
Oracle® NoSQL Database
Concepts Manual

Release 12.2.4.5
E85371-01
February 2018

Oracle NoSQL Database Concepts Manual, Release 12.2.4.5

E85371-01

Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book iv

1 Introduction to Oracle NoSQL Database

NoSQL Database Server Licensing 1-2

NoSQL Database Differences 1-2

NoSQL Database Client Licensing 1-3

Architecture 1-3

Replication Nodes and Shards 1-4

Replication Factor 1-5

Partitions 1-5

Zones 1-6

Topologies 1-7

Arbiter Nodes 1-7

Data Models 1-7

Consistency 1-8

Durability 1-8

Quorum 1-9

Administration 1-10

KVLite 1-10

The Administration Command Line Interface history 1-10

Monitoring 1-11

Troubleshooting 1-11

Access and Security 1-11

Integration 1-12

Oracle Database Mobile Server Integration 1-12

Hadoop Integration 1-13

Property Graph Integration 1-13

Oracle External Tables Integration 1-13

Coherence Integration 1-14

iii

Preface

This document introduces Oracle NoSQL Database.

This book is aimed at technical users, primarily database administrators and
developers who are new to Oracle NoSQL Database.

Conventions Used in This Book
The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Note:

Finally, notes of special interest are represented using a note block such as
this.

Preface

iv

1
Introduction to Oracle NoSQL Database

Welcome to Oracle NoSQL Database, providing multi-terabyte distributed storage for
key-value pairs, with scalable throughput, and great performance. Oracle NoSQL
Database services network requests to store and retrieve data, accessing data as
either tables or key-value pairs. Oracle NoSQL Database services data requests with
low latency, high throughput, and predictable data consistency, based on how you
configure the store.

Oracle NoSQL Database uses Oracle Berkeley DB Java Edition as its underlying
storage engine. For more information about Oracle Berkeley DB Java Edition, start
here: Oracle Berkeley DB Java Edition.

Oracle NoSQL Database offers full Create, Read, Update and Delete (CRUD)
operations with adjustable durability guarantees. Oracle NoSQL Database is designed
with high availability (HA), excellent throughput, and low latency, while requiring
minimal administrative interaction.

Oracle NoSQL Database provides performance scalability. To increase performance,
you can add hardware. If your performance is sufficient for your needs, you can
purchase and manage fewer hardware resources.

Oracle NoSQL Database is designed for applications that require network-accessible
data with user-definable read/write performance levels. A typical example is a web
application servicing requests across the traditional three-tier architecture: web server,
application server, and back-end database. In this configuration, Oracle NoSQL
Database should be installed behind the application server, either taking the place of
the back-end database, or working alongside it. To make use of Oracle NoSQL
Database, you must supply code to run on the application server.

An application makes use of Oracle NoSQL Database by performing network requests
against a data store, generically referred to as the KVStore. To make such data
requests, you link the Oracle NoSQL Database driver to your application as a Java
library (.jar file). Your code can then access any of the Java APIs that the library
supplies.

Information about using the Java APIs is available in two manuals. Most developers
should read Oracle NoSQL Database Getting Started with the Table API. Developers
who want to use the older, legacy Key/Value API should read Oracle NoSQL
Database Getting Started with the Key/Value API.

Note:

Because Oracle NoSQL Databaseis tested using Java 8, use only that Java
version withOracle NoSQL Database.

You can also use a non-Java language driver to access table data stored in Oracle
NoSQL Database. Drivers are available for C, Node.js, and Python. For more
information, see the specific Quick Start Guide for the driver of interest.

1-1

Oracle NoSQL Database also provides SQL for Oracle NoSQL Database, which is an
easy to use SQL-like language that supports read-only queries and data definition
(DDL) statements. Use this SQL-like language to access table data for read-only
queries and DDL statements.

To follow along query examples run with the interactive shell, see Getting Started with
SQL for Oracle NoSQL Database.

To execute queries using the JAVA API, see Getting Started with the Table API.

For a more detailed description of the SQL language (both DDL and query statements)
see the SQL for Oracle NoSQL Database Specification.

