
Oracle® TimesTen In-Memory
Database
Scaleout User's Guide

Release 22.1
F35389-05
September 2023

Oracle TimesTen In-Memory Database Scaleout User's Guide, Release 22.1

F35389-05

Copyright © 1996, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 About This Content

 What's New

New features in Release 22.1.1.17.0 xv

New Features in Release 22.1.1.1.0 xv

1 Overview of TimesTen Scaleout

Introducing TimesTen Scaleout 1-1

TimesTen Scaleout Features 1-2

In-Memory Database 1-3

Performance 1-3

Persistence and Durability 1-3

SQL and PL/SQL Functionality 1-3

Transactions 1-4

Scalability 1-4

Data Transparency 1-4

High Availability and Fault Tolerance 1-4

Centralized Management 1-5

TimesTen Scaleout Architecture 1-5

Instances 1-7

Management Instances 1-7

Data Instances 1-8

Installations 1-9

K-Safety 1-10

Understanding Replica Sets 1-10

Understanding Data Spaces 1-11

Assigning Hosts to Data Space Groups 1-12

Data Distribution 1-13

Defining the Distribution Map for a Database 1-13

Defining the Distribution Scheme for Tables 1-14

Backups 1-17

iii

Internal and External Networks 1-17

Central Configuration of the Grid 1-17

Planning your Grid 1-20

Determine the Number of Hosts and Membership Servers 1-20

Define the Network Parameters of Each Host and Membership Server 1-22

Define the Locations for the Installation Directory and Instance Home of Each Instance 1-24

Ensure You Have All the Information You Need to Deploy a Grid 1-25

Database Connections 1-26

Comparison Between TimesTen Scaleout and TimesTen Classic 1-27

How Supported TimesTen Features Are Documented in This Guide 1-29

2 Prerequisites and Installation of TimesTen Scaleout

General Prerequisites 2-1

Operating System Prerequisites 2-1

General Linux Prerequisites 2-2

Understanding TimesTen Users Group and Operating System User 2-2

TimesTen Users Group 2-2

Operating System User 2-2

Create the TimesTen Users Group and the Operating System User 2-3

Network Requirements 2-3

Internal Network 2-4

Syntax for Internal Addresses 2-4

External Network 2-5

Installing TimesTen Scaleout 2-5

Verifying the Installation 2-6

Run the ttInstallationCheck Utility 2-6

Review the Installation Directory and Subdirectories 2-7

Setting Passwordless SSH 2-8

3 Setting Up the Membership Service

Overview of the Membership Service in TimesTen Scaleout 3-1

Tracking the Instance Status 3-1

Recovering from a Network Partition Error 3-4

Using Apache ZooKeeper as the Membership Service 3-7

Installing Apache ZooKeeper 3-9

Configuring Apache ZooKeeper as the Membership Service 3-10

Starting the Membership Servers 3-14

Configure a Grid as a Membership Service Client 3-15

iv

4 Setting Up a Grid

Creating the Initial Management Instance 4-2

Creating a Grid 4-4

Adding the Standby Management Instance 4-7

Calculating the Number of Hosts and Data Instances for the Grid 4-9

Calculate the Number of Data Instances to Create 4-9

Calculate the Number of Hosts You Need to Support Your Data Instances 4-10

Assigning Hosts to Data Space Groups 4-11

Configuring Linux Kernel Parameters 4-12

Set the SHMMAX and SHMALL Parameters 4-13

Configure HugePages 4-15

Set the MEMLOCK Parameters 4-16

Set the SEMMSL and SEMMNS Parameters 4-17

Set the SHMMNI Parameter 4-18

Adding Data Instances 4-19

Create a Host for a Data Instance 4-20

Create the Installation for the Data Instance 4-21

Create the Data Instance 4-22

Create Data Instances by Duplicating the Configuration of an Existing Host 4-24

Applying the Changes Made to the Model 4-26

Model Versioning 4-26

Apply the Latest Version of the Model 4-27

Setting Instances to Automatically Start at System Startup 4-29

5 Managing a Database

Creating a Database 5-1

Create a Database Definition 5-1

Creating a Database Definition File 5-2

Adding a Database Definition to the Model 5-4

Create a Database Based on the Database Definition 5-5

Define the Distribution Map of the Database 5-6

Open the Database for User Connections 5-6

Connecting to a Database 5-7

Create a Connectable 5-8

Creating a Connectable File 5-8

Creating a Connectable Based on the Connectable File 5-9

Connect to a Database Using ODBC and JDBC Drivers 5-10

Establishing Direct Connections from a Data Instance 5-10

Establishing Client Connections from a TimesTen Client 5-11

Establishing Encrypted Client Connections from a TimesTen Client 5-14

v

Redirecting Client Connections 5-17

Verify If Your Database Is a Distributed Database 5-17

Defining Table Distribution Schemes 5-18

Hash 5-18

Reference 5-20

Duplicate 5-21

Determining the Value of the PermSize Attribute 5-22

Bulk Loading Data into a Database 5-25

Populating a Table with the ttBulkCp Utility 5-26

Populate a Table from a Single Location 5-27

Populate a Table from Several Locations 5-27

Populating a Table with the ttLoadFromOracle Built-in Procedure 5-29

Enable Communication to an Oracle Database 5-29

Populate a Table from a Single Location 5-30

Populate a Table from Several Locations 5-30

Unloading a Database from Memory 5-32

Reloading a Database into Memory 5-35

Modifying the Connection Attributes of a Database 5-36

Modify the Connection Attributes in a Database Definition 5-36

Modify the Connection Attributes in a Connectable 5-38

Destroying a Database 5-39

6 Understanding Distributed Transactions in TimesTen Scaleout

Transaction Manager 6-2

Status of the Participants 6-2

Durability Settings 6-3

Durability Set to 1 6-3

Durability Set to 0 6-3

Epoch Transactions 6-3

EpochInterval Attribute 6-5

CreateEpochAtCommit Attribute 6-5

Two-Phase Commit Protocol 6-6

Phase 0: Transaction 6-6

Phase 1: Prepare Phase 6-6

Phase 2: Commit Phase 6-7

Two-Phase Commit Failure Analysis 6-8

Troubleshooting Distributed Transactions 6-9

Global Transaction ID 6-10

Managing In-Doubt Transactions 6-10

Verifying the State of Every Outstanding Transaction 6-11

vi

Committing an In-Doubt Transaction 6-11

Rolling Back an In-Doubt Transaction 6-11

7 Using SQL in TimesTen Scaleout

Overview of SQL 7-1

Overview of PL/SQL 7-2

Working with Tables 7-2

Altering Tables 7-2

Use ALTER TABLE to Add a Primary Key Constraint 7-3

Use ALTER TABLE to Change the Distribution Key 7-4

Understanding Indexes 7-4

Create a Unique Index 7-6

Use Global Indexes to Optimize Query with Joins to Primary Key Columns 7-8

Using Sequences 7-9

Understanding Batch Allocation 7-10

Illustrate Batch Assignment for Three Elements 7-11

Illustrate a Second Batch Assignment for Three Elements 7-11

Performing DML Operations 7-12

Using Pseudocolumns 7-13

Use replicaSetId# to Locate Data 7-13

Use replicaSetId# with a Table That Has a Duplicate Distribution Scheme 7-13

Using the TT_CommitDMLOnSuccess Hint 7-14

Using Optimizer Hints 7-15

TT_GridQueryExec 7-15

Use TT_GridQueryExec on a Hash Distribution Scheme Table 7-16

Use TT_GridQueryExec on a Duplicate Distribution Scheme Table 7-17

Use TT_GridQueryExec on a Reference Distribution Scheme Table 7-19

TT_PartialResult 7-20

Examine Results Using TT_PartialResult 7-20

Understanding ROWID in Data Distribution 7-22

Understanding System Views 7-23

8 Maintaining a Grid

Maintaining the Model of a Grid 8-1

Modifying a Grid 8-2

Modifying the Settings of a Grid 8-3

Modifying Objects in a Grid 8-3

Modify a Host 8-3

Modify an Instance 8-3

vii

Deleting Objects from a Grid 8-3

Delete a Data Instance 8-4

Delete a Management Instance 8-4

Delete an Installation 8-5

Delete a Host 8-6

Reconfiguring Membership Servers 8-7

View the Current Membership Configuration 8-7

Add Membership Servers 8-7

Enable the New Membership Configuration 8-8

Redistributing Data in a Database 8-8

Adding Elements to the Distribution Map 8-10

Removing Elements from the Distribution Map 8-13

Replace an Element with Another Element 8-14

Remove a Replica Set 8-16

Stopping a Grid 8-19

Restarting a Grid 8-20

Destroying a Grid 8-21

9 Upgrading a Grid

Upgrade a Grid to a Patch-Compatible Release 9-1

Release Compatibility Metadata 9-2

Upgrade Prerequisites 9-2

Upgrading a Grid with the ttGridAdmin gridUpgrade Command 9-2

Create Installations of the Target Release 9-2

Upgrade the Management Instances 9-3

Upgrade the Data Instances 9-5

Upgrading a Grid Without the ttGridAdmin gridUpgrade Command 9-9

Create Installations of the Target Release 9-9

Upgrade the Management Instances 9-10

Upgrade the Data Instances 9-13

Optional: Delete the Installations of the Previous Release 9-16

Upgrade a Grid to a Different Major or Patch-Incompatible Release 9-17

10

Monitoring TimesTen Scaleout

Using the ttStats Utility 10-1

View the Configuration of the ttStats Utility 10-1

Configure the ttStats Utility 10-2

Monitor a Database with the ttStats Utility 10-3

Create a Snapshot with the ttStats Utility 10-5

viii

Create a Report Between Two Snapshots with the ttStats Utility 10-6

Using SQL Developer 10-7

Using the TimesTen Prometheus Exporter 10-7

Monitoring the Management Instances 10-7

Modify the Retention Values of Previous Grid Models 10-8

Monitor the Free Space of the Management Instance 10-8

Modify the Used-Space Warning Threshold of the Management Instances 10-9

Resize the Management Instance 10-10

Grid with a Single Management Instance 10-10

Grid with Active and Standby Management Instances 10-11

Collecting Grid Logs 10-13

Retrieving Diagnostic Information 10-14

Verifying Clock Synchronization Across All Instances 10-15

11

Migrating, Backing Up and Restoring Data

Migrating a Database from TimesTen Classic to TimesTen Scaleout 11-1

Working with Repositories 11-5

Create a Repository 11-5

Create a Repository as a Directory Path Mounted Using NFS on Each Host 11-6

Create a Repository as a Directory Path That Is Accessible on Each Host with
SSH or SCP 11-6

Attach a Repository 11-6

Attach a Repository as a Directory Path Mounted Using NFS on Each Host 11-7

Attach a Repository as a Directory Path That Is Accessible on Each Host with SSH
or SCP 11-7

Detach a Repository 11-7

List Repositories and Collections 11-7

Backing Up and Restoring a Database 11-8

Back Up a Database 11-10

Back Up a Database into a Remote Repository (WAN-Friendly) 11-10

Prerequisites 11-11

SSH Configuration File 11-11

BackupFailThreshold Attribute 11-12

File System Space 11-13

WAN Throughput 11-13

Create a Staged Backup 11-13

Check the Status of a Backup 11-14

Delete a Backup 11-15

Restore a Database 11-15

Check the Status of a Restore 11-16

Set Cache Credentials 11-16

ix

Exporting and Importing a Database 11-17

Export a Database 11-17

Check the Status of a Database Export 11-18

Delete a Database Export 11-19

Import a Database Export 11-19

Check the Status of a Database Import 11-20

Determining the Size of a Backup or Export 11-21

12

Using Cache Groups in TimesTen Scaleout

Introduction of Cache in TimesTen Scaleout 12-1

Setting Up the Oracle Database and TimesTen Scaleout Systems 12-2

Create Users and Tablespace in the Oracle Database 12-2

Create a TimesTen Database 12-6

Create a Database Definition for the TimesTen Database 12-6

Create and Open the TimesTen Database 12-7

Add the Oracle Database Net Service Name to the tnsnames.ora File 12-9

Create Users in the TimesTen Database 12-9

Create a Connectable for the TimesTen Database 12-10

Register the Cache Administration User Name and Password in the TimesTen
Database 12-12

Creating a Static Read-Only Cache Group 12-13

Create the Oracle Database Tables to be Cached 12-13

Start a Cache Agent for TimesTen Scaleout 12-15

Create the Cache Groups 12-15

Distribution Schemes for Cache Groups in TimesTen Scaleout 12-17

Creating an Index on a Cache Table 12-19

Performing Operations on the Read-Only Cache Group 12-19

Automatically Refresh Updates on the Cached Oracle Database Table 12-20

Managing the Autorefresh State 12-22

Disabling Full Autorefresh 12-23

Manually Load the Cache Group 12-23

Manually Refresh the Read-Only Cache Group 12-25

Unloading the Cache Group 12-25

Managing the Cache Environment 12-25

Monitoring the Status of the Cache Agent Processes 12-26

Displaying Information About Cache Groups 12-27

Changing TimesTen Cache User Names and Passwords 12-27

Changing the Oracle Database Schema 12-27

Monitoring Autorefresh Operations on Cache Groups 12-27

Managing the Change Log Tables and Triggers in the Oracle Database 12-28

Gathering Information from the Change Log Table 12-28

x

Dropping Oracle Database Objects Used for Caching 12-29

Restoring the TimesTen and Oracle Database Systems 12-29

Dropping Cache Groups 12-29

Stopping the Cache Agents for TimesTen Scaleout 12-30

Dropping the Oracle Database Users and Their Objects 12-31

Supported Cache Features in TimesTen Scaleout 12-31

Using Passthrough 12-31

Using Oracle RAC 12-31

Limiting Cache Agent Connections to the Oracle Database 12-32

Compatibility Issues Between the TimesTen and Oracle Databases 12-33

Restrictions for Cache on TimesTen Scaleout 12-34

13

Recovering from Failure

Displaying the Database, Replica Set and Element Status 13-2

Display the Status of the Database and All Elements 13-2

Recovering from Transient Errors 13-5

Retry Transient Errors 13-5

Communications Error 13-6

Software Error 13-7

Host or Data Instance Failure 13-7

Heavy Load or Temporary Communication Failure 13-7

Recovering from a Data Distribution Error 13-8

Tracking the Automatic Recovery for an Element 13-9

Availability Despite the Failure of One Element in a Replica Set 13-10

Recovering When a Single Element Fails in a Replica Set 13-12

Troubleshooting Based on Element Status 13-12

Retry Element Creation 13-16

Restart a Data Instance That Is Down 13-16

Destroy an Evicted Element or an Element Where a Destroy Failed 13-16

Recovering a Replica Set After an Element Goes Down 13-17

Remove and Replace a Failed Element in a Replica Set 13-17

Recovering from a Down Replica Set 13-18

Transaction Behavior with a Down Replica Set 13-19

Durably Recovering a Failed Replica Set When Durability=1 13-19

Recovering a Failed Replica Set When Durability=0 13-20

Recovering When the Replica Set Has a Permanently Failed Element 13-23

Evicting the Element in the Permanently Failed Replica Set When K = 1 13-25

Evict the Element to Potentially Replace at Another Time 13-26

Evict and Replace the Data Instance Without Re-Distribution 13-28

Evicting All Elements in a Permanently Failed Replica Set When K >= 2 13-30

xi

Replacing the Replica Set with New Elements with No Data Redistribution 13-31

Maintaining Database Consistency After an Eviction 13-33

Recovering When a Data Instance Is Down 13-33

Database Recovery 13-34

Client Connection Failover 13-35

Configuring TCP Keep-Alive Parameters 13-36

Managing Failover for the Management Instances 13-38

Status for Management Instances 13-39

Starting, Stopping and Switching Management Instances 13-40

Single Management Instance Failure 13-41

Active Management Instance Failure 13-41

Failed Management Instance Can Be Recovered 13-43

Failed Management Instance Encounters a Permanent Failure 13-44

Standby Management Instance Failure 13-47

Standby Management Instance Recovers 13-47

Standby Management Instance Experiences Permanent Failure 13-48

Both Management Instances Fail 13-49

Bring Back Both Management Instances 13-50

Bring Back One of the Management Instances 13-52

Clean Up Metadata for Multiple TimesTen Databases with the Same Name 13-54

Performance Recommendations 13-55

Set a Timeout for Create Channel Requests 13-55

A Example for Deploying a Grid and Database

TimesTen Scaleout Prerequisites A-2

Ensure That TimesTen Scaleout Supports the OS Installed on Each Host A-2

Configure All Hosts in the Same Internal Network A-2

Create a TimesTen User Group and OS User A-2

Set Linux Kernel Parameters A-3

Set the MEMLOCK Settings for the Instance Administrator A-3

Install TimesTen Scaleout A-3

Set Passwordless SSH Between All Hosts A-4

Set Up the Membership Service A-4

Install Apache ZooKeeper A-5

Configure the ZooKeeper Servers A-5

Start the ZooKeeper Servers A-6

Create the Client Configuration File A-6

Deploy a Grid and Database A-6

Create a Database Definition File A-6

Create a Connectable File A-7

xii

Create a SQL Script File for Your Database A-7

Create a Configuration File for the ttGridRollout Utility A-9

Create a Grid and Database A-10

Connect to the Database A-14

B TimesTen Scaleout Environment

Environment Variables B-1

Setting Environment Variables B-1

TIMESTEN_HOME Environment Variable B-2

NLS_LANG Environment Variable B-2

Shared Library Path Environment Variable B-2

PATH Environment Variable B-2

Temporary Directory Environment Variable B-2

TNS_ADMIN Environment Variable B-3

Java Environment Variables B-3

CLASSPATH Environment Variable B-3

PATH Environment Variable Settings for Java B-4

Instance Home Directory and Subdirectories B-4

Managing a Development or Test Environment B-5

xiii

About This Content

This guide provides background information to help you understand how Oracle
TimesTen In-Memory Database in grid mode (TimesTen Scaleout) works and step-by-
step instructions and examples that show how to perform the most commonly needed
tasks to work with TimesTen Scaleout.

Audience

This guide is intended for users of TimesTen Scaleout.

To work with this guide, you should be familiar with TimesTen, SQL (Structured Query
Language), and database operations.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Resources

See these Oracle resources:

• TimesTen 22.1 documentation

• Oracle Database 19c documentation

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

About This Content

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New

Every new patch or patch set release of TimesTen 22.1 may include new features or
functionalities that are documented in this guide. These new features or functionalities are
listed below and provide links into the guide for more information.

New features in Release 22.1.1.17.0
• Previously, you could only provide credentials when opening a connection to the

TimesTen database by providing the user name and password individually using
connection attributes. Now, you can specify user credentials within an Oracle Wallet
where the wallet location is provided when opening a connection. The preferred method
of specifying a user name and password is by storing both in an Oracle Wallet.

See Creating a Connectable File.

• Previously, you could only provide cache administration user credentials by providing the
cache administration user name and both of its passwords to the TimesTen and Oracle
databases individually using connection attributes. Now, you can specify cache
administration user credentials within an Oracle Wallet where the wallet location is
provided when opening a connection. The preferred method of specifying the cache
administration user name and both passwords is by storing them in an Oracle Wallet.

See Create a Connectable for the TimesTen Database.

• You must register the Oracle database cache administration user name and password
internally in the TimesTen database before any cache group operation can be issued.
Before you register the Oracle cache administration user and password internally within
the TimesTen database, you must decide if you want to save these credentials in an
Oracle Wallet (recommended) or within memory (the default). To save the credentials
within an Oracle Wallet, ensure that the CacheAdminWallet connection attribute is set to 1
(likely in your DSN). This directs that the registration of the Oracle cache administration
user name and password are stored in an Oracle Wallet.

See Register the Cache Administration User Name and Password in the TimesTen
Database and Create a Database Definition for the TimesTen Database.

New Features in Release 22.1.1.1.0
• You can now create a grid with a K-safety level up to 5. See K-Safety for more

information.

• This release now supports authenticated access to ZooKeeper servers. See Using
Apache ZooKeeper as the Membership Service.

• This release now supports encrypted client/server connections and Transport Layer
Security (TLS) certificate management. See Creating a Grid.

• You can now create or drop PL/SQL objects, such as functions, procedures, and
packages in TimesTen Scaleout. See Overview of PL/SQL.

xv

• You can now create global indexes. See Understanding Indexes.

• You can now perform online upgrades to patch-compatible releases. This release
adds the ttGridAdmin gridUpgrade command to simplify online and offline
upgrade operations. See Upgrading a Grid.

• You can now use cache groups in both TimesTen Classic and TimesTen Scaleout,
although TimesTen Scaleout currently only supports static read-only cache groups
with incremental autorefresh. See Using Cache Groups in TimesTen Scaleout.

What's New

xvi

1
Overview of TimesTen Scaleout

Oracle TimesTen In-Memory Database in grid mode (TimesTen Scaleout) delivers high
performance, fault tolerance, and scalability within a highly available in-memory database
that provides persistence and recoverability.

The following topics describe the features and components of TimesTen Scaleout.

• Introducing TimesTen Scaleout

• TimesTen Scaleout Features

• TimesTen Scaleout Architecture

• Central Configuration of the Grid

• Planning your Grid

• Database Connections

• Comparison Between TimesTen Scaleout and TimesTen Classic

Note:

For an overview of Oracle TimesTen In-Memory Database in classic mode
(TimesTen Classic), see Overview for the Oracle TimesTen In-Memory Database in
Oracle TimesTen In-Memory Database Introduction.

Introducing TimesTen Scaleout
TimesTen Scaleout delivers high performance, fault tolerance, and scalability within a highly
available in-memory database that provides persistence and recoverability. As shown in
Figure 1-1, TimesTen Scaleout delivers these features by distributing the data of a database
across a grid of multiple instances running on one or more hosts.

Note:

TimesTen Scaleout identifies physical or virtual systems as hosts. Each host
represents a different system. You determine the name that TimesTen Scaleout
uses as identifier for each host.

1-1

Figure 1-1 A Grid Distributes Data Across Many Instances over Multiple Hosts

host1.instance1 host2.instance1 host3.instance1

host4.instance1 host5.instance1 host6.instance1

TimesTen Scaleout enables you to:

• Create a grid that is a set of interconnected instances installed on one or more
hosts.

• Create one or more in-memory, SQL relational, ACID-complaint databases.

• Distribute the data of each database across the instances in the grid in a highly
available manner using a shared-nothing architecture.

• Connect applications to your database with full access to all the data, no matter
what the distribution of the data is across the database.

• Maintain one or more copies of your data. Your choice to maintain more than one
copy protects you from data loss in the event of a single failure.

• Add or remove instances from your grid to:

– Expand or shrink the storage capacity of your database as necessary.

– Expand or shrink the computing resources of your database to meet the
performance requirements of your applications.

TimesTen Scaleout Features
TimesTen Scaleout has certain key capabilities that ensure it provides a highly
available in-memory database.

• In-Memory Database

• Performance

• Persistence and Durability

• SQL and PL/SQL Functionality

• Transactions

Chapter 1
TimesTen Scaleout Features

1-2

• Scalability

• Data Transparency

• High Availability and Fault Tolerance

• Centralized Management

In-Memory Database
A database in TimesTen is a memory-optimized relational database that empowers
applications with the responsiveness and high throughput required by today's enterprises and
industries. Databases fit entirely in physical memory (RAM) and provide standard SQL
interfaces.

TimesTen is designed with the knowledge that all data resides in memory. As a result, access
to data is simpler and more direct resulting in a shorter code path and simpler algorithms and
internal data structures. Thus, TimesTen delivers performance by optimizing data residency
at run time. By managing data in memory and optimizing data structures and access
algorithms accordingly, database operations run with maximum efficiency, achieving dramatic
gains in responsiveness and throughput.

Performance
TimesTen Scaleout achieves high performance by distributing the data of each database
across instances in the grid in a shared-nothing architecture. TimesTen Scaleout spreads the
work for the database across those instances in parallel, which computes the results of your
SQL statements faster.

Persistence and Durability
Databases in TimesTen are persistent across power failures and crashes. TimesTen
accomplishes this by periodically saving to a file system:

• All data through checkpoint files.

• Changes made by transactions through transaction log files.

In TimesTen Scaleout, the data in your database is distributed into elements. Each element
keeps its own checkpoint and transaction log files. As a result, the data stored in each
element is independently durable. Each instance in a grid manages one element of a
database. In the event of a failure, an instance can automatically recover the data stored in
its element from the checkpoint and transaction logs files while the remaining instances
continue to service applications.

TimesTen Scaleout also enables you to keep multiple copies of your data to increase
durability and fault tolerance.

You can change the durability settings of a database according to your performance and data
durability needs. For example, you may choose if data is flushed to the file system with every
commit or periodically in batches in order to operate at a higher performance level.

SQL and PL/SQL Functionality
Applications use SQL and PL/SQL to access data in a database. Any developer familiar with
SQL can be immediately productive developing applications with TimesTen Scaleout.

Chapter 1
TimesTen Scaleout Features

1-3

For more information on SQL, see Using SQL in TimesTen Scaleout and Oracle
TimesTen In-Memory Database SQL Reference. For more information on PL/SQL, see
Table 1-9 and Oracle TimesTen In-Memory Database PL/SQL Developer's Guide.

Transactions
TimesTen Scaleout supports transactions that provide atomic, consistent, isolated and
durable (ACID) access to data. See Understanding Distributed Transactions in
TimesTen Scaleout and Transaction Management in Oracle TimesTen In-Memory
Database Operations Guide.

Scalability
TimesTen Scaleout enables you to transparently distribute the data of a database
across multiple instances, which are located on separate hosts, to dramatically
increase availability, performance, storage capacity, processing capacity, and
durability. When TimesTen Scaleout distributes the data of your database across
multiple instances, it uses the in-memory resources provided by the hosts running
those instances.

TimesTen Scaleout enables you to add or remove instances in order to control both
performance and the storage capacity of your database. Adding instances expands
the memory capacity of your database. It also improves the throughput of your
workload by providing the additional computing resources of the hosts running those
instances. If your business needs change, then removing instances (and their hosts)
enables you to meet your targets with fewer resources.

Data Transparency
While TimesTen Scaleout distributes your data across multiple instances, applications
do not need to know how data is distributed. When an application connects to any
instance in the grid, it has access to all of the data of the database without having to
know where specific data is located.

Knowledge about the distribution of data is never required in TimesTen Scaleout, but it
can be used to tune the performance of your application. You can use this knowledge
to exploit locality where possible. See Using Pseudocolumns.

High Availability and Fault Tolerance
TimesTen Scaleout automatically recovers from most transient failures, such as a
congested network. TimesTen Scaleout recovers from software failures by recovering
from checkpoint and transaction log files. Permanent failures, such as hardware
failures, may require intervention by the user.

TimesTen Scaleout provides high availability and fault tolerance when you have
multiple copies of data located across separate hosts. TimesTen Scaleout provides a
feature called K-safety (k) where the value you set for k during the creation of the grid
defines the number of copies of your data that will exist in the grid. This feature
ensures that your database continues to operate in spite of various faults, as long as a
single copy of the data is accessible.

• To have only a single copy of the data, set k to 1. This setting is not recommended
for production environments.

Chapter 1
TimesTen Scaleout Features

1-4

• To have two or more copies of the data, set k to 2 or greater (the maximum supported
value is 5). A grid can be fault tolerant with this setting. Thus, if one copy fails, one or
more copies of the data exists. Ensure you locate each copy of the data on distinct
physical hardware for maximum data safety.

TimesTen Scaleout provides fault tolerance for both software and hardware failures:

• Software failures are often transient. When one copy of the data is unavailable due to a
software error, SQL statements are automatically redirected to the other copy of the data
(if possible). In the meantime, TimesTen Scaleout synchronizes the data on the failed
system with the rest of the database. TimesTen Scaleout does not require any user
intervention to recover as long as the instances are still running.

• Hardware failures may eventually require user intervention. In some cases, all that is
required is to restart the host.

TimesTen Scaleout provides a membership service to help resolve failures in a consistent
manner. The membership service provides a consistent list of instances that are up. This is
useful if a network error splits the hosts into two separate groups that cannot communicate
with each other.

Centralized Management
You do not need to log onto every host within a grid in order to perform management
activities. Instead, you conduct all management activity from a single instance using the
ttGridAdmin utility. The ttGridAdmin utility is the main utility you use to define, deploy, and
check on the status of each database.

You can also use the ttGridRollout utility or the Oracle SQL Developer GUI (both of which
use the ttGridAdmin utility under the covers to process all requests) to facilitate creating,
deploying, and managing your grid:

• If you are creating a grid for the first time, you can use the ttGridRollout utility to define
and deploy your grid. After creation, use either the ttGridAdmin utility or Oracle SQL
Developer to manage your grid.

• You can create and manage any grid using Oracle SQL Developer, which is a graphical
user interface (GUI) tool that gives database developers a convenient way to create,
manage, and explore a grid and its components. You can also browse, create, edit, and
drop particular database objects; run SQL statements and scripts; manipulate and export
data; and view and create reports. See Oracle TimesTen In-Memory Database SQL
Developer Support User's Guide.

TimesTen Scaleout Architecture
One OS user creates and manages a grid. This user is called the instance administrator. See
Instance Administrator in Oracle TimesTen In-Memory Database Installation, Migration, and
Upgrade Guide. TimesTen Scaleout enables the instance administrator to:

• Configure whether the grid creates one or more copies of your data by using K-safety.

• Create one or two management instances through which the grid is managed.

• Create multiple data instances in which data is contained and managed.

• Set up a membership service to track which data instances are operational at any
moment. The membership service consists of three or more membership servers.

• Create one or more databases.

Chapter 1
TimesTen Scaleout Architecture

1-5

• Create one or more repositories to store backups for your databases.

Figure 1-2 Grid Structure

management instances membership serversinstance
administrator

data instances direct-mode
applications

client
applications

internal
network

external
network

A database consists of multiple elements, where each element stores a portion of data
from its database. Each data instance contains one element of each database. If you
create multiple databases in the grid, then each data instance contains multiple
elements (one from each database).

For each database you create, you decide which elements participate in data
distribution. Usually, all elements participate, but when you bring online new data
instances, you decide when the elements of those new data instances begin to
participate in database operations. You need to explicitly add elements into the
distribution map of database for them to participate in database operations. Likewise,
you need to remove elements from the distribution map (which stops them from
participating in database operations) before you can remove their data instances from
the grid.

Upon including an element into the distribution map, each element of a database is
automatically placed into a replica set. Each replica set contains the same number of
elements as the value set for K-safety. Elements in the same replica set hold the same
data.

Chapter 1
TimesTen Scaleout Architecture

1-6

The following topics provide a more detailed description of these components and their
responsibilities within a grid:

• Instances

• Installations

• K-Safety

• Data Distribution

• Backups

• Internal and External Networks

Instances
A grid uses instances to manage, contain, and distribute one or more copies of your data. An
instance is a running copy of the TimesTen software. When you create an instance on a host,
you associate it with a TimesTen installation. An installation can be used by a single instance
or shared by multiple instances. Each instance usually resides on its own host to provide
maximum data availability and as a safeguard against data loss should one host fail.

Each instance has an associated instance administrator (who created the instance) and an
instance home. The instance home is the location for the instance on your host. The same
instance administrator manages all instances in the grid.

TimesTen Scaleout supports two types of instances:

• Management Instances

• Data Instances

Management Instances
Management instances control a grid and maintain the model, which is the central
configuration of a grid. To ensure that the administrator can easily control a grid, all
management activity is processed through a single management instance using the
ttGridAdmin utility.

Note:

See Central Configuration of the Grid for more details on the model.

TimesTen Scaleout enables you to create two management instances to provide for high
availability and guard against a single management instance failure that could impede grid
management. Consider having two management instances a best practice for a production
environment. Once created, TimesTen Scaleout configures both management instances in an
active standby configuration. You always run all management operations through the active
management instance. The standby management instance exists purely as a safeguard
against failure of the active management instance.

If you create two management instances, as shown in Figure 1-3, then all information used
by the active management instance is automatically replicated to the standby management
instance. Thus, if the active management instance fails, you can promote the standby

Chapter 1
TimesTen Scaleout Architecture

1-7

management instance to become the new active management instance through which
you continue to manage the grid.

Note:

See Managing Failover for the Management Instances for details on how
TimesTen Scaleout replicates information for the management instances.

Figure 1-3 Administrator Manages the Grid Through Management Instances

active
management instance

standby
management instance

instance
administrator

internal
network

Consider that:

• You can manage a grid through a single management instance without a standby
management instance. However, it is not recommended for production
environments.

• If both management instances fail, databases in the grid continue to operate.
Some management operations are unavailable until you restart at least one of the
management instances.

Data Instances
Data instances store one element per database in the grid. Data instances run SQL
statements and PL/SQL blocks. A grid distributes the data within each database
across data instances. You manage all data instances through the active management
instance, as shown in Figure 1-4.

Chapter 1
TimesTen Scaleout Architecture

1-8

Figure 1-4 Management Instances Manage a Grid of Multiple Data Instances

active
management instance

standby
management instance

instance
administrator

data instances

internal
network

Installations
Instances need an installation of a TimesTen distribution to operate. An installation is read-
only and can be used locally or shared across multiple instances. You create the installation
of the initial management instance by extracting a TimesTen distribution on any given location
on the system defined as the host of the management instance. TimesTen Scaleout can
locally create any subsequent installation on the rest of the hosts in the grid and associate
the new installations with the instances run by those hosts. All instances that run on the same
host may share the same installation.

As long as an installation can be accessed by multiple hosts that installation can be shared
by instances in those hosts. However, sharing an installation on a shared file server, such as
NFS, between multiple instances on separate hosts may reduce availability. If the shared
network storage or the network connecting all of the hosts to the NFS server fails or has
performance issues then all instances sharing that installation are impacted. Thus, while
sharing an installation on a shared file server across instances may be a valid option for a
development environment, you may want to evaluate whether this is advisable for a
production environment.

Chapter 1
TimesTen Scaleout Architecture

1-9

K-Safety
You configure your grid to create either single or multiple copies of the data of each
database within your grid. TimesTen Scaleout uses its implementation of K-safety (k)
to manage one or multiple copies of your data. You specify the number of copies you
want of your data by the value set for k when you create the grid.

You improve data availability and fault tolerance when you specify that the grid creates
two or more copies of data located across separate hosts.

• If you set k to 1, TimesTen Scaleout stores a single copy of the data (which is not
recommended for production environments).

When k is set to 1, then the following may occur if one or more elements fail:

– Any data contained in the element is unavailable until the element recovers.

– Any data contained in the element is lost if the element does not recover.

Even though there is only a single copy of the data, the data is still distributed
across separate elements to increase capacity and data accessibility.

• If you set k to 2 (or greater), then TimesTen Scaleout stores k copies of the data. A
grid can tolerate multiple faults when you have multiple copies of the data.

If one element fails, another copy of the data is accessed to provide the requested
data. K-safety enables availability to your data as long as one of the copies of the
data is available. Where possible, locate each copy of the data on distinct physical
hardware for maximum data safety.

The following topics describe how multiple copies are managed and organized.

• Understanding Replica Sets

• Understanding Data Spaces

• Assigning Hosts to Data Space Groups

Understanding Replica Sets
Each element of a database is automatically placed into a replica set depending on the
value of k, where:

• If you set k to 1, then each replica set contains a single element.

• If you set k to 2 (or greater), then each replica set contains k elements (where
each element is an exact copy of the other elements in the replica set).

Thus, each replica set contains the same number of elements as the value set for k.

When k is set to 2 (or greater), any change made to the data in one element is also
made to the other elements in the replica set to keep the data consistent on all
elements in the replica set at all times. Because of the transparency capabilities of
TimesTen Scaleout, you can initiate transactions on any element, even if the requested
data is not contained in that element or if the requested data spans multiple replica
sets. If an element fails, then one of the other elements in the replica set is accessed
to provide the requested data. All data in the database is available as long as one
element in each replica set is functioning.

Chapter 1
TimesTen Scaleout Architecture

1-10

Understanding Data Spaces
Each database consists of a set of elements, where each element stores a portion of data
from its database. The grid organizes the elements for each database into data spaces.

Each database consists of either one or two data spaces. When k is set to 2 (or greater), the
elements within each replica set are assigned to separate data spaces.

Figure 1-5 shows how three copies of the data are organized within three data spaces, where
each data space contains the elements that make up a single copy of the data of the
database. There are two replica sets and the elements of each replica set are assigned to a
separate data space. Thus, each element in data space 1 is identical to its replicas in data
space 2 and 3.

Figure 1-5 Three Copies, Each in Own Data Space

data instance 1

1

3

5

7

...

pk*

table(s)

data instance 4

2

4

6

8

...

pk*

table(s)

data space 1

data instance 2

1

3

5

7

...

pk*

table(s)

data instance 5

2

4

6

8

...

pk*

table(s)

data space 2

data instance 3

1

3

5

7

...

pk*

table(s)

data instance 6

2

4

6

8

...

pk*

table(s)

data space 3

replica set 1

replica set 2

As your needs grow or diminish, you may add or remove replica sets to a grid. When you add
data instances, the grid automatically creates elements for each database. However, the data
is not automatically redistributed when you add or remove a data instance. You decide when
it is appropriate to assign an element to a replica set and redistribute the data across all the
elements in each data space.

Chapter 1
TimesTen Scaleout Architecture

1-11

Assigning Hosts to Data Space Groups
You decide how the data is physically located by assigning hosts into data space
groups that represents the physical organization of your grid. As discussed in
Understanding Data Spaces, copies of the data are organized logically into data
spaces. Each data space should use separate physical resources. Shared physical
resources can include similar racks, the same power supply, or the same storage. Be
aware that if all elements in a single replica set are stored on hosts that share a
physical component, then data stored in that replica set becomes unavailable if that
shared physical component fails.

TimesTen Scaleout requires you to assign all hosts that will run data instances into
data space groups. When using K-safety, there are k copies of the data and the same
number of data space groups (which are numbered from 1 to k). You should assign
hosts that share the same physical resources into the same data space group. The
elements in data instances running on hosts that are assigned to the same data space
group are in the same data space. Each data space contains a full copy of all data in
the database.

If you ensure that the hosts in one data space group do not physically share resources
with the hosts in another data space group, then hosts in separate data space groups
are less likely to fail simultaneously. This scenario makes it likely that all data in the
database is available, even if a single hardware failure takes down multiple hosts. For
example, you may ensure that all of the hosts in one data space group are plugged
into a power supply that is separate from the power supply for the hosts in another
data space group. If that is the case, pulling one plug does not power down all the
hosts in a single replica set, thus making some data unavailable.

Figure 1-6 shows a grid configured where k is set to 3, so the grid contains three data
space groups. There are three racks, each with independent power sources and two
hosts. Two hosts have been assigned to each data space group. TimesTen Scaleout
creates replica sets such that such that one element in each replica set is in each data
space group.

Figure 1-6 Hosts Organized into Data Space Groups

data space group 1 data space group 2 data space group 3power
supply 1

rack 1

host 3

host 6

power
supply 2

rack 2

host 4

host 7

power
supply 3

rack 3

host 5

host 8

Chapter 1
TimesTen Scaleout Architecture

1-12

The process for assigning hosts to a data space group includes deciding how you will
physically separate the hosts supporting the data spaces.

Data Distribution
You can create one or more databases within a grid. Each database is independent, with
separate users, schemas, tables, persistence, and data distribution. TimesTen Scaleout
manages the distribution of the data according to the defined distribution map and the
distribution scheme for each table.

• Defining the Distribution Map for a Database

• Defining the Distribution Scheme for Tables

Defining the Distribution Map for a Database
You decide on the number of data instances in a grid, which dictates the maximum number of
elements and replica sets for any one database. Each data instance hosts one element of
each database in the grid. Thus, the data instances in a grid can manage one or more
databases simultaneously. If you create multiple databases in the grid, then each data
instance will contain multiple elements (one element from each database).

Each database consists of multiple replica sets, where each replica set stores a portion of
data from its database. You define which elements of the available data instances store data
of the database with a distribution map. Once the distribution map is defined and applied,
TimesTen Scaleout automatically assigns each element to a replica set and distributes the
data to its corresponding replica set, where each element communicates with other elements
of different replica sets to provide a single database image. The details of how data is
distributed may vary for each table of a database based on the distribution scheme of the
table.

Note:

TimesTen Scaleout stores the composition of the distribution map, or how every
data instance associates with each other, in a partition table that is managed by the
ttGridAdmin utility.

Once you add the elements of the data instances that will manage and contain the data of
each database to the distribution map, you can explicitly request that the data be distributed
across the resulting replica sets.

As the needs of your business change, you can increase the capacity of a database by
increasing the number of replica sets in the grid. You can accomplish this by:

1. Adding new hosts to the grid. The number of hosts you add must be proportional to the
number of replica sets you want to add and the value of K-safety. For example, if you
want to add another replica set to a database in a grid with k set to 3, you need to add a
host for each of the three data space groups available.

2. Creating an installation to support data instances on each new host.

3. Creating a data instance on each new host.

Chapter 1
TimesTen Scaleout Architecture

1-13

4. Adding the elements of the new data instances to the distribution map of each
database you want to increase its capacity. TimesTen Scaleout automatically
creates new replica sets as appropriate.

5. Redistributing the data across all replica sets.

When you add new data instances or remove existing data instances to the grid,
the grid does not automatically re-distribute the data stored in the database across
the replica sets of those new or remaining data instances. Instead, you decide
when is the appropriate time to re-distribute the data across the existing data
instances. Redistribution can negatively impact your operational database. You
should redistribute in small increments to minimize the impact. The larger the
number of data instances that you have, the less of an impact it is to incrementally
add or remove a single replica set.

If you need to replace a data instance with a new data instance in the same data
space group, this action does not require a redistribution of all data.

To reduce your capacity, remove the data instances that manage a replica set from the
distribution map and redistribute the data across the remaining data instances in the
grid.

Defining the Distribution Scheme for Tables
TimesTen Scaleout distributes the data in a database across replica sets. All tables in
a database are present in every replica set. You define the distribution scheme for
each table in a database in the CREATE TABLE statement. The distribution scheme
describes how the rows of the table are distributed across the grid.

How the data is distributed is defined by one of the following distribution schemes
specified during table creation.

• Hash: The data is distributed based on the hash of the primary key or a composite
of multiple columns that are specified by the user. A given row is present in a
replica set chosen by the grid. Rows are evenly distributed across the replica sets.
This is the default method as it is appropriate for most tables.

See Figure 1-7 for an example of a table, terry.customers, with a hash
distribution scheme. Each element belongs to a different replica set.

Chapter 1
TimesTen Scaleout Architecture

1-14

Figure 1-7 Table with Hash Distribution

host3.instance1

1

3

5

7

...

c_id*

customers

host6.instance1

2

4

6

8

...

c_id*

customers

• Reference: Distributes the data of a child table based on the location of the parent table
that is identified by the foreign key. That is, a given row of a child table is present in the
same replica set as its parent table. This distribution scheme optimizes the performance
of joins by distributing related data within a single replica set. Thus, this distribution
scheme is appropriate for tables that are logically children of a single parent table as
parent and child tables are often referenced together in queries.

See Figure 1-8 for an example of a child table, accounts, with a reference distribution
scheme to a parent table, customers. Each element belongs to a different replica set.

Chapter 1
TimesTen Scaleout Architecture

1-15

Figure 1-8 Table with Reference Distribution

host3.instance1

1

3

5

7

...

c_id*

customers

accounts

1

3

5

7

...

c_ida_id*

host6.instance1

2

4

6

8

...

c_id*

customers

accounts

2

4

6

8

...

c_ida_id*

• Duplicate: Distributes full identical copies of data to all the elements of a database.
That is, all rows are present in every element. This distribution scheme optimizes
the performance of reads by storing identical data in every data instance. This
distribution scheme is appropriate for tables that are relatively small, frequently
read, and infrequently modified.

See Figure 1-9 for an example of a table, account_type, with a duplicate
distribution scheme. Each element belongs to a different replica set.

Chapter 1
TimesTen Scaleout Architecture

1-16

Figure 1-9 Table with Duplicate Distribution

host3.instance1

A

B

C

D

E

at_id*

account_type

host6.instance1

A

B

C

D

E

at_id*

account_type

Backups
TimesTen Scaleout enables you to create backups of the databases in your grid and restore
them to the same grid or another grid with a similar topology. TimesTen Scaleout also
enables you to export your databases to a grid with a different topology. You define a
repository as a location for your database backups, exports, and collections of log files.
Multiple grids may use the same repository.

Internal and External Networks
For most production environments, TimesTen Scaleout requires a single private internal
network and at least one external network.

• Internal network: Instances in a grid communicate with each other over a single internal
network using the TCP protocol. In addition, instances communicate with membership
servers through this network. Membership servers use this network to communicate
among themselves.

• External networks: Applications use the external network to connect to data instances to
access a database. Applications do not need external network access to management
instances or membership servers.

See Network Requirements.

Central Configuration of the Grid
TimesTen Scaleout maintains a single central configuration of the grid. This configuration is
called the model. The model represents the logical topology of a grid. The model contains a
set of objects that represent components of a grid, such as installations, hosts, database
definitions, and instances.

Chapter 1
Central Configuration of the Grid

1-17

You can have several different versions of the model. Each time you apply changes to
the model, the grid saves the model as a version. Only one version of the model can
be active in the grid at any given time.

• The latest model is the model within which you are making changes, but has not
yet been applied. If you are in the process of modifying a model, then this version
describes a future desired structure of a grid that only becomes the current model
when you apply it.

• The current version of the model (the model that was most recently applied)
always describes the current structure of the grid.

• Previous model versions describe what the grid structure used to be.

Perform the following when creating a desired structure for your grid:

1. You design the desired structure of your grid by adding or removing grid
components (such as installations, hosts, and instances) to the latest model.

2. Once you complete the desired structure of a model, you apply the model to cause
these changes to take effect. This version of the model becomes the current
version of the model.

3. After you apply the model, TimesTen Scaleout attempts to implement the current
model in the operational grid.

It is not guaranteed that all components of the current model are running. For
example, if your grid has 10 hosts configured, but only 6 of them are running at the
moment, the definition of all 10 is still in the model.

Every time you use the ttGridAdmin utility to add a grid component, such as an
installation, host or instance, you add model objects corresponding to these grid
components to the model. Each model object specifies the attributes and relationships
of the grid component.

Some model objects have relationships to other model objects. Figure 1-10 shows
how the relationship is stored between model objects. That is, the host, installation and
instances have a relationship where:

• The installation model object points to the host model object on which it is
installed.

• Both the management instance model object and the data instance model object
point to an installation model object of the installation that the instance will use and
a host model object on which the instance is installed.

Figure 1-10 shows two different types of relationships between the hosts, installation,
and instances that is stored within the model.

• You install a single installation on a host with one data instance, where the data
instance points to the installation and to the host on which it exists.

• You create multiple data instances on a single host where they all share a single
installation. Each data instance points to the same host and the same installation.
The installation points to the host on which it is installed. To increase availability,
avoid using multiple data instances on a single host.

Chapter 1
Central Configuration of the Grid

1-18

Figure 1-10 Example of a Model

host

installation instance 1

instance 2

host
installation instance

Any time you add or remove model objects from the model, these changes do not
immediately impact a grid until you explicitly apply these changes. After you apply the
changes, TimesTen Scaleout implements the current model into the operational grid. For
example, if you add a new installation model object and data instance model object to the
latest version of the model, applying the changes to the model performs all of the necessary
operations to create and initialize both the installation and the data instance in that host.

Chapter 1
Central Configuration of the Grid

1-19

Planning your Grid
Before you configure a grid and database in TimesTen Scaleout, you need to
determine certain key parameters about your grid.

• Determine the Number of Hosts and Membership Servers

• Define the Network Parameters of Each Host and Membership Server

• Define the Locations for the Installation Directory and Instance Home of Each
Instance

• Ensure You Have All the Information You Need to Deploy a Grid

Determine the Number of Hosts and Membership Servers
You need to determine how many hosts and membership servers you are going to use
based on these considerations:

• Membership servers: In a production environment, you need an odd number of
membership servers greater than or equal to three to ensure a majority quorum in
case one or more membership servers fail. You should ensure that:

– Each membership server uses independent physical resources (such as
power, network nodes, and storage) from each other.

– Membership servers do not run on the same system as hosts with data
instances.

• Management instances: You need two management instances to ensure some
measure of availability to the configuration and management capabilities of your
grid. Ensure that hosts with management instances use independent physical
resources (such as power, network nodes, and storage) from each other.

• Data instances: You determine the number of hosts you require for data instances
based on the level of K-safety and the number of replica sets. For example, if you
set k to 3 and you decide to have two replica sets, you need six data instances.

Also, the level of K-safety determines how many data space groups or
independent physical locations you must have for your hosts. Ensure that the
hosts with data instances assigned to data space group 1 use independent
physical resources than hosts with data instances that are assigned to data space
group 2 and so on.

Figure 1-11 shows an example of a setup of three membership servers, one repository,
two management instances, and six data instances. The example co-locates a
membership server with the repository for a total of 11 hosts.

Chapter 1
Planning your Grid

1-20

Figure 1-11 Example of a Grid

host3 host4 host5 host6 host7 host8

client
applications

external
network

internal
network

ms_host2 ms_host3
(repository)

ms_host1host1 host2

data instances

management instances membership servers

instance
administrator

Figure 1-12 shows how the hosts with data instances in this example are organized into three
data space groups for a grid with k set to 3. The hosts of each data space group share a rack.

Chapter 1
Planning your Grid

1-21

Figure 1-12 Example of Hosts Organized into Data Space Groups

data space group 1

rack 1

host 3

host 6

data space group 2

rack 2

host 4

host 7

data space group 3

rack 3

host 5

host 8

See Table 1-1 for an example of how you might assign the hosts with data instances
into data space groups based on the physical resources they share.

Table 1-1 Systems and Their Roles

Host name Membership
server

Repository Management
instance

Data instance Data space
group

Physical
resources

ms_host1 Yes Yes - - - Rack 1

ms_host2 Yes - - - - Rack 2

ms_host3 Yes - - - - Rack 3

host1 - - Yes - - Rack 1

host2 - - Yes - - Rack 2

host3 - - - Yes 1 Rack 1

host4 - - - Yes 2 Rack 2

host5 - - - Yes 3 Rack 3

host6 - - - Yes 1 Rack 1

host7 - - - Yes 2 Rack 2

host8 - - - Yes 3 Rack 3

Define the Network Parameters of Each Host and Membership Server
Ensure that you know the network addresses and TCP/IP ports that you expect each
host and membership server to use. See Network Requirements.

See Table 1-2 for an example of the internal and external addresses of the topology
described in Table 1-1.

Chapter 1
Planning your Grid

1-22

Table 1-2 Internal and External Addresses

Host name Internal address External address

ms_host1 ms-host1 -

ms_host2 ms-host2 -

ms_host3 ms-host3 -

host1 int-host1 -

host2 int-host2 -

host3 int-host3 ext-host3.example.com
host4 int-host4 ext-host4.example.com
host5 int-host5 ext-host5.example.com
host6 int-host6 ext-host6.example.com
host7 int-host7 ext-host7.example.com
host8 int-host8 ext-host8.example.com

Note:

All systems must be part of the same internal network. It is recommended that you
create an external network for applications outside of your internal network to
connect to your database.

You need to consider which TCP/IP ports each instance will use, especially if your setup is
behind a firewall. You must define the TCP/IP ports for the following:

• Membership servers: You must define three port numbers (client, peer, and leader) for
each membership server. See Table 3-1.

• Management instances: There are three port numbers (daemon, server, and
management) for each management instance. TimesTen Scaleout sets the default values
for the daemon, server, and management ports if you do not specify them.

• Data instances: There are two port numbers (daemon and server) for each data instance.
TimesTen Scaleout sets the default values for the daemon and server ports if you do not
specify them.

If a firewall is in place, you must open all the ports mentioned above plus the local ephemeral
ports for the internal network, except the server ports assigned to each instance. The server
ports assigned to each instance must be open for the external network.

See Table 1-3 for an example of the TCP/IP ports assigned to each membership server or
instance. The example uses the default values for each port.

Table 1-3 TCP/IP Ports

Host name Membership server (client/
peer/leader)

Management instance (daemon/
server/management)

Data instance (daemon/
server)

ms_host1 2181 / 2888 / 3888 - -

Chapter 1
Planning your Grid

1-23

Table 1-3 (Cont.) TCP/IP Ports

Host name Membership server (client/
peer/leader)

Management instance (daemon/
server/management)

Data instance (daemon/
server)

ms_host2 2181 / 2888 / 3888 - -

ms_host3 2181 / 2888 / 3888 - -

host1 - 6624 / 6625 / 3574 -

host2 - 6624 / 6625 / 3574 -

host3 - - 6624 / 6625

host4 - - 6624 / 6625

host5 - - 6624 / 6625

host6 - - 6624 / 6625

host7 - - 6624 / 6625

host8 - - 6624 / 6625

Define the Locations for the Installation Directory and Instance Home
of Each Instance

You must define the locations for the installation directory and the instance home that
you expect your grid to use. Defining the locations for these grid objects includes
defining the name TimesTen Scaleout uses to identify them. Consider these while
defining these locations:

• In the case of the instance home, TimesTen Scaleout adds the instance name to
the defined location. For example, if you define /grid as the location for an
instance named instance1, the full path for the instance home of that instance
becomes /grid/instance1.

• A similar behavior applies for installation objects. Instead of adding the installation
name, TimesTen Scaleout adds the release version to the defined location. For
example, if you define /grid as the location of the installation, the full path for the
installation becomes /grid/tt22.1.1.18.0.

TimesTen Scaleout creates the locations you define for the installation directory and
instance home if they do not exist already.

See Table 1-4 for an example of the locations for the membership server installation.
You must create these locations on their respective systems prior to installing the
membership server.

Table 1-4 Installation Location of the Membership Servers

Host name Installation location

ms_host1 /grid/membership
ms_host2 /grid/membership
ms_host3 /grid/membership

Chapter 1
Planning your Grid

1-24

See Table 1-5 for an example of the installation directory and instance home locations for the
management instances.

Table 1-5 Installation Directory and Instance Home of the Management Instances

Host name Installation name Installation directory Instance name Instance home

host1 installation1 /grid/
tt22.1.1.18.0

instance1 /grid/instance1

host2 installation1 /grid/
tt22.1.1.18.0

instance1 /grid/instance1

See Table 1-6 for an example of the installation directory and instance home locations for the
data instances.

Table 1-6 Installation Directory and Instance Home of the Data Instances

Host name Installation name Installation directory Instance name Instance home

host3 installation1 /grid/
tt22.1.1.18.0

instance1 /grid/instance1

host4 installation1 /grid/
tt22.1.1.18.0

instance1 /grid/instance1

host5 installation1 /grid/
tt22.1.1.18.0

instance1 /grid/instance1

host6 installation1 /grid/
tt22.1.1.18.0

instance1 /grid/instance1

host7 installation1 /grid/
tt22.1.1.18.0

instance1 /grid/instance1

host8 installation1 /grid/
tt22.1.1.18.0

instance1 /grid/instance1

See Table 1-7 for an example of the location for the repository.

Table 1-7 Repository

Host name Repository location

ms_host1 /grid/repository

Ensure You Have All the Information You Need to Deploy a Grid
To verify that you have all the information you need before you start deploying your grid,
answer the questionnaire provided in Table 1-8.

Table 1-8 Questionnaire

Question Source of information

What will your K-safety setting be? K-Safety

Chapter 1
Planning your Grid

1-25

Table 1-8 (Cont.) Questionnaire

Question Source of information

How many membership servers will you have? Determine the Number of Hosts and
Membership Servers and Setting Up the
Membership Service

How many management instances will you have? Management Instances

How many replica sets will you have? Data Instances and Understanding Replica
Sets

Where will you store your database backups? Backups and Define the Locations for the
Installation Directory and Instance Home of
Each Instance

How many hosts are you going to use for your grid? Determine the Number of Hosts and
Membership Servers

Which of those hosts are going to run management
instances?

Management Instances

Which of those hosts are going to run data instances? Data Instances

What will be the data space group assignments of each
host with a data instance?

Assigning Hosts to Data Space Groups

How will you organize your hosts and membership
servers across independent physical resources?

Assigning Hosts to Data Space Groups

Will you use a single network or separate internal and
external networks for your grid?

Internal and External Networks

What is the DNS name or IP address of each host and
membership server?

Define the Network Parameters of Each
Host and Membership Server

Which TCP/IP ports will you use for each instance? Define the Network Parameters of Each
Host and Membership Server

What will be the location for the installation files of each
membership server?

Define the Locations for the Installation
Directory and Instance Home of Each
Instance

What will be the locations for the installation directory
and instance home of each instance?

Define the Locations for the Installation
Directory and Instance Home of Each
Instance

Database Connections
You can access a database either with a direct connection from a data instance or a
client/server connection over an external network.

• Direct connection: An application connects directly to a data instance of a
database that they specify.

An application using a direct connection runs on the same system as the
database. A direct connection provides extremely fast performance as no inter-
process communication (IPC) of any kind is required. However, if the specified
data instance is down, the connection is not forwarded to another data instance
and an error is returned.

• Client/server connection: An application using a client/server connection may run
on a data instance or on any host with access to the external network. Client
applications are automatically connected to a working data instance.

Chapter 1
Database Connections

1-26

All exchanges between client and server are sent over a TCP/IP connection. If the client
and server reside on separate hosts in the internal network, they communicate by using
sockets and TCP/IP.

If a data instance fails, TimesTen Scaleout automatically re-connects to another working
data instance. You can configure options to control this process, if necessary.

Note:

If desired, you can specify that a client/server connection connects to a specific
data instance.

If your workload only requests data from the local element, then a direct connection is the
best method for your application as this provides faster access than a client/server
connection. However, if your workload entails that your application may need to switch
between data instances for whichever data instance is readily available and retrieves data
from the multiple elements, then a client/server connection may provide better throughput.

Comparison Between TimesTen Scaleout and TimesTen Classic
The term TimesTen alone, without TimesTen Scaleout or Classic, typically applies to both
single-instance and multiple-instance, such as in references to TimesTen utilities, releases,
distributions, installations, actions taken by the database, and functionality within the
database.

• TimesTen Scaleout refers to TimesTen In-Memory Database in grid mode. TimesTen
Scaleout is a multiple-instance environment that contains distributed databases.

• TimesTen Classic refers to TimesTen In-Memory Database in classic mode. Classic
mode is a single-instance environment and databases as in previous releases.

– Cache combines the responsiveness of the TimesTen Classic with the ability to
cache subsets of an Oracle database for improved response time in the application
tier.

TimesTen Scaleout supports and includes most of the features of TimesTen Classic; it
supports only a single cache group type for cache operations. The following list describes
what features are and are not supported in TimesTen Scaleout from TimesTen Classic:

Note:

For more information about TimesTen Classic features, see the Oracle TimesTen
In-Memory Database Operations Guide.

Chapter 1
Comparison Between TimesTen Scaleout and TimesTen Classic

1-27

Table 1-9 TimesTen Classic Features That Are Unsupported in TimesTen Scaleout

TimesTen Classic feature Supported in
TimesTen
Scaleout (Y/N)

Description

Caching data from the Oracle
database

Y TimesTen Scaleout supports only static read-only cache
groups with incremental autorefresh. See Using Cache
Groups in TimesTen Scaleout and Oracle TimesTen In-
Memory Database Cache Guide.

Replication: both active standby
pair and classic replication
schemes

N Data protection and fault tolerance can be provided through
the K-safety feature of TimesTen Scaleout. Thus, none of the
features documented in Oracle TimesTen In-Memory
Database Replication Guide are supported for TimesTen
Scaleout. See K-Safety.

Bitmap indexes N

LOB support N TimesTen Scaleout does not support LOB columns in tables.

Column-based compression N Column-based compression within tables

Aging policy for tables N

RAM policy N TimesTen Scaleout supports the manually loading and
unloading of the database through the ttGridAdmin utility by
system administrators.

X/Open XA standard and the
Java Transaction API (JTA)

N

TimesTen Classic Transaction
Log API (XLA) and the
JMS/XLA Java API

N

Oracle Clusterware N

Index Advisor N

Online upgrade Y TimesTen Scaleout supports online upgrades to patch-
compatible releases. Upgrades from one major release to
another are considered patch incompatible and are offline
only. See Upgrading a Grid.

PL/SQL Y TimesTen Scaleout supports all PL/SQL features as in
TimesTen Classic, except for:

• SQL statements that alter functions, packages, or
procedures.

• DDL statements using the EXECUTE INMEDIATE
statement.

• DDL statements that invoke functions or call procedures
from the DBMS_SQL package.

Chapter 1
Comparison Between TimesTen Scaleout and TimesTen Classic

1-28

Table 1-9 (Cont.) TimesTen Classic Features That Are Unsupported in TimesTen Scaleout

TimesTen Classic feature Supported in
TimesTen
Scaleout (Y/N)

Description

SQL statements Y TimesTen Scaleout does not support:

• MERGE
• Since the Cache Connect feature, active standby pair

replication scheme, and classic replication schemes are
not supported, neither are the data definition language
(DDL) statements that create these objects.

TimesTen Scaleout partially supports:

• ROWID data type

The semantics of ROWID are different in TimesTen
Classic than in TimesTen Scaleout. For details, see
Using SQL in TimesTen Scaleout and ROWID Data Type
in Oracle TimesTen In-Memory Database SQL
Reference.

• CREATE [ASYNCHRONOUS] MATERIALIZED VIEW
The CREATE MATERIALIZED VIEW statement is
supported in a limited capacity. See CREATE
MATERIALIZED VIEW in Oracle TimesTen In-Memory
Database SQL Reference.

• Global temporary tables do not support any form of
distribution. When you create a global temporary table,
you cannot use any of the DISTRIBUTE BY clauses.
Global temporary tables are materialized only in the
element where the connection is established.

How Supported TimesTen Features Are Documented in This Guide
Throughout Oracle TimesTen In-Memory Database Scaleout User's Guide, the TimesTen
Classic features that are included within TimesTen Scaleout are documented as follows:

• If the feature is supported completely as it is within TimesTen Classic, this guide provides
a small section describing the feature with a cross-reference to the description in other
TimesTen documents, such as Oracle TimesTen In-Memory Database Operations Guide,
Oracle TimesTen In-Memory Database SQL Reference and Oracle TimesTen In-Memory
Database Reference.

• If the feature is used as a base with additional support provided for the unique
requirements of TimesTen Scaleout, then the new addition is described and a cross-
reference link is provided to the feature in other TimesTen documents, such as Oracle
TimesTen In-Memory Database Operations Guide, Oracle TimesTen In-Memory
Database SQL Reference, Oracle TimesTen In-Memory Database Cache Guide and
Oracle TimesTen In-Memory Database Reference.

• If the feature is not supported, no cross-reference is provided in this guide.

Chapter 1
Comparison Between TimesTen Scaleout and TimesTen Classic

1-29

2
Prerequisites and Installation of TimesTen
Scaleout

There are several prerequisites to successfully deploy TimesTen Scaleout. These topics
discuss the requirements for each host used in the grid:

• General Prerequisites

• Operating System Prerequisites

• Network Requirements

• Installing TimesTen Scaleout

• Setting Passwordless SSH

General Prerequisites
TimesTen Scaleout is only supported on the Linux platform. For the supported Linux platform
versions, see Platforms and Configurations in Oracle TimesTen In-Memory Database
Release Notes. For the most recent information about your particular TimesTen release, see
the README.html file in your installation directory.
Perform these steps on all hosts that will run the management and data instances and
membership servers for the grid:

• Install the same operating system version and release on each host.

• Configure all hosts in the same internal network.

When you set up your network, you must create a single internal network for all the grid
components to communicate with each other. While clients may use the same internal
network to connect to instances, you may wish to create an external network for client
connections.

• Install and configure NTP (Network Time Protocol). Clocks must be synced.

• Ensure all instances in the grid can communicate with all other instances in the grid over
the internal network on any port.

• To avoid problems before and after installation, confirm your file system has sufficient
space. See Storage Provisioning for TimesTen in Oracle TimesTen In-Memory Database
Operations Guide.

Operating System Prerequisites
The operating system prerequisites include general Linux prerequisites and the user and
users group needed to properly install and manage TimesTen Scaletout.

• General Linux Prerequisites

• Understanding TimesTen Users Group and Operating System User

2-1

General Linux Prerequisites
On some Oracle Linux 8.x and RedHat 8.x systems, you must install the ncurses-
compat-libs package (sudo yum install ncurses-compat-libs). Otherwise, cursor-
based command recall and editing does not work in ttIsql.

On SUSE Linux Enterprise Server, you need to install libncurses5. To do this, run:

% zypper -n install libncurses

It is recommended that you enable stack traces for TimesTen. On Linux systems, use
pstack or gdb to get a stack trace.

Understanding TimesTen Users Group and Operating System User
These topics describe and show how to create both the TimesTen users group and the
operating system user (which will serve as the instance administrator):

• TimesTen Users Group

• Operating System User

• Create the TimesTen Users Group and the Operating System User

TimesTen Users Group
TimesTen restricts access to the installation and the instances created from that
installation to members of a single operating system group. This group, called the
TimesTen users group, owns the installation and the instances created from the
installation. Create this group (for example, timesten) and add the desired operating
system users prior to installation. Once you create the TimesTen users group, you
cannot change the name of the group or the group ID. See Create the TimesTen Users
Group and the Operating System User.

Note:

• The instance administrator's primary group must be the TimesTen users
group.

• Users who wish to access databases through TimesTen utilities or direct
mode applications must be members of the TimesTen users group. This
group can be the user's primary or secondary group.

• Users connecting to a database through a client connection do not have
to be members of the TimesTen users group.

Operating System User
The instance administrator for all instances in your grid is the operating system user
who creates the active management instance. This user then becomes the instance

Chapter 2
Operating System Prerequisites

2-2

administrator of all other instances in TimesTen Scaleout, including the second management
instance and all data instances.

Note:

• The instance administrator cannot be the root user.

• The instance administrator configures the grid, creates and manages the
databases in the grid, starts and stops the databases in the grid, performs all
management activities, and performs backup and restore operations.

• You cannot change the instance administrator after that administrator creates
the active management instance.

• The instance administrator is a member of the TimesTen users group. See
TimesTen Users Group.

• The instance administrator's user name and UID, and the group name and the
group id (GID) of the TimesTen users group must be the same on all hosts in the
grid, including the hosts on which the management and data instances exist, as
well as any of the SCP repository hosts.

• The installation and the instances must have the same owner (the instance
administrator).

Create the TimesTen Users Group and the Operating System User
In this example, instanceadmin is the name of the operating system user and timesten is the
name of the TimesTen users group.

1. Create the TimesTen users group. Name the group timesten with group ID 10000.

% sudo groupadd -g 10000 timesten

2. Create the instanceadmin user with UID 55000 and assign this user to the timesten
primary group. Then, create a password for the instanceadmin user.

% sudo useradd -u 55000 -g timesten instanceadmin
% sudo passwd instanceadmin

Network Requirements
For most production environments, TimesTen Scaleout requires a single private internal
network and at least one external network. These topics describe the requirements for those
networks.

• Internal Network

• External Network

Chapter 2
Network Requirements

2-3

Internal Network
Instances in a grid communicate with each other over a single internal network using
the TCP protocol. TimesTen Scaleout uses this network to perform all SQL, backup,
and management operations required by the grid and its databases. In addition,
instances communicate with membership servers through this network. Membership
servers use this network to communicate among themselves.

Ensure that your internal network has these characteristics:

• High bandwidth. The faster the network the better, in terms of throughput (gigabits
per second). For production environments, ensure at minimum a 10 Gigabit
Ethernet network or equivalent.

• Low latency. To reduce network latency (time to transmit a message from one host
to another) to a minimum, the hosts and membership servers attached to your
internal network should either:

– Span a single data center within a small number of racks.

– Span multiple data centers within a small geographic region (city or suburb)
connected by a metropolitan area network (MAN). Only recommended with a
10 GbE network or better.

– Not span multiple data regions (states or provinces) connected by a wide area
network (WAN).

• IPv4 or IPv6 addresses.

• No network address translation (NAT).

• No TCP packet filtering.

For an on-premises environment, ensure your internal network meets these
requirements:

• If your internal network consists of a single network segment, all hosts are
connected to a single Ethernet switch or equivalent.

• If your internal network consists of multiple network segments, those segments are
connected through bridges instead of IP routers.

• If your internal network uses a MAN, ensure that the MAN can provide the
required bandwidth and latency for your workload.

Syntax for Internal Addresses
When you define a host for your grid, you must specify a single value for the internal
address of that host. Optionally, you specify a value for that the external address of
that host. The value you specify for the internal address of a host can be either an
IPv4 address, an IPv6 address or a name that resolves into one or more IPv4 or IPv6
addresses. For example:

• A dot-decimal IPv4 address such as 192.168.1.1
• A colon-hexadecimal IPv6 address such as 2606:fe80::f816:3eff:fe15:44b3
• A name specified in the /etc/hosts file such as host1
• A name defined in a private Domain Name Server (DNS) such as int-

host1.example.com

Chapter 2
Network Requirements

2-4

If you use a name to define the internal address of a host:

• If the name resolves to multiple IP addresses, those addresses must be on the same
network segment.

• Every host in the grid must be able to resolve a name to the same addresses. For
example, if you use the hosts file to define a name, then the hosts file on each host in the
grid must contain identical entries for that name.

External Network
A grid may optionally use one or more public external networks. These networks enable
applications running on machines that are not part of the grid to create client/server
connections to databases in the grid. You cannot perform any grid or database management
operations through an external network.

While the performance of an external network is important, it is less important than the
performance of the internal network. If the internal network performs poorly or unreliably, the
grid and its databases may perform poorly or unreliably for all users. Conversely, if an
external network performs poorly or unreliably, it may only affect the applications connected
to the databases in the grid through that network. As a result, there are fewer requirements
for an external network than for the internal network.

Your external networks should have these characteristics:

• Bandwidth based on the requirements of your client/server applications.

• Latency based on the requirements of your client/server applications.

• IPv4 or IPv6 addresses.

• TCP connectivity to the server port of each data instance.

• Any combination of network technologies (VPN, routers, LAN, WAN, etcetera).

If your grid uses a single external network, then the value you specify for the external address
of a host can be in any of the forms described in Syntax for Internal Addresses. If your grid
uses multiple external networks, then you must use a name to define the external address of
a host. The name must resolve to at least one IP address for each external network you use.

Installing TimesTen Scaleout
When you unpack the TimesTen distribution on a host, you create an installation (that is read
only). Do not add, alter, or remove files or directories within the installation, unless you are
deleting the installation.

The installation may be a full installation or a client-only installation. A client-only installation
supports the client use of TimesTen:

Type Description

Full installation Use the TimesTen full distribution for this type of installation (for example,
timesten2211180.server.linux8664.zip).

Client-only installation You can connect and access databases in TimesTen Classic through a client.
Use the full installation (for example,
timesten2211180.server.linux8664.zip) to unpack the distribution and
then specify ttInstanceCreate -clientonly. See Database
Connections.

Chapter 2
Installing TimesTen Scaleout

2-5

The operating system user that you designated as the instance administrator creates
the installation by:

1. Downloading the TimesTen distribution on the host that will contain the active
management instance. The distribution is a ZIP file where the ZIP file name
indicates the platform, release number, and the type of distribution. For example,
timesten2211180.server.linux8664.zip.

2. Unpacking the ZIP file to create a TimesTen installation. The installation includes
the binaries and the support files from which you can create a grid (and all of its
components), membership servers, and clients

Only the first installation is created manually by the instance administrator on the host
containing the active management instance. Additional installations used by additional
instances are created by TimesTen Scaleout utilities. See Setting Up a Grid.

After you download the distribution, follow these steps:

1. Log in as the instance administrator to the host that will contain the initial
management instance. In this example, instanceadmin is the name of the
instance administrator. You can verify the instance administrator with the Linux id
command.

2. Create the desired directory for the installation such as /grid/installation1.

% mkdir -p /grid/installation1

3. Extract and unpack the distribution file into the directory. This example unpacks
the installation using the unzip command:

% unzip /timesten2211180.server.linux8664.zip -d /grid/installation1

The top level directory of the installation is the TimesTen release. For example, the
directory created under /grid/installation1 is:

dr-xr-x--- 19 instanceadmin timesten 4096 Mar 2 22:07 tt22.1.1.18.0

Verifying the Installation
These topics provide details on how to verify your installation:

• Run the ttInstallationCheck Utility

• Review the Installation Directory and Subdirectories

Run the ttInstallationCheck Utility
The ttInstallationCheck utility, located in the installation_dir/
tt22.1.1.18.0/bin directory, verifies the success or failure of the installation. This
utility generates an error if the checksum value for the installation differs from the
original checksum value. Checksum values are different if there are any of these
changes to the installation directory or files:

• Contents of a file

• Name of a file

Chapter 2
Installing TimesTen Scaleout

2-6

• Addition of a file to a directory

• Removal of file from a directory

• Changes to the permissions of a file or directory

In this example, the installation is verified:

% ttInstallationCheck
This installation has been verified.

In this example, permissions on a file were changed, and ttInstallationCheck generates an
error:

% ttInstallationCheck
Cannot validate the installation in /grid/installation1/tt22.1.1.18.0.

See ttInstallationCheck in Oracle TimesTen In-Memory Database Reference.

Review the Installation Directory and Subdirectories
A TimesTen full installation includes these subdirectories located under the top-level
installation_dir/tt22.1.1.18.0 directory.

• 3rdparty: Includes resources for:

– Apache ZooKeeper

– Java Message Service (JMS)

• bin: TimesTen utilities and executables

• grid: Files and resources for TimesTen Scaleout

• include: TimesTen include files, among them timesten.h (for TimesTen ODBC features)
and tt_errCode.h (for information about TimesTen error codes)

• lib: TimesTen libraries

• plsql: Files and resources for TimesTen PL/SQL

• ttoracle_home: Oracle Database Instant Client files and resources, for OCI, Pro*C/C++,
and ODP.NET

Note:

A client-only installation does not include the 3rdparty or the grid directories.

