
Oracle® NoSQL Database
Full Text Search

Release 12.2.4.5

E85382-01

February 2018

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Introduction
Full Text Search (or just text search) provides the capability to identify natural-
language documents that satisfy a query, and optionally to sort them by relevance to
the query. The most common type of search is to find all documents containing given
query terms and return them in order of their similarity to the query. Notions of query
and similarity are very flexible and depend on the specific application. The simplest
search considers query as a set of words and similarity as the frequency of query
words in the document.

Oracle NoSQL Database integrates with a third-party open-source search engine,
Elasticsearch (ES) to enable text-searching capability in Oracle NoSQL Database, in-
concert with the Tables interface. For more information on:

• Elasticsearch, see here.

• Tables interface, see: Introducing Oracle NoSQL Database Tables and Indexes in
the Oracle NoSQL Database Getting Started with the Table API.

Full-text search is an important aspect of any big data and Oracle NoSQL Database
system. Users expect that when they input text into a box and click “search”, they will
get the relevant search results they are looking for in a fraction of a second. This
feature provides:

• High performance full-text search of Tables stored in Oracle NoSQL Database

1

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Search which allows users to explore a collection of information by applying
multiple filters

Note:

So that the maintenance of indexes does not affect the performance of an
Oracle NoSQL Database store, text indexes will not be maintained locally by
Oracle NoSQL Database components, but will instead be maintained by a
remote service (Elasticsearch) hosted on other nodes.

This feature provides a means of marking fields in an Oracle NoSQL Database Tables
schema as being text searchable. Text indexing allows creating indexes on Oracle
NoSQL Database tables that cause the indexed fields to automatically enter into an
Elasticsearch cluster. Once the data is in Elasticsearch, you may use any native
Elasticsearch API to search and retrieve it. The documents retrieved from
Elasticsearch contain references back to the original Oracle NoSQL Database records,
facilitating their retrieval.

Prerequisite
To use this feature, you must have an Elasticsearch 2.0 cluster running as well as the
Oracle NoSQL Database store. In a production environment, for performance reasons,
both Oracle NoSQL Database nodes and Elasticsearch nodes are intended to be used
in distributed environments with different hosts.

• You can download Elasticsearch here.

• You can find the installation instructions here.

When your Elasticsearch cluster is running, it will consist of one or more nodes. Some
or all of the nodes will have services listening on two ports.

• The HTTP port, which is used for REST requests. It is 9200 by default.

• The Elasticsearch transport port, which is used for communication between
Elasticsearch nodes. It is 9300 by default.

Note:

You must know the host name and transport port of at least one node in the
cluster, and the name of the cluster itself, which by default is "elasticsearch".
See the command show parameters in Integrating Elasticsearch with Oracle
NoSQL Database . This information will be provided to the Oracle NoSQL
Database store so that it can connect to the Elasticsearch cluster.

2

Integrating Elasticsearch with Oracle NoSQL
Database
Before you can create a text index, you must register the Elasticsearch cluster with the
Oracle NoSQL Database store, using the register-es plan command. In this command
you provide the Elasticsearch cluster name, and the host name and transport port of
any node in the cluster as follows:

plan register-es -clustername <name> -host <host>
-port <transport port> [-force]

For example:

kv-> plan register-es -clustername elasticsearch
-host 127.0.0.1 -port 9300
Started plan 5. Use show plan -id 5 to check status.
To wait for completion, use plan wait -id 5

Note:

You will see an error message if the Elasticsearch cluster already contains
"stale indexes" corresponding to the Oracle NoSQL Database. A stale index is
one that was not created by the current instance of the store, but by a previous
instance of the store, or by a concurrent instance of a store with the same
name as the current store, which is not allowed.

The optional -force argument causes the Oracle NoSQL Database store to initialize an
Elasticsearch cluster regardless of whether it already contains a stale index
corresponding to the Oracle NoSQL Database store. See for example:

kv-> plan register-es -clustername elasticsearch
-host localhost -port 9300 -force
Started plan 38. Use show plan -id 38 to check status.
To wait for completion, use plan wait -id 38

Oracle NoSQL Database store Admin communicates with the Elasticsearch node to
verify its existence, and it will acquire a complete list of connection information for all
the nodes in the Elasticsearch cluster. This information will be stored and distributed to
all the nodes of the Oracle NoSQL Database store. This command can be repeated if
the Elasticsearch cluster's population of nodes changes significantly, to update Oracle
NoSQL Database's list of Elasticsearch node connections.

If you want to verify that Elasticsearch is registered with your Oracle NoSQL Database
store, run the following command:

show parameters -service <storage node id>

This command produces a list of properties which includes the cluster instance and
the name of the cluster. See the searchClusterMembers=127.0.0.1:9300 and
searchClusterName=elasticsearch in the output below:

3

kv-> show parameters -service sn1
capacity=1
haHostname=localhost
haPortRange=5005,5007
hostname=localhost
memoryMB=0
mgmtClass=oracle.kv.impl.mgmt.NoOpAgent
mgmtPollPort=0
mgmtTrapPort=0
numCPUs=8
registryPort=5000
rnHeapMaxMB=0
rnHeapPercent=85
rootDirPath=./kvroot
searchClusterMembers=127.0.0.1:9300
searchClusterName=elasticsearch
serviceLogFileCount=20
serviceLogFileLimit=2000000
storageNodeId=1
systemPercent=10