NoSQL Database Server Licensing
Oracle NoSQL Database Server is available one of two licensing options: Oracle
NoSQL Database Community Edition (CE) and Oracle NoSQL Database Enterprise
Edition (EE). For a description on these two licenses, see:

NoSQL Database Differences.

NoSQL Database Differences
Oracle NoSQL Database Server is available using two different options: Community
Edition (CE), and Enterprise Edition (EE).

Community Edition (CE)

Community Edition is available using an open source license, and it ships with source
code.

Enterprise Edition (EE)

Enterprise Edition does not include source code, and it is available using a commercial
license.

Feature Differences between EE and CE

Enterprise Edition offers various features not available using Community Edition.
These features are:

• Kerberos Authentication Service integration

• Oracle Database External Table integration

• Oracle Coherence integration

• Oracle Event Processing integration - Streams Processor Engine

• Oracle Enterprise Manager integration

• Oracle Big Data Spatial and Graph integration

• Oracle Wallet integration for external password storage

• Oracle Semantic Graph integration

Chapter 1
NoSQL Database Server Licensing

1-2

NoSQL Database Client Licensing
Oracle NoSQL Database client APIs are released as open source. They ship with
source code and are released under the Apache 2.0 License. These client APIs may
be used to access Oracle NoSQL Database servers using either the Community
Edition (CE) or Enterprise Edition (EE) licenses.

Architecture
Oracle NoSQL Database applications read and write data by performing network
requests against Oracle NoSQL Database's data store, which is referred to as the
KVStore. The KVStore is a collection of Storage Nodes, each of which hosts a set of
Replication Nodes. Data is automatically spread across these Replication Nodes by
internal KVStore mechanisms. Given a traditional three-tier web architecture, the
KVStore either takes the place of your back-end database, or runs alongside it.

A KVStore installation can optionally be spread across multiple physical locations,
each of which is called a zone. Zones are described in Zones.

Note:

Replication Nodes are implemented using Berkeley DB, Java Edition (JE). JE is
an enterprise-class, transaction-protected database. It is fully described here.

The store contains multiple Storage Nodes. A Storage Node is a physical (or virtual)
machine with its own local storage. The machine is intended to be commodity
hardware. It should be, but is not required to be, identical to all other Storage Nodes
within the store.

The following illustration depicts the typical architecture used by an application that
makes use of Oracle NoSQL Database:

Chapter 1
NoSQL Database Client Licensing

1-3

Every Storage Node hosts one or more Replication Nodes as determined by its
capacity. A Storage Node's capacity serves as a rough measure of the hardware
resources associated with it. Stores can contain Storage Nodes with different
capacities, and Oracle NoSQL Database will ensure that a Storage Node is assigned a
load that is proportional to its capacity.

A Replication Node, in turn, contains some subset of the store's data. Store data is
automatically divided evenly into logical collections called partitions. Every Replication
Node contains at least one, and typically many, partitions. Partitions are described in
greater detail in Partitions.

Finally, each Storage Node contains monitoring software that ensures the Replication
Nodes which it hosts are running and are otherwise healthy.

For more information on how to associate capacity with a Storage Node and know the
best way to balance the number of Storage Nodes and Replication Nodes, see Oracle
NoSQL Database Administrator's Guide.

Replication Nodes and Shards
At a very high level, a Replication Node can be thought of as a single database which
contains key-value pairs. Storage Nodes host one or more Replication Nodes.
Frequently a Storage Node only hosts a single Replication Node, but for installations
that use hardware with lots of memory/CPUs/disks, Storage Nodes can and do host
multiple Replication Nodes.

Your store's Replication Nodes are organized into shards. A single shard contains
multiple Replication Nodes. One of these is the master node, which is responsible for
performing database writes. Each shard also contains one or more read-only replicas.
The master node copies all write activity to the replicas so that the replicas can be
used to service read-only operations. Although there can be only one master node per

Chapter 1
Architecture

1-4

shard at any given time, any of the members of the shard (with the exception of nodes
in a secondary zone as described below) are capable of becoming a master node.

The following illustration shows how the KVStore is divided up into shards:

If the machine hosting the master should fail in any way, then the master automatically
fails over to one of the other nodes in the shard. That is, one of the replica nodes is
automatically promoted to master.