Chapter 2
Installing TimesTen Scaleout

2-7

Setting Passwordless SSH
The instance administrator must be able to use SSH to log without a password to all
hosts within a grid for the management instances and ttGridAdmin utility to be able
set up and manage the grid and all its members.

Specifically, all hosts with management instances need passwordless SSH access for
the instance administrator to all hosts with instances and repositories. Also, hosts with
data instances need passwordless SSH access for the instance administrator to all
hosts with repositories.

The ttGridAdmin gridSshConfig command is able to set for the current user the
required passwordless SSH access. Ensure that you run the command with the user
you intend for instance administrator.

Before setting up a grid, you can run the ttGridAdmin gridSshConfig command while
providing the addresses or DNS names that you will later use to host management
instances, data instance, and repositories. When prompted, enter the OS password of
the user executing the command. The user and password must already be set on all
systems and be identical. See Understanding TimesTen Users Group and Operating
System User.

% grid/installation1/tt22.1.1.18.0/bin/ttGridAdmin gridSshConfig
 -mgmtAddress int-host1 int-host2
 -dataAddress int-host3 int-host4 int-host5 int-host6 int-host7 int-
host8
Enter password:
Setup ssh configuration on local
system...............................OK
Setup ssh configuration on int-
host1..................................OK
Setup ssh configuration on int-
host2..................................OK
Setup ssh configuration on int-
host3..................................OK
Setup ssh configuration on int-
host4..................................OK
Setup ssh configuration on int-
host5..................................OK
Setup ssh configuration on int-
host6..................................OK
Setup ssh configuration on int-
host7..................................OK
Setup ssh configuration on int-
host8..................................OK
Setup passwordless ssh from local system to int-
host1.................OK
Setup passwordless ssh from local system to int-
host2.................OK
Setup passwordless ssh from local system to int-
host3.................OK
Setup passwordless ssh from local system to int-
host4.................OK
Setup passwordless ssh from local system to int-

Chapter 2
Setting Passwordless SSH

2-8

host5.................OK
Setup passwordless ssh from local system to int-host6.................OK
Setup passwordless ssh from local system to int-host7.................OK
Setup passwordless ssh from local system to int-host8.................OK
Setup passwordless ssh from int-host1 to int-host1....................OK
Setup passwordless ssh from int-host1 to int-host2....................OK
Setup passwordless ssh from int-host1 to int-host3....................OK
Setup passwordless ssh from int-host1 to int-host4....................OK
Setup passwordless ssh from int-host1 to int-host5....................OK
Setup passwordless ssh from int-host1 to int-host6....................OK
Setup passwordless ssh from int-host1 to int-host7....................OK
Setup passwordless ssh from int-host1 to int-host8....................OK
Setup passwordless ssh from int-host2 to int-host1....................OK
Setup passwordless ssh from int-host2 to int-host2....................OK
Setup passwordless ssh from int-host2 to int-host3....................OK
Setup passwordless ssh from int-host2 to int-host4....................OK
Setup passwordless ssh from int-host2 to int-host5....................OK
Setup passwordless ssh from int-host2 to int-host6....................OK
Setup passwordless ssh from int-host2 to int-host7....................OK
Setup passwordless ssh from int-host2 to int-host8....................OK

Passwordless ssh working between hosts:

From\To int-host1 int-host2 int-host3 int-host4 int-host5 ... int-host8
--------- --------- --------- --------- --------- --------- ... ---------
us Yes Yes Yes Yes Yes ... Yes
int-host1 Yes Yes Yes Yes Yes ... Yes
int-host2 Yes Yes Yes Yes Yes ... Yes
int-host3 N/A N/A N/A N/A N/A ... N/A
int-host4 N/A N/A N/A N/A N/A ... N/A
int-host5 N/A N/A N/A N/A N/A ... N/A
int-host6 N/A N/A N/A N/A N/A ... N/A
int-host7 N/A N/A N/A N/A N/A ... N/A
int-host8 N/A N/A N/A N/A N/A ... N/A

For a grid where the latest version of the model has yet to be applied and new hosts and
instances were added to the model, run the ttGridAdmin gridSshConfig command on the
active management instance. The ttGridAdmin utility then will query the latest version of the
model and set up the appropriate SSH connectivity amongst the hosts described in the
model.

% ttGridAdmin gridSshConfig
Enter password:
Setup ssh configuration on local system...............................OK
Setup ssh configuration on int-host1..................................OK
Setup ssh configuration on int-host2..................................OK
Setup ssh configuration on int-host3..................................OK
Setup ssh configuration on int-host4..................................OK
Setup ssh configuration on int-host5..................................OK
Setup ssh configuration on int-host6..................................OK
Setup ssh configuration on int-host7..................................OK
Setup ssh configuration on int-host8..................................OK
Setup passwordless ssh from local system to int-host1.................OK
Setup passwordless ssh from local system to int-host2.................OK

Chapter 2
Setting Passwordless SSH

2-9

Setup passwordless ssh from local system to int-
host3.................OK
Setup passwordless ssh from local system to int-
host4.................OK
Setup passwordless ssh from local system to int-
host5.................OK
Setup passwordless ssh from local system to int-
host6.................OK
Setup passwordless ssh from local system to int-
host7.................OK
Setup passwordless ssh from local system to int-
host8.................OK
Setup passwordless ssh from int-host1 to int-
host1....................OK
Setup passwordless ssh from int-host1 to int-
host2....................OK
Setup passwordless ssh from int-host1 to int-
host3....................OK
Setup passwordless ssh from int-host1 to int-
host4....................OK
Setup passwordless ssh from int-host1 to int-
host5....................OK
Setup passwordless ssh from int-host1 to int-
host6....................OK
Setup passwordless ssh from int-host1 to int-
host7....................OK
Setup passwordless ssh from int-host1 to int-
host8....................OK
Setup passwordless ssh from int-host2 to int-
host1....................OK
Setup passwordless ssh from int-host2 to int-
host2....................OK
Setup passwordless ssh from int-host2 to int-
host3....................OK
Setup passwordless ssh from int-host2 to int-
host4....................OK
Setup passwordless ssh from int-host2 to int-
host5....................OK
Setup passwordless ssh from int-host2 to int-
host6....................OK
Setup passwordless ssh from int-host2 to int-
host7....................OK
Setup passwordless ssh from int-host2 to int-
host8....................OK

Passwordless ssh working between hosts:

From\To int-host1 int-host2 int-host3 int-host4 int-host5 ... int-
host8
--------- --------- --------- --------- --------- --------- ...

us Yes Yes Yes Yes Yes ... Yes
int-host1 Yes Yes Yes Yes Yes ... Yes
int-host2 Yes Yes Yes Yes Yes ... Yes
int-host3 N/A N/A N/A N/A N/A ... N/A

Chapter 2
Setting Passwordless SSH

2-10

int-host4 N/A N/A N/A N/A N/A ... N/A
int-host5 N/A N/A N/A N/A N/A ... N/A
int-host6 N/A N/A N/A N/A N/A ... N/A
int-host7 N/A N/A N/A N/A N/A ... N/A
int-host8 N/A N/A N/A N/A N/A ... N/A

See Configure SSH (gridSshConfig) in Oracle TimesTen In-Memory Database Reference.

Chapter 2
Setting Passwordless SSH

2-11

3
Setting Up the Membership Service

The membership service in TimesTen Scaleout enables a grid to operate in a consistent
manner, even if it encounters a network failure between instances that interrupts
communication and cooperation between the instances.

• Overview of the Membership Service in TimesTen Scaleout

• Using Apache ZooKeeper as the Membership Service

• Installing Apache ZooKeeper

• Configuring Apache ZooKeeper as the Membership Service

• Starting the Membership Servers

• Configure a Grid as a Membership Service Client

Overview of the Membership Service in TimesTen Scaleout
The membership service tracks the status of the data and management instances and
resolves inconsistency issues caused by a network partition error.

• Tracking the Instance Status. This helps instances maintain communication between
each other.

• Recovering from a Network Partition Error, once the communications fault is fixed.

Tracking the Instance Status
A grid is a collection of instances that reside on multiple hosts that communicate over a single
internal network. The membership service knows which instances are active. When each
instance starts, it connects to a membership server within the membership service to register
itself, as shown in Figure 3-1. If one of the membership servers fails, the instances that were
connected to the failed membership server transparently reconnect to one of the available
membership servers.

3-1

Figure 3-1 Instances Register with the Membership Servers

ms_host1

ms_host2ms_host3

host3.instance1 host4.instance1

host5.instance1

host6.instance1host7.instance1

host8.instance1

host1.instance1 host2.instance1

data instances

membership servers

management instances

Each instance maintains a persistent connection to one of the membership servers, so
that it can query the active instance list. If the network between the membership
servers and the instances is down, the instances refuse to perform until the network is
fixed and communication is restored with the membership servers.

Figure 3-2 demonstrates how data instances in a grid connect to each other, where
each data instance connects to every other data instance in a grid. It also shows how
each data instance in this example maintains a persistent connection with one of the
membership servers.

Chapter 3
Overview of the Membership Service in TimesTen Scaleout

3-2

Figure 3-2 Data Instances Communicating with Each Other

ms_host1

ms_host2ms_host3

host3.instance1 host4.instance1

host5.instance1

host6.instance1host7.instance1

host8.instance1

If a data instance loses a connection to another instance, it queries the active instance list on
its membership server to verify if the "lost" instance is up. If the "lost" instance is up, then the
data instance makes an effort to re-establish a connection with that instance. Otherwise, to
avoid unnecessary delays, no further attempts are made to establish communication to the
"lost" instance.

When a "lost" instance restarts, it registers itself with the membership service and proactively
informs all other instances in a grid that it is up. When it is properly synchronized with the rest
of a grid, the recovered instance is once again used to process transactions from
applications.

In Figure 3-3, the host4.instance1 data instance is not up. If the host3.instance1 data
instance tries to communicate with the host4.instance1 data instance, it discovers a broken
connection. The host3.instance1 data instance queries the active instance list on its
membership server, which informs it that the host4.instance1 data instance is not on the
active instance list. If the host4.instance1 data instance comes back up, it registers itself

Chapter 3
Overview of the Membership Service in TimesTen Scaleout

3-3

again with the membership service, which then includes it in the list of active instances
in this grid.

Figure 3-3 Instance Reacts to a Dead Connection

host4.instance1

host5.instance1

host6.instance1host7.instance1

host8.instance1

host3.instance1

What is the

status of

host4.instance1?

host4.instance1

is down.

ms_host1

ms_host2ms_host3

Recovering from a Network Partition Error
A network partition error splits the instances involved in a single grid into two subsets.
With a network partition error, each subset of instances is unable to communicate with
the other subset of instances.

Figure 3-4 shows a network partition that would return inconsistent results to
application queries without the membership service, since the application could access
one subset of instances without being able to contact the disconnected subset of
instances. Any updates made to one subset of instances would not be reflected in the
other subset. If an application connects to the host1 data instance, then the query

Chapter 3
Overview of the Membership Service in TimesTen Scaleout

3-4

returns results from the host1 and host3 data instances; but any data that resides on the
host2 and host4 data instances is not available because there is no connection between the
two subsets.

Figure 3-4 Network Partition Failure

network failure

host3.instance1 host4.instance1

host5.instance1

host6.instance1host7.instance1

host8.instance1

If you encounter a network partition, the membership service provides a resolution.
Figure 3-5 shows a grid with six instances and three membership servers. A network
communications error has split a grid into two subsets where host3.instance1 and
host4.instance1 no longer know about or communicate with the rest of the instances. In
addition, the ms_host1 membership server is not in communication with the other two
membership servers.

For the membership service to work properly to manage the status of a grid, there must be a
majority of active membership servers of the total servers created that can communicate with
each other in order to work properly. If a membership server fails, the others continue to
serve requests as long as a majority is available.

For example:

• A membership service that consists of three membership servers can handle one
membership server failure.

Chapter 3
Overview of the Membership Service in TimesTen Scaleout

3-5

• A membership service of five membership servers can handle two membership
server failures.

• A membership service of six membership servers can handle only two failures
since three membership servers are not a majority.

Note:

When you configure the number of membership servers, you should always
create an odd number of membership servers to serve as the membership
service. If you have an even number of membership servers and a network
partition error occurs, then each subset of a grid might have the same
number of membership servers where neither side would have a majority.
Thus, both sides of the network partitioned grid would stop working.

If the number of remaining membership servers falls below the number needed for a
majority, the remaining membership servers refuse all requests until at least a majority
of membership servers are running. In addition, data instances that cannot
communicate with the membership service cannot run any transactions. You must
research the failure issue and restart any failed membership servers.

Because of the communications failure, the ms_host1 membership server does not
know about the other two membership servers. Since there are not enough
membership servers to constitute a majority, the ms_host1 membership server can no
longer accept incoming requests from the host3.instance1 and host4.instance1
data instances. The host3.instance1 and host4.instance1 data instances cannot
run any transactions until the failed membership server is restarted.

Chapter 3
Overview of the Membership Service in TimesTen Scaleout

3-6

Figure 3-5 Network Partition with Membership Service

ms_host1

ms_host2ms_host3

host3.instance1 host4.instance1

host5.instance1

host6.instance1host7.instance1

host8.instance1

network failure

To discover if there may be a network partition, you will see errors in the daemon log about
elements losing contact with their membership server.

Once you resolve the connection error that caused your grid to split into two, all of the
membership servers reconnect and synchronize the membership information. In our example
in Figure 3-5, the ms_host1 membership server rejoins the membership service. After which,
the host3.instance1 and host4.instance1 data instances also rejoin this grid as active
instances.

Using Apache ZooKeeper as the Membership Service
Apache ZooKeeper is a third-party, open-source centralized service that maintains
information for distributed systems and coordinates services for multiple hosts. TimesTen

Chapter 3
Using Apache ZooKeeper as the Membership Service

3-7

Scaleout uses Apache ZooKeeper to provide its membership service, which tracks the
status of all instances and provides a consistent view of the instances that are active
within a grid.
TimesTen Scaleout requires that you install and configure Apache ZooKeeper to work
as the membership service for a grid. Each membership server in a grid is an Apache
ZooKeeper server.

Note:

Since membership servers are ZooKeeper servers, see the Apache ZooKeer
website on how to use and manage ZooKeeper servers.

If you create a second grid, you can use the same ZooKeeper servers to act as the
membership service for the second grid. However, all ZooKeeper servers should act
only as a membership service for TimesTen Scaleout.

For ZooKeeper servers in a production environment, it is advisable to:

• Configure an odd number of replicated ZooKeeper servers on separate hosts. Use
a minimum of three ZooKeeper servers for your membership service. If you have n
ZooKeeper servers, you should have (n/2+1) ZooKeeper servers active as a
majority. A larger number of ZooKeeper servers increases reliability.

• It is recommended (but not required) that you use hosts for your membership
servers that are separate from any hosts used for instances. If you do locate your
ZooKeeper servers and instances on separate hosts, then this guarantees that if
the host fails, you do not lose both the instance and one of the membership
servers.

• Avoid having ZooKeeper servers be subject to any single point of failure. For
example, use independent physical racks, power sources, and network locations.

• Your ZooKeeper servers could share the same physical infrastructure as your data
instances. For example, if your data instances are spread across two physical
racks, you could host your ZooKeeper servers in these same two racks.

For example, you configure your grid with an active and standby management
instance, three data space groups (each with two data instances), and three
ZooKeeper servers configured in your grid. If you have three data racks, the best
way to organize your hosts is to:

– Locate one of the management instances on rack 1 and the other
management instance on rack 2.

– Locate each of the ZooKeeper servers on a different rack.

– Locate the hosts for data instances for data space group 1 on rack 1, the hosts
for the data instances for data space group 2 on rack 2, and the hosts for the
data instances for data space group 3on rack 3.

Thus, if any of the racks loses power or its Ethernet connection, this grid continues
to work since the ZooKeeper servers can still reach majority. A grid does not work
without at least a majority of the configured ZooKeeper servers active.

• Configure a user name and password for instances to use for authenticated
access to the ZooKeeper servers. See Membership Services Access Control in
Oracle TimesTen In-Memory Database Security Guide.

Chapter 3
Using Apache ZooKeeper as the Membership Service

3-8

Note:

For more directions for best practices for your ZooKeeper servers, go to the Apache
ZooKeer website.

Installing Apache ZooKeeper
On each host on which you intend to provide a membership server, install the TimesTen-
specific Apache ZooKeeper distribution, which is a ZooKeeper TAR file located in the
installation_dir/tt22.1.1.18.0/3rdparty directory of the TimesTen installation.

Note:

• Using Apache ZooKeeper as a membership service for TimesTen Scaleout
requires Java release 1.8 (JDK 8) or greater on each ZooKeeper server.

• All hosts that contain data instances, management instances and membership
servers must be connected to the same internal network.

1. Create a directory for the ZooKeeper installation on each host that you intend to act as
one of the membership servers. You may install the ZooKeeper distribution file into any
directory with any name you wish.

2. From a host where you have already installed TimesTen Scaleout, copy the ZooKeeper
apache-zookeeper-3.8.1-bin.tar.gz file from installation_dir/
tt22.1.1.18.0/3rdparty to the desired directory on each host.

3. Unpack the provided Apache ZooKeeper distribution using the standard operating system
tar command into the desired location on each host intended to be a membership server.

The following example on Linux unpacks an Apache ZooKeeper installation into the /grid/
membership directory. A TimesTen Scaleout installation on host1 is located in /grid/
tt22.1.1.18.0.

On the ms_host1 membership server, create the /grid/membership directory.

% mkdir -p /grid/membership

Copy the apache-zookeeper-3.8.1-bin.tar.gz file from the installation_dir/
tt22.1.1.18.0/3rdparty directory on host1 to the /grid/membership directory you created
on ms_host1.

% tar -C /grid/membership -xzvf /grid/tt22.1.1.18.0/3rdparty/apache-
zookeeper-3.8.1-bin.tar.gz

Chapter 3
Installing Apache ZooKeeper

3-9

Note:

The version of the ZooKeeper distribution that TimesTen Scaleout provides is
shown in the name of the TAR file provided in the installation_dir/
tt22.1.1.18.0/3rdparty directory. For example, the apache-
zookeeper-3.8.1-bin.tar.gz file in this example shows that the provided
Apache ZooKeeper distributed version is 3.8.1.

Configuring Apache ZooKeeper as the Membership Service
To configure each Apache ZooKeeper server to act as a membership server for your
grid, you need to configure the zoo.cfg and myid configuration files on each host that
hosts a membership server.

• zoo.cfg configuration file: In replicated mode, each membership server has a
zoo.cfg configuration file. The zoo.cfg configuration file identifies all of the
membership servers involved in the membership service, where each membership
server is identified by its DNS (or IP address) and port number.

All configuration parameters in the zoo.cfg on each membership server must be
exactly the same, except for the client port. The client port can be different (but is
not required to be different) for each membership server. The client port can be the
same if each membership server runs on a different host.

Place the zoo.cfg file in the Apache ZooKeeper installation /conf directory. For
example, if you unpacked the apache-zookeeper-3.8.1-bin.tar.gz file into the /
grid/membership directory on each membership server, then you would place the
zoo.cfg file into the following directory:

/grid/membership/apache-zookeeper-3.8.1-bin/conf/zoo.cfg

• myid configuration file: Provides the number that identifies this particular
membership server. Each membership server is identified by a unique number. For
example, if you have 5 servers, they must be identified with unique integers of 1, 2,
3, 4 and 5.

This number corresponds to the definition of the host in the zoo.cfg file by the x in
the server.x parameter. All zoo.cfg files must have a listing for all membership
servers. For example, if you have 5 membership servers, they are configured as
server.1, server.2, and so on in the zoo.cfg file.

The myid configuration file on each host contains a single line with the integer
number of that server. For example, the 2nd membership server is identified in
zoo.cfg as server.2 and in its myid configuration file is a single line with a 2.

The myid configuration file is a text file located in the Apache ZooKeeper data
directory of the membership server. The location of the data directory is configured
with the dataDir parameter in the zoo.cfg file. For example, if you configure the
data directory to be /grid/membership/apache-zookeeper-3.8.1-bin/data, then
you would place the myid text configuration file as follows:

/grid/membership/apache-zookeeper-3.8.1-bin/data/myid

Chapter 3
Configuring Apache ZooKeeper as the Membership Service

3-10

Table 3-1 shows the commonly used configuration parameters for the zoo.cfg file.

Table 3-1 zoo.cfg Configuration Parameters

Parameter Description

tickTime The unit of time (in milliseconds) used for each tick for both
initLimit and syncLimit parameters. For the best performance,
you should set this to the recommended setting of 250 milliseconds.
This parameter is required to run the membership server in
replicated mode.

initLimit The timeout (in ticks) for how long the membership servers have to
connect to the leader. For the best performance, you should set this
to the recommended setting of 40 ticks. This parameter is required to
run the membership server in replicated mode.

syncLimit The limit of how out of date a membership server can be from a
leader. This limit (in ticks) specifies how long is allowed between
sending a request and receiving an acknowledgment. For best
performance, you should set this recommended setting to 12 ticks.
This parameter is required to run the membership server in
replicated mode.

dataDir You decide on and create the data directory location to store the
ZooKeeper data, snapshots and its transaction logs.

When creating the directory where the transaction logs are written, it
is important to your performance that the transaction logs are written
to non-volatile storage. A dedicated device for your transaction logs
is key to consistent good performance. Logging your transactions to
a busy device adversely effects performance.

clientPort The port on which to listen for client connections. The default is port
2181.

autopurge.snapRetainCoun
t

Defines the number of most recent snapshots and corresponding
Apache ZooKeeper transaction logs to keep in the dataDir and
dataLogDir respectively. Defaults to 3.

autopurge.purgeInterval The time interval in hours for when to trigger the purge of older
snapshots and corresponding Apache ZooKeeper transaction logs.
Set to a positive integer (1 and above) to enable the auto purge.
Defaults to 0. We recommend that you set this to 1.

minSessionTimeout The minimum session timeout in milliseconds that the server will
allow the client to negotiate. Defaults to 2 times the tickTime.

maxSessionTimeout The maximum session timeout in milliseconds that the server will
allow the client to negotiate. Defaults to 20 times the tickTime.

Chapter 3
Configuring Apache ZooKeeper as the Membership Service

3-11

Table 3-1 (Cont.) zoo.cfg Configuration Parameters

Parameter Description

server.x=[systemName]:nn
nnn:nnnnn

The configuration for each membership server is identified by the
server.x parameter. The list of hosts defined by this parameter
designate all of the membership servers used by the membership
service. This list must correlate to the same list of membership
servers in each zoo.cfg file on each membership server in the
membership service.

This parameter is required to run the membership server in
replicated mode.

The x is the identifying integer number for the membership server,
which is also configured in the myid configuration file on the
membership server.

The systemName parameter specifies the DNS (or IP address) of the
host on which the membership server is installed and will run. If no
systemName is provided for the server, the default is localhost.

Define two port numbers after each server name.

• First port number: Used by peers to connect to and
communicate with other peers. This port connects followers to
the leader.

• Second port number: Used for leader election among the
membership servers. If necessary, this port is used to elect a
new leader in case of failure.

For a production environment, each of the membership servers
should be configured on different hosts. In this case, the convention
is to assign the same port numbers, such as:

server.1=system1:2888:3888
server.2=system2:2888:3888
server.3=system3:2888:3888

However, for a testing environment, you may want to place all
membership servers on the same host. In this case, you need to
configure all membership servers with different ports.

4lw.commands.whitelist Enables the specified ZooKeeper four-letter-words commands.
TimesTen Scaleout utilities like ttGridRollout require some of
these commands to operate properly.

All membership servers that are installed should be run in replicated mode. To run
your membership servers in replicated mode, you need to include the tickTime,
initLimit, and syncLimit parameters and provide the host name with two port
numbers for each membership server.

Note:

For more details on replicated mode, go to the Apache ZooKeer website.

Then, refer to the Getting Started > Running Replicated ZooKeeper section
of the documentation.

Chapter 3
Configuring Apache ZooKeeper as the Membership Service

3-12

The following example demonstrates the zoo.cfg membership server configuration file,
where there are three membership servers installed on hosts whose DNS names are
ms_host1, ms_host2 and ms_host3. All three membership servers are configured to run in
replicated mode.

The number of milliseconds of each tick
tickTime=250
The number of ticks that the initial synchronization phase can take
initLimit=40
The number of ticks that can pass between
sending a request and getting an acknowledgement
syncLimit=12
The directory where you want the ZooKeeper data stored.
dataDir=/grid/membership/apache-zookeeper-3.8.1-bin/data
The port at which the clients will connect
clientPort=2181
Every hour, keep the latest three Apache ZooKeeper snapshots and
transaction logs and purge the rest
autopurge.snapRetainCount=3
autopurge.purgeInterval=1
The minimum and maximum allowable timeouts for Apache ZooKeeper sessions.
Actual timeout is negotiated at connect time.
minSessionTimeout=2000
maxSessionTimeout=10000
The membership servers
server.1=ms_host1:2888:3888
server.2=ms_host2:2888:3888
server.3=ms_host3:2888:3888
Enabled ZooKeeper four-letter-words commands
4lw.commands.whitelist=stat, ruok, conf, isro

Note:

There is a sample file that explains some of the parameters for your zoo.cfg file in
the Apache ZooKeeper installation /conf directory called zoo_sample.cfg.
However, it does not have all of the recommended parameters or settings for
TimesTen Scaleout. Use zoo_sample.cfg for reference only.

This example creates a myid text file on three hosts, where each is a membership server.
Each myid text file contains a single-line with the server id (an integer) corresponding to one
of the membership servers configured in the zoo.cfg file. The server id is the number x in the
server.x= entry of the configuration file. The myid text file must be located within the data
directory on each membership server. The data directory location is /grid/membership/
apache-zookeeper-3.8.1-bin/data.

• Create a myid text file in the /grid/membership/apache-zookeeper-3.8.1-bin/data
directory on ms_host1 for its membership server. The myid text file contains the value 1.

• Create a myid text file in the /grid/membership/apache-zookeeper-3.8.1-bin/data
directory on ms_host2 for its membership server. The myid text file contains the value 2.

Chapter 3
Configuring Apache ZooKeeper as the Membership Service

3-13

• Create a myid text file in the /grid/membership/apache-zookeeper-3.8.1-bin/
data directory on ms_host3 for its membership server. The myid text file contains
the value 3.

When the membership server starts up, it identifies which server it is in by the integer
configured in the myid file in the ZooKeeper data directory.

Note:

For full details of the configuration parameters that can exist in the Apache
ZooKeeper zoo.cfg configuration file, see the Apache ZooKeer website.

Starting the Membership Servers
Before you can start the membership server with the zkServer.sh shell script, you
need to set the maximum Java heap size, which determines if ZooKeeper swaps to
the file system. The Java maximum heap size should not be larger than the amount of
available real memory. Edit the zkEnv.sh shell script to add a new line with the
JVMFLAGS environment variable setting the maximum Java heap size to 4 GB. Upon
startup, the zkServer.sh shell script sources the zkEnv.sh shell script to include this
new environment variable.
The ZooKeeper shell scripts are located in the ZooKeeper server /bin directory. For
example, if you unpacked the apache-zookeeper-3.8.1-bin.tar.gz file into the /
grid/membership directory on each membership server, then the zkEnv.sh and
zkServer.sh shell scripts are located in the /grid/membership/apache-
zookeeper-3.8.1-bin/bin directory.

The following example edits the zkEnv.sh shell script and adds the JVMFLAGS=Xmx4g
configuration within the zkEnv.sh script after the line for ZOOKEEPER_PREFIX.

ZOOBINDIR="${ZOOBINDIR:-/usr/bin}"
ZOOKEEPER_PREFIX="${ZOOBINDIR}/.."
JVMFLAGS=-Xmx4g

Start each membership server by running the zkServer.sh start shell script on each
server.

% setenv ZOOCFGDIR /grid/membership/apache-zookeeper-3.8.1-bin/conf
% /grid/membership/apache-zookeeper-3.8.1-bin/bin/zkServer.sh start

You can verify the status for each membership server by executing the zkServer.sh
status command on each membership server:

% /grid/membership/apache-zookeeper-3.8.1-bin/bin/zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /grid/membership/apache-zookeeper-3.8.1-bin/conf/zoo.cfg
Mode: { leader | follower }

Chapter 3
Starting the Membership Servers

3-14

If the membership server is not running, is not in replicated mode, or there is not a majority
executing, these errors are displayed:

ZooKeeper JMX enabled by default
Using config: /grid/membership/apache-zookeeper-3.8.1-bin/conf/zoo.cfg
Error contacting service. It is probably not running.

Additionally, you can verify if a membership sever is running in a non-error state with the ruok
ZooKeeper command. The command returns imok if the server is running. There is no
response otherwise. From a machine within the network, run:

% echo ruok | nc ms_host1 2181
imok

For statistics about performance and connected clients, use the stat ZooKeeper command.
From a machine within the network, run:

% echo stat | nc ms_host1 2181

Once the membership servers are started, you can create your grid. See Configure a Grid as
a Membership Service Client.

Configure a Grid as a Membership Service Client
A grid must know how to connect to each of the membership servers. Thus, you must provide
a ZooKeeper client configuration file to the ttGridAdmin utility when you create a grid that
details all of the membership servers. You can name the ZooKeeper client configuration file
with any prefix as long as the suffix is .conf.
The ZooKeeper client configuration file specifies all membership servers that coordinate with
each other to provide a membership service. Within the client configuration file is a single line
with the Servers parameter that provides the DNS (or IP address) and client port numbers for
each membership server. The configuration information for these hosts must:

• Use the same DNS (or IP address) as what you specified in the server.x parameters in
each of the individual zoo.cfg files on each membership server.

• Provide the same client port number as what is specified in the clientPort parameter
specified in each of the individual zoo.cfg files on each membership server.

In our example, we use the membership.conf file as the ZooKeeper client configuration file.
For this example, there are three hosts that support three membership servers, where
ms_host1 listens on client port 2181, ms_host2 listens on client port 2181, and ms_host3
listens on client port 2181.

Servers ms_host1!2181,ms_host2!2181,ms_host3!2181

A grid knows how to reach these membership servers because the ZooKeeper client
configuration file is provided as an input parameter when you create your grid. See Creating
a Grid.

Chapter 3
Configure a Grid as a Membership Service Client

3-15

Once you provide the ZooKeeper client configuration file to the ttGridAdmin command
when a grid is created, the ZooKeeper client configuration file is no longer needed and
can be discarded.

Note:

You can modify the list of provided membership servers for a grid by
importing a new list of membership servers. See Reconfiguring Membership
Servers.

Chapter 3
Configure a Grid as a Membership Service Client

3-16

4
Setting Up a Grid

A grid is a set of associated instances that contain the distributed data of one or more
databases. There are two types of instances in a grid:

• Management instances control a grid and maintain the model, which is the central
configuration of a grid. You can configure up to two management instances to provide
availability for the management of the grid.

• Data instances store the data of every database managed by the grid.

These topics describe the tasks to set up a grid:

• Creating the Initial Management Instance

• Creating a Grid

• Adding the Standby Management Instance

• Calculating the Number of Hosts and Data Instances for the Grid

• Assigning Hosts to Data Space Groups

• Adding Data Instances

• Applying the Changes Made to the Model

• Setting Instances to Automatically Start at System Startup

Note:

• While this chapter describes the tasks necessary to completely configure a grid
by using the command line and the ttGridAdmin utility, it is also possible to
configure a grid by using Oracle SQL Developer. See Working with TimesTen
Scaleout in Oracle TimesTen In-Memory Database SQL Developer Support
User's Guide.

• Additionally, TimesTen Scaleout provides the ttGridRollout to quickly set up a
simple grid with a single database for development and testing purposes. See
ttGridRollout in Oracle TimesTen In-Memory Database Reference and Deploy a
Grid and Database.

4-1

Creating the Initial Management Instance
TimesTen Scaleout uses management instances to configure and manage a grid. A
management instance stores and maintains the model, a comprehensive list of the
objects that give shape to a grid.

Note:

• TimesTen Scaleout stores multiple versions of the model that may
describe a previous, present, or desired structure of a grid. See Model
Versioning.

• Most model objects have a user-defined name. TimesTen Scaleout uses
those names to define relationships between model objects. In general,
each type of model object has its own namespace. See Grid Objects and
Object Naming in Oracle TimesTen In-Memory Database Reference.

• See Central Configuration of the Grid for a complete list of the types of
model objects and their descriptions.

To ensure high availability for the management of the grid, TimesTen Scaleout enables
you to create a standby management instance in an active standby configuration. It is
highly recommended that you configure a standby management instance, which would
be available in the case of a failure of the active management instance. If you only
have a single management instance and it fails, the databases remain operational, but
most management operations are unavailable until the management instance is
restored. The steps to set up a standby management instance are discussed later in
this chapter.

The ttInstanceCreate utility creates new instances. You create the initial
management instance with the ttInstanceCreate utility by including the -grid option
to enable the instance for TimesTen Scaleout management. Once you create a grid
from this instance, all subsequent instances associated with the grid are created
through the ttGridAdmin utility. All instances in the grid share the same OS username
as instance administrator.

Note:

The tasks described in this and the next several topics use a scenario of a
grid with a K-safety (k) set to 3 and that consists of eight hosts: two hosts
with a TimesTen installation and a management instance, and three data
space groups with two hosts each, each host with a TimesTen installation
and a data instance. Figure 4-1 shows a graphical representation of this
scenario.

Chapter 4
Creating the Initial Management Instance

4-2

Figure 4-1 Grid Scenario

host2

host1

data space group 1

host3

host6

data space group 2

host4

host7

data space group 3

host8

host5

installation1 instance1

On a host with a TimesTen 22.1 installation, create a management instance in a location of
your choice, for example, the/grid directory.

Note:

See Prerequisites and Installation of TimesTen Scaleout for information on how to
install TimesTen and its prerequisites for TimesTen Scaleout.

% /grid/tt22.1.1.18.0/bin/ttInstanceCreate -name instance1 -location /grid -
grid
Creating instance in /grid/instance1 ...
INFO: Mapping files from the installation to /grid/instance1/install

NOTE: The TimesTen daemon startup/shutdown scripts have not been installed.

The startup script is located here :
 '/grid/instance1/startup/tt_instance1'

Run the 'setuproot' script :

Chapter 4
Creating the Initial Management Instance

4-3

 /grid/instance1/bin/setuproot -install
This will move the TimesTen startup script into its appropriate
location.

The 22.1 Release Notes are located here :
 '/grid/tt22.1.1.18.0/README.html'

Note:

• TimesTen Scaleout sets instance1 as the default instance name of new
instances when you create them with the ttGridAdmin utility.
Subsequent instances that you create on the same host require that you
provide a different name for the instances. The example uses instance1
to stay in line with the default value. You may use the name of your
choice.

• TimesTen Scaleout creates a subdirectory with the instance name in the
specified location. TimesTen Scaleout creates all instance files in this
subdirectory. For example, the instance files of the instance1
management instance are allocated in the /grid/instance1 directory of
the local system.

• TimesTen Scaleout sets the default values for the TCP/IP port numbers
of the instance daemon and server (6624 and 6625, respectively) if you
do not specify a value for the port numbers. Use the -daemonPort or -
csPort options of the ttInstanceCreate utility to set different values for
the port numbers.

Ensure that you set the environment variables for the instance1 management
instance with the ttenv script (ttenv.csh or ttenv.sh) appropriate for your shell. See
Environment Variables.

For a Bourne-type shell, such as sh, bash, zsh, or ksh:

$. /grid/instance1/bin/ttenv.sh

For a csh or tcsh shell:

% source /grid/instance1/bin/ttenv.csh

For more information on the ttInstanceCreate utility, see ttInstanceCreate in Oracle
TimesTen In-Memory Database Reference.

Creating a Grid
You can manipulate the state and configuration of a grid with the ttGridAdmin utility.
All operations that require the use of the ttGridAdmin utility must be performed by the
instance administrator and from the active management instance, unless stated
otherwise. Use this utility to perform all the operations related to the configuration and
maintenance of a grid, which include:

Chapter 4
Creating a Grid

4-4

• Creating a new grid

• Creating and removing model objects such as hosts and instances

• Creating and destroying databases

• Defining and modifying how the user data is distributed across the available data
instances

• Modifying the attributes of model objects such as the connection attributes of the
databases

• Querying the status of the grid and its databases

• Maintaining the different versions of the model

• Applying the changes made to the latest version to the model to the operational grid.

Note:

For more information on the ttGridAdmin utility, see ttGridAdmin in Oracle
TimesTen In-Memory Database Reference.

The ttGridAdmin gridCreate command performs the next operations:

• Starts the active management instance.

• Creates a grid with a user-defined name.

• Specifies the path to the directory where the Oracle Wallets with cryptographic
information will be stored. See TLS Configuration for Client/Server in TimesTen Scaleout
in Oracle TimesTen In-Memory Database Security Guide.

• Creates the root Certificate Authority (private and public keys), a Wallet containing a
client certificate, and a Wallet containing a server certificate. See Overview of Certificate
Generation in TimesTen Scaleout in Oracle TimesTen In-Memory Database Security
Guide.

• Creates the required number of data space groups as indicated by the value of K-safety.

• Defines the client configuration of the membership service. See Setting Up the
Membership Service.

• Specifies if membership servers require authenticated access, and sets a user name and
password if provided. See Membership Services Access Control in Oracle TimesTen In-
Memory Database Security Guide.

• Adds the management instance and its associated host and installation as model objects
to the latest version of the model.

• Specifies for how long and how many old versions of the model the grid will retain.

• Specifies if databases will require encryption for client/server connections. See TLS
Configuration for Client/Server in TimesTen Scaleout in Oracle TimesTen In-Memory
Database Security Guide.

• Specifies the cipher suites or suites that databases can use for Transport Layer Security
(TLS). See Server Attributes for TLS in Oracle TimesTen In-Memory Database Security
Guide.

Chapter 4
Creating a Grid

4-5

Create a grid with k set to 3. Specify a name for the grid, the internal address or the
internal and external address of the local system, and provide the ZooKeeper client
configuration file.

% ttGridAdmin gridCreate grid1 -k 3 -internalAddress int-host1 -
externalAddress ext-host1.example.com -membershipConfig /tmp/
membership.conf
Grid grid1 created

Note:

• If you do not specify the -host option of the ttGridAdmin gridCreate
command, TimesTen Scaleout sets the hostname of the local system as
the name of the host in the model.

• TimesTen Scaleout automatically identifies the local TimesTen
installation as the installation1 installation.

• TimesTen Scaleout sets the default value for the TCP/IP port number of
the replication agent of the active management instance (3574) if you do
not specify a value for the port number. Use the -mgmtPort option in the
ttGridAdmin gridCreate command to specify a different value for the
port number.

To create the grid1 grid, TimesTen Scaleout starts the instance1 management
instance. Then, the instance1 management instance creates the grid1 grid and its
model. Finally, the instance1 management instance performs these operations in the
model of the grid1 grid:

• Creates a host object, host1, in the model to represent the local system.

• Creates an installation object, installation1, in the model to represent the local
TimesTen installation.

• Creates an instance object, instance1, in the model.

• Associates the installation1 installation with both the host1 host and the
instance1 instance.

• Creates three data space groups (since k is set to 3).

Note:

From this point forward, the described tasks only add and modify model
objects to the latest version of the model and do not make any changes on
the systems associated with such model objects until the changes made to
the latest version of the model are applied. See Applying the Changes Made
to the Model.

Figure 4-2 shows a graphical representation of the model after the creation of the
grid1 grid.

Chapter 4
Creating a Grid

4-6

Figure 4-2 The Model After Creating a Grid

host1

data space group 1 data space group 2 data space group 3

installation1 instance1

For more information on the ttGridAdmin gridCreate command, see Create a Grid
(gridCreate) in Oracle TimesTen In-Memory Database Reference.

Adding the Standby Management Instance
TimesTen Scaleout enables you to create a second management instance for a grid. When
two management instances exist in a grid, the configuration of the grid is replicated from the
active management instance to the standby management instance using an active standby
configuration. Replication between the active and standby management instances is
asynchronous. See Managing Failover for the Management Instances for more information
on how TimesTen Scaleout uses an active standby configuration for the management
instances.
TimesTen Scaleout automatically configures the second management instance as the
standby. All operations that use and manipulate the configuration of the grid must be
performed from the active management instance with the ttGridAdmin utility.

It is highly recommended that every management instance that you configure in a grid is
located on a different host. Those hosts should be in different failure domains (with
independent power, storage, and other resources). You must manually add every host to the
model by providing the communication parameters (fully qualified domain or IP address) of
the system they are associated with.

The ttGridAdmin hostCreate command defines a host object in the model. This command
enables you to create an instance (management or data) and copy the attributes, such as the
data space group, of an existing host by using the -like option. In addition, you have the
option to copy the associated installations and instances by using the -cascade option along
with the -like option.

Chapter 4
Adding the Standby Management Instance

4-7

Create a standby management instance and its associated installation by duplicating
the host associated with the active management instance, host1.instance1. Ensure
that you identify the fully qualified domain name or IP address of the new host.

% ttGridAdmin hostCreate -internalAddress int-host2 -externalAddress
ext-host2.example.com -like host1 -cascade
Host host2 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

Note:

• If you do not specify a name for the host, TimesTen Scaleout sets the OS
hostname of the remote system as the name of the new host.

• Any additional options you define in the ttGridAdmin hostCreate
command will overwrite the attributes inherited from the existing host in
the new host. In this example, TimesTen Scaleout uses the same values
for the daemon, server, and management ports (6624, 6625, and 3754,
respectively) as the values set for the host1.instance1 management
instance.

• This example uses the -like and -cascade options of the ttGridAdmin
hostCreate command to create the standby management instance and
its associated host and installation. Alternatively, you can create them
separately. See Adding Data Instances.

Figure 4-3 shows a graphical representation of the model of the grid1 grid after
creating the host2 host, host2.installation1 installation and host2.instance1
management instance.

Figure 4-3 The Model After Creating the Standby Management Instance

host2

host1

data space group 1 data space group 2 data space group 3

Chapter 4
Adding the Standby Management Instance

4-8

Notice that the names assigned to the installation and management instance created for the
host2 host are identical to the names assigned to the host1 host, a result of the cascade
operation. This does not generate a conflict, since the fully qualified names are different. See
Grid Objects and Object Naming in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin hostCreate command, see Create a Host
(hostCreate) in Oracle TimesTen In-Memory Database Reference.

Calculating the Number of Hosts and Data Instances for the
Grid

A database is distributed across multiple data instances that collectively provide a single
database image. Data instances reside on hosts. You create each host and data instance that
is to be included in the grid. Thus, you need to calculate how many hosts and data instances
to create when you are designing your grid.
The number of copies of the data that you define for the value of K-Safety (k) is a factor for
how many data instances and hosts that you need to create for your grid. If you define a
duplicate copy of the data by setting k set to 2, then you need twice as many data instances
and hosts as when a single copy of the data is requested with k set to 1.

Note:

5 is the maximum number that you can assign as the value for k.

• Calculate the Number of Data Instances to Create

• Calculate the Number of Hosts You Need to Support Your Data Instances

Calculate the Number of Data Instances to Create
The number of data instances that you create depends on two factors:

• The value of k: If you set k to 1, the number of data instances you create equals the
number of elements you desire for each database. If you set k to 2 or greater, then you
need to create k times as many data instances, each set of data instances to manage
each copy of the database contained within one of the k data space groups.

• The number of replica sets across which you want the data distributed: The number of
data instances you create is dictated by the number of elements in all replica sets, since
each data instance manages one element of each database.

All elements that make up a single copy of the database are assigned within a data
space. If you set k to 3 for three copies of the database, then each replica set contains
three elements, where each element is an exact copy of the other elements in the replica
set. Each data space contains one of the replica elements of each replica set.

Chapter 4
Calculating the Number of Hosts and Data Instances for the Grid

4-9

Note:

Each data space logically contains a full copy of the data for the
database. Since there are k copies of the data, there are k data spaces.

Data instances are assigned to data spaces based on how hosts are
assigned to data space groups.

To calculate the number of replica sets across which you want the data distributed,
determine the maximum of the two values below:

– Database size versus host memory size. The size of the database and the
amount of memory you have on each host determines the number of replica
sets you want. For example, if you have a two Terabyte database and hosts
with 512 Gigabytes of memory each, then you need at least four replica sets to
hold all of the data. More likely that you will need five hosts, since you cannot
use all of the memory on each host for the data.

– Throughput. Even if your database is small enough to fit in the memory of a
single host, you need to spread your data over multiple hosts if a single host
cannot handle the number of transactions per second that your applications
require.

Once you decide on the number of replica sets, you can calculate the number of data
instances.

For the equation to find the number of data instances required, r represents the
number of replica sets (where each replica set contains 1 or more elements) and k
represents the K-safety value which denotes the number of copies of the data and
subsequently, the number of elements in each replica set. To create enough data
instances, you need to create k * r data instances.

number of data instances = k * r

For example, if you set k to 3 for three copies of the database and each copy of the
database is to be distributed across two replica sets, then you need to create 6 data
instances where each of the three data spaces contains two data instances.

See K-Safety.

Calculate the Number of Hosts You Need to Support Your Data
Instances

To calculate the number of physical or virtual systems for a production deployment of
your grid involves considering:

• Hosts for the membership servers. See Using Apache ZooKeeper as the
Membership Service.

• Hosts for the management instances. See Adding the Standby Management
Instance.

• Hosts for the data instances. This topic describes how many hosts you need to
support the number of data instances in your grid.

Chapter 4
Calculating the Number of Hosts and Data Instances for the Grid

4-10

The number of hosts that you need depends on the how many data instances you install on
each host. The following is described in Data Instances.

Each data instance usually resides on a separate host to provide maximum data availability
and as a guard against data loss should one of the hosts fail. However, you might want to run
multiple data instances on a single host if:

• The hosts in the grid contain a large amount of computing resources.

• For experimentation of a larger grid before deployment, you might want to test a larger
grid configuration on a smaller number of hosts.

Thus, to decide on the number of hosts:

• If you install a single data instance on each host, then the number of hosts required is the
same number of data instances in the grid. For example, if you have six data instances,
then you would need six hosts.

• If you install more than one data instance on each host, then the number of hosts
required depends on how many data instances are on each host. For example, if you
have eight data instances and you want to install two data instances on each host, then
you only need four hosts.

Once you create the hosts for data instances, you assign them to a data space group. See
Assigning Hosts to Data Space Groups.

Assigning Hosts to Data Space Groups
Data instances will not be created on hosts that are not part of a data space group. The
number of data space groups depends on the value set for k. If k is set to 3, then you will
have three data space groups.

As described in Assigning Hosts to Data Space Groups, adding hosts to data space groups
specifies the physical location of your data. The hosts in one data space group should be
physically separate from the group of hosts in another data space group to protect each full
copy of the database from hardware failures.

Figure 4-4 is an example of a grid with three data space groups to support three copies of the
data in a K-safety environment where k is set to 3.

Chapter 4
Assigning Hosts to Data Space Groups

4-11

Figure 4-4 DataSpaceGroup Example

data space group 1 data space group 2 data space group 3power
supply 1

rack 1

host 3

host 6

power
supply 2

rack 2

host 4

host 7

power
supply 3

rack 3

host 5

host 8

You must assign the hosts to data space groups so that there is an equal number of
hosts in each data space group. You can assign a host to a data space group after
creation, but you cannot create data instances on a host unless the host has been
assigned to a data space group.

• You can assign the host to the data space group as part of the host creation with
the -dataspacegroup option of the ttGridAdmin hostCreate command. Adding
Data Instances shows examples of this option.

• You can create the host and assign it to a data space group later with the
ttGridAdmin hostModify -dataspacegroup command.

Configuring Linux Kernel Parameters
You must configure kernel parameters on the hosts that will run instances based on
the expected size of the database and number of concurrent connections to the
database.

For hosts that run data instances:

• Set the SHMMAX and SHMALL Parameters

• Configure HugePages

• Set the MEMLOCK Parameters

• Set the SEMMSL and SEMMNS Parameters

• Set the SHMMNI Parameter

For hosts that run management instances:

• Set the SHMMAX and SHMALL Parameters

• Set the MEMLOCK Parameters (optional)

• Set the SEMMSL and SEMMNS Parameters

Chapter 4
Configuring Linux Kernel Parameters

4-12

Set the SHMMAX and SHMALL Parameters
A database in TimesTen Scaleout consists of elements, where each element stores a portion
of data from the database. Each element resides in a shared memory segment. On Linux,
shared memory segments consists of pages, where the default page size is usually 4 kB
(4,096 bytes). You can verify the default page size by running the following command:

% getconf PAGESIZE
4096

Configure these shared memory kernel parameters to control the size of the shared memory
segment:

• shmmax: The maximum size of a single shared memory segment expressed in bytes. The
value must be large enough to accommodate the size of the total shared memory
segment for the element.

• shmall: The total size of shared memory segments system wide expressed in pages. The
value is expressed in multiples of the page size (4 kB) and shmall * pagesize must be
greater or equal to the value of shmmax. It is recommended that you set the value of
shmall to less than or equal to the total amount of physical RAM. To display the total
amount of physical memory, run the Linux cat /proc/meminfo command.

Use the ttShmSize utility to determine the size of the shared memory segment based on the
values intended or set for the PermSize, TempSize, LogBufMB and Connections connection
attributes. These connection attributes determine the size of the element.

Note:

• See ttShmSize in Oracle TimesTen In-Memory Database Reference for details
on the ttShmSize utility.

• See PermSize, TempSize, LogBufMB, and Connections in Oracle TimesTen In-
Memory Database Reference for details on each connection attribute.

• See Determining the Value of the PermSize Attribute for information on
determining the PermSize value.

• See Modifying the Connection Attributes of a Database for information on
modifying the PermSize or TempSize attribute.

For this example, each element of the database has a PermSize value of 32 GB (32,768 MB),
a TempSize value of 4 GB (4,096 MB), a LogBufMB value of 1 GB (1,024 MB) and a
Connections value of 2,048. Use the ttShmSize utility with these values to determine the
required size of the shared memory segment for the element:

% ttShmSize -connstr
"DSN=database1;PermSize=32768;TempSize=4096;LogBufMB=1024;Connections=2048"
The required shared memory size is 39991547720 bytes.

Chapter 4
Configuring Linux Kernel Parameters

4-13

Note:

• The -connStr option of the ttShmSize utility, requires a database name
(DSN) registered in the system or user .odbc.ini file. You may use any
DSN from your user .odbc.ini file. Consider that for any connection
attribute not listed in the -connStr option, ttShmSize uses the setting
listed in the .odbc.ini file. If the attribute is missing from both the -
connStr option and the .odbc.ini file, ttShmSize uses the default. To
add a database name to the user .odbc.ini file of the current OS user,
do the following:

% vi ~/.odbc.ini
...
[database1]

• For hosts that will run management instances, size shmmax and shmall
based on a shared memory segment size of at least 400 MB. You can
increase the settings of shmmax and shmall if there are other applications
that require them to be greater.

• The shmmax and shmall values must be the same on each of the hosts
that will run data instances. Similarly, the values must be the same on
each host that will run management instances.

To size shmmax and shmall, do the following:

1. As the root user, edit the /etc/sysctl.conf file, modifying kernel.shmmax and
kernel.shmall. Set shmmax to 39,991,547,720 bytes and shmall to 9,763,561
pages, which isshmmax/pagesize.

% sudo vi /etc/sysctl.conf
...
kernel.shmmax=39991547720
kernel.shmall=9763561

2. To reload the settings from the modified /etc/sysctl.conf file:

% sudo /sbin/sysctl -p

3. Run the Linux ipcs lm command to display the current shmmax and shmall
settings. The max seg size (kbytes) is the shmmax value and the max total
shared memory (kbytes) is the value of shmall times max number of segments.

% ipcs -lm

------ Shared Memory Limits --------
max number of segments = 4096
max seg size (kbytes) = 39054246
max total shared memory (kbytes) = 39054246
min seg size (bytes) = 1

Chapter 4
Configuring Linux Kernel Parameters

4-14

Note:

The settings for shmmax and shmall can be increased if there are other applications
that require them to be greater.

Configure HugePages
You can configure HugePages for more efficient memory management. For hosts that will run
management instances, there is no requirement to configure HugePages. Once configured,
the memory allocated for HugePages is taken from the total RAM on the Linux system and is
not available for any other use. In addition, the HugePages memory segment is automatically
locked and cannot be swapped to the file system.

To configure HugePages, you need to know:

• The maximum size of the shared memory segment for the element

• The HugePages page size on your Linux system

• The group ID of the instance administrator

Using the examples in Set the SHMMAX and SHMALL Parameters, where the value of
shmmax value is 39,054,246 kB, and Create the TimesTen Users Group and the Operating
System User, where the group ID of the instanceadmin user is 10000:

• The size of the total shared memory segment is 39,054,246 kB.

• The HugePages page size is 2,048 kB. (This value is fixed for each platform and is not
configurable.)

To determine the HugePages page size, run the Linux cat /proc/meminfo|grep
Hugepagesize command:

% cat /proc/meminfo | grep Hugepagesize
Hugepagesize: 2048 kB

• The group ID is 10,000.

To determine the group ID of the instance administrator, as the instanceadmin user, run:

% id
uid=55000(instanceadmin) gid=10000(g10000)groups=10000(g10000)

To configure HugePages do the following:

1. Determine the number of HugePages by dividing the size of the total shared memory
segment (expressed in MB) by the value of Hugepagesize (expressed in MB). In this
example, the total shared memory segment for a database element is 39,054,246 kB
(~38,138 MB) and the Hugepagesize value is 2,048 kB (2 MB):

38138 MB/ 2 MB = 19069

Chapter 4
Configuring Linux Kernel Parameters

4-15

2. As the root user, edit the /etc/sysctl.conf file, and set vm.nr_hugepages to the
number of HugePages and set vm.hugetlb_shm_group to the group ID of the
instance administrator. The latter setting restricts access to HugePages to members
of the group.

% sudo vi /etc/sysctl.conf
...
vm.nr_hugepages=19069
vm.hugetlb_shm_group=10000

3. Reload the settings from the modified /etc/sysctl.conf file:

% sudo /sbin/sysctl -p

4. To verify that you have configured HugePages correctly, run:

% cat /proc/meminfo | grep HugePages
HugePages_Total: 19069
HugePages_Free: 19069
...

Note:

• For hosts that will run data instances, HugePages for these hosts must be
the same.

• Because HugePages must be allocated in contiguous available memory
space, the requested allocation may not be granted, or may be only
partially granted, until after the system is restarted. Check the
HugePages_Total and HugePages_Free values from /proc/meminfo.
Restarting grants the full allocation, assuming enough memory is
available in the system.

• The TimesTen PL/SQL shared memory segment consumes some of the
configured HugePages allocation, determined by the value of the
PLSQL_MEMORY_SIZE connection attribute. See PLSQL_MEMORY_SIZE
in Oracle TimesTen In-Memory Database Reference.

• On Linux, the HugePages segment is automatically locked such that the
memory segment is not a candidate to be swapped to the file system.
Therefore, if you configure HugePages, you do not need to set the
MemoryLock connection attribute.

Set the MEMLOCK Parameters
The memlock entries in the /etc/security/limits.conf file control the amount of
memory a user can lock. These entries are set at the system level and are different
than the MemoryLock connection attribute setting. For hosts that will run management
instances, setting the memlock parameters is optional. For hosts that will run data
instances, set the hard memlock and soft memlock entries (expressed in kB) to the size
of the shared memory segment for each element. If HugePages are configured, the

Chapter 4
Configuring Linux Kernel Parameters

4-16

memlock values must be large enough to accommodate the size of the shared memory
segment or the element will not be loaded into memory.

For example, for the instanceadmin user, assuming a total shared memory segment size of
39,054,246 kB, set the memlock entries to 39054246:

1. As the root user, edit the /etc/security/limits.conf file, and set the memlock entries
to 39,054,246 kB for the instanceadmin user. This value indicates the total amount of
memory the instanceadmin user can lock.

% sudo vi /etc/security/limits.conf
...
instanceadmin soft memlock 39054246
instanceadmin hard memlock 39054246

2. As the instanceadmin user, log out and log in again for the changes to take effect.

Note:

For hosts that will run data instances, the memlock settings for these hosts must be
the same. Similarly, for hosts that will run management instances, the memlock
settings for these hosts must be the same.

Set the SEMMSL and SEMMNS Parameters
TimesTen has an upper bound on the maximum number of connections to the database. The
database connections consist of:

• User connections: established by user applications

• System connections: established internally by TimesTen (set at 48 connections)

• Other required connections (set at 107 connections)

The number of user connections is the sum of all user connections across all elements of the
grid, not just the user connections to the local grid element. For example, if the grid will
support 2,048 concurrent applications, each host running a data instance must be configured
to support the 2,048 connections (plus the system connections).

Each user and system connection (a database connection) is assigned one semaphore, such
that the total semaphores for a database are:

Total semaphores = user connections (N) + system connections (48) + other
required connections (107)
Total semaphores = N + 155

The semaphore settings are located in the kernel.sem configuration directive in /etc/
sysctl.conf:

kernel.sem = SEMMSL SEMMNS SEMOPM SEMMNI

where:

Chapter 4
Configuring Linux Kernel Parameters

4-17

• SEMMSL is the maximum number of semaphores per array. This value is related to
the maximum number of connections. Configure this value to 155 plus the number
of user connections.

• SEMMNS is the maximum number of semaphores system wide. Use the formula
SEMMNS = (SEMMNI * SEMMSL) as a guideline.

• SEMOPM is the maximum number of operations for each semop call.

• SEMMNI is the maximum number of arrays.

Follow these steps to configure the SEMMSL and SEMMNS settings (Ensure that the user
is root):

1. View the existing kernel parameter settings:

% /sbin/sysctl -a | grep kernel.sem
kernel.sem = 250 32000 100 128

2. Edit the /etc/sysctl.conf file, changing SEMMSL (the first value in kernel.sem) to
155 plus the number of concurrent user connections.

For hosts that will run management instances, the number of connections is 400.
For hosts that will run data instances, the number of connections is not fixed.

In this example, to support up to 2,048 connections, set the SEMMSL value to 2,203.
Based on the formula SEMMNS = (SEMMNI * SEMMSL), change SEMMNS to 281984.

% sudo vi /etc/sysctl.conf
...
kernel.sem = 2203 281984 100 128

3. Reload the settings from the modified /etc/sysctl.conf file:

% sudo /sbin/sysctl -p

Note:

For hosts that will run data instances, the semaphore values for these hosts
must be the same. Similarly, for hosts that will run management instances,
the semaphore values for these hosts must be the same.

Set the SHMMNI Parameter
The SHMMNI value controls the number of shared memory segments that a host can
create simultaneously. TimesTen creates one shared memory segment for the
TimesTen database and one for PL/SQL. In addition, there is a small shared memory
segment that is allocated for the duration of each client/server connection.

On hosts that will run data instances, you must configure the SHMMNI parameter to
account for the expect number of concurrent client/server connections to the database.
Set SHMMNI to a value that is greater than number of expected client/server
connections. (Ensure to also take into account the TimesTen shared memory segment,
the PL/SQL shared memory segment, and other programs that use shared memory.)

Chapter 4
Configuring Linux Kernel Parameters

4-18

As an example, if you expect there to be 8,000 concurrent client/server connections, a value
of 9000 or greater is appropriate as TimesTen has system connections that are not included in
the client/server connections count.

Follow these steps to configure the SHMMNI setting:

1. View the existing SHMMNI parameter setting.

% /sbin/sysctl -a | grep shmmni
kernel.shmmni = 4096

2. Edit the /etc/sysctl.conf file, changing kernel.shmmni to a value that is greater than
the number of client/server connections. This example sets kernel.shmmni to 9000.

% sudo vi /etc/sysctl.conf
...
kernel.shmmni = 9000

3. Reload the settings from the modified /etc/sysctl.conf file.

% sudo /sbin/sysctl -p

Note:

For hosts that will run data instances, the shmmni parameter setting for these hosts
must be the same.

Adding Data Instances
A data instance contains an element for every single database defined in the grid. An
element stores a portion of the data of a single database. The data may be distributed among
a number of elements equal to the number of data instances defined in the grid.

Perform the following tasks to create data instances in a grid:

• Create a Host for a Data Instance

• Create the Installation for the Data Instance

• Create the Data Instance

• Create Data Instances by Duplicating the Configuration of an Existing Host

Note:

Remember that the operations described in the following topics only modify the
latest version of the model and do not become part of the operational grid until
those changes are applied. See Applying the Changes Made to the Model.

Chapter 4
Adding Data Instances

4-19

Create a Host for a Data Instance
As with a host associated with a management instance, for every system you intend to
use to store a portion of the data of a database, you must manually add the system as
a host model object. Likewise, you must provide the communication parameters (fully
qualified domain or IP address) of the system. Although, each host can have more
than one data instance, it is recommended that you only configure one data instance
per host.

To create a data instance, you need to associate the host with a data space group. All
data space groups must be associated with the same number of data instances. If you
follow the recommendation of one data instance per host, all data space groups must
be associated with the same number of hosts.

As mentioned in Adding the Standby Management Instance, the ttGridAdmin
hostCreate command creates a host in the grid. You can associate the host with a
data space group at host creation or later.

Create a host for a data instance and associate it with data space group 1. Ensure that
you identify the fully qualified domain name or IP address of the host.

% ttGridAdmin hostCreate -internalAddress int-host3 -externalAddress
ext-host3.example.com -dataSpaceGroup 1
Host host3 created in Model

Note:

If you do not specify a name for the host, TimesTen Scaleout sets the OS
host name of the remote system as the name of the new host.

Figure 4-5 shows a graphical representation of the model of the grid1 grid after
creating the host3 host.

Figure 4-5 The Model After Adding a Host for a Data Instance

host2

host1

data space group 1

host3

data space group 2 data space group 3

Chapter 4
Adding Data Instances

4-20

For more information on the ttGridAdmin hostCreate command, see Create a Host
(hostCreate) in Oracle TimesTen In-Memory Database Reference.

Create the Installation for the Data Instance
Every host must have an installation associated with it. A host can either have its own copy of
the installation files or share an installation with one or more hosts through network-attached
storage. For shared installations, an installation model object with the location of the shared
installation files must be associated with the host. See Copying an Installation on Linux/UNIX
in Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

The ttGridAdmin installationCreate command creates an installation in the grid and
associates it with a host.

Create an installation in a directory of your choice in the host3 host, for example, the /grid
directory.

% ttGridAdmin installationCreate host3 -location /grid
Installation installation1 on Host host3 created in Model

Note:

• If you do not specify a name for the installation, TimesTen Scaleout sets
installation1 as the name of the installation. Any subsequent installation
associated with the same host requires that you provide a name for it.

• If the management instance running the command has only one installation
associated with it and the source for the installation files is not specified in the -
source option of the ttGridAdmin installationCreate command, TimesTen
Scaleout copies the installation files from the installation associated with the
management instance running the command.

Figure 4-6 shows a graphical representation of the model of the grid1 grid after creating the
installation1 installation in the host3 host.

Chapter 4
Adding Data Instances

4-21

Figure 4-6 The Model After Adding an Installation for the Data Instance

host2

host1

data space group 1

host3

data space group 2 data space group 3

installation1

For more information on the ttGridAdmin installationCreate command, see Create
an Installation (installationCreate) in Oracle TimesTen In-Memory Database
Reference.

Create the Data Instance
The ttGridAdmin instanceCreate command creates an instance in the grid and
associates it with a host and installation.

Create a data instance in the location of your choice in the host3 host, for example,
the /grid directory.

% ttGridAdmin instanceCreate host3 -location /grid
Instance instance1 on Host host3 created in Model

Chapter 4
Adding Data Instances

4-22

Note:

• If you do not specify a name for the instance, TimesTen Scaleout sets
instance1 as the name of the instance. Any subsequent instances associated
with the same host requires that you provide a name for it.

• Because the host3 host only has the installation1 installation associated
with it, the installation1 installation is associated with the instance1 data
instance by default and there is no need to specify the -installation option.

• TimesTen Scaleout defines an instance as a data instance by default. Use the -
type management option of the ttGridAdmin instanceCreate command to
create a management instance.

• TimesTen Scaleout creates a subdirectory with the instance name in the
specified location. TimesTen Scaleout allocates all instance files in this
subdirectory. For example, the instance files of the instance1 data instance are
allocated in the /grid/instance1 directory of the host3 host.

• TimesTen Scaleout sets the default values for the TCP/IP port numbers of the
instance daemon and server (6624 and 6625, respectively) if you do not specify
a value for the port numbers. Use the -daemonPort or -csPort options of the
ttGridAdmin instanceCreate utility to set different values for the port numbers.

Figure 4-7 shows a graphical representation of the model of the grid1 grid after creating a
data instance.

Chapter 4
Adding Data Instances

4-23

Figure 4-7 The Model After Adding a Data Instance

host2

host1

data space group 1

host3

data space group 2 data space group 3

installation1 instance1

For more information on the ttGridAdmin instanceCreate command, see Create an
Instance (instanceCreate) in Oracle TimesTen In-Memory Database Reference.

Create Data Instances by Duplicating the Configuration of an Existing
Host

As mentioned in Adding the Standby Management Instance, you can create an
instance (management or data) by duplicating the configuration of an existing host,
including its associated installations and instances with the -like and -cascade
options of the ttGridAdmin hostCreate command.

• The -like option identifies the host to be duplicated and associates the new host
with the same data space group. You can override the data space group
associated with the new host by providing different parameters in the -
dataSpaceGroup option.

• The -cascade option duplicates the configuration of the installations and data
instances associated with the specified host.

Create five data instances based on the same attributes defined for the host3 host and
its associated installation and data instance. Also, associate two hosts with data space

Chapter 4
Adding Data Instances

4-24

group 2 and two hosts with data space 3, instead of data space group 1. Ensure that you
identify the fully qualified domain name of the new hosts.

% ttGridAdmin hostCreate -internalAddress int-host4 -externalAddress ext-
host4.example.com -like host3 -cascade -dataSpaceGroup 2
Host host4 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host5 -externalAddress ext-
host5.example.com -like host3 -cascade -dataSpaceGroup 3
Host host5 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host6 -externalAddress ext-
host6.example.com -like host3 -cascade
Host host6 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host7 -externalAddress ext-
host7.example.com -like host4 -cascade
Host host7 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host8 -externalAddress ext-
host8.example.com -like host5 -cascade
Host host8 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

Note:

• If you do not specify a name for the host, TimesTen Scaleout sets the OS
hostname of the remote system as the name of the new host.

• Any additional option you define in the ttGridAdmin hostCreate command will
overwrite the attributes inherited from the existing host in the new host, as
shown with the addition of the -dataSpaceGroup parameter in the command
that creates the host4 and host5 hosts.

• Notice that the ttGridAdmin hostCreate commands that create the host7 and
host8 hosts use the host4 and host5 hosts, respectively, as reference in the -
like option.

Figure 4-8 shows a graphical representation of the model of the grid1 grid after duplicating
the host3 host as the host4, host5, host6, host7, and host8 hosts and their associated
installations and instances.

Chapter 4
Adding Data Instances

4-25

Figure 4-8 The Model After Duplicating an Existing Host

host2

host1

data space group 1

host3

host6

data space group 2

host4

host7

data space group 3

host8

host5

For more information on the ttGridAdmin hostCreate command, see Create a Host
(hostCreate) in Oracle TimesTen In-Memory Database Reference.

Applying the Changes Made to the Model
The latest version of the model describes the desired structure of a grid, not its current
structure. Any changes made to the latest version of the model are not immediately
reflected in the operational configuration of a grid. Changes made to the latest version
of the model need to be explicitly applied to the grid.

Model Versioning
Management instances store multiple versions of the model. Only one version of the
model can be active in the grid at any given time.

TimesTen Scaleout classifies model versions as follows:

• Current version: The current version of the model describes the operational
configuration of the grid. This version, and all previous versions, is read-only.

• Latest version: The latest version of the model can be modified and has yet to be
applied to the grid. This version is read/write.

When you create a grid, the version 1 model is initially populated with the
configuration of the first host, installation, and management instance, and the version
1 model is recognized as the latest version of the model. Any subsequent changes that
you make to the model are added to the latest version of the model (version 1). When
you implement these changes with the ttGridAmin modelApply command, a new
latest version of the model (version 2) is created for future changes and the previous
latest version of the model (version 1) becomes the current version of the model.

Every time you run the ttGridAdmin modelApply command, TimesTen Scaleout:

1. Makes the latest version of the model (version n) read-only.

2. Creates a writable copy (version n+1) of the latest version of the model.

Chapter 4
Applying the Changes Made to the Model

4-26

3. Attempts to apply the changes previously made to the version n model to the
operational grid.

4. Identifies the version n model as the current version of the model.

5. Identifies the version n+1 model as the latest version of the model.

The ttGridAdmin utility enables the user to perform several operations regarding the model,
like:

• Applying the changes made to the latest version of the model

• Comparing two versions of the model

• Exporting a version of the model into a flat file in JSON format

• Importing a flat file in JSON format as the latest version of the model

• Listing all the available versions of the model

Previous versions of the model are automatically stored. With the ttGridAdmin gridModify
command, you can specify the retention period for old versions of the model either in terms of
days, in terms of the number of stored versions, or both. TimesTen Scaleout by default
retains the last 10 versions for a period of 30 days.

For more information on model operations or the ttGridAdmin gridModify utility, see Model
Operations or Modify Grid Settings (gridModify), respectively, in Oracle TimesTen In-Memory
Database Reference.

Apply the Latest Version of the Model
The ttGridAdmin modelApply command attempts to apply the changes made to the latest
version of the model into the operational grid. If, for example, you add a new data instance to
the latest version of the model, running this command performs all of the necessary
operations to create and initialize the instance in the specified host. Some of the operations
that the ttGridAdmin modelApply command performs include these:

• Identify and delete any object removed from the latest version of the model.

• Create new installations.

• Create new instances, data and management.

• Overwrite the configuration files of all instances. The new versions of these files include
any new entries found in the latest version of the model.

• Verify the SSH connectivity between hosts.

Note:

If you recently added new instances to the model or have yet to set the required
passwordless SSH access to the hosts managing instances, either manually
set the required passwordless SSH access for the instance administrator or use
the ttGridAdmin gridSshConfig command before applying the latest version of
the model. See Setting Passwordless SSH.

• Start new instances.

Chapter 4
Applying the Changes Made to the Model

4-27

Apply all the changes made to the latest version of the model of the grid1 grid.

% ttGridAdmin modelApply
Creating new model
version..OK
Exporting current model (version
1)...................................OK
Identifying any changed management
instances..........................OK
Identifying any deleted
objects.......................................OK
Verifying
installations...OK
Verifying
instances...OK
Creating new
instances..OK
Updating grid
state...OK
Configuring instance
authentication...................................OK
Pushing new configuration files to each
instance......................OK
Making model version 1 current, version 2
writable....................OK
Checking ssh connectivity of new
instances............................OK
Starting new management
instance......................................OK
Configuring standby management
instance...............................OK
Starting new data
instances...OK
ttGridAdmin modelApply complete

Given all the tasks you performed in the previous topics, the ttGridAdmin modelApply
command performs the following operations:

1. Creates a copy of the installation files on every configured host:

2. Creates the instance home directory and files for the standby management
instance and data instances on their associated hosts:

3. Makes the latest version of the model read-only and a creates a new writable
model.

4. Verifies SSH connectivity to every configured host.

5. Starts the daemons of the standby management instance and data instances.

6. Configures the active and standby management instances.

For more information on the ttGridAdmin modelApply command, see Apply the Latest
Version of the Model (modelApply) in Oracle TimesTen In-Memory Database
Reference.

Chapter 4
Applying the Changes Made to the Model

4-28

Setting Instances to Automatically Start at System Startup
Optionally, you can configure data instances to automatically start or shut down every time
their systems boot or shut down, respectively. Each instance needs to be configured
independently and only after its creation has been applied to the current version of the model.

To accomplish this, the root user must run the setuproot script with the -install option.
You can find this script in the timesten_home/bin directory of every instance of the grid. For
example:

From the host of the host3.instance1 data instance:

% /grid/instance1/bin/setuproot -install
Would you like to install the TimesTen daemon startup scripts into /etc/
init.d?
 [yes]

For more information on how to use the setuproot script, see Start an Instance Automatically
at System Startup with System V Init Scripts in Oracle TimesTen In-Memory Database
Installation, Migration, and Upgrade Guide.

Chapter 4
Setting Instances to Automatically Start at System Startup

4-29

5
Managing a Database

You must perform certain tasks to properly create, configure, and manage a database in
TimesTen Scaleout.

• Creating a Database

• Connecting to a Database

• Defining Table Distribution Schemes

• Determining the Value of the PermSize Attribute

• Bulk Loading Data into a Database

• Unloading a Database from Memory

• Reloading a Database into Memory

• Modifying the Connection Attributes of a Database

• Destroying a Database

Note:

• These tasks assume that you have already created and configured a grid. See
Setting Up a Grid for more information on how to set up a grid and the grid
scenario on which the examples in this chapter are based.

• Run the commands provided in the examples from the active management
instance, unless stated otherwise. For more information on how to set the
environment variables for the active management instance, see Creating the
Initial Management Instance or Environment Variables.

Creating a Database
You must perform certain tasks to successfully create a database in TimesTen Scaleout.

• Create a Database Definition

• Create a Database Based on the Database Definition

• Define the Distribution Map of the Database

• Open the Database for User Connections

Create a Database Definition
A database definition contains the description of a database. It defines the database name,
as well as the attributes of the database. Once a database definition is added to the current
version of the model, it can be used to create a database. Each database has one or more

5-1

connectables associated with it. Connectables specify how applications connect to the
database. See Connecting to a Database.

Creating a Database Definition File
To create a database definition, you need a database definition file. The database
definition file must use .dbdef as the file name suffix. The name of the database
definition derives from the name of the database definition file. For example, a
database definition file named database1.dbdef creates a database definition named
database1.