Deregistering Elasticsearch from Oracle NoSQL Database
Store
To deregister an Elasticsearch cluster from the Oracle NoSQL Database store, use the
following command:

kv-> plan deregister-es
Executed plan 16, waiting for completion...
Plan 16 ended successfully

This is allowed only if all full text indexes are first removed using the following
command:

DROP INDEX [IF EXISTS] index_name ON table_name

For more information, see Drop Index. Otherwise, you get the following error message:

kv-> plan deregister-es
Cannot deregister ES because these text indexes exist:
mytestIndex
JokeIndex

To verify if the deregistration of the Elasticsearch was successful or not, run the
following command:

show parameters -service <storage node id>

Creating Full Text Index
You can create text indexes on the Oracle NoSQL Database table by using this DDL
command:

CREATE FULLTEXT INDEX [if not exists] <index-name> ON <table-name>
 (<field-name> [<mapping-spec>], ...)

4

 [ES_SHARDS = <n>] [ES_REPLICAS = <n>
 [OVERRIDE] [COMMENT <comment>]

where:

• IF NOT EXISTS is optional, and it causes the CREATE FULLTEXT INDEX statement to
be ignored if an index by that name currently exists. If this phrase is not specified,
and an index using the specified name does currently exist, then the CREATE
FULLTEXT INDEX statement will fail with an error.

• index-name is the name of the index you want to create.

• table-name is the name of the table that you want to index.

• field-name is the name of a field that you want to index.

• mapping-spec is a small JSON document that influences Elasticsearch's handling of
the field. For more information, see the section Mapping Full Text Index Field to
Elasticsearch Index Field .

• ES_SHARDS and ES_REPLICAS are optional properties that are transmitted to
Elasticsearch when the corresponding text index is created. It is explained further
below.

• OVERRIDE is optional and is used to force a creation that otherwise would be
prohibited.

For more information, see Example - Creating Full Text Index .

After you create the text index, you can verify the same by using the following
statement:

show indexes -table <tableName>

After you create the index, you can run the show table command that lists the full text
index that you have created. This command will give the table structure including the
indexes that have been created for that table:

show table -name <tableName>

For example:

kv-> show table -name mytestTable
{
"type" : "table",
"name" : "mytestTable",
"owner" : null,
"comment" : null,
"shardKey" : ["id"],
"primaryKey" : ["id"],
"fields" : [{
"name" : "id",
"type" : "INTEGER",
"nullable" : true,
"default" : null
}, {
"name" : "category",
"type" : "STRING",
"nullable" : true,
"default" : null

5

}, {
"name" : "txt",
"type" : "STRING",
"nullable" : true,
"default" : null
}],
"indexes" : [{
"name" : "mytestIndex",
"comment" : null,
"fields" : ["category", "txt"]
}]
}

Note:

You cannot evolve an index. If you want to change the index definition, for
example, add more columns to the index, you have to delete the index and
create a new one.

To configure the number of shards and replicas for an Elasticsearch index, (for more
information on these parameters in Elasticsearch, see here) the keywords ES_SHARDS
and ES_REPLICAS are included for these values in the CREATE FULLTEXT INDEX statement.

Note:

The assignments of ES_SHARDS and ES_REPLICAS are optional.

Since Elasticsearch does not allow to modify the number of shards after the
index is created, it is recommended that the users pass value for this number of
shards if the default value is not suitable.

The values assigned to ES_SHARDS and ES_REPLICAS are given as the values for
number_of_shards and number_of_replicas when you create an index in Elasticsearch.
For more information about the Elasticsearch index properties, see here.

While creating index, CREATE FULLTEXT INDEX statement uses the OVERRIDE flag, which
allows to delete any index existing in Elasticsearch by the same name as would be
created by the command.

For example:

CREATE FULLTEXT INDEX mytestIndex
on mytestTable (category, txt) OVERRIDE

Mapping Full Text Index Field to Elasticsearch Index Field
The CREATE FULLTEXT INDEX command is similar to the command that creates regular
secondary indexes. One difference is the addition of the optional <mapping-spec>

6

clause that follows the field name. If present, <mapping-spec> is a small JSON
document that influences Elasticsearch's treatment of the field.

The other difference is optional settings of shards and replicas for the Elasticsearch
index.

Note:

The <mapping-spec> is an optional clause.

When a user creates a text index, an Elasticsearch index will be created and named
as:

ondb.<store-name>.<table>.<textIndex>

Note:

Index Name is in lowercase.

For more information, see the section Indexes Created in Elasticsearch .

The index contains a single mapping which is generated from the CREATE
FULLTEXT INDEX command. See here.

One aspect of the mapping is a list of fields that compose the document type, along
with their types. In the absence of a <mapping-spec>, Oracle NoSQL Database will
supply a default type for each field that corresponds to the type of the column in the
Oracle NoSQL Database table. For example, if a table column A has the type string,
then the mapping supplied to Elasticsearch will declare a field named A of type string.
If you want Elasticsearch to treat column A as an integer despite its being a string in
Oracle NoSQL Database, you must provide an explicit type by including a <mapping-
spec> clause:

{ "type" : "integer" }

The <mapping-spec>, in addition to specifying the type of the field, can also contain
any of a large set of parameters for determining how Elasticsearch handles the field.
For example, if you want to store the field, but not index it (that is, not make it available
for search), you would include the tuple "index" : "no". For information on a list of such
parameters, see Mapping parameters.

