliminating Conflict Detection in a Classic Replication Scheme
In this example, conflict detection configured by the CHECK CONFLICTS clause in the classic
replication scheme shown is eliminated for the elem_accounts_1 table.

ALTER REPLICATION r1
 ALTER ELEMENT elem_accounts_1
 SET NO CHECK;

See Resolving Replication Conflicts.

Eliminating the Return Receipt Service in a Classic Replication Scheme
In this example, the return receipt service is eliminated for the first subscriber in the classic
replication scheme.

ALTER REPLICATION r1
 ALTER ELEMENT elem_waccounts
 ALTER SUBSCRIBER eastds ON "eastcoast"
 SET NO RETURN;

Changing the Port Number for a Classic Replication Scheme
The port number is the TCP/IP port number on which the replication agent of a subscriber
database accepts connection requests from the master replication agent.

See Port Assignments for details on how to assign ports to the replication agents.

In this example, the r1 replication scheme is altered to change the port number of the eastds
to 22251:

ALTER REPLICATION r1
 ALTER STORE eastds ON "eastcoast"
 SET PORT 22251;

Changing the Replication Route
If a replication host has multiple network interfaces, you may specify which interfaces are
used for replication traffic using the ROUTE clause.

If you need to change which interfaces are used by replication, you may do so by dropping
and adding IP addresses from or to a ROUTE clause. See Configuring Network Interfaces With
the ROUTE Clause.

Changing the Log Failure Threshold
Use the FAILTHRESHOLD attribute of the STORE parameter to reset the log failure threshold.

Chapter 10
Altering a Classic Replication Scheme

10-7

Stop the replication agents before using ALTER REPLICATION to define a new threshold
value, and then restart the replication agents.

See Setting the Transaction Log Failure Threshold.

Altering a Replicated Table in a Classic Replication Scheme
You can use ALTER TABLE ... ADD COLUMN or ALTER TABLE ... DROP COLUMN
statements to add or drop columns on the master database in a classic replication
scheme.

The ALTER TABLE operation is replicated to alter the subscriber databases. These are
the only ALTER TABLE clauses that are replicated in a classic replication scheme.

If you use ALTER TABLE on a database configured for bidirectional replication, first stop
updates to the table on all of the replicated databases and confirm all replicated
updates to the table have been received by the databases before issuing the ALTER
TABLE statement. Do not resume updates until the ALTER TABLE operation has been
replicated to all databases. This is necessary to ensure that there are no write
operations until after the table is altered on all databases.

Note:

You can use the ttRepSubscriberWait built-in procedure or monitoring tools
described in Managing Replication to confirm the updates have been
received and committed on the databases.

Also, if you are running a number of successive ALTER TABLE operations on a
database, you should only proceed with the next ALTER TABLE after you have
confirmed the previous ALTER TABLE has reached all of the subscribers.

Note:

You can use the ALTER TABLE statement to change default column values,
but the ALTER TABLE statement is not replicated. Thus, default column values
need not be identical on all nodes.

Truncating a Replicated Table in a Classic Replication
Scheme

You can use TRUNCATE TABLE to delete all of the rows of a table without dropping the
table itself. Truncating a table is faster than using a DELETE FROM table statement.

Truncate operations on replicated tables are replicated and result in truncating the
table on the subscriber database. Unlike delete operations, however, the individual
rows are not deleted. Even if the contents of the tables do not match at the time of the
truncate operation, the rows on the subscriber database are deleted anyway.

Chapter 10
Altering a Replicated Table in a Classic Replication Scheme

10-8

The TRUNCATE statement replicates to the subscriber, even when no rows are operated upon.

When tables are being replicated with timestamp conflict checking enabled, conflicts are not
reported.

Dropping a Classic Replication Scheme
You can use the DROP REPLICATION statement to remove a replication scheme from a
database. You cannot drop a classic replication scheme when master catchup is required
unless it is the only classic replication scheme in the database.

Note:

You must have the ADMIN privilege to use the DROP REPLICATION statement.

You must stop the replication agent before you drop a classic replication scheme.

To remove the repscheme replication scheme from a database, enter the following:

DROP REPLICATION repscheme;

If you are dropping replicated tables, you must drop the classic replication scheme before
dropping the replicated tables. Otherwise, you receive an error indicating that you have
attempted to drop a replicated table or index.

To remove the tab table and repscheme replication scheme from a database, enter the
following:

DROP REPLICATION repscheme;
DROP TABLE tab;

Chapter 10
Dropping a Classic Replication Scheme

10-9

11
Managing Replication

This chapter describes some of the TimesTen utilities and built-in procedures you can use to
monitor and manage the replication status of your databases.

You can manage and monitor replication from both the command line and within your
programs. The ttStatus and ttRepAdmin utilities described in this chapter are useful for
command line queries. To manage and monitor replication from your programs, you can use
the TimesTen built-in procedures described in Built-In Procedures in the Oracle TimesTen In-
Memory Database Reference or create your own SQL SELECT statements to query the
replication tables described in Replication Tables in the Oracle TimesTen In-Memory
Database System Tables and Views Reference.

Note:

You can only access the TimesTen SYS and TTREP tables for queries. Do not try to
alter the contents of these tables.

This chapter includes the following topics:

• Show State of Replication Agents

• Replication of Statistics

• Set the Replication State of Subscribers

• Show Master Database Information

• Show Subscriber Database Information

• Show the Configuration of Replicated Databases

• Show Replicated Log Records

• Use ttRepAdmin to Show Replication Status

• Check the Status of Return Service Transactions

• Analyze Outstanding Transactions in the Replication Log

Show State of Replication Agents
You can display information about the current state of the replication agents.

• Using ttStatus to Obtain Replication Agent Status

• Using ttAdmin -query to Confirm Policy Settings

• Using ttDataStoreStatus to Obtain Replication Agent Status

You can also obtain the state of specific replicated databases as described in Show
Subscriber Database Information and Show the Configuration of Replicated Databases.

11-1

Using ttStatus to Obtain Replication Agent Status
Use the ttStatus utility to confirm that the replication agent is started for the master
database.

> ttStatus
TimesTen status report as of Thu Aug 11 17:05:23 2011
Daemon pid 18373 port 4134 instance ttuser
TimesTen server pid 18381 started on port 4136
--
Data store /tmp/masterds
There are 16 connections to the data store
Shared Memory KEY 0x0201ab43 ID 5242889
PL/SQL Memory KEY 0x0301ab43 ID 5275658 Address 0x10000000
Type PID Context Connection Name ConnID
Process 20564 0x081338c0 masterds 1
Replication 20676 0x08996738 LOGFORCE 5
Replication 20676 0x089b69a0 REPHOLD 2
Replication 20676 0x08a11a58 FAILOVER 3
Replication 20676 0x08a7cd70 REPLISTENER 4
Replication 20676 0x08ad7e28 TRANSMITTER 6
Subdaemon 18379 0x080a11f0 Manager 2032
Subdaemon 18379 0x080fe258 Rollback 2033
Subdaemon 18379 0x081cb818 Checkpoint 2036
Subdaemon 18379 0x081e6940 Log Marker 2035
Subdaemon 18379 0x08261e70 Deadlock Detector 2038
Subdaemon 18379 0xae100470 AsyncMV 2040
Subdaemon 18379 0xae11b508 HistGC 2041
Subdaemon 18379 0xae300470 Aging 2039
Subdaemon 18379 0xae500470 Flusher 2034
Subdaemon 18379 0xae55b738 Monitor 2037
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Manual
PL/SQL enabled.

Using ttAdmin -query to Confirm Policy Settings
Use the ttAdmin utility with the -query option to confirm the policy settings for a
database, including the replication restart policy.

> ttAdmin -query masterDSN
RAM Residence Policy : inUse
Manually Loaded In Ram : False
Replication Agent Policy : manual
Replication Manually Started : True
Cache Agent Policy : manual
Cache Agent Manually Started : False

The replication restart policy is described in Starting and Stopping the Replication
Agents.

Using ttDataStoreStatus to Obtain Replication Agent Status
Call the ttDataStoreStatus built-in procedure to obtain the status of the replication
agents for the masterds databases.

Chapter 11
Show State of Replication Agents

11-2

> ttIsql masterds
Command> CALL ttDataStoreStatus('/tmp/masterds');
< /tmp/masterds, 964, 00000000005D8150, subdaemon, Global\DBI3b3234c0.0.SHM.35 >
< /tmp/masterds, 1712, 00000000016A72E0, replication, Global\DBI3b3234c0.0.SHM.35 >
< /tmp/masterds, 1712, 0000000001683DE8, replication, Global\DBI3b3234c0.0.SHM.35 >
< /tmp/masterds, 1620, 0000000000608128, application, Global\DBI3b3234c0.0.SHM.35 >
4 rows found.

The output from ttDataStoreStatus is similar to that shown for the ttStatus utility in Using
ttStatus to Obtain Replication Agent Status.

Replication of Statistics
You often compute statistics before preparing your statements, since the information is likely
to result in a more efficient query optimizer plan.

Both SQL statistics and performance statistics are not replicated to any secondary
databases. Instead, you must compute statistics on each database independently.

See Compute Exact or Estimated Statistics in the Oracle TimesTen In-Memory Database
Operations Guide.

Set the Replication State of Subscribers
The state of a subscriber replication agent is described by its master database. When
recovering a failed subscriber database, you must reset the replication state of the subscriber
database with respect to the master database it communicates with in a replication scheme.

You can reset the state of a subscriber database from either the command line or your
program:

• From the command line, use ttRepAdmin -state to direct a master database to reset the
replication state of one of its subscriber databases.

• From ttIsql, call the ttRepSubscriberStateSet built-in procedure to direct a master
database to reset the replication state of one or all of its subscriber databases.

See Show State of Replication Agents.

A master database can set a subscriber database to either the start, pause, or stop states.
The database state appears as an integer value in the STATE column in the TTREP.REPPEERS
table, as shown in Table 11-1.

Table 11-1 Database States

State Description

start
STATE value: 0

Replication updates are collected and transmitted to the subscriber
database as soon as possible. If replication for the subscriber
database is not operational, the updates are saved in the transaction
log files until they can be sent.

pause
STATE value: 1

Replication updates are retained in the log with no attempt to transmit
them. Transmission begins when the state is changed to start.

Chapter 11
Replication of Statistics

11-3

Table 11-1 (Cont.) Database States

State Description

stop
STATE value: 2

Replication updates are discarded without being sent to the
subscriber database. Placing a subscriber database in the stop state
discards any pending updates from the master's transaction log.

WARNING: If you are planning on restarting this subscriber, updates
are not stored between the stop and the restart. Therefore, when you
restart, the subscriber does not contain all of the updates from the
master. If you are planning to restart, pause the subscriber instead of
stopping it.

failed
STATE value: 4

Replication to a subscriber is considered failed because the threshold
limit (log data) has been exceeded. This state is set by the system is a
transitional state before the system sets the state to stop.
Applications that connect to a failed database receive a warning.
See General Failover and Recovery Procedures.

When a master database sets one of its subscribers to the start state, updates for the
subscriber are retained in the master's log. When a subscriber is in the stop state,
updates intended for it are discarded.

When a subscriber is in the pause state, updates for it are retained in the master's log,
but are not transmitted to the subscriber database. When a master transitions a
subscriber from pause to start, the backlog of updates stored in the master's log is
transmitted to the subscriber. (There is an exception to this, which is described in
Managing Database Failover and Recovery.) If a master database is unable to
establish a connection to a stated subscriber, the master periodically attempts to
establish a connection until successful.

To use ttRepAdmin from the command line to set the subscriber state. This example
directs the masterds master database to set the state of the subscriberds subscriber
database to stop:

ttRepAdmin -dsn masterds -receiver -name subscriberds -state stop

Note:

If you have multiple subscribers with the same name on different hosts, use
the -host option of the ttRepAdmin utility to identify the host for the
subscriber that you want to modify.

On the master database, call the ttRepSubscriberStateSet built-in procedure to set
the state of the subscriber database (subscriberds ON system1) in the repscheme
replication scheme to stop:

CALL ttRepSubscriberStateSet('repscheme', 'repl',
 'subscriberds', 'system1', 2);

Only ttRepSubscriberStateSet can be used to set all of the subscribers of a master
to a particular state.The ttRepAdmin utility does not have any equivalent functionality.

Chapter 11
Set the Replication State of Subscribers

11-4

Show Master Database Information
You can display information for a master database.

• Using ttRepAdmin to Display Information About the Master Database

• Querying Replication Tables to Obtain Information About a Master Database

Using ttRepAdmin to Display Information About the Master Database
Use the ttRepAdmin utility with the -self -list options to display information about the
master database.

ttRepAdmin -dsn masterDSN -self -list

This example uses ttRepAdmin to display information about the master database described in
Multiple Subscriber Classic Replication Schemes.

> ttRepAdmin -dsn masterds -self -list
Self host "server1", port auto, name "masterds", LSN 0/2114272

The following table describes the fields.

Field Description

host The name of the host for the database.

port TCP/IP port used by a replication agent of another
database to receive updates from this database. A value
of 0 (zero) indicates replication has automatically assigned
the port.

name Name of the database.

Log file/Replication hold LSN Indicates the oldest location in the transaction log that is
held for possible transmission to the subscriber. A value of
-1/-1 indicates replication is in the stop state with
respect to all subscribers.

Querying Replication Tables to Obtain Information About a Master
Database

Use a SELECT statement to query the TTREP.TTSTORES and TTREP.REPSTORES replication
tables to obtain information about a master database.

SELECT t.host_name, t.rep_port_number, t.tt_store_name
 FROM ttrep.ttstores t, ttrep.repstores s
 WHERE t.is_local_store = 0x01
 AND t.tt_store_id = s.tt_store_id;

This is the output of the SELECT statement for the master database described in Multiple
Subscriber Classic Replication Schemes. The fields are the host name, the replication port
number, and the database name.

< server1, 0, masterds>

Chapter 11
Show Master Database Information

11-5

Show Subscriber Database Information
Replication uses the TimesTen transaction log to retain information that must be
transmitted to subscriber sites. When communication to subscriber databases is
interrupted or the subscriber sites are down, the transaction log data accumulates.

Part of the output from the queries described in this section enables you to see how
much transaction log data has accumulated on behalf of each subscriber database
and the amount of time since the last successful communication with each subscriber
database.

Use the following methods to display information for subscriber databases:

• Display Subscriber Status With the ttRepAdmin Utility

• Display Subscriber Status With the ttReplicationStatus Built-In Procedure

• Display Information About Subscribers Through Querying Replication Tables

Display Subscriber Status With the ttRepAdmin Utility
To display information about subscribers, use the ttRepAdmin utility with the -receiver
-list options.

ttRepAdmin -dsn masterDSN -receiver -list

This example uses the ttRepAdmin utility to display information about the subscribers
described in Multiple Subscriber Classic Replication Schemes.

> ttRepAdmin -dsn masterds -receiver -list
Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
subscriber1ds server2 Auto Start 10

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:12 - 19.41 5 5 52 2

Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
subscriber2ds server3 Auto Start 10

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:04 - 20.94 4 48 2

The first line of the display contains the subscriber definition. The following row of the
display contains latency and rate information, as well as the number of transaction log
files being retained on behalf of this subscriber. The latency for subscriber1ds is
19.41 seconds, and it is 2 logs behind the master. This is a high latency, indicating a
problem if it continues to be high and the number of logs continues to increase.

Note:

See Subscriber Information.

Chapter 11
Show Subscriber Database Information

11-6

If you have more than one scheme specified in the TTREP.REPLICATIONS table, you must use
the -scheme option to specify which scheme you want to list. Otherwise you receive the
following error:

Must specify -scheme to identify which replication scheme to use

See ttRepAdmin in the Oracle TimesTen In-Memory Database Reference.

Display Subscriber Status With the ttReplicationStatus Built-In Procedure
Within ttIsql, you can display status for a one or more subscriber databases by using the
ttReplicationStatus built-in procedure, which reports only on the status of the subscribers
for the master database on which this built-in procedure is called.

The following retrieves status for the subscriber master2 that is located on host1. If the host
name is excluded, the subscriber is located solely on its name.

Command> call ttReplicationStatus('master2', 'host1');
< MASTER2, HOST1, 0, start, 1, 26, _ACTIVESTANDBY , TTREP >
1 row found.

The information shown is that the subscriber master2 located on host1 that is listening on an
automatically assigned port. The TCP/IP port is used by the subscriber agent to receive
updates from the master. However, since the value is zero, this indicates replication has
automatically assigned the port.

This subscriber is in the start state. There is only one transaction log being held for this peer
and 26 seconds have passed since the last replication. The name of the replication scheme
is _ACTIVESTANDBY and the owner is TTREP.

If you do not provide either a subscriber or the subscriber host names, then the status for all
subscribers of this master are returned. The following shows the same status as above, since
there is only one subscriber set up for this master.

Command> call ttReplicationStatus();
< MASTER2, HOST1, 0, start, 1, 26, _ACTIVESTANDBY , TTREP >
1 row found.

See ttReplicationStatus in the Oracle TimesTen In-Memory Database Reference.

Display Information About Subscribers Through Querying Replication
Tables

You can obtain the same information about a master's subscribers from a program by
querying the TTREP.REPPEERS, TTREP.TTSTORES, and SYS.MONITOR tables with a SELECT
statement.

SELECT t1.tt_store_name, t1.host_name, t1.rep_port_number,
p.state, p.protocol, p.timesend, p.timerecv, p.latency,
p.tps, p.recspersec, t3.last_log_file - p.sendlsnhigh + 1
 FROM ttrep.reppeers p, ttrep.ttstores t1, ttrep.ttstores t2, sys.monitor t3
 WHERE p.tt_store_id = t1.tt_store_id
 AND t2.is_local_store = 0X01
 AND p.subscriber_id = t2.tt_store_id
 AND p.replication_name = 'repscheme'
 AND p.replication_owner = 'repl'
 AND (p.state = 0 OR p.state = 1);

Chapter 11
Show Subscriber Database Information

11-7

The following is sample output from the 3 statement above:

< subscriber1ds, server2, 0, 0, 7, 1003941635, 0, -1.00000000000000, -1, -1, 1 >
< subscriber2ds, server3, 0, 0, 7, 1003941635, 0, -1.00000000000000, -1, -1, 1 >

See Subscriber Information.

Subscriber Information
The output from either the ttRepAdmin utility or the SELECT statement contains fields
describing the subscriber database.

Field Description

Peer name Name of the subscriber database

Host name Name of the machine that hosts the subscriber.

Port TCP/IP port used by the subscriber agent to receive updates from
the master. A value of 0 indicates replication has automatically
assigned the port.

State Current replication state of the subscriber with respect to its master
database (see Show Subscriber Database Information).

Protocol Internal protocol used by replication to communicate between this
master and its subscribers. You can ignore this value.

Last message sent Time (in seconds) since the master sent the last message to the
subscriber. This includes the "heartbeat" messages sent between
the databases.

Last message
received

Time (in seconds) since this subscriber received the last message
from the master.

Latency The average latency time (in seconds) between when the master
sends a message and when it receives the final acknowledgement
from the subscriber. (See note below.)