Note:

Database definition names have the same restrictions as Data Source
Names. See Specifying Data Source Names to Identify TimesTen Databases
in Oracle TimesTen In-Memory Database Operations Guide.

In the database definition file, you specify the connection attributes for the database.
The types of connection attributes that a database definition supports are:

• Data store attributes are associated with a database when it is created. They can
only be modified by recreating the database.

The most commonly used data store attributes are:

– DataStore: Defines the full path and file name prefix of the checkpoint files for
every element of the database. Required.

– LogDir: Defines the file system directory of the transaction log files for every
element of the database.

– DatabaseCharacterSet: Defines the character set to be used by the database.
Required.

– Durability: Defines the degree of durability for transactions.

Note:

Ensure that you set the appropriate durability setting based on your
business needs and data loss tolerance. See Durability Settings.

• First connection attributes are associated with a database when it is loaded into
memory. They can only be modified when the database is unloaded from memory
and reloaded with different values for the first connection attributes.

The most commonly used first connection attributes are:

– PermSize: Defines the allocated size of the permanent memory region of each
element of the database. The permanent memory region contains persistent
database objects, such as tables. TimesTen Scaleout only writes the contents
of the permanent memory region to the file system.

Chapter 5
Creating a Database

5-2

– TempSize: Defines the allocated size of the temporary memory region of each
element of the database. The temporary memory region contains the transient data
generated when executing a statement.

Note:

Each host must have sufficient main memory to accommodate as many
elements of the database as data instances associated with the host. See
Determining the Value of the PermSize Attribute and Specifying the
Memory Region Sizes of a Database and Storage Provisioning for
TimesTen in Oracle TimesTen In-Memory Database Operations Guide.

– CacheAdminWallet=1 specifies that credentials for the Oracle cache administration
user that are registered with the ttGridAdmin -cacheUidPwdSet command are stored
in an Oracle Wallet, rather than in memory.

• PL/SQL first connection attributes define the behavior of a database regarding
PL/SQL operations and are associated with the database when it is loaded into memory.
They can only be modified when the database is unloaded from memory and reloaded
with different values for the PL/SQL first connection attributes.

• Server connection attributes define the behavior of the database regarding
connections and are associated with the database when it is loaded into memory. They
can only be modified when the database is unloaded from memory and reloaded with
different values for the server connection attributes.

Note:

TimesTen Scaleout adds any connection attribute in the database definition file that
is not a data store, first connection, PL/SQL first connection, or server connection
attribute to a connectable that TimesTen Scaleout creates by default. See Create a
Connectable.

The following example creates a database definition file named database1.dbdef that
defines:

• The full path for the checkpoint files as /disk1/databases/database1
• The directory for the log files as /disk2/logs
• The database character set as AL32UTF8
• The durability setting as 0.

• 32 GB for the permanent memory region of every element

• 4 GB for the temporary memory region of every element

• 1 GB for the internal transaction log buffer of every element

• An upper limit of 2048 user-specified concurrent connections to the database

Chapter 5
Creating a Database

5-3

• When the cache administration user credentials are registered with ttGridAdmin -
cacheUidPwdSet option, they are stored in an Oracle Wallet.

vi /mydir/database1.dbdef

DataStore=/disk1/databases/database1
LogDir=/disk2/logs
DatabaseCharacterSet=AL32UTF8
Durability=0
PermSize=32768
TempSize=4096
LogBufMB=1024
Connections=2048
CacheAdminWallet=1

See Connection Attributes in Oracle TimesTen In-Memory Database Reference.

Adding a Database Definition to the Model
The ttGridAdmin dbdefCreate command creates a database definition based on a
database definition file. TimesTen Scaleout uses the name of the database definition
file to name the database definition.

Create the database1 database definition based on the database1.dbdef file.

% ttGridAdmin dbdefCreate /mydir/database1.dbdef
Database Definition database1 created.

The ttGridAdmin dbdefCreate command also creates a connectable of the same
name, which includes any general connection attribute found in the database definition
file. Considering that the database1.dbdef file in the previous topic includes no
general connection attribute, the database1 connectable contains no attributes. This
connectable is always set for direct connections only.

Add the database1 database definition to the current version of the model.

% ttGridAdmin modelApply
...
Updating grid
state...OK
Pushing new configuration files to each
instance......................OK
...
ttGridAdmin modelApply complete

TimesTen Scaleout adds a database1 connectable to the configuration files of every
data instance based on the attributes defined in the database1 database definition.

Chapter 5
Creating a Database

5-4

Note:

TimesTen Scaleout overwrites the configuration files every time you apply the
changes made to the latest version of the model to the operational grid. For this
reason, you must refrain from modifying these files without the assistance of the
ttGridAdmin utility.

For more information on the ttGridAdmin dbdefCreate or ttGridAdmin modelApply
command, see Create a Database Definition (dbdefCreate) in Oracle TimesTen In-Memory
Database Reference or Applying the Changes Made to the Model, respectively.

Create a Database Based on the Database Definition
In TimesTen Scaleout, user data is distributed to a set of elements that form a database.
Each data instance in the current version of the model contains one element of every user
database in the grid.

You can create a database based on the attributes stored in a database definition. On
database creation, every data instance creates an element of the database and loads it into
memory.

The process of creating an element of the database on every data instance is asynchronous.
The daemon of each data instance performs the operations necessary to create and load the
element into memory independently, as soon as it realizes that there is a new database
flagged for creation.

The ttGridAdmin dbCreate command creates a database based on a database definition.

Create the database1 database based on the database1 database definition.

% ttGridAdmin dbCreate database1
Database database1 creation started

Wait until all data instances report that they have loaded their element of the database into
memory before proceeding with the definition of the distribution map. You can verify the
status of the database creation process with the ttGridAdmin dbStatus command.

The following example shows a status summary for the database1 database. Notice that the
report shows all elements of the database as loaded.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Wed Jan 10 14:34:08 PST 2018

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ –-------- ------------------- -------
host3 instance1 1 loaded stopped 2018-01-10 14:33:23
host4 instance1 2 loaded stopped 2018-01-10 14:33:21
host5 instance1 3 loaded stopped 2018-01-10 14:33:23
host6 instance1 4 loaded stopped 2018-01-10 14:33:23
host7 instance1 5 loaded stopped 2018-01-10 14:33:23
host8 instance1 6 loaded stopped 2018-01-10 14:33:23

Chapter 5
Creating a Database

5-5

For more information on the ttGridAdmin dbCreate or ttGridAdmin dbStatus
command, see Create a Database (dbCreate) or Monitor the Status of a Database
(dbStatus), respectively, in Oracle TimesTen In-Memory Database Reference.

Define the Distribution Map of the Database
TimesTen Scaleout allows for elastic scalability. You can increase or reduce the
number of elements in your database according to your business needs. When you
add new data instances to a grid, TimesTen Scaleout does not automatically re-
distribute the data stored in the database across the elements of the new or remaining
instances. The way the data is distributed in TimesTen Scaleout is defined by the data
space group associated to each host in the grid and the elements of the data
instances defined in the distribution map of the database.

Note:

TimesTen Scaleout blocks DDL and DML statements during operations that
change the distribution map of the database. Ensure that you make changes
to the distribution map while there are no open transactions, such as during a
maintenance period or scheduled outage.

The ttGridAdmin dbDistribute command with the -add option adds the element of a
data instance to the distribution map of a database. Using all as the parameter for the
-add option adds the elements of all the available data instances in the grid. The all
parameter is typically used for the initial definition of the distribution map of a new
database.

Add all the elements of the available data instances in the grid1 grid to the distribution
map of the database1 database.

% ttGridAdmin dbDistribute database1 -add all -apply
Distribution map updated

For more information on the ttGridAdmin dbDistribute command, see Set or Modify
the Distribution Scheme of a Database (dbDistribute) in Oracle TimesTen In-Memory
Database Reference.

Open the Database for User Connections
For an application to be able to connect to a database, the database needs to be open
for user connections. As with the database creation process, the process of opening
elements is asynchronous. The daemon of every data instance performs the
operations necessary to open its element as soon as it realizes that the database is
flagged for opening.

Chapter 5
Creating a Database

5-6

Note:

• The instance administrator can connect to the database without it being open
for user connections.

• Before you open the database to user connections, you may want to create
your database users. See Creating or Identifying a Database User in Oracle
TimesTen In-Memory Database Security Guide.

Also, you may want to have the SQL schema defined which includes the
distribution scheme of each table, as shown in Defining Table Distribution
Schemes.

The ttGridAdmin dbOpen command opens a database for user connections.

Open the database1 database for user connections.

% ttGridAdmin dbOpen database1
Database database1 open started

You can verify the status of the database opening process with the ttGridAdmin dbStatus
command. The following example shows a status summary for the database1 database.
Notice that the report shows all elements of the database as open.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Wed Jan 10 14:34:43 PST 2018

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ –-------- ------------------- -------
host3 instance1 1 opened stopped 2018-01-10 14:34:43
host4 instance1 2 opened stopped 2018-01-10 14:34:43
host5 instance1 3 opened stopped 2018-01-10 14:34:42
host6 instance1 4 opened stopped 2018-01-10 14:34:42
host7 instance1 5 opened stopped 2018-01-10 14:34:42
host8 instance1 6 opened stopped 2018-01-10 14:34:42

For more information on the ttGridAdmin dbOpen or ttGridAdmin dbStatus command, see
Open a Database (dbOpen) or Monitor the Status of a Database (dbStatus), respectively, in
Oracle TimesTen In-Memory Database Reference.

Connecting to a Database
To be able to connect to a database, every element of the database needs to be created,
loaded into memory, added to the distribution map, and opened for user connections. All
these operations are covered in the previous topic, Creating a Database.
A connectable defines a name that applications can use to connect to a database. The
connectable may have the same name as the database or may have a different name. There
are two types of connectables:

• Direct connectable: Defines a name by which applications may connect to a database
through direct communication.

Chapter 5
Connecting to a Database

5-7

• Client/server connectable: Defines a name by which applications may connect to
a database through client/server communication.

TimesTen Scaleout enables you to create multiple connectables with different sets of
connection attributes defined for a single database.

Connectables support these types of connection attributes:

• General connection attributes are set by each connection and persist for the
duration of that connection.

• NLS general connection attributes define the connection-specific behavior of
the database regarding globalization.

• PL/SQL general connection attributes define the connection-wise behavior of
the database regarding PL/SQL operations.

• Client connection attributes define the connection parameters for client/server
connections.

For a complete description of all the connection attributes, see Connection Attributes
in Oracle TimesTen In-Memory Database Reference.

Create a Connectable
TimesTen Scaleout creates a direct connectable by default for every database
definition added to the grid, this connectable enables applications to create direct
connections to the database from any data instance in the distribution map of the
database. TimesTen Scaleout uses the name assigned to the database definition to
name the connectable. You need to create a client/server connectable to establish
client/server connections to a database.

The tasks to create a connectable are:

• Creating a Connectable File

• Creating a Connectable Based on the Connectable File

Creating a Connectable File
A connectable file specifies the attributes to use to connect to a database. The
connectable file must use .connect as file name suffix. The file name prefix of the
connectable file sets the name of the connectable. For example, a connectable file
named database1CS.connect creates a connectable named database1cs.

Note:

Connectable names have the same restrictions as Data Source Names. See
Specifying Data Source Names to Identify TimesTen Databases in Oracle
TimesTen In-Memory Database Operations Guide.

Create a client/server connectable file with the connection attributes for the database1
database.

The example shows the contents of a connectable file named database1CS.connect.

Chapter 5
Connecting to a Database

5-8

• Sets AL32UTF8 as the connection character set.

• Provides terry as the user ID in UID connection attribute.

Note:

If you do not provide a user ID, TimesTen utilizes the OS user ID of the user
that sends the connection request as the UID. In this case, connection requests
coming from systems other than the localhost fail since the OS user ID cannot
be authenticated.

• Provides the user credentials by providing the location of a wallet in the connectable with
the PwdWallet connection attribute. Providing credentials in a wallet is more secure than
supplying a password on the connection string with the PWD or PWDCrypt connection
attributes.

ConnectionCharacterSet=AL32UTF8
UID=terry
PwdWallet=/wallets/dsn1wallet

Before you can use a connectable that provides a wallet, you must first create the wallet for
the user credentials. See Providing a User Name and Password in an Oracle Wallet in Oracle
TimesTen In-Memory Database Security Guide on how to add user credentials in an Oracle
Wallet.

If you do provide a wallet, then the wallet must be located in the same path on every data
element from which the user accesses the connectable.

See UID and PWD and PwdWallet in Oracle TimesTen In-Memory Database Reference and
Authentication in TimesTen in Oracle TimesTen In-Memory Database Security Guide.

Creating a Connectable Based on the Connectable File
The ttGridAdmin connectableCreate command creates a connectable based on a
connectable file.

Create the database1CS connectable based on the database1CS.connect connectable file.

% ttGridAdmin connectableCreate -dbdef database1 -cs /mydir/
database1CS.connect
Connectable database1CS created.

Note:

• The -cs option enables the connectable for client connections instead of direct
connections.

• Use the -only option to establish client connections only to the element of the
specified data instance.

Chapter 5
Connecting to a Database

5-9

Apply the creation of the database1CS connectable to the current version of the model
to make the connectable available for use.

% ttGridAdmin modelApply
...
Updating grid
state...OK
Pushing new configuration files to each
instance......................OK
...
ttGridAdmin modelApply complete

For more information on the ttGridAdmin connectableCreate or ttGridAdmin
modelApply command, see Create a Connectable (connectableCreate) in Oracle
TimesTen In-Memory Database Reference or Applying the Changes Made to the
Model, respectively.

Connect to a Database Using ODBC and JDBC Drivers
Applications can use the ODBC direct driver, the ODBC client driver, or an ODBC
driver manager to connect to a database. See Connecting to TimesTen with ODBC
and JDBC Drivers in Oracle TimesTen In-Memory Database Operations Guide.

The following topics discuss how to use those DSNs to establish direct and client
connections to a database:

• Establishing Direct Connections from a Data Instance

• Establishing Client Connections from a TimesTen Client

• Establishing Encrypted Client Connections from a TimesTen Client

• Redirecting Client Connections

Establishing Direct Connections from a Data Instance
TimesTen Scaleout automatically creates a direct connectable that includes any
general connection attribute included in the database definition file. TimesTen Scaleout
uses the name of the database definition to name the connectable. When the
connectable is applied to the current version of the model, TimesTen Scaleout defines
a DSN in every data instance with the same name as the connectable. This allows
ODBC and JDBC applications to connect to the database associated with the
connectable.

You may use the ttIsql utility from a data instance to establish direct connections to a
database.

From the host3.instance1 data instance, connect to the database1 database using
the database1 connectable.

% ttIsql -connStr "DSN=database1"

Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Chapter 5
Connecting to a Database

5-10

connect "DSN=database1";
Connection successful: DSN=database1;UID=instanceadmin;DataStore=/disk1/
databases/database1;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;LogDir=/disk2/
logs;
PermSize=32768;TempSize=4096;TypeMode=0;
(Default setting AutoCommit=1)
Command>

Note:

The example connects to the database as the instance administrator, which is
defined for all instances (data and management) of the grid1 grid. For more
information on database users, see Overview of TimesTen Users in Oracle
TimesTen In-Memory Database Security Guide.

For more information on the ttIsql utility, see Using the ttIsql Utility in Oracle TimesTen In-
Memory Database Operations Guide.

Establishing Client Connections from a TimesTen Client
A client/server connectable enables all data instances to accept connections from a
TimesTen client instance or applications using the TimesTen client driver. However, to
establish a client connection from a TimesTen client that is not part of the grid, you have to
create a client DSN in the system or user odbc.ini file of the TimesTen client.

The ttGridAdmin gridClientExport command exports every client/server connectable
available for the grid into a file that is formatted to replace the system or user odbc.ini file
used by the TimesTen client.

Export the client/server connectables of the grid1 grid into a file.

% ttGridAdmin gridClientExport /mydir/sys.odbc.ini

The following example shows the contents of the resulting file.

[ODBC Data Sources]
database1CS=TimesTen 22.1 Client Driver

[database1CS]
TTC_SERVER_DSN=DATABASE1
External address/port info for host3.instance1
TTC_SERVER1=host3.example.com/6625
External address/port info for host4.instance1
TTC_SERVER2=host4.example.com/6625
External address/port info for host5.instance1
TTC_SERVER3=host5.example.com/6625
External address/port info for host6.instance1
TTC_SERVER4=host6.example.com/6625
External address/port info for host7.instance1
TTC_SERVER5=host7.example.com/6625

Chapter 5
Connecting to a Database

5-11

External address/port info for host8.instance1
TTC_SERVER6=host8.example.com/6625
ConnectionCharacterSet=AL32UTF8
UID=terry

For more information on the ttGridAdmin gridClientExport command, see Export
sys.odbc.ini for Client/Server Connections Outside Grid (gridClientExport) in Oracle
TimesTen In-Memory Database Reference.

Adding a Client DSN to a TimesTen Client on Linux or UNIX
To add a client DSN to a TimesTen client on Linux or UNIX, either replace the system
or user odbc.ini file of the TimesTen client with the file you just created, or copy the
contents of the file into the system or user odbc.ini file. Then, from the TimesTen
client, connect to the database1 database using the database1CS DSN with the
ttIsqlCS utility.

% ttIsqlCS -connStr "DSN=database1CS"

Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1CS;UID=terry;
Enter password for 'terry':
Connection successful:
DSN=database1CS;TTC_SERVER=host3.example.com;TTC_SERVER_DSN=DATABASE1;
UID=terry;DATASTORE=/disk1/databases/
database1;DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=AL32UTF8
;
PERMSIZE=32768;TEMPSIZE=4096;TYPEMODE=0;
(Default setting AutoCommit=1)
Command>

Note:

The example connects to the database with the terry user, which has at
least CREATE SESSION privileges on the database. See Creating or Identifying
a Database User in Oracle TimesTen In-Memory Database Security Guide.

For more information on the ttIsqlCS utility and the TimesTen client, see Working with
the TimesTen Client and Server in Oracle TimesTen In-Memory Database Operations
Guide.

Adding a Client DSN to a TimesTen Client on Windows
You can add a client DSN to a TimesTen client on Windows by using the ttInstallDSN
utility included in the TimesTen client Release 22.1. The ttInstallDSN utility creates a
system DSN based on the contents of the output file of the ttGridAdmin

Chapter 5
Connecting to a Database

5-12

gridClientExport command. You will need to make the file or its contents available to the
Windows system where the TimesTen client is installed.

C:\>ttInstallDSN -f C:\Users\terry\Downloads\sys.odbc.ini

Found the following DSNs in available
'C:\Users\terry\Downloads\sys.odbc.ini'.
0 : database1CS
[Please select the DSN to be imported:]
0
Adding DSN 'database1CS'.

Note:

You must run the ttInstallDSN utility as administrator of Windows with the
environment variables for the TimesTen client set. See Setting Environment
Variables for TimesTen in Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

From the TimesTen client system, you can now connect to the database1 database using the
database1CS DSN with the ttIsql utility.

C:\>ttIsql -connStr "DSN=database1CS"

Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1CS;UID=terry;
Enter password for 'terry':
Connection successful:
DSN=database1CS;TTC_SERVER=host3.example.com;TTC_SERVER_DSN=DATABASE1;
UID=terry;DATASTORE=/disk1/databases/
database1;DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=AL32UTF8;
PERMSIZE=256;TEMPSIZE=128;TYPEMODE=0;
(Default setting AutoCommit=1)
Command>

Note:

The example connects to the database with the terry user, which has at least
CREATE SESSION privileges on the database. See Creating or Identifying a Database
User in Oracle TimesTen In-Memory Database Security Guide.

For more information on the ttInstallDSN utility, see ttInstallDSN in Oracle TimesTen In-
Memory Database Reference.

For more information on the ttIsql utility and the TimesTen client, see Working with the
TimesTen Client and Server in Oracle TimesTen In-Memory Database Operations Guide.

Chapter 5
Connecting to a Database

5-13

Using a Connection String to Establish a Client Connection
Alternatively, you can connect to a specific element by defining in the connection string
the address of the host associated with that element, the database name, and a
database user with at least CREATE SESSION privileges. (The client TCP/IP port is only
necessary if the instance is not running with the default port.)

% ttIsqlCS -connStr
"TTC_SERVER=host3.example.com;TTC_SERVER_DSN=database1;TCP_Port=6625;UI
D=terry"

Establishing Encrypted Client Connections from a TimesTen Client
A client/server connectable can enable all data instances to accept or require
encrypted connections from a TimesTen client instance or applications using the
TimesTen client driver.

However, to establish an encrypted client connection from a TimesTen client instance
that is not part of the grid, you have to import the following into the TimesTen client
instance:

• The Certificate Authority (CA) public key

• The client certificate

• The sys.odbc.ini file with every client/server connectable available in the grid

The ttGridAdmin gridClientExportAll command exports a sys.odbc.ini file
containing all client/server connectables and an Oracle Wallet with the necessary
certificates into a .zip file.

The ttClientImport utility uses the resulting .zip file to import the Wallet and client/
server connectables into a TimesTen client in UNIX or Windows.

To establish a encrypted client connection from a TimesTen client, do the following:

Note:

Both the client and server need to be set to either accept, request, or require
encrypted connections and support matching cipher suites, as shown in
Configuration for TLS for Client/Server in Oracle TimesTen In-Memory
Database Security Guide.

1. On the active management instance, export all the necessary files for encrypted
client connections to databases in the grid into a file.

% ttGridAdmin gridClientExportAll /mydir/myfile.zip
Definitions exported to /mydir/myfile.zip

Chapter 5
Connecting to a Database

5-14

Next are the contents of some of the resulting files.

% zip -sf /mydir/myfile.zip
Archive contains:
 gridWallet/
 gridWallet/cwallet.sso
 sys.odbc.ini
 exportinfo.json
Total 4 entries (2924 bytes)

% unzip -p /mydir/myfile.zip sys.odbc.ini
[ODBC Data Sources]
database1CS=TimesTen 22.1 Client Driver

[database1CS]
TTC_SERVER_DSN=DATABASE1
External address/port info for host3.instance1
TTC_SERVER1=host3.example.com/6625
External address/port info for host4.instance1
TTC_SERVER2=host4.example.com/6625
External address/port info for host5.instance1
TTC_SERVER3=host5.example.com/6625
External address/port info for host6.instance1
TTC_SERVER4=host6.example.com/6625
External address/port info for host7.instance1
TTC_SERVER5=host7.example.com/6625
External address/port info for host8.instance1
TTC_SERVER6=host8.example.com/6625
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
ConnectionCharacterSet=AL32UTF8
Encryption=requested
UID=terry
Wallet=!!TIMESTEN_HOME!!/conf/wallets/clientWallet

% unzip -p /mydir/myfile.zip exportfinfo.json
{
 "modelVersion" : null,
 "exportTime" : "2021-08-03T21:36:06.000Z",
 "gridName" : "grid1",
 "modelTime" : null,
 "gridGuid" : "A6BED5B5-0B03-4FB7-A5B8-728B270BCECB",
 "serverEncr" : "requested",
 "TimesTenVersion" : "22.1.1.18.0",
 "serverCiphers" : "SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384"
}

2. Import the client/server connectables and Wallet to a TimesTen client instance on UNIX
or Windows. You will need to make the file available to the UNIX or Windows system
where the TimesTen client is installed.

• On the TimesTen client instance (UNIX):

% ttClientImport /home/terry/Downloads/myfile.zip
Client definitions imported.

Chapter 5
Connecting to a Database

5-15

• On the TimesTen client instance (Windows):

C:\> ttClientImport C:\Users\terry\Downloads\myfile.zip
Client definitions imported.

3. Connect to the database using the client DSN with the ttIsqlCS (UNIX) or ttIsql
(Windows) utility.

• On the TimesTen client instance (UNIX):

% ttIsqlCS -connStr "DSN=database1CS"

Copyright (c) 1996, 2021, Oracle and/or its affiliates. All
rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1CS";
Enter password for 'terry':
Connection successful:
DSN=database1cs;TTC_SERVER=host3.example.com;TTC_SERVER_DSN=DATAB
ASE1;
UID=terry;DURABILITY=0;DATASTORE=/disk1/databases/
database1;DATABASECHARACTERSET=AL32UTF8;
CONNECTIONCHARACTERSET=AL32UTF8;WAITFORCONNECT=0;LOGDIR=/disk2/
logs;PERMSIZE=32768;TEMPSIZE=4096;
CONNECTIONS=100;Encryption=Requested;Wallet=/grid/instance1/conf/
wallets/gridWallet;
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384;
(Default setting AutoCommit=1)
Command>

• On the TimesTen client instance (Windows):

C:\> ttIsql -connStr "DSN=database1CS"

Copyright (c) 1996, 2021, Oracle and/or its affiliates. All
rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1CS";
Enter password for 'terry':
Connection successful:
DSN=database1cs;TTC_SERVER=host3.example.com;TTC_SERVER_DSN=DATAB
ASE1;
UID=terry;DURABILITY=0;DATASTORE=/disk1/databases/
database1;DATABASECHARACTERSET=AL32UTF8;
CONNECTIONCHARACTERSET=AL32UTF8;WAITFORCONNECT=0;LOGDIR=/disk2/
logs;PERMSIZE=32768;TEMPSIZE=4096;
CONNECTIONS=100;Encryption=Requested;Wallet=/grid/instance1/conf/
wallets/gridWallet;
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384;
(Default setting AutoCommit=1)
Command>

Chapter 5
Connecting to a Database

5-16

Note:

To revoke encrypted access to a TimesTen client instance already set for encrypted
connections, you need to regenerate the certificates on the grid. See Regenerating
Certificates in TimesTen Scaleout in Oracle TimesTen In-Memory Database
Security Guide.

For more information on the ttGridAdmin gridClientExportAll command, see Export
sys.odbc.ini and Certificates for Encrypted Client/Server Connections (gridClientExportAll) in
Oracle TimesTen In-Memory Database Reference.

Redirecting Client Connections
When an application connects to a client/server connectable a TCP/IP connection is
established to one of the data instances in the grid. However, if the instance is busy then the
instance can automatically redirect the client connection to another instance in the grid.

By default, a client connection can be automatically redirected to any available instance
within the grid. However, you can limit or change this behavior with:

• The TTC_Redirect connection attribute, which defines how a client is redirected.

– Automatic redirection: By default, this connection attribute is set to 1 so that a client
connection is automatically redirected to any available instance within the grid if the
current instance is busy or unavailable. The connection is redirected to the instance
with the fewest number of client connections.

– Elements within a single replica set: If you want the client to connect to instances with
elements within a single replica set (because the data you are interested in is
contained within this replica set), then set the TTC_Redirect attribute to 0. Then, the
client connects only to the instances with elements in the same replica set. If the
connection is rejected, then a connection error is returned.

• The TTC_Redirect_Limit connection attribute, which limits how many times the client is
redirected. The number of instances in your grid may be of a size that you want to limit
the number of redirected client connection attempts for performance reasons. You can
set the TTC_Redirect_Limit attribute to the number of connection redirection attempts.
For example, setting TTC_Redirect_Limit limits the number of client connection
redirection attempts to other instances to 10 attempts. If the client does not connect
within this number of attempts, a connection error is returned.

If the client connection cannot be redirected to a suitable instance, then the client connection
fails. See Client Connection Failover for more information on the client failover process.

For more information on the TTC_Redirect or TTC_Redirect_Limit connection attributes, see
TTC_REDIRECT or TTC_Redirect_Limit, respectively, in Oracle TimesTen In-Memory
Database Reference.

See Modify the Connection Attributes in a Connectable for information on how to modify
client connection attributes.

Verify If Your Database Is a Distributed Database
If you want to verify that the database you are connected to is indeed a distributed database
(TimesTen Scaleout) and not a single-instance database (TimesTen Classic), call for the

Chapter 5
Connecting to a Database

5-17

value of the ttGridEnable attribute with the ttConfiguration built-in procedure. The
built-in procedure returns ttGridEnable=1 for databases in a grid.

Command> CALL ttConfiguration('ttGridEnable');
< TTGridEnable, 1 >
1 row found.

For more information on the ttConfiguration built-in procedure, see ttConfiguration in
Oracle TimesTen In-Memory Database Reference.

Defining Table Distribution Schemes
n TimesTen Scaleout, data is distributed across the elements of the grid. How the data
is distributed is defined by the distribution scheme specified in the DISTRIBUTE BY
clause of the CREATE TABLE statement. Regardless of how the data is distributed or on
which element specific data is located, applications can access all the data in the
database while connecting to a single element. However, there are some
considerations you should take into account when defining the distribution scheme of a
table.

Note:

• Before you start creating database objects, see Authentication in
TimesTen in Oracle TimesTen In-Memory Database Security Guide.

• If you are planning to load your tables with data, consider creating your
tables without indexes. After the data is loaded, you can then create your
indexes. This reduces the time it take to load the data into the tables.

The available data distribution schemes for a table in TimesTen Scaleout are:

• Hash

• Reference

• Duplicate

Hash
The hash distribution scheme distributes data based on the hash of the primary key or
a set of user-specified columns. The hash key determines in which replica set a row
should be stored. Any given row in the table is stored in only one replica set. If the
table does not have a primary key or a user-specified distribution column, TimesTen
Scaleout distributes the data based on the hash of a hidden column that TimesTen
Scaleout adds for this purpose. This distribution scheme is adaptive to topology
changes and uses consistent hashing. In other words, a row with an specific value in
the hash key columns will always be allocated on the same replica set, provided that
the topology does not change. If the topology changes, the location of the row may
change when the data is re-distributed.

Chapter 5
Defining Table Distribution Schemes

5-18

Note:

If you create a table without specifying a DISTRIBUTE BY clause, TimesTen Scaleout
defines a hash distribution scheme on the table. In addition, if a column is not
specified in the DISTRIBUTE BY HASH clause, TimesTen Scaleout selects the primary
key columns as the key columns of the distribution scheme. If a primary key is not
defined, TimesTen Scaleout creates a hidden column as the hash key.

Create the customers table that uses a DISTRIBUTE BY HASH clause, which distributes data
based on the hash of the cust_id primary key column.

CREATE TABLE customers (
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL
) DISTRIBUTE BY HASH;

Figure 5-1 shows the data distribution for the customers table in the database1 database, as
configured in Creating a Database. TimesTen Scaleout distributes the data to each element
based on the hash of the cust_id column.

Figure 5-1 Table Distributed by Hash

host3.instance1

1

3

5

7

...

c_id*

customers

host6.instance1

2

4

6

8

...

c_id*

customers

For more information on the hash distribution scheme, see CREATE TABLE in Oracle
TimesTen In-Memory Database SQL Reference.

Chapter 5
Defining Table Distribution Schemes

5-19

Reference
The reference distribution scheme distributes the data of a child table based on the
location of the corresponding parent row of a foreign key constraint. This distribution
scheme optimizes the performance of joins by distributing related data on a single
element. When you join the parent and child tables, TimesTen Scaleout does not need
to access different elements because all of the data is stored on the same element.
The parent table can be distributed by hash or reference, which allows for a multitiered
reference distribution.

Note:

Ensure you declare the child key columns of a foreign key constraint as NOT
NULL when you use the DISTRIBUTE BY REFERENCE clause.

Create the customers parent table that uses a DISTRIBUTE BY HASH clause that
distributes data based on the hash of the cust_id primary key column. Then, create
the accounts child table that uses a DISTRIBUTE BY REFERENCE clause that distributes
the data in the accounts table based on the location of the corresponding value of the
referenced column, customers(cust_id), in the fk_customer foreign key.

CREATE TABLE customers (
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL
) DISTRIBUTE BY HASH;

CREATE TABLE accounts (
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(15) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 CONSTRAINT fk_customer
 FOREIGN KEY (cust_id)
 REFERENCES customers(cust_id)
) DISTRIBUTE BY REFERENCE (fk_customer);

Figure 5-2 shows the data distribution for the customers table in the database1
database, as configured in Creating a Database. TimesTen Scaleout distributes the
data in the customers table to each replica set based on the hash of the cust_id
primary key column. The figure also shows the data distribution for the accounts table,

Chapter 5
Defining Table Distribution Schemes

5-20

which is based on the location of the corresponding value of the referenced column,
cutomers(cust_id), in the fk_customer foreign key.

Figure 5-2 Table Distributed by Reference

host3.instance1

1

3

5

7

...

c_id*

customers

accounts

1

3

5

7

...

c_ida_id*

host6.instance1

2

4

6

8

...

c_id*

customers

accounts

2

4

6

8

...

c_ida_id*

For more information on the reference distribution scheme, see CREATE TABLE in Oracle
TimesTen In-Memory Database SQL Reference.

Duplicate
The duplicate distribution scheme distributes identical copies of the data of a table to all the
elements of a database. This distribution scheme optimizes the performance of reads and
joins against the table by ensuring that all data access is local. However, inserts and updates
are more resource intensive than other distribution schemes.

Chapter 5
Defining Table Distribution Schemes

5-21

Create the account_type table that uses a DUPLICATE clause that distributes the data
to all the elements of a database.

CREATE TABLE account_type (
 type CHAR(1) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
) DUPLICATE;

Figure 5-3 shows the data distribution for the account_type table in the database1
database, as configured in Creating a Database. TimesTen Scaleout creates a copy of
the data on all the elements of the database.

Figure 5-3 Table Distributed by Duplicate

host3.instance1

A

B

C

D

E

at_id*

account_type

host6.instance1

A

B

C

D

E

at_id*

account_type

For more information on the duplicate distribution scheme, see CREATE TABLE in
Oracle TimesTen In-Memory Database SQL Reference.

Determining the Value of the PermSize Attribute
You must have enough memory available in both the permanent and temporary
memory regions of every element for the database to operate successfully. You can
monitor the amount of memory allocated, in-use, and in-use high-water for this two
regions for the local element or all elements of the database by querying the
SYS.V$MONITOR and SYS.GV$MONITOR system views, respectively, as shown next.

Command> SELECT elementid, perm_allocated_size, perm_in_use_size,
 perm_in_use_high_water, temp_allocated_size, temp_in_use_size,
 temp_in_use_high_water FROM sys.v$monitor;

 ELEMENTID: 1
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30338

Chapter 5
Determining the Value of the PermSize Attribute

5-22

 PERM_IN_USE_HIGH_WATER: 30338
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21073
 TEMP_IN_USE_HIGH_WATER: 24600

1 row found.
Command> SELECT elementid, perm_allocated_size, perm_in_use_size,
 perm_in_use_high_water, temp_allocated_size, temp_in_use_size,
 temp_in_use_high_water FROM sys.gv$monitor;

 ELEMENTID: 1
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30338
 PERM_IN_USE_HIGH_WATER: 30338
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21073
 TEMP_IN_USE_HIGH_WATER: 24600

 ELEMENTID: 3
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30289
 PERM_IN_USE_HIGH_WATER: 30322
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21070
 TEMP_IN_USE_HIGH_WATER: 24470

 ELEMENTID: 5
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30289
 PERM_IN_USE_HIGH_WATER: 30322
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 20943
 TEMP_IN_USE_HIGH_WATER: 24407

 ELEMENTID: 2
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30338
 PERM_IN_USE_HIGH_WATER: 30338
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 20943
 TEMP_IN_USE_HIGH_WATER: 24470

 ELEMENTID: 4
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30289
 PERM_IN_USE_HIGH_WATER: 30322
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21006
 TEMP_IN_USE_HIGH_WATER: 24407

Chapter 5
Determining the Value of the PermSize Attribute

5-23

 ELEMENTID: 6
 PERM_ALLOCATED_SIZE: 262144
 PERM_IN_USE_SIZE: 30289
 PERM_IN_USE_HIGH_WATER: 30322
 TEMP_ALLOCATED_SIZE: 131072
 TEMP_IN_USE_SIZE: 21006
 TEMP_IN_USE_HIGH_WATER: 24470
1 row found.

If necessary, increase the amount of memory allocated for either region by increasing
the value of the PermSize or TempSize attribute. See Modify the Connection Attributes
in a Database Definition.

You can estimate the value of the PermSize attribute based on the SQL schema and
the expected number of rows for each table of the database with the ttSize utility. For
example, if you eventually expect to insert 1,000,000 rows into the customers table,
the table will need about 287 MB (300,448,527 bytes = 286.53 MB) available, as
shown next.

% ttSize -tbl terry.customers -rows 1000000 database1

 Rows = 1000000

Total in-line row bytes = 300442597

Indexes:
 Range index TERRY.CUSTOMERS adds 5930 bytes
 Total index bytes = 5930

Total = 300448527

However, the ttSize utility is optimized for databases in TimesTen Classic. A
database in TimesTen Scaleout uses 8 to 16 bytes more per row than a similar
database in TimesTen Classic. Consider adding to the value calculated by the ttSize
utility from 8 to 16 bytes per row for a more accurate estimate. In the case of the
customers table, if you add 16 bytes per row to the value calculated by the ttSize
utility, you will need about 302 MB (316,448,527 bytes = 301.79 MB) available.

If you repeat this estimate for every table of the database, you can get a rough idea of
the size of the permanent memory region a database requires across all hosts by
adding the estimated size of every table. However, the PermSize attribute defines the
amount of memory allocated for an element, not the whole database. To determine
how much of the size estimated for each table you must assign to each element you
have to take into consideration the distribution scheme of the table:

• For a table using a hash or reference distribution scheme, divide the number of
rows by the number of replica sets before doing the estimation with the ttSize
utility.

Chapter 5
Determining the Value of the PermSize Attribute

5-24

Note:

Consider that tables with a reference distribution scheme may reference key
values unevenly. If your data uses one or more key values as reference more
often then any other key value available, it is possible that dividing the number
of rows by the number of replica sets would be an inaccurate calculation. You
should take special considerations based on the composition of your data.

• For a table using a duplicate distribution scheme, use the total number of rows for the
estimation. After all, you find every row of a table using a duplicate distribution on every
element of the database.

Considering that the customers table uses a hash distribution scheme and that the database1
database consists of three replica sets, each element should be able to store 333,334 rows,
which represents 101 MB (100,209,711 + 16 * 333,334 bytes = 100.65 MB) in the permanent
memory region (defined by the PermSize attribute) for just the customers table, as shown
next.

% ttSize -tbl terry.customers -rows 333334 database1

Rows = 333334

Total in-line row bytes = 100203781

Indexes:
 Range index TERRY.CUSTOMERS adds 5930 bytes
 Total index bytes = 5930

Total = 100209711

For more information on the ttSize utility, see ttSize in Oracle TimesTen In-Memory
Database Reference.

Bulk Loading Data into a Database
TimesTen Scaleout enables you to load data into a database from various sources. You can
load data into a specific table either from a file by using the ttBulkCp utility or an Oracle
database table by using the ttLoadFromOracle built-in procedure.

Both the ttBulkCp utility and ttLoadFromOracle built-in procedure support in TimesTen
Scaleout a localOnly filter option that enables you to load only the rows that are hashed to
the local element and its replicas. If you use the localOnly filter option, the ttBulkCp utility
and ttLoadFromOracle built-in procedure ignore rows that are hashed to remote elements
that are not a replica of the local element. Regardless of the options you specify, the
ttBulkCp utility and ttLoadFromOracle built-in procedure do not copy duplicate rows into a
table.

With the localOnly filter option enabled and depending of the distribution scheme of the
table, the ttBulkCp utility and ttLoadFromOracle built-in procedure behave as follows:

• Hash: Retain and insert rows that have hash key values that are hashed to the elements
of the local data instance and its replicas. They ignore rows that are hashed to the
remaining elements.

Chapter 5
Bulk Loading Data into a Database

5-25

• Reference: Retain and insert rows whose reference key value references to a
hash or reference key value that is hashed to the local element and its replicas.
They ignore rows that are hashed to the remaining elements.

• Duplicate: Ignore the localOnly option. They insert rows into the elements of all
data instances.

The advantages of using the localOnly filter option are:

• It requires less network bandwidth to distribute the data during the bulk loading
operation.

• It allows a failed bulk loading operation to be retried independent of other
elements.

The disadvantages of using the localOnly filter option are:

• The source file must be available to all hosts, or at least to one host for each
replica set of the grid. This only applies for bulk loading operations with the
ttBulkCp utility.

• You must run a bulk loading operation on an element of every replica set.

• Every bulk loading operation must process the entire data set, even though it
ignores any rows hashed to a different replica set.

These topics describe how to load data into a table in TimesTen Scaleout.

• Populating a Table with the ttBulkCp Utility

• Populating a Table with the ttLoadFromOracle Built-in Procedure

Note:

The following examples consider the same grid scenario as the one
described in Define the Distribution Map of the Database.

Populating a Table with the ttBulkCp Utility
The ttBulkCp utility with the -i option enables you to load data from a file. This option
uses standard INSERT SQL statements to load data into a specific table of a database.
The ttBulkCp utility inserts each row into its corresponding element based on the
distribution scheme of the table.

Note:

• Unlike operations performed with the ttGridAdmin utility, the ttBulkCp
utility (and the ttBulkCpCS utility) must be run on a data instance instead
of the active management instance, and its use is not limited to the
instance administrator.

• Ensure that the user running the command or the one specified in the
connection string has INSERT privileges on the specified table.

Chapter 5
Bulk Loading Data into a Database

5-26

These topics describe the options for loading data into a database while using the ttBulkCp
utility.

• Populate a Table from a Single Location

• Populate a Table from Several Locations

Populate a Table from a Single Location
If the source file is only available to a single data instance, run the ttBulkCp utility with the -i
option to insert the rows of the specified database into their corresponding element based on
the distribution scheme of the specified database.

From the data instance with access to the source file, insert all rows in the file into the
customers table of the database1 database.

% ttBulkCp -i -connStr "DSN=database1;UID=terry" customers /mydir/
customers_data.dmp
Enter password for 'terry':

/mydir/customers_data.dmp:
 1000 rows inserted
 1000 rows total

For more information on using the ttBulkCp utility, see Bulk Copy Data Using the ttBulkCp
Utility in Oracle TimesTen In-Memory Database Operations Guide and ttBulkCp in Oracle
TimesTen In-Memory Database Reference.

Populate a Table from Several Locations
If the source file is available to any given host in the grid, run the ttBulkCp utility with the -i
and -localOnly options on one data instance of each replica set of the database to insert the
rows hashed to the local element and its replicas from a file into a table.

Use the ttGridAdmin dbStatus -replicaset command from the active management
instance (in this example the active management instance is host1.instance1) to help you
determine the data instances associated with each replica set.

% ttGridAdmin dbStatus database1 -replicaset
Database database1 Replica Set status as of Mon Aug 16 14:05:15 PDT 2021

RS DS Elem Host Instance Status Cache Agent Date/Time of Event Message
-- -- ---- ----- --------- ------ ----------- ------------------- -------
 1 1 1 host3 instance1 opened stopped 2021-08-12 14:49:08
 1 2 2 host4 instance1 opened stopped 2021-08-12 14:49:09
 1 3 3 host5 instance1 opened stopped 2021-08-12 14:49:08
 2 1 4 host6 instance1 opened stopped 2021-08-12 14:49:08
 2 2 5 host7 instance1 opened stopped 2021-08-12 14:49:08
 2 3 6 host8 instance1 opened stopped 2021-08-12 14:49:09

Insert the rows hashed to the local element and its replica from the source file into the
customers table of the database1 database. Ensure you run the ttBulkCp utility on one data
instance of each replica set available, the host3.instance1, host5.instance1, and
host7.instance1 data instances for example.

Chapter 5
Bulk Loading Data into a Database

5-27

On the host3.instance1 data instance:

% ttBulkCp -i -localOnly -connStr "DSN=database1;UID=terry" customers /
mydir/customers_data.dmp
Enter password for 'terry':

/mydir/customers_data.dmp:
 501 rows inserted
 449 rows not inserted (ignored)
 1000 rows total

Note:

For this example where the element of the host4.instance1 and
host5.instance1 data instances are defined as the replicas of the element
of the host3.instance1 data instance. The same rows inserted into the
customers table in the element of the host3.instance1 data instance are
inserted into the customers table in the element of the host4.instance1 and
host5.instance1 data instance.

On the host6.instance1 data instance:

% ttBulkCp -i -localOnly -connStr "DSN=database1;UID=terry" customers /
mydir/customers_data.dmp
Enter password for 'terry':

/mydir/customers_data.dmp:
 449 rows inserted
 501 rows not inserted (ignored)
 1000 rows total

Note:

For this example where the element of the host7.instance1 and
host8.instance1 data instances are defined as the replicas of the element
of the host6.instance1 data instance. The same rows inserted into the
customers table in the element of the host6.instance1 data instance are
inserted into the customers table in the element of the host7.instance1 and
host8.instance1 data instance.

For more information on the ttGridAdmin dbStatus command, see Monitor the Status
of a Database (dbStatus) in Oracle TimesTen In-Memory Database Reference.

For more information on using the ttBulkCp utility, see Bulk Copy Data Using the
ttBulkCp Utility in Oracle TimesTen In-Memory Database Operations Guide and
ttBulkCp in Oracle TimesTen In-Memory Database Reference.

Chapter 5
Bulk Loading Data into a Database

5-28

Populating a Table with the ttLoadFromOracle Built-in Procedure
The ttLoadFromOracle built-in procedure enables you to load data from an Oracle database.

These topics describe how to load data from a Oracle database into a database while using
the ttLoadFromOracle built-in procedure.

• Enable Communication to an Oracle Database

• Populate a Table from Several Locations

Enable Communication to an Oracle Database
For the ttLoadFromOracle built-in procedure to be able to import data from an Oracle
database table into a database table, TimesTen Scaleout must be able to recognize and
communicate with the Oracle database. For this to happen, you need to:

1. Import the contents of the sqlnet.ora file.

The ttGridAdmin SQLNetImport command imports the contents of a sqlnet.ora file into
the latest version of the model.

% ttGridAdmin SQLNetImport /mydir/sqlnet.ora
SQLNet configuration file /mydir/sqlnet.ora imported

2. Import the contents of the tnsnames.ora file.

The ttGridAdmin TNSNamesImport command imports the contents of a tnsnames.ora file
into the latest version of the model.

% ttGridAdmin TNSNamesImport /mydir/tnsnames.ora
TNSNames configuration file /mydir/tnsnames.ora imported

Note:

Importing the contents of both the sqlnet.ora and tnsnames.ora files is also
relevant for applications that use OCI, Pro*C/C++, or ODP.NET to communicate
with an Oracle Database. See Oracle Database Operations in Oracle TimesTen
In-Memory Database Reference.

3. Apply the changes made to the latest version of the model.

The ttGridAdmin modelApply command applies the changes made to the latest version
of the model into the operational grid.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

Chapter 5
Bulk Loading Data into a Database

5-29

See Applying the Changes Made to the Model for more information on the
ttGridAdmin modelApply command.

Populate a Table from a Single Location
The following example connects with the ttIsql utility to the database1 database to
copy the rows from the terry.customers table of an Oracle database into the
terry.customers table of the database1 database.

Note:

Ensure that the database user has the INSERT privilege on the table the built-
in procedure copies data into.

From a connection to the element of any data instance:

Command> call ttLoadFromOracle('terry', 'customers', 'SELECT * FROM
terry.customers');
< 1000 >
1 row found.

For more information on the ttLoadFromOracle built-in procedure, see
ttLoadFromOracle in Oracle TimesTen In-Memory Database Reference.

Populate a Table from Several Locations
Call the ttLoadFromOracle built-in procedure with the localOnly=Y parameter to copy
the rows hashed to a local element and its replicas from an Oracle database table into
a TimesTen Scaleout database table. If you use the localOnly=Y parameter, the
ttLoadFromOracle built-in procedure ignores rows that are hashed to remote elements
that are not a replicas of the local element.

The following example connects with the ttIsql utility to the database1 database to
copy the rows hashed to the local element and its replicas from the terry.customers
table of an Oracle database into the terry.customers table of the database1
database. If necessary, use the ttGridAdmin dbStatus -replicaset command from
the active management instance (in this example the active management instance is
host1.instance1) to help you determine the data instances associated with each
replica set.

% ttGridAdmin dbStatus database1 -replicaset
Database database1 Replica Set status as of Mon Aug 16 14:05:15 PDT
2021

RS DS Elem Host Instance Status Cache Agent Date/Time of Event
Message
-- -- ---- ----- --------- ------ ----------- -------------------

 1 1 1 host3 instance1 opened stopped 2021-08-12
14:49:08

Chapter 5
Bulk Loading Data into a Database

5-30

 1 2 2 host4 instance1 opened stopped 2021-08-12 14:49:09
 1 3 3 host5 instance1 opened stopped 2021-08-12 14:49:08
 2 1 4 host6 instance1 opened stopped 2021-08-12 14:49:08
 2 2 5 host7 instance1 opened stopped 2021-08-12 14:49:08
 2 3 6 host8 instance1 opened stopped 2021-08-12 14:49:09

Ensure you call the ttLoadFromOracle built-in procedure on one replica of each replica set
available, the host3.instance1 and host6.instance1 data instances for example.

Note:

Ensure that the database user has the INSERT privilege on the table the built-in
procedure copies data into.

From a connection to the element of the host3.instance1 data instance:

Command> call ttLoadFromOracle('terry', 'customers', 'SELECT * FROM
terry.customers', 4, 'localOnly=Y');
< 501 >
1 row found.

Note:

For this example where the element of the host4.instance1 and host5.instance1
data instances are defined as the replicas of the element of the host3.instance1
data instance. The same rows inserted into the customers table in the element of
the host3.instance1 data instance are inserted into the customers table in the
element of the host4.instance1 and host5.instance1 data instance.

From a connection to the element of the host6.instance1 data instance:

Command> call ttLoadFromOracle('terry', 'customers', 'SELECT * FROM
terry.customers', 4, 'localOnly=Y');
< 449 >
1 row found.

Note:

For this example where the element of the host7.instance1 and host8.instance1
data instances are defined as the replicas of the element of the host6.instance1
data instance. The same rows inserted into the customers table in the element of
the host6.instance1 data instance are inserted into the customers table in the
element of the host7.instance1 and host8.instance1 data instance.

Chapter 5
Bulk Loading Data into a Database

5-31

For more information on the ttGridAdmin dbStatus command or ttLoadFromOracle
built-in procedure, see Monitor the Status of a Database (dbStatus) or
ttLoadFromOracle, respectively, in Oracle TimesTen In-Memory Database Reference.

Unloading a Database from Memory
In TimesTen Scaleout, a database is automatically loaded into memory upon creation.
Once loaded into memory, a database remains in memory until the database is
explicitly unloaded. Closing all connections to the database will not automatically
unload the database from memory.

One of the reasons you may need to unload a database is to modify the value of a first
connection attribute, like increasing the value of the PermSize attribute.

To unload a database from memory, perform these tasks:

• If the database contains cache groups, stop the cache agent on all data instances.
The ttGridAdmin dbCacheStop stops the cache agent on all or the specified data
instances.

• Close the database to user connections. The ttGridAdmin dbClose command
disables new user connections to a database.

• Disconnect all applications from the database. The ttGridAdmin dbDisconnect
command terminates all user connections to a database.

• Unload the database from memory. The ttGridAdmin dbUnload command
unloads every element of the database from the memory of their respective hosts.

Stop the cache agent on all data instances on the database1 database.

% ttGridAdmin dbCacheStop database1 -wait
Database database1 : Stopping cache agents.

Close the database1 database from user connections.

% ttGridAdmin dbClose database1
Database database1 close started

Note:

The ttGridAdmin dbClose command does not close existing connections to
the database, but instead disallows the creation of new user connections.
You must terminate all open connections independently. Closing a database
is an asynchronous operation that is performed independently to each
element by its data instance.

Also, the instance administrator can always create new connections to a
database regardless of the database being closed or not.

Chapter 5
Unloading a Database from Memory

5-32

Verify that all the elements of the database1 database are closed to user connections.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Tue Nov 27 13:35:45 PST 2018

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ –-------- ------------------- -------
host3 instance1 1 loaded stopped 2018-11-27 13:35:43
host4 instance1 2 loaded stopped 2018-11-27 13:35:43
host5 instance1 3 loaded stopped 2018-11-27 13:35:43
host6 instance1 4 loaded stopped 2018-11-27 13:35:43
host7 instance1 5 loaded stopped 2018-11-27 13:35:43
host8 instance1 6 loaded stopped 2018-11-27 13:35:43

Note:

The ttGridAdmin dbStatus utility displays the status of an element as loaded
instead of opened when the element is closed to user connections.

Disconnect all applications from the database1 database. You must stop the workload and
gracefully disconnect every application from the database. If you are unable to individually
disconnect every application from the database, use the ttGridAdmin dbDisconnect
command to disconnect all user connections from the database.

% ttGridAdmin dbDisconnect database1 -transactional
Database database1 dbDisconnect started

Note:

The -transactional option disconnects all user connections from the database1
database once all open transactions commit or roll back. If the -transactional
option fails or takes too long, use the -immediate option of the ttGridAdmin
dbDisconnect command to force a rollback on all open transactions and disconnect
the applications. Furthermore, if the -immediate option fails to close all connections,
you can use the -abort option. This option ungracefully disconnects all applications
and may cause loss of data.

Use the ttGridAdmin dbDisconnectStatus command to check the status of the
disconnection process.

% ttGridAdmin dbDisconnectStatus database1
Database Host Instance Elem State Started
--------- ----- --------- ---- ------------ ------------------------
database1 Complete 2018-11-27T13:38:43.000Z
 host3 instance1 1 Disconnected
 host4 instance1 2 Disconnected
 host5 instance1 3 Disconnected

Chapter 5
Unloading a Database from Memory

5-33

 host6 instance1 4 Disconnected
 host7 instance1 5 Disconnected
 host8 instance1 6 Disconnected

Then, verify that there are no connections to the database with the -connections
option of ttGridAdmin dbStatus command.

% ttGridAdmin dbStatus database1 -connections
Host Instance ConnId Name Pid Type CHost CAddr CPid
---- -------- ------ ---- --- ---- ----- ----- ----

Unload the database1 database.

% ttGridAdmin dbUnload database1
Database database1 unload started

The unloading of the database is an asynchronous operation that is performed
independently by each data instance. This operation returns an error if there is an
open user connection to the database.

Note:

If you used the ttGridAdmin dbDisconnect -abort command, some
elements may be invalidated and the ttGridAdmin dbUnload command may
fail. Use the -force option of the ttGridAdmin dbUnload command to allow
the unload to proceed anyway. This option may cause loss of data.

You can verify the status of the database unloading process with the ttGridAdmin
dbStatus command. Notice that the report in the following example shows all elements
of the database as closed and unloaded.

% ttGridAdmin dbStatus database1
Database database1 summary status as of Tue Nov 27 13:41:18 PST 2018

created,unloaded,closed
Completely created elements: 6 (of 6)
Completely loaded elements: 0 (of 6)
Completely created replica sets: 2 (of 2)
Completely loaded replica sets: 0 (of 2)

Open elements: 0 (of 6)

For more information on the commands mentioned above, see:

• Stop a Cache Agent (dbCacheStop) in Oracle TimesTen In-Memory Database
Reference

• Close a Database (dbClose) in Oracle TimesTen In-Memory Database Reference

• Force All Connections to Disconnect (dbDisconnect) in Oracle TimesTen In-
Memory Database Reference

Chapter 5
Unloading a Database from Memory

5-34

• Unload a Database (dbUnload) in Oracle TimesTen In-Memory Database Reference

• Monitor the Status of a Database (dbStatus) in Oracle TimesTen In-Memory Database
Reference

• Check Status of Forced Disconnection (dbDisconnectStatus) in Oracle TimesTen In-
Memory Database Reference

Reloading a Database into Memory
You must perform certain tasks to reload a database into memory.

• Check to see if all replica sets can be loaded: Before loading a database, it is advisable
to run dbStatus with the -loadReadiness option to confirm all replica sets can be loaded.

Resolve any issues with the elements of the database, as denoted by each element
status, as described in Table 13-2.

• Load the database into memory. The ttGridAdmin dbLoad command loads every
element of the database into memory of their respective hosts.

• Open the database for user connections. The ttGridAdmin dbOpen command enables
the database for user connections.

Check the status of the replica sets.

ttGridAdmin dbStatus database1 -loadReadiness
Data Elements:
RS DS Instance State
-- -- -------------------- --------
 1 1 mysys3host.griddata1 Unloaded
 1 2 mysys4host.griddata2 Unloaded
 1 Loadable
 2 1 mysys5host.griddata3 Unloaded
 2 2 mysys6host.griddata4 Unloaded
 2 Loadable

database1 load state: Loadable
Total Elements Loaded:0/4

Load all the elements of the database1 database into memory.

% ttGridAdmin dbLoad database1
Database database1 load started

Open the database1 database for user connections.

% ttGridAdmin dbOpen database1
Database database1 open started

For more information on the ttGridAdmin dbLoad or ttGridAdmin dbOpen command, see
Load a Database into Memory (dbLoad) or Open a Database (dbOpen), respectively, in
Oracle TimesTen In-Memory Database Reference.

Chapter 5
Reloading a Database into Memory

5-35

Modifying the Connection Attributes of a Database
There are three types of connection attributes based on their persistence.

• Attributes that are set on database creation and that cannot be modified. You store
the value assigned for these attributes in the database definition.

• Attributes that are set when the database is loaded into memory and that can only
be modified upon unloading and reloading the database into memory. You store
the value assigned for these attributes in the database definition.

• Attributes that are set by each connection to the database and persist for the
duration of that connection. You store the value assigned for these attributes in a
connectable.

These topics describe how to modify the connection attributes of a database
depending on where they are stored:

• Modify the Connection Attributes in a Database Definition

• Modify the Connection Attributes in a Connectable

Modify the Connection Attributes in a Database Definition
To modify a database definition is to modify the assigned value of the connection
attributes that a database definition supports. The types of connection attributes that a
database definition supports and that can be modified after database creation are:

• First connection attributes

• PL/SQL first connection attributes

• Server connection attributes

Note:

You cannot modify data store attributes after database creation. To use a
different value for a data store attribute, you need to destroy and re-create
the database. See Destroying a Database and Creating a Database.

TimesTen Scaleout assigns the default value to any supported attribute not explicitly
specified in the database definition. Attributes with the default value assigned can be
modified by including the attribute in the database definition. Once you add or modify
the attributes defined in a database definition and apply the changes to current version
of the model, TimesTen Scaleout overwrites the configuration files of every data
instance with the new attributes in the DSN associated with the database definition.

To modify the values assigned to the attributes supported by a database definition,
perform these tasks:

Chapter 5
Modifying the Connection Attributes of a Database

5-36

1. If you don't have access to the file that you used to create (or modify) the database
definition, export the contents of the database1 database definition to a file.

% ttGridAdmin dbdefExport database1 /mydir/database1.dbdef

The following example shows the contents of the exported file.

[database1]
Connections=2048
DatabaseCharacterSet=AL32UTF8
DataStore=/disk1/databases/database1
Durability=0
LogBufMB=1024
LogDir=/disk2/logs
PermSize=32768
TempSize=4096

2. Modify the value of the PermSize attribute from 32768 to 49152 in the exported database
definition file.

[database1]
Connections=2048
DatabaseCharacterSet=AL32UTF8
DataStore=/disk1/databases/database1
Durability=0
LogBufMB=1024
LogDir=/disk2/logs
PermSize=49152
TempSize=4096

3. Import the contents of the modified database definition file into the database1 database
definition.

% ttGridAdmin dbdefModify /mydir/database1.dbdef
Database Definition DATABASE1 modified.

4. Apply the changes to the database1 database definition to the current version of the
model.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

5. Unload the database1 database as shown in Unloading a Database from Memory.

6. Restart the database1 database as shown in Reloading a Database into Memory to bring
the changes you made to the database1 database definition into effect.

For a complete description of all the connection attributes, see Connection Attributes in
Oracle TimesTen In-Memory Database Reference.

Chapter 5
Modifying the Connection Attributes of a Database

5-37

For more information on the ttGridAdmin dbdefExport, ttGridAdmin dbdefModify, or
ttGridAdmin modelApply command, see Export a Database Definition (dbdefExport),
Modify a Database Definition (dbdefModify), or Apply the Latest Version of the Model
(modelApply), respectively, in Oracle TimesTen In-Memory Database Reference.

Modify the Connection Attributes in a Connectable
To modify a connectable is to modify the assigned value of the connection attributes
that a connectable supports. The types of connection attributes that a connectable
supports are:

• General connection attributes

• NLS general connection attributes

• PL/SQL connection attributes

• Client connection attributes

TimesTen Scaleout assigns the default value to any supported attribute not explicitly
specified in the connectable. Attributes with the default value assigned can be
modified by including the attribute in the connectable. Once you add or modify the
attributes defined in a connectable and apply the changes to current version of the
model, TimesTen Scaleout overwrites the configuration files of every data instance
with the new attributes in the DSN associated with the connectable.

To modify the values assigned to the attributes supported by a connectable, perform
these tasks:

1. If you don't have access to the file that you used to create (or modify) the
connectable, export the contents of the database1CS connectable to a file.

% ttGridAdmin connectableExport database1CS -file /mydir/
database1CS.connect

The following example shows the contents of the exported file.

[database1CS]
ConnectionCharacterSet=AL32UTF8
UID=terry

2. Modify the value of the SQLQueryTimeout connection attribute to 300 in the
exported connectable file.

[database1CS]
ConnectionCharacterSet=AL32UTF8
UID=terry
SQLQueryTimeout=300

3. Import the contents of the modified connectable file into the database1CS
connectable.

% ttGridAdmin connectableModify /mydir/database1CS.connect
Connectable DATABASE1CS modified.

Chapter 5
Modifying the Connection Attributes of a Database

5-38

4. Apply the changes to the database1CS connectable to the current version of the model.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

For a complete description of all the connection attributes, see Connection Attributes in
Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin connectableExport, ttGridAdmin
connectableModify, or ttGridAdmin modelApply command, see Export a Connectable
(connectableExport), Modify a Connectable (connectableModify), or Apply the Latest Version
of the Model (modelApply), respectively, in Oracle TimesTen In-Memory Database Reference.

Destroying a Database
Before you attempt to destroy a database, ensure you backup all your data, since it will be
discarded in the destruction process. See Backing Up and Restoring a Database.
The ttGridAdmin dbDestroy command performs these operations in order to destroy a
database:

• Delete the checkpoint and log files of the database stored on every data instance.

• Delete the entries in the management instance that keep track of the status of the
database, including the entry that recorded the creation of the database.

However, before you can destroy a database, you must unload the database. See Unloading
a Database from Memory.

Destroy the database1 database.

% ttGridAdmin dbDestroy database1
Database DATABASE1 destroy started

You may also want to delete the database definition associated with the database. The
ttGridAdmin dbdefDelete command deletes a database definition in the latest version of the
model. This command also deletes any connectable associated with the database definition.

Delete the database1 database definition and its associated connectables from the latest
version of the model.

% ttGridAdmin dbdefDelete database1
Database Definition database1 deleted

Apply the deletion of the database1 database definition to the current version of the model.

% ttGridAdmin modelApply
...
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

Chapter 5
Destroying a Database

5-39

TimesTen Scaleout removes the database definition and its connectables from the
grid.

For more information on the ttGridAdmin dbDestroy, ttGridAdmin dbdefDelete, or
ttGridAdmin modelApply command, see Destroy a Database (dbDestroy), Delete a
Database Definition (dbdefDelete), or Apply the Latest Version of the Model
(modelApply), respectively, in Oracle TimesTen In-Memory Database Reference.

Chapter 5
Destroying a Database

5-40

6
Understanding Distributed Transactions in
TimesTen Scaleout

In TimesTen Scaleout, distributed transactions are processed by a two-phase commit
protocol. This chapter discusses how TimesTen Scaleout maintains ACID-compliant
databases through distributed transactions.

The following terminology is related to understanding the distributed transaction processing
algorithms that TimesTen Scaleout employs:

• Participant: An element that runs one or more SQL statements from a distributed
transaction. Not all elements in a database participate in every transaction. An element
only becomes a participant of a transaction if one or more operations of that transaction
requires access to the data stored in the element.

Note:

Each element maintains its own independent set of checkpoint and transaction
log files. They behave in the same manner as the checkpoint and transaction
log files of a database in TimesTen Classic. See Checkpoint Operations and
Transaction Logging in Oracle TimesTen In-Memory Database Operations
Guide.

• Transaction manager: The thread of the application (or of the TimesTen server, for a
client/server application) that is connected to the database and initiates the transaction.
The transaction manager coordinates the transaction operations with all participants.

• Prepare-to-commit log record: A type of log record written to the transaction log of the
database during the prepare phase of the two-phase commit protocol. It contains the
commit decision for the transaction.

• Durable log record: Participants write a prepare-to-commit or commit log record
synchronously to the transaction log. Nondurable log records are asynchronously written
by the participants.

• Distributed transaction: A transaction with two or more participants.

• Single-element transaction: A transaction with only one participant. Single-element
transactions do not use the two-phase commit protocol. Single-element transactions are
only possible in a grid with K-safety set to 1.

• In-doubt transaction: A transaction where a participant wrote a prepare-to-commit log
record, but the commit log record is not present in the transaction log. If the transaction
manager wrote the prepare-to-commit log record to the transaction log, which means
there is a known commit decision, then the transaction is not in-doubt.

• Remote connection: A connection from the transaction manager to a participant of the
transaction.

This chapter includes the following topics:

6-1

• Transaction Manager

• Durability Settings

• Two-Phase Commit Protocol

• Troubleshooting Distributed Transactions

Transaction Manager
Applications connect to a database in TimesTen Scaleout by connecting to one
element of the database. Each transaction ran by a connection requires a transaction
manager. For client/server applications the transaction manager is the thread in the
TimesTen Scaleout server that is acting as a proxy for the application. For direct mode
applications the transaction manager is the thread in the application that connects to
TimesTen Scaleout. The transaction manager coordinates the execution of statements
on elements (participants), or more specifically:

• If the application issues a commit or rollback, the transaction manager ensures
that all participants have consistent data based on the commit or rollback decision
from the two-phase commit protocol.

• If a participant returns an error, such as a constraint violation, the transaction
manager coordinates the response. The transaction manager ensures that
TimesTen Scaleout returns the appropriate error message to the user and that all
participants release the allotted resources.

• If a participant fails, the transaction manager creates a state that the failed
participant uses during its recovery to restore to a consistent state.

• If the participant where the transaction manager resides fails, participants classify
the transaction as in-doubt if they completed the prepare phase but did not receive
the commit decision and are no longer able to reach the transaction manager.

Status of the Participants
When a participant completes the execution of a statement, it sends a message to the
transaction manager. The message includes information about the number of rows
affected. If the message specifies that:

• The participant modified the affected rows, such as with a INSERT, UPDATE, or
DELETE operation, the transaction manager flags the participant as a write
participant.

• The participant did not modify any rows, then the transaction manager flags the
participant as a read participant.

The read or write status of a participant affects the way the transaction manager
processes a commit operation:

• If all participants are read participants, then the transaction manager handles the
commit without going through the prepare phase. In other words, read participants
perform the commit operation without needing a consensus from the other
participants.

• If there are one or more write participants, then the transaction manager handles
the commit as a two-phase operation.

Chapter 6
Transaction Manager

6-2

Durability Settings
You control how durable your transactions are with the Durability attribute. This attribute
defines if transactions create durable prepare-to-commit log records. Regardless of the
setting of this attribute, transactions that include DDL statements create durable prepare-to-
commit and commit log records. The Durability attribute supports two different values:

• Durability Set to 1

• Durability Set to 0

Durability Set to 1
If you set the Durability attribute to 1, participants write durable prepare-to-commit log
records and nondurable commit log records for distributed transactions. Having the
Durability attribute set 1 ensures that committed transactions are recoverable in the case of
a failure. This is the default setting of the Durability attribute when K-safety is set to 1.

For more information on the Durability attribute, see Durability in Oracle TimesTen In-
Memory Database Reference.

Durability Set to 0
If you set the Durability attribute to 0, participants write nondurable prepare-to-commit and
commit log records for distributed transactions. To ensure a measure of durability, TimesTen
Scaleout provides the following new features that are generally exclusive to databases with
the Durability attribute set to 0:

• Epoch Transactions

• EpochInterval Attribute

• CreateEpochAtCommit Attribute

Epoch Transactions
An epoch transaction is a distributed transaction that creates a durable commit log record
that marks a globally consistent point in time across all elements of a database. Epoch
transactions are durably committed on every element of the database. An epoch transaction
ensures that the database is consistent up to the timestamp of the epoch transaction. In other
words, an epoch transaction ensures that any transaction already in the commit phase is
recoverable.

Note:

TimesTen Scaleout uses Lamport timestamps to provide partial ordering for
transactions that commit on different elements of a database. Each element has a
Lamport timestamp that is updated by, among others, prepare and commit
operations. The transaction manager logs the Lamport timestamp of every
committed transaction.

Chapter 6
Durability Settings

6-3

Transactions in a grid with K-safety set to 2 (or greater) and a database with the
Durability attribute set to 0 are durable under typical conditions, since TimesTen
Scaleout writes durable prepare-to-commit log records of transactions that involve a
replica set with a failed element until the failed element recovers. Only if both elements
of the replica set fail simultaneously, a transaction may become nondurable. However,
TimesTen Scaleout enables you to promote transactions to epoch transactions. An
epoch transactions and all transactions committed before it are more resilient to
catastrophic failures, since you can recover a database to the consistent point marked
by the epoch commit log record of the epoch transaction.

Note:

• See Recovering a Replica Set After an Element Goes Down for more
information on how to recover failed element in a replica set.

• See Recovering from a Down Replica Set for more information on how to
recover a failed replica set.

Before promoting a transaction, consider that a commit for an epoch transaction is
more expensive than a commit for a regular transaction, because it creates durable log
records for both the prepare-to-commit and commit phase and involves every element
of the database, including those that were not participants before the promotion of the
transaction to an epoch transaction.

Use these built-in procedures and system view to promote and manage epoch
transactions:

• The ttEpochCreate built-in procedure promotes a transaction to an epoch
transaction, including read-only transactions.

• The ttDurableCommit built-in procedure promotes a write transaction to an epoch
transaction.

• The SYS.V$EPOCH_SESSION system view stores the Lamport timestamp of the latest
epoch transaction that the connection created since the second-to-last checkpoint
operation.

The following example shows and verifies the promotion of a write transaction to an
epoch transaction.

Command> autocommit OFF;
Command> INSERT INTO transactions VALUES (txn_seq.NEXTVAL, 189,
SYSDATE, NULL, 'A', 5.49);
Command> SELECT epoch FROM sys.v$epoch_session;
< 1023.1 >
1 row found.
Command> CALL ttEpochCreate();
Command> COMMIT;
Command> SELECT epoch FROM sys.v$epoch_session;
< 1024.1 >
1 row found.

Chapter 6
Durability Settings

6-4

For more information on the ttEpochCreate or ttDurableCommit built-in procedure, see
ttEpochCreate or ttDurableCommit, respectively, in Oracle TimesTen In-Memory Database
Reference.

For more information on the SYS.V$EPOCH_SESSION system view, see
SYS.V$EPOCH_SESSION in Oracle TimesTen In-Memory Database System Tables and
Views Reference.

EpochInterval Attribute
Each epoch commit log record is associated to a specific checkpoint file on every element. In
the case of an unexpected failure of an element, the recovery process must use the
checkpoint file on each element that is associated with the latest epoch commit log record,
which is not necessarily the latest checkpoint available on the element.

You can configure a database to generate periodic epoch transactions at an specified interval
with the EpochInterval first connection attribute. The value set for the EpochInterval
attribute must be less than one half of the value set for the CkptFrequency first connection
attribute, so that there is at least one epoch transaction for every checkpoint operation. If you
set the CkptFrequency attribute to a value greater than zero and the EpochInterval attribute
to a value greater than one half of the value set for the CkptFrequency attribute, TimesTen
Scaleout will re-adjust the EpochInterval attribute to one half of value set for the
CkptFrequency attribute.

For more information on the EpochInterval or CkptFrequency attribute, see EpochInterval or
CkptFrequency, respectively, in Oracle TimesTen In-Memory Database Reference.

CreateEpochAtCommit Attribute
You can configure a connection to promote every write transaction committed by that
connection to an epoch transaction with the CreateEpochAtCommit general connection
attribute. If you set the CreateEpochAtCommit attribute to 1, you ensure that every transaction
you commit during the connection is recoverable in the case of failure. However, as with any
epoch transaction, commits operations are more expensive than with regular transactions, so
it is recommended that you limit CreateEpochAtCommit=1 for critical operations only.

Note:

Even though the DurableCommits attribute is intended for databases in TimesTen
Classic, the attribute emulates the behavior of the CreateEpochAtCommit attribute
when set to 1 for a database in TimesTen Scaleout. See DurableCommits in Oracle
TimesTen In-Memory Database Reference.

When the Durability attribute is set to 0, the transaction manager and the participants
behave differently depending of the settings of the CreateEpochAtCommit attribute, as shown
on Table 6-1.

Chapter 6
Durability Settings

6-5

Table 6-1 Participants Behavior on Commit Based on CreateEpochAtCommit
Setting

CreateEpochAtCommit Commit behavior

0 Participants write nondurable prepare-to-commit and
commit log records for every distributed transaction to
commit.

1 Promotes every transaction to an epoch transaction.

Setting both the Durability and CreateEpochAtCommit attributes to 0 provides the
best performance. In this case, call the ttEpochCreate or ttDurableCommit built-in
procedures to ensure that you have durable records of important transactions.

For more information on the Durability or CreateEpochAtCommit attribute, see
Durability or CreateEpochAtCommit, respectively, in Oracle TimesTen In-Memory
Database Reference. For more information on the ttEpochCreate or ttDurableCommit
built-in procedure, see ttEpochCreate or ttDurableCommit, respectively, in Oracle
TimesTen In-Memory Database Reference.

Two-Phase Commit Protocol
As previously mentioned, distributed transactions follow a two-phase commit protocol.
TimesTen Scaleout implements the two-phase commit protocol as follows:

Note:

Ensure that you understand the concepts covered in Transaction Manager
and Durability Settings before reading this topic.