You may supply a <mapping-spec> that does not include the type key, and Oracle
NoSQL Database will supply the default type.

The following scalar column type will be mapped to ES, STRING, INTEGER, LONG,
BOOLEAN, FLOAT, DOUBLE. For example a Long ("LONG") in Oracle NoSQL
Database will be mapped to Long ("long") in ES.

7

Note:

Indexed fields can include non-scalar types, which are specified in the same
way and with the same limitations as those for secondary indexes. For more
information, see Indexing Non-Scalar Data Types in Oracle Getting Started with
Oracle NoSQL Database Tables.

You may want to use mapping spec to put different analyzers on a field. For example,
let us assume that you want two indexed fields: “category” and “txt”. “Category” uses
standard analyzer and for the field “txt” stemming is required, and you want to use
snowball analyzer. This example assumes you have Elasticsearch version 2.x.

Note that the snowball analyzer provides stemming for some languages including
English. Stemming tries to index the stem of the word instead of the given word. For
more information, see Stemming and Snowball Analyzer. For example, the word
“fitted” would get indexed as “fit”.

You must then do the following:

1. execute 'CREATE FULLTEXT INDEX JokeIndex ON Joke (category, txt)'

2. plan register-es -clustername elasticsearch -host localhost
-port 9300 <CHANGE VALUES ACCORDINGLY>

3. execute 'CREATE FULLTEXT INDEX JokeIndex ON Joke
(category{"type":"string","analyzer":"standard"},
txt{"analyzer":"snowball"})'

4. put table -name Joke -json
'{ "id" : 2, "category" : "self-referential", "txt" :
"Is it solipsistic in here, or is it just me?" }'

5. curl -XGET 'http://localhost:7200/ondb.kvlightstore.joke.jokeindex/
_search? q=txt:solipsist&pretty'

Note:

In search call, the word “solipsistic” is actually queried by using the stemmed
word “solipsist” and the effect of snowball analyzer is seen as it fetches
document with the word “solipsistic”.

NoSQL TIMESTAMP, a scalar data type is also supported for full text index. The
maximum precision of NoSQL TIMESTAMP is 9 digits (nanosecond precision) and ES
"date" type only supports 3 (millisecond precision). The NoSQL TIMESTAMP type is
therefore mapped to the following 2 kinds of ES data types based on the specified
precision:

1. If precision of TIMESTAMP type is in [0..3], then it maps to a ES "date" field:

{
 "type" : "date",

8

 "format" : "strict_date_optional_time||epoch_millis"
 }

Here, the "date" type represents the date and time with fractional second.

2. If precision of TIMESTAMP type is in [4..9], then it maps to a ES object that
contains 2 fields:

• "date" - Here the "date" type represents the date and time with no fractional
second.

• "nanos" - Is an integer type field. Here the "nanos" is the number of nano
seconds less than 1 second.

{
 "properties" : {
 "date" : {
 "type" : "date",
 "format" : "strict_date_optional_time||epoch_millis"
 },
 "nanos" : {
 "type" : "integer"
 }
 }

Hence, for the query on "date" field for TIMESTAMP with precision 0 ~ 3, the field
name is "<timestamp-field>", and query on "date" field for TIMESTAMP with precision
4 ~ 9, the field name in ES query string is "<timestamp-field>.date". See the following
example:

1. Register elasticsearch cluster with NoSQL store.

plan register-es -clustername oracle_kv -host localhost
-port 9300 -wait

2. Table textts0 contains TIMESTAMP(0) field and with text index on it.

execute "create table IF NOT EXISTS textts0
(id integer, ts0 TIMESTAMP(0), primary key(id))"
 execute "CREATE FULLTEXT INDEX IF NOT EXISTS idxts0 ON textts0 (ts0)"
 put table -name textts0 -json '{"id":1,"ts0":"1970-01-01"}'
 put table -name textts0 -json '{"id":2,"ts0":"2016-10-18T23:59:59"}'
 ...

3. Query on ts0 TIMESTMAP(0) field in range "1970-01-01" ~ "2016-10-19", the field
name ts0:

curl -XGET 'localhost:9200/ondb.kvstore.textts0.idxts0/_search?pretty'
-d '{
 "query": {
 "range": {
 "ts0": {
 "gte": "1970-01-01",
 "lt": "2016-10-19"
 }
 }
 }
 }'

4. Table textts6 contains TIMESTAMP(6) field and with text index on it.

9

execute "create table IF NOT EXISTS textts6
(id integer, ts6 TIMESTAMP(6), primary key(id))"
 execute "CREATE FULLTEXT INDEX IF NOT EXISTS idxts6 ON textts6 (ts6)"
 put table -name textts6 -json '{"id":1,"ts6":"1970-01-01"}'
 put table -name textts6 -json
 '{"id":2,"ts6":"2016-10-18T23:59:59.999999"}'
 ...
 }
 }
 }
 }'