Transactions per
second

The average number of transactions per second that are committed
on the master and processed by the subscriber. (See note below.)

Records per second The average number of transmitted records per second. (See note
below.)

Logs Number of transaction log files the master database is retaining for
a subscriber.

Note:

Latency, TPS, and RecordsPS report averages detected while replicating a
batch of records. These values can be unstable if the workload is not
relatively constant. A value of -1 indicates the master's replication agent has
not yet established communication with its subscriber replication agents or
sent data to them.

Show the Configuration of Replicated Databases
You can display the configuration of your replicated databases with certain tools.

Chapter 11
Show the Configuration of Replicated Databases

11-8

• Display Configuration Information With the ttIsql repschemes Command

• Display Configuration Information With the ttRepAdmin Utility

• Display Configuration Information Through Querying Replication Tables

Display Configuration Information With the ttIsql repschemes Command
To display the configuration of your replicated databases from the ttIsql prompt, use the
repschemes command.

repschemes;

The following example shows the configuration output from the replication scheme shown in
Propagation Scheme.

Replication Scheme PROPAGATOR:

 Element: A
 Type: Table TAB
 Master Store: CENTRALDS on FINANCE Transmit Durable
 Subscriber Store: PROPDS on NETHANDLER

 Element: B
 Type: Table TAB
 Propagator Store: PROPDS on NETHANDLER Transmit Durable
 Subscriber Store: BACKUP1DS on BACKUPSYSTEM1
 Subscriber Store: BACKUP2DS on BACKUPSYSTEM2

Store: BACKUP1DS on BACKUPSYSTEM1
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

Store: BACKUP2DS on BACKUPSYSTEM2
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

Store: CENTRALDS on FINANCE
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

Store: PROPDS on NETHANDLER
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

Display Configuration Information With the ttRepAdmin Utility
To display the configuration of your replicated databases, use the ttRepAdmin utility with the -
showconfig option.

ttRepAdmin -showconfig -dsn masterDSN

Chapter 11
Show the Configuration of Replicated Databases

11-9

The following shows the configuration output from the propagated databases
configured by the replication scheme shown in Propagation Scheme. The propds
propagator shows a latency of 19.41 seconds and is 2 logs behind the master.

> ttRepAdmin -showconfig -dsn centralds
Self host "finance", port auto, name "centralds", LSN 0/155656, timeout 120,
threshold 0

List of subscribers

Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
propds nethandler Auto Start 10

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:12 - 19.41 5 52 2

List of tables and subscriptions

Table details

Table : tab Timestamp updates : -

Master Name Subscriber Name
----------- -------------
centralds propds

Table details

Table : tab Timestamp updates : -

Master Name Subscriber name
----------- -------------
propds backup1ds
propds backup2ds

See Display Information About Subscribers Through Querying Replication Tables for
the meaning of the "List of subscribers" fields. The "Table details" fields list the table
and the names of its master (Sender) and subscriber databases.

Display Configuration Information Through Querying Replication
Tables

Use the following SELECT statements to query the TTREP.TTSTORES, TTREP.REPSTORES,
TTREP.REPPEERS, SYS.MONITOR, TTREP.REPELEMENTS, and TTREP.REPSUBSCRIPTIONS
tables for configuration information.

SELECT t.host_name, t.rep_port_number, t.tt_store_name, s.peer_timeout,
s.fail_threshold
 FROM ttrep.ttstores t, ttrep.repstores s
 WHERE t.is_local_store = 0X01
 AND t.tt_store_id = s.tt_store_id;

SELECT t1.tt_store_name, t1.host_name, t1.rep_port_number,
 p.state, p.protocol, p.timesend, p.timerecv, p.latency,
 p.tps, p.recspersec, t3.last_log_file - p.sendlsnhigh + 1
 FROM ttrep.reppeers p, ttrep.ttstores t1, ttrep.ttstores t2, sys.monitor t3
 WHERE p.tt_store_id = t2.tt_store_id

Chapter 11
Show the Configuration of Replicated Databases

11-10

 AND t2.is_local_store = 0X01
 AND p.subscriber_id = t1.tt_store_id
 AND (p.state = 0 OR p.states = 1);

SELECT ds_obj_owner, DS_OBJ_NAME, t1.tt_store_name,t2.tt_store_name
 FROM ttrep.repelements e, ttrep.repsubscriptions s,
 ttrep.ttstores t1, ttrep.ttstores t2
 WHERE s.element_name = e.element_name
 AND e.master_id = t1.tt_store_id
 AND s.subscriber_id = t2.tt_store_id
 ORDER BY ds_obj_owner, ds_obj_name;

The output from the queries refer to the databases configured by the replication scheme
shown in Propagation Scheme.

The output from the first query might be:

< finance, 0, centralds, 120, 0 >

It shows the host name, port number and the database name. The fourth value (120) is the
TIMEOUT value that defines the amount of time a database waits for a response from another
database before resending a message. The last value (0) is the log failure threshold value
described in Setting the Transaction Log Failure Threshold.

The output from the second query might be:

< propds, nethandler, 0, 0, 7, 1004378953, 0, -1.00000000000000, -1, -1, 1 >

See Display Information About Subscribers Through Querying Replication Tables for a
description of the fields.

The output from the last query might be:

< repl, tab, centralds, propds >
< repl, tab, propds, backup1ds >
< repl, tab, propds, backup2ds >

The rows show the replicated table and the names of its master (sender) and subscriber
(receiver) databases.

Show Replicated Log Records
You can monitor replication through bookmarks and the log sequence numbers with certain
tools.

In a replicated database, transactions remain in the transaction log buffer and transaction log
files until the master replication agent confirms they have been fully processed by the
subscriber. In an active standby pair replication scheme that contains subscribers,
transactions remain in the transaction logs until the active master confirms that they are
processed by both the standby master and any subscribers. Only then can the active master
consider purging them from the log buffer and transaction log files. When the log space is
exhausted, subsequent updates on the master database are aborted.

Chapter 11
Show Replicated Log Records

11-11

Note:

For more information about transaction log growth, see Monitoring
Accumulation of Transaction Log Files in Oracle TimesTen In-Memory
Database Operations Guide.

Transactions are stored in the log in the form of log records. You can use bookmarks
to detect which log records have or have not been replicated by a master database. A
bookmark consists of log sequence numbers (LSNs) that identify the location of
particular records in the transaction log that you can use to gauge replication
performance. The LSNs associated with a bookmark are: hold LSN, last written LSN,
and last LSN forced to disk. The hold LSN describes the location of the lowest (or
oldest) record held in the log for possible transmission to a subscriber. You can
compare the hold LSN with the last written LSN to determine the amount of data in the
transaction log that have not yet been transmitted to the subscribers. The last LSN
forced to disk describes the last records saved in a transaction log file.

You can monitor replication through bookmarks and the log sequence numbers with
the following tools:

• Monitor Replication With the TTREP.REPPEERS Table

• Monitor Replication From the Replication Log Holds

• Monitor Replication With the ttRepAdmin Utility

• Monitor Replication With the ttBookMark Built-In Procedure

Monitor Replication With the TTREP.REPPEERS Table
An accurate way to monitor replication to a particular subscriber is to look at the send
LSN for the subscriber, which consists of the SENDLSNHIGH and SENDLSNLOW fields in the
TTREP.REPPEERS table.

In contrast to the send LSN value, the hold LSN returned in a bookmark is computed
every 10 seconds to describe the minimum send LSN for all the subscribers, so it
provides a more general view of replication progress that does not account for the
progress of replication to the individual subscribers. Because replication
acknowledgements are asynchronous for better performance, the send LSN can also
be some distance behind. Nonetheless, the send LSN for a subscriber is the most
accurate value available and is always ahead of the hold LSN.

Monitor Replication From the Replication Log Holds
Select from the SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS system views or call the
ttLogHolds built-in procedure to get information about replication log holds.

The following example shows the output of ttLogHolds built-in procedure for an active
standby pair replication scheme, where the active master is master1 and the standby
master is master2, with a single subscriber, subscriber1. All transactions are
replicated from the active master first to the standby master who then propagates the
transactions to the subscriber. Thus, the subscriber's progress is slightly behind the
standby master's progress.

Chapter 11
Show Replicated Log Records

11-12

The active master monitors the progress of both the standby master and the subscriber;
therefore, if the standby master goes down for any reason, the active master can take over
the replication to the subscriber. The active master receives acknowledgements when
transactions are applied on the subscriber so the active master knows when it can release
pertinent log records that might be needed if the standby master fails (upon which the active
master switches to replicate directly to the subscribers). The transactions remain in the
transaction logs until they are processed on both the standby master and the subscriber.

Command> call ttLogHolds;
< 0, 3569664, Checkpoint , master1.ds0 >
< 0, 15742976, Checkpoint , master1.ds1 >
< 0, 16351496, Replication , ADC6160529:SUBSCRIBER1 >
< 0, 16351640, Replication , ADC6160529:MASTER2 >
4 rows found.

If you are using an AWT cache group, it uses the replication agent to asynchronously
propagate transactions to the Oracle database. When you call the ttLogHolds built-in
procedure, the description field contains "_ORACLE" to identify the transaction log hold for the
AWT cache group propagation.

Command> call ttLogHolds();
< 0, 18958336, Checkpoint , cachealone1.ds0 >
< 0, 19048448, Checkpoint , cachealone1.ds1 >
< 0, 19050904, Replication , ADC6160529:_ORACLE >
3 rows found.

See SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS in the Oracle TimesTen In-Memory
Database System Tables and Views Reference or ttLogHolds in the Oracle TimesTen In-
Memory Database Reference.

Monitor Replication With the ttRepAdmin Utility
Use the ttRepAdmin utility with the -bookmark option to display the location of bookmarks.

> ttRepAdmin -dsn masterds -bookmark
Replication hold LSN 10/927692
Last written LSN 10/928908
Last LSN forced to disk ... 10/280540
Each LSN is defined by two values:
Log file number / Offset in log file

The LSNs output from ttRepAdmin -bookmark are:

Line Description

Replication hold LSN The location of the lowest (or oldest) record held in the log for possible
transmission to a subscriber. A value of -1/-1 indicates replication is in
the stop state with respect to all subscribers (or the queried database
is not a master database).

If you are monitoring an active standby pair with one or more
subscribers, then this value denotes the oldest record held for all nodes
involved in the replication scheme. For example, in an active standby
pair with subscribers, the oldest record could be held in the log for the
standby master or any of the subscribers.

Last written LSN The location of the most recently generated transaction log record for
the database.

Chapter 11
Show Replicated Log Records

11-13

Line Description

Last LSN forced to
disk

The location of the most recent transaction log record written to the
disk.

Monitor Replication With the ttBookMark Built-In Procedure
Use the ttBookmark built-in procedure to display the location of bookmarks.

> ttIsql masterds

Command> call ttBookMark();
< 10, 928908, 10, 280540, 10, 927692 >
1 row found.

The first two columns in the returned row define the "Last written LSN," the next two
columns define the "Last LSN forced to disk," and the last two columns define the
"Replication hold LSN."

If you are monitoring an active standby pair with one or more subscribers, then the
"Replication hold LSN" denotes the oldest record held for all nodes involved in the
replication scheme. For example, in an active standby pair with subscribers, the oldest
record could be held in the log for the standby master or any of the subscribers.

Use ttRepAdmin to Show Replication Status
The output from ttRepAdmin -showstatus includes the status of the main thread and
the TRANSMITTER and RECEIVER threads used by the replication agent.

A master database has a TRANSMITTER thread and a subscriber database has a
RECEIVER thread. A database that serves a master/subscriber role in a bidirectional
replication scheme has both a TRANSMITTER and a RECEIVER thread.

Each replication agent has a single REPLISTENER thread that listens on a port for peer
connections. On a master database, the REPLISTENER thread starts a separate
TRANSMITTER thread for each subscriber database. On a subscriber database, the
REPLISTENER thread starts a separate RECEIVER thread for each connection from a
master.

If the TimesTen daemon requests that the replication agent stop or if a fatal error
occurs in any of the other threads used by the replication agent, the main thread waits
for the other threads to gracefully terminate. The TimesTen daemon may or may not
restart the replication agent, depending upon certain fatal errors. The REPLISTENER
thread never terminates during the lifetime of the replication agent. A TRANSMITTER or
RECEIVER thread may stop but the replication agent may restart it. The RECEIVER thread
terminates on errors from which it cannot recover or when the master disconnects.

The following example demonstrates the ttRepAdmin -showstatus output.

Following the examples are sections that describe the meaning of each field in the
ttRepAdmin -showstatus output:

• MAIN Thread Status Fields

• Replication Peer Status Fields

Chapter 11
Use ttRepAdmin to Show Replication Status

11-14

• TRANSMITTER Thread Status Fields

• RECEIVER Thread Status Fields

The following example is an active standby pair replication scheme in which the rep1
database is the active master and rep2 database is the standby master in an active standby
pair replication scheme.

The ReplicationParallelism connection attribute in this example is set to 2, which indicates
the number of transmitter threads on the source database and the number of receiver threads
on the target database.

$ ttRepAdmin -showstatus -detail rep1

Replication Agent Status as of: 2019-09-03 10:01:31

DSN : rep1
Process ID : 9012 (Started)
Replication Agent Policy : manual
Host : MYHOST
RepListener Port : 56209 (AUTO)
Main thread's state : STATE_MM_IDLE_STATE
Last write LSN : 0.22169832
Last LSN forced to disk : 0.22169600
Replication hold LSN : 0.22159592

Note that the Replication hold LSN, the Last write LSN and the Last LSN forced to disk
are very close, which indicates that replication is operating satisfactorily. If the Replication
hold LSN falls behind the Last write LSN and the Last LSN, then replication is not keeping
up with updates to the master.

Replication Peers:
 Name : REP2
 Host : MYHOST2
 Port : 51509 (AUTO) (Connected)
 Replication State : STARTED
 Communication Protocol : 47

 Name : REP2
 Host : MYHOST2
 Port : 51509 (AUTO) (Connected)
 Replication State : STARTED
 Communication Protocol : 47

Since ReplicationParallelism is set to 2, there are two entries for the replication peer for
rep2.

REPHOLD thread (REPHOLD:140175402608384):
 Start/Restart count : 1
 Current state : STATE_REPHOLD_SLEEPING
 Current DB context : 0x7f7d180008c0

REPLISTENER thread (REPLISTENER:140175393158912):
 Start/Restart count : 1
 Current state : STATE_LISTENER_WAIT_FOR_PEER_CONN
 Current DB context : 0x7f7c9c0008c0
 Most recent errors (max 5):
 TT16999 in receiver.c (line 2608) at 09:55:38 on 09-03-2019
 TT16999 in receiver.c (line 2608) at 09:55:55 on 09-03-2019

LOGFORCE thread (LOGFORCE:140175407265536):

Chapter 11
Use ttRepAdmin to Show Replication Status

11-15

 Start/Restart count : 1
 Current state : STATE_LOGFORCE_SLEEPING
 Current DB context : 0x7f7d140afae0

With an active standby pair, each master has both transmitters to and receivers from
the other master. The number of transmitters and receivers determined by the
ReplicationParallelism setting. In this example, since ReplicationParallelism is
set to 2, there are two transmitter and receiver threads between the active and
standby masters, shown as track 0 and track 1 in the output.

TRANSMITTER thread(s) (TRANSMITTER(S):140172775343872):
 For : REP2 (track 1)(SSL)
 Start/Restart count : 1
 Current state : STATE_XMTR_FLUSH_SENDING_DONE
 Current DB context : 0x7f7ca44ff640
 Send LSN : 0.22159592
 Replication Tables CTN: 1567529721.542
 Transactions sent : 101
 Total packets sent : 36
 Tick packets sent : 25
 MIN sent packet size : 64
 MAX sent packet size : 16384
 AVG sent packet size : 876
 Last packet sent at : 10:01:26
 Total Packets received: 34
 MIN rcvd packet size : 64
 MAX rcvd packet size : 128
 AVG rcvd packet size : 119
 Last packet rcvd'd at : 10:01:26
 TXNs Allocated : 102
 TXNs In Use : 0
 ACTs Allocated : 101
 ACTs In Use : 0
 ACTs Data Allocated : 0
 Timeout : 7200
 Adapted Timeout Max : 7200
 Adapted Timeout Time : 1567530021
 current txn : 0.0
 Longest batch runtime : 0
 Longest batch 1st txn : 0.0
 Longest batch lst txn : 0.0
 Largest txn (ops) : 1567529721.441
 Largest txn (#ops) : 1
 Longest txn (time) : 0.0
 Longest txn (secs) : 0
 Most recent errors (max 5):
 TT16999 in transmitter.c (line 1465) at 09:55:56 on 09-03-2019

RECEIVER thread(s) (RECEIVER:140173241992960):
 For : REP2 (track 1)(SSL)
 Start/Restart count : 1
 Current state : STATE_RCVR_READ_NETWORK_LOOP
 Current DB context : 0x7f7c9c4b0b90
 Transactions received : 0
 Total packets sent : 28
 Tick packets sent : 0
 MIN sent packet size : 64
 MAX sent packet size : 128
 AVG sent packet size : 122
 Last packet sent at : 10:01:19
 Total Packets received: 29

Chapter 11
Use ttRepAdmin to Show Replication Status

11-16

 MIN rcvd packet size : 64
 MAX rcvd packet size : 156
 AVG rcvd packet size : 68
 Last packet rcvd'd at : 10:01:19
 rxWaitCTN : 0.0
 prevCTN : 0.0
 current txn : 0.0
 STA Blk Data Allocated: 0
 STA Data Allocated : 0
 Longest batch runtime : 0
 Longest batch 1st txn : 0.0
 Longest batch lst txn : 0.0
 Largest txn (ops) : 0.0
 Largest txn (#ops) : 0
 Longest txn (time) : 0.0
 Longest txn (secs) : 0

TRANSMITTER thread(s) (TRANSMITTER(M):140175390009088):
 For : REP2 (track 0)(SSL)
 Start/Restart count : 1
 Current state : STATE_META_PEER_INFO
 Current DB context : 0x7f7c980008c0
 Send LSN : 0.22159592
 Replication Tables CTN: 1567529721.386
 Transactions sent : 100
 Total packets sent : 88
 Tick packets sent : 74
 MIN sent packet size : 64
 MAX sent packet size : 16384
 AVG sent packet size : 394
 Last packet sent at : 10:01:26
 Total Packets received: 86
 MIN rcvd packet size : 64
 MAX rcvd packet size : 128
 AVG rcvd packet size : 123
 Last packet rcvd'd at : 10:01:26
 TXNs Allocated : 101
 TXNs In Use : 0
 ACTs Allocated : 100
 ACTs In Use : 0
 ACTs Data Allocated : 0
 Timeout : 7200
 Adapted Timeout Max : 7200
 Adapted Timeout Time : 1567529956
 current txn : 0.0
 Longest batch runtime : 0
 Longest batch 1st txn : 0.0
 Longest batch lst txn : 0.0
 Largest txn (ops) : 1567529721.286
 Largest txn (#ops) : 1
 Longest txn (time) : 0.0
 Longest txn (secs) : 0
 Most recent errors (max 5):
 TT16999 in transmitter.c (line 1465) at 09:55:38 on 09-03-2019

RECEIVER thread(s) (RECEIVER:140173245142784):
 For : REP2 (track 0)(SSL)
 Start/Restart count : 1
 Current state : STATE_RCVR_READ_NETWORK_LOOP
 Current DB context : 0x7f7c944a41f0
 Transactions received : 0

Chapter 11
Use ttRepAdmin to Show Replication Status

11-17

 Total packets sent : 79
 Tick packets sent : 0
 MIN sent packet size : 64
 MAX sent packet size : 128
 AVG sent packet size : 125
 Last packet sent at : 10:01:29
 Total Packets received: 80
 MIN rcvd packet size : 64
 MAX rcvd packet size : 156
 AVG rcvd packet size : 65
 Last packet rcvd'd at : 10:01:29
 rxWaitCTN : 0.0
 prevCTN : 0.0
 current txn : 0.0
 STA Blk Data Allocated: 0
 STA Data Allocated : 0
 Longest batch runtime : 0
 Longest batch 1st txn : 0.0
 Longest batch lst txn : 0.0
 Largest txn (ops) : 0.0
 Largest txn (#ops) : 0
 Longest txn (time) : 0.0
 Longest txn (secs) : 0

MAIN Thread Status Fields
The MAIN thread status fields are output for the MAIN thread in the replication agent for
the queried database.