Production KVStores should contain multiple shards. At installation time you provide
information that allows Oracle NoSQL Database to automatically decide how many
shards the store should contain. The more shards that your store contains, the better
your write performance is because the store contains more nodes that are responsible
for servicing write requests.

Replication Factor
The number of nodes belonging to a shard is called its Replication Factor. The larger a
shard's Replication Factor, the faster its read throughput (because there are more
machines to service the read requests) but the slower its write performance (because
there are more machines to which writes must be copied).

A store can be installed across multiple physical locations called zones. You set a
Replication Factor on a per-zone basis. Once you set the Replication Factor for each
zone in the store, Oracle NoSQL Database makes sure the appropriate number of
Replication Nodes are created for each shard residing in each zone making up your
store. The number of copies, or replicas, maintained in a zone is called the Zone
Replication Factor. The total number of replicas in all primary zones is called the
Primary Replication Factor, and the total number in all secondary zones is called the
Secondary Replication Factor. For all zones in the store, the total number of replicas
across the entire store is called the Store Replication Factor.

For additional information on how to identify the Primary Replication Factor and its
implications, as well on multiple zones and replication factors see the Oracle NoSQL
Database Administrator's Guide.

Partitions
All data in the store is accessed by one or more keys. A key might be a column in a
table, or it might be the key portion of a key/value pair.

Chapter 1
Architecture

1-5

Keys are placed in logical containers called partitions, and each shard contains one or
more partitions. Once a key is placed in a partition, it cannot be moved to a different
partition. Oracle NoSQL Database spreads records evenly across all available
partitions by hashing each record's key.

As part of your planning activities, you must decide how many partitions your store
should have. Note that this is not configurable after the store has been installed.

It is possible to expand and change the number of Storage Nodes in use by the store.
The store is then reconfigured to take advantage of the new resources by adding new
shards. When this happens, existing data is spread across new and old shards by
redistributing partitions from one shard to another. For this reason, it is desirable to
have a large number of partitions so as to allow fine-grained reconfiguration of the
store.

As a rough rule of thumb, there should be at least 10 to 20 partitions per shard, and
the number of partitions should be evenly divisible by the number of shards. Since the
number of partitions cannot be changed after the initial deployment, you should
consider the maximum future size of your store when specifying the number of
partitions. While there is some overhead in configuring an excessively large number of
shards, it is not unreasonable to select a partition number that is 100 times the
maximum number of shards you ever expect your store to contain.

Zones
A zone is a physical location that supports good network connectivity among the
Storage Nodes deployed in it and has some level of physical separation from other
zones. A zone generally includes redundant or backup power supplies, redundant data
communications connections, environmental controls (for example: air conditioning,
fire suppression) and security devices. A zone may represent an actual physical data
center building, but could also represent a floor, room, pod, or rack, depending on the
particular deployment. Oracle recommends you install and configure your store across
multiple zones to guard against systemic failures affecting an entire physical location,
such as a large scale power or network outage.

Multiple zones provide fault isolation and increase the availability of your data in the
event of a single zone failure.

Zones come in two types. primary zones contain nodes which can serve as masters or
replicas. Zones are created as primary zones by default. secondary zones contain
nodes which can only serve as replicas. Secondary zones can be used to make a
copy of the data available at a distant location, or to maintain an extra copy of the data
to increase redundancy or read capacity.

Only primary zones can have a Replication Factor equal to zero. This type of zone is
useful to host Arbiter Nodes. Zero capacity Storage Nodes would be added to this
zone in order to host the Arbiter Nodes.

Note:

Only primary zones can host Arbiter Nodes.

Chapter 1
Architecture

1-6

You can use the command line interface to create and deploy one or more zones.
Each zone hosts the deployed storage nodes. For additional information on zones and
how to create them see the Oracle NoSQL Database Administrator's Guide.

Topologies
A topology is the collection of zones, storage nodes, replication nodes and
administration services that make up a NoSQL DB store. A deployed store has one
topology that describes its state at a given time.

After initial deployment, the topology is laid out so as to minimize the possibility of a
single point of failure for any given shard. This means that while a Storage Node might
host more than one Replication Node, those Replication Nodes will never be from the
same shard. This improves the chances of the shard continuing to be available for
reads and writes even in the face of a hardware failure that takes down the host
machine.