5. Query on ts6 TIMESTMAP(6) in range "1970-01-01" ~ "2016-10-19", the field
name is ts6.date.

curl -XGET 'localhost:9200/ondb.kvstore.textts6.idxts6/_search?pretty'
-d '{
 "query": {
 "range": {
 "ts6.date": {
 "gte": "1970-01-01",
 "lt": "2016-10-19T00:00:00"
 }
 }
 }
 }'

Here is an example with full text index on TIEMSTAMP(9), it is represented with "Date"
and "Nanos" in ES, we can do query on one of them or both of them:

1. Register elasticsearch cluster with NoSQL store.

plan register-es -clustername oracle_kv -host localhost
-port 9300 -wait

2. Create table, full text index on ts9.

execute "CREATE TABLE IF NOT EXISTS textts9(id integer,
ts9 TIMESTAMP(9), primary key(id))"
execute 'CREATE FULLTEXT INDEX IF NOT EXISTS idxts9 ON textts9 (ts9)'

3. Load 6 rows to table:

put table -name textts9 -json '{"id":1,"ts9":
"2016-01-01T01:00:00.300000001"}'
put table -name textts9 -json '{"id":2,"ts9":
"2016-01-02T01:00:00.100000001"}'
put table -name textts9 -json '{"id":3,"ts9":
"2016-01-02T01:00:00.200000001"}'
put table -name textts9 -json '{"id":4,"ts9":
"2016-01-02T01:00:00.300000001"}'
put table -name textts9 -json '{"id":5,"ts9":
"2016-01-03T02:00:00.123456789"}'

4. Query on ts9 with ts9.date is "2016-01-02T01:00:00".

curl -XGET 'localhost:9200/ondb.kvstore.textts9.idxts9/_search?pretty'
-d '{"query": {
 "term" : { "ts9.date":"2016-01-02T01:00:00"}
}}'
>

10

{
 "took" : 3,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 3,
 "max_score" : 1.9162908,
 "hits" : [{
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0003",
 "_score" : 1.9162908,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "3"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "200000001"
 }
 }
 }, {
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0002",
 "_score" : 1.0,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "2"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "100000001"
 }
 }
 }, {
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0004",
 "_score" : 0.30685282,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "4"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "300000001"
 }
 }
 }]

11

 }
}

5. Query on ts9 with ts9.nanos is 200000001.

curl -XGET 'localhost:9200/ondb.kvstore.textts9.idxts9/_search?pretty'
-d '{"query": {
> "term" : { "ts9.nanos":200000001}
> }}'
{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.5108256,
 "hits" : [{
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0003",
 "_score" : 1.5108256,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "3"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "200000001"
 }
 }
 }]
 }
}

6. Query on ts9 with ts9.date is "2016-01-02T01:00:00" and ts9.nanos is 200000001.

curl -XGET 'localhost:9200/ondb.kvstore.textts9.idxts9/_search?pretty'
-d '{"query": {
 "bool" : {
 "must" : {
 "term" : { "ts9.date":"2016-01-02T01:00:00"}
 },
 "must" : {
 "term" : { "ts9.nanos":200000001}
 }
 }
 }
}'
>
{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,

12

 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 2.4402385,
 "hits" : [{
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0003",
 "_score" : 2.4402385,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "3"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "200000001"
 }
 }
 }]
 }
}

7. Query on ts9 with ts9.date is "2016-01-02T01:00:00" and ts9.nanos is in range of
100000000 ~ 300000000.

curl -XGET 'localhost:9200/ondb.kvstore.textts9.idxts9/_search?pretty'
-d '{"query": {
 "bool" : {
 "must" : {
 "term" : { "ts9.date":"2016-01-02T01:00:00"}
 },
 "must" : {
 "range" : { "ts9.nanos":{"gte":100000000,"lte":300000000}}
 }
 }
 }
}'
>
{
 "took" : 12,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 2,
 "max_score" : 2.1615205,
 "hits" : [{
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0003",
 "_score" : 2.1615205,
 "_source" : {

13

 "_pkey" : {
 "_table" : "textts9",
 "id" : "3"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "200000001"
 }
 }
 }, {
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0002",
 "_score" : 1.4142135,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "2"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "100000001"
 }
 }
 }]
 }
}

8. Sort on ts9.date, ts9.nanos.

curl -XGET 'localhost:9200/ondb.kvstore.textts9.idxts9/_search?pretty'
-d '{"sort":[{"ts9.date":"asc"}, {"ts9.nanos":"asc"}]}'
>
{
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 6,
 "max_score" : null,
 "hits" : [{
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0001",
 "_score" : null,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "1"
 },
 "ts9" : {
 "date" : "2016-01-01T01:00:00",
 "nanos" : "300000001"
 }
 },

14

 "sort" : [1451610000000, 300000001]
 }, {
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0002",
 "_score" : null,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "2"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "100000001"
 }
 },
 "sort" : [1451696400000, 100000001]
 }, {
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0003",
 "_score" : null,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "3"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "200000001"
 }
 },
 "sort" : [1451696400000, 200000001]
 }, {
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0004",
 "_score" : null,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "4"
 },
 "ts9" : {
 "date" : "2016-01-02T01:00:00",
 "nanos" : "300000001"
 }
 },
 "sort" : [1451696400000, 300000001]
 }, {
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0005",
 "_score" : null,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "5"

15

 },
 "ts9" : {
 "date" : "2016-01-03T02:00:00",
 "nanos" : "123456789"
 }
 },
 "sort" : [1451786400000, 123456789]
 }, {
 "_index" : "ondb.kvstore.textts9.idxts9",
 "_type" : "text_index_mapping",
 "_id" : "/v/¨0006",
 "_score" : null,
 "_source" : {
 "_pkey" : {
 "_table" : "textts9",
 "id" : "6"
 },
 "ts9" : {
 "date" : "2016-01-03T06:00:00",
 "nanos" : "600000001"
 }
 },
 "sort" : [1451800800000, 600000001]
 }]
 }
}

See also:

• Supported Data Types in the Getting Started with Oracle NoSQL Database Tables
guide.