Phase 0: Transaction
1. An application establishes a connection to a database. Every connection is

associated with a specific element of the database, which becomes the transaction
manager for all distributed transactions initiated from that connection.

2. The application runs one or more SQL statements. The transaction manager
sends the statements to all the participants for execution. Based on the returned
results of the execution of the SQL statement, the transaction manager identifies
and updates the status of the participants.

3. The application issues a commit.

Phase 1: Prepare Phase
1. The transaction manager sends a prepare message to all participants. The

message includes the identity of the transaction manager and all the participants.

2. Each participant, once it receives the prepare message, performs either of these
actions:

Chapter 6
Two-Phase Commit Protocol

6-6

• If the participant is a write participant, it writes a prepare-to-commit log record that
stores information to subsequently either commit or rollback the transaction. The
participant also locks the modified rows to prevent read operations.

• If the participant is a read participant, it identifies the transaction as read-only.

3. The participant sends a prepare response to the transaction manager with its vote for the
commit decision:

• A write participant only votes 'Yes' if it was able to write the prepare-to-commit log
record.

Note:

If Durability is set to 1, the participant writes a durable prepare-to-commit
log record.

• A read participant always votes 'Yes' and commits the transaction without waiting for
the commit decision. In this case, the commit operation consists on releasing all locks
and temporary resources related to the transaction.

Phase 2: Commit Phase
1. Once the transaction manager receives the prepare response from at least one element

in every replica set participating in the transaction, it writes a prepare-to-commit log
record that includes the commit decision. The transaction manager bases the commit
decision on the scenarios described in Table 6-2.

Table 6-2 Scenarios for Commit Decision

Scenarios Decision

All write participants send a 'Yes' vote in their prepare response and
within them there is at least one element for each participating replica
set. (Failed participants do not affect the commit decision once they are
identified as failed as long as its replica sends a response.)

Commit

Any write participant sends a 'No' vote in their prepare response. Roll back

2. The transaction manager sends a message to all write participants with the commit
decision.

3. All write participants, including the transaction manager, commit or rollback the
transaction based on the commit decision.

Figure 6-1 shows the two-phase commit protocol as implemented for distributed transactions
in TimesTen Scaleout.

Chapter 6
Two-Phase Commit Protocol

6-7

Figure 6-1 Two-Phase Commit Protocol

Transaction manager Participant

State 1

Sends prepare message

Sends prepare response

Writes prepare-to-commit log record
(Durable only if Durability=1 or transaction is promoted to epoch)

Writes prepare-to-commit log record with commit decision
(Durable only if Durability=1 or transaction is promoted to epoch)

Sends commit decision

Writes commit log record Writes commit log record

State 2

State 3

State 1

State 2

State 3

P
R
E
P
A
R
E
 P

H
A
S
E

C
O

M
M

IT
 P

H
A
S
E

(Durable only if transaction is promoted to epoch)

Two-Phase Commit Failure Analysis
There are several types of potential failures that may affect the operation of a
database for outstanding distributed transactions. Table 6-3 summarizes these failure
types and describes how TimesTen Scaleout responds to them.

Table 6-3 Failure Types in a Distributed Transaction

Failure Action

Transaction manager fails. If the transaction manager fails (for example, the application
terminates), the main daemon for that instance catches the
failure and informs the subdaemon. The subdaemon sends a
commit or rollback message to all participants depending on the
state of the transaction.

Chapter 6
Two-Phase Commit Protocol

6-8

Table 6-3 (Cont.) Failure Types in a Distributed Transaction

Failure Action

The host of the transaction
manager fails.

If the host of the transaction manager fails, the daemon and all
subdaemons fail. Each participant will recognize this failure when
their TCP connection to the transaction manager closes or times
out.

Once a participant recognizes the failure, the participant rolls
back any transaction that has not reached the prepare phase. If
the participant already sent its prepare response, it will ask other
participants for the commit decision and perform one of the
following actions:

• If at least one of the other participants received the commit
decision, then the asking participant will fulfill the commit
decision.

• If none of the other participants received the commit
decision, then the asking participant waits for the transaction
manager to recover.

All elements from a
participating replica set fail
before writing a prepare-to-
commit log record.

The transaction manager decides to rollback the transaction.

Participant fails after writing
a prepare-to-commit log
record.

The participant, once it recovers, requests the commit decision
from one of the other participants.

Participant is busy. The transaction manager waits until it receives a prepare
response from the participant.

Troubleshooting Distributed Transactions
In TimesTen Classic, a transaction may need to wait for a resource held by another
transaction. If that resource is protected by a lock, the transaction waits for the lock to be
released. It is possible that the other transaction is waiting on an external event that is not
represented as database lock, so the deadlock detector does not resolve the problem. The
following are possible resources that can cause a transaction to wait:

• A semaphore wait

• A latch wait

• An I/O event

• An unattended open transaction

• A long running operation

In TimesTen Scaleout, these cases still apply, and there is an additional possible case. When
an element fails, all the transactions initiated from that element have lost their transaction
manager. If the remote participants did not receive the commit decision for a transaction after
sending their prepare response, then the participants must wait to commit or rollback the now
in-doubt transaction. Also, if a participant fails after sending its prepare response but before
receiving the commit decision, the transaction becomes an in-doubt transaction for the failed
participant.

Chapter 6
Troubleshooting Distributed Transactions

6-9

Global Transaction ID
The global transaction ID uniquely identifies a transaction across all the elements of a
database. The global transaction ID is composed of these parameters:

• The element ID of the transaction manager

• The connection ID of the transaction manager or local transaction ID

• A counter for the transactions issued from the connection

The following example shows how to retrieve the global transaction ID from within the
connection issuing the transaction. The SYS.V$XACT_ID system view stores all the
parameters necessary to construct the global transaction ID of a transaction.

Command> autocommit 0;
Command> INSERT INTO transactions VALUES (txn_seq.NEXTVAL, 342,
SYSDATE, NULL, 'A', 8.33);
1 row inserted.
Command> SELECT elementId, xactId, counter FROM sys.v$xact_id;
< 3, 1, 148 >
1 row found.

For more information on the SYS.V$XACT_ID system view, see SYS.V$XACT_ID in
Oracle TimesTen In-Memory Database System Tables and Views Reference.

Managing In-Doubt Transactions
TimesTen Scaleout resolves in-doubt transactions automatically during element
recovery. The prepare-to-commit log record of the transaction contains the information
about other participants. To resolve the in-doubt transaction, the recovering element
requests the commit decision from one of the participants listed in the prepare-to-
commit log record.

In the case of a transaction manager failure, TimesTen Scaleout should be able to
resolve an in-doubt transaction as long as one participant from each write replica set is
available. However, if none of the participants have the commit decision and not all
write replica sets are available, TimesTen Scaleout cannot resolve the in-doubt
transaction. If TimesTen Scaleout failed to resolve an in-doubt transaction, use the
ttXactAdmin utility to force the commit or rollback of the transaction.

Note:

For most cases, you should always roll back an unresolved in-doubt
transaction. However, if you decide to externally commit the transaction, you
first will need to evict any unreachable participating replica set to ensure a
consistent database. Evicting a replica set implies losing all the data stored
in that replica set. See Recovering When the Replica Set Has a Permanently
Failed Element.

You may use the ttXactAdmin utility to verify the state of every outstanding
transaction, as shown in Verifying the State of Every Outstanding Transaction. If the

Chapter 6
Troubleshooting Distributed Transactions

6-10

transaction state is in-doubt, you can externally commit or rollback the transaction with the
same utility, as shown in Committing an In-Doubt Transaction or Rolling Back an In-Doubt
Transaction, respectively.

For more information on the ttXactAdmin utility, see ttXactAdmin in Oracle TimesTen In-
Memory Database Reference.

Verifying the State of Every Outstanding Transaction
This example shows how to retrieve the status of every outstanding transaction that the
element of the data instance running the command is a participant. The ttXactAdmin utility
only retrieves information related to the element of the data instance executing the command.

% ttXactAdmin -connStr "DSN=database1"
2016-12-14 11:00:36.995
/disk1/databases/database1
TimesTen Release 22.1.1.18.0
ElementID 3

Program File Name: _ttIsql
XactID PID Context State Loghold Last
ID
3.1.148 26247 0x13b3ff0 Active -1.-1
[-1:2]

 Resource ResourceID Mode SqlCmdID Name
 Database 0x01312d0001312d00 IX 0
 HashedKey ffffffffe5a341d5 SF 284478280 PAT.ACCOUNTS
 Table 2367304 IRC 284478280 PAT.ACCOUNTS
 EndScan AAAVVUAAAA9AAAAGjO En 284478280 PAT.TRANSACTIONS
 Table 2367320 IRC 284478280 PAT.TRANSACTIONS

 Begin Time: 10:59:21.695

Committing an In-Doubt Transaction
The example uses the ttXactAdmin utility to commit transaction 3.1.148. This command can
only be successfully run if the transaction manager is down and its replica set is evicted from
the database. See Recovering from a Down Replica Set for more information on when and
how to evict a failed replica set.

% ttXactAdmin -connStr "DSN=database1" -xactIdCommit 3.1.148

Rolling Back an In-Doubt Transaction
The example uses the ttXactAdmin utility to roll back transaction 3.1.148.

% ttXactAdmin -connStr "DSN=database1" -xactIdRollback 3.1.148

Chapter 6
Troubleshooting Distributed Transactions

6-11

7
Using SQL in TimesTen Scaleout

Applications use SQL and PL/SQL to access data in a database in TimesTen Scaleout. This
topic describes how to use SQL to work with databases in TimesTen Scaleout.

• Overview of SQL

• Overview of PL/SQL

• Working with Tables

• Altering Tables

• Understanding Indexes

• Using Sequences

• Performing DML Operations

• Using Pseudocolumns

• Using the TT_CommitDMLOnSuccess Hint

• Using Optimizer Hints

• Understanding ROWID in Data Distribution

• Understanding System Views

Overview of SQL
A database consists of elements. Each element stores a portion of your data. You manipulate
and query the data in the database through SQL operations from any element. For example,
you can use the CREATE USER statement to create a user in your database from any element.
After TimesTen Scaleout creates the user, this user is available in all elements of the
database. You can issue DDL and DML statements from any element which TimesTen
Scaleout then applies to all elements in your database. You can issue a SELECT statement to
run a query that is prepared from one element and ran on other elements in the query with
the result returned to the originating element.

Note:

• The syntax and semantics for SQL statements, functions, and the like are
detailed in Oracle TimesTen In-Memory Database SQL Reference.

• See Summary of SQL Statements Supported in TimesTen in Oracle TimesTen
In-Memory Database SQL Reference for information on the SQL statements
supported in TimesTen Scaleout.

7-1

Overview of PL/SQL
Applications can use PL/SQL to access and manipulate data. PL/SQL is processed on
the element to which the application is connected. See Oracle TimesTen In-Memory
Database PL/SQL Developer's Guide for detailed information on PL/SQL and
examples.
Consider the following when using PL/SQL in TimesTen Scaleout:

• SQL statements that are invoked from PL/SQL are run across the grid as with any
other SQL statement.

• PL/SQL functions or procedures are run as local operations.

• As with other SQL objects, TimesTen Scaleout automatically creates all PL/SQL
objects when new elements are added to the distribution map of the database.

• As with other DDL statements, TimesTen Scaleout logs PL/SQL DDL statements.
PL/SQL objects created or dropped while an element is down are created during
the recovery phase of the element. However, PL/SQL DDL statements are blocked
on the database during the log-based catch up recovery phase of the element, just
like any other DDL operation.

TimesTen Scaleout supports most, but not all, PL/SQL features supported by
TimesTen Classic. For unsupported PL/SQL features, see Table 1-9.

Working with Tables
Tables are the objects used to define how to distribute data in your database. Each
user-defined table has a defined distribution scheme. TimesTen Scaleout manages the
distribution of data according to this defined distribution scheme. The distribution
scheme defines how the rows of data in the table are distributed across the grid. The
CREATE TABLE statement allows you to specify a distribution clause to define the
distribution scheme for the table. When you create the table, it exists on every element
of the database. Rows of data in the table exist on different elements of the database.
For detailed information on the syntax and semantics for creating, altering, and
dropping tables, see CREATE TABLE in Oracle TimesTen In-Memory Database SQL
Reference. See Data Distribution or Defining Table Distribution Schemes for more
information on defining distribution schemes.

Altering Tables
You can alter tables in TimesTen Scaleout to change defaults or add and drop columns
and constraints. However, you cannot change the distribution scheme unless the table
is empty. In addition, you cannot drop a constraint that is named in the DISTRIBUTE BY
REFERENCE clause. See ALTER TABLE in Oracle TimesTen In-Memory Database SQL
Reference.
Table 7-1 shows the rules associated with altering tables. Supporting examples follow.

Chapter 7
Overview of PL/SQL

7-2

Table 7-1 ALTER TABLE Rules for Distribution Schemes

ALTER statement Comment

CREATE TABLE t1 (c1 NUMBER,
 c2 VARCHAR2 (10));

ALTER TABLE t1
 DISTRIBUTE BY HASH (c1);

The operation succeeds if the table is empty. If the
table is not empty, the operation fails because the
distribution key cannot be changed on tables that are
not empty.

CREATE TABLE t1...CONSTRAINT fk1...
 DISTRIBUTE BY REFERENCE(fk1);

ALTER TABLE t1 DROP CONSTRAINT(fk1);

The operation fails. The foreign key is used to
distribute the table.

Examples include:

• Use ALTER TABLE to Add a Primary Key Constraint

• Use ALTER TABLE to Change the Distribution Key

Use ALTER TABLE to Add a Primary Key Constraint
This example creates the mytable table without a primary key or distribution clause. The
table is distributed by hash on a hidden column. Then the ALTER TABLE statement is used to
add a primary key constraint. The operation succeeds but the distribution key is not changed.

Command> CREATE TABLE mytable (col1 NUMBER NOT NULL, col2 VARCHAR2 (32));
Command> describe mytable;

Table SAMPLEUSER.MYTABLE:
 Columns:
 COL1 NUMBER NOT NULL
 COL2 VARCHAR2 (32) INLINE
 DISTRIBUTE BY HASH

1 table found.
(primary key columns are indicated with *)

Now alter the table to add the primary key. The operation succeeds. The distribution scheme
and distribution key do not change.

Command> ALTER TABLE mytable ADD CONSTRAINT c1 PRIMARY KEY (col1);
Command> describe mytable;

Table SAMPLEUSER.MYTABLE:
 Columns:
 *COL1 NUMBER NOT NULL
 COL2 VARCHAR2 (32) INLINE
 DISTRIBUTE BY HASH

Chapter 7
Altering Tables

7-3

1 table found.
(primary key columns are indicated with *)

Use ALTER TABLE to Change the Distribution Key
This example shows that you can use the ALTER TABLE statement to change the
distribution key, but only if the table is empty.

Command> CREATE TABLE mytable2 (col1 NUMBER NOT NULL, col2 VARCHAR2
(32)) DISTRIBUTE BY HASH (col1,col2);
Command> describe mytable2;

Table SAMPLEUSER.MYTABLE2:
 Columns:
 COL1 NUMBER NOT NULL
 COL2 VARCHAR2 (32) INLINE
 DISTRIBUTE BY HASH (COL1, COL2)

1 table found.
(primary key columns are indicated with *)

Use the ALTER TABLE statement to change the distribution key to col1. The operation
succeeds because the table is empty.

Command> ALTER TABLE mytable2 DISTRIBUTE BY HASH (col1);
Command> describe mytable2;

Table SAMPLEUSER.MYTABLE2:
 Columns:
 COL1 NUMBER NOT NULL
 COL2 VARCHAR2 (32) INLINE
 DISTRIBUTE BY HASH (COL1)

1 table found.
(primary key columns are indicated with *)

Understanding Indexes
TimesTen Scaleout supports both local and global indexes.

• Local index: TimesTen Scaleout creates the index on all elements of the
database. The index in each element maps to rows in that element. Queries
against index columns that do not also include all the distribution key columns of
the table require communication with an element in every replica set.

• Global index: A global index maps all rows in the database in a hash distribution
scheme. When you create a global index, TimesTen Scaleout creates a
materialized view with a local index and a hash distribution scheme to the index
key columns. The materialized view optimizes query execution by making
predictable in which replica set any given value of the index key columns is
located. The local index on the materialized view further optimizes query
performance.

Chapter 7
Understanding Indexes

7-4

Note:

There is an execution cost overhead incurred for DML operations against the
columns that are defined in a global index. Also, a global index has a storage
cost overhead when compared to a local index. These are key tuning trade-offs
in TimesTen Scaleout.

To increase query performance, consider using a global index instead a local index for:

• Unique indexes. With a global unique index, TimesTen Scaleout can perform unique
constraint checks more efficiently. See Create a Unique Index.

Note:

Create a local unique index instead if the distribution key is a subset of the
index key. TimesTen Scaleout uses the distribution key columns for uniqueness
verification instead of accessing all replica sets as it would do for any other
local unique index case.

• Columns that are frequently joined with primary key columns in queries. If one or more of
the joined sets of columns are neither the primary key or distribution key, then creating
global indexes on such sets of columns optimizes query performance by reducing the
number of replica sets that need to be accessed. See Use Global Indexes to Optimize
Query with Joins to Primary Key Columns.

• Indexes that include non-index columns that are frequently accessed in queries. Global
indexes enable you to add non-index columns in index structure with the INCLUDE clause.
These non-index columns in the index can be used to satisfy some queries without
needing to access the base table. See Use Global Indexes to Optimize Query with Joins
to Primary Key Columns.

• Indexes where the index key is a prefix of the distribution key of the table.

Note:

To reduce space usage and improve DML performance, it is recommended that you
combine all global indexes with the same prefix in the index key into a single global
index using the columns in the prefix as index key.

Likewise, consider using a local index instead of a global index for:

• Indexes where the index key:

– Consists of only non-unique columns

– Is the same as the distribution key of the table

• Indexes where the distribution key of the table is a prefix of the index key.

Global indexes are not supported on these cases:

• Tables using a duplicate distribution scheme

Chapter 7
Understanding Indexes

7-5

• Tables using a reference distribution scheme where the distribution key references
a table using a reference distribution scheme.

See ALTER TABLE, CREATE INDEX, and CREATE TABLE in Oracle TimesTen In-
Memory Database SQL Reference.

Examples include:

• Create a Unique Index

• Use Global Indexes to Optimize Query with Joins to Primary Key Columns

Create a Unique Index
The following example illustrates how to create a unique index (local and global) on an
existing table and shows the query optimizer plan for inserting values into the table.

Consider that you need to ensure that phone numbers inserted into the accounts table
are unique and the table already uses the account_id column as primary key and
hash distribution key.

Command> DESCRIBE accounts;

Table TERRY.ACCOUNTS:
 Columns:
 *ACCOUNT_ID NUMBER (10) NOT NULL
 PHONE VARCHAR2 (16) INLINE NOT NULL
 ACCOUNT_TYPE CHAR (1) NOT NULL
 STATUS NUMBER (2) NOT NULL
 CURRENT_BALANCE NUMBER (10,2) NOT NULL
 PREV_BALANCE NUMBER (10,2) NOT NULL
 DATE_CREATED DATE NOT NULL
 CUST_ID NUMBER (10) NOT NULL
 PRIMARY KEY (ACCOUNT_ID) RANGE INDEX
 DISTRIBUTE BY HASH (ACCOUNT_ID)

1 table found.
(primary key columns are indicated with *)

If you create a local unique index, TimesTen Scaleout would need to connect to every
replica set of the database to verify the uniqueness of the values inserted or updated
in the phone column, as shown next.

Command> CREATE UNIQUE INDEX phone_ix ON accounts(phone);
Command> INDEXES;

Indexes on table TERRY.ACCOUNTS:
 ACCOUNTS: unique range index on columns:
 ACCOUNT_ID
 PHONE_IX: unique range index on columns:
 PHONE
 2 indexes found.

2 indexes found on 1 table.
Command> EXPLAIN INSERT INTO accounts VALUES(?,?,?,?,?,?,?,?);

Chapter 7
Understanding Indexes

7-6

Query Optimizer Plan:

 STEP: 1
 LEVEL: 5
 OPERATION: RowLkInsert
 TBLNAME: ACCOUNTS
 IXNAME:
 INDEXED CONDITION:
 NOT INDEXED:
 MISCELLANEOUS:

 STEP: 2
 LEVEL: 4
 OPERATION: GridRoute(Dist: DistHash, Kind: 1ProducerNConsumer)
 TBLNAME:
 IXNAME:
 INDEXED CONDITION:
 NOT INDEXED:
 MISCELLANEOUS:

 STEP: 3
 LEVEL: 3
 OPERATION: DMLScan
 TBLNAME:
 IXNAME:
 INDEXED CONDITION:
 NOT INDEXED:
 MISCELLANEOUS: opNodeCnt=1, RowLkInsert(ACCOUNTS)

 STEP: 4
 LEVEL: 2
 OPERATION: GridRoute(Dist: Duplicate, Kind: NProducerNConsumer)
 TBLNAME:
 IXNAME:
 INDEXED CONDITION:
 NOT INDEXED:
 MISCELLANEOUS:

 STEP: 5
 LEVEL: 1
 OPERATION: GlobalCheckConstraint
 TBLNAME: ACCOUNTS
 IXNAME:
 INDEXED CONDITION:
 NOT INDEXED:
 MISCELLANEOUS: UniqueKeyInsert(idx:PHONE_IX)

If you instead create a global unique index, TimesTen Scaleout would be able to verify the
uniqueness of the values in the phone column more efficiently since the location of a row in
the materialized view that the global index creates would be determined by the value in the

Chapter 7
Understanding Indexes

7-7

phone column. The local index that the global index creates on the materialized view
further ensures optimum query performance.

Use Global Indexes to Optimize Query with Joins to Primary Key
Columns

The following example illustrates how to use global indexes to optimize queries to
columns that are commonly joined in queries to primary key columns.

Consider that the customers table uses the cust_id column as both primary and
distribution key, the accounts table uses the account_id column as both primary and
distribution key, and the call_records table uses the call_id columns as both
primary and distribution key.

Command> DESCRIBE customers;

Table TERRY.CUSTOMERS:
 Columns:
 *CUST_ID NUMBER (10) NOT NULL
 FIRST_NAME VARCHAR2 (30) INLINE NOT NULL
 LAST_NAME VARCHAR2 (30) INLINE NOT NULL
 ADDR1 VARCHAR2 (64) INLINE
 ADDR2 VARCHAR2 (64) INLINE
 ZIPCODE VARCHAR2 (5) INLINE
 ACCOUNT_ID NUMBER (10)
 MEMBER_SINCE DATE NOT NULL
 PRIMARY KEY (CUST_ID) RANGE INDEX
 DISTRIBUTE BY HASH (CUST_ID)

1 table found.
(primary key columns are indicated with *)
Command> DESCRIBE accounts;

Table TERRY.ACCOUNTS:
 Columns:
 *ACCOUNT_ID NUMBER (10) NOT NULL
 PHONE VARCHAR2 (16) INLINE NOT NULL
 ACCOUNT_TYPE CHAR (1) NOT NULL
 STATUS NUMBER (2) NOT NULL
 CURRENT_BALANCE NUMBER (10,2) NOT NULL
 PREV_BALANCE NUMBER (10,2) NOT NULL
 DATE_CREATED DATE NOT NULL
 CUST_ID NUMBER (10) NOT NULL
 PRIMARY KEY (ACCOUNT_ID) RANGE INDEX
 DISTRIBUTE BY HASH (ACCOUNT_ID)

1 table found.
(primary key columns are indicated with *)
Command> DESCRIBE call_records;

Table TERRY.CALL_RECORDS:
 Columns:
 *CALL_ID NUMBER (10) NOT NULL
 CALLER NUMBER (10) NOT NULL

Chapter 7
Understanding Indexes

7-8

 RECEIVER NUMBER (10) NOT NULL
 CALL_TIME TIMESTAMP (6) NOT NULL
 CODE NUMBER (38) NOT NULL
 PRIMARY KEY (CALL_ID) RANGE INDEX
 DISTRIBUTE BY HASH (CALL_ID)

1 table found.
(primary key columns are indicated with *)

Also, consider that you need to report on the accounts and customers that made a call with a
specific code, as shown in the next query.

SELECT accounts.account_id, customers.cust_id, call_records.code
 FROM accounts, customers, call_records
 WHERE customers.cust_id = call_records.caller
 AND call_records.code = ?
 AND customers.account_id = accounts.account_id;

Given that the customers.cust_id and accounts.account_id columns are the primary keys
of their respective tables, queries to those columns are already optimized. However, to
optimize the join between the customers and call_records tables, the example creates the
customer_calls_gix global index on the call_records.caller column and includes the
call_records.code column to avoid having to further access the call_records table during
the execution of the query.

CREATE GLOBAL INDEX customer_calls_gix
 ON call_records(caller)
 INCLUDE (code)
 DISTRIBUTE BY HASH;

Furthermore, the example creates the customer_account_gix global index on the
customers.account_id column to optimize the join between the customers and accounts
tables.

Using Sequences
The CREATE SEQUENCE statement creates a new sequence number generator that can
subsequently be used by multiple users to generate unique BIGINT data types. As with
materialized views and tables, once you create the sequence object, sequence values can be
retrieved from any element of the database.

The values are retrieved from the sequence in blocks and cached in order to reduce the
overhead of performing a globally coordinated update on the sequence object every time a
value is retrieved. While the values returned from a sequence in TimesTen Scaleout are
guaranteed to be unique, they are not guaranteed to be sequential.

The BATCH clause is specific to TimesTen Scaleout. The batch value configures the range of
unique sequence values stored in the element. Each element has its own batch. An element
will get a new batch when its local batch is consumed. There is one element that owns the
sequence and is responsible for allocating batch sequence blocks to other elements.

Sequence values are unique, but across elements the values might not be returned in
monotonic order. Within a single element, sequence values are in monotonic order. But over

Chapter 7
Using Sequences

7-9

time, across elements, sequence values are not returned monotonically. However, the
monotonic property is guaranteed within an element.

If your application records events and tags each event with a sequence value, the
application cannot assume that event 100, for example, happened after event 80. If
your application needs to make this assumption, then set BATCH to 1. However, there is
substantial communication overhead if you set BATCH to 1.

In summary, unless the BATCH value is set to 1, the order of sequence values is not
guaranteed to be maintained across all elements. However, no matter what the batch
value is, the uniqueness of the sequence value is guaranteed to be maintained across
all elements. In addition, the order of sequence values is guaranteed to be maintained
within an element.

You can change the default batch value of an existing sequence by issuing the ALTER
SEQUENCE statement. The batch value is the only alterable clause. See CREATE
SEQUENCE and ALTER SEQUENCE in Oracle TimesTen In-Memory Database SQL
Reference for more information. Use the DROP SEQUENCE statement to drop a
sequence. See DROP SEQUENCE in Oracle TimesTen In-Memory Database SQL
Reference.

Understanding Batch Allocation
Deciding what to set for the batch value depends on these considerations:

• If you set the value to 1, sequence values are issued in monotonic order, no matter
how many elements exist. However, there is substantial communication overhead
with a value of 1, which results in a detrimental impact on performance. Unless
absolutely necessary, do not set the value to 1 as it will directly impact the
performance of your system.

• If you set the value greater than 1, unique sequence values are not issued in strict
order across all elements. If your connection retrieves multiple values from a
sequence, there is no guarantee that the values will be consecutive or contiguous.
If multiple connections retrieve values from a sequence, there may be gaps in the
range of values retrieved.

• You should consider setting batch to a high value to avoid excessive
communication among elements (unless it is necessary to set the batch value to 1
for the proper functioning of your application).

• The unique sequence value within the batch boundary cannot be greater than
MAXVALUE. For example, if a sequence increments by 1, has a batch value of 3,
and a maximum value of 5, the first batch includes 1, 2, and 3. The second batch
includes 4 and 5 only.

• The batch value must be greater or equal to the cache value.

• If you do not specify a batch value, the default is 10 million. Each element starts
with its own set of 10 million values. If the 10 million values are used up, the
element gets 10 million more. The minimum and maximum values and the number
of unique values are determined by the MINVALUE, MAXVALUE, and INCREMENT BY
values.

• Each element in a replica set has different batches.

Examples of batch assignment:

• Illustrate Batch Assignment for Three Elements

Chapter 7
Using Sequences

7-10

• Illustrate a Second Batch Assignment for Three Elements

Illustrate Batch Assignment for Three Elements
This example creates the myseq sequence with a batch value of 100. Then, from the
connection that is connected to element 1, the example issues a SELECT...NEXTVAL query.
The example then issues a second and third SELECT...NEXTVAL query from the connection
that is connected to element 2 and the connection that is connected to element 3
respectively. The example illustrates the allocation of batch assignment for each element. In
this example:

• Element 1 receives a batch of 1-100.

• Element 2 receives a batch of 101-200.

• Element 3 receives a batch of 201-300.

From the connection that is connected to element 1 (demonstrated by SELECT elementId#
FROM dual), create the myseq sequence specifying a batch value of 100. Then, issue a
SELECT...NEXTVAL query. Observe the value 1 is returned.

Command> SELECT elementId# FROM dual;
< 1 >
1 row found.
Command> CREATE SEQUENCE myseq BATCH 100;
Command> SELECT myseq.NEXTVAL FROM dual;
< 1 >
1 row found.

From the connection that is connected to element 2, first verify the connection to element 2,
then issue a SELECT...NEXTVAL query. Observe the value 101 is returned.

Command> SELECT elementId# FROM dual;
< 2 >
1 row found.
Command> SELECT myseq.NEXTVAL FROM dual;
< 101 >
1 row found.

From the connection that is connected to element 3, first verify the connection to element 3,
then issue a SELECT...NEXTVAL query. Observe the value 201 is returned.

Command> SELECT elementId# FROM dual;
< 3 >
1 row found.
Command> SELECT myseq.NEXTVAL FROM dual;
< 201 >
1 row found.

Illustrate a Second Batch Assignment for Three Elements
This example creates the myseq2 sequence with a batch value of 100. Then, from the
connection that is connected to element 1, the example issues a SELECT...NEXTVAL query.
The example then issues a second and third SELECT...NEXTVAL query from the connection

Chapter 7
Using Sequences

7-11

that is connected to element 3 and the connection that is connected to element 2
respectively. The example illustrates the allocation of batch assignment for each
element. In this example:

• Element 1 receives a batch of 1-100.

• Element 3 receives a batch of 101-200.

• Element 2 receives a batch of 201-300.

From the connection that is connected to element 1 (demonstrated by SELECT
elementId# FROM dual), create the myseq2 sequence specifying a batch value of 100.
Then, issue a SELECT...NEXTVAL query. Observe the value 1 is returned.

Command> SELECT elementId# FROM dual;
< 1 >
1 row found.
Command> CREATE SEQUENCE myseq2 BATCH 100;
Command> SELECT myseq2.NEXTVAL FROM dual;
< 1 >
1 row found.

From the connection that is connected to element 3, first verify the connection to
element 3, then issue a SELECT...NEXTVAL query. Observe the value 101 is returned.

Command> SELECT elementId# FROM dual;
< 3 >
1 row found.
Command> SELECT myseq2.NEXTVAL FROM dual;
< 101 >
1 row found.

From the connection that is connected to element 2, first verify the connection to
element 2, then issue a SELECT...NEXTVAL query. Observe the value 201 is returned.

Command> SELECT elementId# FROM dual;
< 2 >
1 row found.
Command> SELECT myseq2.NEXTVAL FROM dual;
< 201 >
1 row found.

Performing DML Operations
TimesTen Scaleout supports the INSERT, DELETE, and UPDATE, and SELECT DML
operations. The MERGE operation is not supported.

All data in all elements is accessible from everywhere. You can query or modify data in
any or all elements. Transactions obey ACID rules. TimesTen Scaleout provides read
committed semantics for isolation level. Readers do not block writers and writers do
not block readers.

Chapter 7
Performing DML Operations

7-12

Using Pseudocolumns
A pseudocolumn is an assigned value used in the same context as a column, but is not
stored. Pseudocolumns are not actual columns in a table but behave like columns. You can
perform select operations, but you cannot perform insert, update, or delete operations on a
pseudocolumn.

Use the replicaSetId# pseudocolumn to determine the replica set in which the row is stored.
This pseudocolumn returns a NOT NULL TT_INTEGER data type.

See Pseudocolumns in TimesTen Scaleout in Oracle TimesTen In-Memory Database SQL
Reference for information on the additional pseudocolumns supported in TimesTen Scaleout.

Examples include:

• Use replicaSetId# to Locate Data

• Use replicaSetId# with a Table That Has a Duplicate Distribution Scheme

Use replicaSetId# to Locate Data
This example issues a query on the customers table, returning the replica set in which the
data is stored (as determined by replicaSetId#).

Command> SELECT replicasetid#, cust_id,last_name,first_name
 FROM customers WHERE cust_id BETWEEN 910 AND 920
 ORDER BY cust_id, last_name, first_name;
< 2, 910, Riley, Tessa >
< 1, 911, Riley, Rashad >
< 1, 912, Riley, Emma >
< 1, 913, Rivera, Erin >
< 1, 914, Roberts, Ava >
< 1, 915, Roberts, Lee >
< 2, 916, Roberts, Clint >
< 3, 917, Robertson, Faith >
< 2, 918, Robinson, Miguel >
< 2, 919, Robinson, Mozell >
< 3, 920, Rodgers, Darryl >
11 rows found.

Use replicaSetId# with a Table That Has a Duplicate Distribution Scheme
This example first uses the ttIsql describe command on the account_status table to
validate the table has a duplicate distribution scheme. The example then issues a query to
return the replicasetId#. The example then repeats the same query from a different
connection. The example shows that the data returned is located on the replica set to which
the application is connected and thus is present in every element in the database (duplicate
distribution scheme).

Command> describe account_status;

Table SAMPLEUSER.ACCOUNT_STATUS:
 Columns:

Chapter 7
Using Pseudocolumns

7-13

 *STATUS NUMBER (2) NOT NULL
 DESCRIPTION VARCHAR2 (100) INLINE NOT NULL
 DUPLICATE

1 table found.
(primary key columns are indicated with *)

Query the dual table to return the replica set to which the application is connected. In
this example, the replica set is 1.

Command> SELECT replicaSetId# FROM dual;
< 1 >
1 row found.

Command> SELECT replicaSetId#,* FROM account_status;
< 1, 10, Active - Account is in good standing >
< 1, 20, Pending - Payment is being processed >
< 1, 30, Grace - Automatic payment did not process successfully >
< 1, 40, Suspend - Account is in process of being disconnected >
< 1, 50, Disconnected - You can no longer make calls or receive calls >
5 rows found.

Issue a second query from a different ttIsql session running on a different data
instance:

Command> SELECT elementid# from dual;
< 6>
1 row found.

Command> SELECT replicaSetId#, * FROM account_status;
< 3, 10, Active - Account is in good standing >
< 3, 20, Pending - Payment is being processed >
< 3, 30, Grace - Automatic payment did not process successfully >
< 3, 40, Suspend - Account is in process of being disconnected >
< 3, 50, Disconnected - You can no longer make calls or receive calls >
5 rows found.

Using the TT_CommitDMLOnSuccess Hint
The TT_CommitDMLOnSuccess hint is used to enable or disable a commit operation as
part of DML execution. You can specify the hint at the connection level or at the
statement level.

While using this hint (TT_CommitDMLOnSuccess set to 1):

• At statement level, if a statement encounters an error while executing, the
transaction remains active and the database consistent.

• For transactions that impact a single replica set, the commit operation uses a one-
phase commit instead of a two-phase commit protocol.

There is no difference in performance if you set autocommit to 1 or if you set the
TT_CommitDMLOnSuccess hint to 1.

Chapter 7
Using the TT_CommitDMLOnSuccess Hint

7-14

See TT_CommitDMLOnSuccess Optimizer Hint in Oracle TimesTen In-Memory Database
SQL Reference.

Using Optimizer Hints
The TimesTen query optimizer is a cost-based optimizer that determines the most efficient
way to run a given query by considering possible query plans. A query plan in TimesTen
Scaleout is affected by the distribution scheme and the distribution keys of a hash distribution
scheme as well as the column and table statistics, the presence or absence of indexes, the
volume of data, the number of unique values, and the selectivity of predicates. You can
manually examine a query plan by running the ttIsql explain command. See The
TimesTen Query Optimizer in Oracle TimesTen In-Memory Database Operations Guide.
You can use optimizer hints to influence the execution plan generated by the optimizer. There
are two optimizer hints that are specific to TimesTen Scaleout. These hints are valid at the
statement and the connection levels. At the statement level, the hints are valid for SELECT
statements only:

• TT_GridQueryExec

• TT_PartialResult

See Optimizer Hints Supported in TimesTen Scaleout Only in Oracle TimesTen In-Memory
Database SQL Reference for information on the optimizer hints specific to TimesTen
Scaleout. See Use Optimizer Hints to Modify the Execution Plan in Oracle TimesTen In-
Memory Database Operations Guide for more information on all optimizer hints.

TT_GridQueryExec
The TT_GridQueryExec optimizer hint enables you to specify whether the query should return
data from the local element or from all elements, including the elements in a replica set when
K-safety is set to 2.

If you do not specify this hint, the query is run in one logical data space. It is neither local nor
global. Exactly one full copy of the data is used to compute the query.

Valid options for this hint are LOCAL and GLOBAL:

• LOCAL: TimesTen Scaleout runs the queries in the local element only. Data is retrieved
locally from the element to which you are connected. If the local element does not have a
full copy of the data, TimesTen Scaleout returns partial results.

• GLOBAL: TimesTen Scaleout retrieves data from all elements, including copies of the rows
from all tables from all replica sets to generate the results. This results in duplicate data
returned if K-safety is set to 2 or if tables have a duplicate distribution scheme.

As with all queries, the element that you are directly connected to and issue the SQL query
from prepares the query and sends it to all other elements in the grid. The request is run on
elements that are up and the results are reported locally on the connected element.

See TT_GridQueryExec Optimizer Hint in Oracle TimesTen In-Memory Database SQL
Reference for information on the syntax and semantics for this hint.

The distribution scheme is a determining factor in the number of rows returned. For example,
Table 7-2 shows the number of rows used in query for the three distribution schemes. k
represents the number of copies (k=2 in our example), e represents one element from each
replica set (e=3 in our example), and r represents the number of rows in the table.

Chapter 7
Using Optimizer Hints

7-15

Table 7-2 TT_GridQueryExec Optimizer Hint

Option Table type Number of rows used in query

LOCAL Duplicate distribution scheme table

Distributed by hash table

Distributed by reference table

r

r/e (Assumes uniform distribution)

r/e (Assumes uniform distribution)

GLOBAL Duplicate distribution scheme table

Distributed by hash table

Distributed by reference table

e*k*r

k*r

k*r

Examples include:

• Use TT_GridQueryExec on a Hash Distribution Scheme Table

• Use TT_GridQueryExec on a Duplicate Distribution Scheme Table

• Use TT_GridQueryExec on a Reference Distribution Scheme Table

Note:

Reads do not get a distributed lock and return committed data. For the
examples that use the TT_GridQueryExec(GLOBAL) optimizer hint, if a write to
a replica set happens between the reads to its replicas, it is possible that the
count will not match for all replicas. This is expected behavior because each
replica is afforded read committed isolation.

Use TT_GridQueryExec on a Hash Distribution Scheme Table
This example uses the ttIsql describe command on the customers table to illustrate
the table is distributed by hash. The example runs a SELECT COUNT (*) query on the
customers table to return the number of rows in the table (1000). From the connection
that is connected to element 4, the example uses the TT_GridQueryExec (Local) and
(Global) optimizer hints to return the number of rows. The rows returned differ based
on whether Local or Global was specified in the TT_GridQueryExec hint.

Command> describe customers;

Table SAMPLEUSER.CUSTOMERS:
 Columns:
 *CUST_ID NUMBER (10) NOT NULL
 FIRST_NAME VARCHAR2 (30) INLINE NOT NULL
 LAST_NAME VARCHAR2 (30) INLINE NOT NULL
 ADDR1 VARCHAR2 (64) INLINE
 ADDR2 VARCHAR2 (64) INLINE
 ZIPCODE VARCHAR2 (5) INLINE
 MEMBER_SINCE DATE NOT NULL
 DISTRIBUTE BY HASH (CUST_ID)

1 table found.
(primary key columns are indicated with *)

Chapter 7
Using Optimizer Hints

7-16

Command> SELECT COUNT (*) FROM customers;
< 1000 >
1 row found.

Issue a SELECT elementId# FROM dual query to determine the local element connection (4).

Command> SELECT elementId# FROM dual;
< 4 >
1 row found.

From this connection, issue a SELECT query supplying the TT_GridQueryExec(LOCAL)
optimizer hint. Expect approximately 333 rows to be returned (1000/3).

Command> SELECT /*+TT_GridQueryExec(LOCAL)*/ COUNT (*), elementId#
 FROM customers GROUP BY elementId#;
< 326, 4 >
1 row found.

Now issue a SELECT query supplying the TT_GridQueryExec(GLOBAL) optimizer hint. Expect
2000 rows returned (k=2 * r=1000 = 2000). Validate the results by using the SUM function to
calculate the total rows returned for all 6 elements.

Command> SELECT /*+TT_GridQueryExec(GLOBAL)*/ COUNT (*), elementId#
 FROM customers GROUP BY elementId#
 ORDER BY elementId#;
< 338, 1 >
< 338, 2 >
< 326, 3 >
< 326, 4 >
< 336, 5 >
< 336, 6 >
6 rows found.

Command> SELECT SUM (338+338+326+326+336+336) FROM dual;
< 2000 >
1 row found.

Validate the total count using the TT_GridQueryExec(GLOBAL) hint.

Command> SELECT/*+TT_GridQueryExec(GLOBAL)*/ COUNT(*) FROM customers;
< 2000 >
1 row found.

Use TT_GridQueryExec on a Duplicate Distribution Scheme Table
This example uses the ttIsql describe command on the account_status table to illustrate
the table is a duplicate distribution scheme. The example runs a SELECT COUNT (*) query on
the account_status table to return the number of rows in the table (5). From the connection
that is connected to element 2, the example uses the TT_GridQueryExec (Local) and

Chapter 7
Using Optimizer Hints

7-17

(Global) optimizer hints to return the number of rows. The rows return differ based on
whether Local or Global was specified in the TT_GridQueryExec hint.

Command> describe account_status;
Table SAMPLEUSER.ACCOUNT_STATUS:
 Columns:
 *STATUS NUMBER (2) NOT NULL
 DESCRIPTION VARCHAR2 (100) INLINE NOT NULL
 DUPLICATE

1 table found.
(primary key columns are indicated with *)

Command> SELECT count (*) FROM
account_status;
< 5 >
1 row found.

Command> SELECT elementId# FROM dual;
< 2 >
1 row found.

Issue a SELECT query supplying the TT_GridQueryExec(LOCAL) optimizer hint. Expect
approximately 5 rows to be returned (r = 5).

Command> SELECT /*+TT_GridQueryExec(LOCAL)*/ COUNT (*),elementId#
 FROM account_status GROUP BY elementId#;
< 5, 2 >
1 row found.

Now issue a SELECT query supplying the TT_GridQueryExec(GLOBAL) optimizer hint.
Expect 30 rows returned (e=3 *k=2 * r=5= 30).

Command> SELECT /*+TT_GridQueryExec(GLOBAL)*/ COUNT (*),elementId#
 FROM account_status GROUP BY elementId#
 ORDER BY elementId#;
< 5, 1 >
< 5, 2 >
< 5, 3 >
< 5, 4 >
< 5, 5 >
< 5, 6 >
6 rows found.

Validate the total count using the TT_GridQueryExec(GLOBAL) hint.

Command> SELECT /*+TT_GridQueryExec(GLOBAL)*/ COUNT (*) FROM
account_status;
< 30 >
1 row found.

Chapter 7
Using Optimizer Hints

7-18

Use TT_GridQueryExec on a Reference Distribution Scheme Table
This example uses the ttIsql describe command on the accounts table to illustrate the
table is distributed by reference. The example runs a SELECT COUNT (*) query on the
accounts table to return the number of rows in the table (1010). From the connection that is
connected to element 1, the example uses the TT_GridQueryExec (Local) and (Global)
optimizer hint to return the number of rows. The rows returned differ based on whether Local
or Global was specified in the TT_GridQueryExec hint.

Command> describe accounts;
Table SAMPLEUSER.ACCOUNTS:
 Columns:
 *ACCOUNT_ID NUMBER (10) NOT NULL
 PHONE VARCHAR2 (15) INLINE NOT NULL
 ACCOUNT_TYPE CHAR (1) NOT NULL
 STATUS NUMBER (2) NOT NULL
 CURRENT_BALANCE NUMBER (10,2) NOT NULL
 PREV_BALANCE NUMBER (10,2) NOT NULL
 DATE_CREATED DATE NOT NULL
 CUST_ID NUMBER (10) NOT NULL
 DISTRIBUTE BY REFERENCE (FK_CUSTOMER)
1 table found.
(primary key columns are indicated with *)

Command> SELECT COUNT (*) FROM accounts;
< 1010 >
1 row found.

Command> SELECT elementId# FROM dual;
< 1 >
1 row found.

Issue a SELECT query supplying the TT_GridQueryExec(LOCAL) optimizer hint. Expect
approximately 336 rows to be returned (1010/3).

Command> SELECT /*+TT_GridQueryExec(LOCAL)*/ COUNT (*), elementId#
 FROM accounts GROUP BY elementId#;
< 339, 1>
1 row found.

Now issue a SELECT query supplying the TT_GridQueryExec(GLOBAL) optimizer hint. Expect
2020 rows returned (k=2 * r=1010 = 2020). Validate the results by using the SUM function to
calculate the total rows returned for all 6 elements.

Command> SELECT /*+TT_GridQueryExec(GLOBAL)*/ COUNT (*), elementId#
 FROM accounts GROUP BY elementId#
 ORDER BY elementId#;
< 339, 1 >
< 339, 2 >
< 332, 3 >
< 332, 4 >
< 339, 5 >

Chapter 7
Using Optimizer Hints

7-19

< 339, 6 >
6 rows found.

Command> SELECT SUM (339+339+332+332+339+339) FROM dual;
< 2020 >
1 row found.

Validate the total count using the TT_GridQueryExec(GLOBAL) hint.

Command> SELECT/*+TT_GridQueryExec(GLOBAL)*/ COUNT(*) FROM accounts;
< 2020 >
1 row found.

TT_PartialResult
The TT_PartialResult optimizer hint enables you to specify whether the query should
return partial results or error if data is not available.

Use TT_PartialResult(1) to direct the query to return partial results if all elements in
a replica set are not available.

Use TT_PartialResult(0) to direct the query to return an error if the required data is
not available in the case where all elements in a replica set are not available. If at least
one element from each replica set is available or the data required by the query is
available, the optimizer returns the query result correctly without error.

The default is TT_PartialResult(0).

See TT_PartialResult Optimizer Hint in Oracle TimesTen In-Memory Database SQL
Reference for information on the syntax and semantics for this hint.

Examine Results Using TT_PartialResult
In this example, select the elementId#, replicaSetId#, and dataspaceId#
pseudocolumns to locate the row of data involved in the query. Force elements 3 and 4
to be unavailable. Set TT_PartialResult to 0 to return an error if the replica set is
unavailable. Then, set TT_PartialResult to 1 to return partial results from the
elements that are available.

Command> SELECT elementId#,replicasetId#,dataspaceId#,
last_name,first_name
 FROM customers WHERE last_name LIKE ('%Wh%') ORDER BY
last_name;
< 6, 3, 2, Whitaker, Armand >
< 4, 2, 2, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 4, 2, 2, White, Dona >
< 4, 2, 2, White, Ellyn >
< 4, 2, 2, White, Nora >
< 4, 2, 2, White, Phylis >
8 rows found.

Command> SELECT /*+TT_PartialResult(0)*/

Chapter 7
Using Optimizer Hints

7-20

elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name like ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 4, 2, 2, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 4, 2, 2, White, Dona >
< 4, 2, 2, White, Ellyn >
< 4, 2, 2, White, Nora >
< 4, 2, 2, White, Phylis >
8 rows found.

Command> SELECT /*+TT_PartialResult(1)*/
elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 4, 2, 2, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 4, 2, 2, White, Dona >
< 4, 2, 2, White, Ellyn >
< 4, 2, 2, White, Nora >
< 4, 2, 2, White, Phylis >
8 rows found.

Element 4 is no longer available. Expect same results. Element 3 is available.

Command> SELECT /*+TT_PartialResult(1)*/
elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 3, 2, 1, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 3, 2, 1, White, Dona >
< 3, 2, 1, White, Ellyn >
< 3, 2, 1, White, Nora >
< 3, 2, 1, White, Phylis >
8 rows found.

Command> SELECT /*+TT_PartialResult(0)*/
elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 3, 2, 1, Whitaker, Ariel >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
< 3, 2, 1, White, Dona >
< 3, 2, 1, White, Ellyn >
< 3, 2, 1, White, Nora >

Chapter 7
Using Optimizer Hints

7-21

< 3, 2, 1, White, Phylis >
8 rows found.

Now element 3 becomes unavailable. Replica set 2 is unavailable. Expect
TT_PartialResult set to 1 to return partial results. Expect TT_PartialResult set to 0
to return an error.

Command> SELECT /*+TT_PartialResult(1)*/
elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
< 6, 3, 2, Whitaker, Armand >
< 6, 3, 2, White, Carlene >
< 6, 3, 2, White, Marcelo >
3 rows found.

Command> SELECT /*+TT_PartialResult(0)*/
elementId#,replicasetId#,dataspaceId#,
 last_name,first_name FROM customers
 WHERE last_name LIKE ('%Wh%') ORDER BY last_name;
 3723: Replica set 2 down
The command failed.

Understanding ROWID in Data Distribution
TimesTen Scaleout requires a unique id for row distribution. It uses ROWID to ensure
uniqueness across all elements.

For tables with a duplicate distribution scheme where K-safety is set to 1 and for all
tables (no matter what the distribution scheme is) where K-safety is set to 2, the
physical location of each copy of a row is different, so each copy of the row has
different ROWID values. In this case, when using ROWID based access, TimesTen
Scaleout returns the value of the ROWID in the first data space. If the row in the first
data space is not available, TimesTen Scaleout returns the ROWID in the next (second)
data space.

Since ROWID is the identifier of a specific copy of a row, if that copy is not available, you
cannot access the row by ROWID. In this case, you should access the row by primary
key.

See ROWID Pseudocolumn in Oracle TimesTen In-Memory Database SQL Reference.

Note:

Applications should not store ROWID values in the database and try to use
these values later. Applications can fetch the ROWID in a transaction and then
use the ROWID later in the same transaction.

Chapter 7
Understanding ROWID in Data Distribution

7-22

Understanding System Views
There are several local (V$) global (GV$) system views you can query to retrieve metadata
information about your database.

• The V$ views contain data for the element to which your application is connected.

• The GV$ views contain the contents of the V$ view for every element of the database.

In addition, there are several views that you can query that are based on TimesTen built-in
procedures. See System Tables and Views in Oracle TimesTen In-Memory Database System
Tables and Views Reference.

Chapter 7
Understanding System Views

7-23

8
Maintaining a Grid

You can modify a grid in TimesTen Scaleout, such as modify some of the settings of the grid
or modify the attributes of certain objects in the grid. Also, you can perform several task to
maintain a grid, such as stop, restart, or destroy the grid; update the model of the grid; or
redistribute the data in the database after adding or removing elements.

• Maintaining the Model of a Grid

• Modifying a Grid

• Redistributing Data in a Database

• Stopping a Grid

• Restarting a Grid

• Destroying a Grid

Note:

• The following topics consider the grid and database generated by the examples
found in Setting Up a Grid and Creating a Database as the grid and database
configuration on which the commands are run.

• All the tasks described in the next topics require that you run the ttGridAdmin
utility from the active management instance as the instance administrator,
unless stated otherwise.

Maintaining the Model of a Grid
The model is a comprehensive list of the objects that give shape to a grid. Depending of the
version of the model, the model may either describe a previous, present, or desired structure
of a grid.

The ttGridAdmin utility has several commands that enable you to review any stored version
of the model:

• Compare different versions of the model

• Export a version of the model

• Import a model as the latest version of the model

• List the available versions of the model

For more information on the different versions of the model or model operations, see Model
Versioning or Model Operations in Oracle TimesTen In-Memory Database Reference,
respectively.

8-1

Modifying a Grid
TimesTen Scaleout defines several different types of objects in the model to give
shape to a grid.

• Data space groups

• Hosts

• Installations

• Instances

Additionally, there are two types of model objects that describe the databases that the
grid manages and that, in conjunction, define the names by which you connect to
these databases. These types of objects are:

• Database definitions

• Connectables

Note:

See Central Configuration of the Grid for a complete list of the types of model
objects and their descriptions.

You can create, modify, or delete objects in the model. Consider that changes you
make to the model only take effect after you apply them to the current version of the
model.

Note:

• See Setting Up a Grid for details on how to create the objects that give
shape to a grid.

• See Creating a Database, Modifying the Connection Attributes of a
Database, or Destroying a Database for details on how to create, modify,
or delete the objects that define a database, respectively.

• See Applying the Changes Made to the Model for details on the versions
of the model and applying changes to the current version of the model.

The following topics describe how to modify or delete the objects that give shape to a
grid:

• Modifying the Settings of a Grid

• Modifying Objects in a Grid

• Deleting Objects from a Grid

• Reconfiguring Membership Servers

Chapter 8
Modifying a Grid

8-2

Modifying the Settings of a Grid
You can modify any of the following settings at any time after the creation of a grid.

• The user name and password that instances use to access membership servers. See
Membership Services Access Control in Oracle TimesTen In-Memory Database Security
Guide.

• The number of days that the grid retains an old version of the model and the maximum
number of old versions of the model that the grid retains at any given time. See Modify
the Retention Values of Previous Grid Models.

• The used-space warning threshold for the management instance. See Modify the Used-
Space Warning Threshold of the Management Instances.

Modifying Objects in a Grid
Of the objects in the model that give shape to a grid, only hosts and instances can be
modified. Installations can only be deleted. These topics describe how to modify the attributes
of the hosts and instances in a grid:

• Modify a Host

• Modify an Instance

Modify a Host
You can modify certain attributes of a host with ttGridAdmin hostModify command. The
name and communication parameters (internal or external DNS names or IP addresses) of a
host cannot be modified. Once you assign a host to a data space group and apply that
assignment to the current version of the model, you cannot change it.

For more information on the ttGridAdmin hostModify command, see Modify a Host
(hostModify) in Oracle TimesTen In-Memory Database Reference.

Modify an Instance
You can modify the installation associated with an instance with ttGridAdmin
instanceModify command. Also, this command enables you to modify the TCP/IP port
number of the replication agent of a management instance, but only if there is not a second
management instance available. In other words, you can only modify the TCP/IP port number
of the replication agent of a management instance if the port is not in use. See Upgrade a
Grid to a Patch-Compatible Release for an example where several instances are modified.

For more information on the ttGridAdmin instanceModify command, see Modify an
Instance (instanceModify) in Oracle TimesTen In-Memory Database Reference.

Deleting Objects from a Grid
These topics describes how to delete objects from a grid:

• Delete a Data Instance

• Delete a Management Instance

• Delete an Installation

Chapter 8
Modifying a Grid

8-3

• Delete a Host

Delete a Data Instance
Before you can delete a data instance from a grid, you need to remove the element of
the data instance from the distribution map of every database, as shown next:

1. Remove the element of the data instance from the distribution map of every
database as shown in Removing Elements from the Distribution Map.

2. Delete the data instance from the latest version of the model.

% ttGridAdmin instanceDelete host6.instance1
Instance instance1 on Host host6 deleted from Model

3. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply
...
Identifying any deleted
objects.......................................OK
Stopping deleted
instances..OK
Deleting
instances..OK
...
ttGridAdmin modelApply complete

For more information on the ttGridAdmin instanceDelete command, see Delete an
Instance (instanceDelete) in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see Applying the
Changes Made to the Model and Model Operations in Oracle TimesTen In-Memory
Database Reference.

Delete a Management Instance
Only the standby management instance can be deleted from a grid. If you intend to
delete the active management instance in a grid with two management instances, first
switch the standby management instance to active with the ttGridAdmin
mgmtActiveSwitch command, then proceed.

Note:

For availability, we highly recommend that you always have an active and a
standby management instance in your grid. Only delete the standby
management instance if you intend to replace it with another one as soon as
possible.

If you intend to delete the active management instance in a grid with only one
management instance, consider destroying the grid in a graceful manner. See
Destroying a Grid.

Chapter 8
Modifying a Grid

8-4

To delete the standby management instance from a grid, perform these tasks:

1. Confirm that the instance you want to delete is the standby management instance.

% ttGridAdmin mgmtStatus
Host Instance Reachable RepRole(Self) Role(Active) Role(Self) Seq
RepAgent RepActive Message
----- --------- --------- ------------- ------------ ---------- ---
-------- --------- -------
host1 instance1 Yes Active Unknown Active 338
Up Yes
host2 instance1 Yes Standby Unknown Standby 338
Up No

2. Delete the standby management instance from the latest version of the model.

% ttGridAdmin instanceDelete host2.instance1
Instance instance1 on Host host2 deleted from Model

3. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply
...
Unconfiguring standby management instance.............................OK
Identifying any deleted objects.......................................OK
Stopping deleted instances..OK
Deleting instances..OK
...
ttGridAdmin modelApply complete

For more information on the ttGridAdmin mgmtActiveSwitch command, see Starting,
Stopping and Switching Management Instances and Switch the Active Management Instance
(mgmtActiveSwitch) in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin instanceDelete command, see Delete an
Instance (instanceDelete) in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see Applying the Changes
Made to the Model and Model Operations in Oracle TimesTen In-Memory Database
Reference.

Delete an Installation
You may want to delete an installation if you just performed an upgrade operation to a new
release of TimesTen Scaleout. Deleting an installation does not remove the installation files,
since the files may be still in use if the location of the files is shared by other installations in
this or any other grid. See Upgrade a Grid to a Patch-Compatible Release for more
information on upgrade and cleanup operations, which includes deleting the previous release
installation model object and files.

However, if you are deleting an installation because you are removing its associated host
from the topology of the grid, see Delete a Host for details on how to delete a host and its
associated objects, which includes the installation model object and files.

Chapter 8
Modifying a Grid

8-5

Delete a Host
Before you can delete a host from a grid, you must ensure that other model objects
associated with the host are not in use, as shown next:

1. Remove the element of every data instance associated with the host from the
distribution map of every database, as shown in Removing Elements from the
Distribution Map.

2. Delete every instance and installation associated with the host, and then, delete
the host from the latest version of the model. You can either delete each object
separately or use the -cascade of option of the ttGridAdmin hostDelete
command to delete the host and every instance and installation associated with it.

a. Delete a host and all its associated objects separately

% ttGridAdmin instanceDelete host6.instance1
Instance instance1 on Host host6 deleted from Model

% ttGridAdmin installationDelete host6.installation1
Installation installation1 on Host host6 deleted from Model

% ttGridAdmin hostDelete host6
Host host6 deleted from Model

b. Delete a host and all its associated objects

% ttGridAdmin hostDelete host6 -cascade
Instance instance1 on Host host6 deleted from Model
Installation installation1 on Host host6 deleted from Model
Host host6 deleted from Model

3. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply
...
Identifying any deleted
objects.......................................OK
Stopping deleted
instances..OK
Deleting
instances..OK
Deleting installations from
model.....................................OK
Deleting any hosts that are no longer in
use..........................OK
...
ttGridAdmin modelApply complete

4. If the installation files associated with the installation model objects you just
deleted are not in use by any other installation object in this or any other grid, then

Chapter 8
Modifying a Grid

8-6

delete the files. Ensure that you change the permissions of the directory so that you can
delete all files.

% cd /grid
% chmod -R 750 tt22.1.1.18.0/
% rm -rf tt22.1.1.18.0/

For more information on the ttGridAdmin instanceDelete, ttGridAdmin
installationDelete, or ttGridAdmin hostDelete command, see Delete an Instance
(instanceDelete), Delete an Installation (installationDelete), or Delete a Host (hostDelete),
respectively, in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see Applying the Changes
Made to the Model and Model Operations in Oracle TimesTen In-Memory Database
Reference.

Reconfiguring Membership Servers
These topics describe how to view and modify your current membership configuration:

• View the Current Membership Configuration

• Add Membership Servers

• Enable the New Membership Configuration

For more information on membership servers, see the Apache ZooKeer website.

View the Current Membership Configuration
To view your current membership configuration, run the ttGridAdmin
membershipConfigExport command. This lists the membership servers and the ports used.

% ttGridAdmin membershipConfigExport
Servers ms_host1!2181,ms_host2!2181,ms_host3!2181

For more information on the ttGridAdmin membershipConfigExport command, see Export
the Membership Configuration File (membershipConfigExport) in Oracle TimesTen In-
Memory Database Reference.

Add Membership Servers
You can add a new server to the list of membership servers to reflect your desired
membership configuration. To add the ms_host4 server and its client port 2181:

1. Create a new server configuration file, for example, membership2.conf. For more
information on the ZooKeeper client configuration file, see Configuring Apache
ZooKeeper as the Membership Service.

2. Append the new membership server and port to the current list of membership servers.

Servers ms_host1!2181,ms_host2!2181,ms_host3!2181,ms_host4!2181

Chapter 8
Modifying a Grid

8-7

Enable the New Membership Configuration
To enable your new membership configuration, perform these tasks:

1. Replace the ZooKeeper client configuration file in the latest version of the model
with the newly created file.

% ttGridAdmin membershipConfigImport membership2.conf
Membership configuration file membership2.conf imported

2. Run the ttGridAdmin modelApply command to apply the changes to the latest
version of the model.

% ttGridAdmin modelApply
Creating new model
version..OK
Exporting current model (version
3)...................................OK
Identifying any changed management
instances..........................OK
Identifying any deleted
objects.......................................OK
Verifying
installations...OK
Verifying
instances...OK
Updating grid
state...OK
Pushing new configuration files to each
instance......................OK
Making model version 3 current, version 4
writable....................OK
ttGridAdmin modelApply complete

3. Stop and restart every instance in the grid. For more information on stopping and
restarting a grid, see Stopping a Grid and Restarting a Grid, respectively.

For more information on the ttGridAdmin membershipConfigImport command, see
Import the Membership Configuration File (membershipConfigImport) in Oracle
TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see Applying the
Changes Made to the Model and Model Operations in Oracle TimesTen In-Memory
Database Reference.

Redistributing Data in a Database
You can increase or decrease the number of elements in which your data is
distributed. However, this requires more than just adding or removing data instances
from the current version of the model; you must also add or remove the elements of
the data instances from the distribution map of the database.
You can increase or decrease the number of elements in which your data is
distributed. However, this requires more than just adding or removing data instances

Chapter 8
Redistributing Data in a Database

8-8

from the current version of the model; you must also add or remove the elements of the data
instances from the distribution map of the database.

The different tasks for maintaining the distribution map of a database are:

• Add a replica set to the distribution map. When you add a replica set to the distribution
map (and the distribution map is applied), TimesTen Scaleout re-distributes a portion of
the data in the elements of each replica set to the elements of the newly added replica
set.

• Remove a replica set without a replacement from the distribution map. If the removed
replica set is not replaced with another replica set, when the distribution map is applied,
the data stored in the elements of the removed replica set is evenly re-redistributed into
the elements of the remaining replica sets.

• Remove a data instance and replace it with another data instance that is not already
defined in the distribution map. In this case, when the distribution map is applied, the data
is copied from the element of the removed data instance to the element of the new data
instance; the data stored in the elements of the other replica sets is not re-distributed.

• Evict a replica set from the distribution map. If all elements in a replica set have
unrecoverable failures, evict the replica set from the distribution map. Evicting a replica
set results in data loss. When you evict a replica set from the distribution map, you can
either:

– Evict the replica set without a replacement. If the evicted replica set is not replaced
with another replica set, when the distribution map is applied, the data in the evicted
replica set is lost and the data stored in the elements of the other replica sets is not
re-distributed.

– Evict and replace the replica set with another replica set that is not already defined in
the distribution map. When the distribution map is applied, since the data in the
elements of the evicted replica set is lost, the element of the new replica set is empty
and the data stored in the elements of the other replica sets is not re-distributed.

See Recovering When the Replica Set Has a Permanently Failed Element for
information on how to evict failed replica sets from the distribution map.

The ttGridAdmin dbDistribute command can add and remove elements and evict replica
sets from the distribution map of a database, then redistribute existing data across the
resulting replica sets. Your existing data is redistributed once you apply the change to
distribution map with the ttGridAdmin dbDistribute -apply command.

Note:

Data distribution cannot run concurrently with DDL or DML statements. As a result,
the ttGridAdmin dbDistribute -apply command terminates with an error if you
are currently executing any DDL or DML statements that insert, update, or delete
data. Any DML statements that insert, update or delete while data distribution is in
process are blocked until data distribution completes. However, you can run any
read-only statements while data distribution is in process.

• Adding Elements to the Distribution Map

• Removing Elements from the Distribution Map

Chapter 8
Redistributing Data in a Database

8-9

Figure 8-1 shows the database schema and topology of the elements of the database1
database that the examples in the following topics use.

Figure 8-1 Data Spaces and Replica Sets

host3.instance1

1

3

5

7

...

c_id*

customers

host6.instance1

2

4

6

8

...

c_id*

customers

data space 1

host4.instance1

1

3

5

7

...

c_id*

customers

host7.instance1

2

4

6

8

...

c_id*

customers

data space 2

host5.instance1

1

3

5

7

...

c_id*

customers

host8.instance1

2

4

6

8

...

c_id*

customers

data space 3

replica set 1

replica set 2

Adding Elements to the Distribution Map
To increase the number of elements in which your data is distributed, you need to first
increase the number of data instances associated with the grid. Also, you must ensure
that you have the same number of data instances to each data space group. For
example, in a grid with k set to 3, you must add an equal number of data instances to
the three available data space groups.

If you are adding elements to the distribution map of the database with the intention of
increasing the amount of memory available in the permanent memory region, consider
increasing the size of the permanent memory region instead. You can accomplish this
by modifying the value of the PermSize attribute.

Chapter 8
Redistributing Data in a Database

8-10

Note:

• Every host with a data instance must have enough physical memory available
to support the value of the PermSize attribute. See Determining the Value of the
PermSize Attribute and Modify the Connection Attributes in a Database
Definition for more information on how to calculate and modify the value of the
PermSize attribute.

• Consider that even when rows are re-distributed to the elements of the new
data instances, the memory previously used by these rows in their original
elements is still in use by a table page and can only be used by new rows of the
same table.

Add a data instance for each data space group available to the current version of the model.

% ttGridAdmin hostCreate -internalAddress int-host9.example.com -
externalAddress ext-host9.example.com -like host3 -cascade -dataSpaceGroup 1
Host host9 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host10.example.com -
externalAddress ext-host10.example.com -like host3 -cascade -dataSpaceGroup 2
Host host10 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin hostCreate -internalAddress int-host11.example.com -
externalAddress ext-host11.example.com -like host3 -cascade -dataSpaceGroup 3
Host host11 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin modelApply
...
Verifying installations...OK
Creating new installations..OK
Verifying instances...OK
Creating new instances..OK
...
Checking ssh connectivity of new instances............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

Note:

See Adding Data Instances and Applying the Changes Made to the Model for more
information on how to add data instances to a grid.

Chapter 8
Redistributing Data in a Database

8-11

Figure 8-2 shows an example of the hash distribution of the customers table in one
data space of the database1 database. Notice that the element of the
host9.instance1 data instance is empty. Even though the host9 host is assigned to
data space group 1, its element is not considered part of data space 1 until the
host9.instance1 data instance is added to the distribution map of the database1
database.

Figure 8-2 Data Distribution of a Table

host3.instance1

1

3

5

7

...

c_id*

customers

host6.instance1

2

4

6

8

...

c_id*

customers

data space 1

host9.instance1

Add the element of the host9.instance1 data instance to the distribution map of the
database1 database.

% ttGridAdmin dbDistribute database1 -add host9.instance1
Element host9.instance1 has been marked to be added
Distribution map change enqueued

To ensure that the distribution map of the database remains balanced, add the
element of the data instance that will hold the replicas of the element of the
host9.instance1 data instance, host10.instance1 and host11.instance1, to the
distribution map of the database1 database.

% ttGridAdmin dbDistribute database1 -add host10.instance1
Element host10.instance1 has been marked to be added
Distribution map change enqueued

% ttGridAdmin dbDistribute database1 -add host11.instance1 -apply
Element host11.instance1 has been marked to be added
Distribution map updated

Note:

Ensure that you only use the -apply option when you are done adding all
new elements to the distribution map of the database to avoid TimesTen
Scaleout returning an error.

Chapter 8
Redistributing Data in a Database

8-12

Figure 8-3 shows how some of the data stored in the elements inside data space 1 in
Figure 8-2 is re-distributed into the element of the new data instance, host9.instance1.

Figure 8-3 Data Distribution After Adding an Element (and Its Replica)

host3.instance1

1

3

5

7

...

c_id*

customers

data space 1

host9.instance1

2

3

6

7

...

c_id*

customers

host6.instance1

2

4

6

8

...

c_id*

customers

You can verify the progress of the redistribution operation from any element of the database
with the ttDistributionProgress built-in procedure.

Command> call ttDistributionProgress();
< 2018-12-04 14:49:48.872975, 1, 2, 1, Data Checkpoint, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, 1910, 0, 176, 1910, 8, 8 >
1 row found.

For more information on the ttGridAdmin hostCreate or ttGridAdmin dbDistribute
command, see Create a Host (hostCreate) or Set or Modify the Distribution Scheme of a
Database (dbDistribute), respectively, in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see Applying the Changes
Made to the Model and Model Operations in Oracle TimesTen In-Memory Database
Reference.

For more information on the ttDistributionProgress built-in procedure, see
ttDistributionProgress in Oracle TimesTen In-Memory Database Reference.

Removing Elements from the Distribution Map
You can remove and replace elements from the distribution map with the following in mind:

• Remove and replace a single element:

– If you have a grid where k is set to 1, you can remove and replace the element only if
both the element and data instance are operational.

– If you have a grid where k is set to 2 or greater, you can remove and replace a single
element within a replica set by removing the element and replacing it with another
element as long as another element in the replica set is operational.

Chapter 8
Redistributing Data in a Database

8-13

See Replace an Element with Another Element and Remove a Replica Set for
more information on how to use the ttGridAdmin dbDistribute command
with the -remove option.

Note:

Remove and Replace a Failed Element in a Replica Set has more
information on how to resolve failure issues of a single element within a
replica set.

• Evict an entire replica set:

– If all the elements of a replica set have failed, then the data stored in the
replica set is unavailable. Recovering When the Replica Set Has a
Permanently Failed Element describes what happens when a replica set fails,
how TimesTen Scaleout recovers the replica set, or how you can evict the
entire replica set if the elements in the replica set cannot be automatically
recovered.

The ttGridAdmin dbDistribute command with the -remove option removes an
element from the distribution map of a database. When you remove a an element from
the distribution map of a database, you have these options:

• Replace an Element with Another Element

• Remove a Replica Set

Replace an Element with Another Element
If the removed element is replaced with the element of a new data instance and you
apply this change to the distribution map of the database, the data in the replica set is
copied to the element of the new data instance. The data stored in the other replica
sets is not re-distributed. Consider doing this when you want to replace a host with
another one or a host must be shut down, but you do not want to modify the way your
data is being distributed.

Add a data instance to the current version of the model.

% ttGridAdmin hostCreate -internalAddress int-host9.example.com -
externalAddress ext-host9.example.com -like host3 -cascade -
dataSpaceGroup 1
Host host9 created in Model
Installation installation1 created in Model
Instance instance1 created in Model

% ttGridAdmin modelApply
...
Verifying
installations...OK
Creating new
installations..OK
Verifying
instances...OK
Creating new
instances..OK

Chapter 8
Redistributing Data in a Database

8-14

...
Checking ssh connectivity of new instances............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

Note:

See Adding Data Instances and Applying the Changes Made to the Model for more
information on how to add data instances to a grid.

Figure 8-4 shows an example of the hash distribution of the customers table in one data
space of the database1 database. Notice that the element of the host9.instance1 data
instance is empty. Even though the host9 host is assigned to data space group 1, its element
is not part of a replica set until it is added to the distribution map of the database1 database.

Figure 8-4 Data Distribution of a Table

host3.instance1

1

3

5

7

...

c_id*

customers

host6.instance1

2

4

6

8

...

c_id*

customers

data space 1

host9.instance1

Remove the element of the host7.instance1 data instance and replace it with the element of
the host9.instance1 data instance in the distribution map of the database1 database.

% ttGridAdmin dbDistribute database1 -remove host6.instance1 -replaceWith
host9.instance1 -apply
Element host6.instance1 has been marked to be removed and replaced by
element host9.instance1
Distribution map updated

Figure 8-5 shows how the data previously stored in the element of the host7.instance1 data
instance is copied to its replacement.

Chapter 8
Redistributing Data in a Database

8-15

Figure 8-5 Data Distribution After Replacing an Element

host3.instance1

1

3

5

7

...

c_id*

customers

host9.instance1

2

4

6

8

...

c_id*

customers

data space 1

host6.instance1

To destroy the checkpoints and transaction logs of the removed element, use the
ttGridAdmin dbDestroy -instance command.

% ttGridAdmin dbDestroy database1 -instance host6.instance1
Database database1 instance host6 destroy started

For more information on the ttGridAdmin dbDistribute or ttGridAdmin dbDestroy
command, see Set or Modify the Distribution Scheme of a Database (dbDistribute) or
Destroy a Database (dbDestroy), respectively, in Oracle TimesTen In-Memory
Database Reference.