Arbiter Nodes are automatically configured in a topology if the primary replication
factor is two and a zone is configured to host Arbiter Nodes.

Topologies can be changed to achieve different performance characteristics, or in
reaction to changes in the number or characteristics of the Storage Nodes. Changing
and deploying a topology is an iterative process. For information on how to use the
command line interface to create, transform, view, validate and preview a topology,
see the Oracle NoSQL Database Administrator's Guide.

Arbiter Nodes
An Arbiter Node is a lightweight process that supports write availability in two
situations. First, when the primary replication factor is two and a single Replication
Node becomes unavailable. Second, when two Replication Nodes cannot talk to each
other to figure out who's master. The role of an Arbiter Node is to participate in
elections and respond to acknowledge requests in these situations. An Arbiter Node
does not hold any data, which is why Storage Nodes may be created with capacity
equal to zero for the purpose of hosting an Arbiter Node.

The Arbiter Node will be allocated on a Storage Node outside of the shard. An error
will result if there are not enough Storage Nodes to host an Arbiter Node located on a
different Storage Node as other shard members. The Arbiter Node provides write
availability in the absence of a single Storage Node. The pool of Storage Nodes in a
primary zone configured to host Arbiter Nodes are used for Arbiter Node allocation.
Storage Nodes may be created with capacity equal to zero for the purpose of hosting
an Arbiter Node. Arbiter Nodes may also be allocated on nodes with capacity greater
than zero, but zero capacity Storage Nodes have a higher priority in Arbiter Node
allocation.

For information on Arbiter Nodes see the Oracle NoSQL Database Administrator's
Guide.

Data Models
You can model your data in Oracle NoSQL Database by using Tables or a key-value
interface.

Chapter 1
Data Models

1-7

Tables are the easiest way to model data. They provide the highest level of
abstraction, they are simple to model and should be familiar to any developer. This
model also supports secondary indices and table evolution. For more information on
the tables API, see Oracle NoSQL Database Getting Started with the Table API.

If you are using tables, then you can use JSON to model data. If strongly typed data is
not a priority, then this is a good choice. For more information on JSON, see Oracle
NoSQL Database Getting Started with the Table API.

Finally, if you want to serialize data, manage the key structure, manage secondary
indices through index views, manage evolution and security through your client code,
or work with large objects, then you can use the key-value interface. For more
information on the key-value API, see Oracle NoSQL Database Getting Started with
the Key/Value API.

Consistency
Oracle NoSQL Database provides several different consistency policies. At one end of
the spectrum, applications can specify absolute consistency, which guarantees that all
reads return the most recently written value for a designated key. At the other end of
the spectrum, applications capable of tolerating inconsistent data can specify weak
consistency, allowing the database to return a value efficiently even if it is not entirely
up to date. In between these two extremes, applications can specify time-based
consistency to constrain how old a record might be or version-based consistency to
support both atomicity for read-modify-write operations and reads that are at least as
recent as the specified version.

The following illustration depicts the range of consistency policies that can be used by
an application that makes use of Oracle NoSQL Database:

Flexible consistency policies enables developers to easily create business solutions
providing data guarantees while meeting application latency and scalability
requirements.

Durability
Oracle NoSQL Database provides a range of durability policies that specify what
guarantees the system makes after a crash. At one extreme, applications can request
that write requests block until the record has been written to stable storage on all
copies. This has obvious performance and availability implications, but ensures that if
the application successfully writes data, that data will persist and can be recovered
even if all the copies become temporarily unavailable due to multiple simultaneous
failures. At the other extreme, applications can request that write operations return as

Chapter 1
Consistency

1-8

soon as the system has recorded the existence of the write, even if the data is not
persistent anywhere. Such a policy provides the best write performance, but provides
no durability guarantees.

The following illustration depicts the range of durability policies that can be used by an
application that makes use of Oracle NoSQL Database:

By specifying when the database writes records to disk and what fraction of the copies
of the record must be persistent (none, all, or a simple majority), applications can
enforce a wide range of durability policies.