MAIN Thread Description

DSN Name of the database to be queried.

Process ID Process Id of the replication agent.

Replication Agent
Policy

The restart policy, as described in Starting and Stopping the
Replication Agents

Host Name of the machine that hosts this database.

RepListener Port TCP/IP port used by the replication agent to listen for connections
from the TRANSMITTER threads of remote replication agents. A
value of 0 indicates that this port has been assigned automatically
to the replication agent (the default), rather than being specified as
part of a replication scheme.

Main thread's state Internal use only.

Last write LSN The location of the most recently generated transaction log record
for the database. See Show Replicated Log Records.

Last LSN forced to
disk

The location of the most recent transaction log record written to
the disk. See Show Replicated Log Records.

Replication hold LSN The location of the lowest (or oldest) record held in the log for
possible transmission to a subscriber. A value of -1/-1 indicates
replication is in the stop state with respect to all subscribers. See
Show Replicated Log Records.

Chapter 11
Use ttRepAdmin to Show Replication Status

11-18

Replication Peer Status Fields
The replication peer status fields are output for each replication peer that participates in the
replication scheme with the queried database. A "peer" could play the role of master,
subscriber, propagator or both master and subscriber in a bidirectional replication scheme.

Replication Peers Description

Name Name of a database that is a replication peer to this database.

Host Host of the peer database.

Port TCP/IP port used by the replication agent for the peer database. A
value of 0 indicates this port has been assigned automatically to the
replication agent (the default), rather than being specified as part of
a replication scheme.

Replication State Current replication state of the replication peer with respect to the
queried database See Show Subscriber Database Information.

Communication Protocol Internal protocol used by replication to communicate between the
peers. (For internal use only.)

Note:

The REPHOLD, REPLISTENER and LOGFORCE thread sections are for internal use only.

TRANSMITTER Thread Status Fields
The TRANSMITTER thread status fields are output for each TRANSMITTER thread used by a
master replication agent to send transaction updates to a subscriber. A master with multiple
subscribers has multiple TRANSMITTER threads.

Note:

The counts in the TRANSMITTER output begin to accumulate when the replication
agent is started. These counters are reset to 0 only when the replication agent is
started or restarted.

TRANSMITTER Thread Description

For Name of the subscriber database that is receiving replicated data from
this database. Also, whether the replication agent transmitters are using
Transport Layer Security (TLS) (indicated with "SSL").

Start/Restart count Number of times this TRANSMITTER thread was started or restarted by
the replication agent due to a temporary error, such as operation
timeout, network failure, and so on.

Current state Internal use only.

Current DB context Internal use only.

Chapter 11
Use ttRepAdmin to Show Replication Status

11-19

TRANSMITTER Thread Description

Send LSN The last LSN transmitted to this peer. See Show Replicated Log
Records.

Replication Tables CTN Internal use only.

Transactions sent Total number of transactions sent to the subscriber.

Total packets sent Total number of packets sent to the subscriber (including tick packets).

Tick packets sent Total number of tick packets sent. Tick packets are used to maintain a
"heartbeat" between the master and subscriber. You can use this value
to determine how many of the 'Total packets sent' packets are not related
to replicated data.

MIN sent packet size Size of the smallest packet sent to the subscriber.

MAX sent packet size Size of the largest packet sent to the subscriber.

AVG sent packet size Average size of the packets sent to the subscriber.

Last packet sent at Time of day last packet was sent (24-hour clock time).

Total packets received Total packets received from the subscriber (tick packets and
acknowledgement data).

MIN rcvd packet size Size of the smallest packet received.

MAX rcvd packet size Size of the largest packet received.

AVG rcvd packet size Average size of the packets received.

Last packet rcvd at Time of day last packet was received (24-hour clock time).

TXNs Allocated
TXNs In Use
ACTs Allocated
ACTs In Use
ACTs Data Allocated
Timeout
Adapted Timeout Max
Adapted Timeout Time
current txn
Longest batch runtime
Longest batch 1st txn
Longest batch lst txn
Largest txn (#ops)
Longest txn (time)

Internal use only.

Largest txn (ops) Number of operations.

Longest txn (secs) Amount of time in seconds taken to process the longest transaction.

Most recent errors
(max 5)

Last five errors generated by this thread.

Chapter 11
Use ttRepAdmin to Show Replication Status

11-20

RECEIVER Thread Status Fields
The RECEIVER thread status fields are output for each RECEIVER thread used by a subscriber
replication agent to receive transaction updates from a master. A subscriber that is updated
by multiple masters has multiple RECEIVER threads.

Note:

The counts in the RECEIVER output begin to accumulate when the replication agent
is started. These counters are reset to 0 only when the replication agent is started
or restarted.

RECEIVER Thread Description

For Name of the master database that is sending replicated data
from this database. Also, whether the replication agent
receivers are using Transport Layer Security (TLS) (indicated
with "SSL").

Start/Restart count Number of times this RECEIVER thread was started or
restarted by the replication agent due to a temporary error,
such as operation timeout, network failure, and so on.

Current state Internal use only.

Current DB context Internal use only.

Transactions received Total number of transactions received from the master.

Total packets sent Total number of packets sent to the master (tick packets and
acknowledgement data).

Tick packets sent Total number of tick packets sent to the master. Tick packets
are used to maintain a "heartbeat" between the master and
subscriber. You can use this value to determine how many of
the 'Total packets sent' packets are not related to
acknowledgement data.

MIN sent packet size Size of the smallest packet sent to the master.

MAX sent packet size Size of the largest packet sent to the master.

AVG sent packet size Average size of the packets sent to the master.

Last packet sent at Time of day last packet was sent to the master (24-hour clock
time).

Total packets received Total packets of acknowledgement data received from the
master.

MIN rcvd packet size Size of the smallest packet received.

MAX rcvd packet size Size of the largest packet received.

AVG rcvd packet size Average size of the packets received.

Last packet rcvd at Time of day last packet was received (24-hour clock time).

Chapter 11
Use ttRepAdmin to Show Replication Status

11-21

RECEIVER Thread Description

rxWaitCTN
prevCTN
current txn
STA Blk Data Allocated
STA Data Allocated
Longest batch runtime
Longest batch 1st txn
Longest batch lst txn
Largest txn (#ops)
Longest txn (time)

Internal use only.

Largest txn (ops) Number of operations.

Longest txn (secs) Amount of time in seconds taken to process the longest
transaction.

Check the Status of Return Service Transactions
You can determine the status of a return service or to find out what the last returned
status was.

• Determine If Return Service Is Disabled

• Check Last Returned Status for a Return Service

Determine If Return Service Is Disabled
You can determine whether the return service for a particular subscriber has been
disabled by the DISABLE RETURN failure policy by calling the
ttRepSyncSubscriberStatus built-in procedure.

The ttRepSyncSubscriberStatus built-in procedure returns a value of '1' to indicate
the return service has been disabled for the subscriber, or a value of '0' to indicate that
the return service is still enabled.

This example uses ttRepSyncSubscriberStatus to obtain the return receipt status of
the subscriberds database with respect to its master database, masterDSN.

> ttIsql masterDSN

Command> CALL ttRepSyncSubscriberStatus ('subscriberds');
< 0 >
1 row found.

This result indicates that the return service is still enabled.

See Disabling Return Service Blocking Manually.

Chapter 11
Check the Status of Return Service Transactions

11-22

Check Last Returned Status for a Return Service
You can check the status of the last return receipt or return twosafe transaction processed on
the connection handle by calling the ttRepXactTokenGet and ttRepXactStatus built-in
procedures.

First, call the ttRepXactTokenGet built-in procedure to get a unique token for the last return
service transaction. If you are using return receipt, the token identifies the last return receipt
transaction committed on the master database. If you are using return twosafe, the token
identifies the last twosafe transaction on the master that, in the event of a successful commit
on the subscriber, is committed by the replication agent on the master. However, in the event
of a timeout or other error, the twosafe transaction identified by the token is not committed by
the replication agent on the master.

Next, pass the token returned by ttRepXactTokenGet to the ttRepXactStatus built-in
procedure to obtain the return service status. The output of the ttRepXactStatus built-in
procedure reports which subscriber or subscribers are configured to receive the replicated
data and the current status of the transaction (not sent, received, committed) with respect to
each subscriber. If the subscriber replication agent encountered a problem applying the
transaction to the subscriber database, the ttRepXactStatus built-in procedure also includes
the error string. If you are using return twosafe and receive a timeout or other error, you can
then decide whether to unconditionally commit or retry the commit. This is described in Using
a Return Service.

Note:

If ttRepXactStatus is called without a token from ttRepXactTokenGet, it returns the
status of the most recent transaction on the connection which was committed with
the return receipt or return twosafe replication service.

The ttRepXactStatus built-in procedure returns the return service status for each subscriber
as a set of rows formatted as:

subscriberName, status, error

You can call the ttRepXactTokenGet and ttRepXactStatus built-in procedures in a
GetRSXactStatus function to report the status of each subscriber in your replicated system:

SQLRETURN GetRSXactStatus (HDBC hdbc)
{
 SQLRETURN rc = SQL_SUCCESS;
 HSTMT hstmt = SQL_NULL_HSTMT;
 char xactId [4001] = "";
 char subscriber [62] = "";
 char state [3] = "";

 /* get the last RS xact id processed on this connection */
 SQLAllocStmt (hdbc, &hstmt);
 SQLExecDirect (hstmt, "CALL ttRepXactTokenGet ('R2')", SQL_NTS);

 /* bind the xact id result as a null terminated hex string */
 SQLBindCol (hstmt, 1, SQL_C_CHAR, (SQLPOINTER) xactId,
 sizeof (xactId), NULL);

Chapter 11
Check the Status of Return Service Transactions

11-23

 /* fetch the first and only row */
 rc = SQLFetch (hstmt);

 /* close the cursor */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 if (rc != SQL_ERROR && rc != SQL_NO_DATA_FOUND)
 {
 /* display the xact id */
 printf ("\nRS Xact ID: 0x%s\n\n", xactId);

 /* get the status of this xact id for every subscriber */
 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_VARBINARY, 0, 0,
 (SQLPOINTER) xactId, strlen (xactId), NULL);

 /* run */
 SQLExecDirect (hstmt, "CALL ttRepXactStatus (?)", SQL_NTS);

 /* bind the result columns */
 SQLBindCol (hstmt, 1, SQL_C_CHAR, (SQLPOINTER) subscriber,
 sizeof (subscriber), NULL);

 SQLBindCol (hstmt, 2, SQL_C_CHAR, (SQLPOINTER) state,
 sizeof (state), NULL);

 /* fetch the first row */
 rc = SQLFetch (hstmt);

 while (rc != SQL_ERROR && rc != SQL_NO_DATA_FOUND)
 {
 /* report the status of this subscriber */
 printf ("\n\nSubscriber: %s", subscriber);
 printf ("\nState: %s", state);

 /* are there more rows to fetch? */
 rc = SQLFetch (hstmt);
 }
 }

 /* close the statement */
 SQLFreeStmt (hstmt, SQL_DROP);

 return rc;
}

Analyze Outstanding Transactions in the Replication Log
You can use the -logAnalyze command in the ttXactLog utility to analyze the
replication logs.

You can determine the following:

• Measure how much is left to replicate from a master to any subscribers at the
current time. When replication seems to be taking longer than expected, you can
determine how many transactions are left to replicate or if replication is processing
a long-running transaction.

Chapter 11
Analyze Outstanding Transactions in the Replication Log

11-24

• Measure if the current configuration distributes the load appropriately across all manual
and automatic tracks for parallel replication.

Run the log analyze command against a particular data store to generate the following
information:

• The number of transactions that are waiting to be replicated. For each transaction that
has not been replicated, the information collected includes the number of operations for
each transaction and the total size of each transaction (including partial roll backs).

• The amount of operations left in each transaction including its specific type (either DDL or
DML) and how many of each statement type are in each transaction. The tool also
generates the total size of every operation left to replicate.

• Retrieves information on how the workload is split across tracks. When you use manual
parallel replication, you can use -logAnalyze to monitor whether the application is
distributing work evenly across the replication tracks.

• Returns the largest transaction left to replicate.

• Returns the start and end LSN. The start LSN is the starting point in the transaction log
where the transmitter starts reading; the end LSN is the end of the transaction log.

Note:

In the transaction log analysis output, transactions are shown in commit order.

You can specify how much information is displayed with the verbose command. For example,
when you set verbose to 1, the following is displayed:

% ttXactLog -v1 -logAnalyze rep1
Summary:
Total transactions left to replicate: 4
Total rows left to replicate: 4
Size of transactions left to replicate: 1.86 KiB
Size of rows left to replicate: 488.00 B
Total inserts remaining: 4
Total partial rollbacks: 5
Total rollbacks: 3

Start LSN = 0.3793736
End LSN = 0.18769920

If a subscriber is specified, then the summary displays only for that particular subscriber.
However, by default, the summary is displayed for all subscribers.

When you specify verbose to 2, then the information includes both a summary of each
parallel track in addition to the overall summary information.

% ttXactLog -v2 -logAnalyze rep1

Track analysis for track number: 0
Transactions left to replicate: 2
Rows left to replicate: 2
Size of transactions left to replicate: 880.00 B
Size of rows left to replicate: 312.00 B
Total inserts remaining: 1
Total partial rollbacks: 4

Chapter 11
Analyze Outstanding Transactions in the Replication Log

11-25

Track analysis for track number: 1
Transactions left to replicate: 2
Rows left to replicate: 2
Size of transactions left to replicate: 1.14 KiB
Size of rows left to replicate: 244.00 B
Total inserts remaining: 2
Total partial rollbacks: 1
Total rollbacks: 3

Summary:
Total transactions left to replicate: 4
Total rows left to replicate: 4
Size of transactions left to replicate: 2.00 KiB
Size of rows left to replicate: 556.00 B
Total inserts remaining: 3
Total partial rollbacks: 5
Total rollbacks: 3

Start LSN = 0.3793736
End LSN = 0.20506624

When you provide the verbose level 3, the information generated includes a
transaction analysis that includes a description of the contents of every transaction in
every track:

% ttXactLog -v3 -logAnalyze rep1

Transaction id: 3.10
Track for this xid: 1
Logmarker before this xid: 275
Rows left to replicate: 1
Transaction size: 800.00 B
Size of rows left: 122.00 B
Total inserts remaining: 1

Transaction id: 2.1
Track for this xid: 0
Logmarker before this xid: 276
Rows left to replicate: 1
Transaction size: 368.00 B
Size of rows left: 122.00 B
Total inserts remaining: 1

Transaction id: 2.19
Track for this xid: 1
Logmarker before this xid: 823
Rows left to replicate: 1
Transaction size: 368.00 B
Size of rows left: 122.00 B
Total inserts remaining: 1

Transaction id: 3.2
Track for this xid: 0
Logmarker before this xid: 842
Rows left to replicate: 1
Transaction size: 368.00 B
Size of rows left: 122.00 B
Total inserts remaining: 1

Track analysis for track number: 0

Chapter 11
Analyze Outstanding Transactions in the Replication Log

11-26

Transactions left to replicate: 2
Rows left to replicate: 2
Size of transactions left to replicate: 736.00 B
Size of rows left to replicate: 244.00 B
Total inserts remaining: 2
Total partial rollbacks: 4

Track analysis for track number: 1
Transactions left to replicate: 2
Rows left to replicate: 2
Size of transactions left to replicate: 1.14 KiB
Size of rows left to replicate: 244.00 B
Total inserts remaining: 2
Total partial rollbacks: 1
Total rollbacks: 3

Summary:
Total transactions left to replicate: 4
Total rows left to replicate: 4
Size of transactions left to replicate: 1.86 KiB
Size of rows left to replicate: 488.00 B
Total inserts remaining: 4
Total partial rollbacks: 5
Total rollbacks: 3

Start LSN = 0.3793736
End LSN = 0.21444608

When you specify the XID, the tool displays verbose level 3 output where the transaction
analysis is based on the XID. If an XID is used by two separate transactions, the report
shows with the LogMarker entry the nearest point in the transaction log just before the start of
each transaction.

% ttXactLog -logAnalyze -xid 2.19 rep1;

Transaction id: 2.19
Track for this xid: 1
Logmarker before this xid: 823
Rows left to replicate: 1
Transaction size: 368.00 B
Size of rows left: 122.00 B
Total inserts remaining: 1

Track analysis for track number: 0
Transactions left to replicate: 0
Rows left to replicate: 0
Size of transactions left to replicate: 0.00 B
Size of rows left to replicate: 0.00 B

Track analysis for track number: 1
Transactions left to replicate: 1
Rows left to replicate: 1
Size of transactions left to replicate: 368.00 B
Size of rows left to replicate: 122.00 B
Total inserts remaining: 1

Summary:
Total transactions left to replicate: 1
Total rows left to replicate: 1
Size of transactions left to replicate: 368.00 B
Size of rows left to replicate: 122.00 B

Chapter 11
Analyze Outstanding Transactions in the Replication Log

11-27

Total inserts remaining: 1

Start LSN = 0.3793736
End LSN = 0.20514816

Note:

See ttXactLog in the Oracle TimesTen In-Memory Database Reference.

Chapter 11
Analyze Outstanding Transactions in the Replication Log

11-28

12
Resolving Replication Conflicts

In order to resolve replication conflicts, you need to understand how they occur and how they
are reported.

This chapter includes these topics:

• How Replication Conflicts Occur

• Using a Timestamp to Resolve Conflicts

• Configuring Timestamp Comparison

• Reporting Conflicts

• The Conflict Report XML Document Type Definition

How Replication Conflicts Occur
Tables in databases configured in a bidirectional replication scheme may be subject to
replication conflicts. A replication conflict occurs when applications on bidirectionally
replicated databases initiate an update, insert or delete operation on the same data item at
the same time.