Remove a Replica Set
If you remove the element of a data instance without a replacement from the
distribution map of a database, you must also remove its replicas. In other words, you
must remove the replica set in its entirety. When you remove a replica set, TimesTen
Scaleout re-distributes the data stored in the replica set to the remaining replica sets.
Consider doing this when you want to scale down the number of hosts in which your
data is stored.

Chapter 8
Redistributing Data in a Database

8-16

Note:

Consider that the database size is defined by the value of the PermSize attribute
times the number of replica sets available. Removing one replica set from the
distribution map of the database will remove as many MB from the database size as
MB set in the PermSize attribute. See Determining the Value of the PermSize
Attribute for more information on how to determine the database size of a database.

Before removing a replica set, ensure that the remaining replica sets will have
enough space to store a portion of the data stored in the replica set you are about
to remove. If necessary, increase the database size by increasing the value of the
PermSize attribute. See Modify the Connection Attributes in a Database Definition
for more information on how to increase the value of the PermSize attribute.

Figure 8-6 shows an example of the hash distribution of the customers table in the database1
database.

Figure 8-6 Data Distribution of a Table

host3.instance1

1

3

5

7

...

c_id*

customers

host6.instance1

2

4

6

8

...

c_id*

customers

data space 1

Remove the element of the host6.instance1 data instance from the distribution map of the
database1 database.

% ttGridAdmin dbDistribute database1 -remove host6.instance1
Element host6.instance1 has been marked to be removed
Distribution map change enqueued

Chapter 8
Redistributing Data in a Database

8-17

To ensure that the distribution map of the database remains balanced, remove the
element of the data instance holding the replicas of the element of the
host6.instance1 data instance from the distribution map of the database1 database.

% ttGridAdmin dbDistribute database1 -remove host7.instance1
Element host7.instance1 has been marked to be removed
Distribution map change enqueued

% ttGridAdmin dbDistribute database1 -remove host8.instance1 -apply
Element host8.instance1 has been marked to be removed
Distribution map updated

Note:

• To find out which data instance holds the replica of the element of
another data instance, use the ttGridAdmin dbStatus command while
specifying the -replicaset option.

• Ensure that you only use the -apply option when you are done removing
all the necessary data instances from the distribution map of the
database to avoid TimesTen Scaleout returning an error.

Figure 8-7 shows how removing a replica set from the distribution map of a database
removes its elements from their previously assigned data spaces. The figure also
shows how the data previously stored in the removed replica set is re-distributed to the
replica sets still within each data space.

Figure 8-7 Data Distribution After Removing a Replica Set

host3.instance1

1

2

3

4

...

c_id*

customers

host6.instance1

data space 1

Chapter 8
Redistributing Data in a Database

8-18

To destroy the checkpoints and transaction logs of the removed replica set, use the
ttGridAdmin dbDestroy -instance command.

% ttGridAdmin dbDestroy database1 -instance host6.instance1
Database database1 instance host6 destroy started

% ttGridAdmin dbDestroy database1 -instance host7.instance1
Database database1 instance host7 destroy started

% ttGridAdmin dbDestroy database1 -instance host8.instance1
Database database1 instance host8 destroy started

For more information on the ttGridAdmin dbDistribute or ttGridAdmin dbDestroy
command, see Set or Modify the Distribution Scheme of a Database (dbDistribute) or Destroy
a Database (dbDestroy), respectively, in Oracle TimesTen In-Memory Database Reference.

Stopping a Grid
Gracefully stopping a grid can only occur if the grid has no loaded databases. Once you
ensure that all databases are unloaded, you can proceed to stop the grid.

1. Unload all databases. See Unloading a Database from Memory for details.

2. Stop all data instances.

% ttGridAdmin instanceExec -type data ttDaemonAdmin -stop
Overall return code: 0
Commands executed on:
 host3.instance1 rc 0
 host4.instance1 rc 0
 host5.instance1 rc 0
 host6.instance1 rc 0
 host7.instance1 rc 0
 host8.instance1 rc 0
Return code from host3.instance1: 0
Output from host3.instance1:
TimesTen Daemon (PID: 4498, port: 6624) stopped.
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 4536, port: 6624) stopped.
Return code from host5.instance1: 0
Output from host5.instance1:
TimesTen Daemon (PID: 4492, port: 6624) stopped.
Return code from host6.instance1: 0
Output from host6.instance1:
TimesTen Daemon (PID: 4510, port: 6624) stopped.
Return code from host7.instance1: 0
Output from host7.instance1:
TimesTen Daemon (PID: 4539, port: 6624) stopped.
Return code from host8.instance1: 0
Output from host8.instance1:
TimesTen Daemon (PID: 4533, port: 6624) stopped.

Chapter 8
Stopping a Grid

8-19

3. If there is an standby management instance, stop it.

% ttGridAdmin mgmtStandbyStop
Standby management instance host2.instance1 stopped

4. Stop the active management instance.

% ttGridAdmin mgmtActiveStop
Active management instance stopped

For more information on the ttGridAdmin instanceExec command, see Execute a
Command or Script on Grid Instances (instanceExec) in Oracle TimesTen In-Memory
Database Reference.

Restarting a Grid
To restart a grid, you must first restart all instances before attempting to reload any
database.

1. Follow the step that matches the configuration of your grid:

• If your grid has a single management instance configuration, start the
management instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

• If your grid has an active standby configuration, follow the instructions
described in Bring Back Both Management Instances to determine the best
candidate for the active role and restart both the active and standby
management instances.

2. Start all data instances.

% ttGridAdmin instanceExec -type data ttDaemonAdmin -start
Overall return code: 0
Commands executed on:
 host3.instance1 rc 0
 host4.instance1 rc 0
 host5.instance1 rc 0
 host6.instance1 rc 0
 host7.instance1 rc 0
 host8.instance1 rc 0
Return code from host3.instance1: 0
Output from host3.instance1:
TimesTen Daemon (PID: 19072, port: 6624) startup OK.
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 19144, port: 6624) startup OK.
Return code from host5.instance1: 0
Output from host5.instance1:
TimesTen Daemon (PID: 19210, port: 6624) startup OK.
Return code from host6.instance1: 0
Output from host6.instance1:
TimesTen Daemon (PID: 19247, port: 6624) startup OK.

Chapter 8
Restarting a Grid

8-20

Return code from host7.instance1: 0
Output from host7.instance1:
TimesTen Daemon (PID: 19284, port: 6624) startup OK.
Return code from host8.instance1: 0
Output from host8.instance1:
TimesTen Daemon (PID: 19315, port: 6624) startup OK.

3. Reload all databases as shown in Reloading a Database into Memory.

For more information on the ttGridAdmin mgmtActiveStart and ttGridAdmin
mgmtStandbyStart commands, see Management Instance Operations in Oracle TimesTen In-
Memory Database Reference.

For more information on the ttGridAdmin instanceExec command, see Execute a
Command or Script on Grid Instances (instanceExec) in Oracle TimesTen In-Memory
Database Reference.

Destroying a Grid
Gracefully destroying a grid consists in destroying all databases and deleting every object of
the model.

1. Unload all databases as shown in Unloading a Database from Memory.

2. Destroy all databases as shown in Destroying a Database.

3. Delete all hosts, installations, and instances from the latest version of model, except for
the active management instance and its associated host and installation.

% ttGridAdmin hostDelete host2 -cascade
Instance instance1 on Host host2 deleted from Model
Installation installation1 on Host host2 deleted from Model
Host host2 deleted from Model

% ttGridAdmin hostDelete host3 -cascade
Instance instance1 on Host host3 deleted from Model
Installation installation1 on Host host3 deleted from Model
Host host3 deleted from Model

% ttGridAdmin hostDelete host4 -cascade
Instance instance1 on Host host4 deleted from Model
Installation installation1 on Host host4 deleted from Model
Host host4 deleted from Model

% ttGridAdmin hostDelete host5 -cascade
Instance instance1 on Host host5 deleted from Model
Installation installation1 on Host host5 deleted from Model
Host host5 deleted from Model

% ttGridAdmin hostDelete host6 -cascade
Instance instance1 on Host host6 deleted from Model
Installation installation1 on Host host6 deleted from Model
Host host6 deleted from Model

% ttGridAdmin hostDelete host7 -cascade
Instance instance1 on Host host7 deleted from Model

Chapter 8
Destroying a Grid

8-21

Installation installation1 on Host host7 deleted from Model
Host host7 deleted from Model

% ttGridAdmin hostDelete host8 -cascade
Instance instance1 on Host host8 deleted from Model
Installation installation1 on Host host8 deleted from Model
Host host8 deleted from Model

4. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply
...
Unconfiguring standby management
instance.............................OK
Identifying any deleted
objects.......................................OK
Stopping deleted
instances..OK
Deleting
instances..OK
Deleting installations from
model.....................................OK
Deleting any hosts that are no longer in
use..........................OK
...
ttGridAdmin modelApply complete

5. Stop the active management instance.

% ttGridAdmin mgmtActiveStop
Active management instance stopped

6. Destroy the active management instance.

% /grid/tt22.1.1.18.0/bin/ttInstanceDestroy

** WARNING **

 The uninstallation has been executed by a non-root user.
 If the TimesTen daemon startup scripts were installed,
 you must run $TIMESTEN_HOME/bin/setuproot -uninstall
 to remove them. If you proceed with this uninstallation, you
 will have to remove the startup scripts manually.

** WARNING **

 All the files in the directory :

 /grid/instance1

 will be removed, including any files that you or other users
 may have created.

 Are you sure you want to completely remove this instance? [yes]

Chapter 8
Destroying a Grid

8-22

NOTE: /grid/instance1/info contains information related to the data
 storesthat have been created with this release. If you remove
 /grid/instance1/info you will no longer be able to access your
 data stores, nor would you be able to restore nor migrate your data.

 Would you also like to remove all files in
 /grid/instance1/info? [no] yes

NOTE: /grid/instance1/conf contains information related to the
 instance configuration.

 Would you also like to remove all files in
 /grid/instance1/conf? [no] yes
/grid/instance1 Removed
The TimesTen instance instance1 has been destroyed.

7. Delete the installation files on each system with a TimesTen installation. Ensure that you
change the permissions of the directory so that you can delete all files.

% cd /grid
% chmod -R 750 tt22.1.1.18.0/
% rm -rf tt22.1.1.18.0/

For more information on the ttGridAdmin hostDelete, ttGridAdmin mgmtActiveStop, or
ttInstanceDestroy command, see Delete a Host (hostDelete), Stop the Active Management
Instance (mgmtActiveStop), or ttInstanceDestroy, respectively, in Oracle TimesTen In-
Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see Applying the Changes
Made to the Model and Model Operations in Oracle TimesTen In-Memory Database
Reference.

Chapter 8
Destroying a Grid

8-23

9
Upgrading a Grid

The procedure and restrictions involved in upgrading a grid vary depending on if the target
TimesTen release is either a patch-compatible or patch-incompatible release with the current
TimesTen release. Major releases are considered patch-incompatible.

Note:

To check if your version of TimesTen is patch compatible with the target TimesTen
release for upgrade, see the README.html file in the target TimesTen distribution.

• Upgrade a Grid to a Patch-Compatible Release

• Upgrade a Grid to a Different Major or Patch-Incompatible Release

Upgrade a Grid to a Patch-Compatible Release
Upgrading a grid to a patch-compatible release consists of ensuring that every instance uses
for its operations the installation files provided by a different patch set (or patch) release of
TimesTen, for example, upgrading the installation from a 22.1.x to a 22.1.y release. To make
all instances operate with installations of a target TimesTen release, you need to perform
three main tasks:

1. Create an installation of the target release on each host in the model.

2. Modify each management instance to use with the new installation and then restart the
instance.

3. Modify each data instance to use with the new installation and then restart the instance.

As with any other aspect of administering a grid, all the aforementioned tasks are performed
through the ttGridAdmin utility. The grid topology (number of management instances, K-
safety value, and the number of replica sets) and if the upgrade supports to keep at least one
full copy of every database available for applications to connect determines which
ttGridAdmin commands need to be run, in which order, and at what time.

To keep things as simple and as straightforward as possible, TimesTen provides the
ttGridAdmin gridUpgrade command. The ttGridAdmin gridUpgrade command studies the
grid and, if possible, runs all the necessary commands to perform either of the
aforementioned tasks without further input from the instance administrator. Alternatively, you
can perform any and all of the main tasks for an upgrade at your own pace by providing each
individual ttGridAdmin command that the ttGridAdmin gridUpgrade command would
otherwise run in the background.

The next topics describe the release compatibility metadata, the prerequisites for upgrading a
grid to a patch-compatible release and how to perform such upgrade either with or without
the ttGridAdmin gridUpgrade command.

• Release Compatibility Metadata

9-1

• Upgrade Prerequisites

• Upgrading a Grid with the ttGridAdmin gridUpgrade Command

• Upgrading a Grid Without the ttGridAdmin gridUpgrade Command

• Optional: Delete the Installations of the Previous Release

Release Compatibility Metadata
Every TimesTen release includes metadata regarding whether the release can be
upgraded from or to a previous TimesTen release. The release compatibility metadata
includes similar information concerning previous TimesTen releases.

In TimesTen Scaleout, the ttGridAdmin gridUpgrade command uses this metadata to
determine if and what type of upgrade instances of the current release support
towards the target release.

Upgrade Prerequisites
Upgrades to a patch-compatible release have these prerequisites:

• The current version of the model matches the latest version of the model. In other
words, there have not been any changes to the model since the latest changes
were applied.

• Including the target release, the grid is running under no more than two different
releases. One or more instances operating under a different but compatible
release to the rest of the instances is expected. For example, a grid may continue
to successfully operate during an upgrade or even after the upgrade is interrupted
or one of the operations performed during the upgrade fails; in such cases, you
may make a second attempt to complete the upgrade after resolving the issue.
However, you should not attempt an upgrade when a previous upgrade with a
different target release has yet to be completed.

Upgrading a Grid with the ttGridAdmin gridUpgrade Command
To upgrade a grid to a patch-compatible release with the ttGridAdmin gridUpgrade
command, complete these tasks:

1. Create Installations of the Target Release

2. Upgrade the Management Instances

3. Upgrade the Data Instances

Create Installations of the Target Release
Before you can upgrade a grid to a patch-compatible release, all hosts in the model
must have access to an installation of the target release. The -createInstallations
option of the ttGridAdmin gridUpgrade command creates, for each host, an
installation of the provided TimesTen distribution or from an existing TimesTen
installation.

• Create an installation of the target release on every host defined in the model.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-2

Note:

Ensure that you download a TimesTen distribution of the target release to a
location reachable by the active management instance.

% ttGridAdmin gridUpgrade -createInstallations -source host1:/mydir/
timesten2211190.server.linux8664.zip
Checking for existing installations of TimesTen 22.1.1.19.0............OK
Creating missing installation objects.................................OK
Applying model to create new installations............................OK

TimesTen performs these tasks while the ttGridAdmin gridUpgrade -
createInstallations command is in operation:

1. Checks for installations of the target release already defined in the model. If
TimesTen finds any such installations, it will note which hosts are associated with
them so it does not create another target release installation for them later on.

2. Runs the ttGridAdmin installationCreate command for each host in the model
(excluding the hosts noted above) to create an installation object of the target
release.

Note:

TimesTen uses the location used to create the current installation and the
default installation name as the location for the installation of the target
release. For example, if the location used to create the current installation
for the host1 host is /grid, then TimesTen uses /grid/installation1 to
create the target installation. If installation1 is already in use as an
installation name, TimesTen uses installation2 and so on. If you want to
customize the locations and installation names used, create the
installations without using the ttGridAdmin gridUpgrade command, as
described in Create Installations of the Target Release.

3. Runs the ttGridAdmin modelApply command to apply the changes made to the
model, which creates the new installations.

Now that every host in the grid has an installation of the target release, you can proceed to
upgrade the management and data instances.

For more information on the ttGridAdmin gridUpgrade command, see Upgrade a Grid
(gridUpgrade) in Oracle TimesTen In-Memory Database Reference.

Upgrade the Management Instances
Use the -type mgmt option of the ttGridAdmin gridUpgrade command to upgrade the
management instances to the target release.

• Upgrade the management instances to the target release.

% ttGridAdmin gridUpgrade -type mgmt -to 22.1.1.19.0
Checking prerequisites..OK

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-3

Checking for existing installations of TimesTen
22.1.1.19.0............OK
Verify that upgrade is known to be
supported..........................OK
Verify that instances are running the expected
releases...............OK
Determining management instance
state.................................OK
Modify instance
host2.instance1.......................................OK
Apply
change..OK
Stop standby management instance
host2.instance1......................OK
Start standby management instance
host2.instance1.....................OK
Fail over to management instance
host2.instance1......................OK
Start standby management instance
host1.instance1.....................OK
Modify instance
host1.instance1.......................................OK
Apply
change..OK
Stop standby management instance
host1.instance1......................OK
Start standby management instance
host1.instance1.....................OK
Fail over to management instance
host1.instance1......................OK
Start standby management instance
host2.instance1.....................OK

TimesTen performs these tasks while the ttGridAdmin gridUpgrade -type mgmt
command is in operation:

1. Checks that the grid meets all the prerequisites required for an upgrade
operation.

2. Checks that each host is associated with an installation of the target release.

3. Verifies that the current release supports an upgrade to the target release.

4. Verifies that the management instances are running the releases indicated in
the model.

5. Determines if the grid is using either an active standby or single management
instance configuration.

Note:

The tasks to follow vary depending of the configuration detected and
which management instances, if any, need to be upgraded. Next are
the tasks for when neither management instance in an active
standby configuration has been upgraded to the target release.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-4

6. Runs the ttGridAdmin instanceModify command to change the installation used by
the standby management instance to the installation of the target release.

7. Runs the ttGridAdmin modelApply command to apply the change made to the
model.

8. Runs the ttGridAdmin mgmtStandbyStop command to stop the standby management
instance.

9. Runs the ttGridAdmin mgmtStandbyStart command to restart the standby
management instance. The instance now uses the installation files provided by the
target release to operate.

Note:

For a single management instance configuration, TimesTen would only
need to perform tasks 1 through 9, where tasks 6 through 9 are performed
on the active management instance. In such case, after stopping the
instance, no other management operations can be performed on the grid
until the instance is once more operational.

10. Runs the ttGridAdmin mgmtActiveSwitch command to stop the active management
instance and fail over to the standby management instance. Now, the active
management instance is the instance using the installation of the target release.

11. Runs the ttGridAdmin mgmtStandbyStart command to restart the standby
management instance, which has yet to be upgraded.

12. Runs the ttGridAdmin instanceModify command to change the installation used by
the standby management instance to the installation of the target release.

13. Runs the ttGridAdmin modelApply command to apply the change made to the
model.

14. Runs the ttGridAdmin mgmtStandbyStop command to stop the standby management
instance.

15. Runs the ttGridAdmin mgmtStandbyStart command to restart the standby
management instance. The instance now uses the installation files provided by the
target release to operate.

16. Runs the ttGridAdmin mgmtActiveSwitch command to stop the active management
instance and fail over to the standby management instance. Now, the active
management instance is the same instance as in the beginning of the operation.

17. Runs the ttGridAdmin mgmtStandbyStart command to restart the standby
management instance.

Now that you have successfully upgraded the management instances to the target release,
you can proceed to upgrading the data instances.

For more information on the ttGridAdmin gridUpgrade command, see Upgrade a Grid
(gridUpgrade) in Oracle TimesTen In-Memory Database Reference.

Upgrade the Data Instances
TimesTen supports both online and offline upgrades of data instances between patch-
compatible releases on a case by case basis. The metadata TimesTen uses to determine if a

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-5

grid is patch compatible to another and if either or both type of upgrades are possible
is included in every TimesTen installation.

An online upgrade consists on upgrading the data instances in such a manner that
there is always at least one copy of the database available for applications to connect.
This means that TimesTen only supports online upgrades for grids with k set to 2 or
greater and with at least one loaded database.

An offline upgrade consists of upgrading the data instances while all databases are
unloaded from memory. TimesTen supports offline upgrades for all values of K-safety.

These topics describe how to perform an online or offline upgrade of data instances:

• Online Upgrade of Data Instances

• Offline Upgrade of Data Instances

Online Upgrade of Data Instances
Use the -type data -online options of the ttGridAdmin gridUpgrade command to
perform an online upgrade of the data instances to the target release.

• Upgrade the data instances to the target release.

% ttGridAdmin gridUpgrade -type data -to 22.1.1.19.0 -online
Checking
prerequisites..OK
Checking for existing installations of TimesTen
22.1.1.19.0............OK
Verify that upgrade is known to be
supported..........................OK
Verify that instances are running the expected
releases...............OK
Modify instance
host3.instance1.......................................OK
Apply
model...OK
Stop
host3.instance1..OK
Start
host3.instance1...OK
Waiting for host3.instance1 database database1 to
reload..............OK
Modify instance
host6.instance1.......................................OK
Apply
model...OK
Stop
host6.instance1..OK
Start
host6.instance1...OK
Waiting for host6.instance1 database database1 to
reload..............OK
Modify instance
host4.instance1.......................................OK
Apply
model...OK

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-6

Stop host4.instance1..OK
Start host4.instance1...OK
Waiting for host4.instance1 database database1 to
reload..............OK
Modify instance host7.instance1.......................................OK
Apply model...OK
Stop host7.instance1..OK
Start host7.instance1...OK
Waiting for host7.instance1 database database1 to
reload..............OK
Modify instance host5.instance1.......................................OK
Apply model...OK
Stop host5.instance1..OK
Start host5.instance1...OK
Waiting for host5.instance1 database database1 to
reload..............OK
Modify instance host8.instance1.......................................OK
Apply model...OK
Stop host8.instance1..OK
Start host8.instance1...OK
Waiting for host8.instance1 database database1 to reload..............OK

TimesTen performs these tasks while the ttGridAdmin gridUpgrade -type data -
online command is in operation:

1. Checks that the grid meets all the prerequisites required for an upgrade operation.

2. Checks that each host in the grid has an installation of the target release associated
with it.

3. Verifies that the current release supports an online upgrade to the target release.

4. Verifies that the data instances are running the releases indicated in the model.

5. Runs the ttGridAdmin instanceModify command to change the installation used by
a non-upgraded data instance to the installation of the target release.

6. Runs the ttGridAdmin modelApply command to apply the change made to the
model.

7. Runs the ttGridAdmin instanceExec -only host.instance ttDaemonAdmin -stop
command to stop the data instance from task 5.

8. Runs thettGridAdmin instanceExec -only host.instance ttDaemonAdmin -start
command restart the data instance from the previous task. The instance now uses
the installation files provided by the target release to operate.

9. Waits for the data instance from the previous task to reload the local element of each
loaded database before proceeding to the next data instance to upgrade.

10. Repeats tasks 5 through 9 until all data instances have been upgraded.

Now you have successfully upgraded your grid to the target release.

For more information on the ttGridAdmin gridUpgrade command, see Upgrade a Grid
(gridUpgrade) in Oracle TimesTen In-Memory Database Reference.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-7

Offline Upgrade of Data Instances
Use the -type data -offline options of the ttGridAdmin gridUpgrade command to
perform an online upgrade of the data instances to the target release.

• Upgrade the data instances to the target release.

% ttGridAdmin gridUpgrade -type data -to 22.1.1.19.0 -offline
Checking
prerequisites..OK
Checking for existing installations of TimesTen
22.1.1.19.0............OK
Verify that upgrade is known to be
supported..........................OK
Verify that instances are running the expected
releases...............OK
Determining data instance
state.......................................OK
Modify instance
host3.instance1.......................................OK
Modify instance
host4.instance1.......................................OK
Modify instance
host5.instance1.......................................OK
Modify instance
host6.instance1.......................................OK
Modify instance
host7.instance1.......................................OK
Modify instance
host8.instance1.......................................OK
Apply
changes...OK
Stop data
instances...OK
Start data
instances..OK

TimesTen performs these tasks while the ttGridAdmin gridUpgrade -type data
-offline command is in operation:

1. Checks that the grid meets all the prerequisites required for an upgrade
operation.

2. Checks that each host in the grid has an installation of the target release
associated with it.

3. Verifies that the current release supports an offline upgrade to the target
release.

4. Verifies that the data instances are running the releases indicated in the
model.

5. Runs the ttGridAdmin instanceModify command to change the installation
used by a non-upgraded data instance to the installation of the target release.
TimesTen repeats this task until all data instances use an installation of the
target release.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-8

6. Runs the ttGridAdmin modelApply command to apply the changes made to the
model.

7. Runs the ttGridAdmin instanceExec -type data ttDaemonAdmin -stop to stop all
data instances.

8. Runs the ttGridAdmin instanceExec -type data ttDaemonAdmin -start
command restart all data instances. The data instances now use the installation files
provided by the target release to operate.

Now you have successfully upgraded your grid to the target release.

For more information on the ttGridAdmin gridUpgrade command, see Upgrade a Grid
(gridUpgrade) in Oracle TimesTen In-Memory Database Reference.

Upgrading a Grid Without the ttGridAdmin gridUpgrade Command
To upgrade a grid to a patch-compatible release without the ttGridAdmin gridUpgrade
command, complete these tasks:

1. Create Installations of the Target Release

2. Upgrade the Management Instances

3. Upgrade the Data Instances

Create Installations of the Target Release
You may use the ttGridAdmin installationList command to determine the hosts that
need to be upgraded and the location of the current installations, as shown next.

% ttGridAdmin installationList
Host Install Location Comment
----- ------------- ---------------------------- -------
host1 installation1 /grid/tt22.1.1.18.0
host2 installation1 /grid/tt22.1.1.18.0
host3 installation1 /grid/tt22.1.1.18.0
host4 installation1 /grid/tt22.1.1.18.0
host5 installation1 /grid/tt22.1.1.18.0
host6 installation1 /grid/tt22.1.1.18.0
host7 installation1 /grid/tt22.1.1.18.0
host8 installation1 /grid/tt22.1.1.18.0

1. Create an installation from the new TimesTen release on every host defined in the model.

Note:

If the default name for installations, installation1, is already in use, you need
to provide a name for the new installation. The example uses installation2 as
the name for the new installation on every host of the grid.

% ttGridAdmin installationCreate host1.installation2 -location /grid -source host1:/
mydir/timesten2211190.server.linux8664.zip

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-9

Installation installation2 on Host host1 created in Model

% ttGridAdmin installationCreate host2.installation2 -location /grid -source
host1:/mydir/timesten2211190.server.linux8664.zip
Installation installation2 on Host host2 created in Model

% ttGridAdmin installationCreate host3.installation2 -location /grid -source
host1:/mydir/timesten2211190.server.linux8664.zip
Installation installation2 on Host host3 created in Model

% ttGridAdmin installationCreate host4.installation2 -location /grid -source
host1:/mydir/timesten2211190.server.linux8664.zip
Installation installation2 on Host host4 created in Model

% ttGridAdmin installationCreate host5.installation2 -location /grid -source
host1:/mydir/timesten2211190.server.linux8664.zip
Installation installation2 on Host host5 created in Model

% ttGridAdmin installationCreate host6.installation2 -location /grid -source
host1:/mydir/timesten2211190.server.linux8664.zip
Installation installation2 on Host host6 created in Model

% ttGridAdmin installationCreate host7.installation2 -location /grid -source
host1:/mydir/timesten2211190.server.linux8664.zip
Installation installation2 on Host host7 created in Model

% ttGridAdmin installationCreate host8.installation2 -location /grid -source
host1:/mydir/timesten2211190.server.linux8664.zip
Installation installation2 on Host host8 created in Model

2. Apply the changes made to the latest version of the model. TimesTen copies the
installation files to the location specified for each host.

% ttGridAdmin modelApply

For more information on the ttGridAdmin installationList or ttGridAdmin
installationCreate command, see List Installations (installationList) or Create an
Installation (installationCreate), respectively, in Oracle TimesTen In-Memory Database
Reference.

For more information on the ttGridAdmin modelApply command, see Applying the
Changes Made to the Model and Model Operations in Oracle TimesTen In-Memory
Database Reference.

Upgrade the Management Instances
How to upgrade the management instances depends on whether there is one or two
management instances configured in the grid. Follow the procedure that better applies
to your configuration:

• Active Standby Configuration

• Upgrading a Single Management Instance

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-10

Active Standby Configuration
When you have an active standby configuration for your management instances, you can
upgrade each management instance separately without any interruption of service by
ensuring that an active management instance is always up.

1. Stop the standby management instance.

% ttGridAdmin mgmtStandbyStop
Standby management instance host2.instance1 stopped

2. Modify the standby management instance to use the new installation.

% ttGridAdmin instanceModify host2.instance1 -installation installation2
Instance instance1 on Host host2 modified in Model

3. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

4. Start the standby management instance by running the ttGridAdmin mgmtStandbyStart
command on the standby management instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

5. Verify that the standby management instance is operational and synchronized with the
active management instance with the ttGridAdmin mgmtStatus command.

% ttGridAdmin mgmtStatus
Host Instance Reachable RepRole(Self) Role(Active) Role(Self) Seq
RepAgent RepActive
--

host1 instance1 Yes Active Unknown Active 445
Up Yes
host2 instance1 Yes Standby Unknown Standby 445
Up No

Note:

Ensure that the sequence number matches in both instances to ensure that
both instances are communicating properly and synchronized. If the sequence
number does not match, run the ttGridAdmin mgmtExamine command for
instructions on how to proceed. See Examine Management Instances
(mgmtExamine) in Oracle TimesTen In-Memory Database Reference.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-11

6. On the standby management instance, switch the active and standby
management instances.

% ttGridAdmin mgmtActiveSwitch
This is now the active management instance

TimesTen Scaleout stops the active management instance and promotes the
standby management instance to active.

7. On the new active management instance, modify the installation of the old active
management instance.

% ttGridAdmin instanceModify host1.instance1 -installation
installation2
Instance instance1 on Host host1 modified in Model

8. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

9. On the old active management instance, start the instance as a standby
management instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

10. Verify that the standby management instance is operational and synchronized with
the active management instance.

% ttGridAdmin mgmtStatus
Host Instance Reachable RepRole(Self) Role(Active) Role(Self) Seq
RepAgent RepActive
--

host1 instance1 Yes Standby Unknown Standby 451
Up No
host2 instance1 Yes Active Unknown Active 451
Up Yes

Note:

Ensure that the sequence number matches in both instances to ensure
that both instances are communicating properly and synchronized. If the
sequence number does not match, run the ttGridAdmin mgmtExamine
command for instructions on how to proceed. See Examine Management
Instances (mgmtExamine) in Oracle TimesTen In-Memory Database
Reference.

For more information on the ttGridAdmin mgmtStandbyStop, ttGridAdmin
mgmtStandbyStart, and ttGridAdmin mgmtStatus commands, see Management
Instance Operations in Oracle TimesTen In-Memory Database Reference.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-12

For more information on the ttGridAdmin instanceModify command, see Modify an
Instance (instanceModify) in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin mgmtActiveSwitch command, see Starting,
Stopping and Switching Management Instances in this document and Switch the Active
Management Instance (mgmtActiveSwitch) in Oracle TimesTen In-Memory Database
Reference.

For more information on the ttGridAdmin modelApply command, see Applying the Changes
Made to the Model and Model Operations in Oracle TimesTen In-Memory Database
Reference.

Upgrading a Single Management Instance
In a single management instance configuration, you need to restart the active management
instance for the new installation to take effect, as shown next:

1. Modify the active management instance to use the new installation.

% ttGridAdmin instanceModify host1.instance1 -installation installation2
Instance instance1 on Host host1 modified in Model

2. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

3. Stop the active management instance.

% ttGridAdmin mgmtActiveStop
Active management instance stopped

4. Restart the active management instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

For more information on the ttGridAdmin instanceModify command, see Modify an
Instance (instanceModify) in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see Applying the Changes
Made to the Model and Model Operations in Oracle TimesTen In-Memory Database
Reference.

For more information on the ttGridAdmin mgmtActiveStop and ttGridAdmin
mgmtActiveStart, see Management Instance Operations in Oracle TimesTen In-Memory
Database Reference.

Upgrade the Data Instances
Before you can restart a data instance so that the new installation takes effect, you need to
unload all databases:

1. Unload all databases as shown in Unloading a Database from Memory.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-13

2. Stop all data instances.

% ttGridAdmin instanceExec -type data ttDaemonAdmin -stop
Overall return code: 0
Commands executed on:
 host3.instance1 rc 0
 host4.instance1 rc 0
 host5.instance1 rc 0
 host6.instance1 rc 0
 host7.instance1 rc 0
 host8.instance1 rc 0
Return code from host3.instance1: 0
Output from host3.instance1:
TimesTen Daemon (PID: 4498, port: 6624) stopped.
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 4536, port: 6624) stopped.
Return code from host5.instance1: 0
Output from host5.instance1:
TimesTen Daemon (PID: 4492, port: 6624) stopped.
Return code from host6.instance1: 0
Output from host6.instance1:
TimesTen Daemon (PID: 4510, port: 6624) stopped.
Return code from host7.instance1: 0
Output from host7.instance1:
TimesTen Daemon (PID: 4539, port: 6624) stopped.
Return code from host8.instance1: 0
Output from host8.instance1:
TimesTen Daemon (PID: 4533, port: 6624) stopped.

3. Modify all the data instances to use the new installations.

Note:

You can perform this step before unloading the databases or stopping
the data instances if you want to reduce the down time the databases
incur during the upgrading operation.

% ttGridAdmin instanceModify host3.instance1 -installation
installation2
Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host4.instance1 -installation
installation2
Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host5.instance1 -installation
installation2
Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host6.instance1 -installation
installation2

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-14

Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host7.instance1 -installation installation2
Instance instance1 on Host host3 modified in Model

% ttGridAdmin instanceModify host8.instance1 -installation installation2
Instance instance1 on Host host3 modified in Model

4. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

5. Restart all data instances.

% ttGridAdmin instanceExec -type data ttDaemonAdmin -start
Overall return code: 0
Commands executed on:
 host3.instance1 rc 0
 host4.instance1 rc 0
 host5.instance1 rc 0
 host6.instance1 rc 0
 host7.instance1 rc 0
 host8.instance1 rc 0
Return code from host3.instance1: 0
Output from host3.instance1:
TimesTen Daemon (PID: 19072, port: 6624) startup OK.
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 19144, port: 6624) startup OK.
Return code from host5.instance1: 0
Output from host5.instance1:
TimesTen Daemon (PID: 19210, port: 6624) startup OK.
Return code from host6.instance1: 0
Output from host6.instance1:
TimesTen Daemon (PID: 19247, port: 6624) startup OK.
Return code from host7.instance1: 0
Output from host7.instance1:
TimesTen Daemon (PID: 19284, port: 6624) startup OK.
Return code from host8.instance1: 0
Output from host8.instance1:
TimesTen Daemon (PID: 19315, port: 6624) startup OK.

6. Restart all databases as shown in Reloading a Database into Memory.

For more information on the ttGridAdmin instanceExec or ttGridAdmin instanceModify
command, see Execute a Command or Script on Grid Instances (instanceExec) or Modify an
Instance (instanceModify), respectively, in Oracle TimesTen In-Memory Database Reference.

For more information on the ttGridAdmin modelApply command, see Applying the Changes
Made to the Model and Model Operations in Oracle TimesTen In-Memory Database
Reference.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-15

Optional: Delete the Installations of the Previous Release
To avoid assigning the wrong installation to new instances, it is recommended that you
delete the installations of the previous release from your grid.

1. Delete the installation objects of the previous model in the model.

% ttGridAdmin installationDelete host1.installation1
Installation installation1 on Host host1 deleted from Model

% ttGridAdmin installationDelete host2.installation1
Installation installation1 on Host host2 deleted from Model

% ttGridAdmin installationDelete host3.installation1
Installation installation1 on Host host3 deleted from Model

% ttGridAdmin installationDelete host4.installation1
Installation installation1 on Host host4 deleted from Model

% ttGridAdmin installationDelete host5.installation1
Installation installation1 on Host host5 deleted from Model

% ttGridAdmin installationDelete host6.installation1
Installation installation1 on Host host6 deleted from Model

% ttGridAdmin installationDelete host7.installation1
Installation installation1 on Host host7 deleted from Model

% ttGridAdmin installationDelete host8.installation1
Installation installation1 on Host host8 deleted from Model

2. Apply the changes made to the latest version of the model.

% ttGridAdmin modelApply

3. If the installation files associated with the installation model objects you just
deleted are not in use by any other installation object in this or any other grid, then
delete the files on every host. Ensure that you change the permissions of the
directory so that you can delete all files.

% cd /grid
% chmod -R 750 tt22.1.1.18.0/
% rm -rf tt22.1.1.18.0/

For more information on the ttGridAdmin installationDelete command, see Delete
an Installation (installationDelete) in Oracle TimesTen In-Memory Database
Reference.

Chapter 9
Upgrade a Grid to a Patch-Compatible Release

9-16

Upgrade a Grid to a Different Major or Patch-Incompatible
Release

Generally, all patch set (and patch) releases of the same major release of TimesTen are
patch compatible. For exceptions or upgrades to a different major release, you need to
migrate the data from your current databases to databases in a different grid, one based on
the target upgrade release.

To upgrade a grid to a release that is patch incompatible with your current release, perform
these tasks:

1. Install the TimesTen distribution of the target release, as shown in Installing TimesTen
Scaleout.

2. Using your new TimesTen installation, set up a new grid and databases to import the data
of your current databases, as shown in Setting Up a Grid and Creating a Database.

Note:

The new grid does not need to match the topology (K-safety value and number
of replica sets) of your current grid.

3. Export the data from your current databases and import it into the databases of your new
grid, as shown in Exporting and Importing a Database.

4. Optional: Destroy your previous grid, as shown in Destroying a Grid.

Chapter 9
Upgrade a Grid to a Different Major or Patch-Incompatible Release

9-17

10
Monitoring TimesTen Scaleout

You can monitor a grid and database in TimesTen Scaleout through different applications and
utilities.

• Using the ttStats Utility

• Using SQL Developer

• Using the TimesTen Prometheus Exporter

• Monitoring the Management Instances

• Collecting Grid Logs

• Retrieving Diagnostic Information

• Verifying Clock Synchronization Across All Instances

Using the ttStats Utility
The ttStats utility enables you to monitor database metrics (statistics, states, and other
information), automatically captures system snapshots, and take and compare snapshots of
metrics. The ttStats utility can perform the following functions.

• Monitor and display database performance metrics in real-time, calculating rates of
change during each preceding interval.

Monitoring and analyzing reports of the database helps you determine the overall
performance of your grid. By knowing the overall performance of your database, you can take
preventive measures that ensure that your database is running with optimal conditions.

There are several differences in how ttStats works in TimesTen Classic and TimesTen
Scaleout. For more information, see ttStats in Oracle TimesTen In-Memory Database
Reference. For details on the TT_STATS PL/SQL package, see TT_STATS in Oracle TimesTen
In-Memory Database PL/SQL Packages Reference.

The following topics describe how to use the ttStats utility:

• View the Configuration of the ttStats Utility

• Configure the ttStats Utility

• Monitor a Database with the ttStats Utility

• Create a Snapshot with the ttStats Utility

• Create a Report Between Two Snapshots with the ttStats Utility

View the Configuration of the ttStats Utility
The ttStatsConfigGet built-in procedure enables you to view the configuration settings of
the ttStats utility. This built-in shows the values of the pollSec, retentionDays, and
retainMinutes parameters which set the collection settings of the ttStats utility.

10-1

This following example shows the collection settings of the ttStats utility:

Command> call ttStatsConfigGet();
< POLLSEC, 30 >
< RETENTIONDAYS, 62 >
< RETAINMINUTES, 120 >
3 rows found.

The pollSec, retentionDays, and retainMinutes parameters, which are only
supported in TimesTen Scaleout, enable you to set the polling interval, purging time for
aggregated data, and purging time for raw data for TimesTen Scaleout statistics,
respectively. The polling interval parameter, pollsec, determines the interval, in
seconds, at which the ttStats daemon collects metrics of the database.

The value of the polling interval does not affect the performance of the database.
However, a polling interval of 10 seconds tends to use six times less space than a
polling interval of 60 seconds. Most metrics get aggregated and use around 6 MB
(even up to 10 years worth of metrics) of PermSize space on each element. However,
some metrics such as log holds, top SQL commands, and checkpoint history cannot
be aggregated. You can use the ttStats -snapshotInfo utility to determine how
much PermSize is being used for your metrics.

For more information of the ttStatsConfigGet built-in procedure and the ttStats
utility, see ttStatsConfigGet and ttStats, respectively, in Oracle TimesTen In-Memory
Database Reference.

Configure the ttStats Utility
The ttStatsConfig built-in procedure controls the configuration settings of the
ttStats utility and when ttStats automatically takes system snapshots. Call the
ttStatsConfig built-in procedure to modify statistics collection parameters that affect
the ttStats utility. For more information on the parameters of the ttStatsConfig built-
in procedure and the SYS.V$STATS_CONFIG system view, see ttStatsConfig in Oracle
TimesTen In-Memory Database Reference and SYS.V$STATS_CONFIG in Oracle
TimesTen In-Memory Database System Tables and Views Reference, respectively.

The polling interval parameter, pollsec, determines the interval, in seconds, at which
the ttStats daemon collects metrics of the database.

The following example returns the current value of the polling interval for TimesTen
Scaleout statistics:

SQL> SELECT VALUE FROM SYS.V$STATS_CONFIG WHERE PARAM='POLLSEC';
< 30 >
1 row found.

The following example sets the polling interval of TimesTen Scaleout statistics to 45
seconds:

Command> call ttStatsConfig('pollsec', 45);
< POLLSEC, 45 >
1 row found.

Chapter 10
Using the ttStats Utility

10-2

The retention time interval, retentionDays, determines the interval, in days, at which the
ttStats daemon drops metrics of the database. For example, if the retention time interval is
62 days, the ttStats daemon drops the 1st day's snapshot on the 63rd day. Ensure that you
have sufficient PermSize to support the desired retention time interval.

The following example returns the current value of the retention time interval for TimesTen
Scaleout statistics:

SQL> SELECT VALUE FROM SYS.V$STATS_CONFIG WHERE PARAM='RETENTIONDAYS';
< 62 >
1 row found.

The following example sets the retention time interval for TimesTen Scaleout statistics to 30
days:

Command> call ttStatsConfig('retentionDays', 30);
< RETENTIONDAYS, 30 >
1 row found.

The purging time interval, retainMinutes, determines the interval, in minutes, in which the
ttStats daemon purges raw metrics of the database. For example, if the retention time
interval is 120 minutes, the ttStats daemon purges the raw metrics every 120 minutes.

The following example returns the current value of the purging time interval for TimesTen
Scaleout statistics:

SELECT VALUE FROM SYS.V$STATS_CONFIG WHERE PARAM='RETAINMINUTES';
< 120 >
1 row found.

The following example sets the purging time interval for TimesTen Scaleout statistics to 60
minutes:

Command> call ttStatsConfig('retainMinutes', 60);
< RETAINMINUTES, 60 >
1 row found.

Monitor a Database with the ttStats Utility
Use the ttStats -monitor utility to monitor your database workload on a local instance in
real-time. You can specify the -duration or -iterations option to set the length of time that
the ttStats utility monitors the TimesTen Scaleout. Monitoring continues until the limit of the
-duration or -iterations options is reached or when you use Ctrl-C. You can also specify
an interval time, -interval, which sets the time interval between sets of metrics that are
displayed, in seconds. These options can be specified together. You can specify the following
options:

• -duration: This option sets the duration of how long the ttStats utility runs, in seconds.
After this duration, the utility exits.

Chapter 10
Using the ttStats Utility

10-3

The following example monitors a database for 60 seconds:

% ttStats -monitor -duration 60 database1
Connected to TimesTen Version 22.01.0001.0018 Oracle TimesTen IMDB
version 22.1.1.18.0.

Waiting for 10 seconds for the next snapshot
Description Current Rate/Sec Notes
date.2017-Feb-22 11:33:41 1456169621 1 sample #,
not rate
cmdcache.id:278352904.preps 142072 1 COMMIT
cmdcache.id:283596680.execs 135242 1 SELECT
COUNT(*) FROM SYS.TTSTATS
cmdcache.id:283613080.execs 340200 3 SELECT
COUNT(*) FROM SYS.TTSTATS
cmdcache.id:283619720.execs 135242 1 INSERT INTO
SYS.TTSTATS_SQL_COMM
connections.count 15
db.joins.nested_loop 22874 1
db.table.full_scans 136618 2
lock.locks_granted.immediate 24138575 291
log.buffer.bytes_inserted 4887634664 52988
log.buffer.insertions 41123321 447
log.file.writes 247855 2
log.forces 183285 1
log.log_bytes_per_transaction 0
loghold.bookmark.log_force_lsn 88/46899200
loghold.bookmark.log_write_lsn 88/46899464
loghold.checkpoint_hold_lsn 88/41543680 database1.ds0
loghold.checkpoint_hold_lsn 88/33990656 database1.ds1
plsql.GetHitRatio 0.714 0.000
plsql.GetHits 380.000 0.200
plsql.Gets 532.000 0.200
plsql.PinHitRatio 0.989 0.000
plsql.PinHits 34556.000 0.500
plsql.Pins 34933.000 0.500
stmt.executes.count 1103839 12
stmt.executes.inserts 280246 2
stmt.executes.selects 777408 9
stmt.prepares.count 173038 1
txn.commits.count 233082 2
txn.commits.durable 182275 1
...

• -iterations: This option sets the number of iterations that the ttStats utility
performs when gathering and displaying metrics. After these iterations, the utility
exits.

The following example sets the number of iterations to 3:

% ttStats -monitor -iterations 3 database1
Connected to TimesTen Version 22.01.0001.0018 Oracle TimesTen IMDB
version 22.1.1.18.0.

Waiting for 10 seconds for the next snapshot

Chapter 10
Using the ttStats Utility

10-4

Description Current Rate/Sec Notes
date.2017-Feb-22 11:54:34 1456170874 1 sample #, not
rate
connections.count 15
lock.locks_granted.immediate 24195281 1
log.log_bytes_per_transaction 0
loghold.bookmark.log_force_lsn 88/61253632
loghold.bookmark.log_write_lsn 88/61253896
loghold.checkpoint_hold_lsn 88/55470080 database1.ds0
loghold.checkpoint_hold_lsn 88/48414720 database1.ds1
plsql.GetHitRatio 0.730 0.000
plsql.GetHits 410.000 0.200
plsql.Gets 562.000 0.200
plsql.PinHitRatio 0.989 0.000
plsql.PinHits 34667.000 0.200
plsql.Pins 35044.000 0.200
stmt.executes.count 1106494 1
stmt.executes.selects 779348 1
...

• -interval: This option sets the time interval between sets of metrics that are displayed,
in seconds.

The following example sets the interval time to 30 seconds:

% ttStats -interval 30 -monitor database1
Connected to TimesTen Version 22.01.0001.0018 Oracle TimesTen IMDB
version 22.1.1.18.0.

Waiting for 30 seconds for the next snapshot
Description Current Rate/Sec Notes
date.2017-Feb-19 15:18:38 1455923918 1 sample #, not rate
connections.count 15
lock.locks_granted.immediate 12536701 1
log.log_bytes_per_transaction 0
loghold.bookmark.log_force_lsn 45/13309952
loghold.bookmark.log_write_lsn 45/13310216
loghold.checkpoint_hold_lsn 45/4683776 database1.ds0
loghold.checkpoint_hold_lsn 45/11804672 database1.ds1
plsql.GetHitRatio 0.700 0.000
plsql.GetHits 355.000 0.067
plsql.Gets 507.000 0.067
plsql.PinHitRatio 0.980 0.000
plsql.PinHits 18201.000 0.067
plsql.Pins 18578.000 0.067
...

Create a Snapshot with the ttStats Utility
Use the ttStats -snapshot utility to associate a snapshot ID with the latest system
generated snapshot of your database. Snapshots are used to create reports that show you
database metrics. When a system generated snapshot gets automatically purged, the
associated user snapshots will also be purged.

Chapter 10
Using the ttStats Utility

10-5

The following example uses the ttStats -snapshot utility to create a snapshot. The -
description command is required when you use the -snapshot command. The -
description command lets you provide any description or notes for the snapshot, for
example to distinguish it from other snapshots.

% ttStats -snapshot -description 1 database1
Connected to TimesTen Version 22.01.0001.0018 Oracle TimesTen IMDB
version 22.1.1.18.0.
Snapshot ID was 88412

You can reference the snapshot that was created from the example with a snapshot ID
of 1.

Create a Report Between Two Snapshots with the ttStats Utility
Use the ttStats -report utility to create a report between two snapshots of your
TimesTen Scaleout database. ttStats reports show the change in statistics between
two snapshots of your database. The -outputFile option enables you to specify a file
path and name where the report is to be written. Use one of the following set of
options to define the start and end points of the report:

• The -snap1 and -snap2 options to specify snapshot IDs. The report period must
span at least four existing snapshot ID values. Therefore, you must have at least
three snapshots between -snap1 and -snap2.

• The -timestamp1 and -timestamp2 options to specify timestamps.

You can use the ttStats -snapshotInfo command to view available snapshots for
your database.

The following example uses the ttStats -snapshotInfo utility to return the IDs and
timestamps of available snapshots. This command also returns information about
aggregated snapshots as well as the values of the ttStatsConfig built-in procedure.

% ttStats -snapshotInfo database1
Connected to TimesTen Version 22.01.0001.0018 Oracle TimesTen IMDB
version 22.1.1.18.0.
There are 2 user snapshots:
Snapshot ID User comment When snapshot occurred
============ ================ ======================
 88412 1 2018-02-09 13:28:50
 88412 2 2018-02-10 11:13:55
 88412 3 2018-02-10 18:39:50
 88412 4 2018-02-11 08:10:12
 88412 5 2018-02-12 17:23:46
There are 151 AGGREGATED snapshots:
 Oldest snapshot 2880, 2018-01-04 15:37:29
 Newest snapshot 88412, 2018-02-03 10:00:26
There are 240 NON AGGREGATED snapshots:
 Oldest snapshot 88173, 2018-02-03 08:00:42
 Newest snapshot 88412, 2018-02-03 10:00:26

There are about 16.3 MB of metrics stored in ttStats SYS tables

 The PollSec was 30

Chapter 10
Using the ttStats Utility

10-6

 The RetentionDays was 62
 The RetainMinutes was 120

The following example creates a report, snapreport.txt, between the snapshots with ID 1
and ID 5:

% ttStats -report -snap1 1 -snap2 5 -outputFile snapreport.txt database1
Connected to TimesTen Version 22.01.0001.0018 Oracle TimesTen IMDB version
22.1.1.18.0.
Report snapreport.txt was created.

The following example creates a report, timereport.txt, between two timestamps:

% ttStats -report -timestamp1 2018-02-22 12:50:31 -timestamp2 2018-02-23
09:15:23 -outputFile snapreport.txt database1
Connected to TimesTen Version 22.01.0001.0018 Oracle TimesTen IMDB version
22.1.1.18.0.
Report timereport.txt was created.

For more information about the tables of metrics that a ttStats report generates and the
ttStats utility, see ttStats in TimesTen Scaleout in Oracle TimesTen In-Memory Database
Reference.

Using SQL Developer
SQL Developer is a graphical user interface (GUI) tool that gives database developers a
convenient way to create, manage, and explore a grid and its components. You can also
browse, create, edit and drop particular database objects; run SQL statements and scripts;
manipulate and export data; view and create reports; and view database metrics.
See Oracle TimesTen In-Memory Database SQL Developer Support User's Guide.

Using the TimesTen Prometheus Exporter
The TimesTen Prometheus exporter (TimesTen exporter) allows you to monitor the health and
operations of your databases in TimesTen Scaleout. The TimesTen exporter converts
TimesTen metrics into the form used by Prometheus.

The TimesTen explorer needs to be enabled on every data or management instance you
want to monitor. See The TimesTen Prometheus Exporter in Oracle TimesTen In-Memory
Database Monitoring and Troubleshooting Guide for information on how to enable the
TimesTen exporter on an instance.

Monitoring the Management Instances
Management instances store metadata used to manage the grid. It is recommended that you
use an active and a standby instance to have high availability for this metadata. If you use a
single management instance and that management instance is down, the grid continues to
operate but you cannot perform certain management operations for your grid.
A management instance can get full because it stores information about your grid, previous
grid model versions, and logs of your grid. It is important for the management instances to

Chapter 10
Using SQL Developer

10-7

have enough free space to function properly. If your management instance begins to
get full, any command that you run with the ttGridAdmin utility outputs a warning.

You can perform these tasks to maintain the management instances:

• Modify the Retention Values of Previous Grid Models

• Monitor the Free Space of the Management Instance

• Modify the Used-Space Warning Threshold of the Management Instances

• Resize the Management Instance

Modify the Retention Values of Previous Grid Models
This topic shows how to increase or decrease the retention values of previous grid
models.

This example sets the retention days value to 60 and the retention versions value to
15. These values ensure that TimesTen Scaleout only deletes previous grid models
that are older than 60 days and are at least 16 grid model versions old.

Note:

If you specify either the -retainDays or the -retainVersions parameter as
0, then only the other parameter is used. If you set both parameters values to
0, TimesTen Scaleout never automatically deletes previous grid model
versions.

% ttGridAdmin gridModify -retainDays 60 -retainVersions 15
Grid Definition modified.

For more information about the ttGridAdmin gridModify command, see Modify Grid
Settings (gridModify) in Oracle TimesTen In-Memory Database Reference.

Monitor the Free Space of the Management Instance
When you create a grid, the grid sets a used-space warning threshold for the
management instance. If the size of your management instance reaches this
threshold, commands that you run with the ttGridAdmin utility output warnings that the
management instance is getting full.

This example shows the output of a ttGridAdmin instanceCreate command for a grid
where the management instance is almost full.

% ttGridAdmin instanceCreate host9 -location /grid
Instance instance1 on Host host9 created in Model
Warning: the TTGRIDADMIN database is 91% full; Temp space: 57%

Chapter 10
Monitoring the Management Instances

10-8

Note:

When you use a ttGridAdmin command and you see a warning that your
management instance is getting full, TimesTen Scaleout deletes old grid model
versions and logs based on the retention days and retention versions parameters of
your grid.

Use the gridDisplay command of the ttGridAdmin utility on your management instance to
see the current used-space warning threshold for the management instance, and retention
days and quantity of previous versions of the grid model that TimesTen Scaleout stores.

This example shows the output of the ttGridAdmin gridDisplay command.

% ttGridAdmin gridDisplay
Grid name: grid1
Grid GUID: 864C0CB2-AF40-4047-A711-7A9F9F0E7D6C
Created: 2018-12-12 12:20:32.000000
Major Release: 22.1
Created Release: 22.1.1.18.0
K: 3
Admin Userid: terry
Admin UID: 4133
Admin Group: admin
Admin GID: 900
Retain Days: 30
Retain Versions: 10
Warn Threshold: 90
Perm In Use Pct: 91
Temp In Use Pct: 57

For more information about the ttGridAdmin gridDisplay command and the default values
for the retention of previous grid models and warning threshold of the management instance,
see Display Information About the Grid (gridDisplay) and Modify Grid Settings (gridModify),
respectively, in Oracle TimesTen In-Memory Database Reference.

See Resize the Management Instance for more information on resizing the grid
administration database.

Modify the Used-Space Warning Threshold of the Management Instances
This topic shows how to increase or decrease the current used-space warning threshold for
the management instances.

This example sets the current used-space warning threshold for the management instances
to 80%.

% ttGridAdmin gridModify -warnThresh 80
Grid Definition modified.

For more information about the ttGridAdmin gridModify command, see Modify Grid
Settings (gridModify) in Oracle TimesTen In-Memory Database Reference.

Chapter 10
Monitoring the Management Instances

10-9

Resize the Management Instance
In some cases, you may want to resize the management instance because it is getting
full.

Depending on if your grid has a single management instance or an active and a
standby management instances, follow one of these procedures:

• Grid with a Single Management Instance

• Grid with Active and Standby Management Instances

Grid with a Single Management Instance
To resize the management instance of a grid with one management instance, ensure
that you are connected to the management instance.

1. Export the database definition.

% ttGridAdmin dbdefExport TTGRIDADMIN /tmp/ttgridadmin.dbdef

The following example shows the contents of the exported file.

[TTGRIDADMIN]
AutoCreate=0
Connections=100
DBUUID=C12C4FAE-5732-4307-A08F-5F7FBF9BF1C0
DataStore=!!TIMESTEN_HOME!!/grid/admin/database/!!TTGRIDADMIN!!
DatabaseCharacterSet=AL32UTF8
DurableCommits=1
LockWait=120
Overwrite=0
PLSQL=1
PLSQL_TIMEOUT=0
PermSize=200
TempSize=100

2. With a text editor, modify the value of the PermSize connection attribute to a larger
value.

The following example shows the contents of the modified database definition file.
In this example, the new value of the PermSize connection attribute is 400.

[TTGRIDADMIN]
AutoCreate=0
Connections=100
DBUUID=C12C4FAE-5732-4307-A08F-5F7FBF9BF1C0
DataStore=!!TIMESTEN_HOME!!/grid/admin/database/!!TTGRIDADMIN!!
DatabaseCharacterSet=AL32UTF8
DurableCommits=1
LockWait=120
Overwrite=0
PLSQL=1
PLSQL_TIMEOUT=0

Chapter 10
Monitoring the Management Instances

10-10

PermSize=400
TempSize=100

3. Import the contents of the modified database definition file into the TTGRIDADMIN database
definition.

% ttGridAdmin dbdefModify /tmp/ttgridadmin.dbdef
Database Definition TTGRIDADMIN modified.

4. Apply the changes of the TTGRIDADMIN database definition file to the current version of
the model.

% ttGridAdmin modelApply
...
Pushing new configuration files to each Instance......................OK
...
ttGridAdmin modelApply complete

5. Stop the management instance.

Note:

Stopping the management instance does not impact existing databases.
However, you are unable to perform management operations until you start the
management instance.

% ttGridAdmin mgmtActiveStop
Active management instance stopped

6. Start the management instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

You have successfully resized your management instance.

Grid with Active and Standby Management Instances
To resize the management instances of a grid with active and standby management
instances, ensure that you are connected to the active management instance.

1. Export the database definition of the grid administration database.

% ttGridAdmin dbdefExport TTGRIDADMIN /tmp/ttgridadmin.dbdef

The following example shows the contents of the exported file.

[TTGRIDADMIN]
AutoCreate=0
Connections=100
DBUUID=C12C4FAE-5732-4307-A08F-5F7FBF9BF1C0

Chapter 10
Monitoring the Management Instances

10-11

DataStore=!!TIMESTEN_HOME!!/grid/admin/database/!!TTGRIDADMIN!!
DatabaseCharacterSet=AL32UTF8
DurableCommits=1
LockWait=120
Overwrite=0
PLSQL=1
PLSQL_TIMEOUT=0
PermSize=200
TempSize=100

2. With a text editor, modify the value of the PermSize connection attribute to a larger
value.

The following example shows the contents of the modified database definition file.
In this example, the new value of the PermSize connection attribute is 400.

[TTGRIDADMIN]
AutoCreate=0
Connections=100
DBUUID=C12C4FAE-5732-4307-A08F-5F7FBF9BF1C0
DataStore=!!TIMESTEN_HOME!!/grid/admin/database/!!TTGRIDADMIN!!
DatabaseCharacterSet=AL32UTF8
DurableCommits=1
LockWait=120
Overwrite=0
PLSQL=1
PLSQL_TIMEOUT=0
PermSize=400
TempSize=100

3. Import the contents of the modified database definition file into the TTGRIDADMIN
database definition.

% ttGridAdmin dbdefModify /tmp/ttgridadmin.dbdef
Database Definition TTGRIDADMIN modified.

4. Apply the changes of the TTGRIDADMIN database definition file to the current
version of the model.

% ttGridAdmin modelApply
...
Pushing new configuration files to each
Instance......................OK
...
ttGridAdmin modelApply complete

5. From the standby management instance, stop the management instance.

Chapter 10
Monitoring the Management Instances

10-12

Note:

This procedure does not impact existing databases or affect operations of the
grid.

% ttGridAdmin mgmtStandbyStop
Standby management instance host2.instance1 stopped

6. From the standby management instance, start the management instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

7. From the standby management instance, promote the standby management instance to
be the new active management instance and shut down the original active management
instance.

% ttGridAdmin mgmtActiveSwitch
This is now the active management instance

8. From the original active management instance, start the new standby management
instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

You have successfully resized your management instances. Additionally, your original active
management instance is now the standby management instance and the original standby
management instance is now the active management instance. This does not affect
operations of your grid.

Collecting Grid Logs
TimesTen Scaleout enables you to collect various logs from every host that is part of your
grid. These logs are useful for troubleshooting errors that you may encounter while using
your grid or database. You can collect these logs with the ttGridAdmin gridLogCollect
command:

• ttGridAdmin.log
Shows support messages about the grid.

• tterrors.log
Shows any error or warning messages that the TimesTen daemon encountered.

• ttmesg.log
Shows support messages about the TimesTen daemon.

• Configuration files

Configuration files that are stored in the timesten_home/conf/ directory of each instance.

Chapter 10
Collecting Grid Logs

10-13

Note:

The logs are stored in the timesten_home/diag/ directory. This directory
contains multiple tterrors.log and ttmesg.log files that are appended with
numbers. The logs without the appended number are the most recent log
files.

Note:

Before collecting logs for your grid, ensure that you have configured a
repository. See Working with Repositories.

This example collects the logs for a grid and stores these logs in the repository repo1.
By default, TimesTen Scaleout names your collection of logs with the current date and
time, Lyyyymmddhhss. The prefix of the backup name, L, stands for logs.

Note:

You can add the -name parameter to specify a collection name. For example,
ttGridAdmin gridLogCollect -repository repo1 -name mylogs creates a
collection of logs named mylogs.

% ttGridAdmin gridLogCollect -repository repo1

Logs copied to collection L20170331143740 in repository repo1

The ttGridAdmin gridLogCollect command creates a collection directory in the
repository. The collection directory contains a directory for every host of your grid
where each host directory contains logs for that specific host.

Retrieving Diagnostic Information
TimesTen Scaleout enables you to retrieve diagnostic information for a whole grid.
This diagnostic information can be useful for the Oracle Support team to be able to
diagnose any issue that might come up with your grid.

The following example retrieves diagnostic information for your whole grid by using the
ttGridAdmin utility from the management instance. You can then provide this file to the
Oracle Support team.

% ttGridAdmin gridDump /tmp/grid.status.txt

Chapter 10
Retrieving Diagnostic Information

10-14

Verifying Clock Synchronization Across All Instances
It is important to ensure that the system clocks of every host in your grid are roughly
synchronized. Synchronized system clocks ensure that timestamps of transactions and logs
are accurate on all hosts.

This example outputs the system date and time of every host in the grid.

% ttGridAdmin hostExec date
Commands executed on:
 - host1 rc 0
 - host2 rc 0
 - host3 rc 0
 - host4 rc 0
 - host5 rc 0
 - host6 rc 0
Return code from host1: 0
Output from host1:
Fri Mar 31 18:16:51 PDT 2018
Return code from host2: 0
Output from host2:
Fri Mar 31 18:16:49 PDT 2018
Return code from host3: 0
Output from host3:
Fri Mar 31 18:16:51 PDT 2018
Return code from host4: 0
Output from host4:
Fri Mar 31 18:16:51 PDT 2018
Return code from host5: 0
Output from host5:
Fri Mar 31 18:16:50 PDT 2018
Return code from host6: 0
Output from host6:
Fri Mar 31 18:16:52 PDT 2018

In case that the system clock of a host is not synchronized with the other hosts, adjust the
system clock on that specific host. You can use the Network Time Protocol (NTP) to ensure
that the system clock of your hosts are synchronized.

Chapter 10
Verifying Clock Synchronization Across All Instances

10-15

11
Migrating, Backing Up and Restoring Data

TimesTen Scaleout enables you to migrate a database from TimesTen Classic to TimesTen
Scaleout. TimesTen Scaleout also enables you to create backups of databases and restore
them to the same grid or another grid with a similar topology. In addition, TimesTen Scaleout
enables you to export your databases to a grid with a different topology. You define a
repository as a location for your database backups, exports, and collections of log files.
The following topics discusses how to migrate data from a TimesTen Classic database, work
with repositories, and how to back up and restore data in a TimesTen Scaleout database.

• Migrating a Database from TimesTen Classic to TimesTen Scaleout

• Working with Repositories

• Backing Up and Restoring a Database

• Exporting and Importing a Database

• Determining the Size of a Backup or Export

Migrating a Database from TimesTen Classic to TimesTen
Scaleout

TimesTen Scaleout enables you to migrate a database from TimesTen Classic to TimesTen
Scaleout. TimesTen Scaleout supports and includes most of the features of TimesTen
Classic; it does not support any of the features of TimesTen Replication and only supports
static read-only cache groups with incremental autorefresh. See Comparison Between
TimesTen Scaleout and TimesTen Classic .
These procedures are for TimesTen Classic databases. You cannot migrate the following
objects:

• Tables containing a LOB column

• Tables that contain ROWID columns

• Tables with in-memory columnar compression

• Tables with aging policies

• Cache groups other than static read-only cache groups with incremental autorefresh

• Replication schemes

Prerequisites before migrating a database from TimesTen Classic to TimesTen Scaleout:

• Create a grid with management and data instances. See Setting Up a Grid.

• Create a backup of your TimesTen Classic database. See Backing up and Restoring a
Database in Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade
Guide.

• After you have created a backup of your TimesTen Classic database, consider removing
LOB columns from your tables. TimesTen Scaleout cannot import a table with LOB
columns and the import process displays an error message if a table contains LOB

11-1

columns. Use the ALTER TABLE statement with the DROP keyword to drop these
columns. See ALTER TABLE in Oracle TimesTen In-Memory Database SQL
Reference.

• In case that you have tables with ROWID columns consider not using ROWID based
access in your applications. The semantics of ROWID columns are different in
TimesTen Classic than in TimesTen Scaleout. See Understanding ROWID in Data
Distribution.

• Understand the performance trade-off between table distribution schemes. See
Defining Table Distribution Schemes.

The procedures in this topic explain how to remove the objects that cannot be
migrated from your TimesTen Classic database.

To migrate a database from TimesTen Classic to a TimesTen Scaleout database,
export your database schema, and migrate supported objects out of the TimesTen
Classic database. Then restore these into a new TimesTen Scaleout database.

1. Disconnect all applications from your TimesTen Classic database.

2. On the TimesTen Classic instance, export the database schema with the -list
option of the ttSchema utility. The -list option only specifies objects that are
supported in TimesTen Scaleout. Ensure that you replace database1 with the
name of your database:

% ttSchema -list tables,views,sequences,synonyms database1 > /tmp/database1.schema

For more information about the ttSchema utility, see ttSchema in Oracle TimesTen
In-Memory Database Reference.

3. On the TimesTen Classic instance, save a copy of your database with the
ttMigrate utility.

% ttMigrate -c database1 /tmp/database1.data

Saving user PUBLIC
User successfully saved.
...
Sequence successfully saved.

For more information about the ttMigrate utility, see ttMigrate in Oracle TimesTen
In-Memory Database Reference.

4. Copy the database schema and the migrate object files to a file system that is
accessible by one of your data instances. You can choose any data instance and
you need to complete all further procedures from this same data instance unless
stated otherwise.

5. On your selected data instance, use a text editor to edit the database schema file
to remove SQL statements and clauses that are not supported in TimesTen
Scaleout and add distribution scheme clauses for your tables. This is the database
schema file that you created in step 3.

Remove the following SQL statements:

• CREATE CACHE GROUP

Chapter 11
Migrating a Database from TimesTen Classic to TimesTen Scaleout

11-2

Note:

Except for statements that create static read-only cache groups with
incremental autorefresh.

• CREATE REPLICATION
• CREATE ACTIVE STANDBY PAIR
• CREATE INDEX (Before removing these statements review the note below)

Note:

CREATE INDEX statements are supported in TimesTen Scaleout, but it is
more efficient to create indexes once your data has been distributed.
However, for child tables which you want to distribute with the DISTRIBUTE
BY REFERENCE distribution scheme, you should not remove the FOREIGN KEY
clause of the child table, nor the CREATE INDEX statement of the referenced
parent table. Step 9 restores your indexes once your data has been
inserted into your TimesTen Scaleout database.

Remove the following CREATE TABLE clauses:

• COMPRESS BY
• FOREIGN KEY (Before removing these statements review the note above)

• AGING
Add CREATE USER statements to create the schema owners referenced by the objects in
database1.schema. For example, hr.employees, would require a CREATE USER hr
IDENTIFIED BY password statement. You also may need to add privileges to these users
if you want to log in as the users.

Add distribution scheme clauses for all of your table definitions. If you do not specify a
distribution scheme for a CREATE TABLE statement, TimesTen Scaleout distributes the
data of that table with the DISTRIBUTE BY HASH distribution scheme.

Note:

When you use the DISTRIBUTE BY REFERENCE distribution scheme, ensure that
you declare the child key columns of a foreign key constraint as NOT NULL.

Before adding distribution schemes to your table definitions, ensure that you understand
the performance trade-off between the distribution schemes. See Defining Table
Distribution Schemes.

6. From a TimesTen Scaleout management instance, create a TimesTen Scaleout
database. See Creating a Database.

Chapter 11
Migrating a Database from TimesTen Classic to TimesTen Scaleout

11-3

7. On your selected data instance, log in as the instance administrator to create the
database schema from the database schema file. Ensure that you replace
new_database1 with the name of your new TimesTen Scaleout database:

% ttIsql -connStr "DSN=new_database1" -f /tmp/database1.schema

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=new_database1";
Connection successful:
...
exit;
Disconnecting...
Done.

Note:

It can be useful to redirect the output of the ttIsql command to an output
file. You can then review this output to ensure that the command ran
successfully. To redirect output to a file, add > myoutput.txt after the
ttIsql -connStr "DSN=new_database1" -f /tmp/database1.schema
command.

8. On your selected data instance, use the following ttMigrate command to restore
rows for all user tables:

% ttMigrate -r -gridRestoreRows new_database1 /tmp/database1.data

Restoring table HR.EMPLOYEES
...
 10/10 rows restored.
Table successfully restored.

9. On your selected data instance, use the following ttMigrate command to restore
indexes and foreign keys:

% ttMigrate -r -gridRestoreFinale new_database1 /tmp/database1.data

Restoring table HR.EMPLOYEES
...
 10/10 rows restored.
Table successfully restored.

Chapter 11
Migrating a Database from TimesTen Classic to TimesTen Scaleout

11-4

Note:

If you did not remove FOREIGN KEY clauses in step 5 because you are using a
DISTRIBUTE BY REFERENCE distribution scheme, you may see error messages
that TimesTen Scaleout is unable to create some foreign keys. If you already
created these foreign keys in step 5, you can ignore these messages.

Once the database is operational on TimesTen Scaleout, create a backup of the TimesTen
Scaleout database to have a valid restoration point for your database. See Backing Up and
Restoring a Database. Once you have created a backup of your database, you may remove
the database schema file (in this example, /tmp/database1.schema) and the ttMigrate copy
of your database (in this example, /tmp/database1.data).

Working with Repositories
In a grid, a repository is used to store backups of databases, database exports, and
collections of log files and configuration files. TimesTen Scaleout enables you to define a
repository as a directory path mounted using NFS on each host or as a directory path that is
not directly mounted on each host. Multiple grids can use a single repository.
A repository contains a number of collections. A collection can be a backup of a database, a
database export, or a set of saved daemon logs and configuration files. Collections are
essentially subdirectories that use the name of the collection and are stored inside of a
repository. Each collection can contain a combination of files and sub-collections.

Ensure that you create your repository where there is enough file system space to store your
database backups, database exports, and collections of log and configuration files.

You must create a repository for your grid before attempting to backup a database, export a
database, or create a daemon log collection.

TimesTen Scaleout enables you to perform the following procedures with repositories:

• Create a Repository

• Attach a Repository

• Detach a Repository

• List Repositories and Collections

Create a Repository
Before you back up a database, export a database, or create a daemon log collection, you
need to configure a repository for your grid. Depending on the value of the -method
parameter, the ttGridAdmin repositoryCreate command creates a repository as a directory
path mounted using NFS on each host or as a directory path that is accessible on each host
with SSH or SCP.

Note:

For more information on valid names for repositories, see Grid Objects and Object
Naming in Oracle TimesTen In-Memory Database Reference.

Chapter 11
Working with Repositories

11-5

The mount (NFS) method can only be used if all instances are on the same network
and all instances must use the same NFS. The SCP method can be used on any
system but may be slower for larger grids.

For more information about the ttGridAdmin repositoryCreate command, see
Create a Repository (repositoryCreate) in Oracle TimesTen In-Memory Database
Reference.

Create a Repository as a Directory Path Mounted Using NFS on Each Host
This example creates a repository as a directory path mounted using NFS on each
host of your grid. Ensure that the directory specified by the -path parameter exists and
is accessible by the instance administrator on each element. This directory must have
the same identical mount path on every element. For example, if the directory path is
mounted at /repositories on one element, it must be mounted at /repositories on
all elements.

% ttGridAdmin repositoryCreate repo1 -path /repositories -method mount
Repository repo1 created

Create a Repository as a Directory Path That Is Accessible on Each Host with
SSH or SCP

This example creates a repository as a directory path that is not directly mounted on
each host of your grid. Ensure that the path value specified by the -path parameter
exists on the host that you specify with the -address parameter. The address
parameter is the fully qualified domain name of the host on which the repository exists.
Also, ensure that each host can use the scp command to access files in the path value
specified by the -path parameter. You can use the ttGridAdmin gridSshConfig
command to verify that your hosts can communicate through SSH with each other. For
more information, see Configure SSH (gridSshConfig) in Oracle TimesTen In-Memory
Database Reference.

% ttGridAdmin repositoryCreate repo2 -path /repositories -method scp -
address host1.example.com
Repository repo2 created

Attach a Repository
Multiple grids can use a single repository as long as each grid is associated with that
repository. If you have an existing repository, you can attach it to another grid as long
as each host from your grid has access to the path of the repository. Depending on the
value of the -method parameter, you can attach a repository as a directory path
mounted using NFS on each host or as a directory path that is accessible on each
host with SSH or SCP. However, you can only attach a repository with the same -
method as which was used to create it. For example, if you created a repository with -
method mount, you can only attach it to another grid with -method mount.