Quorum
Operations that modify data in Oracle NoSQL Database require that at least a simple
majority of primary nodes be available to form a quorum in the shard that stores the
specified key.

Quorum is the minimum number of primary nodes required in a shard, or in the set of
admin nodes, to permit electing a master to support write operations. The quorum is
the minimum number of nodes that represents a majority of the primary nodes in the
group.

Note:

Secondary nodes are not counted when computing the quorum.

Consider the following example using a store with four zones. Zones 1, 2, and 3 are
primary zones with replication factor 1, and zone 4 is a secondary zone with replication
factor 1. The number of primary nodes in each shard is 3, which is the sum of the
replication factors for the primary zones. In a group of 3 nodes, 2 is the smallest
number of nodes that represent a majority, so the quorum is 2. The secondary nodes
in zone 4 have no impact on the quorum.

In general, to compute the quorum, first determine the primary replication factor, which
is the sum of the replication factors of all primary zones. The quorum is one greater
than half of the primary replication factor, rounding down when computing the half.

For example, for primary replication factor of 1, the quorum is 1. For primary
replication factor of 5 the quorum is 3. For primary replication factor of 6, the quorum is
4.

Chapter 1
Durability

1-9

Administration
The Administration command line interface (CLI) is the primary tool used to manage
your store. It is used to configure, deploy, and change store components. It can also
be used to verify the system, check service status, check for critical events and
browse the store-wide log file. Alternatively, you can use a browser-based graphical
user interface to do read-only monitoring. (Described in the next section.)

The CLI can also be used to get, put, and delete store records or tables, retrieve
schema, and display general information about the store. It can also be used to
diagnose problems or potential problems in the system, fix actual problems by adding,
removing or modifying store data and/or verify that the store has data. It is particularly
well-suited for a developer who is creating an Oracle NoSQL Database application,
and who needs to either populate a store a with a small number of records so as to
have data to develop against, or to examine the store's state as part of development
debugging activities.

The command line interface is accessed using the following command:

java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin

Note:

To avoid using too much heap space, you should specify -Xmx and -Xms flags
for Java when running administrative and utility commands.

For a complete listing of all the commands available to you in the CLI as well as its
usage, see the Oracle NoSQL Database Administrator's Guide.

KVLite
KVLite is a simplified version of Oracle NoSQL Database. It provides a single-node
store that is not replicated. It runs in a single process without requiring any
administrative interface. You configure, start, and stop KVLite using a command line
interface.

KVLite is intended for use by application developers who need to unit test their Oracle
NoSQL Database application. It is not intended for production deployment, or for
performance measurements.

KVLite is installed when you install KVStore. It is available in the kvstore.jar file in the
lib directory of your Oracle NoSQL Database distribution.

Note that KVLite cannot be configured as a secure store.

For more information on KVLite, see either Oracle NoSQL Database Getting Started
with the Table API or Oracle NoSQL Database Getting Started with the Key/Value API.

The Administration Command Line Interface history
By default Oracle NoSQL Database uses the Java Jline library to support saveable
command line history in the CLI. If you want to disable this feature, the following Java
property should be set while running runadmin:

Chapter 1
Administration

1-10

java -Doracle.kv.shell.jline.disable=true -jar KVHOME/kvstore.jar \
runadmin -host <hostname> -port <portname>

Command line history is saved to a file so that it is available after restart. By default,
Oracle NoSQL Database attempts to save the history in a
KVHOME/.jlineoracle.kv.impl.admin.client.CommandShell.history file, which is created
and opened automatically. The default history saved is 500 lines.

Note:

If the history file cannot be opened, it will fail silently and the CLI will run without
saved history.

The default history file path can be overridden by setting the
oracle.kv.shell.history.file="path" Java property.

The default number of lines to save to the file can be modified by setting the
oracle.kv.shell.history.size=<int_value> Java property.

Monitoring
Information about the performance and availability of your store is available. You can
monitor the information through an API class, log files, and Java Management
Extensions (JMX).

These agents provide interfaces on each Storage Node that allow management clients
to poll them for information about the status, performance metrics, and operational
parameters of the Storage Node and its managed services, including replication
nodes, and admin instances. Also, JMX can be used to monitor Arbiter Nodes.