If no special steps are taken, each database can end up in disagreement with the last update
made by the other database.

These types of replication conflicts can occur:

• Update conflicts: This type of conflict occurs when concurrently running transactions at
different databases make simultaneous update requests on the same row in the same
table, and install different values for one or more columns.

• Uniqueness conflicts: This type of conflict occurs when concurrently running transactions
at different databases make simultaneous insert requests for a row in the same table that
has the same primary or unique key, but different values for one or more other columns.

• Delete conflicts: This type of conflict occurs when a transaction at one database deletes a
row while a concurrent transaction at another database simultaneously updates or inserts
the same row. Currently, TimesTen can detect delete/update conflicts, but cannot detect
delete/insert conflicts. TimesTen cannot resolve either type of delete conflict.

See Reporting Conflicts for example reports generated by TimesTen upon detecting update,
uniqueness, and delete conflicts.

Note:

TimesTen does not detect conflicts involving TRUNCATE TABLE statements.

12-1

Update and Insert Conflicts
Update and insert conflicts can occur under several circumstances.

Figure 12-1 shows the results from an update conflict, which would occur for the value
of X under the following circumstances:

Steps On Database A On Database B

Initial condition X is 1. X is 1.

The application on each database
updates X simultaneously.

Set X=2. Set X=100.

The replication agent on each database
sends its update to the other database.

Replicate X to database
B.

Replicate X to database
A.

Each database now has the other's
update.

Replication says to set
X=100.

Replication says to set
X=2.

Note:

Uniqueness conflicts resulting from conflicting inserts follow a similar pattern
as update conflicts, but the conflict involves the whole row.

Figure 12-1 Update Conflict

Application Application

Database A Database B

X = 100 X = 2

X = 2X = 100

If update or insert conflicts remain unchecked, the master and subscriber databases
fall out of synchronization with each other. It may be difficult or even impossible to
determine which database is correct.

With update conflicts, it is possible for a transaction to update many data items but
have a conflict on a few of them. Most of the transaction's effects survive the conflict,
with only a few being overwritten by replication. If you decide to ignore such conflicts,
the transactional consistency of the application data is compromised.

Chapter 12
How Replication Conflicts Occur

12-2

If an update conflict occurs, and if the updated columns for each version of the row are
different, then the non-primary key fields for the row may diverge between the replicated
tables.

Note:

Within a single database, update conflicts are prevented by the locking protocol:
only one transaction at a time can update a specific row in the database. However,
update conflicts can occur in replicated systems due to the ability of each database
to operate independently.

TimesTen Classic replication uses timestamp-based conflict resolution to cope with
simultaneous updates or inserts. Through the use of timestamp-based conflict resolution, you
may be able to keep the replicated databases synchronized and transactionally consistent.

Delete/Update Conflicts
Figure 12-2 shows the results from a delete/update conflict, which would occur for Row 4
under the following circumstances:

Steps On Database A On Database B

Initial condition. Row 4 exists. Row 4 exists.

The applications issue a conflicting update and delete
on Row 4 simultaneously.

Update Row 4. Delete Row 4.

The replication agent on each database sends the
delete or update to the other.

Replicate update to
database B.

Replicate delete to
database A.

Each database now has the delete or update from the
other database.

Replication says to
delete Row 4.

Replication says to
update Row 4.

Figure 12-2 Delete/Update Conflict

Application Application

Database A Database B

Delete Row Update Row

Delete Row 4Update Row 4

Although TimesTen can detect and report delete/update conflicts, it cannot resolve them.
Under these circumstances, the master and subscriber databases fall out of synchronization
with each other.

Chapter 12
How Replication Conflicts Occur

12-3

Although TimesTen cannot ensure synchronization between databases following such
a conflict, it does ensure that the most recent transaction is applied to each database.
If the timestamp for the delete is more recent than that for the update, the row is
deleted on each database. If the timestamp for the update is more recent than that for
the delete, the row is updated on the local database. However, because the row was
deleted on the other database, the replicated update is discarded. See Reporting
Delete/Update Conflicts.

Note:

There is an exception to this behavior when timestamp comparison is
enabled on a table using UPDATE BY USER. See Enabling User Timestamp
Column Maintenance.

Using a Timestamp to Resolve Conflicts
For replicated tables that are subject to conflicts, create the table with a special
column of type BINARY(8) to hold a timestamp value that indicates the time the row
was inserted or last updated.

You can then configure TimesTen to automatically insert a timestamp value into this
column each time a particular row is changed, as described in Configuring Timestamp
Comparison.

Note:

TimesTen does not support conflict resolution between cached tables in a
cache group and an Oracle database.

How replication computes the timestamp column depends on your system:

• On UNIX or Linux systems, the timestamp value is derived from the timeval
structure returned by the gettimeofday system call. This structure reports the time
of day in a pair of 4-byte words to a resolution of 1 microsecond. The actual
resolution of the value is system-dependent.

• On Windows systems, the timestamp value is derived from the
GetSystemTimeAsFileTime Win32 call. The Windows file time is reported in units
of 0.1 microseconds, but effective granularity can be as coarse as 10 milliseconds.

TimesTen uses the time value returned by the system at the time the transaction
applies each record as the record's insert or update time. Therefore, rows that are
inserted or updated by a single transaction may receive different timestamp values.

When applying a transaction received from a master, the replication agent at the
subscriber database performs timestamp resolution for insert, update, and delete
operations as follows:

• When applying replicated INSERT operations:

Chapter 12
Using a Timestamp to Resolve Conflicts

12-4

– If the timestamp of the transaction record to be applied is newer than the timestamp
of the existing row, the existing row is overwritten.

– If the timestamp of the transaction record and the stored record are equal, the insert
operation is discarded.

– If the timestamp of the transaction record is older than the timestamp of the stored
record, the insert operation from the transaction is discarded.

– If the stored row has been deleted, then no timestamp is available for comparison. A
replicated insert operation on a previously deleted row is applied as an insert.

• When applying replicated UPDATE operations:

– If the timestamp of the transaction record to be applied is newer than the timestamp
of the stored record, TimesTen applies the update operation to the row.

– If the timestamp of the transaction record and the stored record are equal, the update
operation is discarded.

– If the timestamp of the transaction record is older than the timestamp of the stored
record, the update operation from the transaction is discarded.

– If the stored row has been deleted, then no timestamp is available for comparison.
Any replicated update operations designated for the deleted row are discarded.

– An update operation that cannot find the updated row is considered a delete conflict,
which is reported but cannot be resolved.

• When applying replicated DELETE operations:

– If the timestamp of a replicated delete operation is newer than the timestamp of the
existing row, the existing row is deleted.

– If the timestamp of a replicated delete operation is older than the timestamp of the
stored record (the row has been modified recently), the delete operation is rejected.

Note:

If the ON EXCEPTION NO ACTION clause is specified for a table, then the update,
insert, or delete operation that fails a timestamp comparison is rejected. This
may result in transactional inconsistencies if replication applies some (but not
all) of the actions of a transaction. If the ON EXCEPTION ROLLBACK WORK clause is
specified for a table (which is also the default), an update operation that fails
timestamp comparison causes the entire transaction to be rejected.

Timestamp Comparisons for Local Updates
To maintain synchronization of tables between replicated sites, TimesTen also performs
timestamp comparisons for updates performed by local transactions. If an updated table is
declared to have automatic timestamp maintenance, then updates to records that have
timestamps exceeding the current system time are prohibited.

Normally, clocks on replicated systems are synchronized sufficiently to ensure that a locally
updated record is given a later timestamp than that in the same record stored on the other
systems. Perfect synchronization may not be possible or affordable, but by protecting record
timestamps from "going backwards," replication can help to ensure that the tables on
replicated systems stay synchronized.

Chapter 12
Using a Timestamp to Resolve Conflicts

12-5

Configuring Timestamp Comparison
You can set up your replication scheme for timestamp comparison.

To configure timestamp comparison:

• Include a column in your replicated tables to hold the timestamp value. See
Including a Timestamp Column in Replicated Tables.

• Include a CHECK CONFLICTS clause for each TABLE element in the CREATE
REPLICATION statement to identify the timestamp column, how timestamps are to
be generated, what to do in the event of a conflict, and how to report conflicts. See
Configuring the CHECK CONFLICTS Clause.

Including a Timestamp Column in Replicated Tables
To use timestamp comparison on replicated tables, you must specify a nullable column
of type BINARY(8) to hold the timestamp value. The timestamp column must be
created along with the table as part of a CREATE TABLE statement.

It cannot be added later as part of an ALTER TABLE statement. In addition, the
timestamp column cannot be part of a primary key or index. This example shows that
the rep.tab table contains a column named tstamp of type BINARY(8) to hold the
timestamp value.

CREATE TABLE rep.tab (col1 NUMBER NOT NULL,
 col2 NUMBER NOT NULL,
 tstamp BINARY(8),
 PRIMARY KEY (col1));

If no timestamp column is defined in the replicated table, timestamp comparison
cannot be performed to detect conflicts. Instead, at each site, the value of a row in the
database reflects the most recent update applied to the row, either by local
applications or by replication.

Configuring the CHECK CONFLICTS Clause
When configuring your replication scheme, you can set up timestamp comparison for a
TABLE element by including a CHECK CONFLICTS clause in the table's element
description in the CREATE REPLICATION statement.

Note:

A CHECK CONFLICT clause cannot be specified for DATASTORE elements.

For more details on the syntax, see CREATE REPLICATION statement and CHECK
CONFLICTS clause in the Oracle TimesTen In-Memory Database SQL Reference.
The following example shows how CHECK CONFLICTS might be used when configuring
your replication scheme.

In this example, we establish automatic timestamp comparison for the bidirectional
replication scheme. The DSNs, west_dsn and east_dsn, define the westds and eastds

Chapter 12
Configuring Timestamp Comparison

12-6

databases that replicate the repl.accounts table containing the tstamp timestamp table. In
the event of a comparison failure, discard the transaction that includes an update with the
older timestamp.

CREATE REPLICATION r1
ELEMENT elem_accounts_1 TABLE accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

When bidirectionally replicating databases with conflict resolution, the replicated tables on
each database must be set with the same CHECK CONFLICTS attributes. If you need to disable
or change the CHECK CONFLICTS settings for the replicated tables, use the ALTER
REPLICATION statement described in Eliminating Conflict Detection in a Classic Replication
Scheme and apply to each replicated database.

Enabling System Timestamp Column Maintenance
You can enable system timestamp comparison.

CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN ColumnName
 UPDATE BY SYSTEM

TimesTen automatically maintains the value of the timestamp column using the current time
returned by the underlying operating system. This is the default setting.

When you specify UPDATE BY SYSTEM, TimesTen:

• Initializes the timestamp column to the current time when a new record is inserted into
the table.

• Updates the timestamp column to the current time when an existing record is modified.

During initial load, the timestamp column values should be left NULL, and applications should
not give a value for the timestamp column when inserting or updating a row.

When you use the ttBulkCp or ttMigrate utility to save TimesTen tables, the saved rows
maintain their current timestamp values. When the table is subsequently copied or migrated
back into TimesTen, the timestamp column retains the values it had when the copy or
migration file was created.

Chapter 12
Configuring Timestamp Comparison

12-7

Note:

If you configure TimesTen for timestamp comparison after using the
ttBulkCp or ttMigrate to copy or migrate your tables, the initial values of the
timestamp columns remain NULL, which is considered by replication to be the
earliest possible time.

Enabling User Timestamp Column Maintenance
You can enable user timestamp column maintenance on a table.

CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN ColumnName
 UPDATE BY USER

When you configure UPDATE BY USER, your application is responsible for maintaining
timestamp values. The timestamp values used by your application can be arbitrary, but
the time values cannot decrease. In cases where the user explicitly sets or updates
the timestamp column, the application-provided value is used instead of the current
time.

Replicated delete operations always carry a system-generated timestamp. If
replication has been configured with UPDATE BY USER and an update/delete conflict
occurs, the conflict is resolved by comparing the two timestamp values and the
operation with the larger timestamp wins. If the basis for the user timestamp varies
from that of the system-generated timestamp, the results may not be as expected.
Therefore, if you expect delete conflicts to occur, use system-generated timestamps.

Reporting Conflicts
TimesTen conflict checking may be configured to report conflicts to a human-readable
plain text file, or to an XML file for use by user applications.

This section includes the topics:

• Reporting Conflicts to a Text File

• Reporting Conflicts to an XML File

• Reporting Uniqueness Conflicts

• Reporting Update Conflicts

• Reporting Delete/Update Conflicts

• Suspending and Resuming the Reporting of Conflicts

Reporting Conflicts to a Text File
You can configure replication to report conflicts to a human-readable text file (the
default).

CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN ColumnName
 ...
 REPORT TO 'FileName' FORMAT STANDARD

Chapter 12
Reporting Conflicts

12-8

An entry is added to the report file FileName that describes each conflict. The phrase FORMAT
STANDARD is optional and may be omitted, as the standard report format is the default.

Each failed operation logged in the report consists of an entry that starts with a header,
followed by information specific to the conflicting operation. Each entry is separated by a
number of blank lines in the report.

The header contains:

• The time the conflict was discovered.

• The databases that sent and received the conflicting update.

• The table in which the conflict occurred.

The header has the following format:

Conflict detected at time on date
Datastore : subscriber_database
Transmitting name : master_database
Table : username.tablename

For example:

Conflict detected at 20:08:37 on 05-17-2004
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : USER1.T1

Following the header is the information specific to the conflict. Data values are shown in
ASCII format. Binary data is translated into hexadecimal before display, and floating-point
values are shown with appropriate precision and scale.

For further description of the conflict report file, see Reporting Uniqueness Conflicts,
Reporting Update Conflicts and Reporting Delete/Update Conflicts.

Reporting Conflicts to an XML File
You can configure replication to report conflicts to an XML file.

CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN ColumnName
 ...
 REPORT TO 'FileName' FORMAT XML

Replication uses the base file name FileName to create two files. FileName.xml is a header
file that contains the XML Document Type Definition for the conflict report structure, as well
as the root element, defined as <ttrepconflictreport>. Inside the root element is an XML
directive to include the file FileName.include, and it is to this file that all conflicts are written.
Each conflict is written as a single element of type <conflict>.

For further description of the conflict report file XML elements, see The Conflict Report XML
Document Type Definition.

Chapter 12
Reporting Conflicts

12-9

Note:

When performing log maintenance on an XML conflict report file, only the file
FileName.include should be truncated or moved. For conflict reporting to
continue to function correctly, the file FileName.xml should be left untouched.

Reporting Uniqueness Conflicts
A uniqueness conflict record is issued when a replicated insert fails because of a
conflict.

A uniqueness conflict record in the report file contains:

• The timestamp and values for the existing tuple, which is the tuple that the
conflicting tuple is in conflict with

• The timestamp and values for the conflicting insert tuple, which is the tuple of the
insert that failed

• The key column values used to identify the record

• The action that was taken when the conflict was detected (discard the single row
insert or the entire transaction)

Note:

If the transaction was discarded, the contents of the entire transaction
are logged in the report file.

The format of a uniqueness conflict record is:

Conflicting insert tuple timestamp : <timestamp in binary format>
Existing tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The conflicting tuple :
<<column value> [,<column value> ...]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this insert skipped
Failed transaction:
Insert into table <user>.<table> <<columnvalue> [,<columnvalue>...]>
End of failed transaction

This example shows the output from a uniqueness conflict on the row identified by the
primary key value, '2'. The older insert replicated from subscriberds conflicts with the
newer insert in masterds, so the replicated insert is discarded.

Conflict detected at 13:36:00 on 03-25-2002
Datastore : /tmp/masterds
Transmitting name : SUBSCRIBERDS
Table : TAB
Conflicting insert tuple timestamp : 3C9F983D00031128
Existing tuple timestamp : 3C9F983E000251C0
The existing tuple :

Chapter 12
Reporting Conflicts

12-10

< 2, 2, 3C9F983E000251C0>
The conflicting tuple :
< 2, 100, 3C9F983D00031128>
The key columns for the tuple:
<COL1 : 2>
Transaction containing this insert skipped
Failed transaction:
Insert into table TAB < 2, 100, 3C9F983D00031128>
End of failed transaction

Reporting Update Conflicts
An update conflict record is issued when a replicated update fails because of a conflict.

This record reports:

• The timestamp and values for the existing tuple, which is the tuple that the conflicting
tuple is in conflict with.

• The timestamp and values for the conflicting update tuple, which is the tuple of the
update that failed.

• The old values, which are the original values of the conflicting tuple before the failed
update.

• The key column values used to identify the record.

• The action that was taken when the conflict was detected (discard the single row update
or the entire transaction).

Note:

If the transaction was discarded, the contents of the entire transaction are
logged in the report file.

The format of an update conflict record is:

Conflicting update tuple timestamp : <timestamp in binary format>
Existing tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The conflicting update tuple :
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
The old values in the conflicting update:
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this update skipped
Failed transaction:
Update table <user>.<table> with keys:
<<key column name> : <key column value>>
New tuple value:
<TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
End of failed transaction

The following example shows the output from an update conflict on the col2 value in the row
identified by the primary key value, '6'. The older update replicated from the masterds

Chapter 12
Reporting Conflicts

12-11

database conflicts with the newer update in subscriberds, so the replicated update is
discarded.

Conflict detected at 15:03:18 on 03-25-2002
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : TAB
Conflicting update tuple timestamp : 3C9FACB6000612B0
Existing tuple timestamp : 3C9FACB600085CA0
The existing tuple :
< 6, 99, 3C9FACB600085CA0>
The conflicting update tuple :
<TSTAMP :3C9FACB6000612B0, COL2 : 50>
The old values in the conflicting update:
<TSTAMP :3C9FAC85000E01F0, COL2 : 2>
The key columns for the tuple:
<COL1 : 6>
Transaction containing this update skipped
Failed transaction:
Update table TAB with keys:
<COL1 : 6>
New tuple value: <TSTAMP :3C9FACB6000612B0, COL2 : 50>
End of failed transaction

Reporting Delete/Update Conflicts
A delete/update conflict record is issued when an update is attempted on a row that
has more recently been deleted.

This record reports:

• The timestamp and values for the conflicting update tuple or conflicting delete
tuple, whichever tuple failed.

• If the delete tuple failed, the report also includes the timestamp and values for the
existing tuple, which is the surviving update tuple with which the delete tuple was
in conflict.

• The key column values used to identify the record.

• The action that was taken when the conflict was detected (discard the single row
update or the entire transaction).

Note:

If the transaction was discarded, the contents of the entire transaction
are logged in the report file. TimesTen cannot detect delete/insert
conflicts.

The format of a record that indicates a delete conflict with a failed update is:

Conflicting update tuple timestamp : <timestamp in binary format>
The conflicting update tuple :
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
This transaction skipped
The tuple does not exist
Transaction containing this update skipped
Update table <user>.<table> with keys:

Chapter 12
Reporting Conflicts

12-12

<<key column name> : <key column value>>
New tuple value:
<TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
End of failed transaction

The following example shows the output from a delete/update conflict caused by an update
on a row that has more recently been deleted. Because there is no row to update, the update
from SUBSCRIBERDS is discarded.