• Timestamp in the Getting Started with SQL For Oracle NoSQL Database guide.

Indexes Created in Elasticsearch
For each text index in Oracle NoSQL Database store, an Elasticsearch index is
created with a unique name:

ondb.<store-name>.<table>.<textIndex>

For example, for a text index mytestIndex in table mytestTable in store mystore, the
corresponding Elasticsearch index would be:

ondb.mystore.mytesttable.mytestindex

Here the name of the index is ondb.<storename>.<tablename>.<indexname>, where
<tablename> itself might contain multiple dotted component names, if it is the name of
a child table.

16

Note:

You will notice that an extra index is created in Elasticsearch with a name like
ondb.<store-name>._checkpoint. You must not remove or modify this index. It
contains internal information to help with recovery during restarts of Oracle
NoSQL Database components.

Example - Creating Full Text Index
1. Create a table as follows:

kv-> execute 'CREATE TABLE mytestTable
(id INTEGER, category STRING, txt STRING, PRIMARY KEY (id))'
Statement completed successfully

2. Use the following command to make a text index on that table that indexes the
category and txt columns:

kv-> execute 'CREATE FULLTEXT INDEX mytestIndex
ON mytestTable (category, txt)'
Statement completed successfully

3. Insert data into the “mytestTable” Table:

kv-> put table -name mytestTable -json
'{ "id" : 1, "category" : "pun", "txt" : "Spring is natures way of
saying, Let us party" }'
Operation successful, row inserted.

kv-> put table -name mytestTable -json
'{ "id" : 2, "category" : "self-referential", "txt" : "I am thankful
for the mess to clean after a party because it means I have been
surrounded by friends" }'
Operation successful, row inserted.

kv-> put table -name mytestTable -json
'{ "id" : 3, "category" : "stupid", "txt" : "Doing nothing is hard,
you never know when you are done" }'
Operation successful, row inserted.

kv-> put table -name mytestTable -json
'{ "id" : 4, "category" : "thoughtful", "txt" : "Do not worry if plan
A fails, there are 25 more letters in the alphabet" }'
Operation successful, row inserted.

kv-> get table -name mytestTable
{"id":4,"category":"thoughtful","txt":"Do not worry if plan A fails,
there are 25 more letters in the alphabet"}
{"id":1,"category":"pun","txt":"Spring is natures way of saying,
Let us party"}
{"id":2,"category":"self-referential","txt":"I am thankful for the
mess to clean after a party because it means I have been surrounded
by friends"}
{"id":3,"category":"stupid","txt":"Doing nothing is hard, you never

17

know when you are done"}
4 rows returned

Note:

As you enter these records, Oracle NoSQL Database produces documents
that is sent to Elasticsearch for indexing. You can find the document by
searching the Elasticsearch cluster. For more information, see here.

4. Search Elasticsearch cluster to find the document that was created in the steps
before. Elasticsearch allows REST calls as queries, so we can do REST calls
using the cURL command. The cURL command sends a request to the Elasticsearch
node's http port.

Note:

cURL is a common utility program that can issue and display the results of
http requests. Currently, it is supported on Microsoft Windows, Linux, and
Mac OS X. For more information, see here and Search using cURL
Command. However, cURL is an alternative method/option for querying
Elasticsearch. The other options can be using:

• elasticsearch-head, a web front end for browsing and interacting with
an Elasticsearch cluster, helps to query. elasticsearch-head is part of
ES standard installation and can be enabled by following the steps
mentioned here.

For more information, see Search using elasticsearch-head.

• Java API commands, see section Search Text Index using JAVA APIs.

Search using cURL Command

• Use the following cURL command to produce every document that is indexed with
the mytestIndex mapping:

curl -s localhost:9200/ondb.mystore
.mytesttable.mytestindex/_search\?pretty
{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 4,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "ondb.mystore.mytesttable.mytestindex",

18

 "_type" : "text_index_mapping",
 "_id" : "/w/¨0003",
 "_score" : 1.0,
 "_source":{"_pkey":{"_table":"mytestTable","id":"3"},"category":
 "stupid","txt": "Doing nothing is hard, you never know when
 you are done"}
 }, {
 "_index" : "ondb.mystore.mytesttable.mytestindex",
 "_type" : "text_index_mapping",
 "_id" : "/w/¨0002",
 "_score" : 1.0,
 "_source":{"_pkey":{"_table":"mytestTable","id":"2"},"category":
 "self-referential","txt": "I am thankful for the mess to clean
 after a party because it means I have been surrounded by friends"}
 }, {
 "_index" : "ondb.mystore.mytesttable.mytestindex",
 "_type" : "text_index_mapping",
 "_id" : "/w/¨0004",
 "_score" : 1.0,
 "_source":{"_pkey":{"_table":"mytestTable","id":"4"},"category":
 "thoughtful","txt": "Do not worry if plan A fails, there are 25
 more letters in the alphabet"}
 }, {
 "_index" : "ondb.mystore.mytesttable.mytestindex",
 "_type" : "text_index_mapping",
 "_id" : "/w/¨0001",
 "_score" : 1.0,
 "_source":{"_pkey":{"_table":"mytestTable","id":"1"},"category":
 "pun","txt": "Spring is natures way of saying, Let us party"}
 }]
 }
}

Note:

– The name that we gave to the text index in the CREATE FULLTEXT
statement was mytestIndex, so we are restricting the search to the
Elasticsearch index associated with that Oracle NoSQL Database text
index.