For more information, see the Oracle NoSQL Database Administrator's Guide.

Troubleshooting
Errors can occur in your store deployment. Tools, commands, logs and procedures
can be used in order to solve problems.

To catch configuration errors early, you can use the Diagnostics Utility. You can also
use this tool to package information and files to send them to Oracle Support, for
example.

For more information on troubleshooting your store, see the Oracle NoSQL Database
Administrator's Guide.

Access and Security
Access to the KVStore and its data is performed in two different ways. Routine access
to the data is performed using Java APIs that the application developer uses to allow
his application to interact with the Oracle NoSQL Database Driver, which
communicates with the store's Storage Nodes in order to perform whatever data
access the application developer requires.

Chapter 1
Monitoring

1-11

In addition, administrative access to the store is performed using a command line
interface or a browser-based graphical user interface. System administrators use
these interfaces to perform the few administrative actions that are required by Oracle
NoSQL Database. You can also monitor the store using these interfaces.

For most production stores, authentication over SSL is normally required by both the
command line interface and the Java APIs. It is possible to install a store such that
authentication is not required, but this is not recommended. For details on Oracle
NoSQL Database's security features, see the Oracle NoSQL Database Security
Guide.

Note:

Oracle NoSQL Database is intended to be installed in a secure location where
physical and network access to the store is restricted to trusted users. For this
reason, at this time Oracle NoSQL Database's security model is designed to
prevent accidental access to the data. It is not designed to prevent denial-of-
service attacks.

Integration
Oracle NoSQL Database can be integrated with Apache Hadoop and products in the
Oracle stack. In the following sections you will learn more about this.

Oracle Database Mobile Server Integration
As of Oracle Database Mobile Server (Oracle DMS) 12.1 release, Oracle NoSQL
Database can be integrated with Oracle Database Mobile Server. Oracle DMS
facilitates the development, deployment and management of mobile database
applications for a large number of mobile users.

The main integration feature is synchronizing Oracle NoSQL with Oracle Berkeley DB/
SQLite/Java DB.

Oracle DMS can be used as a data synchronization engine between Oracle NoSQL
and mobile client databases including Oracle Berkeley DB, SQLite and Java DB.
Existing tables in an Oracle NoSQL database can be published to Oracle DMS using
publish/subscribe APIs. Oracle DMS creates corresponding tables on the client-side
and allows them to synchronously upload their data to Oracle NoSQL. Since, Oracle
DMS completely manages the data format conversion between the local client
database and Oracle NoSQL DB, no additional coding or scripting is required. The
mobile to NoSQL paradigm fits best where the number of clients is large, and/or the
amount of collected data is large, and/or the server application requires NoSQL as
data storage.

With Oracle NoSQL as data storage, mobile and embedded applications can use
Oracle DMS as a complete and reliable solution for synchronizing their data to the
highly scalable Oracle NoSQL database. For more information, see section 2.12.3
"Creating NoSQL Queue Publication Item" in the Oracle Database Mobile Server
Developer's Guide. You can also find the FleetControl sample application in Oracle
Mobile Development Kit (a development toolkit for Oracle DMS), which demonstrates

Chapter 1
Integration

1-12

how to use Oracle NoSQL as a back-end database and how to synchronize
application data between mobile client database and Oracle NoSQL via Oracle DMS.

Hadoop Integration
Oracle NoSQL Database can be integrated with Apache Hadoop systems using the
oracle.kv.hadoop.KVInputFormat class. This class allows you to read data from Oracle
NoSQL Database and then prepare it for insertion into a Hadoop system. To move
data in the reverse, you can read data from the Hadoop system using the standard
mechanisms, and then write the records to Oracle NoSQL Database using the APIs
described in this book.

An example of using KVInputFormat to read data from Oracle NoSQL Database in a
Map/Reduce job can be found in the <KVHOME>/examples/hadoop directory.

In addition, Oracle NoSQL Database provides the oracle.kv.AvroFormatter interface.
This is used to support Oracle Loader for Hadoop (OLH), which can read data directly
from Oracle NoSQL Database and write it to Oracle Database as a Map/Reduce job.
OLH is described in the Oracle Loader for Hadoop chapter of the Oracle Big Data
Connectors User's Guide, which you can find here.