Conflict detected at 15:27:05 on 03-25-2002
Datastore : /tmp/masterds
Transmitting name : SUBSCRIBERDS
Table : TAB
Conflicting update tuple timestamp : 3C9FB2460000AFC8
The conflicting update tuple :
<TSTAMP :3C9FB2460000AFC8, COL2 : 99>
The tuple does not exist
Transaction containing this update skipped
Failed transaction:
Update table TAB with keys:
<COL1 : 2>
New tuple value: <TSTAMP :3C9FB2460000AFC8,
COL2 : 99>
End of failed transaction

The format of a record that indicates an update conflict with a failed delete is:

Conflicting binary delete tuple timestamp : <timestamp in binary format>
Existing binary tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this delete skipped
Failed transaction:
Delete table <user>.<table> with keys:
<<key column name> : <key column value>>
End of failed transaction

The following example shows the output from a delete/update conflict caused by a delete on
a row that has more recently been updated. Because the row was updated more recently
than the delete, the delete from masterds is discarded.

Conflict detected at 15:27:20 on 03-25-2002
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : TAB
Conflicting binary delete tuple timestamp : 3C9FB258000708C8
Existing binary tuple timestamp : 3C9FB25800086858
The existing tuple :
< 147, 99, 3C9FB25800086858>
The key columns for the tuple:
<COL1 : 147>
Transaction containing this delete skipped
Failed transaction:
Delete table TAB with keys:
<COL1 : 147>

Chapter 12
Reporting Conflicts

12-13

Suspending and Resuming the Reporting of Conflicts
To avoid overwhelming a host with replication conflicts, you can configure replication to
suspend conflict reporting when the number of conflicts per second has exceeded a
user-specified threshold. Conflict reporting may also be configured to resume once the
conflicts per second have fallen below a user-specified threshold.

Provided your applications are well-behaved, replication usually encounters and
reports only sporadic conflicts. However, it is sometimes possible under heavy load to
trigger a flurry of conflicts in a short amount of time, particularly when applications are
in development and such errors are expected. This can potentially have a negative
impact on the performance of the host because of excessive write operations to the
conflict report file.

To configure conflict reporting to be suspended and resumed based on the number of
conflicts per second, use the CONFLICT REPORTING SUSPEND AT and CONFLICT
REPORTING RESUME AT attributes for the STORE clause of a replication scheme.

If the replication agent is stopped while conflict reporting is suspended, conflict
reporting is enabled when the replication agent is restarted. If the replication agent is
active and you set CONFLICT REPORTING RESUME AT to 0, reporting does not resume
until the replication agent is restarted.

The following example demonstrates the configuration of a replication schemes where
conflict reporting ceases when the number of conflicts exceeds 20 per second, and
conflict reporting resumes when the number of conflicts drops below 10 per second.

CREATE REPLICATION r1
ELEMENT elem_accounts_1 TABLE accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 REPORT TO 'conflicts' FORMAT XML
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 REPORT TO 'conflicts' FORMAT XML
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
STORE westds ON "westcoast"
 CONFLICT REPORTING SUSPEND AT 20
 CONFLICT REPORTING RESUME AT 10
STORE eastds ON "eastcoast"
 CONFLICT REPORTING SUSPEND AT 20
 CONFLICT REPORTING RESUME AT 10;

The Conflict Report XML Document Type Definition
The XML Document Type Definition (DTD) for the replication conflict report is a set of
markup declarations that describes the elements and structure of a valid XML file
containing a log of replication conflicts.

Chapter 12
The Conflict Report XML Document Type Definition

12-14

The TimesTen XML format conflict report is are based on the XML 1.0 specification (http://
www.w3.org/TR/REC-xml/).

This DTD can be found in the XML header file, identified by the suffix .xml, that is created
when replication is configured to report conflicts to an XML file. User applications which
understand XML use the DTD to parse the rest of the XML replication conflict report. For
more information on reading and understanding XML Document Type Definitions, see
http://www.w3.org/TR/REC-xml/.

<?xml version="1.0"?>
<!DOCTYPE ttreperrorlog [
 <!ELEMENT ttrepconflictreport(conflict*) >
 <!ELEMENT repconflict (header, conflict, scope, failedtransaction) >
 <!ELEMENT header (time, datastore, transmitter, table) >
 <!ELEMENT time (hour, min, sec, year, month, day) >
 <!ELEMENT hour (#PCDATA) >
 <!ELEMENT min (#PCDATA) >
 <!ELEMENT sec (#PCDATA) >
 <!ELEMENT year (#PCDATA) >
 <!ELEMENT month (#PCDATA) >
 <!ELEMENT day (#PCDATA) >
 <!ELEMENT datastore (#PCDATA) >
 <!ELEMENT transmitter (#PCDATA) >
 <!ELEMENT table (tableowner, tablename) >
 <!ELEMENT tableowner (#PCDATA) >
 <!ELEMENT tablename (#PCDATA) >
 <!ELEMENT scope (#PCDATA) >
 <!ELEMENT failedtransaction ((insert | update | delete)+) >
 <!ELEMENT insert (sql) >
 <!ELEMENT update (sql, keyinfo, newtuple) >
 <!ELEMENT delete (sql, keyinfo) >
 <!ELEMENT sql (#PCDATA) >
 <!ELEMENT keyinfo (column+) >
 <!ELEMENT newtuple (column+) >
 <!ELEMENT column (columnname, columntype, columnvalue) >
 <!ATTLIST column
 pos CDATA #REQUIRED >
 <!ELEMENT columnname (#PCDATA) >
 <!ELEMENT columnvalue (#PCDATA) >
 <!ATTLIST columnvalue
 isnull (true | false) "false">
 <!ELEMENT existingtuple (column+) >
 <!ELEMENT conflictingtuple (column+) >
 <!ELEMENT conflictingtimestamp(#PCDATA) >
 <!ELEMENT existingtimestamp (#PCDATA) >
 <!ELEMENT oldtuple (column+) >
 <!ELEMENT conflict (conflictingtimestamp, existingtimestamp*,
 existingtuple*, conflictingtuple*,
 oldtuple*, keyinfo*) >
<!ATTLIST conflict
 type (insert | update | deletedupdate | updatedeleted) #REQUIRED>
<!ENTITY logFile SYSTEM "Filename.include">
]>
<ttrepconflictreport>
 &logFile;
</ttrepconflictreport>

Chapter 12
The Conflict Report XML Document Type Definition

12-15

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

The Main Body of the Document
The .xml file for the XML replication conflict report is merely a header, containing the
XML Document Type Definition that describes the report format and links to a file with
the suffix .include. This include file is the main body of the report, containing each
replication conflict as a separate element.

There are three possible types of elements: insert, update and delete/update conflicts.
Each conflict type requires a slightly different element structure.

The Uniqueness Conflict Element
A uniqueness conflict occurs when a replicated insertion fails because a row with an
identical key column was inserted more recently.

See Reporting Uniqueness Conflicts.

The following example illustrates the format of a uniqueness conflict XML element.

<repconflict>
 <header>
 <time>
 <hour>13</hour>
 <min>36</min>
 <sec>00</sec>
 <year>2002</year> <month>03</month>
 <day>25</day>
 </time>
 <datastore>/tmp/masterds</datastore>
 <transmitter>SUBSCRIBERDS</transmitter>
 <table>
 <tableowner>REPL</tableowner>
 <tablename>TAB</tablename>
 </table>
 </header>
 <conflict type="insert">
 <conflictingtimestamp>3C9F983D00031128</conflictingtimestamp>
 <existingtimestamp>3C9F983E000251C0</existingtimestamp>
 <existingtuple>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9F983E000251C0</columnvalue>
 </column>
 </existingtuple>
 <conflictingtuple>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>

Chapter 12
The Conflict Report XML Document Type Definition

12-16

 <columnvalue>2</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>100</columnvalue>
 </column>
 <column pos="3">
 <columname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9F983D00031128</columnvalue>
 </column>
 </conflictingtuple>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 </keyinfo>
 </conflict>
 <scope>TRANSACTION</scope>
 <failedtransaction>
 <insert>
 <sql>Insert into table TAB </sql>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>100</columnvalue>
 </column>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>3C9F983D00031128</columnvalue>
 </column>
 </insert>
 </failedtransaction>
</repconflict>

The Update Conflict Element
An update conflict occurs when a replicated update fails because the row was updated more
recently.

See Reporting Update Conflicts.

The following example illustrates the format of an update conflict XML element.

<repconflict>
 <header>
 <time>
 <hour>15</hour>
 <min>03</min>
 <sec>18</sec>
 <year>2002</year>
 <month>03</month>

Chapter 12
The Conflict Report XML Document Type Definition

12-17

 <day>25</day>
 </time>
 <datastore>/tmp/subscriberds</datastore>
 <transmitter>MASTERDS</transmitter>
 <table>
 <tableowner>REPL</tableowner>
 <tablename>TAB</tablename>
 </table>
 </header>
 <conflict type="update">
 <conflictingtimestamp>
 3C9FACB6000612B0
 </conflictingtimestamp>
 <existingtimestamp>3C9FACB600085CA0</existingtimestamp>
 <existingtuple>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>6</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>99</columnvalue>
 </column>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FACB600085CA0></columnvalue>
 </column>
 </existingtuple>
 <conflictingtuple>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FACB6000612B0</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>50</columnvalue>
 </column>
 </conflictingtuple>
 <oldtuple>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FAC85000E01F0</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 </oldtuple>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>6</columnvalue>
 </column>

Chapter 12
The Conflict Report XML Document Type Definition

12-18

 </keyinfo>
</conflict>
<scope>TRANSACTION</scope>
<failedtransaction>
 <update>
 <<sql>Update table TAB</sql>
 <<keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>6</columnvalue>
 </column>
 </keyinfo>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FACB6000612B0</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>50</columnvalue>
 </column>
 </update>
 </failedtransaction>
</repconflict>

The Delete/Update Conflict Element
A delete/update conflict occurs when a replicated update fails because the row to be updated
has already been deleted on the database receiving the update, or when a replicated deletion
fails because the row has been updated more recently.

See Reporting Delete/Update Conflicts for a description of the information that is written to
the conflict report for a delete/update conflict.

The following example illustrates the format of a delete or update conflict XML element in
which an update fails because the row has been deleted more recently.

<repconflict>
 <header>
 <time>
 <hour>15</hour>
 <min>27</min>
 <sec>05</sec>
 <year>2002</year>
 <month>03</month>
 <day>25</day>
 </time>
 <datastore>/tmp/masterds</datastore>
 <transmitter>SUBSCRIBERDS</transmitter>
 <table>
 <tableowner>REPL</tableowner>
 <tablename>TAB</tablename>
 </table>
 </header>
 <conflict type="update">
 <conflictingtimestamp>
 3C9FB2460000AFC8
 </conflictingtimestamp>

Chapter 12
The Conflict Report XML Document Type Definition

12-19

 <conflictingtuple>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FB2460000AFC8</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>99/columnvalue>
 </column>
 </conflictingtuple>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 </keyinfo>
 </conflict>
 <scope>TRANSACTION</scope>
 <failedtransaction>
 <update>
 <sql>Update table TAB</sql>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 </keyinfo>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FB2460000AFC8</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>99</columnvalue>
 </column>
 </update>
 </failedtransaction>
</repconflict>

The following example illustrates the format of a delete/update conflict XML element in
which a deletion fails because the row has been updated more recently.

<repconflict>
 <header>
 <time>
 <hour>15</hour>
 <min>27</min>
 <sec>20</sec>
 <year>2002</year>
 <month>03</month>
 <day>25</day>
 </time>
 <datastore>/tmp/masterds</datastore>
 <transmitter>MASTERDS</transmitter>
 <table>

Chapter 12
The Conflict Report XML Document Type Definition

12-20

 <tableowner>REPL</tableowner>
 <tablename>TAB</tablename>
 </table>
 </header>
 <conflict type="delete">
 <conflictingtimestamp>
 3C9FB258000708C8
 </conflictingtimestamp>
 <existingtimestamp>3C9FB25800086858</existingtimestamp>
 <existingtuple>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>147</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>99</columnvalue>
 </column>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FB25800086858</columnvalue>
 </column>
 </existingtuple>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>147</columnvalue>
 </column>
 </keyinfo>
 </conflict>
 <scope>TRANSACTION</scope>
 <failedtransaction>
 <delete>
 <sql>Delete from table TAB</sql>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>147</columnvalue>
 </column>
 </keyinfo>
 </delete>
 </failedtransaction>
</repconflict>

Chapter 12
The Conflict Report XML Document Type Definition

12-21

13
Improving Replication Performance

There are methods you can implement to improve replication performance.

The following describes methods for increasing replication performance:

• Configure parallel replication. See Configuring Parallel Replication.

• Use asynchronous replication, which is the default. See Making Decisions About
Performance and Recovery Tradeoffs. However, if you are using active standby pairs,
return twosafe (synchronous replication) has better performance than return receipt
(semi-synchronous replication).

• Set the LogFileSize and LogBufMB first connection attributes to their maximum values.
See Setting Connection Attributes for Logging.

• If the workload is heavy enough that replication sometimes falls behind, replicated
changes must be captured from the transaction logs rather than from the in-memory log
buffer. Using the fastest possible storage for the TimesTen transaction logs reduces I/O
contention between transaction log flushing and replication capture and helps replication
to catch up more quickly during periods of reduced workload. Consider using a high
performance, cached disk array using a RAID-0 stripe across multiple fast disks or solid
state storage.

• Experiment with the number of connections to the database where the updates are
applied. If you need more than 64 concurrent connections, set the Connections first
connection attribute to a higher value. See "Connections" in Oracle TimesTen In-Memory
Database Reference.

• Adjust the transaction log buffer size and CPU power and resources. See Adjust
Transaction Log Buffer Size and CPU.

• There can be performance issues after altering tables with multiple partitions and
extraneous space. See Performance Considerations When Altering Tables That Are
Replicated.

• Increase the number of threads that apply changes from the active master database to
the standby master database by altering the RecoveryThreads first connection attribute.
See Increase Replication Throughput for Active Standby Pairs.

• Replication and XLA operations have significant overhead with transaction logging.
Replication scales best when there are a limited number of transmitters or receivers. See
Limit Replication Transmitters, Receivers, and XLA Readers.

Note:

Additional recommendations can be found in Poor Replication or XLA Performance
in Oracle TimesTen In-Memory Database Monitoring and Troubleshooting Guide.

13-1

Adjust Transaction Log Buffer Size and CPU
There are certain things you need to do if you are planning a replication scheme.

• The transaction log setting for LogBufMB should result in the value of LOG_FS_READS
in the SYS.MONITOR table being 0 or close to 0. This ensures that the replication
agent does not have to read any transaction log records from the file system. If the
value of LOG_FS_READS is increasing, then increase the transaction log buffer size.

• CPU resources are adequate. The replication agent on the master database
spawns a thread for every subscriber database. Each thread reads and processes
the transaction log independently and needs adequate CPU resources to make
progress.

• If the sending side and receiving side of the replication scheme are mismatched in
CPU power, place the replication receiver on the faster system.

Performance Considerations When Altering Tables That Are
Replicated

Altering a table to add or remove columns may lead to performance degradation or
poor space utilization.

• When you alter a table to add one or more columns, the table is allocated a new
partition for the additional columns. The additional partition causes extra
processing when retrieving the data, resulting in reduced performance. See
ALTER TABLE in the Oracle TimesTen In-Memory Database SQL Reference.

• When you alter a table to drop a column, the space is not always freed resulting in
poor space utilization.

Any replication scheme defined with the TABLE DEFINITION CHECKING EXACT attribute
requires that the physical structure of the table be identical on both master databases
in order to be able to replicate operations between them. When using the EXACT table
definition checking attribute, the only method to free the extraneous space resulted
from dropped columns or eliminate extra partitions resulting from added columns is to
drop and re-create the table, and then reload the data into the table.

However, if you create the tables with the TABLE DEFINITION CHECKING RELAXED
attribute, then (while they must have the same key definition, number of columns, and
column data types) the physical structure does not need to be identical on both master
databases. The TABLE DEFINITION CHECKING RELAXED attribute can result in slightly
slower performance, but only if the tables on both masters are not identical. The
change in performance depends on the workload and the number of partitions and
columns in the tables.

To improve performance for databases set with RELAXED, you can use ttMigrate -r -
relaxedUpgrade to coalesce tables eliminating extraneous space from dropped
columns or multiple partitions that were created when adding columns. This can be
performed on one database, while the other database is still up and accepting
requests on behalf of the application. You do not have to take both databases involved
in replication down at the same time, but can perform ttMigrate -r -relaxedUpgrade
on each one individually one after the other. This is optimal for databases where the
tables are altered often and where the database can only perform online upgrades.

Chapter 13
Adjust Transaction Log Buffer Size and CPU

13-2

You can only coalesce partitions and eliminate extraneous space with ttMigrate -r -
relaxedUpgrade on replicated tables when the table definition checking to RELAXED. However,
if your tables have been using the EXACT attribute, then you can temporarily set table
definition checking to RELAXED, consolidate the partitions and space for your tables, and then
reset it to EXACT.

For more information on the TABLE DEFINITION CHECKING RELAXED attribute, see Column
Definition Options for Replicated Tables.

Note:

You can check if the table has multiple partitions. For details, see the instructions in
both the Understanding Partitions When Using ALTER TABLE section detailed
within ALTER TABLE in the Oracle TimesTen In-Memory Database SQL Reference
and Check Partition Counts for the Tables in the Oracle TimesTen In-Memory
Database Monitoring and Troubleshooting Guide.

Increase Replication Throughput for Active Standby Pairs
You can increase replication throughput for active standby pairs by configuring parallel
replication.

By default, replication is performed with a single thread where the nodes in a replication
scheme have one log reader, or transmitter thread, on the source database, and one applier,
or receiving thread, on the target database. Parallel replication instantiates multiple threads to
transmit updates from the source database to the target database and to apply these updates
on the target database. See Configuring Parallel Replication.

Limit Replication Transmitters, Receivers, and XLA Readers
Replication and XLA operations have significant overhead with transaction logging.
Replication scales best when there are a limited number of transmitters or receivers.

Check your replication topology and see if you can simplify it. Generally, XLA scales best
when there are a limited number of readers. If your application has numerous readers, see if
you can reduce the number.

Monitor XLA and replication to ensure they are reading from the transaction log buffer rather
than from the file system. With a lot of concurrent updates, replication may not keep up.
Updates are single-threaded at the subscriber. You can achieve better XLA throughput if the
frequency of acknowledgements is reduced.

Estimate the number of readers and transmitters required by checking the values in the
LOG_FS_READS and LOG_BUFFER_WAITS columns in the SYS.MONITOR table. The system updates
this information each time a connection is made or released and each time a transaction is
committed or rolled back.

Setting LogFlushMethod=2 can improve performance of RETURN TWOSAFE replication
operations and RETURN RECEIPT with DURABLE TRANSMIT operations.