– The "cURL" command above asked to search for every record in
mytestIndex (there is no search term, so every record matches the
search). The argument "pretty" means to pretty-print the output.

– The result contains an array of "hits" with a single member. The
interesting property is "_source" which contains "_pkey" which has the
table and primary key for the original kvstore record; and the two
indexed fields "category" and "txt".

– Each item has a “_score” field which Elasticsearch uses to indicate the
level of relevance for search hits. For more information, see here.

• You can narrow the search by putting a search term into request, using "q=" like
the example below:

19

curl -s localhost:9200/ondb.mystore.mytesttable
.mytestindex/_search\?q=25\&pretty
{
 "took" : 11,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 0.25,
 "hits" : [{
 "_index" : "ondb.mystore.mytesttable.mytestindex",
 "_type" : "text_index_mapping",
 "_id" : "/w/¨0004",
 "_score" : 0.25,
 "_source":{"_pkey":{"_table":"mytestTable","id":"4"},"category":
 "thoughtful","txt": "Do not worry if plan A fails, there are 25
 more letters in the alphabet"}
 }]
 }
}

Search using elasticsearch-head

The following are the 2 query types:

• An aggregated query looks as follows:

• A query with “match_all” looks as follows:

20

For more information, see elasticsearch-head.

Search Text Index using JAVA APIs

For information on creating Oracle NoSQL Database tables, see Introducing Oracle
NoSQL Database Tables and Indexes in the Getting Started with Oracle NoSQL
Database Tables guide. To create a text index, you must use the method
KVStore.executeSync to issue the DDL command CREATE FULLTEXT INDEX, as
mentioned in the section Example - Creating Full Text Index .

Searching the index, on the other hand, must be done using Elasticsearch APIs. Here
is a very simple example of a program that searches a document type that
corresponds to an Oracle NoSQL Database text index. This command, given the
arguments "localhost 9300 kvstore MyIndex 25" produces exactly the same output as
the curl command in the section Search using cURL Command.

Note:

To build and run this program, you will need all jar files supplied with the
Elasticsearch distribution in your class path. One way to achieve this would be
to use the java command's class path wildcard feature, for example:

java -cp ".:/home/…/elasticsearch-2.0.0/lib/*" \
 DoSearch localhost 9300 kvstore mytestIndex 25

See the following example program:

import java.net.InetAddress;

import org.elasticsearch.action.search.SearchRequestBuilder;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.index.query.QueryBuilders;

public class DoSearch {

 public static void main(String args[]) throws Exception {

21

 if (args.length < 4 || args.length > 5) {
 System.err.println
 ("Usage: DoSearch <esTransportHost> <esTransportPort> " +
 "<kvStoreName> <tableName> <indexName> [search-term]");
 }
 String esTransportHost = args[0];
 int esTransportPort = Integer.parseInt(args[1]);
 String kvStoreName = args[2];
 String tableName = args[3];
 String indexName = args[4];
 String searchTerm = args.length > 5 ? args[5] : null;

 TransportClient client =
 TransportClient.builder().build();

 client.addTransportAddress
 (new InetSocketTransportAddress
 (InetAddress.getByName(esTransportHost), esTransportPort));

 final String esIndexName = "ondb." + kvStoreName.toLowerCase()
 + "." +
 tableName + "." + indexName;

 SearchRequestBuilder sb = client.prepareSearch(esIndexName);
 if (searchTerm != null) {
 sb.setQuery(QueryBuilders.simpleQueryStringQuery(searchTerm));
 }

 SearchResponse response = sb.execute().actionGet();
 System.out.println(response);
 }
}

Drop Index
Text indexes share the same namespace as regular secondary indexes within a table.
You can use the same statement to remove either type of index. DROP INDEX on a text
index stops the population of the index from Oracle NoSQL Database shards, and
removes the mapping and all related documents from Elasticsearch.

If a table to which a text index mapping refers is dropped, the text index will
automatically be dropped as part of the process.

You can drop text indexes by using this DDL command:

DROP INDEX [IF EXISTS] index_name ON table_name [OVERRIDE]
DROP TABLE [IF EXISTS] table_name

For example:

kv-> execute 'drop table mytestTable'
Statement completed successfully

While deleting index, you can use the OVERRIDE flag. The DROP INDEX statement uses the
OVERRIDE flag to enable overriding of the default constraints:

22

DROP INDEX [IF EXISTS] index_name ON table_name [OVERRIDE]

For example:

DROP INDEX mytestIndex on mytestTable OVERRIDE

For more information on the constraints, see Troubleshooting.