Property Graph Integration
Oracle Big Data Spatial and Graph can be configured to use Oracle NoSQL Database
to support its property graph feature. This feature supports graph operations, indexing,
queries, search and in-memory analytics.

Graphs are commonly used to model, store, and analyze relationships found in social
networks, cyber security, utilities and telecommunications, life sciences and clinical
data, and knowledge networks. Typical graph analyses encompass graph traversal,
recommendations, finding communities and influencers, and pattern matching.

For more information, see the Big Data Spatial and Graph User's Guide and
Reference.

Oracle External Tables Integration
Oracle NoSQL Database data can be accessed using Oracle Database's External
Tables feature. This capability allows NoSQL Database data to be read into Oracle
Database. NoSQL Database data cannot be modified using the External Tables
feature.

Note that this is a feature which is only available to users of the Oracle NoSQL
Database Enterprise Edition.

To use the Oracle Database External Table feature to read Oracle NoSQL Database
data, you must use the <KVHOME>/exttab/bin/nosql_stream preprocessor to populate our
Oracle tables with the data. You must then configure your Oracle Database to use the
External Tables feature.

For information on how to use the nosql_stream preprocessor, and how to configure
Oracle Database to use External Tables, see the oracle.kv.exttab package summary.

Chapter 1
Integration

1-13

https://www.oracle.com/pls/topic/lookup?ctx=E37231_01&id=CBHGEJDE
https://www.oracle.com/pls/topic/lookup?ctx=E69290_01&id=BDSPA108
https://www.oracle.com/pls/topic/lookup?ctx=E69290_01&id=BDSPA108

Coherence Integration
Oracle Coherence is a middleware application that provides data management support
for clustered applications. The data that an application delegates to Oracle Coherence
are automatically available to and accessible by all servers in the application cluster.
By distributing data across multiple machines, Oracle Coherence solves problems
related to achieving availability, reliability, scalability, performance, serviceability and
manageability of clustered applications.

Oracle Coherence is described here.

To provide these solutions, Oracle Coherence implements a cache. This cache can be
customized to use a number of different data repositories to store the cached data.
One such data repository is Oracle NoSQL Database.

Note that this is a feature which is only available to users of the Oracle NoSQL
Database Enterprise Edition.

To integrate with Oracle NoSQL Database, Oracle Coherence must be customized
using a combination of configuration XML, stock Coherence code, and custom Oracle
NoSQL Database code. The Oracle NoSQL Database code is implemented using
classes provided by the oracle.kv.coherence package.

Oracle NoSQL Database can be used to support two different caching strategies for
Oracle Coherence. The first of these is implemented by
oracle.kv.coherence.NoSQLBinaryStore. This class allows you to implement cache
data that is not meant to be shared with non-cache-based applications, and so uses a
data format that is fairly opaque. This is an efficient and easy-to-configure caching
option.

Alternatively, you can implement a caching strategy that results in data which is meant
to be shared with non-cache-based applications. You do this using
oracle.kv.coherence.NoSQLAvroCacheStore. This caching mechanism is Avro-aware,
and so any Avro-compliant application will be able to read and write these data
records.

In order for Oracle Coherence to use these Avro-based objects, it must be able to
serialize the Avro records for transmission over its network. To enable this, you use
the oracle.kv.coherence.NoSQLAvroSerializer class.

Chapter 1
Integration

1-14

	Contents
	Preface
	Conventions Used in This Book

	1 Introduction to Oracle NoSQL Database
	NoSQL Database Server Licensing
	NoSQL Database Differences
	NoSQL Database Client Licensing
	Architecture
	Replication Nodes and Shards
	Replication Factor
	Partitions
	Zones
	Topologies
	Arbiter Nodes

	Data Models
	Consistency
	Durability
	Quorum

	Administration
	KVLite
	The Administration Command Line Interface history

	Monitoring
	Troubleshooting
	Access and Security
	Integration
	Oracle Database Mobile Server Integration
	Hadoop Integration
	Property Graph Integration
	Oracle External Tables Integration
	Coherence Integration