Chapter 13
Increase Replication Throughput for Active Standby Pairs

13-3

14
Managing Database Failover and Recovery

There are methods for you to manage database failover and recovery when using replication
schemes.

This chapter applies to all replication schemes, including active standby pairs. However,
TimesTen integration with Oracle Clusterware is the best way to monitor active standby pairs.
See Using Oracle Clusterware to Manage Active Standby Pairs.

This chapter includes these topics:

• Overview of Database Failover and Recovery

• General Failover and Recovery Procedures

• Recovering a Failed Database

• Recovering Nondurable Databases

• Writing a Failure Recovery Script

Overview of Database Failover and Recovery
A fundamental element in the design of a highly available system is the ability to recover
quickly from a failure. Failures may be related to hardware problems such as system failures
or network failures. Software failures include operating system failure, application failure,
database failure and operator error.

Your replicated system must employ a cluster manager or custom software to detect such
failures and, in the event of a failure involving a master database, redirect the user load to
one of its subscribers. The focus of this discussion is on the TimesTen mechanisms that an
application or cluster manager can use to recover from failures.

Unless the replication scheme is configured to use the return twosafe service, TimesTen
replicates updates only after the original transaction commits to the master database. If a
subscriber database is inoperable or communication to a subscriber database fails, updates
at the master are not impeded. During outages at subscriber systems, updates intended for
the subscriber are saved in the TimesTen transaction log.

Note:

The procedures described in this chapter require the ADMIN privilege.

General Failover and Recovery Procedures
The procedures for managing failover and recovery depend primarily on a few things.

• The replication scheme

• Whether the failure occurred on a master or subscriber database

14-1

• Whether the threshold for the transaction log on the master is exhausted before
the problem is resolved and the databases reconnected

The following sections describe different procedures for managing failover:

• Subscriber Failures

• Master Failures

• Automatic Catch-Up of a Failed Master Database

• Failures in Bidirectional Distributed Workload Schemes

• Network Failures

• Failures Involving Sequences

Subscriber Failures
In a default asynchronous replication scheme, if a subscriber database becomes
inoperable or communication to a subscriber database fails, updates at the master are
not impeded and the cluster manager does not have to take any immediate action.

Note:

If the failed subscriber is configured to use a return service, you must first
disable return service blocking, as described in Disabling Return Service
Blocking Manually.

During outages at subscriber systems, updates intended for the subscriber are saved
in the transaction log on the master. If the subscriber agent reestablishes
communication with its master before the master reaches its FAILTHRESHOLD, the
updates held in the log are automatically transferred to the subscriber and no further
action is required. See Setting the Transaction Log Failure Threshold for details on
how to establish the FAILTHRESHOLD value for the master database.

If the FAILTHRESHOLD is exceeded, the master sets the subscriber to the failed state
and it must be recovered, as described in Recovering a Failed Database. Any
application that connects to the failed subscriber receives a
tt_ErrReplicationInvalid (8025) warning indicating that the database has been
marked failed by a replication peer.

An application can use the ODBC SQLGetInfo function to check if the subscriber
database it is connected to has been set to the failed state. The SQLGetInfo function
includes a TimesTen-specific infotype, TT_REPLICATION_INVALID, that returns an
integer value of '1' if the database is failed, or '0' if not failed.

Note:

Since the infotype TT_REPLICATION_INVALID is specific to TimesTen, all
applications using it need to include the timesten.h file in addition to the
other ODBC include files.

Chapter 14
General Failover and Recovery Procedures

14-2

However, if you are using bidirectional replication scheme where each database serves as
both master and subscriber and one of the subscribers fail, then an error condition may
occur. For example, assuming that the masters and subscribers for the bidirectional
replication scheme are defined as follows:

CREATE REPLICATION r1
ELEMENT elem_accounts_1 TABLE ttuser.accounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE ttuser.accounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

• If the eastds subscriber fails, the westds master stops accumulating updates for this
subscriber since it received a failure.

• When the eastds subscriber fails, the replication agent shuts down on eastds. However,
the eastds master continues accumulating updates to propagate to its subscriber on
westds unaware that the replication agent has shut down. These updates continue to
accumulate past the defined FAILTHRESHOLD since the replication agent (who propagates
the records to the subscriber as well as monitors the FAILTHRESHOLD) is down.

If TT_REPLICATION_INVALID is set to 1 on a subscriber or standby database, the replication
agent shuts down due to the fact that the subscriber or standby is no longer receiving
updates. If your database fails when involved in a bidirectional configuration for your
replication scheme, then the replication agent is not running and the FAILTHRESHOLD is not
honored. To resolve this situation, destroy the subscriber or standby database and recreate it:

1. Destroy the failed database (in this example, the eastds database).

2. Re-create the failed database by performing a ttRepAdmin -duplicate operation from
the other master in the bidirectional replication scheme (in this example, the master on
westds).

Check if the database identified by the hdbc handle has been set to the failed state.

SQLINTEGER retStatus;

SQLGetInfo(hdbc, TT_REPLICATION_INVALID,
 (PTR)&retStatus, NULL, NULL);

Master Failures
The cluster manager plays a more central role if a failure involves the master database. If a
master database fails, the cluster manager must detect this event and redirect the user load
to one of its surviving databases.

This surviving subscriber then becomes the master, which continues to accept transactions
and replicates them to the other surviving subscriber databases. If the failed master and
surviving subscriber are configured in a bidirectional manner, transferring the user load from
a failed master to a subscriber does not require that you make any changes to your
replication scheme. However, when using unidirectional replication or complex schemes,
such as those involving propagators, you may have to issue one or more ALTER REPLICATION
statements to reconfigure the surviving subscriber as the "new master" in your scheme. See
Replacing a Master Database in a Classic Replication Scheme for an example.

When the problem is resolved, if you are not using the bidirectional configuration or the active
standby pair described in Automatic Catch-Up of a Failed Master Database, you must
recover the master database as described in Recovering a Failed Database.

Chapter 14
General Failover and Recovery Procedures

14-3

After the database is back online, the cluster manager can either transfer the user load
back to the original master or reestablish it as a subscriber for the "acting master."

Automatic Catch-Up of a Failed Master Database
The master catch-up feature automatically restores a failed master database from a
subscriber database without the need to invoke the ttRepAdmin -duplicate operation.

See Recovering a Failed Database.

The master catch-up feature needs no configuration, but it can be used only in the
following types of configurations:

• A single master replicated in a bidirectional manner to a single subscriber

• An active standby pair that is configured with RETURN TWOSAFE
For replication schemes that are not active standby pairs, the following must be true:

• The ELEMENT type is DATASTORE.

• TRANSMIT NONDURABLE or RETURN TWOSAFE must be enabled.

• All replicated transactions must be committed nondurably. They must be
transmitted to the remote database before they are committed on the local
database. For example, if the replication scheme is configured with RETURN
TWOSAFE BY REQUEST and any transaction is committed without first enabling
RETURN TWOSAFE, master catch-up may not occur after a failure of the master.

When the master replication agent is restarted after a crash or invalidation, any lost
transactions that originated on the master are automatically reapplied from the
subscriber to the master (or from the standby to the active in an active standby pair).
No connections are allowed to the master database until it has completely caught up
with the subscriber. Applications attempting to connect to a database during the catch-
up phase receive an error that indicates a catch-up is in progress. The only exception
is connecting to a database with the ForceConnect first connection attribute set in the
DSN. When the catch-up phase is complete, the application can connect to the
database. If one of the databases is invalidated or crashes during the catch-up
process, the catch-up phase is resumed when the database comes back up.

Master catch-up can fail under these circumstances:

• The failed database is offline long enough for the failure threshold to be exceeded
on the subscriber database (the standby database in an active standby pair).

• Dynamic load operations are taking place on the active database in an active
standby pair when the failure occurs. RETURN TWOSAFE is not enabled for dynamic
load operations even though it is enabled for the active database. The database
failure causes the dynamic load transactions to be trapped and RETURN TWOSAFE to
fail.

When Master Catch-Up Is Required for an Active Standby Pair
TimesTen error 8110 (Connection not permitted. This store requires Master
Catchup.) indicates that the standby database is ahead of the active database and
that master catch-up must occur before replication can resume.

When using master catch-up with an active standby pair, the standby database must
be failed over to become the new active database. If the old active database can

Chapter 14
General Failover and Recovery Procedures

14-4

recover, it becomes the new standby database. If it cannot recover, the old active database
must be destroyed and the new standby database must be created by duplicating the new
active database. See When Replication is Return Twosafe for more information about
recovering from a failure of the active database when RETURN TWOSAFE is configured (required
for master catch-up).

In an active standby pair with RETURN TWOSAFE configured, it is possible to have a trapped
transaction. A trapped transaction occurs when the new standby database has a transaction
present that is not present on the new active database after failover. Error 16227 (Standby
store has replicated transactions not present on the active) is one indication of
trapped transactions. You can verify the number of trapped transactions by checking the
number of records in replicated tables on each database during the manual recovery
process. For example, enter a statement similar to the following:

SELECT COUNT(*) FROM reptable;

When there are trapped transactions, perform these tasks for recovery:

1. Use the ttRepStateSet built-in procedure to change the state on the standby database to
'ACTIVE'.

2. Destroy the old active database.

3. Use ttRepAdmin -duplicate to create a new standby database from the new active
database, which has all of the transactions. See Duplicating a Database.

Failures in Bidirectional Distributed Workload Schemes
You can distribute the workload over multiple bidirectionally replicated databases, each of
which serves as both master and subscriber. When recovering a master/subscriber database,
the log on the failed database may present problems when you restart replication.

See Bidirectional Distributed Workload Scheme.

If a database in a distributed workload scheme fails and work is shifted to a surviving
database, the information in the surviving database becomes more current than that in the
failed database. If replication is restarted at the failed system before the log failure threshold
has been reached on the surviving database, then both databases attempt to update one
another with the contents of their transaction logs. In this case, the older updates in the
transaction log on the failed database may overwrite more recent data on the surviving
system.

There are two ways to recover in such a situation:

• If the timestamp conflict resolution rules described in Resolving Replication Conflicts are
sufficient to guarantee consistency for your application, then you can restart the failed
system and allow the updates from the failed database to propagate to the surviving
database. The conflict resolution rules prevent more recent updates from being
overwritten.

• Re-create the failed database, as described in Recovering a Failed Database. If the
database must be re-created, the updates in the log on the failed database that were not
received by the surviving database cannot be identified or restored. In the case of several
surviving databases, you must select which of the surviving databases is to be used to
re-create the failed database. It is possible that at the time the failed database is re-
created, the selected surviving database may not have received all updates from the
other surviving databases. This results in diverging databases. The only way to prevent

Chapter 14
General Failover and Recovery Procedures

14-5

this situation is to re-create the other surviving databases from the selected
surviving database.

Network Failures
In the event of a temporary network failure, you do not need to perform any specific
action to continue replication.

The replication agents that were in communication attempt to reconnect every few
seconds. If the agents reconnect before the master database runs out of log space,
the replication protocol makes sure they do not miss or repeat any replication updates.
If the network is unavailable for a longer period and the log failure threshold has been
exceeded for the master log, you need to recover the subscriber as described in
Recovering a Failed Database.

Failures Involving Sequences
After a network link failure, if replication is allowed to recover by replaying queued
logs, you do not need to take any action.

However, if the failed host was down for a significant amount of time, you must use the
ttRepAdmin -duplicate command to repopulate the database on the failed host with
transactions from the surviving host, as sequences are not rolled back during failure
recovery. In this case, the ttRepAdmin -duplicate command copies the sequence
definitions from one database to the other.

Recovering a Failed Database
If the databases are configured in a bidirectional replication scheme, a failed master
database is automatically brought up to date from the subscriber. Automatic catch-up
also applies to recovery of master databases in active standby pairs.

See Automatic Catch-Up of a Failed Master Database.

If a restarted database cannot be recovered from its master's transaction log so that it
is consistent with the other databases in the replicated system, you must re-create the
database from one of its replication peers. Use command line utilities or the TimesTen
Utility C functions. See Recovering a Failed Database From the Command Line and
Recovering a Failed Database From a C Program.

Note:

It is not necessary to re-create the DSN for the failed database.

In the event of a subscriber failure, if any tables are configured with a return service,
commits on those tables in the master database are blocked until the return service
timeout period expires. To avoid this, you can establish a return service failure and
recovery policy in your replication scheme, as described in Establishing Return
Service Failure and Recovery Policies. If you are using the RETURN RECEIPT service,
an alternative is to use ALTER REPLICATION and set the NO RETURN attribute to disable
return receipt until the subscriber is restored and caught up. Then you can submit
another ALTER REPLICATION statement to reestablish RETURN RECEIPT.

Chapter 14
Recovering a Failed Database

14-6

Recovering a Failed Database From the Command Line
If the databases are fully replicated, you can use the ttDestroy utility to remove the failed
database from memory and ttRepAdmin -duplicate to re-create it from a surviving database.

If the database contains any cache groups, you must also use the -keepCG option of
ttRepAdmin. See Duplicating a Database.

To recover a failed database, subscriberds, from a master named masterds on host
system1, enter:

ttDestroy /tmp/subscriberds

ttRepAdmin -dsn subscriberds -duplicate -from masterds -host "system1" -uid ttuser

You are prompted for the password of ttuser.

Note:

ttRepAdmin -duplicate is supported only between identical and patch TimesTen
releases. The major and minor release numbers must be the same.

After re-creating the database with ttRepAdmin -duplicate, the first connection to the
database reloads it into memory. To improve performance when duplicating large databases,
you can avoid the reload step by using the ttRepAdmin -ramload option to keep the database
in memory after the duplicate operation.

To recover a failed database, subscriberds, from a master named masterds on host
system1, and to keep the database in memory and restart replication after the duplicate
operation, enter:

ttDestroy /tmp/subscriberds

ttRepAdmin -dsn subscriberds -duplicate -ramload -from masterds -host "system1" -uid
ttuser

You are prompted for the password of ttuser.

Note:

After duplicating a database with the ttRepAdmin -duplicate -ramLoad options, the
RAM Policy for the database is manual until explicitly reset by ttAdmin -ramPolicy
or the ttRamPolicy function.

Recovering a Failed Database From a C Program
You can use the C functions provided in the TimesTen utility library to recover a failed
database programmatically.

Chapter 14
Recovering a Failed Database

14-7

If the databases are fully replicated, you can use ttDestroyDataStore function to
remove the failed database and the ttRepDuplicateEx function to re-create it from a
surviving database.

To recover and start a failed database, named subscriberds on host system2, from a
master, named masterds on host system1, enter:

int rc;
ttutilhandle utilhandle;
ttrepduplicateexarg arg;
memset(&arg, 0, sizeof(arg));
arg.size = sizeof(ttrepduplicateexarg);
arg.flags = tt_repdup_repstart | tt_repdup_ramload;
arg.uid=ttuser;
arg.pwd=ttuser;
arg.localhost = "system2";
rc = ttdestroydatastore(utilhandle, "subscriberds", 30);
rc = ttrepduplicateex(utilhandle, "dsn=subscriberds",
 "masterds", "system1", &arg);

In this example, the timeout for the ttDestroyDataStore operation is 30 seconds. The
last parameter of the ttRepDuplicateEx function is an argument structure containing
two flags:

• TT_REPDUP_RESTART to set the subscriberds database to the start state after the
duplicate operation is completed

• TT_REPDUP_RAMLOAD to set the RAM policy to manual and keep the database in
memory

Note:

When the TT_REPDUP_RAMLOAD flag is used with ttRepDuplicateEx, the RAM
policy for the duplicate database is manual until explicitly reset by the
ttRamPolicy function or ttAdmin -ramPolicy.

See TimesTen Utility API in Oracle TimesTen In-Memory Database C Developer's
Guide for the complete list of the functions provided in the TimesTen C language utility
library.

Recovering Nondurable Databases
If your database is configured with the TRANSMIT NONDURABLE option in a
bidirectional configuration, you do not need to take any action to recover a failed
master database.

See Automatic Catch-Up of a Failed Master Database.

For other types of configurations, if the master database configured with the TRANSMIT
NONDURABLE option fails, you must use ttRepAdmin-duplicate or ttRepDuplicateEx to
re-create the master database from the most current subscriber database. If the
application attempts to reconnect to the master database without first performing the
duplicate operation, the replication agent recovers the database, but any attempt to
connect results in an error that advises you to perform the duplicate operation. To

Chapter 14
Recovering Nondurable Databases

14-8

avoid this error, the application must reconnect with the ForceConnect first connection
attribute set to 1.

Writing a Failure Recovery Script
Upon detecting a failure, the cluster manager should invoke a script that effectively runs the
procedure shown by the failure recovery pseudocode.

Detect problem {
 if (Master == unavailable) {
 FailedDataDatabase = Master
 FailedDSN = Master_DSN
 SurvivorDatabase = Subscriber
 switch users to SurvivorDatabase
 }
else {
 FailedDatabase = Subscriber
 FailedDSN = Subscriber_DSN
 SurvivorDatabase = Master
 }
}
Fix problem....
If (Problem resolved) {
 Get state for FailedDatabase
 if (state == "failed") {
 ttDestroy FailedDatabase
 ttRepAdmin -dsn FailedDSN -duplicate
 -from SurvivorDatabase -host SurvivorHost
 -uid ttuser
 -pwd ttuser
 }
 else {
 ttAdmin -repStart FailedDSN
 }
 while (backlog != 0) {
 wait
 }
}

Switch users back to Master.

This applies to either the master or subscriber databases. If the master fails, you may lose
some transactions.

Chapter 14
Writing a Failure Recovery Script

14-9

A
TimesTen Configuration Attributes for Oracle
Clusterware

The attributes defined in this chapter are used to set up TimesTen active standby pairs that
are managed by Oracle Clusterware. These attributes are specified in the
cluster.oracle.ini file.

The ttCWAdmin utility creates and administers active standby pairs based on the information
in the cluster.oracle.ini file.

List of Attributes
This section lists the TimesTen configuration attributes for Oracle Clusterware in these tables:

• Table A-1 Required attributes

• Table A-2 Conditionally required attributes

• Table A-3 Optional attributes

Table A-1 Required Attributes

Name Description Default

MasterHosts Lists host names that may contain master
databases in an active standby pair
scheme.

None

Table A-2 Conditionally Required Attributes

Name Description Default

AppCheckCmd Command line for checking the status of a
TimesTen application that is managed by
Oracle Clusterware.

None

AppName The name of a TimesTen application that is
managed by Oracle Clusterware.

None

AppStartCmd Command line for starting a TimesTen
application that is managed by Oracle
Clusterware.

None

AppStopCmd Command line for stopping a TimesTen
application that is managed by Oracle
Clusterware.

None

AppType The database to which the application
should link.

None

CacheConnect Specifies whether the active standby pair
replicates cache groups.

N

A-1

Table A-2 (Cont.) Conditionally Required Attributes

Name Description Default

MasterVIP A list of two virtual IP addresses that can
be associated with the master databases.

None

RemoteSubscriberHosts A list of subscriber hosts that are not part of
the cluster.

None

RepBackupDir The directory to which the active database
is backed up.