Troubleshooting
The most common problems that might arise when using Oracle NoSQL Database
with Elasticsearch are those related to data transfer failure and data not getting
indexed. For information on troubleshooting in Elasticsearch, see: Troubleshooting

The following sections describe some of the causes of these issues and provides
steps you can follow to resolve these problems. Here are some things you can check
to verify whether the data is successfully transferred and indexed:

• You can verify Oracle NoSQL Database's information that it uses to connect to the
Elasticsearch cluster by issuing the runadmin command show parameters -service
sn1 where sn1 is the id of any storage node in the store. The parameters of
interest are searchClusterName which is the Elasticsearch cluster name; and
searchClusterMembers which is a list of host:port representing the nodes in the
Elasticsearch cluster.

• Be sure that when you are registering the Elasticsearch cluster, you give an ES
node's transport port and not its http port.

• You can do a quick check of connectivity from the Oracle NoSQL Database
master administrative node by re-registering the Elasticsearch cluster using the
command plan register-es. This plan is safe to run multiple times. If it runs
without errors, then the Elasticsearch cluster is at least available to the
administrative node.

• Both Oracle NoSQL Database and Elasticsearch nodes should be configured to
listen on appropriate network interfaces. If an Oracle NoSQL Database store is
using a public interface, but Elasticsearch is using the loopback interface, then
they will not be able to communicate properly. The network interface is configured
for an Elasticsearch node by the property network.host in the elasticsearch.yml,
and for an Oracle NoSQL Database storage node by the -host option to the
makebootconfig command.

• You can issue a command like curl http://localhost:9200/_cat/indices to get a
list of the indexes in an Elasticsearch cluster, to verify that they correspond to the
text indexes you created in Oracle NoSQL Database. The output of this command
will also show an indication of the status of each index using the color names
green, yellow, and red. If the status is red, then the index cannot be populated.

• If you see unexplained failures to index, see the RepNode logs for SEVERE log
messages or exceptions related to Elasticsearch. For information about finding
logs, see Software Monitoring in the Oracle NoSQL Database Runbook.

• With a heavily update-dominated work load, the Elasticsearch cluster can lag quite
far behind Oracle NoSQL Database. It can take minutes for a new Oracle NoSQL
Database record to be reflected in search results from Elasticsearch. This issue

23

can be mitigated by increasing the number of Elasticsearch nodes, tuning
Elasticsearch, and especially by storing Elasticsearch data on solid state disks.

• Compare Record counts

You can compare the number of records in table for Oracle NoSQL Database with
the number of documents in your Elasticsearch cluster (this assumes that the
Oracle NoSQL Database has a static number of items). This is particularly useful,
for instance your cluster is in a test environment where the number of records is
set and you do not add more. To find the number of records in Oracle NoSQL
Database, use the following statement in the Command Line Interface (CLI):

kv-> aggregate table -name mytestTable -count
Row count: 100

To get the number of records for Elasticsearch, use the following command:
http://localhost:9200/ondb.mystore.joke.jokeindex/_count

If it is successful, you get the following response:

{"count":100,"_shards":
 {
 "total":5,"successful":5,"failed":0
 }
}

The count returned by Elasticsearch is the same value as the number of records
shown in the CLI. The matching values provide assurance that all records have
been transferred and indexed by Elasticsearch.

• ElasticServer Version Mismatch

You must use Elasticsearch 2.0 version. A different version, for example ES 1.7.3,
populates the following error:

kv-> plan register-es -clustername elasticsearch -host
localhost -port 9300
Can't connect to an Elasticsearch cluster at localhost:9300
{elasticsearch}

The Admin log shows this:

2016-04-05 20:20:19.512 UTC INFO
[admin1] [Washout] loaded [], sites []
2016-04-05 20:20:20.434 UTC INFO [admin1] [Washout]
failed to get local cluster state for
{#transport#-1}{127.0.0.1}{localhost/127.0.0.1:9300},
disconnecting...
RemoteTransportException[[Failed to deserialize response
of type [org.elasticsearch.action.admin.cluster.state.
ClusterStateResponse]]];
nested: TransportSerializationException
[Failed to deserialize response of
type [org.elasticsearch.action.admin.cluster.state.
ClusterStateResponse]]; nested:
IndexOutOfBoundsException[Readable byte limit exceeded: 107];

• Check Elasticsearch Mappings

24

You can influence the mapping by including a mapping-spec in the original CREATE
command, but you cannot provide your own mapping. Be aware that this default
mapping from Elasticsearch includes assumptions about data types and data
structures in your documents. On the basis of these assumptions, Elasticsearch
may omit your document from the index. For example, string mapped to object will
not be indexed in the current version. Also, a record that contains only empty
strings or nulls in the indexed fields will be omitted. For more information about
expected data structures see Mapping.

• The population of a new text index begins immediately when it is created. If the
existing database is large, this operation can take quite a long time. Furthermore,
when a text index is created, if other text indexes that were created earlier already
exist, they too will be populated over again from scratch. This is because all text
indexes share the single gateway in server to stream data to the Elasticsearch
cluster, and due to the newly added index, the gateway has to start from the very
beginning, resulting re-populating all indexes. For these reasons it is best to create
all the text indexes that you need at the same time, and preferably before the
database has been populated.