For more information about the ttGridAdmin repositoryAttach command, see
Attach a Repository (repositoryAttach) in Oracle TimesTen In-Memory Database
Reference.

Chapter 11
Working with Repositories

11-6

Attach a Repository as a Directory Path Mounted Using NFS on Each Host
This example attaches a repository as a directory path mounted using NFS on each host of
your grid. Ensure that the path value specified by the -path parameter exists and is
accessible by the instance administrator on each host of your grid.

The name of the repository needs to be the same on each grid to which you attach your
repository.

% ttGridAdmin repositoryAttach repo1 -path /repositories -method mount
Repository repo1 attached

Attach a Repository as a Directory Path That Is Accessible on Each Host with SSH
or SCP

This example attaches a repository as a directory path that is not directly mounted on each
host of your grid. Ensure that each host can use the scp command to access files in the path
value specified by the -path parameter. The address parameter is the fully qualified domain
name of the host on which the repository exists.

The name of the repository needs to be the same on each grid to which you attach your
repository.

% ttGridAdmin repositoryAttach repo2 -path /repositories -method scp -
address host1.example.com
Repository repo2 attached

Detach a Repository
TimesTen Scaleout enables you to detach, but not destroy, a repository from a grid when you
no longer need to use that repository with your grid.

To detach a repository from a grid, specify the name of the repository to detach from your
grid:

% ttGridAdmin repositoryDetach repo1
Repository repo1 detached

Detaching a repository from a grid does not delete the directory or the contents of that
repository.

For more information about the ttGridAdmin repositoryDetach command, see Detach a
Repository (repositoryDetach) in Oracle TimesTen In-Memory Database Reference.

List Repositories and Collections
TimesTen Scaleout enables you to view a list of all repositories that are attached to a grid and
all collections within the repository.

Chapter 11
Working with Repositories

11-7

To view a list of all repositories that are attached to a grid:

% ttGridAdmin repositoryList
Repository Method Location Address
---------- ------ ------------------- --------
repo1 mount /repositories/repo1

To view a list of all collections that are part of every repository that are attached to a
grid:

% ttGridAdmin repositoryList -contents
Repository Collection Type Date Details
---------- ------------- ------------- ------------------------ ------------------
repo1 B20170222145544 Backup 2017-02-22T14:55:48.000Z Database database1
repo1 B20170615142115 Backup 2017-06-15T14:21:20.000Z Database database1
repo2 L20170615143145 gridLogCollect 2017-06-15T14:31:48.000Z
repo2 L20170616102242 gridLogCollect 2017-06-16T10:22:50.000Z

Note:

You can add the name of a repository to only view the collections that are
part of a specific repository. For example, ttGridAdmin repositoryList
repo1 -contents shows all collections of the repo1 repository.

For more information about the ttGridAdmin repositoryList command, see List
Repositories (repositoryList) in Oracle TimesTen In-Memory Database Reference.

Backing Up and Restoring a Database
The TimesTen Scaleout backup and restore functionality is essential in order to protect
your data. It is recommended to perform regular backups in order to minimize the risks
of potential data loss. When you perform a backup of a database, TimesTen Scaleout
performs the backup asynchronously on each replica set and creates a sub-collection
for each replica set that is backed up.
When you are considering backing up and restoring a TimesTen Scaleout database,
keep in mind that:

• The current grid topology must be the same size or larger than the topology from
the grid of the database backup. If your current grid topology is not large enough
for n replica sets, TimesTen Scaleout displays an error message. That is, if you
backup a database with three replica sets and you want to restore into a database
that has only two replica sets, this operation will fail. However, you can use the
export and import feature of TimesTen Scaleout to import a database from a grid
topology with more replica sets into a database of a grid topology with less replica
sets. See Exporting and Importing a Database.

• You can restore a backup into a grid of the same grid topology, even the same grid
from which the backup was created. That is, if you create a backup of a database
where there are three replica sets, then you can restore into the same grid or a
new grid where there are three replica sets.

Chapter 11
Backing Up and Restoring a Database

11-8

• You can restore a backup into a grid that has a larger topology than the grid where the
backup was created. If you back up a database that has n replica sets, the restore
operation creates a database with exactly n replica sets. However, if your current grid
topology is larger than the original grid topology, TimesTen Scaleout creates the
additional elements, but TimesTen Scaleout does not add these elements to the
distribution map of the database and no data is stored on these elements. Instead, the
restore only populates the same number of replica sets as the original grid topology. That
is, if you create a backup of a grid where there are three replica sets, you can restore a
backup into a new grid where there are four replica sets. However, the restore only
populates three of those four replica sets. Thus, in order to populate all replica sets, you
must redistribute the data across all replica sets after the restore using the ttGridAdmin
dbDistribute command. See Redistributing Data in a Database.

• There are two type of backups: normal or staged.

– Normal backups can be performed either on a repository mounted using NFS on
each host of your grid or on a repository where each host of your grid uses SSH/SCP
to connect to it. The time it takes to create a normal backup varies based on the size
of your database, but you should expect every backup to take roughly the same time
to complete.

– Staged backups can only be performed on a repository where each host of your grid
uses SSH/SCP to connect to it. Even though the first staged backup may take a
similar time to complete as a normal backup (or even longer based on the
performance of your network), all subsequent staged backups should take only a
small fraction of that time to complete. Staged backups are ideal when you want to
make regular backups on a second site that is independent to your main site.

See Determining the Size of a Backup or Export for information on the file system space
each backup operation requires.

Note:

If the database where the data would be restored is from a version of TimesTen
Scaleout that is patch incompatible, such as from a different major release, then
you cannot backup and restore a database. Instead, you must export and import
that database. See Exporting and Importing a Database.

TimesTen Scaleout enables you to perform the following procedures with backups:

• Back Up a Database

• Back Up a Database into a Remote Repository (WAN-Friendly)

• Check the Status of a Backup

• Delete a Backup

• Restore a Database

• Check the Status of a Restore

• Set Cache Credentials

Chapter 11
Backing Up and Restoring a Database

11-9

Back Up a Database
Regular backups minimize the risks for potential data loss. Before attempting to back
up your database, ensure that you have configured a repository for your grid. See
Working with Repositories.

This example creates a backup of the database database1 and stores that backup in
the repository repo1. By default, TimesTen Scaleout names your backup with the
current date and time, Byyyymmddhhss. The prefix of the backup name, B, stands for
backup. Ensure that you run the ttGridAdmin dbBackup command on a management
instance.

Note:

You can add the -name parameter to specify a backup name. For example,
ttGridAdmin dbBackup database1 -repository repo1 -name mybackup
creates a backup named mybackup.

% ttGridAdmin dbBackup database1 -repository repo1
dbBackup B20170222145544 started

Depending on the size of your database, the number of replica sets that your database
uses, the performance of your secondary storage device, and the performance of your
network the backup time varies. The ttGridAdmin dbBackup command only starts the
backup process and the output does not indicate that the backup is complete. Use the
ttGridAdmin dbBackupStatus command to see the status of your backup. See Check
the Status of a Backup.

For more information about the ttGridAdmin dbBackup command, see Back Up a
Database (dbBackup) in Oracle TimesTen In-Memory Database Reference.

Back Up a Database into a Remote Repository (WAN-Friendly)
Normal backups to repositories using the SCP method require two copies of the most
recent checkpoint and transaction logs files for each replica set. One copy consists of
the checkpoint and log files of one element for each replica set, which are temporarily
copied to a directory in the instance home. The second copy consists of the same
checkpoint and log files per replica set after they are sent and stored at the repository,
which construct the backup itself.

TimesTen Scaleout enables you to create staged backups to SCP repositories. This
type of backup eliminates the overhead of creating local copies of the checkpoint and
log files and reduces the network traffic required to create a remote copy in the
repository. To accomplish this, staged backups use symbolic links instead of temporary
local files (with the exception of the latest log file) and maintain a staging directory on
the repository with the checkpoint and log files per replica set used for the latest
backup. The next staged backup will copy the latest log files from each replica set and
synchronize the rest of the files in the staging directory over the network. Finally, the
repository uses the resulting files in the staging directory to create the backup, which
removes the load of that task from the data instances and network.

Chapter 11
Backing Up and Restoring a Database

11-10

Note:

• The system hosting the repository makes use of the Linux cp and rsync
commands and the TimesTen ttTransferAgent utility to perform staged backup
operations. The ttTransferAgent utility is copied to the staging directory at the
beginning of a staged backup if it is not already available from a previous
staged backup.

• See Working with Repositories for more information on SCP repositories.

The next topics describe the recommended settings for staged backups and how to create a
staged backup:

• Prerequisites

• SSH Configuration File

• BackupFailThreshold Attribute

• File System Space

• WAN Throughput

• Create a Staged Backup

Prerequisites
Staged backups have these prerequisites:

• Passwordless SSH access: Staged backups require that all hosts with instances (data
and management) have passwordless SSH access for the instance administrator to the
system hosting the repository. See Setting Passwordless SSH.

• The rsync command: Staged backups require that the rsync command is available on
hosts with data instances and on the system allocating the repository.

SSH Configuration File
Staged backups depend on SSH for data transport and control. On every host with a data
instance, consider updating the SSH configuration file for the instance administrator (/home/
instance_administrator/.ssh/config) or the global SSH configuration file (/etc/ssh/
ssh_config) to improve the reliability of staged backups. These options may prove useful:

• HostName: You can use this option to specify multiple aliases for the repository. SSH tries
them in order. Provide a list of multiple aliases in a different order to every host.

• Port: SSH uses by default port 22. You may need to use a different port number if SSH
has to pass through a NAT gateway.

• BindAddress or BindInterface: You can use these options to control which Ethernet
interface SSH will use to contact the repository.

• ConnectionAttempts: By default SSH only makes one connection attempt. You can use
this option to set how many connection attempts SSH will make before terminating and
returning a failure notification.

Chapter 11
Backing Up and Restoring a Database

11-11

• ConnectTimeout: By default SSH uses the system TCP timeout. You can use this
option to set the timeout (in seconds) to establish a SSH connection. Consider
increasing this connection timeout on high-latency WAN links.

• ProxyJump: You can use this option to set bastion hosts to serve as proxies to
connect to the repository. The hosts with a data instance may be able to access
the bastion hosts but not other hosts, like the repository. Likewise, the bastion
hosts may be able to access the remote repository. You can configure multiple
bastion hosts for high availability.

• ServerAliveCountMax: You can use this option to set the maximum number of
keep-alive messages sent through the encrypted channel by a host without
receiving any message back from the repository. The connection is terminated
after reaching this threshold. You must use this option in conjunction with the
ServerAliveInterval option.

• ServerAliveInterval: You can use this option to set the time (in seconds)
between receiving no data from the repository and the host sending a keep-alive
message. This serves to detect if the repository has crashed or the network has
gone down.

On the system hosting the repository, consider setting this option in the global SSH
daemon configuration file (/etc/ssh/sshd_config):

• MaxStartups: You can use this option the set the maximum number of concurrent
unauthenticated connections to the SSH daemon. Consider setting the start
parameter to a value larger than the number of replica sets and the full
parameter to ten times the value of the start parameter. For example, if you have
ten replica sets, set this option as:

MaxStartups 15:30:150

BackupFailThreshold Attribute
The BackupFailThreshold first connection attribute determines the number of
transactions log files that can accumulate in the LogDir directory since the start of a
backup before TimesTen is forced to release the hold on checkpoint operations. If a
checkpoint is initiated before the completion of a backup, the backup is invalidated.

Set the BackupFailThreshold attribute to a value that is high enough to ensure the
safe completion of your backup. For example, if a backup typically takes n seconds to
complete and your database creates m transaction log files per second, then set
BackupFailthreshold to a value greater than n * m. The number of log files
generated by your database per any given unit of time is directly proportional to your
write workload and inversely proportional to the value set for the LogFileSize
attribute.

See Modifying the Connection Attributes of a Database for information on how to
modify the value of a first connection attribute.

For more information on the BackupFailThreshold, LogDir, and LogFileSize
connection attributes, see Connection Attributes in Oracle TimesTen In-Memory
Database Reference.

Chapter 11
Backing Up and Restoring a Database

11-12

File System Space
To avoid out-of-space failures due to staged backups, ensure that:

• The file system used by each data instance has enough space for one transaction log file
(LogFileSize) in the instance home plus enough space to store in LogDir all the
transaction log files that may be generated while the backup operation is in progress
(BackupFailThreshold * LogFileSize).

• The file system used by the repository has enough space to store as many backups you
wish to retain plus enough space in the staging directory for 1.25 backups for all staged
backups of the same database.

See Determining the Size of a Backup or Export for information on the file system space
each backup operation requires.

For more information on the LogFileSize, LogDir, and BackupFailThreshold connection
attributes, see Connection Attributes in Oracle TimesTen In-Memory Database Reference.

WAN Throughput
The minimum WAN throughput required by a subsequent staged backup depends on the
aggregate size of the database, the desired time for the backup to take, and the speed-up
factor provided by the staging repository and the defined transfer compression. You will need
to perform a series of staged backups to test how much the performance of your network and
overall setup (plus the inherent advantages subsequent staged backups over normal
backups provide) reduces the backup time for regular staged backups under typical workload
conditions. Consider this formula:.

Minimum WAN throughput = file size of a backup/(desired backup time * (first
staged backup time/average subsequent staged backups time))

See Determining the Size of a Backup or Export for information on the file system space each
backup operation requires.

Create a Staged Backup
This example creates a staged backup named stgbackup1 of the database1 database and
stores that backup in the scprepo1 repository. The staged backup is set to use an aggregate
network traffic of 62 MB per second and a compression level of 9 for that network traffic.

% ttGridAdmin dbBackup database1 -repository scprepo1 -name stgbackup1 -
backupType staged -bwlimit 62 -compression 9
dbBackup stgbackup1 started

Note:

Ensure that you run the ttGridAdmin dbBackup command as the instance
administrator on the active management instance.

Chapter 11
Backing Up and Restoring a Database

11-13

Depending on the size of your database, the number of replica sets that your database
uses, the performance of your secondary storage device, and the performance of your
network the backup time varies. The ttGridAdmin dbBackup command only starts the
backup process and the output does not indicate that the backup is complete. Use the
ttGridAdmin dbBackupStatus command to see the status of your backup. See Check
the Status of a Backup.

For more information about the ttGridAdmin dbBackup command, see Back Up a
Database (dbBackup) in Oracle TimesTen In-Memory Database Reference.

Check the Status of a Backup
The ttGridAdmin dbBackupStatus command enables you to view the progress of all
backup processes for a specific database.

This example displays the status of all backup processes for the database database1.

% ttGridAdmin dbBackupStatus database1
Database Backup Repository Host Instance Elem State Started
Finished
--------- --------------- ---------- ----- --------- ---- --------- -------------

database1 B20170222145544 repo1 Completed 2017-02-22... Y
 host3 instance1 1 Complete
 host6 instance1 3 Complete

Ensure that the ttGridAdmin dbBackupStatus output shows that the overall state of
the backup process is marked as Completed. In case that you see a state value of
Failed, perform these tasks:

• Use the ttGridAdmin dbStatus database1 -details command to ensure that the
host and instance of that element are up and running. If at least one host from
each replica set is up, the ttGridAdmin dbBackup command can create a full
backup of your database. See Monitor the Status of a Database (dbStatus) in
Oracle TimesTen In-Memory Database Reference.

• Ensure that the repository where you are attempting to create the backup has
enough free file system space to create a backup of your database.

If the backup failed, you may attempt to perform another backup using a different
backup name. If a new backup name does not perform a successful backup, diagnose
the issue and perform any necessary fixes. After you have resolved the problem, use
the ttGridAdmin dbBackupDelete to delete any failed backups. TimesTen Scaleout
does not automatically delete a failed backup. Then, use the ttGridAdmin dbBackup
command to start a new backup. Depending on your available file system space, you
can use these commands in any order. See Delete a Backup and Back Up a
Database.

For more information about the ttGridAdmin dbBackupStatus command, see Display
the Status of a Database Backup (dbBackupStatus) in Oracle TimesTen In-Memory
Database Reference.

Chapter 11
Backing Up and Restoring a Database

11-14

Delete a Backup
TimesTen Scaleout does not automatically delete backups. In some cases, you may want to
delete backups that have failed or old backups to free up file system space.

Use the ttGridAdmin repositoryList -contents command to view all of your available
backups and their respective repositories. See List Repositories and Collections.

This example deletes the backup named B20170222145544 from repository repo1.

% ttGridAdmin dbBackupDelete -repository repo1 -name B20170222145544
Backup B20170222145544 deleted

TimesTen Scaleout deletes the collection and all of the sub-collections that are part of the
backup.

For more information about the ttGridAdmin dbBackupDelete command, see Delete a
Database Backup (dbBackupDelete) in Oracle TimesTen In-Memory Database Reference.

Restore a Database
Before attempting to restore a database, consider the following:

• The database definition name must not be in use by other databases when you attempt
to perform a database restore. For example, you cannot name the restored database
database1 if another database is using the database1 name.

• The database definition of the backed up database does not need to match the database
name of the database that you are restoring. For example, you can restore a backup of
the payroll database to the new_payroll database definition.

• The K-safety value of the database that you backed up does not need to match the K-
safety value of the restore database.

• The database definition must have at least as many connections as the database
definition of the backed up database.

This example restores the database res_db1 from the backup B20170222145544 from
repository repo1. Ensure that you run the ttGridAdmin dbRestore command on the
management instance.

% ttGridAdmin dbRestore res_db1 -repository repo1 -name B20170222145544
dbRestore B20170222145544 started

Note:

Ensure that the res_db1 database definition exists before attempting to perform a
restore. You do not need to create a database from this database definition. See
Create a Database Definition.

Depending on the size of your backup, the number of replica sets that your database uses,
the performance of your secondary storage device, and the performance of your network the

Chapter 11
Backing Up and Restoring a Database

11-15

restore time varies. The ttGridAdmin dbRestore command only starts the restore
process and the output does not indicate that the restore is complete. The restore
process is performed asynchronously on every element. Use the ttGridAdmin
dbRestoreStatus command to see the status of your restore. See Check the Status of
a Restore.

For more information about the ttGridAdmin dbRestore command, see Restore a
Database (dbRestore) in Oracle TimesTen In-Memory Database Reference.

Check the Status of a Restore
The ttGridAdmin dbRestoreStatus command enables you to view the progress of the
restore process for a specific database.

This example displays the status of all restore processes for the database res_db1.

% ttGridAdmin dbRestoreStatus res_db1
Database Restore Repository Host Instance Elem State
Started Finished
-------- ------- ---------- ----- --------- ---- -------------------------
------------- –-------
res_db1 mybkup repo1 Restore_Finale_Complete
2017-03-03... Y
 host3 instance1 Restore_Instance_Complete
 host4 instance1 Restore_Instance_Complete
 host5 instance1 Restore_Instance_Complete
 host6 instance1 Restore_Instance_Complete
 host7 instance1 Restore_Instance_Complete
 host8 instance1 Restore_Finale_Complete

Ensure that the ttGridAdmin dbRestoreStatus output shows that the restore has
been completed for every element of your grid. The restore operation is fully
completed when the State column of the row with the database name is marked as
Completed.

Ensure that the ttGridAdmin dbRestoreStatus output shows that the overall state of
the restore process is marked as Completed. In case that you see a state value of
Failed or Restore_Instance_Failed for an element or an overall state of
Restore_Finale_Failed or Restore_Init_Failed, stop the database with
ttGridAdmin dbClose and ttGridAdmin dbUnload commands. Once you have
stopped the database, use the ttGridAdmin dbDestroy command to delete the
database that did not restore successfully. Then, attempt the restore operation again.
See Unloading a Database from Memory and Destroying a Database.

For more information about the ttGridAdmin dbRestoreStatus command, see Display
the Status of a Database Restore (dbRestoreStatus) in Oracle TimesTen In-Memory
Database Reference.

Set Cache Credentials
After you restore a database backup that has cache groups, you must set the Oracle
cache administration user name and password for the database with the ttGridAdmin
dbCacheCredentialSet command.

Chapter 11
Backing Up and Restoring a Database

11-16

Only after setting the cache credentials can you can redistribute the data to all replica sets
with the ttGridAdmin dbDistribute command. If you redistribute the data before setting the
cache credentials, then you will be unable to set the cache credentials for your cache groups.

The following examples sets the cache administration user name and password in the
restored database. After which, requests a redistribution of data.

% ttGridAdmin dbCacheCredentialSet res_db1
Provide Oracle user id: cacheadmin
Provide Oracle password: orapwd
Configuring cache...OK

% ttGridAdmin dbDistribute res_db1 -apply

See Register the Cache Administration User Name and Password in the TimesTen Database.

Exporting and Importing a Database
The TimesTen Scaleout export and import functionality enables you to migrate data between
two grid databases.

In these circumstances you must export a database:

• The source database is from a version of TimesTen Scaleout that patch incompatible,
such as from a different major release. See Upgrading a Grid for more information on
both types of upgrades (patch-compatible or otherwise).

• The destination database is in a grid topology that has fewer replica sets than the grid
topology where the database is exported.

When you export a database, TimesTen Scaleout performs the export asynchronously of
each replica set and creates a sub-collection for each replica set that is exported.

See Determining the Size of a Backup or Export for information on the file system space each
export operation requires.

TimesTen Scaleout enables you to perform the following procedures with database exports:

• Export a Database

• Check the Status of a Database Export

• Delete a Database Export

• Import a Database Export

• Check the Status of a Database Import

Export a Database
Before attempting to export a database, ensure that you have configured a repository for your
grid. See Working with Repositories.

Ensure that you disconnect all application connections to the database before performing a
database export to ensure that no applications are modifying data during the database export
operation. Also, ensure that you close the database to prevent any new connections to the
database. Any transaction committed during an export operation may result in an inconsistent
database.

Chapter 11
Exporting and Importing a Database

11-17

This example creates a database export of the database database1 and stores that
export in the repository repo1. By default, TimesTen Scaleout names your database
export with the current date and time, Myyyymmddhhss. Ensure that you run the
ttGridAdmin dbExport command on a management instance.

Note:

You can add the -name parameter to specify a database export name. For
example, ttGridAdmin dbExport database1 -repository repo1 -name
myexport creates a database export named myexport.

% ttGridAdmin dbExport database1 -repository repo1
dbExport M20170302144218 started

Depending on the size of your database, the number of replica sets that your database
uses, the performance of your secondary storage device, and the performance of your
network the database export time varies. Use the ttGridAdmin dbExportStatus
command to see the status of your database export. See Check the Status of a
Database Export.

For more information about the ttGridAdmin dbExport command, see Export a
Database (dbExport) in Oracle TimesTen In-Memory Database Reference.

Check the Status of a Database Export
The ttGridAdmin dbExportStatus command enables you to view the progress of all
database export processes for a specific database.

This example displays the status of all database export processes for the database
database1.

% ttGridAdmin dbExportStatus database1
Database Export Repository Host Instance Elem State Started
--------- --------------- ---------- ----- --------- ---- ---------

database1 M20170321073022 repo1 Completed
2017-03-21T07:30:27.000Z
 host3 instance1 Complete
 host6 instance1 Complete

Ensure that the ttGridAdmin dbExportStatus output shows that a database export
has been completed for every replica set of your grid. In case that you see a state
value of Failed for an element, perform these tasks:

• Use the ttGridAdmin dbStatus database1 -details command to ensure that the
host and instance of that element are up and running. See Monitor the Status of a
Database (dbStatus) in Oracle TimesTen In-Memory Database Reference.

• Ensure that the repository where you are attempting to create the backup has
enough free file system space to create a backup of your database.

Chapter 11
Exporting and Importing a Database

11-18

After you have resolved the issues that caused the export to fail, use the ttGridAdmin
dbExportDelete to delete the failed database export. TimesTen Scaleout does not
automatically delete a failed database export. Then, use the ttGridAdmin dbExport
command to start a new database export. See Delete a Database Export and Export a
Database.

For more information about the ttGridAdmin dbExportStatus command, see Display the
Status of a Database Export (dbExportStatus) in Oracle TimesTen In-Memory Database
Reference.

Delete a Database Export
TimesTen Scaleout does not automatically delete database exports. In some cases, you may
want to delete database exports that have failed or old database exports to free up file
system space.

Use the ttGridAdmin repositoryList -contents command to view all of your available
database exports and their respective repositories. See List Repositories and Collections.

This example deletes the database export named M20170321073022 from repository repo1.

% ttGridAdmin dbExportDelete -repository repo1 -name M20170321073022
Export M20170321073022 deleted

TimesTen Scaleout deletes all of the sub-collections that are part of the database export.

For more information about the ttGridAdmin dbExportDelete command, see Delete a
Database Export (dbExportDelete) in Oracle TimesTen In-Memory Database Reference.

Import a Database Export
Before attempting to import a database export, consider the following:

• The database to which you import must exist when you attempt to perform a database
import. The database can either contain data or be empty. It is not necessary to create
the users or tables of the original database. If the database contains data, create a
database backup before performing a database import.

• The database name of the database that you exported does not need to match the
database name of the database where you are importing the database export. For
example, you can import a database export of the payroll database in the new_payroll
database.

• The K-safety value of the database that you exported does not need to match the K-
safety value of the grid where you are importing the database export.

• Ensure that you disconnect all application connections to the database before performing
a database import to ensure that no applications are modifying data during the database
import operation. Also, ensure that you close the database to prevent any new
connections to the database. Any transaction committed during an import operation may
result in an inconsistent database. See Close a Database (dbClose) in Oracle TimesTen
In-Memory Database Reference.

Chapter 11
Exporting and Importing a Database

11-19

This example imports the database import_db from the database export
M20170321073022 from repository repo1. Ensure that you run the ttGridAdmin
dbImport command on a management instance.

% ttGridAdmin dbImport import_db -repository repo1 -name
M20170321073022 -numThreads 8
dbImport M20170321073022 started

Note:

Ensure that the import_db database exists before attempting to perform a
restore. See Create a Database Definition.

Depending on the size of your database export, the number of replica sets that your
database uses, the performance of your secondary storage device, and the
performance of your network the import time varies. To increase the performance of
the import operation, use the -numThreads option to specify the number threads that
concurrently read rows from the export database and insert them into the import
database. Use the ttGridAdmin dbExportStatus command to see the status of your
database export. See Check the Status of a Database Import.

For more information about the ttGridAdmin dbImport command, see Import a
Database (dbImport) in Oracle TimesTen In-Memory Database Reference.

Check the Status of a Database Import
The ttGridAdmin dbImportStatus command enables you to view the progress of the
import process for a specific database.

This example displays the status of all import processes for the database import_db.

% ttGridAdmin dbImportStatus import_db
Database Import Repository Host Instance Elem State
Started
--------- --------------- ---------- ----- --------- ---- ----------------------

import_db M20170321073022 repo1 Import_Finale_Complete
2017-03-21...
 host3 instance1 1 Import_Rows_Complete
 host6 instance1 4 Import_Rows_Complete

Ensure that the ttGridAdmin dbImportStatus output shows that the import operation
has been completed for every element of your grid. The import operation is fully
completed when the State column of the row with the database name is marked as
Import_Finale_Complete.

By default, if the import operation encounters an error, the operation terminates and
gets a Import_Phase_Failed state. To retry the import, first you need to either drop all
the SQL objects created by the failed import operation or destroy and recreate the
database. Then, attempt the import operation again.

Chapter 11
Exporting and Importing a Database

11-20

However, for import operations where errors are expected (like importing a database export
from a newer TimesTen release with unsupported SQL objects), the -errorTolerance option
of the ttGridAdmin dbImport command can be set to complete the import operation while
ignoring all errors. If an error is encountered, the operation completes and gets a
Import_Complete_With_Errors state. The errors encountered are listed in the daemon logs
of the data instances. See Import a Database (dbImport) in Oracle TimesTen In-Memory
Database Reference.

For more information on the ttGridAdmin dbImportStatus command, see Display the Status
of a Database Import (dbImportStatus) in Oracle TimesTen In-Memory Database Reference.

Determining the Size of a Backup or Export
Every database backup and export stored in a repository requires file system space (in
megabytes) that is equivalent to the value assigned to the PermSize attribute plus the sum of
file sizes of the transaction log files created after the latest checkpoint, per replica set.

The file size of transaction log files and how many are typically written between background
checkpoints is dependent of the configuration of your database. Your typical workload and the
settings of attributes like CkptFrequency, CkptLogVolume, and LogFileSize have direct
impact in determining how many transaction log files would need to be considered for a
backup or export operation. See Storage Provisioning for Transaction Log Files in Oracle
TimesTen In-Memory Database Operations Guide.

Additionally, each data instance requires available temporary file system space (/
instance_home/grid/admin/temp/) that is equivalent to the size of a database backup or
database export divided by the number of replica sets for every normal backup, export,
restore, or import operation. Staged backups only require temporary file system space
equivalent to one transaction log file (LogFileSize).

Chapter 11
Determining the Size of a Backup or Export

11-21

12
Using Cache Groups in TimesTen Scaleout

Cache operations provide the ability to transfer data between an Oracle database and a
TimesTen database through cache groups.

This chapter illustrates the creation and use of cache groups in TimesTen Scaleout.

• Introduction of Cache in TimesTen Scaleout

• Setting Up the Oracle Database and TimesTen Scaleout Systems

• Creating a Static Read-Only Cache Group

• Performing Operations on the Read-Only Cache Group

• Managing the Cache Environment

• Restoring the TimesTen and Oracle Database Systems

• Supported Cache Features in TimesTen Scaleout

• Limiting Cache Agent Connections to the Oracle Database

• Compatibility Issues Between the TimesTen and Oracle Databases

• Restrictions for Cache on TimesTen Scaleout

Introduction of Cache in TimesTen Scaleout
You can cache data from an Oracle database in a TimesTen database by creating cache
groups, where each cache group can cache a single Oracle database table or a set of related
Oracle database tables.

The cached data from the Oracle database can consist of all the rows and columns or a
subset of the rows and columns in the Oracle database tables.

TimesTen Scaleout supports static read-only cache groups with incremental autorefresh.

• Applications can read from cache groups.

• Data is initially loaded from the Oracle database into the cache group, and then refreshed
manually or automatically.

• Updates to the cached tables can be sent through to the Oracle database using a
passthrough operation.

Cache operations utilize the scalability and data redistribution of TimesTen Scaleout. When
you add or remove elements within replica sets, TImesTen automatically:

• Redistributes the data as specified with the distribution scheme on each cache table.

• Redistributes the autorefresh processing across elements in the modified replica sets.

Cache operations also utilize the recovery of TimesTen Scaleout. Cache in TimesTen
Scaleout handles most occurrences of element failure, replica set failure, restarting cache
agents, restarting the Oracle database, and communication failures with the Oracle database.

12-1

You can go to the following topics in Oracle TimesTen In-Memory Database Cache
Guide for concepts on static read-only cache groups and incremental autorefresh.

• Overview of Cache Groups for an overall description of cache groups.

• Cache Groups and Cache Tables for an introduction on how to create cache
groups and cache tables.

• Read-Only Cache Group for a description of read-only cache groups.

• AUTOREFRESH Cache Group Attribute for details on incremental autorefresh.

Setting Up the Oracle Database and TimesTen Scaleout
Systems

Before you can create a cache group, you must first install TimesTen Scaleout and
then configure both the Oracle database and TimesTen Scaleout systems.

See Prerequisites and Installation of TimesTen Scaleout.

Note:

It is best to have the TimesTen and Oracle databases on separate systems,
to avoid resource contention between them. TimesTen, being an in-memory
database, uses a significant amount of memory. It may also use a significant
amount of CPU time and generate a significant amount of I/O, depending on
the workload.

You inform TimesTen of the Oracle database with which to connect, which credentials
to use when connecting to the Oracle database and which users own the tables in
both TimesTen and Oracle databases.

1. Create Users and Tablespace in the Oracle Database.

2. Create a TimesTen Database.

3. Add the Oracle Database Net Service Name to the tnsnames.ora File.

4. Create Users in the TimesTen Database.

5. Create a Connectable for the TimesTen Database.

6. Register the Cache Administration User Name and Password in the TimesTen
Database.

Create Users and Tablespace in the Oracle Database
In the Oracle database, you must create a default tablespace to be used for storing
cache management objects that should not be shared with other applications. We
strongly recommend that this tablespace be used solely for cache management.

Create the following users on the Oracle database:

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-2

Note:

You cannot use the Oracle Autonomous Database for transaction processing (ATP)
as a source for caching data in TimesTen. In addition, if you are using a multitenant
container database (CDB) or pluggable database (PDB), note the specific
instructions below on how to create the cache administration user and grant this
user privileges in a CDB or PDB.

• Identify existing schema users that own the Oracle database tables that you want to
cache in a TimesTen database.

• Create an Oracle cache administration user creates and maintains Oracle database
objects that store information used to manage the cache environment and enforce
predefined behaviors of particular cache group types.

The following demonstrates how to create the default tablespace, the schema user, and the
cache administration user:

1. Start SQL*Plus on the Oracle database system from an operating system shell or
command prompt. Connect to the Oracle database as an Oracle database user with the
privileges needed to create required roles and grant the necessary privileges to the
cache administration user on the Oracle database.

% cd timesten_home/install/oraclescripts
% sqlplus sys as sysdba
Enter password: password

Note:

This example uses the sys as sysdba user since the SYS user is able to grant
the required privileges. You can use any Oracle database user that has the
appropriate privileges. See Required Privileges for the Cache Administration
Users in Oracle TimesTen In-Memory Database Cache Guide.

2. Use SQL*Plus to create a default tablespace. In the following example, the name of the
default tablespace is cachetblsp:

SQL> CREATE TABLESPACE cachetblsp DATAFILE 'tt_cache.f' SIZE 5G
 SEGMENT SPACE MANAGEMENT AUTO;

Tablespace created.

3. Identify one or more existing schemas (or create a new schema) with schema owners
that own Oracle database tables that are to be cached in a TimesTen database. The
tables to be cached may or may not already exist. Grant the schema owner the minimum
set of privileges required to create tables in the Oracle database to be cached in a
TimesTen database. This example will cache tables owned by the sales schema owner.

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-3

The following SQL*Plus example grants the necessary privileges required to the
sales user.

SQL> GRANT CREATE SESSION, CREATE TABLE, CREATE CLUSTER, CREATE
INDEXTYPE, CREATE OPERATOR
 TO sales;

4. Use SQL*Plus to create a cache administration user and grant privileges to this
user.

Note:

If you are using a multitenant container database (CDB) or pluggable
database (PDB), the cache administrator user can be one of the
following:

• Local user: A local user is a database user that can operate only
within a single PDB. You must assign cache privileges only within the
PDB in which this user exists.

• Common user: A common user is a database user known in every
container and has the same identity in the CBD root and in every
existing and future PDB in the CDB. You must assign cache
privileges within each PDB in the CDB in which you want to use
cache.

a. Create a cache administration user and specify the default tablespace that you
created for cache management objects.

b. Run the SQL*Plus script timesten_home/install/oraclescripts/
grantCacheAdminPrivileges.sql to grant the cache administration user the
minimum set of privileges required to perform cache group operations.

Note:

If you are using a multitenant container database (CDB) or pluggable
database (PDB), run the grantCacheAdminPrivileges.sql script to
assign cache privileges as follows:

• If the cache administrator user is a local user: You must assign
cache privileges only within the PDB in which this user exists.
This is the preferred method.

• If the cache administrator user is a common user: You must
assign cache privileges within each PDB in the CDB in which
you want to use cache. Do not run the SQL*Plus script to grant
privileges to the common user in the CBD root.

The following example passes cacheadmin as the cache administration user
name to the grantCacheAdminPrivileges.sql script:

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-4

Note:

See the comments in the timesten_home/install/oraclescripts/
grantCacheAdminPrivileges.sql script for the required privileges by the
user who runs this script and the privileges that this user grants to the
cache administration user.

SQL> CREATE USER cacheadmin IDENTIFIED BY orapwd
 DEFAULT TABLESPACE cachetblsp QUOTA UNLIMITED ON cachetblsp;
SQL> @grantCacheAdminPrivileges "cacheadmin"
Please enter the administrator user id
The value chosen for administrator user id is CACHEADMIN

***************** Creation of TT_CACHE_ADMIN_ROLE starts

0. Creating TT_CACHE_ADMIN_ROLE role
** Creation of TT_CACHE_ADMIN_ROLE done successfully **
***************** Initialization for cache admin begins

0. Granting the CREATE SESSION privilege to CACHEADMIN
1. Granting the TT_CACHE_ADMIN_ROLE to CACHEADMIN
2. Granting the DBMS_LOCK package privilege to CACHEADMIN
3. Granting the DBMS_DDL package privilege to CACHEADMIN
4. Granting the DBMS_FLASHBACK package privilege to CACHEADMIN
5. Granting the CREATE SEQUENCE privilege to CACHEADMIN
6. Granting the CREATE CLUSTER privilege to CACHEADMIN
7. Granting the CREATE OPERATOR privilege to CACHEADMIN
8. Granting the CREATE INDEXTYPE privilege to CACHEADMIN
9. Granting the CREATE TABLE privilege to CACHEADMIN
10. Granting the CREATE PROCEDURE privilege to CACHEADMIN
11. Granting the CREATE ANY TRIGGER privilege to CACHEADMIN
12. Granting the GRANT UNLIMITED TABLESPACE privilege to CACHEADMIN
13. Granting the DBMS_LOB package privilege to CACHEADMIN
14. Granting the SELECT on SYS.ALL_OBJECTS privilege to CACHEADMIN
15. Granting the SELECT on SYS.ALL_SYNONYMS privilege to CACHEADMIN
16. Checking if the cache administrator user has permissions on the
default tablespace
Permission exists
18. Granting the CREATE TYPE privilege to CACHEADMIN
19. Granting the SELECT on SYS.GV$LOCK privilege to CACHEADMIN
20. Granting the SELECT on SYS.GV$SESSION privilege to CACHEADMIN
21. Granting the SELECT on SYS.DBA_DATA_FILES privilege to CACHEADMIN
22. Granting the SELECT on SYS.USER_USERS privilege to CACHEADMIN
23. Granting the SELECT on SYS.USER_FREE_SPACE privilege to
CACHEADMIN
24. Granting the SELECT on SYS.USER_TS_QUOTAS privilege to CACHEADMIN
25. Granting the SELECT on SYS.USER_SYS_PRIVS privilege to CACHEADMIN
26. Granting the SELECT on SYS.V$DATABASE privilege to CACHEADMIN
(optional)
27. Granting the SELECT on SYS.V$SESSION privilege to CACHEADMIN
(optional)
28. Granting the SELECT on SYS.V$PROCESS privilege to CACHEADMIN

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-5

(optional)
29. Granting the SELECT ANY TRANSACTION privilege to CACHEADMIN
********* Initialization for cache admin user done successfully

SQL> exit

See Create the Oracle Database Users in Oracle TimesTen In-Memory Database
Cache Guide.

Create a TimesTen Database
Create the database definition before creating and opening a TimesTen database.

Creating a TimesTen database includes the following tasks:

• Create a Database Definition for the TimesTen Database

• Create and Open the TimesTen Database

Create a Database Definition for the TimesTen Database
When creating a database definition file for a TimesTen database that caches data
from an Oracle database, pay special attention to the settings of the connection
attributes.

• The OracleNetServiceName must be set to the net service name of the Oracle
database instance.

• PermSize specifies the allocated size of the database's permanent region in MB.
Set PermSize to a size large enough to store all of the data in the cache groups,
indexes, and so on. The PermSize value must be smaller than the physical RAM
on the machine. The PermSize value could be from a few GB to several TB. The
default is 32 MB.

• DatabaseCharacterSet must match the Oracle database character set.

You can determine the Oracle database character set by executing the following
query in SQL*Plus as any user:

SQL> SELECT value FROM nls_database_parameters
 WHERE parameter='NLS_CHARACTERSET';

• CacheAdminWallet when set to 1 specifies that credentials for the Oracle cache
administration user that are registered with the ttGridAdmin
dbCacheCredentialSet command are stored in an Oracle Wallet.

The following example shows the contents of a database definition file named
database1.dbdef that defines:

• The full path for the checkpoint files as /disk1/databases/database1
• The directory for the log files as /disk2/logs
• The database character set as AL32UTF8
• 32 GB for the permanent memory region of every element

• 4 GB for the temporary memory region of every element

• 1 GB for the internal transaction log buffer of every element

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-6

• An upper limit of 3072 user-specified concurrent connections to the database

• The OracleNetServiceName set to inst1.

• CacheAdminWallet set to 1.

DataStore=/disk1/databases/database1
LogDir=/disk2/logs
DatabaseCharacterSet=AL32UTF8
PermSize=32768
TempSize=4096
LogBufMB=1024
Connections=3072
OracleNetServiceName=inst1
CacheAdminWallet=1

See Creating a Database Definition in Oracle TimesTen In-Memory Database Scaleout
User's Guide.

Create and Open the TimesTen Database
Once the database definition is created to include connection attributes for cache, you can
perform the rest of the tasks necessary to create and open the TimesTen database.

See Creating a Database in Oracle TimesTen In-Memory Database Scaleout User's Guide.

1. Use the ttGridAdmin dbdefCreate command to create a database definition based on a
database definition file. TimesTen Scaleout uses the name of the database definition file
to name the database definition.

Create the database1 database definition based on the database1.dbdef file.

% ttGridAdmin dbdefCreate /mydir/database1.dbdef
Database Definition database1 created.

2. Add the database1 database definition to the current version of the model.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each instance......................OK
...
ttGridAdmin modelApply complete

3. Create a TimesTen database based on the attributes stored in a database definition.

The ttGridAdmin dbCreate command creates a database based on a database
definition.

Create the database1 database based on the database1 database definition.

% ttGridAdmin dbCreate database1
Database database1 creation started

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-7

4. Wait until all data instances report that they have loaded their element of the
database into memory before proceeding with the definition of the distribution
map. You can verify the status of the database creation process with the
ttGridAdmin dbStatus command.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Tue Dec 22 08:52:09
PST 2020

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ --------- ------------------- -------
host3 instance1 1 loaded stopped 2020-12-22 08:52:00
host4 instance1 2 loaded stopped 2020-12-22 08:52:04
host5 instance1 3 loaded stopped 2020-12-22 08:51:47
host6 instance1 4 loaded stopped 2020-12-22 08:51:58
host7 instance1 5 loaded stopped 2020-12-22 08:52:04
host8 instance1 6 loaded stopped 2020-12-22 08:52:04

5. Define the distribution map of the TimesTen database and add all the elements of
the available data instances in the grid1 grid to the distribution map of the
database1 database.

% ttGridAdmin dbDistribute database1 -add all -apply
Distribution map updated

6. Open the database1 database for user connections.

The ttGridAdmin dbOpen command opens a database for user connections.

% ttGridAdmin dbOpen database1
Database database1 open started

7. Verify that the database is open with the ttGridAdmin dbStatus command.

The example shows a status summary for the database1 database. Notice that the
report shows all elements of the database as open.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Tue Dec 22 08:52:49
PST 2020

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ --------- ------------------- -------
host3 instance1 1 opened stopped 2020-12-22 08:52:44
host4 instance1 2 opened stopped 2020-12-22 08:52:43
host5 instance1 3 opened stopped 2020-12-22 08:52:43
host6 instance1 4 opened stopped 2020-12-22 08:52:44
host7 instance1 5 opened stopped 2020-12-22 08:52:44
host8 instance1 6 opened stopped 2020-12-22 08:52:44

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-8

Add the Oracle Database Net Service Name to the tnsnames.ora File
When you set up a cache environment in TimesTen Scaleout, all instances in a database
must have access to the Oracle database.

The Oracle Database tnsnames.ora file defines Oracle Net Services to which applications
connect. Use the ttGridAdmin TNSNamesImport command to import the tnsnames.ora on all
instances in the TimesTen database.

Note:

If you need to add SQLNet parameters, create and import a sqlnet.ora file with the
ttGridAdmin SQLNetImport command.

1. Add the Oracle Database net service name to a tnsnames.ora file.

The following is an example of defining inst1 in a tnsnames.ora file:

inst1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost.com)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVICE_NAME = inst1.my.example.com)))

2. Import this file into the grid using the ttGridAdmin TNSNamesImport command.

% ttGridAdmin TNSNamesImport /tmp/tnsnames.ora
TNSNames configuration file /tmp/tnsnames.ora imported

3. Apply it to the model with the ttGridAdmin modelApply command. After the model apply
completes, the tnsnames.ora file exists on all instances.

% ttGridAdmin modelApply
...
Updating grid state...OK
Pushing new configuration files to each instance......................OK
...
ttGridAdmin modelApply complete

See Import TNS Names (TNSNamesImport) or Import a Sqlnet File (SQLNetImport) in Oracle
TimesTen In-Memory Database Reference.

Create Users in the TimesTen Database
In addition to the Oracle database users, you must create certain TimesTen users before you
can use cache.

• A TimesTen cache administration user performs cache group operations. The TimesTen
cache administration user must have the same name as the Oracle Database cache
administration user that can access the cached Oracle database tables. The password of

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-9

the cache administration user can be different than the password of the
companion Oracle database cache administration user.

Note:

See Create the TimesTen Users in Oracle TimesTen In-Memory
Database Cache Guide.

• One or more cache users own the cache tables. You must create a TimesTen
cache user with the same name as an Oracle database schema user for each
schema user who owns or will own Oracle database tables to be cached in the
TimesTen database. The password of a cache user can be different than the
password of the Oracle database schema user with the same name.

The owner and name of a TimesTen cache table is the same as the owner and
name of the corresponding cached Oracle database table.

On one of the data instances on the TimesTen database, connect using the direct
connectable. Create a TimesTen cache administration user and grant this user the
minimum set of privileges required to create cache groups and to perform operations
on the cache groups. In the following example, the TimesTen cache administration
user name is cacheadmin, which is the same name as the Oracle cache administration
user that was created earlier:

ttisql "DSN=database1"

Command> CREATE USER cacheadmin IDENTIFIED BY ttpwd;
Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO
cacheadmin;

Then, create a cache user. In the following example, the cache user name is sales,
which is the same name as the Oracle database schema user with the tables that we
want to cache:

Command> CREATE USER sales IDENTIFIED BY ttpwd;

The privileges that the TimesTen cache administration user requires depend on the
operations that you perform on the cache groups. See Create the TimesTen Users in
Oracle TimesTen In-Memory Database Cache Guide.

See Managing Access Control in Oracle TimesTen In-Memory Database Security
Guide for more information about TimesTen users and privileges.

Create a Connectable for the TimesTen Database
When creating a connectable for a TimesTen database that caches data from an
Oracle database, pay special attention to the settings of the connection attributes.

All of these connection attributes can be set in a connectable or a connection string,
unless otherwise stated.

• UID specifies the name of the TimesTen cache administration user, that has the
same name as the Oracle database cache administration user who can access the

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-10

cached Oracle database tables. The UID connection attribute can be specified in a direct
connectable, a client/server connectable, or a connection string.

• PwdWallet provides the location of the wallet in which credentials are stored for users.
You can store the TimesTen user name and password in a wallet. You can also store the
cache administrator users and respective passwords in a wallet, which are necessary
when performing cache operations and connecting to the Oracle database. Providing
credentials in a wallet is more secure than supplying a password in a client DSN or on
the connection string.

• If you are not using PwdWallet for supplying credentials, then you can use:

– PWD to specify the password of the TimesTen cache administration user specified in
the UID connection attribute.

– OraclePWD to provide the password of the Oracle Database cache administration user
that has the same name as the TimesTen cache administration user specified in the
UID connection attribute.

• PassThrough can be set to control whether statements are to be run in the TimesTen
database or passed through to be run in the Oracle database. See Using Passthrough.

• LockLevel must be set to its default of 0 (row-level locking) because cache does not
support database-level locking.

The following example shows how to create a connectable that uses cache.

1. Create a connectable file that sets the connection character set, OracleNetServiceName,
cache administration user credentials saved in a wallet for the connection.

This connectable file is named database1CS.connect. This file sets AL32UTF8 as the
connection character set, cache administration user name as cacheadmin, and the
location of the wallet with the cache administration user credentials as /wallets/
cacheadminwallet.

ConnectionCharacterSet=AL32UTF8
OracleNetServiceName=inst1
UID=cacheadmin
PwdWallet=/wallets/cacheadminwallet

Note:

Before you can provide a wallet, you must first create the wallet for the user
credentials. See Providing Cache Administration User Names and Passwords
in an Oracle Wallet in Oracle TimesTen In-Memory Database Security Guide on
how to add user credentials in an Oracle Wallet.

If you do provide a wallet, then the wallet must be located in the same path on
every data element from which the user accesses the connectable.

2. The ttGridAdmin connectableCreate command creates a connectable based on a
connectable file.

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-11

Create the database1CS connectable based on the database1CS.connect
connectable file.

% ttGridAdmin connectableCreate -dbdef database1 -cs /mydir/
database1CS.connect
Connectable database1CS created.

3. Apply the creation of the database1CS connectable to the current version of the
model to make the connectable available for use.

% ttGridAdmin modelApply
...
Updating grid
state...OK
Pushing new configuration files to each
instance......................OK
...
ttGridAdmin modelApply complete

See Providing Cache Administration User Names and Passwords in an Oracle Wallet
in Oracle TimesTen In-Memory Database Security Guide and Creating a Connectable
in Oracle TimesTen In-Memory Database Scaleout User's Guide.

Register the Cache Administration User Name and Password in the
TimesTen Database

TimesTen must know which credentials to use when connecting to the Oracle
database. All instances in the same database must use the same Oracle cache
administration user id and password when connecting to the Oracle database.

Use the ttGridAdmin dbCacheCredentialSet command on the active management
instance to register the Oracle cache administration user name and password in the
TimesTen database. When you set CacheAdminWallet=1, then cache administration
user credentials are stored in an Oracle Wallet. Otherwise, the credentials are stored
in memory.

% ttGridAdmin dbCacheCredentialSet database1
Enter your Oracle user id: cacheadmin
Enter Oracle password:
Password accepted
Configuring
cache...OK

When prompted, specify the cache administration user name as the Oracle database
user id and the cache administration user password as the Oracle database password.

The Oracle cache administration user name and password need to be registered only
once in a TimesTen database. See Register the Cache Administration User Name and
Password in the TimesTen Database in Oracle TimesTen In-Memory Database Cache
Guide.

You can also use the ttGridAdmin dbCacheCredentialSet command to change the
Oracle cache administration user name and password. The password can be changed

Chapter 12
Setting Up the Oracle Database and TimesTen Scaleout Systems

12-12

at any time. The cache administration user name can only be changed when there are no
cache groups on the TimesTen database. See Changing Cache User Names and Passwords
in Oracle TimesTen In-Memory Database Cache Guide.

Creating a Static Read-Only Cache Group
You can create a read-only cache group.

This section creates a read-only cache group (as shown in Figure 12-1).

Figure 12-1 Single-Table Read-Only Cache Group

Oracle DatabaseTimesTen

Cache group

Cache
group
tables

Base tables

Complete the following tasks to create a read-only cache group:

1. Create the Oracle Database Tables to be Cached.

2. Start a Cache Agent for TimesTen Scaleout.

3. Create the Cache Groups.

Create the Oracle Database Tables to be Cached
You can create cache groups that will cache data from specified Oracle Database tables.

This example uses the fictional sales schema that has two tables in it: readtab and
writetab.

Start SQL*Plus and connect to the Oracle database as the sales schema user:

% sqlplus sales/orapwd

Use SQL*Plus to create a table readtab as shown in Figure 12-2:

SQL> CREATE TABLE readtab (keyval NUMBER NOT NULL PRIMARY KEY, str
VARCHAR2(32));
Table created.

Chapter 12
Creating a Static Read-Only Cache Group

12-13

Figure 12-2 Creating an Oracle Database Table to be Cached in a Read-Only
Cache Group

Oracle

database

1 Hello

2 World

readtab

Application
...

INSERT INTO readtab VALUES (1, 'Hello');

INSERT INTO readtab VALUES (2, 'World');

COMMIT;

CREATE TABLE readtab

Then, use SQL*Plus to insert some rows into the readtab table, and commit the
changes:

SQL> INSERT INTO readtab VALUES (1, 'Hello');
1 row created.
SQL> INSERT INTO readtab VALUES (2, 'World');
1 row created.
SQL> COMMIT;
Commit complete.

Next, use SQL*Plus to grant the SELECT privilege on the readtab table to the
cacheadmin Oracle cache administration user:

SQL> GRANT SELECT ON readtab TO cacheadmin;
Grant succeeded.

The SELECT privilege on the readtab table is required to create a read-only cache
group that caches this table and to perform autorefresh operations from the cached
Oracle database table to the TimesTen cache table.

See Grant Privileges to the Oracle Database Users in Oracle TimesTen In-Memory
Database Cache Guide.

Chapter 12
Creating a Static Read-Only Cache Group

12-14

Start a Cache Agent for TimesTen Scaleout
The cache agent performs cache operations, such as loading a cache group and managing
autorefresh. TimesTen distributes cache tasks across different cache agents (each running
on different data instances), where all work for a specific autorefresh interval is assigned to a
single cache agent. A cache agent can manage multiple autorefresh intervals.
On the active management instance, use the ttGridAdmin dbCacheStart command to start
cache agents on all data instances in the database. After which, use the ttGridAdmin
dbStatus command to show when cache agents on all data instances are started.

% ttGridAdmin dbCacheStart database1
Database database1 : Starting cache agents.

% ttGridAdmin dbStatus -element
Database database1 element level status as of Thu Dec 24 09:59:14 PST 2020

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ --------- ------------------- -------
host3 instance1 1 opened started 2020-11-23 08:37:35
host4 instance1 2 opened started 2020-11-23 08:37:35
host5 instance1 3 opened started 2020-11-23 08:37:35
host6 instance1 4 opened started 2020-11-23 08:37:35
host7 instance1 5 opened started 2020-11-23 08:37:35
host8 instance1 6 opened started 2020-11-23 08:37:35

You can start the cache agent for a specific data instance if you specify the -instance option.

% ttGridAdmin dbCacheStart database1 -instance host4.instance1
Database database1 : Starting cache agents.

% ttGridadmin dbStatus database1 -element

Database database1 element level status as of Mon Dec 7 14:52:51 PST 2020

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ --------- ------------------- -------
host3 instance1 1 opened stopped 2020-11-23 08:37:35
host4 instance1 2 opened started 2020-11-23 08:37:35
host5 instance1 3 opened stopped 2020-11-23 08:37:35
host6 instance1 4 opened stopped 2020-11-23 08:37:35
host7 instance1 5 opened stopped 2020-11-23 08:37:35
host8 instance1 6 opened stopped 2020-11-23 08:37:35

See Stopping the Cache Agents for TimesTen Scaleout for how to stop the cache agent on all
data instances or a single data instance. See Limiting Cache Agent Connections to the
Oracle Database for performance considerations.

Create the Cache Groups
In TimesTen Scaleout, you can create static read-only cache groups with incremental
autorefresh. Read-only cache groups provide for committed changes on tables in the Oracle
database to be automatically refreshed to the cache tables in the TimesTen database.

Chapter 12
Creating a Static Read-Only Cache Group

12-15

You specify incremental autorefresh with AUTOREFRESH INTERVAL when you create the
cache group. See Automatically Refresh Updates on the Cached Oracle Database
Table.

The main difference for creating cache groups on TimesTen Scaleout is that you
specify how the data is distributed across the elements of the database. The
distribution scheme is specified in the DISTRIBUTE BY clause of the CREATE CACHE
GROUP statement. See Distribution Schemes for Cache Groups in TimesTen Scaleout.

As the TimesTen cache administration user, the following example creates a static
read-only cache group readcache that caches the Oracle database sales.readtab
table using an incremental autorefresh with an autorefresh interval of 5 seconds. The
distribution scheme is specified as the HASH distribution scheme. The HASH distribution
scheme is the default (and so would not normally be necessary to include in the SQL
statement).

To connect as the TimesTen cache administration user, start the ttIsql utility and
connect to the database1 TimesTen database including the cache administration user
and the wallet containing the credentials of both cache administration users. See
Providing Cache Administration User Names and Passwords in an Oracle Wallet in the
Oracle TimesTen In-Memory Database Security Guide.

ttIsql "DSN=database1;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet;
Connection successful: DSN=database1;UID=cacheadmin;
DataStore=/timesten/datastores/database1;DatabaseCharacterSet=WE8ISO8859P1;
ConnectionCharacterSet=AL32UTF8;PermSize=512;TempSize=512;Connections=100;
OracleNetServiceName=inst1;CacheAdminWallet=1;EpochInterval=1;
(Default setting AutoCommit=1)

Command> CREATE READONLY CACHE GROUP readcache
 AUTOREFRESH INTERVAL 5 SECONDS
 FROM sales.readtab
 (keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32))
 DISTRIBUTE BY HASH;
Command>

The readcache cache group and its respective sales.readtab cache table, whose
owners and names are identical to the cached Oracle database tables, are created in
the TimesTen database.

Figure 12-3 shows that the readcache cache group caches the sales.readtab table.

Chapter 12
Creating a Static Read-Only Cache Group

12-16

Figure 12-3 Creating a Read-Only Cache Group

TimesTen cache

Application

Autorefresh
from Oracle

Passthrough SQL*

* Depending on the PassThrough attribute setting

TimesTen

database

Readonly

cache group

Oracle

database

Use the ttIsql cachegroups command to view the definition of the readcache cache group:

Command> cachegroups;

Cache Group CACHEADMIN.READCACHE:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: SALES.READTAB
 Table Type: Read Only

1 cache group found.

See Read-Only Cache Group in the Oracle TimesTen In-Memory Database Cache Guide.

Distribution Schemes for Cache Groups in TimesTen Scaleout
Distribution schemes for cache groups are specified with the DISTRIBUTE BY clause. A best
practice is for all child tables to be distributed by reference.

Chapter 12
Creating a Static Read-Only Cache Group

12-17

The following are the default distribution schemes for cache groups defined within
TimesTen Scaleout:

• Single table cache groups default to using a HASH distribution scheme.

• If a column is not specified in the DISTRIBUTE BY HASH clause, TimesTen Scaleout
selects the primary key columns as the key columns of the distribution scheme. If
a primary key is not defined, TimesTen Scaleout creates a hidden column as the
hash key.

• In multiple table cache groups, the parent cache group table can only use the HASH
or DUPLICATE distribution schemes. If you define the parent cache table to use a
DUPLICATE distribution scheme, the child table can only use HASH or DUPLICATE.

• When you have multiple table cache groups, the parent cache table defaults to
using the HASH distribution scheme and all child cache tables default to using the
REFERENCE distribution scheme. When you have multiple table cache groups and
you set the parent cache table to using the DUPLICATE distribution scheme and do
not set the distribution scheme of the child tables, then all child cache tables in this
case default to using the HASH distribution scheme.

• For child tables, if the foreign key is identical to the parent table primary key, the
distribution scheme is changed to the HASH distribution scheme as an optimization.

The following example shows a multiple table cache group where the parent table is
distributed using a hash distribution scheme and the child table uses a reference
distribution scheme.

Define the customers and accounts tables on the Oracle database as follows:

SQL> CREATE TABLE customers
(
 cust_id NUMBER(10,0) NOT NULL,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL,
 PRIMARY KEY (cust_id));

Table created.

SQL> CREATE TABLE accounts
(
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(16) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2,0) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 CONSTRAINT fk_customer
 FOREIGN KEY (cust_id)
 REFERENCES customers(cust_id));

Chapter 12
Creating a Static Read-Only Cache Group

12-18

Table created.

The following defines a multiple table cache group with the sales parent table and the
accounts child table.

Connect> CREATE READONLY CACHE GROUP customer_orders
FROM sales.customer
 (cust_id NUMBER(10,0) NOT NULL,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL,
 PRIMARY KEY(cust_id))
 DISTRIBUTE BY HASH
 WHERE (sales.customer.cust_id < 100),
sales.accounts
 (account_id NUMBER(10,0) NOT NULL,
 phone VARCHAR2(16) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2,0) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 PRIMARY KEY(account_id),
 FOREIGN KEY(cust_id) REFERENCES oratt.customer(cust_id))
 DISTRIBUTE BY REFERENCE;

Once created, you cannot alter the distribution scheme of any cache table. Instead, you must
drop and recreate the cache group to change the distribution scheme of a cache table.

See Defining Table Distribution Schemes for details on distribution schemes in TimesTen
Scaleout. See CREATE CACHE GROUP in Oracle TimesTen In-Memory Database SQL
Reference for full syntax.

Creating an Index on a Cache Table
You should pause autorefresh on your cache group before creating an index on a cache table
within the cache group.

This eliminates any potential contention for resources and avoids a lock condition.

See Managing the Autorefresh State.

Performing Operations on the Read-Only Cache Group
You can manually load or automatically refresh the read-only cache group with committed
changes on the cached Oracle database table.

• Automatically Refresh Updates on the Cached Oracle Database Table

Chapter 12
Performing Operations on the Read-Only Cache Group

12-19

• Manually Load the Cache Group

• Manually Refresh the Read-Only Cache Group

• Unloading the Cache Group

Automatically Refresh Updates on the Cached Oracle Database Table
You specify incremental autorefresh with the AUTOREFRESH INTERVAL cache group
attribute when creating a read-only cache group using a CREATE CACHE GROUP
statement. By default, autorefresh is defined on read-only cache groups.

This example shows an autorefresh interval of 5 seconds defined for the readcache
cache group. The default mode is INCREMENTAL and the default state is PAUSED.

Command> CREATE READONLY CACHE GROUP readcache
 AUTOREFRESH INTERVAL 5 SECONDS
 FROM sales.readtab
 (keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32));

Autorefresh considerations:

• Autorefresh state: Since the autorefresh state is set to PAUSED by default, you can
perform a manual load as the initial load of the cache group. This is the
recommended method. See Manually Load the Cache Group in Oracle TimesTen
In-Memory Database Cache Guide.

However, if you set the autorefresh state to ON when creating the cache group or
anytime after cache group creation but before a manual load, then a full
autorefresh is automatically requested to perform the initial load of the cache
group. There can be risks of performing a full autorefresh for large cache groups.
See Disabling Full Autorefresh in Oracle TimesTen In-Memory Database Cache
Guide.

• Autorefresh mode and interval: With AUTOREFRESH MODE INCREMENTAL INTERVAL
defined, committed changes on cached Oracle database tables are automatically
refreshed to the TimesTen cache tables based on the autorefresh interval of the
cache group. Incremental autorefresh uses Oracle database objects to track
committed changes on cached Oracle database tables. Transactional consistency
is maintained for cache groups belonging to the same autorefresh interval.

The autorefresh interval determines how often autorefresh operations occur in
minutes, seconds or milliseconds. You can only set the autorefresh interval during
cache group creation. Cache groups with the same autorefresh interval are refreshed
within the same transaction and are managed by a single cache agent. You can
improve the performance of your cache groups by placing them in separate
autorefresh intervals, which achieves parallelism.

You can specify continuous autorefresh with an autorefresh interval of 0 milliseconds.
With continuous autorefresh, the next autorefresh cycle is scheduled as soon as
possible after the last autorefresh cycle has ended.

The following are the default settings of the autorefresh attributes:

• The autorefresh mode is incremental.

• The autorefresh interval is 5 minutes.

• The autorefresh state is PAUSED.

Chapter 12
Performing Operations on the Read-Only Cache Group

12-20

See Managing the Autorefresh State.

The following example demonstrates how changes to the Oracle database cache tables are
automatically refreshed to the cache groups on TimesTen.

Use SQL*Plus, as the Oracle database schema user, to insert a new row, delete an existing
row, and update an existing row in the Oracle Database readtab table, and commit the
changes:

SQL> INSERT INTO readtab VALUES (3, 'Welcome');
1 row created.
SQL> DELETE FROM readtab WHERE keyval=2;
1 row deleted.
SQL> UPDATE readtab SET str='Hi' WHERE keyval=1;
1 row updated.
SQL> COMMIT;
Commit complete.

Since the read-only cache group was created specifying incremental autorefresh with an
interval of 5 seconds, the sales.readtab cache table in the readcache cache group is
automatically refreshed after 5 seconds with the committed changes on the cached Oracle
database sales.readtab table as shown in Figure 12-4.

Figure 12-4 Automatically Refresh the TimesTen Cache Table with Oracle Database
Updates

TimesTen cache

1 Hi

3 Welcome

sales.readtab

TimesTen cache

Application
...

TimesTen

database

readcache

1 Hi

readtab

3 Welcome

Automatic refresh

INSERT INTO readtab VALUES (3,'Welcome');

DELETE FROM readtab WHERE keyval=2;

UPDATE readtab SET str='Hi' WHERE keyval=1;

COMMIT;

Oracle

database

1 Hi

3 Welcome

readtab

Chapter 12
Performing Operations on the Read-Only Cache Group

12-21

As the TimesTen cache administration user, use the ttIsql utility to query the
contents of the sales.readtab cache table after the readcache cache group has been
automatically refreshed with the committed changes on the cached Oracle database
table:

Command> SELECT * FROM sales.readtab;
< 1, Hi >
< 3, Welcome >
2 rows found.

See Automatically Refreshing a Cache Group in Oracle TimesTen In-Memory
Database Cache Guide.

Managing the Autorefresh State
The autorefresh state can be set to ON, OFF, or PAUSED.

• ON: Autorefresh operations are scheduled by TimesTen when the cache group's
autorefresh state is ON.

• OFF: When the cache group's autorefresh state is OFF, committed changes on the
cached Oracle database tables are not tracked.

• PAUSED: When the cache group's autorefresh state is PAUSED, committed changes
on the cached Oracle database tables are tracked in the Oracle database, but are
not automatically refreshed to the TimesTen cache tables until the state is changed
to ON.

You can set the autorefresh state when creating or altering the cache group. The
following example modifies the autorefresh state with the ALTER CACHE GROUP
statement.

Command> ALTER CACHE GROUP readcache SET AUTOREFRESH STATE PAUSED;
Command> cachegroups;

Cache Group CACHEADMIN.READCACHE:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: SALES.READTAB
 Table Type: Read Only

1 cache group found.

Command> ALTER CACHE GROUP readcache SET AUTOREFRESH STATE ON;
Command> cachegroups;

Cache Group CACHEADMIN.READCACHE:

Chapter 12
Performing Operations on the Read-Only Cache Group

12-22

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: On
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: SALES.READTAB
 Table Type: Read Only

1 cache group found.

See Automatically Refreshing a Cache Group in Oracle TimesTen In-Memory Database
Cache Guide.

Disabling Full Autorefresh
There can be risks of performing a full autorefresh for large cache groups as loading large
amounts of data can overwhelm either temporary space or the Oracle cache administration
user tablespace.

TimesTen requests a full autorefresh:

• If you set the autorefresh state to ON when creating the cache group or anytime after
cache group creation but before a manual load, the first load of the cache group is a full
autorefresh.

• TimesTen automatically performs a full autorefresh when recovery is requested.

However, if performance is a concern, you can disallow full autorefresh requests for all cache
groups defined with incremental autorefresh by setting the DisableFullAutorefresh cache
configuration parameter to 1. If you do so, both the initial load and any recovery requires a
manual load.

Command> call ttCacheConfig('DisableFullAutorefresh',,,'1');
< DisableFullAutorefresh, <NULL>, <NULL>, 1 >
1 row found.

See Disabling Full Autorefresh for Cache Groups in Oracle TimesTen In-Memory Database
Cache Guide.

Manually Load the Cache Group
As the TimesTen cache administration user, you perform the initial load of the cache group
with the LOAD CACHE GROUP statement. The LOAD CACHE GROUP statement only loads
committed inserts on the cached Oracle database tables into the TimesTen cache tables.

New cache instances are loaded into the cache tables, but cache instances that already exist
in the cache tables are not updated or deleted even if the corresponding rows in the cached
Oracle database tables have been updated or deleted. A manual load operation is primarily
used to initially populate a cache group.

Chapter 12
Performing Operations on the Read-Only Cache Group

12-23

A manual load on a read-only cache group with autorefresh can only occur when the
autorefresh state is PAUSED. Once the manual load completes, the autorefresh state
automatically changes from PAUSED to ON. After which, incremental autorefresh starts.

If you know that there is a large amount of data to load, you can portion the data by
specifying the COMMIT EVERY n ROWS clause and request parallel loading across several
threads by specifying the PARALLEL clause.

The following example loads the contents of the Oracle database sales.readtab table
into the TimesTen sales.readtab cache table in the readcache cache group. The
example commits every 256 rows and specifies 3 threads to run concurrently.

Command> LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS PARALLEL 3;
2 cache instances affected.

Figure 12-5 shows that the Oracle Database data is loaded into the sales.readtab
cache table.

Figure 12-5 Loading a Read-Only Cache Group

Load Cache Group

TimesTen cache

1 Hello

2 World

sales.readtab

TimesTen cache

TimesTen

database

readcache

Oracle

database

1 Hello

2 World

readtab

Grant the SELECT privilege on the sales.readtab cache table to the TimesTen cache
administration user so that this user can issue a SELECT query on this table.

Command> GRANT SELECT ON sales.readtab TO cacheadmin;

Query the contents of sales.readtab cache table.

Command> SELECT * FROM sales.readtab;
< 1, Hello >
< 2, World >
2 rows found.

See Loading and Refreshing a Cache Group in Oracle TimesTen In-Memory Database
Cache Guide.

Chapter 12
Performing Operations on the Read-Only Cache Group

12-24

Manually Refresh the Read-Only Cache Group
You can also manually refresh the read-only cache group using the REFRESH CACHE GROUP
SQL statement. REFRESH CACHE GROUP replaces cache instances in the TimesTen cache
tables with the most current data from the cached Oracle database tables including cache
instances that are already exist in the cache tables.

A refresh operation is primarily used to update the contents of a cache group with committed
changes on the cached Oracle database tables after the cache group has been initially
populated.

For a static cache group, a refresh operation is equivalent to issuing an UNLOAD CACHE GROUP
statement followed by a LOAD CACHE GROUP statement on the cache group. In effect, all
committed inserts, updates and deletes on the cached Oracle database tables are refreshed
into the cache tables. New cache instances may be loaded into the cache tables. Cache
instances that already exist in the cache tables are updated or deleted if the corresponding
rows in the cached Oracle database tables have been updated or deleted.

The following example refreshes cache instances in the TimesTen cache tables within the
readcache cache group from the cached Oracle database tables:

Command> REFRESH CACHE GROUP readcache COMMIT EVERY 256 ROWS;
2 cache instances affected.

See Loading and Refreshing a Cache Group in Oracle TimesTen In-Memory Database
Cache Guide and Unloading the Cache Group.

Unloading the Cache Group
You can delete some or all cache instances from the cache tables in a cache group with the
UNLOAD CACHE GROUP statement. Unlike the DROP CACHE GROUP statement, the cache tables
themselves are not dropped when a cache group is unloaded.

The following example unloads all cache instances from all cache tables in the readcache
cache group. A commit frequency is specified, so the operations is performed over several
transactions by committing every 256 rows:

Command> UNLOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;
2 cache instances affected.

See Unloading a Cache Group in Oracle TimesTen In-Memory Database Cache Guide.

Managing the Cache Environment
There are methods to manage the cache environment within TimesTen Scaleout.

• Monitoring the Status of the Cache Agent Processes

• Displaying Information About Cache Groups

• Changing TimesTen Cache User Names and Passwords

• Changing the Oracle Database Schema

Chapter 12
Managing the Cache Environment

12-25

• Monitoring Autorefresh Operations on Cache Groups

• Managing the Change Log Tables and Triggers in the Oracle Database

Monitoring the Status of the Cache Agent Processes
You can use the ttGridAdmin dbStatus -all command to check which of the
TimesTen cache agent processes are running.

The following example shows that one of the cache agents of the database1 database
is stopped.

% ttGridAdmin dbStatus database1 -all

Database database1 summary status as of Mon Dec 7 14:54:57 PST 2020
created,loaded-complete,open

Completely created elements: 6 (of 6)
Completely loaded elements: 6 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Cache agents running: 5 (of 6)
Open elements: 6 (of 6)

Then, you can use the ttGridAdmin dbStatus -element command to verify which
cache agents are running on each data instance of the database. All data instances
must have access to the Oracle database.

The following example shows that a cache agent is not running on the host4 instance
of the database1 database.

% ttGridadmin dbStatus database1 -element

Database database1 element level status as of Mon Dec 7 14:52:51 PST
2020

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ --------- ------------------- -------
host3 instance1 1 opened started 2020-11-23 08:37:35
host4 instance1 2 opened stopped 2020-11-23 08:37:35
host5 instance1 3 opened started 2020-11-23 08:37:35
host6 instance1 4 opened started 2020-11-23 08:37:35
host7 instance1 5 opened started 2020-11-23 08:37:35
host8 instance1 6 opened started 2020-11-23 08:37:35

You can restart the cache agent for the host4.instance1 instance as follows:

% ttGridAdmin dbCacheStart database1 -instance host4.instance1]
Database database1 : Starting cache agents. 0 cache agents started.

See Monitor the Status of a Database (dbStatus) and Start a Cache Agent
(dbCacheStart), respectively, in Oracle TimesTen In-Memory Database Reference.

Chapter 12
Managing the Cache Environment

12-26

Displaying Information About Cache Groups
You can display information about cache groups in a TimesTen database using the ttIsql
utility cachegroups command.

% ttIsql "DSN=database1;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> cachegroups;

Cache Group CACHEADMIN.READCACHE:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: On
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: SALES.READTAB
 Table Type: Read Only

1 cache group found.

See ttIsql in Oracle TimesTen In-Memory Database Reference.

Changing TimesTen Cache User Names and Passwords
You can change any of the user names or passwords for the TimesTen cache administration
user or its companion Oracle cache administration user.

See Changing Cache User Names and Passwords in Oracle TimesTen In-Memory Database
Cache Guide.