None

SubscriberHosts List of host names that can contain
subscriber databases.

None

SubscriberVIP The list of virtual IP addresses that can be
associated with subscriber databases.

None

VIPInterface The name of the public network adapter
that is to be used for virtual IP addresses
on each host.

None

VIPNetMask The netmask of the virtual IP addresses. None

Table A-3 Optional Attributes

Name Description Default

AppFailoverDelay The number of seconds that the Oracle
Clusterware resource that monitors the
application waits after a failure is
detected before performing a failover.

0

AppFailureInterval The interval in seconds before which
Oracle Clusterware stops a TimesTen
application if the application has
exceeded the number of failures
specified by the Oracle Clusterware
FAILURE_THRESHOLD resource
attribute.

60

AppFailureThreshold The number of consecutive Oracle
Clusterware resource failures that
Oracle Clusterware tolerates for the
action script for an application within an
interval equal to 10 * AppScriptTimeout.
The default is 2.

2

AppRestartAttempts The number of times that Oracle
Clusterware attempts to restart the
TimesTen application on the current
host before moving the application.

100

AppScriptTimeout The number of seconds the TimesTen
application container waits for the action
scripts to complete for a specific
application.

60

Appendix A
List of Attributes

A-2

Table A-3 (Cont.) Optional Attributes

Name Description Default

AppUptimeThreshold The number of seconds that a
TimesTen application must be up before
Oracle Clusterware considers the
application to be stable.

If the application fails within this
threshold, the failure is considered a
failure to start properly, and the
application is restarted on another host.
If the application is active past this
threshold, it is considered stable. If it
fails after being stable, the application is
restarted on the same host.

600

AutoRecover Specifies whether an active database
should be automatically recovered from
a backup if both master databases fail.

No

ClusterType Defaults to Active. This is the only
valid value for TimesTen.

Active

DatabaseFailoverDelay The number of seconds that Oracle
Clusterware waits before migrating a
database to a new host after a failure.

60

FailureThreshold The number of consecutive failures of
resources managed by Oracle
Clusterware that are tolerated within 10
seconds before the active standby pair
is considered failed and a new active
standby pair is created on spare hosts
using the automated backup.

2

MasterStoreAttribute A list of all desired replication scheme
STORE attributes on master databases.

None

RepBackupPeriod The number of seconds between each
backup of the active database.

0 (disabled)

RepDDL A SQL construct of the active standby
pair scheme.

None

RepFullBackupCycle The number times an incremental
backup occurs between full backups.

5

ReturnServiceAttribute The return service attribute of the active
standby pair scheme.

None

SubscriberStoreAttribute The list of all desired replication
scheme STORE attributes for the
subscriber database.

None

TimesTenScriptTimeout The number of seconds that Oracle
Clusterware waits for the monitor
process to start before assuming a
failure.

1209600 seconds,
or 14 days

Appendix A
List of Attributes

A-3

Required Attributes
These attributes must be present for each DSN in the cluster.oracle.ini file. They
have no default values.

The required attributes are listed in Table A-1.

MasterHosts
This attribute lists the host names that can contain master databases in the active
standby pair. The first host listed has the active master database and the second host
has the standby master database when the cluster is initially started.

The following are exceptions to this designated order:

• If there are already active and standby master databases on specific nodes when
the cluster is stopped, then the active and standby master databases remain on
those hosts when the cluster is restarted.

• If the cluster is started and the only existing database is on a host that is not listed
first in MasterHosts, then that host is to be configured with the active master
database. The first host listed for MasterHosts is to be the standby master
database.

You can specify more than two hosts as master hosts for advanced availablity. See
Configuring Advanced Availability.

If you have only two master hosts configured, you should not define any virtual IP
addresses. If more than two master hosts are listed, you should configure virtual IP
addresses for internal TimesTen processes to manage replication in the situation of an
unrecoverable failure of one of the hosts on which an active or standby database
resides. See Configuring Advanced Availability.

Setting

Set MasterHosts as follows:

How the Attribute Is
Represented

Setting

MasterHosts A comma-separated list of host names. The first host listed
becomes the initial active master in the active standby pair.
The second host listed becomes the initial standby master in
the active standby pair.

The hosts defined must be different than the hosts defined for
the SubscriberHosts attribute.

Conditionally Required Attributes
These attributes may be required depending on the desired Oracle Clusterware
configuration. They have no default values.

The conditionally required attributes are listed in Table A-2.

Appendix A
Required Attributes

A-4

AppCheckCmd
This attribute specifies the full command line for running a user-supplied script or program
that checks the status of the TimesTen application specified by AppName.

It must include the full path name of the executable. If there are spaces in the path name,
enclose the path name in double quotes. See AppName.

The command should be written to return 0 when the application is running and a nonzero
number when the application is not running. When Oracle Clusterware detects a nonzero
value, it takes action to recover the failed application.

Setting

Set AppCheckCmd as follows:

How the Attribute Is Represented Setting

AppCheckCmd A string representing the command line for running an
application that checks the status of the application specified by
AppName.

Examples

AppCheckCmd=/mycluster/reader/app_check.sh check

AppFailureInterval
This attribute sets the interval in seconds before which Oracle Clusterware stops a TimesTen
application if the application has exceeded the number of failures specified by the Oracle
Clusterware FAILURE_THRESHOLD resource attribute. If the value is zero, then failure tracking is
disabled.

For more information about the Oracle Clusterware FAILURE_THRESHOLD resource attribute,
see the Oracle Clusterware Administration and Deployment Guide in the Oracle Database
documentation.

Setting

Set AppFailureInterval as follows:

How the Attribute Is Represented Setting

AppFailureInterval The number of seconds in the interval before Oracle Clusterware
stops an application. The default is 60. For example:

AppFailureInterval=120

Appendix A
Conditionally Required Attributes

A-5

AppName
This attribute specifies the name of a TimesTen application managed by Oracle
Clusterware. Oracle Clusterware uses the application name to name the
corresponding resource. Any description of an application in the cluster.oracle.ini
file must begin with this attribute.

Setting

Set AppName as follows:

How the Attribute Is
Represented

Setting

AppName A string representing the name of the application. For
example, testApp.

AppRestartAttempts
This attribute specifies the number of times that Oracle Clusterware attempts to restart
the TimesTen application on the current host before moving the application to another
host.

Setting

Set AppRestartAttempts as follows:

How the Attribute Is
Represented

Setting

AppRestartAttempts The number of restart attempts. The default is 100. For
example:

AppRestartAttempts=30

AppStartCmd
This attribute specifies the command line that starts the TimesTen application specified
by AppName.

It must include the full path name of the executable. If there are spaces in the path
name, enclose the path name in double quotes. See AppName.

Setting

Set AppStartCmd as follows:

How the Attribute Is
Represented

Setting

AppStartCmd A string that represents the command line for starting the
application specified by AppName.

Appendix A
Conditionally Required Attributes

A-6

Examples

AppCheckCmd=/mycluster/reader/app_start.sh start

AppStopCmd
This attribute specifies the command line that stops the TimesTen application specified by
AppName.

It must include the full path name of the executable. If there are spaces in the path name,
enclose the path name in double quotes. See AppName.

Setting

Set AppStopCmd as follows:

How the Attribute Is Represented Setting

AppStopCmd A string that represents the command line for stopping the
application specified by AppName.

Examples

AppCheckCmd=/mycluster/reader/app_stop.sh stop

AppType
This attribute determines the hosts on which the TimesTen application should start.

Setting

Set AppType as follows:

How the Attribute Is
Represented

Setting

AppType Active - The application starts on the active database of an active
standby pair.

Standby - The application starts on the standby database of an
active standby pair. If the standby database fails, applications linked
to it migrate to the active database until a new standby database is
available.

DualMaster - The application starts on both the active host and the
standby host. The failure of the application on the active host
causes the active database and all other applications on the host to
fail over to the standby host.

Subscriber - The application starts on all subscriber databases.

Subscriber[index]- The application starts on a subscriber
database. The subscriber host used is the host occupying position
index in either the SubscriberHosts attribute or the SubscriberVIP
attribute, depending on whether virtual IP addresses are used. For
a single subscriber, use Subscriber[1]. If no index is specified,
TimesTen assumes that the application links to all subscribers.

Appendix A
Conditionally Required Attributes

A-7

AppUptimeThreshold
This attribute specifies the value for the Oracle Clusterware UPTIME_THRESHOLD
resource attribute.

The value represents the number of seconds that a TimesTen application must be up
before Oracle Clusterware considers the application to be stable.

For more information about UPTIME_THRESHOLD, see the Oracle Clusterware
Administration and Deployment Guide in the Oracle Database documentation.

How the Attribute Is
Represented

Setting

AppUptimeThreshold Number of seconds. The default is 600. For example:

AppUptimeThreshold=60

CacheConnect
If the active standby pair replicates cache groups, set this attribute to Y.

If you specify Y, Oracle Clusterware assumes that TimesTen is connected to an Oracle
database and prompts for the Oracle database password.

Setting

Set CacheConnect as follows:

How the Attribute Is
Represented

Setting

CacheConnect A value of Y (yes) or N (no). Default is N.

MasterVIP
This attribute defines two virtual IP (VIP) addresses associated with the two master
hosts that are used by the active standby pair.

If you configure more than two master hosts for advanced availability, you must also
define two VIP addresses. However, these VIP addresses are used solely by internal
TimesTen processes for managing the active standby pair in the case of an
unrecoverable error on one of the master hosts. Use of these VIP addresses by any
user or application can result in an error. See Configuring Advanced Availability.

Setting

Set MasterVIP as follows:

How the Attribute Is
Represented

Setting

MasterVIP A comma-separated list of two virtual IP addresses to the
master hosts.

Appendix A
Conditionally Required Attributes

A-8

RemoteSubscriberHosts
This attribute contains a list of subscriber hosts that are part of the active standby pair
replication scheme but are not managed by Oracle Clusterware.

Setting

Set RemoteSubscriberHosts as follows:

How the Attribute Is
Represented

Setting

RemoteSubscriberHosts A comma-separated list of subscriber hosts that are not managed
by Oracle Clusterware.

RepBackupDir
This attribute indicates the directory where the backup of the active database is stored. This
must be a directory in a shared file system that every node in the cluster can access.

This attribute is required only if RepBackupPeriod is set to a value other than 0.

The directory must be shared by all hosts in the cluster. The shared storage must be NFS or
OCFS (Oracle Cluster File System).

If you want to enable backup, install OCFS on the shared storage during the Oracle
Clusterware installation process. You can use this shared storage for backup for an active
standby pair.

See Configuring for Recovery When Both Master Nodes Permanently Fail and When Failures
Occur on Both Master Nodes for restrictions on backups.

Setting

Set RepBackupDir as follows:

How the Attribute Is
Represented

Setting

RepbackupDir Full path name to the replication backup directory.

SubscriberHosts
Lists the host names that can contain subscriber databases. If the active standby pair is
configured with subscribers, this attribute is required. It has no default value. You should have
at least as many host names listed as there are subscribers defined.

If you are using advanced availability for your subscribers, define additional hosts that can be
instantiated to take the place of any subscriber host that may encounter an unrecoverable
error. Also, when using advanced availability, configure VIP addresses for every current
subscriber in use. For example, if you have three subscribers and two additional hosts that
can be used for advanced availability, you should have three VIP addresses defined. See
SubscriberVIP.

Appendix A
Conditionally Required Attributes

A-9

Setting

Set SubscriberHosts as follows:

How the Attribute Is
Represented

Setting

SubscriberHosts A comma-separated list of host names.

The hosts defined must be different than the hosts defined for
the MasterHosts attribute.

If not using advanced availability, the order of the hosts defined
determines which application with an AppType of
Subscriber[index] is attached to the subscriber database
on a specific host. Also, the number of subscriber hosts
specified is the number of subscribers that are part of the
active standby pair. A subscriber is brought up on every
subscriber host.

When using advanced availability, the first hosts listed are
used for the subscriber hosts. The latter hosts defined are
used for advanced availability.

SubscriberVIP
This attribute configures a list of the virtual IP (VIP) addresses associated with
subscriber hosts that are used for advanced availability.

When you configure more hosts than there are subscribers (for advanced availability),
you must also define VIP addresses (one for each subscriber). However, these VIP
addresses are used solely by internal TimesTen processes for managing replication in
the case of an unrecoverable error on one of the subscriber hosts. Use of these VIP
addresses by any user or application can result in an error. See Configuring Advanced
Availability.

Setting

Set SubscriberVIP as follows:

How the Attribute Is
Represented

Setting

SubscriberVIP One or more virtual IP addresses. You should define the same
number of VIP addresses as the number of subscribers.

The order of subscriber virtual IP addresses is used to
determine which application with an AppType of
Subscriber[index] is attached to the database for a
specific subscriber.

Appendix A
Conditionally Required Attributes

A-10

VIPInterface
This attribute is the name of the public network adapter used for virtual IP addresses on each
host. This attribute is required if you intend to use virtual IP addresses.

Setting

Set VIPInterface as follows:

How the Attribute Is
Represented

Setting

VIPInterface A string representing a network adapter.

VIPNetMask
This attribute is the netmask of the virtual IP addresses. This attribute is required if you intend
to use virtual IP addresses.

Setting

Set VIPNetMask as follows:

How the Attribute Is
Represented

Setting

VIPNetMask An IP netmask.

Optional Attributes
These attributes are optional and have no default values.

The optional attributes are listed in Table A-3.

AppFailoverDelay
This attribute specifies the number of seconds that the process that is monitoring the
application waits after a failure is detected before performing a failover. The default is 0.

Setting

Set AppFailoverDelay as follows:

How the Attribute Is
Represented

Setting

AppFailoverDelay An integer representing the number of seconds that the process
that is monitoring the application waits after a failure is detected
before performing a failover. The default is 0.

Appendix A
Optional Attributes

A-11

AppFailureThreshold
This attribute specifies the number of consecutive failures that Oracle Clusterware
tolerates for the action script for an application within an interval equal to 10 *
AppScriptTimeout. The default is 2.

See AppScriptTimeout.

Setting

Set AppFailureThreshold as follows:

How the Attribute Is
Represented

Setting

AppFailureThreshold An integer indicating the number of consecutive failures that
Oracle Clusterware tolerates for the action script for an
application. The default is 2.

AppScriptTimeout
This attribute indicates the number of seconds that the TimesTen application monitor
process waits for the start action script and the stop action script to complete for a
specific application.

The check action script has a nonconfigurable timeout of five seconds and is not
affected by this attribute.

Setting

Set AppScriptTimeout as follows:

How the Attribute Is
Represented

Setting

AppScriptTimeout An integer representing the number of seconds the TimesTen
application container waits for start and stop action scripts to
complete for a specific application. The default is 60.

AutoRecover
Specifies whether Oracle Clusterware automatically recovers the active database from
the backup in the case of a failure of both masters.

If recovery is not automated (AutoRecover=N), the database can be recovered using
the ttCWAdmin -restore command.

You cannot use AutoRecover if you are using cache groups in your configuration.

Setting

Set AutoRecover as follows:

Appendix A
Optional Attributes

A-12

How the Attribute Is
Represented

Setting

AutoRecover Y - Oracle Clusterware automatically recovers the active database
from the backup if both masters fail.

N - In the case of the failure of both masters, you must recover
manually. This is the default.

DatabaseFailoverDelay
This attributes specifies the number of seconds that Oracle Clusterware waits before
migrating a database to a new host after a failure.

Oracle Clusterware does not relocate a database if the database comes up during the delay
period. This is applicable when advanced availability is configured. The default is 60 seconds.

Setting

Set DatabaseFailoverDelay as follows:

How the Attribute Is
Represented

Setting

DatabaseFailoverDelay An integer representing the number of seconds that Oracle
Clusterware waits before migrating a database to a new host after a
failure. The default is 60.

FailureThreshold
The FailureThreshold attribute specifies the number of consecutive failures of resources
managed by Oracle Clusterware that are tolerated within 10 seconds before the active
standby pair is considered failed and a new active standby pair is created on spare hosts
using the automated backup. A spare node is only an option when using virtual IP addresses.

Oracle Clusterware tries to perform a duplicate for the active standby pair when a single
failure occurs; it tries to perform a restoration if more than a single failure occurs.

This value is ignored for basic availability, since a spare node is only configured when at least
one virtual IP address is configured, or is ignored when RepBackupPeriod is set to 0 when
using advanced availability, which does include the configuration of at least one virtual IP
address.

Note:

TimesTen tolerates only one failure of a backup resource, regardless of the setting
for this attribute.

Setting

Set FailureThreshold as follows:

Appendix A
Optional Attributes

A-13

How the Attribute Is
Represented

Setting

FailureThreshold An integer representing the number of consecutive failures of
resources managed by Oracle Clusterware that are tolerated
within 10 seconds before the active standby pair is considered
failed and a new active standby pair is created on spare hosts
using the automated backup. The default is 2.

MasterStoreAttribute
The MasterStoreAttribute attribute indicates the desired replication scheme STORE
attributes for the master databases.

The STORE attributes apply to both the active and standby databases. For more
information on STORE attributes, see Setting STORE Attributes.

This attribute is not required when RepDDL is configured.

If this attribute is not set, the STORE attributes take their default values.

Setting

Set MasterStoreAttribute as follows:

How the Attribute Is
Represented

Setting

MasterStoreAttribute The desired replication scheme STORE attributes for the master
databases. For example: PORT 20000 TIMEOUT 60.

RepBackupPeriod
This attribute indicates the number of seconds between each backup of the active
database.

If this attribute is set to a value greater than 0, you must also specify a backup
directory by setting RepBackupDir. See Configuring for Recovery When Both Master
Nodes Permanently Fail and When Failures Occur on Both Master Nodes.

Setting

Set RepBackupPeriod as follows:

How the Attribute Is
Represented

Setting

RepBackupPeriod An integer indicating the number of seconds between each
backup of the active database. A value of 0 disables the
backup process. The default is 0.

Appendix A
Optional Attributes

A-14

RepDDL
This attribute represents the SQL statement that creates the active standby pair. Use this
attribute only in special circumstances.

For example, you must specify RepDDL if you need to exclude tables and sequences from the
active standby pair.

If RepDDL is set, do not set these attributes:

• ReturnServiceAttribute

• MasterStoreAttribute

• SubscriberStoreAttribute

Replace the database file name prefix in the SQL statement with the <DSN> macro. Use the
<MASTERHOST[1]>, <MASTERHOST[2]> and <SUBSCRIBERHOST[n]> macros instead of the host
names.

There is no default value for RepDDL.

This example sets RepDDL for two master databases:

RepDDL=CREATE ACTIVE STANDBY PAIR <DSN> ON <MASTERHOST[1]>, <DSN> ON <MASTERHOST[2]>

See Using the RepDDL Attribute for additional examples.

You do not usually need to set the ROUTE clause in RepDDL because the transmitter of the
replication agent automatically obtains the private and public network interfaces that Oracle
Clusterware uses. However, if hosts have network connectivity for replication schemes that
are not managed by Oracle Clusterware, then RepDDL needs to include the ROUTE clause.