• When you execute the CREATE FULLTEXT INDEX statement, the Elasticsearch
determines whether an index already exists with the same name. If such an index
exists, the CREATE statement will fail, unless the OVERRIDE flag is given; in
which case the existing index will be deleted before the new index is created by
the same name. For more information on using OVERRIDE flag, see Creating Full
Text Index.

• When the DROP INDEX statement is executed to remove a text index, the health
status of the Elasticsearch cluster must be GREEN, unless the OVERRIDE flag is
given, in which case the deletion will proceed. The metadata describing the index
will be removed from Oracle NoSQL Database. However, there is a possibility that
the corresponding Elasticsearch index will not be removed. For more information
on using OVERRIDE flag, see Drop Index.

This constraint helps to avoid an issue where an Elasticsearch index deletion can
be undone when a node that was offline during the deletion returns to the cluster.

Security Configuration
This section details that Full Text Search and a secure Oracle NoSQL Database store
are disjoint, that is, if Oracle NoSQL Database is configured as a secure store, Full
Text Search should be disabled. On the other hand, if Full Text Search is enabled (that
is, an external Elasticsearch cluster is registered) in a nonsecure store, users cannot
reconfigure the nonsecure store to a secure store, unless Full Text Search is disabled
before reconfiguration. Consider the following scenarios:

• For a new instance, if the user enables Full Text Search, then security cannot be
enabled. For all new instances of Oracle NoSQL Database created from scratch,
Full Text Search cannot be defined until the user registers an external
Elasticsearch cluster successfully.

• For a new instance, if the user enables security, Full Text Search cannot be used.
If a user configures a new Oracle NoSQL Database instance with security
enabled, user will not be able to register any external Elasticsearch cluster. In this

25

case, an IllegalCommandException will be raised with error message Please
unsecure the store to register ElasticSearch.

• For an existing store that has security disabled, Full Text Search can be added. If
the Oracle NoSQL Database instance is configured as nonsecure store, Full Text
Search can be enabled and used as usual.

• For an existing instance that has security enabled, Full Text Search cannot be
added. The user will not be able to register any external Elasticsearch cluster if the
Oracle NoSQL Database is configured as a secure store.

• For an existing store that does not have security but has Full Text Search, the
store cannot be made secure without removing Full Text Search. If the Oracle
NoSQL Database instance is originally configured as a nonsecure store, and Full
Text Search is enabled by registering an external Elasticsearch cluster, user will
not be able to reconfigure the nonsecure store to a secure store. However, you
can modify the configuration file by the following 2 ways:

1. Modifying the Configuration File using the Automated Tool

You can use the automated tool securityconfig to configure a nonsecure store
to a secure store. For more information on using the securityconfig tool to
perform the security configuration of your store, see Security Configuration in
the Oracle NoSQL Database Security Guide. If an external Elasticsearch is
already registered, the configuration tool fails with an error messages that the
user needs to deregister the Elasticsearch cluster first and then reconfigure:

java -jar /Users/junyi/work/oracle/hg/lib/kvstore.jar securityconfig
security-> config create -pwdmgr wallet -root /var/tmp/kvroot
Enter a password for the Java KeyStore:
Re-enter the KeyStore password for verification:
Created files
/var/tmp/kvroot/security/client.security
/var/tmp/kvroot/security/client.trust
/var/tmp/kvroot/security/security.xml
/var/tmp/kvroot/security/store.keys
/var/tmp/kvroot/security/store.trust
/var/tmp/kvroot/security/store.wallet/cwallet.sso
Created
security-> config add-security -root /var/tmp/kvroot
Error handling command config add-security -root /var/tmp/kvroot:
The configuration cannot be enabled in a store with registered
ES cluster <esClusterName>, please first deregister the
ES cluster from the non-secure store, and reconfigure.

2. Modifying the Configuration File Manually

If a user manually edits and changes the configuration file to convert to a
secure store from nonsecure store with registered Elasticsearch cluster,
without using the automated tool, the SNA would not be able to restart
successfully. SNA raises an IllegalStateException error message Secure
store is not allowed if there is a registered ES cluster. To fix it, the user
must:

– Withdraw the changes made to the configuration file

– Restart Oracle NoSQL Database instance and get the original nonsecure
store

26

– Deregister the Elasticsearch cluster

If you have any existing Text Index created, you need to drop those before
deregistering the Elasticsearch cluster. For more information, see
Deregistering Elasticsearch from Oracle NoSQL Database Store section.

– Restore the change of a secure store

– Restart Oracle NoSQL Database instance and get a secure store without
registering Elasticsearch cluster.

• For an existing store that does not have security enabled and also does not have
Full Text Search, you can enable security. If the store is configured as nonsecure
store and there is no Elasticsearch cluster registered, user will be able to
reconfigure the store to a secure store normally.

Note:

For a secure store, upgrading from version 4.0 to 4.1 is not permitted when Full
Text Search is enabled. You should either disable security or Full Text Search
before upgrading. Otherwise, after upgrading a storage node, restarting the
node will fail with an error message asking users to restart Storage Node with
previous library and disable either Full Text Search or security before
upgrading.

Oracle® NoSQL Database Full Text Search, Release 12.2.4.5
E85382-01

Copyright © 2011, 2018, Oracle and/or its affiliates

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is
applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable
agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

27