Changing the Oracle Database Schema
If you need to make changes to the Oracle database schema, you must drop the affected
cache groups and stop all cache agents before you modify the Oracle database schema.

See Impact on Cache Groups When Modifying the Oracle Database Schema in Oracle
TimesTen In-Memory Database Cache Guide.

Monitoring Autorefresh Operations on Cache Groups
The support log contains messages that show the progress of autorefresh. The support log
shows when autorefresh starts, the autorefresh interval, any message number (if applicable),
number of rows updated, and if the autorefresh completes successfully.

See Understanding Messages About Autorefresh in the Support Log in Oracle TimesTen In-
Memory Database Monitoring and Troubleshooting Guide.

Chapter 12
Managing the Cache Environment

12-27

Managing the Change Log Tables and Triggers in the Oracle
Database

For a cache group with autorefresh, TimesTen creates a change log table and trigger
in the Oracle database for each cache table in the cache group.

The trigger is fired for each committed insert, update, or delete operation on the
cached Oracle database table. The trigger records the primary key of the updated
rows in the change log table. The cache agent periodically scans the change log table
for updated keys and then joins this table with the cached Oracle database table to get
a snapshot of the latest updates. See Managing a Cache Environment with Oracle
Database Objects in Oracle TimesTen In-Memory Database Cache Guide.

The following sections describe how to gather information from the change log table
and how to remove the change log tables and triggers when necessary:

• Gathering Information from the Change Log Table

• Dropping Oracle Database Objects Used for Caching

Gathering Information from the Change Log Table
TimesTen provides the cacheInfo SQL script that gathers information from the change
log table that exists on the Oracle database for autorefresh cache groups.

The following example is run within SQL*Plus on the Oracle database:

SQL> @$TIMESTEN_HOME/install/oraclescripts/cacheInfo.sql
***************** Database Information *********************
Database name: DATABASE1
Unique database name: database1
Primary database name:
Database Role: PRIMARY
Database Open Mode: READ WRITE
Database Protection Mode: MAXIMUM PERFORMANCE
Database Protection Level: UNPROTECTED
Database Flashback On: NO
Database Current SCN: 21512609

*************Autorefresh Objects Information ***************
Grid name: grid1 (7D03C680-BD93-4233-A4CF-B0EDB0064F3F)
Timesten database name: database1
Cache table name: SALES.READTAB
Change log table name: tt_07_96977_L
Number of rows in change log table: 4
Maximum logseq on the change log table: 1
Timesten has autorefreshed updates upto logseq: 1
Number of updates waiting to be autorefreshed: 0
Number of updates that has not been marked with a valid logseq: 0

*************No DDL Tracking objects are found*************

PL/SQL procedure successfully completed.

Chapter 12
Managing the Cache Environment

12-28

See Displaying Information from the Change Log Tables on the Oracle Database in Oracle
TimesTen In-Memory Database Monitoring and Troubleshooting Guide.

Dropping Oracle Database Objects Used for Caching
If a TimesTen database that contains cache groups with autorefresh becomes unavailable,
Oracle database objects such as change log tables and triggers used to implement
autorefresh operations continue to exist in the Oracle database. Oracle database objects
used to implement autorefresh operations also continue to exist in the Oracle database when
a TimesTen database is no longer being used but still contains cache groups with
autorefresh. Rows can continue to accumulate in the change log tables. In this case, you can
drop the Oracle database objects used to implement autorefresh operations.
See Dropping Oracle Database Objects Used by Cache Groups with Autorefresh in Oracle
TimesTen In-Memory Database Cache Guide.

Restoring the TimesTen and Oracle Database Systems
Complete the following tasks to restore the TimesTen and Oracle database systems to their
original state.

1. Dropping Cache Groups.

2. Stopping the Cache Agents for TimesTen Scaleout.

3. Dropping the Oracle Database Users and Their Objects.

Dropping Cache Groups
Start the ttIsql utility and connect to the database1 DSN as the instance administrator. Use
ttIsql to grant the DROP ANY TABLE privilege to the TimesTen cache administration user so
that this user can drop the underlying cache tables when dropping the cache groups.

% ttIsql "DSN=database1"
Command> GRANT DROP ANY TABLE TO cacheadmin;
Command> exit

In order to drop the cache group, you should first pause the autorefresh operations to avoid
any contention. Start the ttIsql utility and connect to the database1 DSN as the TimesTen
cache administration user.

1. Use an ALTER CACHE GROUP statement to set the cache group's autorefresh state to
PAUSED.

2. Use DROP CACHE GROUP statement to drop the readcache read-only cache group.

% ttIsql "DSN=database1;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"
Command> ALTER CACHE GROUP readcache SET AUTOREFRESH STATE PAUSED;
Command> DROP CACHE GROUP readcache;

The readcache cache group and its cache table sales.readtab are dropped from the
TimesTen database.

See Dropping a Cache Group in the Oracle TimesTen In-Memory Database Cache Guide.

Chapter 12
Restoring the TimesTen and Oracle Database Systems

12-29

Stopping the Cache Agents for TimesTen Scaleout
On the active management instance, use ttGridAdmin dbCacheStop command to stop
the cache agent on all data instances within the database.

% ttGridAdmin dbCacheStop database1
Database database1 : Stopping cache agents.

Database database1 element level status as of Mon Dec 7 14:52:51 PST
2020

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ --------- ------------------- -------
host3 instance1 1 opened stopped 2020-11-23 08:37:35
host4 instance1 2 opened stopped 2020-11-23 08:37:35
host5 instance1 3 opened stopped 2020-11-23 08:37:35
host6 instance1 4 opened stopped 2020-11-23 08:37:35
host7 instance1 5 opened stopped 2020-11-23 08:37:35
host8 instance1 6 opened stopped 2020-11-23 08:37:35

You can stop the cache agent for a specific data instance if you specify the -instance
option.

% ttGridAdmin dbCacheStop database1 -instance host4.instance1
Database database1 : Stopping cache agents.

% ttGridadmin dbStatus database1 -element

Database database1 element level status as of Mon Dec 7 14:52:51 PST
2020

Host Instance Elem Status CA Status Date/Time of Event Message
----- --------- ---- ------ --------- ------------------- -------
host3 instance1 1 opened started 2020-11-23 08:37:35
host4 instance1 2 opened stopped 2020-11-23 08:37:35
host5 instance1 3 opened started 2020-11-23 08:37:35
host6 instance1 4 opened started 2020-11-23 08:37:35
host7 instance1 5 opened started 2020-11-23 08:37:35
host8 instance1 6 opened started 2020-11-23 08:37:35

If there is only one cache agent running, do not stop the last cache agent immediately
after you have dropped or altered a cache group with autorefresh. Instead, wait for at
least two minutes to enable the cache agent to clean up Oracle database objects such
as change log tables and triggers that were created and used to manage the cache
group. This is not an issue when you have more than one cache agent running.

See Start a Cache Agent for TimesTen Scaleout.

Chapter 12
Restoring the TimesTen and Oracle Database Systems

12-30

Dropping the Oracle Database Users and Their Objects
Start SQL*Plus and connect to the Oracle database as the sys user. Use SQL*Plus to drop
the Oracle cache administration user cacheadmin.

% sqlplus sys as sysdba
Enter password: password
SQL> DROP USER cacheadmin CASCADE;
User dropped.

Specifying CASCADE in a DROP USER statement drops all objects such as tables and triggers
owned by the user before dropping the user itself.

Next use SQL*Plus to drop the TT_CACHE_ADMIN_ROLE role:

SQL> DROP ROLE TT_CACHE_ADMIN_ROLE;
Role dropped.

Then use SQL*Plus to drop the default tablespace cachetblsp used by the Oracle cache
administration user including the contents of the tablespace and its data file:

SQL> DROP TABLESPACE cachetblsp INCLUDING CONTENTS AND DATAFILES;
Tablespace dropped.
SQL> exit

Supported Cache Features in TimesTen Scaleout
The following features are supported for cache operations in TimesTen Scaleout:

• Using Passthrough

• Using Oracle RAC

Using Passthrough
When an application issues statements on a TimesTen connection, the statement runs in the
TimesTen database or passes through to run in the Oracle database. Whether the statement
runs in the TimesTen or Oracle database depends on the composition of the statement and
the setting of the PassThrough connection attribute.

You can set the PassThrough connection attribute to control which statements run locally in
TimesTen and which are to be redirected to run in the Oracle database.

See Setting a Passthrough Level in Oracle TimesTen In-Memory Database Cache Guide.

Using Oracle RAC
Oracle RAC enables multiple Oracle database instances to access one Oracle database with
shared resources, including all data files, control files, PFILEs and redo log files that reside
on cluster-aware shared disks. Oracle RAC handles read/write consistency and load
balancing while providing high availability.

Chapter 12
Supported Cache Features in TimesTen Scaleout

12-31

See Using Cache in an Oracle RAC environment in Oracle TimesTen In-Memory
Database Cache Guide.

Limiting Cache Agent Connections to the Oracle Database
Cache starts a set number of connections to the Oracle Database for each cache
agent for cache management. If you have a large grid, then you may want to manage
the number of required cache agent connections.

Every cache agent in TimesTen Scaleout starts 11 active cache management threads
with connections to the Oracle database. In addition, 2 more connections are added
for each autorefresh interval for each cache agent. For example, if you have cache
groups defined with 4 different autorefresh intervals, then (2*4)=8 additional
connections for each cache agent to manage autorefresh intervals are created to the
Oracle database. Thus, the total number of connections created to the Oracle
database when using cache in TimesTen Scaleout is:

total_number_connections = num_cache_agents * (11 + (2 * num_interval))

The following example uses a grid where:

• k=3.

• A database in that grid is defined with 10 replica sets.

• The user specifies cache groups with four autorefresh intervals.

In this example, you would create 30 hosts, which are labeled host01, host02, …
host30. If each data instance on these hosts in this example runs a cache agent, then
the number of connections to the Oracle database for servicing the cache agents
would be:

30 * (11 + (2*4)) = 570

If you have a large grid with one cache agent started for each instance, this creates a
scenario where there can be redundant open cache management connections to the
Oracle database. Instead, we recommend that for a large grid, you start only a fraction
of the cache agents. The minimum number of cache agents that you can start is one
cache agent for each autorefresh interval plus one cache agent for each k-factor.

num_cache_agents = (num_interval + k)

Thus, in our previous example where there are 4 autorefresh intervals with a k-factor
of 3, then you would start (4+3)=7 cache agents using the ttGridAdmin dbCacheStart
-instance command.

Each cache agent has threads connected to the Oracle database to perform cache
management tasks, as well as refresher threads performing autorefresh operations.
The autorefresh intervals are rebalanced among active cache agents so that each
cache agent autorefreshes the mean interval for each cache agent.

In our example, we would start 7 cache agents.

% ttGridAdmin dbCacheStart -instance host01 database1
Database database1 : Starting cache agents.

Chapter 12
Limiting Cache Agent Connections to the Oracle Database

12-32

% ttGridAdmin dbCacheStart -instance host02 database1
Database database1 : Starting cache agents.
% ttGridAdmin dbCacheStart -instance host03 database1
Database database1 : Starting cache agents.
% ttGridAdmin dbCacheStart -instance host04 database1
Database database1 : Starting cache agents.
% ttGridAdmin dbCacheStart -instance host05 database1
Database database1 : Starting cache agents.
% ttGridAdmin dbCacheStart -instance host06 database1
Database database1 : Starting cache agents.
% ttGridAdmin dbCacheStart -instance host07 database1
Database database1 : Starting cache agents.

With seven cache agents started, each servicing 4 autorefresh intervals, there are (7 * (11 +
(2*4))= 133 connections to the Oracle database just for cache management. Autorefresh
operations and cache management tasks are load balanced over seven data instances.
Depending on availability requirements, users can choose to limit the number of connections
further by reducing the number of autorefresh intervals required in the cache groups.

Since cache agents are known to be on the first seven data instances, all manual cache
operations that require a cache agent must be executed on one of these seven data
instances. If you need to run a manual cache operation from a data instance that does not
have a cache agent running, you can perform the following:

1. On the active management instance, start the cache agent for the data instance where
you want to perform the cache operation (for example host19) by executing the
ttGridAdmin dbCacheStart command.

% ttGridAdmin dbCacheStart -instance host19 database1
Database database1 : Starting cache agents.

2. Execute the cache operation on the data instance on host19.

3. Once the manual cache operation is completed, stop the cache agent for that data
instance by executing the ttGridAdmin dbCacheStop command on the active
management instance.

% ttGridAdmin dbCacheStop -instance host19 database1
Database database1 : Stopping cache agents.

Compatibility Issues Between the TimesTen and Oracle
Databases

There are some compatibility issues between the TimesTen and Oracle databases.

For example:

• TimesTen and Oracle database metadata are stored differently.

• TimesTen and Oracle databases have different transaction isolation models.

• TimesTen and Oracle databases have different connection and statement properties.

• Sequences are not cached and synchronized between the TimesTen database and the
corresponding Oracle database.

Chapter 12
Compatibility Issues Between the TimesTen and Oracle Databases

12-33

• Side effects of Oracle database triggers and stored procedures are not reflected in
the TimesTen database until after an automatic or manual refresh operation.

See Compatibility Between TimesTen and Oracle Databases in Oracle TimesTen In-
Memory Database Cache Guide.

Restrictions for Cache on TimesTen Scaleout
There are some restrictions when using cache operations on TimesTen Scaleout.

• Full autorefresh mode is not supported for cache groups. However, TimesTen
Scaleout may still initiate a full autorefresh as the initial load of a cache group or to
recover from certain error conditions.

• Aging is not supported.

• Materialized views on cache group tables are not supported.

• Global indexes on cache group tables are not supported.

• LOAD CACHE GROUP WITH ID, REFRESH CACHE GROUP WITH ID, and UNLOAD CACHE
GROUP WITH ID SQL statements are not supported.

• Data Guard is not supported for cache in TimesTen Scaleout.

• Disaster Recovery is not supported for cache in TimesTen Scaleout.

Chapter 12
Restrictions for Cache on TimesTen Scaleout

12-34

13
Recovering from Failure

Error conditions and failure situations can impact availability. If the error condition can be
recovered automatically, then standard operations resume. However, there may be situations
where you need to intervene to recover from failure.

TimesTen Scaleout has included error and failure detection with automatic recovery for many
error and failure situations in order to maintain a continuous operation for all applications
using TimesTen Scaleout. Errors and failure situations can include:

• Software errors.

• Network outage or other communication channel failures. A communication channel is a
TCP connection.

• One or more machines hosting a data instance unexpectedly reboots or crashes.

• The main TimesTen daemon for an instance or any of its sub-daemons fail.

• An element becomes slow or unresponsive if it is suspended waiting on a lock or as a
result of a heavy load.

• A machine or rack of machines hosting data instances are unexpectedly brought down
for unknown reasons.

The response necessary for error conditions and failure situations are as follows:

• Transient errors: A transient error is due to a temporary condition that TimesTen Scaleout
is usually able to quickly resolve. You can immediately retry the failed transaction, which
usually succeeds.

• Element failure: When an element fails, TimesTen Scaleout can automatically recover the
element most of the time. However, there are certain element failure situations where you
may be required to fix the problem. The application response to an element failure may
differ depending on the configuration of the grid and the database. After the problem is
fixed, either TimesTen Scaleout recovers the element and operations continue or you
supply a new element to take the place of the failed element.

• Replica set failure: If all of the elements in a replica set fail, there is a method for
TimesTen Scaleout to automatically recover the elements (once the original failure issue
has been fixed). The element with the latest changes, known as the seed element, is
recovered first. Then, all subsequent elements are recovered from the seed element.

• Database failure: If all replica sets fail, the database is considered failed. You need to
reload the database for recovery. How a database recovers when the database reloads
depends on the value for the Durability attribute.

• Data distribution failure: You can attempt a re-synchronization of your data if the data
distribution process is interrupted or fails to complete. Re-synchronization involves
executing the ttGridAdmin dbDistribute -resync operation.

The following sections describe the error or failure situations and recovery:

• Displaying the Database, Replica Set and Element Status

• Recovering from Transient Errors

13-1

• Recovering from a Data Distribution Error

• Tracking the Automatic Recovery for an Element

• Availability Despite the Failure of One Element in a Replica Set

• Recovering from a Down Replica Set

• Recovering When the Replica Set Has a Permanently Failed Element

• Recovering When a Data Instance Is Down

• Database Recovery

• Client Connection Failover

• Managing Failover for the Management Instances

• Clean Up Metadata for Multiple TimesTen Databases with the Same Name

• Performance Recommendations

Displaying the Database, Replica Set and Element Status
You can display the database, replica set and element status.

The element status shows:

• If the element is loaded (opened).

• If the element is in process of a change, such as being opened (opening), loaded
(creating, loading), unloaded (unloading), destroyed (destroying) or closed
(closing).

• If the element or its data instance has failed and is waiting on the seed element to
recover, then the status displayed is waiting for seed. The element that failed
with the latest changes, known as the seed element, is recovered first to the latest
transaction in the checkpoint and transaction log files. All other elements in the
replica set are copied from the seed element of the replica set.

• If the element is not up (evicted or down).

The following section describe examples of how to display the status of the database,
data space groups, replica sets and elements. See Troubleshooting Based on Element
Status.

Display the Status of the Database and All Elements
You can use the ttGridAdmin dbStatus -all command to list the current status for
the database, all elements, replica sets and data space groups in your database.

The first section describes the status of the overall database. In this example, the
database has been created, loaded, and open. The status also shows the total number
of created, loaded and open elements.

The database status shows the progression of the database being first created, then
loaded and finally opened. In bringing down the database, the reverse order is
performed, where the database is first closed, then unloaded and finally destroyed.

% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 07:37:28 PST 2018

Chapter 13
Displaying the Database, Replica Set and Element Status

13-2

created,loaded-complete,open
Completely created elements: 6 (of 6)
Completely loaded elements: 6 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 6 (of 6)

However, if the database status shows that the database is created, loaded and closed, then
the database has not yet been opened. The following example shows that the database is not
open yet, but that the distribution map has been updated, showing the created and loaded
replica sets. Note that none of the elements are opened until the database is opened.

% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 07:37:01 PST 2018

created,loaded-complete,closed
Completely created elements: 6 (of 6)
Completely loaded elements: 6 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 0 (of 6)

The second section provides information about the elements: the host and instance name in
which each element exists, the number assigned to the element, and the status of the
element.

Database database1 element level status as of Thu Feb 22 07:37:28 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 opened 2018-02-22 07:37:25
host4 instance1 2 opened 2018-02-22 07:37:25
host5 instance1 3 opened 2018-02-22 07:37:25
host6 instance1 4 opened 2018-02-22 07:37:25
host7 instance1 5 opened 2018-02-22 07:37:25
host8 instance1 6 opened 2018-02-22 07:37:25

The third section provides information about the replica sets. In this example, there are three
replica sets. In addition to information about the elements, it also provides the number of the
replica set in which each element exists, identified by the RS column. The data space group in
which each element exists (within its data instance within its host) is identified with the DS
column. Notice that each replica set has one element in each data space group.

Database database1 Replica Set status as of Thu Feb 22 07:37:28 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host3 instance1 opened 2018-02-22 07:37:25
 2 2 host4 instance1 opened 2018-02-22 07:37:25
 2 1 3 host5 instance1 opened 2018-02-22 07:37:25
 2 4 host6 instance1 opened 2018-02-22 07:37:25

Chapter 13
Displaying the Database, Replica Set and Element Status

13-3

 3 1 5 host7 instance1 opened 2018-02-22 07:37:25
 2 6 host8 instance1 opened 2018-02-22 07:37:25

The final section organizes the information about the elements to show which
elements are located in each data space group, shown under the DS column. In this
example, there are two data space groups. The elements are organized either under
data space group 1 or 2.

Database database1 Data Space Group status as of Thu Feb 22 07:37:28
PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host3 instance1 opened 2018-02-22 07:37:25
 2 3 host5 instance1 opened 2018-02-22 07:37:25
 3 5 host7 instance1 opened 2018-02-22 07:37:25
 2 1 2 host4 instance1 opened 2018-02-22 07:37:25
 2 4 host6 instance1 opened 2018-02-22 07:37:25
 3 6 host8 instance1 opened 2018-02-22 07:37:25

The following shows the status if you evicted one of your replica sets without
replacement. While the database is loaded and opened, it shows that there are six
created elements, but only four of those are loaded. There is one less replica set in all
displayed sections and the evicted elements are shown as evicted with their status.

% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 07:52:08 PST 2018

created,loaded-complete,open
Completely created elements: 6 (of 6)
Completely loaded elements: 4 (of 6)
Completely created replica sets: 2 (of 2)
Completely loaded replica sets: 2 (of 2)

Open elements: 4 (of 6)

Database database1 element level status as of Thu Feb 22 07:52:08 PST
2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------- ------------------- -------
host3 instance1 1 evicted 2018-02-22 07:52:06
host4 instance1 2 evicted 2018-02-22 07:52:06
host5 instance1 3 opened 2018-02-22 07:37:25
host6 instance1 4 opened 2018-02-22 07:37:25
host7 instance1 5 opened 2018-02-22 07:37:25
host8 instance1 6 opened 2018-02-22 07:37:25

Database database1 Replica Set status as of Thu Feb 22 07:52:08 PST
2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 3 host5 instance1 opened 2018-02-22 07:37:25

Chapter 13
Displaying the Database, Replica Set and Element Status

13-4

 2 4 host6 instance1 opened 2018-02-22 07:37:25
 2 1 5 host7 instance1 opened 2018-02-22 07:37:25
 2 6 host8 instance1 opened 2018-02-22 07:37:25

Database database1 Data Space Group status as of Thu Feb 22 07:52:08 PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 3 host5 instance1 opened 2018-02-22 07:37:25
 2 5 host7 instance1 opened 2018-02-22 07:37:25
 2 1 4 host6 instance1 opened 2018-02-22 07:37:25
 2 6 host8 instance1 opened 2018-02-22 07:37:25

See Troubleshooting Based on Element Status in this guide and Database Management
Operations and Monitor the Status of a Database (dbStatus) in Oracle TimesTen In-Memory
Database Reference.

Recovering from Transient Errors
Because a grid spans multiple hosts, there is an opportunity for multiple types of failure,
many of which can be transient errors. For the most part, TimesTen Scaleout can detect
transient errors and adapt to them quickly.

Most errors in the grid are transient with error codes designated as Transient, which may
cause a specific API, SQL statement or transaction to fail. Most of the time, the application
can retry the exact same operation with success.

The potential impacts of a transient error are:

• The execution of a particular statement failed. Your application should re-run the
statement.

• The execution of a particular transaction failed. Your application should roll back the
transaction and perform the operations of the transaction again.

• The connection to the data instance fails. If you are using a client/server connection, then
the TimesTen Scaleout routes the connection to another active data instance. See Client
Connection Failover.

The following sections describe how TimesTen Scaleout recovers the element from the more
common transient errors:

• Retry Transient Errors

• Communications Error

• Software Error

• Host or Data Instance Failure

• Heavy Load or Temporary Communication Failure

Retry Transient Errors
While TimesTen Scaleout automatically handles the source of most transient errors, your
application may retry the entire transaction.

Chapter 13
Recovering from Transient Errors

13-5

Specifically, your application may retry the entire transaction when receiving any of the
errors described in Table 13-1.

Table 13-1 SQLSTATE and ORA Errors for Retrying After Transient Failure

SQLSTATE ORA Errors PL/SQL
Exceptions

Error Message

TT005 ORA-57005 Exception
-57005

Transient transaction failure due to
unavailability of a grid resource. Roll back the
transaction and then retry the transaction.

Your applications can check for the transient error as follows:

• ODBC or JDBC applications check for the SQLSTATE TT005 error to determine if
the application should retry the transaction. See Retrying After Transient Errors
(ODBC) in Oracle TimesTen In-Memory Database C Developer's Guide and
Retrying After Transient Errors (JDBC) in Oracle TimesTen In-Memory Database
Java Developer's Guide.

• OCI and Pro*C applications check for the ORA-57005 error to determine if the
application should retry a SQL statement or transaction. See Transient Errors
(OCI) in Oracle TimesTen In-Memory Database C Developer's Guide.

• PL/SQL applications check for the -57005 PL/SQL exception to determine if the
application should retry the transaction. See Retrying After Transient Errors (PL/
SQL) in Oracle TimesTen In-Memory Database PL/SQL Developer's Guide.

Communications Error
Communications can fail between elements, between data instances or between a
data instance and a ZooKeeper membership server.

The following describes the type of communications that might fail:

• Communication between elements: Used to run SQL statements within
transactions and stream data between elements, as required. If there is a
communications error while the application is executing a transaction, then you
must roll back the transaction. When you retry the transaction, communications
are recreated and work continues.

• Communication between data instances: The data instances communicate with
each other for creating communication as well as sending or receiving recovery
messages. If there is a break in the communication between the data instances,
then communications are automatically recovered when you retry the operation.

• Communication between data instances and the ZooKeeper membership servers:
Each data instance communicates with the ZooKeeper membership service
through one of the defined ZooKeeper servers. If communications fail between a
data instance and the ZooKeeper server with which it has been communicating,
then the data instance attempts to connect to another ZooKeeper server. If the
data instance cannot connect to any ZooKeeper server, then the data instance
considers itself to be down.

See Recovering When a Data Instance Is Down for details on what to do when a
data instance is down.

Chapter 13
Recovering from Transient Errors

13-6

Software Error
If a software error causes an element to be unloaded, then an error is returned to the active
application. After rolling back the transaction, the application can continue executing
transactions as long as one element from each replica set is open.

TimesTen Scaleout attempts to reload the element. Once opened, the element can accept
transactions again.

Note:

You can manually initiate the reload of an element by reloading the database with
the ttGridAdmin dbload command. If element status is load failed, fix what
caused the element load to fail and then reload the element with the ttGridAdmin
dbload command. See Load a Database Into Memory (dbLoad) in Oracle TimesTen
In-Memory Database Reference.

Host or Data Instance Failure
If the host that contains a data instance crashes or if the data instance crashes, then an error
is returned to the active application.

Since the data instance is down, the element status is displayed as down. If the data instance
restarts (whether from automatic recovery or manual intervention), the element within the
data instance most likely recovers. Monitor the status of the element with the ttGridAdmin
dbStatus command to verify if it did recover.

Note:

See Troubleshooting Based on Element Status and Recovering When a Data
Instance Is Down.

Heavy Load or Temporary Communication Failure
A transient failure may occur if an element becomes slow or unresponsive due to heavy load.

During a database operation, a transient failure can occur for many reasons.

• A query timeout may occur if one or more hosts of the TimesTen Scaleout are overloaded
and are slow to respond.

• A transient failure occurs with a temporary suspension of communication, such as
unplugging from the network to reset communications.

Chapter 13
Recovering from Transient Errors

13-7

Recovering from a Data Distribution Error
Your existing data is redistributed once you apply the change to the distribution map
with the ttGridAdmin dbDistribute -apply command. You receive an error if you
request a data distribution or a reset while a data distribution is in progress.

See Redistributing Data in a Database.

TimesTen spawns multiple processes to perform data distribution. In addition, the
active management instance communicates with the data instances to facilitate data
distribution. The active management instance stores metadata to track the progress of
each data distribution. Thus, the data distribution could fail if a critical process fails, an
instance fails, or communication fails between the active management instance and
the data instances.

The following error message displays if the dbDistribute -apply command fails
during data distribution:

% ttGridAdmin dbDistribute database1 -apply
Error : Distribution failed, error message lost due to process failure

There are a few failure cases where the active management instance may not know
about the success or failure of a data distribution operation and the metadata may be
left in an intermediate state. This could occur if the process (in which the
dbDistribute -apply was run) dies or is terminated.

Do not re-initiate another dbDistribute -apply command if the data distribution fails
or does not complete. Instead, run the dbDistribute -resync command. The
dbDistribute -resync command examines the metadata in the active management
instance to determine if a dbDistribute -apply operation was in progress but did not
complete (neither committing nor rolling back the changes). If so, the dbDistribute -
resync command re-synchronizes the metadata in the database with the metadata in
the active management instance (if they do not have matching states).

• If the dbDistribute -resync command succeeds, the re-synchronization may
result in committing or rolling back the metadata changes of the previous
dbDistribute -apply operation.

• If the dbDistribute -resync command fails, you can either:

– Run the dbDistribute -apply command to attempt the same distribution.

– Run the dbDistribute -reset command to discard all distribution settings
that have not yet been applied, then attempt a new data distribution with the
dbDistribute -apply command.

The following example shows the output when the dbDistribute -resync command
successfully completes the data distribution operation:

% ttGridAdmin dbDistribute -resync
Distribution map updated

Chapter 13
Recovering from a Data Distribution Error

13-8

The following example shows the output when the dbDistribute -resync command rolls
back the data distribution operation:

% ttGridAdmin dbDistribute database1 -resync
Distribution map Rolled Back

The following example shows the output when the dbDistribute -resync command
discovers that there is no data distribution in progress.

% ttGridAdmin dbDistribute database1 -resync
No DbDistribute is currently in progress

The following example shows the output when the dbDistribute -resync command
discovers that the data distribution is still in progress.

% ttGridAdmin dbDistribute database1 -resync
Distribute is still in progress. Wait for dbDistribute to complete, then
call resync

An error displays if the re-synchronization fails. For example, you might attempt to re-
synchronize a data distribution when there are no active data instances. In this case, the
following error displays:

% ttGridAdmin dbDistribute database1 -resync
Error : Could not connect to data instance to retrieve partition table
version

See Set or Modify the Distribution Scheme of a Database (dbDistribute) in Oracle TimesTen
In-Memory Database Reference.

Tracking the Automatic Recovery for an Element
If an element becomes unloaded, TimesTen Scaleout attempts to reload the element if the
database is supposed to be loaded. During this time, the element status changes to loading
as the element is being automatically recovered by TimesTen Scaleout.

You can monitor the element status with the ttGridAdmin dbStatus -element command.
This example shows that the element on the host3.instance1 data instance is in the process
of recovering by showing a status of loading.

% ttGridAdmin dbStatus database1 -element
Database database1 element level status as of Wed Jan 10 14:34:08 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 loading 2018-01-10 14:33:23
host4 instance1 2 opened 2018-01-10 14:33:21
host5 instance1 3 opened 2018-01-10 14:33:23
host6 instance1 4 opened 2018-01-10 14:33:23
host7 instance1 5 opened 2018-01-10 14:33:23
host8 instance1 6 opened 2018-01-10 14:33:23

Chapter 13
Tracking the Automatic Recovery for an Element

13-9

See Availability Despite the Failure of One Element in a Replica Set, Recovering from
a Down Replica Set, and Recovering When the Replica Set Has a Permanently Failed
Element.

Availability Despite the Failure of One Element in a Replica
Set

A main goal for TimesTen Scaleout is to provide access to the data even if there are
failures.

When k >= 2, the data contained within a replica set is available as long as at least
one element in the replica set is up. If an element in the replica set goes down and
then recovers, then the element is automatically re-synchronized with another element
in its replica set.

Note:

If k = 1, any element failure results in the replica set being down because the
replica set contains only a single element. See Recovering When the Replica
Set Has a Permanently Failed Element for details on recovery when an
element permanently fails when k = 1.

The following example shows a grid where k = 3. Two replica sets are created, each
with three elements in the replica set. The element on the host4.instance1 data
instance fails. TimesTen Scaleout automatically re-connects to one of the other
available elements in the replica set to continue executing the transaction. In this
example, TimesTen Scaleout automatically re-connects to the element within the
host3.instance1 data instance. While the element on the host4.instance1 data
instance is unavailable or in the middle of recovering, the element on the
host3.instance1 data instance handles all transactions for the replica set. Once the
element on the host4.instance1 data instance recovers, all elements in the replica
set can handle transactions.

Chapter 13
Availability Despite the Failure of One Element in a Replica Set

13-10

Figure 13-1 K-Safety Reacts to One Data Instance Failure

data space group 1 data space group 2

host4.instance1

data space group 3

replica set 1

replica set 2

host8.instance1host6.instance1

host3.instance1 host5.instance1

host7.instance1

Multiple failures in different replica sets do not result in loss of functionality, as long as there is
at least one element up in each replica set. You may lose data if an entire replica set fails.

The following example shows a grid where k = 3 with two replica sets. In this example, the
elements in the host4.instance1, host6.instance1, and host8.instance1 data instances
fail. However, your transactions continue to run since there is at least one element available
in each replica set.

Figure 13-2 K-Safety Reacts to Multiple Data Instance Failures

data space group 1 data space group 2

host4.instance1

data space group 3

replica set 1

replica set 2

host8.instance1host6.instance1

host3.instance1 host5.instance1

host7.instance1

Chapter 13
Availability Despite the Failure of One Element in a Replica Set

13-11

Recovering When a Single Element Fails in a Replica Set
There are recovery methods you can perform when a single element fails within a
replica set when k >= 2:

• Troubleshooting Based on Element Status

• Recovering a Replica Set After an Element Goes Down

• Remove and Replace a Failed Element in a Replica Set

Troubleshooting Based on Element Status
For some of the element states, you may be required to intervene. When you display
the element status, you can respond to each of these element states.

Table 13-2 shows details on each element status and a recommendation of how to
respond to changes in the element status.

Table 13-2 Element Status

Status Meaning Notes and Recommendations

close failed The attempt to close the
element failed.

Refer to the ttGridAdmin dbStatus
command output for information about the
failure.

You can try ttGridAdmin dbClose again.

closing The element is in the
process of closing.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
closed. You can unload the database when
some elements are still closing, but you
would have to use the ttGridAdmin
dbUnload -force command.

create failed The attempt to create the
element failed.

Refer to the ttGridAdmin dbStatus
output for information about the failure. A
common issue is that there are not enough
semaphores to create the element or there
is something wrong with the directory
(incorrect permissions) for the checkpoint
files. See Set the SEMMSL and SEMMNS
Parameters.

You can use the ttGridAdmin dbCreate
command with the -instance
hostname[.instancename] option to
retry the creation of the element on that
data instance. See Retry Element Creation.

creating The element is being
created.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
created.

Chapter 13
Recovering When a Single Element Fails in a Replica Set

13-12

Table 13-2 (Cont.) Element Status

Status Meaning Notes and Recommendations

destroy failed The attempt to destroy
the element failed.

Refer to the ttGridAdmin dbStatus
command output for information about the
failure.

If the element status is destroy failed,
you can retry the destroy of the element on
the data instance with the ttGridAdmin
dbDestroy command with the -instance
hostname[.instancename] option. See
Destroy an Evicted Element or an Element
Where a Destroy Failed.

destroyed The element has been
destroyed.

Element no longer exists.

Note: When the last element of a database
is destroyed, no record of the database,
including element status, will exist.

destroying The element is being
destroyed.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
destroyed.

down The data instance where
this element is located is
not running.

If the data instance is down, the status of
an element is down.

Try to restart the data instance with the
instanceExec command to run
ttDaemonAdmin -start command. Use
the instanceExec option -only
hostname[.instancename].

See Restart a Data Instance That Is Down
and Recovering When a Data Instance Is
Down.

evicted The element was evicted
or removed through
ttGridAdmin
dbDistribute and has
been removed from the
distribution map.

When the element status is evicted,
destroy the element of the data instance
with the ttGridAdmin dbDestroy
command with the -instance
hostname[.instancename] option. See
Destroy an Evicted Element or an Element
Where a Destroy Failed.

evicted (loaded) The element was evicted
or removed through
ttGridAdmin
dbDistribute but
removal from the
distribution map has not
yet begun.

Wait, and run ttGridAdmin dbStatus
command again to see when the element is
unloaded.

When the element status is evicted,
destroy the element with the ttGridAdmin
dbDestroy command with the -instance
hostname[.instancename] option. See
Destroy an Evicted Element or an Element
Where a Destroy Failed.

Chapter 13
Recovering When a Single Element Fails in a Replica Set

13-13

Table 13-2 (Cont.) Element Status

Status Meaning Notes and Recommendations

evicted
(unloading)

The element was evicted
or removed through
ttGridAdmin
dbDistribute and is
being removed from the
distribution map.

Wait, and run ttGridAdmin dbStatus
command again to see when the element is
unloaded.

When the element status is evicted,
destroy the element of the data instance
with the ttGridAdmin dbDestroy
command with the -instance
hostname[.instancename] option. See
Destroy an Evicted Element or an Element
Where a Destroy Failed.

load failed The attempt to load the
element failed.

Refer to the ttGridAdmin dbStatus
command output for information about the
failure.

You can try again to load the element with
the ttGridAdmin dbLoad command with
the -instance
hostname[.instancename] option.

loaded The element is loaded. Element is loaded and can now be opened.
You can confirm if the element is in the
distribution map with the ttGridAdmin
dbStatus -replicaset command.

loading The element is being
loaded.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
loaded.

opened The element is open. Standard status for a functioning element.
Database connections are possible through
the element.

open failed The attempt to open the
element failed.

Refer to the ttGridAdmin dbStatus
command output for information about the
failure.

You can try ttGridAdmin dbOpen again.

opening The element is in the
process of opening.

Wait, and run ttGridAdmin dbStatus
command again to see when the element is
open.

uncreated The element should be
created, but creation has
not yet started.

Wait, and run the ttGridAdmin dbStatus
command again to see when creation
begins (status creating).

unloaded The element has been
unloaded.

Database is ready to be loaded again
(ttGridAdmin dbLoad) or destroyed
(ttGridAdmin dbDestroy).

You can run the ttGridAdmin dbLoad
command to reload the database.

unloading The element is being
unloaded.

Wait, and run the ttGridAdmin dbStatus
command again to see when the element is
unloaded.

Chapter 13
Recovering When a Single Element Fails in a Replica Set

13-14

Table 13-2 (Cont.) Element Status

Status Meaning Notes and Recommendations

waiting for seed The element will be
loaded, but not until after
the seed element in its
replica set is loaded.

Note the status of the seed element in the
replica set. The element in the replica set
that failed with the latest changes is known
as the seed element. The seed element
recovers first with the latest transaction in
the checkpoint and transaction log files.

• If the status of the seed element is
loading, then failed elements will load
as soon as the status of the seed
element is loaded.

• If the status of the seed element is
load failed, then address that
problem. See the entry for load
failed above.

• If the status of the seed element is
down, then the failed elements cannot
recover. Restart the data instance as
indicated within the element down
status information in this table.

• If all elements in the replica set are in
the waiting for seed state, then
the only way to recover the replica set
is to either:

- Reload the database with the
ttGridAdmin dbLoad command. See
Database Recovery.

- If a reload of the database does not
recover the elements and if your
Durability=0, then you may need to
evict the replica set, unload and reload
the database with the ttGridAdmin
dbDistribute -evict, unLoad and
dbLoad commands. See Recovering a
Failed Replica Set When Durability=0.

Note:

The notes and recommendations column often refers to ttGridAdmin commands.
For more information on these commands within Oracle TimesTen In-Memory
Database Reference, see Monitor the Status of a Database (dbStatus) for
ttGridAdmin dbStatus, Create a Database (dbCreate) for ttGridAdmin dbCreate,
Open a Database (dbOpen) for ttGridAdmin dbOpen, Load a Database Into
Memory (dbLoad) for ttGridAdmin dbLoad, Unload a Database (dbUnload) for
ttGridAdmin dbUnload, Close a Database (dbClose) for ttGridAdmin dbClose,
Destroy a Database (dbDestroy) for ttGridAdmin dbDestroy, and Run a Command
or Script on Grid Instances (instanceExec) for ttGridAdmin instanceExec.

Chapter 13
Recovering When a Single Element Fails in a Replica Set

13-15

The following sections demonstrate how to respond with different scenarios where a
single element in the replica set has failed:

• Retry Element Creation

• Restart a Data Instance That Is Down

• Destroy an Evicted Element or an Element Where a Destroy Failed

Retry Element Creation
If the creation of the element failed, then retry the creation of the element with the
ttGridAdmin dbCreate -instance command on the same data instance where the
element should exist.

% ttGridAdmin dbCreate database1 -instance host3
Database database1 creation started

Restart a Data Instance That Is Down
When a data instance is down, the element within the data instance is down. You can
check if data instances are down by using the ttGridAdmin dbStatus -all command.

Restart the daemon of the data instance with the ttGridAdmin instanceExec -only
command to run either the ttDaemonAdmin -start or ttDaemonAdmin -restart
commands.

The following example starts the host4.instance1 data instance:

% ttGridAdmin instanceExec -only host4.instance1 ttDaemonAdmin -start
Overall return code: 0
Commands executed on:
 host4.instance1 rc 0
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 15491, port: 14000) startup OK.

If the data instance does not restart, see Recovering When a Data Instance Is Down.

Destroy an Evicted Element or an Element Where a Destroy Failed
If you evict an element, you still need to destroy the element to free up the file system
space used by the element. After which, you may decide to create a new element.

When the element status is destroy failed or evicted, destroy the element of the
data instance with the ttGridAdmin dbDestroy -instance command.

% ttGridAdmin dbDestroy database1 -instance host3
Database database1 destroy started

See Recovering When the Replica Set Has a Permanently Failed Element.

Chapter 13
Recovering When a Single Element Fails in a Replica Set

13-16

Recovering a Replica Set After an Element Goes Down
When k >= 2, all active elements in the same replica set are transactionally synchronized.
Any DML or DDL statements applied to one element in a replica set are also applied to all
other elements in the replica set. When one element in the replica set is not up, another
element in the replica set continues to run DML or DDL statements.

• If the failed element recovers, it was unavailable for a time and fell behind transactionally.
Before this element can resume its part in the replica set in the grid, it must synchronize
its data with the active element of its replica set.

• If an element permanently fails, such as a file system failure, you need to remove that
element from the replica set and replace it with another element with the ttGridAdmin
dbDistribute -remove -replaceWith command. See Replace an Element with Another
Element.

TimesTen Scaleout automatically re-synchronizes and restores the data on the restored or
new element in the replica set with the following methods:

• Log-based catch up: This process transfers the transaction logs from an active element in
the replica set and applies transaction records that are missing on a recovering element.
This operation applies the DML or DDL statements that occurred while an element was
not participating in the replica set. However, TimesTen Scaleout blocks any new DDL
statements during the log-based catch up recovery phase of a recovering element.

Transactions that are started while one of the elements of the replica set is down must be
replayed when recovering the down element. The log-based catch up process waits for
any open transactions to commit or roll back before replaying them from the transaction
log. If the down element is in the recovery process for an extended period of time, then
there may be an open transaction (on the active element) preventing the completion of
the log-based catch up process for the recovering element. Use the ttXactAdmin utility to
check for open transactions. Resolve any open transactions by either committing or
rolling them back.

• Duplicate: TimesTen Scaleout duplicates the active element either to a recovering
element or to a new element that replaces a failed element. The duplication operation
copies all checkpoint and log files of the active element to the recovering element.

However, since the active element continues to accept transactions during the duplicate
operation, there may be additional transaction log records that are not a part of the
copied transaction log files. After completing the duplicate operation, TimesTen Scaleout
contacts the active element and performs a log-based catch up operation to bring the
new element completely up to date.

Remove and Replace a Failed Element in a Replica Set
When k >= 2, if an element cannot be recovered automatically, then you have to investigate
what caused the failure.

You may discover a problem that can be fixed, such as a drive that needs to be remounted.
However, you may discover a problem that cannot be fixed, such as a drive that is completely
destroyed. Most permanent, unrecoverable failures are usually related to hardware failures.

• If you can, fix the problem with the host or the data instance and then perform one of the
following:

– Restart the data instance. See Recovering When a Data Instance Is Down.

Chapter 13
Recovering When a Single Element Fails in a Replica Set

13-17

– Reload the TimesTen database with the ttGridAdmin dbload command,
which attempts to reload the element.

• If you cannot fix the problem with the host or data instance, then the data on the
element may be in a state where it cannot be retrieved. In this case, you must
remove the element and replace it with another element. Once replaced, the active
element updates the new element with the data for this replica set.

If one of your hosts is encountering multiple errors (even though it has been able to
automatically recover), you may decide to replace it with another host that is more
reliable.

To replace an element without data loss, run the ttGridAdmin dbDistribute -remove
-replaceWith command, which takes the data that exists on the element you want to
replace and redistributes to a new element. See Replace an Element with Another
Element.

Recovering from a Down Replica Set
If all elements in a single replica set are down or failed, the data stored in the down
replica set is unavailable. In order to guard against full replica set failure, distribute
your elements in a way that reduces the chances of full replica set failure.

See Assigning Hosts to Data Space Groups.

As described in Table 13-3, if you have a down or failed replica set, the outcome of
preserving your data successfully may depend on how you set the Durability
connection attribute. See Durability Settings.

Table 13-3 Potential for Transaction Recovery Based on Durability Value

Durability Value Affect on Transactions When a Replica Set Fails

1 Participants synchronously write a prepare-to-commit or commit log
record to the transaction log for distributed transactions. This ensures
that committed transactions have the best possible chance of being
preserved. If a replica set goes down, all transaction log records have
been durably committed to the file system and can be recovered by
TimesTen Scaleout.

0 Participants asynchronously write prepare-to-commit and commit log
records for distributed transactions. If an entire replica set goes down,
transaction log records are not guaranteed to be durably committed to
the file system. There is a chance for data loss, depending on how the
elements within the replica set fail or go down.

The following sections describe what happens with new transactions after a replica set
goes down or how the replica set recovers depends on the Durability connection
attribute value.

• Transaction Behavior with a Down Replica Set

• Durably Recovering a Failed Replica Set When Durability=1

• Recovering a Failed Replica Set When Durability=0

Chapter 13
Recovering from a Down Replica Set

13-18

Transaction Behavior with a Down Replica Set
The following list describes what occurs for your transaction when there is a down replica set.

• Transactions with queries that access rows only within active replica sets (and no rows
within a down replica set) succeed. Queries that try to access data within a down replica
set fail. Your application should retry the transaction when the replica set has recovered.

A global read with a partial results hint that does not require data from the down replica
set succeeds.

For example, if all elements in replica set 1 failed and the queries within the transaction
require data from replica set 1, then the transaction fails. Your application should perform
the transaction again.

• Transactions with any DDL statement fail when there is a down replica set as DDL
statements require all replica sets to be available. Your application should roll back the
transaction.

• Transactions with any DML statements fail if the transaction tries to update at least one
row on elements in a down replica set. Your application should roll back the transaction.
When Durability=0, this scenario may encounter data loss. See Recovering a Failed
Replica Set When Durability=0.

• When Durability=1, transactions with DML that do not require data from the down
replica set succeeds. For example, if all elements in replica set 1 failed, then the
transaction succeeds only if any SELECT, INSERT, INSERT...SELECT, UPDATE or DELETE
statements do not depend on data that was stored in replica set 1.

Durably Recovering a Failed Replica Set When Durability=1
The following sections describe the process for recovery of a failed replica set when
Durability=1.

If all elements in the replica set go down, even temporarily, TimesTen Scaleout might be able
to automatically recover the full replica set (if the initial issue is resolved) by:

1. Determining and recovering the seed element. The element that failed with the latest
changes, known as the seed element, is recovered first. The seed element is recovered
to the latest transaction in the checkpoint and transaction log files.

2. After recovery of the element is complete, TimesTen Scaleout checks for in-doubt
transactions.

When an element is loaded from the file system (from checkpoint and transaction log
files) to recover after a transient failure or unexpected termination, any two-phase commit
transactions that were prepared, but not committed, are left pending. This is referred to
as an in-doubt transaction. When a transaction has been interrupted, there may be a
doubt of whether the entire transaction was committed with the two-phase commit
protocol.

• If there are no in-doubt transactions, operation proceeds as usual.

• If there are in-doubt transactions, standard processing that includes this replica set
does not continue until all in-doubt transactions are resolved. If there are any in-
doubt transactions, TimesTen Scaleout checks the transaction log to determine
whether the transaction committed or was prepared to commit on any of the
participants. The transaction log records contain information about other participants

Chapter 13
Recovering from a Down Replica Set

13-19

in the transaction. See Table 13-4 for how TimesTen Scaleout resolves in-
doubt transactions.

If an element fails during this process and then comes back up after the
transaction commits or rolls back, the element recovers itself by requesting the
result of the other participating elements.

3. After the seed element is recovered, the other elements in the replica set are
recovered from the seed element using the duplicate and log-based catch up
methods. See Recovering a Replica Set After an Element Goes Down for details
on the duplicate and log-based catch up methods.

Table 13-4 How TimesTen Scaleout Resolves an In-Doubt Transaction

Failure Action

At least one participant received the commit
log record; all other participants at least
receive the prepare-to-commit log record.

The transaction commits on all participants

All participants in the transaction received
the prepare-to-commit log record.

The transaction commits on all participants.

At least one participant did not receive the
prepare-to-commit log record.

The transaction manager notifies all participants
to undo the prepare-to-commit, which is a
prelude to a roll back of the transaction.

• If the transaction was processed with
autocommit 1, then the transaction
manager rolls back the transaction.

• If the transaction was processed with
autocommit 0, then the transaction
manager throws an error informing the
application that it must roll back the
transaction.

However, if you cannot recover the elements in a down replica set, then you may need
to either remove and replace one of the elements or evict the entire replica set. See
Recovering When the Replica Set Has a Permanently Failed Element.

Recovering a Failed Replica Set When Durability=0
The following describes the process for recovery of a failed replica set when
Durability=0.

If you set Durability=0, you are acknowledging that there is a chance of data loss
when a replica set fails. However, TimesTen Scaleout attempts to avoid data loss if the
elements fail at separate times.

• If all but one element of the replica set fails, then TimesTen Scaleout attempts to
switch the last remaining element in the replica set (when k >= 2) into durable
mode. That is, in order to limit data loss (which would occur if the last remaining
element fails when Durability=0), TimesTen Scaleout changes the durability
behavior of the element as if it was configured with Durability=1.

If TimesTen Scaleout can switch the last remaining element in the replica set into
durable mode, then the participating element synchronously writes prepare-to-
commit log records to the file system for distributed transactions. Then, if this
element also fails so that the entire replica set is down, TimesTen Scaleout
recovers the replica set from the transaction log records. Thus, no transaction is

Chapter 13
Recovering from a Down Replica Set

13-20

lost in this scenario and TimesTen Scaleout automatically recovers the replica set as
when you have set Durability=1. See Durably Recovering a Failed Replica Set When
Durability=1 for details on recovering after the single element is recovered.

• If TimesTen Scaleout cannot switch the replica set into durable mode before the last
remaining element fails, then you may encounter data loss depending on whether the
replica set encounters a temporary or permanent failure.

– Temporary replica set failure when elements are non-durable: Since no elements in
the replica set synchronously wrote prepare-to-commit log records for distributed
transactions that the replica set was involved in before going down, then any
transactions that committed after the last successful epoch transaction are lost.

If all elements show the waiting for seed status, then there was no switch into
durable mode before the replica set went down. If this is the case, epoch recovery is
necessary and any transactions committed after latest successful epoch transaction
are lost. When the elements in this replica set recover, they may remain in the
waiting for seed status, since none of the elements are able to recover with the
transaction logs. Instead, you must perform epoch recovery by either recovering or
evicting the replica set, followed by unloading and reloading the database. See
Process When Replica Set Fails When in a Non-Durable State.

– Permanent replica set failure: If you cannot recover any of the elements in the replica
set, you may have to evict all elements. This results in a loss of the data on that
replica set. See Recovering When the Replica Set Has a Permanently Failed
Element.

Process When Replica Set Fails When in a Non-Durable State

When a replica set goes down and the state is non-durable, transactions may continue to
commit into the database until TimesTen Scaleout realizes that the replica set is down. Once
TimesTen Scaleout realizes that a replica set is down (after a failed epoch transaction
execution), then the database is switched to read-only to minimize the number of lost
transactions. During epoch recovery, the database is reloaded to the last successful epoch
transaction, effectively losing any transactions that committed after that last successful epoch
transaction. In this scenario, the value of the EpochInterval connection attribute not only
determines the amount of time between the epoch transactions, but also determines the
approximate amount of time during which you can lose committed transactions.

Note:

The database is set to read-only when the epoch transaction fails due to a down
replica set; TimesTen Scaleout does not set the database to read-only if the epoch
transaction fails for other reasons.

Figure 13-3 shows the actions across a time span of eight intervals.

Chapter 13
Recovering from a Down Replica Set

13-21

Figure 13-3 Durability=0 and a Replica Set Fails

OPERATION DURING TIME INTERVAL (TI)

Last common epoch before failure.

Replica set 1 goes down.

Epoch transaction fails. Database becomes read-only.

Database reloads to the last common epoch.

Epoch transaction is run.

TI

1

2

3

4

5

6

7

8

1. An epoch transaction commits successfully.

2. Transactions may continue after the successful epoch transaction. Any committed
transactions after the last successful epoch transaction are lost after epoch
recovery as neither element in the down replica set was able to durably flush the
transaction logs.

3. Replica set 1 goes down without either element switching to durable mode.

Note:

Sequences may be incremented while the replica set is down.

4. Transactions may continue after the replica set goes down if the database has not
yet been set to read-only. Any transactions that commit after the last successful
epoch transaction are lost after epoch recovery as neither element in the down
replica set was able to durably flush the transaction logs.

Note:

The behavior of transactions after a replica set goes down depends on
the type of statements within the transactions, as described in
Transaction Behavior with a Down Replica Set.

5. The next epoch transaction fails since not all replica sets are up. TimesTen
Scaleout informs all data instances that the database is now read-only. All
applications will fail when executing a DML, DDL, or commit statements within
open transactions. You must roll back each transaction.

Chapter 13
Recovering from a Down Replica Set

13-22

Note:

The ttGridAdmin dbStatus command shows the state of the database,
including if it is in read-only or read-write mode.

6. The replica set must be recovered or evicted.

• Recover the down replica set. If multiple replica sets are down, the database cannot
enter read-write mode until all replica sets are recovered or replaced.

• If you cannot recover any of the elements in the replica set, you may have to evict the
replica set, which results in a loss of the data on that replica set. See Recovering
When the Replica Set Has a Permanently Failed Element.

7. You perform an epoch recovery by unloading and reloading the database to the last
successful epoch transaction to recover the database consistently with only a partial data
loss. Any transactions that commit after the last successful epoch are lost when the
database is unloaded and reloaded to the last successful epoch transaction. See Load a
Database into Memory (dbLoad) in Oracle TimesTen In-Memory Database Reference for
information on the ttGridAdmin dbLoad command and Unload a Database (dbUnload) in
Oracle TimesTen In-Memory Database Reference for information on the ttGridAdmin
dbUnload command.

8. A new epoch transaction is successful. Database is set to read-write. Usual transaction
behavior resumes.

Note:

If you want to ensure that the data for a transaction is always recovered, you can
promote a transaction to be an epoch transaction. See Epoch Transactions.

Recovering When the Replica Set Has a Permanently Failed
Element

If an element in the replica set or a full replica set is unrecoverable because there has been a
permanent failure, then you need to remove the failed element or evict the failed replica set.

Permanent failure can occur when a host permanently fails or if all elements in the replica set
fail.

• If all elements within a replica set permanently fail, you must evict the entire replica set,
which results in the permanent loss of the data on the elements within that replica set.

When k = 1, then the permanent failure of one element is a replica set failure. When k >=
2, all elements in a replica set must fail in order for the replica set to be considered failed.
If k >= 2 and the replica set permanently fails, you need to evict all elements of the
replica set simultaneously.

Evicting the replica set removes it from the distribution for the grid. However, you cannot
evict the replica set if the failed replica set is the only replica set in the database. In this
case, save any checkpoint files, transaction log files or daemon log files (if possible) and
then destroy and recreate the database.

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-23

When a replica set goes down:

– If Durability=0, the database goes into read-only mode.

– If Durability=1, then all transactions that include the failed replica set are
blocked until you evict the failed replica set. However, all transactions that do
not involve the failed replica set continue to work as if nothing was wrong.

• If k >= 2 and only one element of a replica set fails, one of the active elements
takes over all of the requests for data until the failed element can be replaced with
a new element. Thus, no data is lost with the failure. The chosen active element in
the replica set processes the incoming transactions. You can simply remove and
replace the failed element with a new element that is duplicated from the active
element in the replica set. The chosen active element provides the base for a
duplicate for the new element. See Replace an Element with Another Element.

Note:

If you know about problems that TimesTen Scaleout is not aware of and that
a replica set needs to be evicted, you can evict and replace a replica set as
needed.

You can evict the replica set from the distribution map for your grid with the
ttGridAdmin dbDistribute -evict command. Make sure that all pending requests
for adding or removing elements are applied before requesting the eviction of a replica
set.

You have the following options when you evict a replica set:

• Evict the replica set without replacing it immediately.

If the data instances and hosts for this replica set have not failed, then you can
recreate the replica set using the same data instances. This is a preferred option if
there are other databases on the grid and the hosts are fine.

In this case, you must:

1. Evict the elements of the failed replica set, while the data instances and hosts
are still up.

When you evict the replica set, the data is lost within this replica set, but the
other replica sets in the database continue to function. There is now one fewer
replica set in your grid.

2. Eliminate all checkpoint and transaction logs for the elements within the
evicted replica set if you want to add new elements to the distribution map on
the same data instances which previously held the evicted elements.

3. Destroy the elements of the evicted replica set, while the data instances and
hosts are still up.

4. Optionally, you can replace the evicted replica set with a new replica set either
on the same data instances and hosts if they are still viable or on new data
instances and hosts. Add the new elements to the distribution map. This
restores the grid to its expected configuration.

• Evict the replica set and immediately replace it with a new replica set to restore the
grid to its expected configuration.

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-24

1. Create new data instances and hosts to replace the data instances and hosts of the
failed replica set.

2. Evict the elements of the failed replica set, while replacing it with a new replica set.
When you evict the replica set, the data is lost within this replica set, but the other
replica sets in the database continue to function.

Use the ttGridAdmin dbDistribute -evict -replaceWith command to evict and
replace the replica set with a new replica set, where each new element is created on
a new data instance and host. The elements of the new replica set are added to the
distribution map. However, the remaining data from the other replica sets are not
redistributed to include the new replica. Thus, the new replica set remains empty until
you insert data.

3. Destroy the elements of the evicted replica set.

The following sections demonstrate how to evict a failed replica set when you have one or
two elements in the replica set:

• Evicting the Element in the Permanently Failed Replica Set When K = 1

• Evicting All Elements in a Permanently Failed Replica Set When K >= 2

• Maintaining Database Consistency After an Eviction

Evicting the Element in the Permanently Failed Replica Set When K = 1
The example shown in Figure 13-4 shows a TimesTen database that has been configured
with k set to 1 with three data instances: host1.instance1, host2.instance1 and
host3.instance1. The element on the host2.instance1 data instance fails because of a
permanent hardware failure.

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-25

Figure 13-4 Grid Database Where K = 1

data space group 1

replica set 1

replica set 2

host2.instance1

replica set 3

host1.instance1

host3.instance1

The following sections demonstrate the eviction options:

• Evict the Element to Potentially Replace at Another Time

• Evict and Replace the Data Instance Without Re-Distribution

Evict the Element to Potentially Replace at Another Time
If you cannot recover a failed element, you evict the replica set.

The following example:

1. Evicts the replica set for the element on the host2.instance1 data instance with
the ttGridAdmin dbDistribute -evict command.

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-26

2. Destroys the checkpoint and transaction logs for only this element within the evicted
replica set with the ttGridAdmin dbDestroy -instance command.

Note:

Alternatively, see the instructions in Remove and Replace a Failed Element in a
Replica Set if the data instance or host on which the element exists is not
reliable.

% ttGridAdmin dbDistribute database1 -evict host2.instance1 -apply
Element host2.instance1 evicted
Distribution map updated

% ttGridAdmin dbDestroy database1 -instance host2.instance1
Database database1 instance host2 destroy started

% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 16:44:15 PST 2018

created,loaded-complete,open
Completely created elements: 2 (of 3)
Completely loaded elements: 2 (of 3)

Open elements: 2 (of 3)

Database database1 element level status as of Thu Feb 22 16:44:15 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- --------- ------------------- -------
host1 instance1 1 opened 2018-02-22 16:42:14
host2 instance1 2 destroyed 2018-02-22 16:44:01
host3 instance1 3 opened 2018-02-22 16:42:14

Database database1 Replica Set status as of Thu Feb 22 16:44:15 PST 2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 1 3 host3 instance1 opened 2018-02-22 16:42:14

Database database1 Data Space Group status as of Thu Feb 22 16:44:15 PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 3 host3 instance1 opened 2018-02-22 16:42:14

This example creates a new element for the replica set as the data instance and host are still
viable. Then, adds the new elements to the distribution map.

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-27

1. Creates a new element with the ttGridAdmin dbCreate -instance command on
the same data instance where the previous element existed before its replica set
was evicted.

2. Adds the new element into the distribution map with the ttGridAdmin
dbDistribute -add command.

% ttGridAdmin dbCreate database1 -instance host2
Database database1 creation started
% ttGridAdmin dbDistribute database1 -add host2 -apply
Element host2 is added
Distribution map updated
% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 16:53:17 PST 2018

created,loaded-complete,open
Completely created elements: 3 (of 3)
Completely loaded elements: 3 (of 3)

Open elements: 3 (of 3)

Database database1 element level status as of Thu Feb 22 16:53:17 PST
2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host1 instance1 1 opened 2018-02-22 16:42:14
host3 instance1 3 opened 2018-02-22 16:42:14
host2 instance1 4 opened 2018-02-22 16:53:14

Database database1 Replica Set status as of Thu Feb 22 16:53:17 PST
2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 1 3 host3 instance1 opened 2018-02-22 16:42:14
 3 1 4 host2 instance1 opened 2018-02-22 16:53:14

Database database1 Data Space Group status as of Thu Feb 22 16:53:17
PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 3 host3 instance1 opened 2018-02-22 16:42:14
 3 4 host2 instance1 opened 2018-02-22 16:53:14

Evict and Replace the Data Instance Without Re-Distribution
To recover the initial capacity with the same number of replica sets as you started with
for the database, evict and replace the evicted element using the ttGridAdmin
dbDistribute -evict -replaceWith command.

The following example:

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-28

1. Creates a new host (identified as host4), installation, data instance and element.

2. Evicts the replica set that contains the failed element on the host2.instance1 data
instance and replaces the evicted element with the element on the host4.instance1 data
instance using the ttGridAdmin dbDistribute -evict -replaceWith command.

The data that exists on the elements on the host1.instance1 and host3.instance1 data
instances is not redistributed to the new element on the host4.instance1 data instance.
The element on the host4.instance1 data instance is empty.

3. Destroys the element on the host2.instance1 data instance with the ttGridAdmin
dbDestroy -instance command.

% ttGridAdmin hostCreate host4 -address myhost.example.com -dataspacegroup 1
Host host4 created in Model
% ttGridAdmin installationCreate -host host4 -location /timesten/host4/
installation1
Installation installation1 on Host host4 created in Model
% ttGridAdmin instanceCreate -host host4 -location /timesten/host4
Instance instance1 on Host host4 created in Model
% ttGridAdmin modelApply
Copying Model...OK
Exporting Model Version 2...OK
Marking objects 'Pending Deletion'....................................OK
Deleting any Hosts that are no longer in use..........................OK
Verifying Installations...OK
Creating any missing Installations....................................OK
Creating any missing Instances..OK
Adding new Objects to Grid State......................................OK
Configuring grid authentication.......................................OK
Pushing new configuration files to each Instance......................OK
Making Model Version 2 current..OK
Making Model Version 3 writable.......................................OK
Checking ssh connectivity of new Instances............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete
% ttGridAdmin dbDistribute database1 -evict host2.instance1
 -replaceWith host4.instance1 -apply
Element host2.instance1 evicted
Distribution map updated
% ttGridAdmin dbDestroy database1 -instance host2
Database database1 instance host2 destroy started
% ttGridAdmin dbStatus database1 -all
Database database1 summary status as of Thu Feb 22 17:04:21 PST 2018

created,loaded-complete,open
Completely created elements: 3 (of 4)
Completely loaded elements: 3 (of 4)

Open elements: 3 (of 4)

Database database1 element level status as of Thu Feb 22 17:04:21 PST 2018

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- --------- ------------------- -------
host1 instance1 1 opened 2018-02-22 16:42:14

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-29

host3 instance1 3 opened 2018-02-22 16:42:14
host2 instance1 4 destroyed 2018-02-22 17:04:11
host4 instance1 5 opened 2018-02-22 17:03:18

Database database1 Replica Set status as of Thu Feb 22 17:04:21 PST
2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 1 3 host3 instance1 opened 2018-02-22 16:42:14
 3 1 5 host4 instance1 opened 2018-02-22 17:03:18

Database database1 Data Space Group status as of Thu Feb 22 17:04:21
PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ----- --------- ------ ------------------- -------
 1 1 1 host1 instance1 opened 2018-02-22 16:42:14
 2 3 host3 instance1 opened 2018-02-22 16:42:14
 3 5 host4 instance1 opened 2018-02-22 17:03:18

Evicting All Elements in a Permanently Failed Replica Set When K >=
2

If k >= 2 and the replica set permanently fails, then you need to evict all elements of
the replica set simultaneously.

Figure 13-5 shows where replica set 1 fails.

Figure 13-5 Failed Replica Set

data space group 1 data space group 2

host4.instance1

data space group 3

replica set 1

replica set 2

host8.instance1host6.instance1

host3.instance1 host5.instance1

host7.instance1

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-30

For the example shown in Figure 13-5, replica set 1 contains elements that exist on the
host3.instance1, host4.instance1 and host5.instance1 data instances. The replica set
fails in an unrepairable way. When you run the ttGridAdmin dbDistribute command to evict
the replica set, specify the data instances of all elements in the replica set that are being
evicted.

% ttGridAdmin dbDistribute database1 -evict host3.instance1
 -evict host4.instance1 -evict host5.instance1 -apply
Element host3.instance1 evicted
Element host4.instance1 evicted
Element host5.instance1 evicted
Distribution map updated

Replacing the Replica Set with New Elements with No Data Redistribution
If you cannot recover any of the elements in the replica set, then you must evict all elements
in the replica set simultaneously. To recover the initial capacity with the same number of
replica sets as you started with for the database, evict and replace the evicted elements in
the failed replica set using the ttGridAdmin dbDistribute -evict -replaceWith command.

The following example:

1. Creates new elements in the host9.instance1 and host10.instance1 data instances.

2. Evicts the replica set with the failed elements on the host3.instance1 and
host4.instance1 data instances, replacing them with new elements in the
host9.instance1 and host10.instance1 data instances.

The data that exists on the elements in the active replica sets is not redistributed to
include the new elements on the host9.instance1 and host10.instance1 data
instances. The elements on the host9.instance1 and host10.instance1 data instances
are empty.

3. Destroys the elements on the host3.instance1 and host4.instance1 data instances
with the ttGridAdmin dbDestroy -instance command.

The new replica set is now listed as replica set 1 with the elements from the replaced
elements located in the host9.instance1 and host10.instance1 data instances.

% ttGridAdmin hostCreate host9 -internalAddress int-host9 -externalAddress
 ext-host9.example.com -like host3 -cascade
Host host9 created in Model
Installation installation1 created in Model
Instance instance1 created in Model
% ttGridAdmin hostCreate host10 -internalAddress int-host10 -externalAddress
 ext-host10.example.com -like host4 -cascade
Host host10 created in Model
Installation installation1 created in Model
Instance instance1 created in Model
% ttGridAdmin dbDistribute database1 -evict host3.instance1
 -replaceWith host9.instance1 -evict host4.instance1
 -replaceWith host10.instance1 -apply
Element host3.instance1 evicted
Element host4.instance1 evicted
Distribution map updated
% ttGridAdmin dbStatus database1 -all

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-31

Database database1 summary status as of Fri Feb 23 10:22:57 PST 2018

created,loaded-complete,open
Completely created elements: 8 (of 8)
Completely loaded elements: 6 (of 8)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 6 (of 8)

Database database1 element level status as of Fri Feb 23 10:22:57 PST
2018

Host Instance Elem Status Date/Time of Event Message
------ --------- ---- ------- ------------------- -------
 host3 instance1 1 evicted 2018-02-23 10:22:28
 host4 instance1 2 evicted 2018-02-23 10:22:28
 host5 instance1 3 opened 2018-02-23 07:28:23
 host6 instance1 4 opened 2018-02-23 07:28:23
 host7 instance1 5 opened 2018-02-23 07:28:23
 host8 instance1 6 opened 2018-02-23 07:28:23
host10 instance1 7 opened 2018-02-23 10:22:27
 host9 instance1 8 opened 2018-02-23 10:22:27

Database database1 Replica Set status as of Fri Feb 23 10:22:57 PST
2018

RS DS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ------ --------- ------ ------------------- -------
 1 1 8 host9 instance1 opened 2018-02-23 10:22:27
 2 7 host10 instance1 opened 2018-02-23 10:22:27
 2 1 3 host5 instance1 opened 2018-02-23 07:28:23
 2 4 host6 instance1 opened 2018-02-23 07:28:23
 3 1 5 host7 instance1 opened 2018-02-23 07:28:23
 2 6 host8 instance1 opened 2018-02-23 07:28:23

Database database1 Data Space Group status as of Fri Feb 23 10:22:57
PST 2018

DS RS Elem Host Instance Status Date/Time of Event Message
-- -- ---- ------ --------- ------ ------------------- -------
 1 1 8 host9 instance1 opened 2018-02-23 10:22:27
 2 3 host5 instance1 opened 2018-02-23 07:28:23
 3 5 host7 instance1 opened 2018-02-23 07:28:23
 2 1 7 host10 instance1 opened 2018-02-23 10:22:27
 2 4 host6 instance1 opened 2018-02-23 07:28:23
 3 6 host8 instance1 opened 2018-02-23 07:28:23

% ttGridAdmin dbDestroy database1 -instance host3
Database database1 instance host3 destroy started
% ttGridAdmin dbDestroy database1 -instance host4
Database database1 instance host4 destroy started

Chapter 13
Recovering When the Replica Set Has a Permanently Failed Element

13-32

Maintaining Database Consistency After an Eviction
Eviction of an entire replica set results in data loss, which can leave the database in an
inconsistent state. For example, if the parent records were stored in an evicted replica set,
then any child rows on other elements in a different replica set are in a table without a
corresponding foreign key parent.

To ensure that you maintain database consistency after an eviction, fix all foreign key
references by performing one of the following steps:

• Delete any child row that does not have a corresponding parent.

• Drop the foreign key constraint for any child row that does not have a corresponding
parent.

Recovering When a Data Instance Is Down
If the error is a hardware error involving the host, then fix the problem with the host and
reload the data instance with the ttGridAdmin dbLoad command. During reload, TimesTen
Scaleout attempts to recover the element within that data instance.

If a data instance is down, you should restart it. If a data instance is not running, then all of
the elements that the data instance manages are down.

You can check if data instances are down by using the ttGridAdmin dbStatus -all or the
ttGridAdmin dbStatus -element commands. These show if a data instance (and thus its
element) is considered down.

% ttGridAdmin dbStatus database1 -element

Database database1 element level status as of Wed Mar 8 14:07:11 PST 2017

Host Instance Elem Status Date/Time of Event Message
----- --------- ---- ------ ------------------- -------
host3 instance1 1 opened 2017-03-08 13:58:06
host4 instance1 2 down
host5 instance1 3 opened 2017-03-08 13:58:06
host6 instance1 4 opened 2017-03-08 13:58:09
host7 instance1 5 opened 2017-03-08 13:58:09
host8 instance1 6 opened 2017-03-08 13:58:09

When a data instance is down (due to a hardware or software failure), all communication
channels to its managed elements are shut down and no new connections are allowed to
access these elements until the data instance is restored and the element that it manages is
recovered.

If the data instance is down, you restart it by restarting its TimesTen daemon. Once restarted,
the data instance connects to a ZooKeeper server. If it does not immediately connect, it
continues to try to connect to a ZooKeeper server. After connection, the data instance loads
its element.

Chapter 13
Recovering When a Data Instance Is Down

13-33

Note:

If the data instance fails to connect to any ZooKeeper server, it may be in an
unending loop as it continues to try to connect.

You can manually restart the daemon for that data instance by using the instanceExec
command to run either the ttDaemonAdmin -start or ttDaemonAdmin -restart
commands. Use the instanceExec command options of -only
hostname[.instancename] to restart a single data instance.

% ttGridAdmin instanceExec -only host4.instance1 ttDaemonAdmin -start
Overall return code: 0
Commands executed on:
 host4.instance1 rc 0
Return code from host4.instance1: 0
Output from host4.instance1:
TimesTen Daemon (PID: 15491, port: 14000) startup OK.

If the data instance does not start using either the ttDaemonAdmin -start or
ttDaemonAdmin -restart commands, then you can force a restart of all data
instances. The following restarts all data instances and recovers all data up to the last
common epoch.

ttGridAdmin instanceexec -type data ttDaemonAdmin -restart -force

See Run a Command or Script on Grid Instances (instanceExec) in Oracle TimesTen
In-Memory Database Reference or ttDaemonAdmin in Oracle TimesTen In-Memory
Database Reference.

If you know what caused the error that caused the data instance to fail, then reload the
database with the ttGridAdmin dbLoad command after you fix the problem.

% ttGridAdmin dbLoad database1

Open the database to continue working.

% ttGridAdmin dbOpen database1

You can verify the results with the ttGridAdmin dbStatus command.

Database Recovery
You reload the database to initiate database recovery when either all of the data
instances are down or all elements in a replica set show the waiting for seed state.

To reload the database:

Chapter 13
Database Recovery

13-34

1. Run the ttGridAdmin dbStatus -loadReadiness command to see the status of all
elements within their respective replica sets.