If this attribute is used, each STORE clause must be followed by the pseudo host names such
as:

• ActiveHost
• ActiveVIP
• StandbyHost
• StandbyVIP
• SubscriberHost
• SubscriberVIP

Setting

Set RepDDL as follows:

How the Attribute Is
Represented

Setting

RepDDL Creates an active standby pair by issuing a CREATE ACTIVE
STANDBY PAIR statement. There is no default value.

Appendix A
Optional Attributes

A-15

RepFullBackupCycle
This attribute specifies the number of incremental backups between full backups. The
number of incremental backups depends on the capacity of the shared storage.

Setting this attribute can impact performance. There is a trade-off between the storage
capacity and the time consumption for backup. An incremental backup can be
performed much faster than a full backup. However, storage consumption increases
until a full backup is performed.

See Configuring for Recovery When Both Master Nodes Permanently Fail and When
Failures Occur on Both Master Nodes for restrictions on backups.

Setting

Set RepFullBackupCycle as follows:

How the Attribute Is
Represented

Setting

RepFullBackupCycle An integer value representing the number of incremental
backups to perform between full backups. The default is 5.

ReturnServiceAttribute
This attribute specifies the return service for the active standby replication scheme.

If no value is specified for this attribute, the active standby pair is configured with no
return service.

See Using a Return Service.

Setting

Set ReturnServiceAttribute as follows:

How the Attribute Is
Represented

Setting

ReturnServiceAttribute The type of return service. For example: RETURN RECEIPT.
There is no default value.

SubscriberStoreAttribute
This attribute indicates the replication scheme STORE attributes of subscriber
databases. The STORE attributes apply to all subscribers.

This attribute is not required when RepDDL is present.

If this attribute is not set, the STORE attributes take their default values.

See Setting STORE Attributes.

Setting

Set SubscriberStoreAttribute as follows:

Appendix A
Optional Attributes

A-16

How the Attribute Is Represented Setting

SubscriberStoreAttribute The list of STORE attributes and their values for the subscriber
databases.

For example: PORT 20000 TIMEOUT 60.

TimesTenScriptTimeout
This attribute specifies the number of seconds that Oracle Clusterware waits for the monitor
process to start before assuming a failure.

Oracle TimesTen recommends setting a value of several hours because the action script may
take a long time to duplicate the active database. The default is 1209600 seconds (14 days).

Setting

Set TimesTenScriptTimeout as follows:

How the Attribute Is
Represented

Setting

TimesTenScriptTimeout An integer representing the number of seconds that Oracle
Clusterware waits for the monitor process to start before assuming
a failure. The default is 1209600 seconds (14 days).

Appendix A
Optional Attributes

A-17

	Contents
	About This Content
	1 Overview of TimesTen Replication
	What is Replication?
	Requirements for Replication Compatibility
	Replication Agents
	Copying Updates Between Databases
	Default Replication
	Return Receipt Replication
	Return Twosafe Replication

	Types of Replication Schemes
	Active Standby Pair With Read-Only Subscribers
	Classic Replication
	Full Database Replication or Selective Replication
	Unidirectional or Bidirectional Replication
	Direct Replication or Propagation

	Configuring a Large Number of Subscribers
	Cache Groups and Replication
	Replicating an AWT Cache Group
	Replicating an AWT Cache Group With a Subscriber Propagating to an Oracle Database
	Replicating a Read-Only Cache Group

	Sequences and Replication
	Foreign Keys and Replication
	Aging and Replication

	2 Getting Started
	Configuring an Active Standby Pair With One Subscriber
	Configuring a Classic Replication Scheme With One Master and One Subscriber
	Starting and Stopping the Replication Agents

	3 Defining an Active Standby Pair Replication Scheme
	Overview of Master Database States
	Restrictions on Active Standby Pairs
	Defining the DSNs for the Databases
	Table Requirements for Active Standby Pairs
	Defining an Active Standby Pair Replication Scheme
	Identifying the Databases in the Active Standby Pair
	Using a Return Service for an Active Standby Pair
	Setting STORE Attributes for an Active Standby Pair
	Configuring Network Operations for an Active Standby Pair
	Using Automatic Client Failover for an Active Standby Pair
	Including or Excluding Database Objects From Replication
	Replicating Tables With Foreign Key Relationships in an Active Standby Pair
	Replicating Cache Groups in an Active Standby Pair
	Materialized Views in an Active Standby Pair
	Replicating Sequences in an Active Standby Pair
	Duplicating a Database
	Duplicating Over a Specific Network Interface
	Duplicating With Cache Groups

	4 Defining Attributes and Options for a Replication Scheme
	Connection Attributes for Replicated Databases
	Configuring Parallel Replication
	Configuring Automatic Parallel Replication
	Configuring Automatic Parallel Replication With Disabled Commit Dependencies
	Specifying Replication Tracks Within an Automatic Parallel Replication Environment

	Managing the Transaction Log on a Replicated Database
	About Log Buffer Flushing
	About Transaction Log Growth on a Master Database
	Setting Connection Attributes for Logging

	Using a Return Service
	RETURN RECEIPT
	RETURN RECEIPT BY REQUEST
	RETURN TWOSAFE
	RETURN TWOSAFE BY REQUEST
	NO RETURN
	Specifying a Different Return Service for Each Subscriber in a Classic Replication Scheme
	Setting the Return Service Timeout Period
	Disabling Return Service Blocking Manually
	Establishing Return Service Failure and Recovery Policies
	RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED
	DISABLE RETURN
	RESUME RETURN
	DURABLE COMMIT
	LOCAL COMMIT ACTION

	Setting STORE Attributes
	Column Definition Options for Replicated Tables
	Setting Table Definition Checking to Relaxed for an Active Standby Pair
	Examples for Classic Replication Scheme With Table Definition Checking Set to Relaxed

	Compressing Replicated Traffic
	Port Assignments
	Setting Wait Timeout for Response From Remote Replication Agents
	Setting the Transaction Log Failure Threshold
	Suspending or Resuming Classic Replication in Response to Conflicts

	Configuring the Network
	Network Bandwidth Requirements
	Replication in a WAN Environment
	Configuring Network Interfaces With the ROUTE Clause
	Configuring Network Interfaces When Not Using the ROUTE Clause
	Identifying Database Hosts on UNIX or Linux Without Using the ROUTE Clause
	Host Name Resolution on Windows
	User-Specified Addresses for TimesTen Daemons and Subdaemons

	Identifying the Local Host of a Replicated Database

	5 Administering an Active Standby Pair Without Cache Groups
	Setting Up an Active Standby Pair With No Cache Groups
	Recovering From a Failure of the Active Database
	Recovering When the Standby Database is Ready
	When Replication is Return Receipt or Asynchronous
	When Replication is Return Twosafe

	Failing Back to the Original Nodes

	Recovering From a Failure of the Standby Database
	Recovering After a Dual Failure of Both Active and Standby Databases
	Recover an Active Database
	Recover a Standby Database

	Recovering From the Failure of a Subscriber Database
	Reversing the Roles of the Active and Standby Databases
	Detection of Dual Active Databases

	6 Administering an Active Standby Pair With Cache Groups
	Replicating Cache Groups Within Active Standby Pairs
	Setting Up an Active Standby Pair With an AWT Cache Group
	Setting Up an Active Standby Pair With a Read-Only Cache Group
	Creating a Read-Only Cache Group to Include Within a New Active Standby Pair

	Changing User Names or Passwords Used by Replication
	Recovering From a Failure of the Active Database
	Recovering When the Standby Database is Ready
	When Replication Is Return Receipt or Asynchronous
	When Replication Is Return Twosafe
	When There Is Unsynchronized Data in the Cache Groups

	Failing Back to the Original Nodes

	Recovering From a Failure of the Standby Database
	Recovering After a Dual Failure of Both Active and Standby Databases
	Recover the Active Database and Duplicate a New Standby Database
	Recover the Standby Database to Be the New Active Master
	Restore the Active Master From a Backup

	Recovering From the Failure of a Subscriber Database
	Reversing the Roles of the Active and Standby Databases
	Detecting Dual Active Databases
	Using a Disaster Recovery Subscriber in an Active Standby Pair
	Requirements for Using a Disaster Recovery Subscriber With an Active Standby Pair
	Rolling Out a Disaster Recovery Subscriber
	Switching Over to the Disaster Recovery Site
	Creating a New Active Standby Pair After Switching to the Disaster Recovery Site
	Switching Over to a Single Database

	Returning to the Original Configuration at the Primary Site

	7 Altering an Active Standby Pair
	Making DDL Changes in an Active Standby Pair
	Controlling Replication of Objects to All Databases in an Active Standby Pair
	DDL Statements That Can Be Automatically Replicated
	Creating a New PL/SQL Object in an Existing Active Standby Pair
	Restrictions on Making DDL Changes in an Active Standby Pair
	Examples Showing How to Making DDL changes in an Active Standby Pair

	Making Other Changes to an Active Standby Pair
	Examples Showing How to Alter an Active Standby Pair

	8 Using Oracle Clusterware to Manage Active Standby Pairs
	Overview of How Oracle Clusterware Can Manage TimesTen
	Requirements, Considerations, and Installation for Your Cluster
	Required Privileges
	Hardware and Software Requirements
	Install Oracle Clusterware
	Install TimesTen on Each Host
	Register the TimesTen Cluster Information

	Restricted Commands and SQL Statements
	Creating and Initializing a Cluster
	Start the TimesTen Cluster Agent
	Create and Populate a TimesTen Database on One Host
	Create System DSN Files on Other Hosts
	Create a cluster.oracle.ini File
	Create the Oracle Clusterware Resources to Manage Virtual IP Addresses
	Create an Active Standby Pair Replication Scheme
	Start the Active Standby Pair and the Applications
	Load Cache Groups
	Include More Than One Active Standby Pair in a Cluster
	Configure an Oracle Database as a Disaster Recovery Subscriber
	Configure a Read-Only Subscriber That Is Not Managed by Oracle Clusterware

	Configuring Oracle Clusterware Management With the cluster.oracle.ini File
	Configuring Basic Availability
	Configuring Advanced Availability
	Including Cache Groups in the Active Standby Pair
	Implementing Application Failover
	Configuring for Recovery When Both Master Nodes Permanently Fail
	Using the RepDDL Attribute

	Monitoring Cluster Status
	Obtaining Cluster Status
	Message Log Files

	Shutting Down a Cluster
	Recovering From Failures
	How TimesTen Performs Recovery When Oracle Clusterware is Configured
	When an Active Database or Its Host Fails
	When a Standby Database or Its Host Fails
	When Read-Only Subscribers or Their Hosts Fail
	When Failures Occur on Both Master Nodes
	Automatic Recovery
	Manual Recovery for Advanced Availability
	Manual Recovery for Basic Availability
	Manual Recovery to the Same Master Nodes When Databases Are Corrupt
	Manual Recovery When RETURN TWOSAFE Is Configured

	When More Than Two Master Hosts Fail
	Perform a Forced Switchover After Failure of the Active Database or Host

	Clusterware Management
	Changing User Names or Passwords When Using Oracle Clusterware
	Managing Hosts in the Cluster
	Adding a Host to the Cluster
	Removing a Host From the Cluster

	Managing Active Standby Pairs in a Cluster
	Adding an Active Standby Pair to a Cluster
	Removing an Active Standby Pair From a Cluster

	Managing Read-Only Subscribers in the Active Standby Pair
	Adding a Read-Only Subscriber Managed by Oracle Clusterware
	Removing a Read-Only Subscriber Managed by Oracle Clusterware
	Adding or Dropping a Read-Only Subscriber Not Managed by Oracle Clusterware
	Rebuilding a Read-Only Subscriber Not Managed by Oracle Clusterware

	Reversing the Roles of the Master Databases
	Modifying Connection Attribute Values
	Managing the TimesTen Database RAM Policy
	Changing the Schema
	Facilitating Schema Change for Oracle Clusterware

	Making Schema Changes to Cache Groups
	Add a Cache Group
	Drop a Cache Group
	Change an Existing Cache Group

	Moving a Database to a Different Host
	Performing a Rolling Upgrade of Oracle Clusterware Software
	Upgrading TimesTen When Using Oracle Clusterware
	Performing Host or Network Maintenance
	Perform Maintenance on All Hosts in the Cluster Simultaneously
	Perform Maintenance While Still Accepting Requests

	9 Defining Classic Replication Schemes
	Designing a Highly Available System
	Considering Failover and Recovery Scenarios
	Making Decisions About Performance and Recovery Tradeoffs
	Distributing Workloads

	Defining a Classic Replication Scheme
	Owner of the Classic Replication Scheme and Replicated Objects
	Database Names

	Restrictions and Table Requirements for Classic Replication Schemes
	Establishing the Databases
	Duplicating a Master Database to a Subscriber
	Restrictions for Classic Replication Schemes Involving Multiple Masters
	Defining Replication Elements
	Defining the DATASTORE Element
	Defining Table Elements
	Replicating Tables With Foreign Key Relationships in a Classic Replication Scheme
	Replicating Sequences
	Views and Materialized Views in a Replicated Database

	Checking for Replication Conflicts on Table Elements
	Setting Transmit Durability on DATASTORE Element
	Using a Return Service in a Classic Replication Scheme
	Setting STORE Attributes in a Classic Replication Scheme
	Configuring Network Operations for a Classic Replication Scheme
	Classic Replication Scheme Syntax Examples
	Single Classic Subscriber Schemes
	Multiple Subscriber Classic Replication Schemes
	Replicating Tables to Different Subscribers
	Propagation Scheme
	Bidirectional Split Workload Schemes
	Bidirectional Distributed Workload Scheme

	Applying a Classic Replication Scheme to a Database
	Creating Classic Replication Schemes With Scripts

	10 Altering a Classic Replication Scheme
	Altering a Classic Replication Scheme
	Adding a Table or Sequence to an Existing Classic Replication Scheme
	Adding a PL/SQL Object to an Existing Classic Replication Scheme
	Adding a DATASTORE Element to an Existing Classic Replication Scheme
	Including Tables or Sequences When You Add a DATASTORE Element
	Excluding a Table or Sequence When You Add a DATASTORE Element

	Dropping a Table or Sequence From a Classic Replication Scheme
	Dropping a Table or Sequence That Is Replicated as Part of a DATASTORE Element
	Dropping a Table or Sequence That is Replicated as a TABLE or SEQUENCE Element

	Creating and Adding a Subscriber Database to a Classic Replication Scheme
	Dropping a Subscriber Database From a Classic Replication Scheme
	Changing a TABLE or SEQUENCE Element Name in a Classic Replication Scheme
	Replacing a Master Database in a Classic Replication Scheme
	Eliminating Conflict Detection in a Classic Replication Scheme
	Eliminating the Return Receipt Service in a Classic Replication Scheme
	Changing the Port Number for a Classic Replication Scheme
	Changing the Replication Route
	Changing the Log Failure Threshold

	Altering a Replicated Table in a Classic Replication Scheme
	Truncating a Replicated Table in a Classic Replication Scheme
	Dropping a Classic Replication Scheme

	11 Managing Replication
	Show State of Replication Agents
	Using ttStatus to Obtain Replication Agent Status
	Using ttAdmin -query to Confirm Policy Settings
	Using ttDataStoreStatus to Obtain Replication Agent Status

	Replication of Statistics
	Set the Replication State of Subscribers
	Show Master Database Information
	Using ttRepAdmin to Display Information About the Master Database
	Querying Replication Tables to Obtain Information About a Master Database

	Show Subscriber Database Information
	Display Subscriber Status With the ttRepAdmin Utility
	Display Subscriber Status With the ttReplicationStatus Built-In Procedure
	Display Information About Subscribers Through Querying Replication Tables
	Subscriber Information

	Show the Configuration of Replicated Databases
	Display Configuration Information With the ttIsql repschemes Command
	Display Configuration Information With the ttRepAdmin Utility
	Display Configuration Information Through Querying Replication Tables

	Show Replicated Log Records
	Monitor Replication With the TTREP.REPPEERS Table
	Monitor Replication From the Replication Log Holds
	Monitor Replication With the ttRepAdmin Utility
	Monitor Replication With the ttBookMark Built-In Procedure

	Use ttRepAdmin to Show Replication Status
	MAIN Thread Status Fields
	Replication Peer Status Fields
	TRANSMITTER Thread Status Fields
	RECEIVER Thread Status Fields

	Check the Status of Return Service Transactions
	Determine If Return Service Is Disabled
	Check Last Returned Status for a Return Service

	Analyze Outstanding Transactions in the Replication Log

	12 Resolving Replication Conflicts
	How Replication Conflicts Occur
	Update and Insert Conflicts
	Delete/Update Conflicts

	Using a Timestamp to Resolve Conflicts
	Timestamp Comparisons for Local Updates

	Configuring Timestamp Comparison
	Including a Timestamp Column in Replicated Tables
	Configuring the CHECK CONFLICTS Clause
	Enabling System Timestamp Column Maintenance
	Enabling User Timestamp Column Maintenance

	Reporting Conflicts
	Reporting Conflicts to a Text File
	Reporting Conflicts to an XML File
	Reporting Uniqueness Conflicts
	Reporting Update Conflicts
	Reporting Delete/Update Conflicts
	Suspending and Resuming the Reporting of Conflicts

	The Conflict Report XML Document Type Definition
	The Main Body of the Document
	The Uniqueness Conflict Element
	The Update Conflict Element
	The Delete/Update Conflict Element

	13 Improving Replication Performance
	Adjust Transaction Log Buffer Size and CPU
	Performance Considerations When Altering Tables That Are Replicated
	Increase Replication Throughput for Active Standby Pairs
	Limit Replication Transmitters, Receivers, and XLA Readers

	14 Managing Database Failover and Recovery
	Overview of Database Failover and Recovery
	General Failover and Recovery Procedures
	Subscriber Failures
	Master Failures
	Automatic Catch-Up of a Failed Master Database
	When Master Catch-Up Is Required for an Active Standby Pair

	Failures in Bidirectional Distributed Workload Schemes
	Network Failures
	Failures Involving Sequences

	Recovering a Failed Database
	Recovering a Failed Database From the Command Line
	Recovering a Failed Database From a C Program

	Recovering Nondurable Databases
	Writing a Failure Recovery Script

	A TimesTen Configuration Attributes for Oracle Clusterware
	List of Attributes
	Required Attributes
	MasterHosts

	Conditionally Required Attributes
	AppCheckCmd
	AppFailureInterval
	AppName
	AppRestartAttempts
	AppStartCmd
	AppStopCmd
	AppType
	AppUptimeThreshold
	CacheConnect
	MasterVIP
	RemoteSubscriberHosts
	RepBackupDir
	SubscriberHosts
	SubscriberVIP
	VIPInterface
	VIPNetMask

	Optional Attributes
	AppFailoverDelay
	AppFailureThreshold
	AppScriptTimeout
	AutoRecover
	DatabaseFailoverDelay
	FailureThreshold
	MasterStoreAttribute
	RepBackupPeriod
	RepDDL
	RepFullBackupCycle
	ReturnServiceAttribute
	SubscriberStoreAttribute
	TimesTenScriptTimeout