% ttGridAdmin dbStatus database1 -loadReadiness
Data Elements:
RS DS Instance State
-- -- -------------------- --------
 1 1 mysys3host.griddata1 Unloaded
 1 2 mysys4host.griddata2 Unloaded
 1 Loadable
 2 1 mysys5host.griddata3 Unloaded
 2 2 mysys6host.griddata4 Unloaded
 2 Loadable

database1 load state: Loadable
Total Elements Loaded:0/4

2. Resolve any issues with the elements of the database, as denoted by each element
status, as described in Table 13-2.

3. Run the ttGridAdmin dbload command to reload your database, as described in
Reloading a Database into Memory.

% ttGridAdmin dbLoad database1
Database database1 load started

4. Run the ttGridAdmin dbOpen to open the database for user connections.

% ttGridAdmin dbOpen database1
Database database1 open started

Note:

If an element of a replica set shows the waiting for seed status, but the seed
element does not recover, then evaluate the host and data instance for that element
to see if you need to intervene on either a hardware or software error.

If the seed element still does not recover after reloading the database, then evict
the down replica set. See Recovering When the Replica Set Has a Permanently
Failed Element. If Durability=0, then evict the replica set and then unload and
reload the database to perform epoch recovery. See Recovering a Failed Replica
Set When Durability=0.

Client Connection Failover
When constructing a highly available system, you want to ensure that client connections are
automatically rerouted when there is a problem.

• Client application connections are automatically routed to an active data instance for that
database.

Chapter 13
Client Connection Failover

13-35

• If an existing client connection to a data instance fails, the client is automatically
reconnected to another active data instance in the database.

• If the data instance to which a client is connected fails, then that client is
automatically reconnected to another active data instance in the database.

Note:

See Connecting to a Database.

By default, if a connection fails, then the client automatically attempts to reconnect to
another data instance (if possible). Consider the following details on how to prepare for
and respond to a connection failure:

• The TTC_REDIRECT client connection attribute defines how a client is redirected. By
default, TTC_REDIRECT is set to 1 for automatic redirection. If set to 0 and the initial
connection attempt to the desired data instance fails, then an error is returned and
there are no further connection attempts. See TTC_REDIRECT in Oracle
TimesTen In-Memory Database Reference.

• The TTC_NoReconnectOnFailover client connection attribute defines whether
TimesTen should reconnect after a failover. The default is 0, which indicates that
TimesTen should attempt to reconnect. Setting this to 1 specifies that TimesTen
performs standard client failover, but without reconnecting. This is useful where an
application does its own connection pooling or attempts to reconnect to the
database on its own after failover. See TTC_NoReconnectOnFailover in Oracle
TimesTen In-Memory Database Reference.

• Most connection failures tend to be software failures. Reconnecting to another
data instance takes some time during which the connection is not available until
the client failover process is completed. Any attempt to use the connection during
the client failover processing time generates a native error. See JDBC Support for
Automatic Client Failover in Oracle TimesTen In-Memory Database Java
Developer's Guide or Using Automatic Client Failover in Your Application in Oracle
TimesTen In-Memory Database C Developer's Guide.

• If you receive a native error in response to an operation within your application,
your application should place all recovery actions within a loop with a short delay
before each subsequent attempt, where the total number of attempts is limited. If
you do not limit the number of attempts, then the application may stop responding
if the client failover process does not complete successfully. See Application
Action in the Event of Failover in Oracle TimesTen In-Memory Database Java
Developer's Guide or Application Action in the Event of Failover in Oracle
TimesTen In-Memory Database C Developer's Guide for an example on how to
write a retry block within your application for automatic client failover.

Configuring TCP Keep-Alive Parameters
One of the ways that a client connection can fail is with a network failure, such as
disconnecting a cable or a host that is hanging or crashing. When the client connection
is lost, then client connection failover is initiated. However, when a TCP connection is
started, you can configure the TCP keep-alive parameters for the connection to ensure
reliable and rapid detection of connection failures.

Chapter 13
Client Connection Failover

13-36

Note:

You can also detect that there is a problem with the connection by setting the
TTC_Timeout attribute, which sets a maximum time limit for a network operation that
is completed by using the TimesTen client and server. The TTC_Timeout attribute
also determines the maximum number of seconds a TimesTen client application
waits for the result from the corresponding TimesTen server process before timing
out.

TimesTen Scaleout recommends configuring the TCP keep-alive parameters for
determining a failed TCP connection in addition to the TTC_TIMEOUT attribute, as
some database operations may unexpectedly take longer than the value set for the
TTC_TIMEOUT attribute.

Refer to TTC_Timeout in Oracle TimesTen In-Memory Database Reference for
more information about that attribute.

You can control the per connection keep-alive settings with the following parameters:

• TTC_TCP_KEEPALIVE_TIME_MS: The duration time (in milliseconds) between the last data
packet sent and the first probe. The default is 10000 milliseconds.

Note:

The Linux client platform converts this value to seconds by truncating the last
three digits off of the value of TTC_TCP_KEEPALIVE_TIME_MS. Thus, a setting of
2500 milliseconds becomes 2 seconds, instead of 2.5 seconds.

• TTC_TCP_KEEPALIVE_INTVL_MS: The time interval (in milliseconds) between subsequent
probes. The default is 10000 milliseconds.

• TTC_TCP_KEEPALIVE_PROBES: The number of unacknowledged probes to send before
considering the connection as failed and notifying the client. The default is set to 2
unacknowledged probes.

If you keep the default settings, then TimesTen Scaleout sends the first probe after 10
seconds (the TTC_TCP_KEEPALIVE_TIME_MS setting).

• If there is a response, then the connection is active and the TTC_TCP_KEEPALIVE_TIME_MS
timer is reset.

• If there is no response, then TimesTen Scaleout sends another probe after this initial
probe at 10 second intervals (the TTC_TCP_KEEPALIVE_INTVL_MS setting). If no response
is received after 2 successive probes, then this connection is terminated and TimesTen
Scaleout redirects the connection to another data instance.

For example, you could modify the TCP keep alive settings in the client/server connectable to
have a shorter wait time for the initial probe of 50000 milliseconds, and to check for a
connection every 20000 milliseconds for a maximum number of 3 times as follows:

TTC_TCP_KEEPALIVE_TIME_MS=50000
TTC_TCP_KEEPALIVE_INTVL_MS=20000
TTC_TCP_KEEPALIVE_PROBES=3

Chapter 13
Client Connection Failover

13-37

See TTC_TCP_KEEPALIVE_TIME_MS, TTC_TCP_KEEPALIVE_INTVL_MS, and
TTC_TCP_KEEPALIVE_PROBES in Oracle TimesTen In-Memory Database
Reference for more information on these connection attributes.

Managing Failover for the Management Instances
You conduct all management activity from a single management instance, called the
active management instance. However, it is highly recommended that you configure
two management instances, where the standby management instance is available in
case the active management instance goes down or fails.

• If you only have a single management instance and it goes down, the databases
remain operational. However, most management operations are unavailable until
the management instance is restored.

• If you configure both the active and standby management instances in your grid
and only the active management instance is active, then you can configure and
manage the entire grid from this one management instance.

If both management instances are down, then:

• You can still access all databases in the grid. However, since all management
actions are requested through the active management instance, you cannot
manage your grid until the active management instance is restored.

• If data instances or their elements in the grid go down or fail, they cannot recover,
restart or rejoin the grid until the active management instance is restored.

Note:

You cannot add a third management instance.

As shown in Figure 13-6, all management information used by the active management
instance is automatically replicated to the standby management instance. Thus, if the
active management instance goes down or fails, you can promote the standby
management instance to become the new active management instance through which
you continue to manage the grid.

Chapter 13
Managing Failover for the Management Instances

13-38

Figure 13-6 Active Standby Configuration for Management Instances

active
management instance

standby
management instance

instance
administrator

internal
network

The following sections describes how you can manage the management instances:

• Status for Management Instances

• Starting, Stopping and Switching Management Instances

• Single Management Instance Failure

• Active Management Instance Failure

• Standby Management Instance Failure

• Both Management Instances Fail

Status for Management Instances
You use the ttGridAdmin mgmtExamine command for both the status for the management
instances and to see if there are any issues that need to be resolved. This command
recommends any corrective actions you can run to fix any open issues, if necessary.

The following example shows both management instances working:

% ttGridAdmin mgmtExamine
Both active and standby management instances are up. No action required.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive
--
host1 instance1 Yes Active Active 598 Up Yes
host2 instance1 Yes Standby Standby 598 Up No

If one of the management instances goes down or fails, the output shows that the
management instance role is Unknown and a message states that its replication agent is
down. The output provides recommended commands to restart the management instance.

% ttGridAdmin mgmtExamine
Active management instance is up, but standby is down

Chapter 13
Managing Failover for the Management Instances

13-39

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive Message
----- --------- --------- ------------- ---------- --- -------- --------- --------
host1 instance1 Yes Active Active 600 Up No
host2 instance1 No Unknown Unknown Down No Management
 database is not available

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x host2.example.com
 /timesten/host2/instance1/bin/ttenv ttGridAdmin mgmtStandbyStart

For each management instance displayed:

• Host and Instance show the name of the management instance and the name of
the host where it is located.

• Reachable indicates whether the command was successful in reaching the
management instance to determine its state.

• RepRole(Self) indicates the recorded role, if any, known by the replication agents
for replicating data between management instances. While Role(Self) indicates
the recorded role known within the database for the management instances. Both
of these should show the same role. If the roles are different, the ttGridAdmin
mgmtExamine command will try to determine the commands that would rectify the
error.

• Seq is the sequence number of the most recent change on the management
instance. If the Seq values are the same, then the two management instances are
synchronized; otherwise, the one with the larger Seq value has the more recent
data.

• RepAgent indicates whether a replication agent is running on each management
instance.

• RepActive indicates whether changes by the ttGridAdmin mgmtStatus command,
which is invoked internally by the ttGridAdmin mgmtExamine command, to
management data on the management instance were successful.

• Message provides any further information about the management instance.

See Examine Management Instances (mgmtExamine) in Oracle TimesTen In-Memory
Database Reference.

Starting, Stopping and Switching Management Instances
You run most ttGridAdmin commands on the active management instance. However,
when you manage recovery for an active management instance, you may be required
to run ttGridAdmin commands on the standby management instance.

When starting, stopping, or promoting a standby management instance:

• You can run the ttGridAdmin mgmtStandbyStop command on either management
instance. The grid knows where the standby management instance is and stops it.

• You must run the ttGridAdmin mgmtStandbyStart command on the management
instance that you wish to become the standby management instance. The
ttGridAdmin mgmtStandbyStart command assumes that you want the current
instance to become the standby management instance.

Chapter 13
Managing Failover for the Management Instances

13-40

• If the active management instance is down, you must run the ttGridAdmin
mgmtActiveSwitch command on the standby management instance to promote it to be
the active management instance.

For those commands that require you to run commands on the standby management
instance, remember to set the environment with the ttenv script (as described in Creating the
Initial Management Instance) after you log onto the host and before you run the ttGridAdmin
utility.

Single Management Instance Failure
While it is not recommended, you can manage the grid with a single active management
instance with no standby management instance. If the single active management instance
fails and recovers, re-activate the active management instance as follows:

1. Verify that there is only one management instance acting as the active management
instance and that it has failed with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
The only defined management instance is down. Start it.
Recommendation: define a second management instance

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive

host1 instance1 No Unknown Unknown Down No

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin -start

2. After determining the reason for the failure and resolving that issue, run the ttGridAdmin
mgmtActiveStart command to re-activate the active management instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

3. Re-run the ttGridAdmin mgmtExamine command to verify that the active management
instance is up. Follow any commands it displays if the management instance is not up.

Active Management Instance Failure
If the active management instance fails, then you can no longer run ttGridAdmin commands
on it.

• Promote the standby management instance on the host2 host to be the new active
management instance.

• Create a new standby management instance by either:

– Recovering the failed management instance on host1 up as the new standby
management instance. This causes the new active management instance to replicate
all management information to the new standby management instance.

– Deleting the failed active management instance if the failed management instance
has permanently failed, then creating a new standby management instance.

Chapter 13
Managing Failover for the Management Instances

13-41

Figure 13-7 Switch from a Failed Active

active management
instance

standby management
instance (new active)

instance administrator
(ttGridAdmin utility)

internal
network

host1 host2

For example, your environment has two management instances where the active
management instance is on host1 and the standby management instance is on host2.
Then, if the active management instance on host1 fails, then you can no longer run
ttGridAdmin commands on it. As shown in Figure 13-7, you must promote the standby
management instance on host2 to become the new active management instance.

1. Log in to the host2 host on which the standby management instance exists and
set the environment with the ttenv script (as described in Creating the Initial
Management Instance) on the host with the standby management instance.

2. Run the ttGridAdmin mgmtActiveSwitch command on the standby management
instance. TimesTen promotes the standby management instance into the new
active management instance. You can now continue to manage your grid with the
new active management instance.

% ttGridAdmin mgmtActiveSwitch
This is now the active management instance

3. Verify that the old standby management instance is now the new active
management instance with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
Active management instance is up, but standby is down

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent
RepActive
--

host2 instance1 Yes Active Active 622 Up Yes
host1 instance1 No Unknown Unknown Down No
Management database is not available

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x

Chapter 13
Managing Failover for the Management Instances

13-42

host1.example.com /timesten/host1/instance1/bin/ttenv ttGridAdmin
mgmtStandbyStart

Once the new active management instance is processing requests, ensure that a new
standby management instance is created by one of the following methods:

• Failed Management Instance Can Be Recovered

• Failed Management Instance Encounters a Permanent Failure

Failed Management Instance Can Be Recovered
If the failed active management instance can be recovered, you need to perform the following
tasks:

Figure 13-8 The Failed Management Instance Can Be Recovered

standby management
instance (recovered)

active management
instance

instance administrator
(ttGridAdmin utility)

internal
network

host1 host2

after instance recovery

active management
instance

standby management
instance

instance administrator
(ttGridAdmin utility)

internal
network

host1 host2

Chapter 13
Managing Failover for the Management Instances

13-43

1. If you can recover the failed management instance, as shown in Figure 13-8, then
bring back up the failed host on which the old active management instance
existed. Then, run the ttGridAdmin mgmtStandbyStart command on this host,
which re-initiates the management instance as the new standby management
instance. It also re-creates the active standby configuration between the new
active and standby management instances and replicates all management
information on the active management instance to the standby management
instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

2. Verify that the active and standby management instances are as expected in their
new roles with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
Both active and standby management instances are up. No action
required.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent
RepActive
--

host2 instance1 Yes Active Active 603 Up Yes
host1 instance1 Yes Standby Standby 603 Up No

Failed Management Instance Encounters a Permanent Failure
If the failed active management instance has failed permanently, you need to perform
the following tasks:

Chapter 13
Managing Failover for the Management Instances

13-44

Figure 13-9 The Active Management Instance Fails Permanently

active management
instance

standby management
instance

instance administrator
(ttGridAdmin utility)

internal
network

management instance
(unrecoverable)

active management
instance

instance administrator
(ttGridAdmin utility)

internal
network

host1 host2

host1 host2

after failed instance recovery

standby management
instance (new)

host9

1. Remove the permanently failed active management instance from the model with the
ttGridAdmin instanceDelete command.

% ttGridAdmin instanceDelete host1.instance1
Instance instance1 on Host host1 deleted from Model

Note:

If there are no other instances on the host where the failed active management
instance existed, you may want to delete the host and the installation.

2. Add a new standby management instance with its supporting host and installation to the
model.

% ttGridAdmin hostCreate host9 -address host9.example.com
Host host9 created in Model
% ttGridAdmin installationCreate -host host9 -location
 /timesten/host9/installation1
Installation installation1 on Host host9 created in Model
% ttGridAdmin instanceCreate -host host9 -location /timesten/host9

Chapter 13
Managing Failover for the Management Instances

13-45

 -type management
Instance instance1 on Host host9 created in Model

3. Apply the configuration changes to remove the failed active management instance
and add in a new standby management instance to the grid by executing the
ttGridAdmin modelApply command.

% ttGridAdmin modelApply
Copying
Model...OK
Exporting Model Version
2...OK
Unconfiguring standby management
instance.............................OK
Marking objects 'Pending
Deletion'....................................OK
Stop any Instances that are 'Pending
Deletion'........................OK
Deleting any Instances that are 'Pending
Deletion'....................OK
Deleting any Hosts that are no longer in
use..........................OK
Verifying
Installations...OK
Creating any missing
Installations....................................OK
Creating any missing
Instances..OK
Adding new Objects to Grid
State......................................OK
Configuring grid
authentication.......................................OK
Pushing new configuration files to each
Instance......................OK
Making Model Version 2
current..OK
Making Model Version 3
writable.......................................OK
Checking ssh connectivity of new
Instances............................OK
Starting new management
instance......................................OK
Configuring standby management
instance...............................OK
Starting new data
instances...OK
ttGridAdmin modelApply complete

The ttGridAdmin modelApply command initiates the active standby configuration
between the active and standby management instances and replicates the
management information on the active management instance to the standby
management instance.

Chapter 13
Managing Failover for the Management Instances

13-46

4. Verify that the active and standby management instances are as expected in their new
roles with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
Both active and standby management instances are up. No action required.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive

host2 instance1 Yes Active Active 603 Up Yes
host9 instance1 Yes Standby Standby 603 Up No

Standby Management Instance Failure
How you re-activate the standby management instance depends on the type of failure as
described in the following sections:

• Standby Management Instance Recovers

• Standby Management Instance Experiences Permanent Failure

Standby Management Instance Recovers
If the standby management instance recovers, then:

1. Check the status with the ttGridAdmin mgmtExamine command:

% ttGridAdmin mgmtExamine
Active management instance is up, but standby is down

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive
Message
--

host1 instance1 Yes Active Active 605 Up No
host2 instance1 No Unknown Unknown Down No
Management database is not available

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttGridAdmin
mgmtStandbyStart

2. Log into the host with the standby management instance. If you have not done so
already, set the environment with the ttenv script (as described in Creating the Initial
Management Instance).

3. Once you bring the failed management instance back up, then run the ttGridAdmin
mgmtStandbyStart command on the host with the standby management instance.

% ttGridAdmin mgmtStandbyStart
Standby management instance started

This command re-integrates the standby management instance in your grid, initiates the
active standby configuration between the active and standby management instances and

Chapter 13
Managing Failover for the Management Instances

13-47

replicates all management information on the active management instance to the
standby management instance.

Standby Management Instance Experiences Permanent Failure
If the standby management instance has permanently failed, perform the following
commands:

• Delete the failed standby management instance on the host2 host.

• Create a new standby management instance on the host9 host to take over the
duties of the failed standby management instance. Then, the active management
instance replicates the management information to the new standby management
instance.

Figure 13-10 The Standby Management Instance Fails Permanently

active management
instance

standby management
instance

instance administrator
(ttGridAdmin utility)

internal
network

active management
instance

management instance
(unrecoverable)

instance administrator
(ttGridAdmin utility)

internal
network

host1 host2

host1 host2

after failed instance recovery

standby management
instance (new)

host9

1. Remove the permanently failed standby management instance from the model
with the ttGridAdmin instanceDelete command.

% ttGridAdmin instanceDelete host2.instance1
Instance instance1 on Host host2 deleted from Model

Chapter 13
Managing Failover for the Management Instances

13-48

Note:

If there are no other instances on the host where the failed management
instance existed, you may want to delete the host and the installation.

2. Add a new standby management instance with its supporting host and installation to the
model.

% ttGridAdmin hostCreate host9 -address host9.example.com
Host host9 created in Model
% ttGridAdmin installationCreate -host host9 -location /timesten/host9/
installation1
Installation installation1 on Host host9 created in Model
% ttGridAdmin instanceCreate -host host9 -location /timesten/host9
-type management
Instance instance1 on Host host9 created in Model

3. Apply the configuration changes to remove the failed standby management instance and
add in a new standby management instance to the grid by executing the ttGridAdmin
modelApply command, as shown in Applying the Changes Made to the Model.

% ttGridAdmin modelApply
Copying Model...OK
Exporting Model Version 9...OK
Unconfiguring standby management instance.............................OK
Marking objects 'Pending Deletion'....................................OK
Stop any Instances that are 'Pending Deletion'........................OK
Deleting any Instances that are 'Pending Deletion'....................OK
Deleting any Hosts that are no longer in use..........................OK
Verifying Installations...OK
Creating any missing Instances..OK
Adding new Objects to Grid State......................................OK
Configuring grid authentication.......................................OK
Pushing new configuration files to each Instance......................OK
Making Model Version 9 current..OK
Making Model Version 10 writable......................................OK
Checking ssh connectivity of new Instances............................OK
Starting new management instance......................................OK
Configuring standby management instance...............................OK
Starting new data instances...OK
ttGridAdmin modelApply complete

The ttGridAdmin modelApply command initiates the active standby configuration
between the active and standby management instances and replicates the management
information on the active management instance to the standby management instance.

Both Management Instances Fail
You must restart the management instances to return the grid to its full functionality and to be
able to manage the grid through the active management instance.

Chapter 13
Managing Failover for the Management Instances

13-49

If both of the management instances are down, you need to discover which
management instance has the latest changes on it to decide which management
instance is to become the new active management instance.

Note:

If both management instances fail permanently, call Oracle Support.

The following describes the methods to perform when both management instances are
down:

• Bring Back Both Management Instances

• Bring Back One of the Management Instances

Bring Back Both Management Instances
If you can bring back both management instances:

Note:

If you have not done so already, set the environment with the ttenv script (as
described in Creating the Initial Management Instance).

1. Run the ttGridAdmin mgmtExamine command on one of the management
instances to discover which is the appropriate one to become the active
management instance. The ttGridAdmin mgmtExamine command evaluates both
management instances and prints out the highest sequence number for the
management instance that has more management data. It is this management
instance that should be re-activated as the active management instance.

% ttGridAdmin mgmtExamine
One or more management instance is down.
Start them and run mgmtExamine again.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent
RepActive Message
--

host1 instance1 No Unknown Unknown Down No
Management database is not available
host2 instance1 No Unknown Unknown Down No
Management database is not available

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin
-start -force
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttDaemonAdmin

Chapter 13
Managing Failover for the Management Instances

13-50

-start -force
sleep 30
/timesten/host1/instance1/bin/ttenv ttGridAdmin mgmtExamine

2. Run the recommended commands listed by the ttGridAdmin mgmtExamine command.
The commands for this example result in restarting the daemons for each management
instance:

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin -
start -force

TimesTen Daemon (PID: 3858, port: 11000) startup OK.
% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttDaemonAdmin -
start -force

TimesTen Daemon (PID: 4052, port: 12000) startup OK.

3. Re-run the ttGridAdmin mgmtExamine command to verify that both management
instances are up. If either of the management instances are not up, then the ttGridAdmin
mgmtExamine command may suggest another set of commands to run.

In this example, the second invocation of the ttGridAdmin mgmtExamine command
shows that the management instances are not up. Thus, this example shows that the
command next requests that you:

a. Stop the main daemon of the data instance for both management instances.

b. Run the ttGridAdmin mgmtActiveStart command on the management instance with
the higher sequence number provided by the ttGridAdmin mgmtExamine command.
This re-activates the active management instance.

c. Run the ttGridAdmin mgmtStandbyStart command on the management instance
that you want to act as the standby management instance. This command assigns
the other management instance as the standby management instance in TimesTen
Scaleout, initiates the active standby configuration between the active and standby
management instances and synchronizes the management information on the active
management instance to the standby management instance.

% ttGridAdmin
mgmtExamine
Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent RepActive
Message
--
host1 instance1 Yes Active Active 581 Down No
host2 instance1 Yes Standby Standby 567 Down No

Recommended commands:
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin -stop
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttDaemonAdmin -stop
sleep 30
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttGridAdmin

Chapter 13
Managing Failover for the Management Instances

13-51

mgmtActiveStart
sleep 30
ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttGridAdmin
mgmtStandbyStart

Executing these commands restarts both the active and standby management
instances:

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttDaemonAdmin
-stop
TimesTen Daemon (PID: 3858, port: 11000) stopped.

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttDaemonAdmin
-stop
TimesTen Daemon (PID: 3859, port: 12000) stopped.

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host1.example.com /timesten/host1/instance1/bin/ttenv ttGridAdmin
mgmtActiveStart
This management instance is now the active

% ssh -o StrictHostKeyChecking=yes -o PasswordAuthentication=no -x
host2.example.com /timesten/host2/instance1/bin/ttenv ttGridAdmin
mgmtStandbyStart
Standby management instance started

Continue to re-run the ttGridAdmin mgmtExamine command until you receive the
message that both management instances are up.

% ttGridAdmin mgmtExamine
Both active and standby management instances are up. No action
required.

Host Instance Reachable RepRole(Self) Role(Self) Seq RepAgent
RepActive Message
--
--
host1 instance1 Yes Active Active 567 Up Yes
host2 instance1 Yes Standby Standby 567 Up No

Bring Back One of the Management Instances
As soon as you notice that your standby management instance is down, it is important
that you recreate it as soon as possible. If not, then your grid topology may be
dramatically different than it was before if your active management instance also goes
down. That is, if the active management instance goes down or fails in such a way that
the best option is to bring back up the standby management instance that has been
down for a while, then this may result in an incorrect grid topology as follows:

• If you had recently added instances to your grid, they may be gone.

Chapter 13
Managing Failover for the Management Instances

13-52

• If you had recently deleted instances from your grid, they may be back.

• If you had recently created databases, they may have been deleted.

• If you had recently destroyed databases, they might be recreated.

If you can bring back only one of the management instances, re-activate this instance as the
active management instance. The following example assumes that the management instance
on the host2 host is down and the management instance on the host1 host was able to be
brought back.

1. Run the ttGridAdmin mgmtActiveStart command on the management instance on
host1. This re-activates as the active management instance.

% ttGridAdmin mgmtActiveStart
This management instance is now the active

2. Remove the permanently failed standby management instance from the model with the
ttGridAdmin instanceDelete command.

% ttGridAdmin instanceDelete host2.instance1
Instance instance1 on Host host2 deleted from Model

Note:

If there are no other instances on the host where the down management
instance existed, you may want to delete the host and the installation.

3. Add a new standby management instance with its supporting host and installation to the
model.

% ttGridAdmin hostCreate host9 -address host9.example.com
Host host9 created in Model
% ttGridAdmin installationCreate -host host9 -location /timesten/host9/
installation1
Installation installation1 on Host host9 created in Model
% ttGridAdmin instanceCreate -host host9 -location /timesten/host9
-type management
Instance instance1 on Host host9 created in Model

4. Apply the configuration changes to remove the failed standby management instance and
add in a new standby management instance to the grid by executing the ttGridAdmin
modelApply command.

% ttGridAdmin modelApply
Copying Model...OK
Exporting Model Version 9...OK
Unconfiguring standby management instance.............................OK
Marking objects 'Pending Deletion'....................................OK
Stop any Instances that are 'Pending Deletion'........................OK
Deleting any Instances that are 'Pending Deletion'....................OK
Deleting any Hosts that are no longer in use..........................OK
Verifying Installations...OK

Chapter 13
Managing Failover for the Management Instances

13-53

Creating any missing
Instances..OK
Adding new Objects to Grid
State......................................OK
Configuring grid
authentication.......................................OK
Pushing new configuration files to each
Instance......................OK
Making Model Version 9
current..OK
Making Model Version 10
writable......................................OK
Checking ssh connectivity of new
Instances............................OK
Starting new management
instance......................................OK
Configuring standby management
instance...............................OK
Starting new data
instances...OK
ttGridAdmin modelApply complete

The ttGridAdmin modelApply command initiates the active standby configuration
between the active and standby management instances and replicates the
management information on the active management instance to the standby
management instance.

Clean Up Metadata for Multiple TimesTen Databases with
the Same Name

If you have had to recover a TimesTen database in a grid after a catastrophic failure,
the original database may not have completed a full metadata cleanup (that would
occur when you execute a ttGridAdmin dbDestroy command).

Thus, you may receive the following error when you try to clean up using the
scaleoutCacheCleanup.sql script:

Metadata found for more than one database with database name
 database_name and grid name grid_name

This states that you have multiple cache entries in the Oracle database for more than
one TimesTen database with the same database and grid names.

To clean up the cache entries for one of the TimesTen databases (of the same name),
perform the following:

1. Discover the GUID for the TimesTen database that needs to have its cache entries
cleaned up using the cacheInfo.sql script. In the following example, the GUID is

Chapter 13
Clean Up Metadata for Multiple TimesTen Databases with the Same Name

13-54

provided in the Autorefresh Objects Information section after the grid name:
F2537B21-D31D-4027-ADA2-04E131E7887E.

% cd timesten_home/install/oraclescripts
% sqlplus cacheadmin/orapwd
SQL> @cacheInfo.sql
…
*************Autorefresh Objects Information ***************
Grid name: grid1 (F2537B21-D31D-4027-ADA2-04E131E7887E)
Timesten database name: database1
Cache table name: ORATT.READTAB
Has after insert trigger: YES
Change log table name: tt_07_96977_L
Number of rows in change log table: 4
Maximum logseq on the change log table: 1
Timesten has autorefreshed updates upto logseq: 1
Number of updates waiting to be autorefreshed: 0
Number of updates that has not been marked with a valid logseq: 0
…

2. Use the cacheCleanup.sql script supplying the GUID as the host name.

% cd timesten_home/install/oraclescripts
% sqlplus cacheadmin/orapwd
SQL> @cacheCleanUp "F2537B21-D31D-4027-ADA2-04E131E7887E" “database1”
*****************************OUTPUT**************************************
Performing cleanup for object_id: 69959 which belongs to table : CUSTOMER
Executing: delete from tt_07_agent_status where host = F2537B21-D31D-4027-
ADA2-04E131E7887E
and datastore = database1 and object_id = 69959
Executing: drop table tt_07_69959_L
Executing: drop trigger tt_07_69959_T
Executing: delete from tt_07_user_count where object_id = object_id1
Performing cleanup for object_id: 69966 which belongs to table : ORDERS
Executing: delete from tt_07_agent_status where host = F2537B21-D31D-4027-
ADA2-04E131E7887E
and datastore = database1 and object_id = 69966
Executing: drop table tt_07_69966_L
Executing: drop trigger tt_07_69966_T
Executing: delete from tt_07_user_count where object_id = object_id1
**

Performance Recommendations
Enhance your performance by setting a timeout for the channel create.

Set a Timeout for Create Channel Requests
Each element communicates over channels to all other elements. However, if any request to
create a channel between elements hangs due to software issues or network failures, then all
channel create requests could be blocked. Since open channels are required for element
communication, we need to detect any hangs within the channel creation process.

Chapter 13
Performance Recommendations

13-55

You can set a timeout (in milliseconds) to wait for a response to a channel create
request to a remote element with the ChannelCreateTimeout general connection
attribute. See ChannelCreateTimeout in Oracle TimesTen In-Memory Database
Reference.

Chapter 13
Performance Recommendations

13-56

A
Example for Deploying a Grid and Database

TimesTen Scaleout provides several options for you to successfully configure and deploy a
grid. One of those options is the ttGridRollout utility. This is an example for how to install,
create, and deploy a simple grid using the ttGridRollout utility.

Note:

• See Overview of TimesTen Scaleout to get familiarized with the concepts
discussed in this appendix.

• See Prerequisites and Installation of TimesTen Scaleout for a more
comprehensive description of TimesTen Scaleout prerequisites and its
installation process.

Note:

While this appendix describes how to quickly set up a grid with a single database
for development and testing purposes by using the ttGridRollout utility, it is also
possible to configure a grid by using:

• The ttGridAdmin utility: Uses the command line to set up a grid with one or
more databases. It provides access to the full range of configuration,
management, and monitoring capabilities of TimesTen Scaleout. See Setting
Up a Grid.

• Oracle SQL Developer: Uses a GUI that provides the some of the same
functionality as the ttGridAdmin utility. See Working with TimesTen Scaleout in
Oracle TimesTen In-Memory Database SQL Developer Support User's Guide.

The following topics show a simple example that installs TimesTen Scaleout, sets up three
membership servers, and configures a database in a grid with k set to 3. The grid
configuration consists of two management instances and six data instances.

• TimesTen Scaleout Prerequisites

• Install TimesTen Scaleout

• Set Up the Membership Service

• Deploy a Grid and Database

A-1

Note:

The parameters defined for every system in the topology of this example is
based on the scenario described in Planning your Grid.

TimesTen Scaleout Prerequisites
Before you install TimesTen Scaleout and configure your grid, ensure that your hosts
fulfill certain prerequisites.

• Ensure That TimesTen Scaleout Supports the OS Installed on Each Host

• Configure All Hosts in the Same Internal Network

• Create a TimesTen User Group and OS User

• Set Linux Kernel Parameters

• Set the MEMLOCK Settings for the Instance Administrator

Ensure That TimesTen Scaleout Supports the OS Installed on Each
Host

Once you know which systems you are going to use as hosts in your grid, ensure that
TimesTen Scaleout supports the platform and operating system installed on each host.
All hosts must run the same platform and OS version and release.

For a list of the operating systems that TimesTen Scaleout supports, see the
README.html file your installation directory.

Configure All Hosts in the Same Internal Network
Create a single internal network for all hosts to communicate with each other. Client
connections to the database may be handled through a external network, if available.

See Network Requirements.

Create a TimesTen User Group and OS User
Create the GID for the TimesTen users group and the username and UID for the role
of instance administrator. Ensure that they exist and are the same on all hosts.

% sudo groupadd -g 10000 timesten
% sudo useradd -u 55000 -g timesten instanceadmin
% sudo passwd instanceadmin

See Understanding TimesTen Users Group and Operating System User.

Appendix A
TimesTen Scaleout Prerequisites

A-2

Set Linux Kernel Parameters
Configure the following parameters of the system kernel on all hosts with a data instance.
These values are based on your database requirements:

% sudo vi /etc/sysctl.conf
...
kernel.sem=2203 281984 100 128
kernel.shmmni=9000
kernel.shmmax=39991547720
kernel.shmall=9763561
vm.nr_hugepages=19069
vm.hugetlb_shm_group=10000

Enable these settings without restarting on all modified hosts. Consider that the HugePages
parameters may require a system reboot to take full effect.

% sudo /sbin/sysctl -p

See Configuring Linux Kernel Parameters.

Set the MEMLOCK Settings for the Instance Administrator
Set the recommended memlock settings for the instance administrator based on the shared
memory segment of each host.

% sudo vi /etc/security/limits.conf
...
instanceadmin soft memlock 50331648
instanceadmin hard memlock 50331648

See Set the MEMLOCK Parameters.

Install TimesTen Scaleout
Unpack a TimesTen Scaleout distribution in the location you defined for the host of your
active management instance. For this example, the location is the /grid directory on the

Appendix A
Install TimesTen Scaleout

A-3

host1 host. TimesTen Scaleout automatically sets /grid/tt22.1.1.18.0 as the
location for the installation of the management instance when the grid is created.

Note:

Unless stated otherwise and up to the end of this appendix, you should run
all commands on the system that you defined for the host of the active
management instance.

% mkdir -p /grid
% unzip /mydir/timesten2211180.server.linux8664.zip -d /grid
...

See Installing TimesTen Scaleout.

Set Passwordless SSH Between All Hosts
Use the ttGridAdmin gridSshConfig command to set up the required passwordless
SSH access between the internal network addresses of all hosts for the instance
administrator.

% /grid/tt22.1.1.18.0/bin/ttGridAdmin gridSshConfig
 -mgmtAddress int-host1 int-host2
 -dataAddress int-host3 int-host4 int-host5 int-host6 int-host7 int-
host8

See Setting Passwordless SSH.

Set Up the Membership Service
TimesTen Scaleout includes Apache ZooKeeper as a third party membership service.
You can find the ZooKeeper installation files in the installation_dir/
tt22.1.1.18.0/3rdparty/apache-zookeeper-3.8.1-bin.tar.gz file of a TimesTen
Scaleout installation.

To configure and initialize the membership service as required for TimesTen Scaleout,
complete the next steps:

1. Install Apache ZooKeeper

2. Configure the ZooKeeper Servers

3. Start the ZooKeeper Servers

4. Create the Client Configuration File

Appendix A
Set Up the Membership Service

A-4

Note:

See Overview of the Membership Service in TimesTen Scaleout for a more
comprehensive description of the membership service in TimesTen Scaleout,
including the configuration of Apache ZooKeeper.

Install Apache ZooKeeper
Unpack Apache ZooKeeper on each system that you defined for the role of a membership
server.

% mkdir -p /grid/membership
% tar -zvxf apache-zookeeper-3.8.1-bin.tar.gz -C /grid/membership

Configure the ZooKeeper Servers
Once the installation files are available on all the systems defined as membership servers,
create the zoo.cfg and myid configuration files on those systems.

% vi /grid/membership/apache-zookeeper-3.8.1-bin/conf/zoo.cfg

tickTime=250
initLimit=40
syncLimit=12
dataDir=grid/membership/apache-zookeeper-3.8.1-bin/data
clientPort=2181
server.1=ms-host1:2888:3888
server.2=ms-host2:2888:3888
server.3=ms-host3:2888:3888
autopurge.snapRetainCount=3
autopurge.purgeInterval=1
4lw.commands.whitelist=stat, ruok, conf, isro

Ensure that in the myid file you assign the same n value as in the server.n parameter of the
zoo.cfg file. For example, since the ms-host1 system is identified as server.1 in the zoo.cfg
file, then the myid file of that system must contain a single line with a 1.

% vi /grid/membership/apache-zookeeper-3.8.1-bin/conf/myid

1

Also, create the location specified for the dataDir parameter.

% mkdir -p /grid/membership/apache-zookeeper-3.8.1-bin/data

See Configuring Apache ZooKeeper as the Membership Service.

Appendix A
Set Up the Membership Service

A-5

Start the ZooKeeper Servers
Start the ZooKeeper server on all the systems that you defined for the role of a
membership server.

% /grid/membership/apache-zookeeper-3.8.1-bin/bin/zkServer.sh start

If you want to verify that ZooKeeper is running properly, use:

% /grid/membership/apache-zookeeper-3.8.1-bin/bin/zkCli.sh -server ms-
host1:2181

Create the Client Configuration File
The client configuration file identifies the host names and client TCP/IP ports of all
membership servers.

Create a client configuration file in a directory on the system defined as the host of the
active management instance, as shown next.

% vi /mydir/membership.conf

Servers ms-host1!2181,ms-host2!2181,ms-host3!2181

Deploy a Grid and Database
The ttGridRollout utility uses the parameters you define in a configuration file to
deploy a grid and database from start to finish without needing further input from you.
This utility uses ttGridAdmin commands to perform the operations related to the initial
configuration and deployment of a grid and database. You can find the ttGridRollout
utility in the bin directory of a TimesTen Scaleout installation.

• Create a Database Definition File

• Create a Connectable File

• Create a SQL Script File for Your Database

• Create a Configuration File for the ttGridRollout Utility

• Create a Grid and Database

• Connect to the Database

For more information on the ttGridRollout utility, see ttGridRollout in Oracle
TimesTen In-Memory Database Reference.

Create a Database Definition File
The database definition file (suffix of .dbdef) contains the data store and first
connection attributes of a database. You must name the file as database_name.dbdef.
For example, for a database named database1, the database definition file would be
database1.dbdef.

Appendix A
Deploy a Grid and Database

A-6

Create a database definition file in a directory on the system defined as the host of the active
management instance, as shown next.

% vi /mydir/database1.dbdef

[database1]
DataStore=/disk1/databases/database1
LogDir=/disk2/logs
DatabaseCharacterSet=AL32UTF8
Durability=0
PermSize=32768
TempSize=4096
LogBufMB=1024
Connections=2048

See Creating a Database Definition File.

Create a Connectable File
The connectable file (suffix of .connect) contains the general connection attributes for a
connection to a database. TimesTen Scaleout supports connectables that can be either for
direct or client/server connections to the database.

Create a connectable file in a directory on the system defined as the host of the active
management instance, as shown next.

% vi /mydir/database1CS.connect

ConnectionCharacterSet=AL32UTF8

See Creating a Connectable File.

Create a SQL Script File for Your Database
The SQL script file contains the SQL statements to create SQL objects for your database.

Create a SQL script file in a directory on the system defined as the host of the active
management instance, as shown next.

Note:

See Defining Table Distribution Schemes for details on the CREATE TABLE
statements and their distribution schemes included in the database1.sql file.

% vi /mydir/database1.sql

CREATE USER terry IDENTIFIED BY password;

GRANT CREATE SESSION TO terry;

Appendix A
Deploy a Grid and Database

A-7

CREATE TABLE terry.account_type
(
 type CHAR(1) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
)
DUPLICATE;

CREATE TABLE terry.account_status
(
 status NUMBER(2,0) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
)
DUPLICATE;

CREATE TABLE terry.customers
(
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL
)
DISTRIBUTE BY HASH;

CREATE TABLE terry.accounts
(
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(16) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2,0) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 CONSTRAINT fk_customer
 FOREIGN KEY (cust_id)
 REFERENCES terry.customers(cust_id),
 CONSTRAINT fk_acct_type
 FOREIGN KEY (account_type)
 REFERENCES terry.account_type(type),
 CONSTRAINT fk_acct_status
 FOREIGN KEY (status)
 REFERENCES terry.account_status(status)
)
DISTRIBUTE BY REFERENCE (fk_customer);

CREATE TABLE terry.transactions
(
 transaction_id NUMBER(10,0) NOT NULL,
 account_id NUMBER(10,0) NOT NULL ,
 transaction_ts TIMESTAMP NOT NULL,
 description VARCHAR2(60),
 optype CHAR(1) NOT NULL,

Appendix A
Deploy a Grid and Database

A-8

 amount NUMBER(6,2) NOT NULL,
 PRIMARY KEY (account_id, transaction_id, transaction_ts),
 CONSTRAINT fk_accounts
 FOREIGN KEY (account_id)
 REFERENCES terry.accounts(account_id)
)
DISTRIBUTE BY REFERENCE (fk_accounts);

CREATE SEQUENCE terry.txn_seq CACHE 100 BATCH 1000000;

Create a Configuration File for the ttGridRollout Utility
The configuration file for the ttGridRollout utility defines all the necessary parameters to
successfully create and deploy a grid and database in TimesTen Scaleout.

Create a configuration file for the ttGridRollout utility, as shown next. The following
configuration file:

• Names the grid as grid1.

• Defines the membership servers provided by the membership.conf file.

• Defines the location for the installation files for every installation object as /grid/
tt22.1.1.18.0 on their respective host.

• Defines the location for the instance files of every instance object as /grid on their
respective hosts.

• Creates the database definition provided by the database1.dbdef file.

• Creates the client/server connectable provided by the database1CS.connect file.

• Adds the SQL schema provided by the database1.sql file to the database1 database.

• Creates two management instances, including their respective hosts and installations.

• Creates six data instances, including their respective hosts and installations, evenly
assigned to two data space groups. The ttGridRollout utility sets K-safety to 3 at grid
creation to satisfy the need of three data space groups.

Note:

See Define the Network Parameters of Each Host and Membership Server for
details on the attributes used for every instance in this example.

% vi /mydir/grid1.conf

grid_name = grid1
zoo_conf = /mydir/membership.conf
instance_location = /grid
installation_location = /grid
dbdef_file = /mydir/database1.dbdef
cs_connect_files = /mydir/database1CS.connect
init_script = /mydir/database1.sql
mgmt_instances = [
 { "host":"host1", "address":"int-host1", "instance":"instance1",

Appendix A
Deploy a Grid and Database

A-9

 "daemonport":6624, "csport":6625, "mgmtport":3574},
 { "host":"host2", "address":"int-host2",
"instance":"instance1",
 "daemonport":6624, "csport":6625, "mgmtport":3574}
]
data_instances = [
 { "host":"host3", "internalAddress":"int-host3",
 "externalAddress":"ext-host3.example.com",
"dataspacegroup":1,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host4", "internalAddress":"int-host4",
 "externalAddress":"ext-host4.example.com",
"dataspacegroup":2,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host5", "internalAddress":"int-host5",
 "externalAddress":"ext-host5.example.com",
"dataspacegroup":3,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host6", "internalAddress":"int-host6",
 "externalAddress":"ext-host6.example.com",
"dataspacegroup":1,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host7", "internalAddress":"int-host7",
 "externalAddress":"ext-host7.example.com",
"dataspacegroup":2,
 "instance":"instance1", "daemonport":6624, "csport":6625},
 { "host":"host8", "internalAddress":"int-host8",
 "externalAddress":"ext-host8.example.com",
"dataspacegroup":3,
 "instance":"instance1", "daemonport":6624, "csport":6625}
]

Create a Grid and Database
Use the ttGridRollout utility to create a grid and database based on the configuration
file you provide.

% /grid/tt22.1.1.18.0/bin/ttGridRollout /mydir/grid1.conf
INFO: Checking Zookeeper on ms-host1!2181 -- OK
INFO: Checking Zookeeper on ms-host2!2181 -- OK
INFO: Checking Zookeeper on ms-host3!2181 -- OK
INFO: Checking the address for the management database -- OK
INFO: Checking connectivity to int-host1 -- OK

===
=========

/grid/tt22.1.1.18.0/bin/ttInstanceCreate -grid -location /grid -name
 instance1 -daemonport 6624 -csport 6625
Creating instance in /grid/instance1 ...

NOTE: The TimesTen daemon startup/shutdown scripts have not been
installed.

Appendix A
Deploy a Grid and Database

A-10

The startup script is located here :
 '/grid/instance1/startup/tt_instance1'

Run the 'setuproot' script :
 /grid/instance1/bin/setuproot -install
This will move the TimesTen startup script into its appropriate location.

The 22.1 Release Notes are located here :
 '/grid/tt22.1.1.18.0/README.html'

/grid/instance1/bin/ttenv ttGridAdmin gridCreate grid1 -k 3 -host host1 -
address
 int-host1 -membership zookeeper -membershipConfig /mydir/membership.conf
 -mgmtport 3754
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host2 -address int-host2
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host2 -location /
grid
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host2.instance1 -
location
 /grid -type management -daemonport 6624 -csport 6625 -mgmtport 3754
/grid/instance1/bin/ttenv ttGridAdmin modelApply
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host3 -externaladdress int-
host3
 -internaladdress ext-host3.example.com -dataspacegroup 1
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host3 -location /
grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host4 -externaladdress int-
host4
 -internaladdress ext-host4.example.com -dataspacegroup 2
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host4 -location /
grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host5 -externaladdress int-
host5
 -internaladdress ext-host5.example.com -dataspacegroup 3
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host5 -location /
grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host6 -externaladdress int-
host6
 -internaladdress ext-host6.example.com -dataspacegroup 1
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host6 -location /
grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host7 -externaladdress int-
host7
 -internaladdress ext-host7.example.com -dataspacegroup 2
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host7 -location /
grid
/grid/instance1/bin/ttenv ttGridAdmin hostCreate host8 -externaladdress int-
host8
 -internaladdress ext-host8.example.com -dataspacegroup 3
/grid/instance1/bin/ttenv ttGridAdmin installationCreate host8 -location
 /grid
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host3.instance1 -
location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host4.instance1 -

Appendix A
Deploy a Grid and Database

A-11

location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host5.instance1 -
location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host6.instance1 -
location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host7.instance1 -
location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin instanceCreate host8.instance1 -
location
 /grid -daemonport 6624 -csport 6625
/grid/instance1/bin/ttenv ttGridAdmin dbdefCreate /mydir/
database1.dbdef
/grid/instance1/bin/ttenv ttGridAdmin modelApply
/grid/instance1/bin/ttenv ttGridAdmin dbCreate -wait 180 database1
/grid/instance1/bin/ttenv ttGridAdmin dbDistribute database1 -add all -
apply
/grid/instance1/bin/ttenv ttGridAdmin dbOpen -wait 180 database1
/grid/instance1/bin/ttenv ttGridAdmin connectableCreate -dbdef
database1 -cs
 /mydir/database1CS.connect
/grid/instance1/bin/ttenv ttGridAdmin modelApply
/grid/instance1/bin/ttenv ttGridAdmin instanceExec -only
host3.instance1 "ttIsql
 database1 <<EOF
CREATE USER terry IDENTIFIED BY password;

GRANT CREATE SESSION TO terry;

CREATE TABLE terry.account_type
(
 type CHAR(1) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
)
DUPLICATE;

CREATE TABLE terry.account_status
(
 status NUMBER(2,0) NOT NULL PRIMARY KEY,
 description VARCHAR2(100) NOT NULL
)
DUPLICATE;

CREATE TABLE terry.customers
(
 cust_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(30) NOT NULL,
 last_name VARCHAR2(30) NOT NULL,
 addr1 VARCHAR2(64),
 addr2 VARCHAR2(64),
 zipcode VARCHAR2(5),
 member_since DATE NOT NULL

Appendix A
Deploy a Grid and Database

A-12

)
DISTRIBUTE BY HASH;

CREATE TABLE terry.accounts
(
 account_id NUMBER(10,0) NOT NULL PRIMARY KEY,
 phone VARCHAR2(16) NOT NULL,
 account_type CHAR(1) NOT NULL,
 status NUMBER(2,0) NOT NULL,
 current_balance NUMBER(10,2) NOT NULL,
 prev_balance NUMBER(10,2) NOT NULL,
 date_created DATE NOT NULL,
 cust_id NUMBER(10,0) NOT NULL,
 CONSTRAINT fk_customer
 FOREIGN KEY (cust_id)
 REFERENCES terry.customers(cust_id),
 CONSTRAINT fk_acct_type
 FOREIGN KEY (account_type)
 REFERENCES terry.account_type(type),
 CONSTRAINT fk_acct_status
 FOREIGN KEY (status)
 REFERENCES terry.account_status(status)
)
DISTRIBUTE BY REFERENCE (fk_customer);

CREATE TABLE terry.transactions
(
 transaction_id NUMBER(10,0) NOT NULL,
 account_id NUMBER(10,0) NOT NULL ,
 transaction_ts TIMESTAMP NOT NULL,
 description VARCHAR2(60),
 optype CHAR(1) NOT NULL,
 amount NUMBER(6,2) NOT NULL,
 PRIMARY KEY (account_id, transaction_id, transaction_ts),
 CONSTRAINT fk_accounts
 FOREIGN KEY (account_id)
 REFERENCES terry.accounts(account_id)
)
DISTRIBUTE BY REFERENCE (fk_accounts);

CREATE SEQUENCE terry.txn_seq CACHE 100 BATCH 1000000;

EOF"

===
===
6-instance (2x3) grid successfully created.

Management Instance Locations

- int-host1:/grid/instance1
- int-host2:/grid/instance1

Please source ttenv script under Management Instances for grid management via

Appendix A
Deploy a Grid and Database

A-13

 "ttGridAdmin" commands.

 For example, to use the first management instance, on int-host1:
 sh: . /grid/instance1/bin/ttenv.sh
 csh: source /grid/instance1/bin/ttenv.csh

Data Instance Locations

- host3.instance1 ==> int-host3:/grid/instance1
- host4.instance1 ==> int-host4:/grid/instance1
- host5.instance1 ==> int-host5:/grid/instance1
- host6.instance1 ==> int-host6:/grid/instance1
- host7.instance1 ==> int-host7:/grid/instance1
- host8.instance1 ==> int-host8:/grid/instance1

Please source ttenv script under Data Instances for database
operations.

 For example, to use instance1, on int-host3:
 sh: . /grid/instance1/bin/ttenv.sh
 csh: source /grid/instance1/bin/ttenv.csh

Connect to the Database
Connect to your database through a direct or client connection. For a direct
connection, set your environment to one of the data instances, host3.instance1 for
example, and use the database1 connectable to connect to the database.

% source /grid/instance1/bin/ttenv.csh
...
% ttIsql -connStr "DSN=database1;UID=terry"

See Connecting to a Database.

Appendix A
Deploy a Grid and Database

A-14

B
TimesTen Scaleout Environment

Before you are able to properly set up or manage a grid and database in TimesTen Scaleout,
or develop applications to connect to the database, you must set your environment. This
includes setting environment variables.

This appendix provides reference material on:

• Environment Variables

• Instance Home Directory and Subdirectories

• Managing a Development or Test Environment

Environment Variables
There are several environment variables that must be set appropriately for proper operation
of TimesTen Scaleout.

• Setting Environment Variables

• TIMESTEN_HOME Environment Variable

• NLS_LANG Environment Variable

• Shared Library Path Environment Variable

• PATH Environment Variable

• Temporary Directory Environment Variable

• TNS_ADMIN Environment Variable

• Java Environment Variables

Setting Environment Variables
You set environment variables for a terminal window, which enables the window to run
commands for a particular instance. Here is a list of situations where you should set your
environment variables:

• After you create the active management instance

• Before using ttGridAdmin or any TimesTen utility

• Before executing a direct mode application on a host running a data instance

• Before executing a client server application on a host running a client (or data) instance

You set the environment variables by sourcing the ttenv shell script (ttenv.sh or ttenv.csh).
TimesTen creates the scripts after you create an instance. These scripts are located in the
grid/instance1/bin directory (where grid/instance1 is the full path of the instance). By
sourcing these scripts, the environment variables required to use a TimesTen Scaleout
instance are set.

B-1

The environment variables include TIMESTEN_HOME, PATH, LD_LIBRARY_PATH (or
equivalent) and TNS_ADMIN.

For example:

For a Bourne-type shell, such as sh, bash, zsh, or ksh:

$. ttenv.sh

For a csh or tcsh shell:

% source ttenv.csh

TIMESTEN_HOME Environment Variable
The TIMESTEN_HOME environment variable specifies the home directory of the TimesTen
Scaleout instance. You explicitly set this variable when sourcing the ttenv script.

NLS_LANG Environment Variable
The character set specified in the database definition file is used by default for the
connection, if not overridden by NLS_LANG or if not in the connectable. While setting the
character set explicitly is recommended, the default is usually
AMERICAN_AMERICA.US7ASCII. To use the environment variable to set the character set,
do the following:

% setenv NLS_LANG AMERICAN_AMERICA.WE8ISO8859P1

See Character Sets in Oracle TimesTen In-Memory Database C Developer's Guide
and Supported Character Sets in Oracle TimesTen In-Memory Database Reference.

Shared Library Path Environment Variable
The shared library path environment variable is set when sourcing ttenv. This
environment variable specifies the path for shared libraries. The ttenv script
adds $TIMESTEN_HOME/install/lib to LD_LIBRARY_PATH.

PATH Environment Variable
TimesTen provides utilities for managing and debugging your applications. For these
utilities to be available, the path for executables in $TIMESTEN_HOME/bin
and $TIMESTEN_HOME/install/bin must be designated in the PATH setting. The path is
updated to include these directories when you source ttenv.

In addition, to compile programs, be sure the location of the compiler for your
programming language is in the PATH setting.

Temporary Directory Environment Variable
TMPDIR specifies the location of the temporary directory, which TimesTen uses during
recovery and other operations.

Appendix B
Environment Variables

B-2

TNS_ADMIN Environment Variable
The TNS_ADMIN environment variable specifies the full path to the directory where the
tnsnames.ora file is located.

• For TimesTen OCI, Pro*C/C++, or ODP.NET, set the TNS_ADMIN environment variable to
indicate the full path to the directory where the tnsnames.ora file is located.

• TimesTen Scaleout automatically populates the tnsnames.ora file on all instances with
entries for all the connectables. Do not manually configure these entries, as the related
configuration files are owned by TimesTen Scaleout.

• The tnsnames and related information for additional entries, such as for Oracle database
connections (as applicable), are brought in and distributed through the ttGridAdmin
TNSNamesImport and ttGridAdmin SQLNetImport commands. See Import TNS Names
(TNSNamesImport) and Import a SQLNet file (SQLNetImport) in Oracle TimesTen In-
Memory Database Reference.

Java Environment Variables
For Java applications, there are additional environment variables of interest. These topics
provide information about additional environment variables or considerations that affect Java
applications:

• CLASSPATH Environment Variable

• PATH Environment Variable Settings for Java

CLASSPATH Environment Variable
Java classes and class libraries are found on the class path, as specified by the CLASSPATH
environment variable. Before executing a Java program that loads any of the TimesTen JDBC
drivers, the CLASSPATH setting must include the class library file and path:

$TIMESTEN_HOME/install/lib/ttjdbcJDK_VER.jar

where JDK_VER indicates the JDK version. For JDK8, JDK_VER is 8 and the file name is
ttjdbc8.jar.

Note:

If multiple JAR files are listed in the CLASSPATH, ensure that the TimesTen JAR file is
listed first.

CLASSPATH elements are separated by colons. For example (sh type shell):

CLASSPATH=.:$TIMESTEN_HOME/install/lib/ttjdbc8.jar
export CLASSPATH

Appendix B
Environment Variables

B-3

Or (csh type shell):

setenv CLASSPATH .:$TIMESTEN_HOME/install/lib/ttjdbc8.jar

To check the JDK version:

java -version

PATH Environment Variable Settings for Java
For Java applications, ensure that the locations of the java and javac executables are
in the PATH setting.

Instance Home Directory and Subdirectories
When you create an instance, each instance includes several subdirectories
within $TIMESTEN_HOME.

• bin: TimesTen utilities and executables tailored and specific to the instance

This includes ttenv, which sets environment variables appropriately for the
TimesTen environment for your session, and setuproot.sh, which can be run as
root to cause data instances to be automatically started whenever the operating
system reboots.

Note that ttenv also puts the bin directory in your path.

• conf: Contains the timesten.conf file, which is the TimesTen instance
configuration file

• diag: Diagnostic output, including the daemon log and error log

• grid: Files and resources for TimesTen Scaleout

• info: Working directory of the TimesTen daemon, containing persistent state about
the TimesTen instance

• install: Symbolic link referencing the installation associated with this instance.

• plsql: Contains this subdirectory:

– utl_file_dir: The only directory that can be read from or written to by
PL/SQL blocks using the UTL_FILE package

• startup: Contains a script that can be added to /etc/init.d to cause the
instance to be automatically started at system startup and stopped at system
shutdown.

Note:

• TimesTen Scaleout updates configuration files as needed. Do not update
them manually.

• Client-only instances do not include the grid or the startup directories.

Appendix B
Instance Home Directory and Subdirectories

B-4

Managing a Development or Test Environment
If you have a test or a development environment where you are creating, using and then
destroying multiple grids, you may need to purge the membership service metadata for any
grid that is destroyed and will not be used again.

TimesTen Scaleout creates membership service metadata to represent each independent
grid on each instance in a grid. If you know that a particular grid has been destroyed and is
never going to be used again, then you can perform the following on one instance:

1. Locate the timesten.conf configuration file in the /conf directory under the instance
home directory.

2. Identify the membership service entries in the timesten.conf configuration file with the
grid_guid and grid_name parameters, such as:

grid_guid=4012FC64-8B9X-45D1-A16C-ED52C3098CAD
grid_name=grid1

The membership service entry has the naming structure of grid_name.grid_guid and
exists within the /oracle/timesten/grid/membership directory.

Note:

It is imperative that you identify the correct grid to avoid deleting a membership
service of an active grid.

3. Run the zkCli.sh command to connect to the membership servers.

% ./zkCli.sh -server ms_host1:2181

4. Using the zkCli.sh rmr command, delete the membership service entries.

rmr /oracle/timesten/grid/membership/grid1.4012FC64-8B9B-45D1-A16C-
ED52C3098CAD

Appendix B
Managing a Development or Test Environment

B-5

	Contents
	About This Content
	What's New
	New features in Release 22.1.1.17.0
	New Features in Release 22.1.1.1.0

	1 Overview of TimesTen Scaleout
	Introducing TimesTen Scaleout
	TimesTen Scaleout Features
	In-Memory Database
	Performance
	Persistence and Durability
	SQL and PL/SQL Functionality
	Transactions
	Scalability
	Data Transparency
	High Availability and Fault Tolerance
	Centralized Management

	TimesTen Scaleout Architecture
	Instances
	Management Instances
	Data Instances

	Installations
	K-Safety
	Understanding Replica Sets
	Understanding Data Spaces
	Assigning Hosts to Data Space Groups

	Data Distribution
	Defining the Distribution Map for a Database
	Defining the Distribution Scheme for Tables

	Backups
	Internal and External Networks

	Central Configuration of the Grid
	Planning your Grid
	Determine the Number of Hosts and Membership Servers
	Define the Network Parameters of Each Host and Membership Server
	Define the Locations for the Installation Directory and Instance Home of Each Instance
	Ensure You Have All the Information You Need to Deploy a Grid

	Database Connections
	Comparison Between TimesTen Scaleout and TimesTen Classic
	How Supported TimesTen Features Are Documented in This Guide

	2 Prerequisites and Installation of TimesTen Scaleout
	General Prerequisites
	Operating System Prerequisites
	General Linux Prerequisites
	Understanding TimesTen Users Group and Operating System User
	TimesTen Users Group
	Operating System User
	Create the TimesTen Users Group and the Operating System User

	Network Requirements
	Internal Network
	Syntax for Internal Addresses

	External Network

	Installing TimesTen Scaleout
	Verifying the Installation
	Run the ttInstallationCheck Utility
	Review the Installation Directory and Subdirectories

	Setting Passwordless SSH

	3 Setting Up the Membership Service
	Overview of the Membership Service in TimesTen Scaleout
	Tracking the Instance Status
	Recovering from a Network Partition Error

	Using Apache ZooKeeper as the Membership Service
	Installing Apache ZooKeeper
	Configuring Apache ZooKeeper as the Membership Service
	Starting the Membership Servers
	Configure a Grid as a Membership Service Client

	4 Setting Up a Grid
	Creating the Initial Management Instance
	Creating a Grid
	Adding the Standby Management Instance
	Calculating the Number of Hosts and Data Instances for the Grid
	Calculate the Number of Data Instances to Create
	Calculate the Number of Hosts You Need to Support Your Data Instances

	Assigning Hosts to Data Space Groups
	Configuring Linux Kernel Parameters
	Set the SHMMAX and SHMALL Parameters
	Configure HugePages
	Set the MEMLOCK Parameters
	Set the SEMMSL and SEMMNS Parameters
	Set the SHMMNI Parameter

	Adding Data Instances
	Create a Host for a Data Instance
	Create the Installation for the Data Instance
	Create the Data Instance
	Create Data Instances by Duplicating the Configuration of an Existing Host

	Applying the Changes Made to the Model
	Model Versioning
	Apply the Latest Version of the Model

	Setting Instances to Automatically Start at System Startup

	5 Managing a Database
	Creating a Database
	Create a Database Definition
	Creating a Database Definition File
	Adding a Database Definition to the Model

	Create a Database Based on the Database Definition
	Define the Distribution Map of the Database
	Open the Database for User Connections

	Connecting to a Database
	Create a Connectable
	Creating a Connectable File
	Creating a Connectable Based on the Connectable File

	Connect to a Database Using ODBC and JDBC Drivers
	Establishing Direct Connections from a Data Instance
	Establishing Client Connections from a TimesTen Client
	Adding a Client DSN to a TimesTen Client on Linux or UNIX
	Adding a Client DSN to a TimesTen Client on Windows
	Using a Connection String to Establish a Client Connection

	Establishing Encrypted Client Connections from a TimesTen Client
	Redirecting Client Connections

	Verify If Your Database Is a Distributed Database

	Defining Table Distribution Schemes
	Hash
	Reference
	Duplicate

	Determining the Value of the PermSize Attribute
	Bulk Loading Data into a Database
	Populating a Table with the ttBulkCp Utility
	Populate a Table from a Single Location
	Populate a Table from Several Locations

	Populating a Table with the ttLoadFromOracle Built-in Procedure
	Enable Communication to an Oracle Database
	Populate a Table from a Single Location
	Populate a Table from Several Locations

	Unloading a Database from Memory
	Reloading a Database into Memory
	Modifying the Connection Attributes of a Database
	Modify the Connection Attributes in a Database Definition
	Modify the Connection Attributes in a Connectable

	Destroying a Database

	6 Understanding Distributed Transactions in TimesTen Scaleout
	Transaction Manager
	Status of the Participants

	Durability Settings
	Durability Set to 1
	Durability Set to 0
	Epoch Transactions
	EpochInterval Attribute
	CreateEpochAtCommit Attribute

	Two-Phase Commit Protocol
	Phase 0: Transaction
	Phase 1: Prepare Phase
	Phase 2: Commit Phase
	Two-Phase Commit Failure Analysis

	Troubleshooting Distributed Transactions
	Global Transaction ID
	Managing In-Doubt Transactions
	Verifying the State of Every Outstanding Transaction
	Committing an In-Doubt Transaction
	Rolling Back an In-Doubt Transaction

	7 Using SQL in TimesTen Scaleout
	Overview of SQL
	Overview of PL/SQL
	Working with Tables
	Altering Tables
	Use ALTER TABLE to Add a Primary Key Constraint
	Use ALTER TABLE to Change the Distribution Key

	Understanding Indexes
	Create a Unique Index
	Use Global Indexes to Optimize Query with Joins to Primary Key Columns

	Using Sequences
	Understanding Batch Allocation
	Illustrate Batch Assignment for Three Elements
	Illustrate a Second Batch Assignment for Three Elements

	Performing DML Operations
	Using Pseudocolumns
	Use replicaSetId# to Locate Data
	Use replicaSetId# with a Table That Has a Duplicate Distribution Scheme

	Using the TT_CommitDMLOnSuccess Hint
	Using Optimizer Hints
	TT_GridQueryExec
	Use TT_GridQueryExec on a Hash Distribution Scheme Table
	Use TT_GridQueryExec on a Duplicate Distribution Scheme Table
	Use TT_GridQueryExec on a Reference Distribution Scheme Table

	TT_PartialResult
	Examine Results Using TT_PartialResult

	Understanding ROWID in Data Distribution
	Understanding System Views

	8 Maintaining a Grid
	Maintaining the Model of a Grid
	Modifying a Grid
	Modifying the Settings of a Grid
	Modifying Objects in a Grid
	Modify a Host
	Modify an Instance

	Deleting Objects from a Grid
	Delete a Data Instance
	Delete a Management Instance
	Delete an Installation
	Delete a Host

	Reconfiguring Membership Servers
	View the Current Membership Configuration
	Add Membership Servers
	Enable the New Membership Configuration

	Redistributing Data in a Database
	Adding Elements to the Distribution Map
	Removing Elements from the Distribution Map
	Replace an Element with Another Element
	Remove a Replica Set

	Stopping a Grid
	Restarting a Grid
	Destroying a Grid

	9 Upgrading a Grid
	Upgrade a Grid to a Patch-Compatible Release
	Release Compatibility Metadata
	Upgrade Prerequisites
	Upgrading a Grid with the ttGridAdmin gridUpgrade Command
	Create Installations of the Target Release
	Upgrade the Management Instances
	Upgrade the Data Instances
	Online Upgrade of Data Instances
	Offline Upgrade of Data Instances

	Upgrading a Grid Without the ttGridAdmin gridUpgrade Command
	Create Installations of the Target Release
	Upgrade the Management Instances
	Active Standby Configuration
	Upgrading a Single Management Instance

	Upgrade the Data Instances

	Optional: Delete the Installations of the Previous Release

	Upgrade a Grid to a Different Major or Patch-Incompatible Release

	10 Monitoring TimesTen Scaleout
	Using the ttStats Utility
	View the Configuration of the ttStats Utility
	Configure the ttStats Utility
	Monitor a Database with the ttStats Utility
	Create a Snapshot with the ttStats Utility
	Create a Report Between Two Snapshots with the ttStats Utility

	Using SQL Developer
	Using the TimesTen Prometheus Exporter
	Monitoring the Management Instances
	Modify the Retention Values of Previous Grid Models
	Monitor the Free Space of the Management Instance
	Modify the Used-Space Warning Threshold of the Management Instances
	Resize the Management Instance
	Grid with a Single Management Instance
	Grid with Active and Standby Management Instances

	Collecting Grid Logs
	Retrieving Diagnostic Information
	Verifying Clock Synchronization Across All Instances

	11 Migrating, Backing Up and Restoring Data
	Migrating a Database from TimesTen Classic to TimesTen Scaleout
	Working with Repositories
	Create a Repository
	Create a Repository as a Directory Path Mounted Using NFS on Each Host
	Create a Repository as a Directory Path That Is Accessible on Each Host with SSH or SCP

	Attach a Repository
	Attach a Repository as a Directory Path Mounted Using NFS on Each Host
	Attach a Repository as a Directory Path That Is Accessible on Each Host with SSH or SCP

	Detach a Repository
	List Repositories and Collections

	Backing Up and Restoring a Database
	Back Up a Database
	Back Up a Database into a Remote Repository (WAN-Friendly)
	Prerequisites
	SSH Configuration File
	BackupFailThreshold Attribute
	File System Space
	WAN Throughput
	Create a Staged Backup

	Check the Status of a Backup
	Delete a Backup
	Restore a Database
	Check the Status of a Restore
	Set Cache Credentials

	Exporting and Importing a Database
	Export a Database
	Check the Status of a Database Export
	Delete a Database Export
	Import a Database Export
	Check the Status of a Database Import

	Determining the Size of a Backup or Export

	12 Using Cache Groups in TimesTen Scaleout
	Introduction of Cache in TimesTen Scaleout
	Setting Up the Oracle Database and TimesTen Scaleout Systems
	Create Users and Tablespace in the Oracle Database
	Create a TimesTen Database
	Create a Database Definition for the TimesTen Database
	Create and Open the TimesTen Database

	Add the Oracle Database Net Service Name to the tnsnames.ora File
	Create Users in the TimesTen Database
	Create a Connectable for the TimesTen Database
	Register the Cache Administration User Name and Password in the TimesTen Database

	Creating a Static Read-Only Cache Group
	Create the Oracle Database Tables to be Cached
	Start a Cache Agent for TimesTen Scaleout
	Create the Cache Groups
	Distribution Schemes for Cache Groups in TimesTen Scaleout

	Creating an Index on a Cache Table

	Performing Operations on the Read-Only Cache Group
	Automatically Refresh Updates on the Cached Oracle Database Table
	Managing the Autorefresh State
	Disabling Full Autorefresh

	Manually Load the Cache Group
	Manually Refresh the Read-Only Cache Group
	Unloading the Cache Group

	Managing the Cache Environment
	Monitoring the Status of the Cache Agent Processes
	Displaying Information About Cache Groups
	Changing TimesTen Cache User Names and Passwords
	Changing the Oracle Database Schema
	Monitoring Autorefresh Operations on Cache Groups
	Managing the Change Log Tables and Triggers in the Oracle Database
	Gathering Information from the Change Log Table
	Dropping Oracle Database Objects Used for Caching

	Restoring the TimesTen and Oracle Database Systems
	Dropping Cache Groups
	Stopping the Cache Agents for TimesTen Scaleout
	Dropping the Oracle Database Users and Their Objects

	Supported Cache Features in TimesTen Scaleout
	Using Passthrough
	Using Oracle RAC

	Limiting Cache Agent Connections to the Oracle Database
	Compatibility Issues Between the TimesTen and Oracle Databases
	Restrictions for Cache on TimesTen Scaleout

	13 Recovering from Failure
	Displaying the Database, Replica Set and Element Status
	Display the Status of the Database and All Elements

	Recovering from Transient Errors
	Retry Transient Errors
	Communications Error
	Software Error
	Host or Data Instance Failure
	Heavy Load or Temporary Communication Failure

	Recovering from a Data Distribution Error
	Tracking the Automatic Recovery for an Element
	Availability Despite the Failure of One Element in a Replica Set
	Recovering When a Single Element Fails in a Replica Set
	Troubleshooting Based on Element Status
	Retry Element Creation
	Restart a Data Instance That Is Down
	Destroy an Evicted Element or an Element Where a Destroy Failed

	Recovering a Replica Set After an Element Goes Down
	Remove and Replace a Failed Element in a Replica Set

	Recovering from a Down Replica Set
	Transaction Behavior with a Down Replica Set
	Durably Recovering a Failed Replica Set When Durability=1
	Recovering a Failed Replica Set When Durability=0

	Recovering When the Replica Set Has a Permanently Failed Element
	Evicting the Element in the Permanently Failed Replica Set When K = 1
	Evict the Element to Potentially Replace at Another Time
	Evict and Replace the Data Instance Without Re-Distribution

	Evicting All Elements in a Permanently Failed Replica Set When K >= 2
	Replacing the Replica Set with New Elements with No Data Redistribution

	Maintaining Database Consistency After an Eviction

	Recovering When a Data Instance Is Down
	Database Recovery
	Client Connection Failover
	Configuring TCP Keep-Alive Parameters

	Managing Failover for the Management Instances
	Status for Management Instances
	Starting, Stopping and Switching Management Instances
	Single Management Instance Failure
	Active Management Instance Failure
	Failed Management Instance Can Be Recovered
	Failed Management Instance Encounters a Permanent Failure

	Standby Management Instance Failure
	Standby Management Instance Recovers
	Standby Management Instance Experiences Permanent Failure

	Both Management Instances Fail
	Bring Back Both Management Instances
	Bring Back One of the Management Instances

	Clean Up Metadata for Multiple TimesTen Databases with the Same Name
	Performance Recommendations
	Set a Timeout for Create Channel Requests

	A Example for Deploying a Grid and Database
	TimesTen Scaleout Prerequisites
	Ensure That TimesTen Scaleout Supports the OS Installed on Each Host
	Configure All Hosts in the Same Internal Network
	Create a TimesTen User Group and OS User
	Set Linux Kernel Parameters
	Set the MEMLOCK Settings for the Instance Administrator

	Install TimesTen Scaleout
	Set Passwordless SSH Between All Hosts

	Set Up the Membership Service
	Install Apache ZooKeeper
	Configure the ZooKeeper Servers
	Start the ZooKeeper Servers
	Create the Client Configuration File

	Deploy a Grid and Database
	Create a Database Definition File
	Create a Connectable File
	Create a SQL Script File for Your Database
	Create a Configuration File for the ttGridRollout Utility
	Create a Grid and Database
	Connect to the Database

	B TimesTen Scaleout Environment
	Environment Variables
	Setting Environment Variables
	TIMESTEN_HOME Environment Variable
	NLS_LANG Environment Variable
	Shared Library Path Environment Variable
	PATH Environment Variable
	Temporary Directory Environment Variable
	TNS_ADMIN Environment Variable
	Java Environment Variables
	CLASSPATH Environment Variable
	PATH Environment Variable Settings for Java

	Instance Home Directory and Subdirectories
	Managing a Development or Test Environment

